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The prOlem of computer use of natural human language may be thought

of as consisting of three sub-tasks. The first sub-task is to devise

programs which accept as input well-formed expressions in a natural

human language and extract from the expression the same meaning as

would a native speaker of the language. The second sub-task is to devise

appropriate data structures for storing the meaning extracted from a

natural language expression. The third sub-task may be thought of as

the inverse of the first. It is to take information stored in memory

and produce well-formed natural language expressions which will be

correctly understood by a native speaker.

The scope of this paper is limited to discussing some techniques

useful in the first sub-task. We will first review the use of augmented

transition networks as parsers for deriving the underlying syntactic

structure of a natural language expression. Two paradigmic forms for

ATNs will be compared briefly. With that background, we will then

present three techniques for handling expressions containing ambiguity

in their syntactic structure. The two ATN forms will be compared in

their appropriateness for each of the three techniques and the relative

merits of the three techniques will also be discussed.

TRANSITION NETWORKS AS PARSERS

We need some formal conventions for describing the grammar we

use in our parser. Augmented transition networks (ATNs) will serve



this purpose admirably.

Simple phrase structure grammars may be represented by finite-state

transition networks such as the example in figure 1.

A finite-state transition network consists of a finite set of nodes

(represented in the diagram by circles) and a finite set of labeled,

directed arcs (represented by arrows) connecting the nodes. A transition'

may be made from a node at the tail of an arc to the node at the arc's

head only if the current input symbol of the string being parsedis in

agreement with the label of the arc. When an arc is successfully

traversed, the input symbol pointer is advanced to the next symbol

of the input string.

The usual convention in drawing transition networks is to place

the entrance node on the left and the terminating node(s) on the

right with a diagonal slash. in seeking an arc out of a node, emanating

arcs are attempted in a clockwise oraer beginning at the point of

entry for that node. An input string is acceptable if and only if

a terminating point in the network is reached and the input symbol

pointer has reached the end of the string.

The grammar represented by the cran,,4tion network in figure 1
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will accept an infinite set of English sentences of the form:

the men come
the man comes
the old men come
the old man comes
the old old old men come
the old old old man comes

etc.

Though this set is infinite, it is not a very interesting subset of

English. Indeed, it has been shown (Chomsky, 1957) that no mere

finite-state grammar will suffice as a grammar of English.

We can, however, increase the power of our transition networks

by allowing recursive calls both within and between networks. We

achieve recursion by allowing our network to transfer control ("push

down") to other networks or another point in the same network. When

a "push" occurs, the location of the arc in the calling network is

placed on a push-down stack and control is transfered to the called

network. When a called network terminates (whether successful or

unsuccessful), a "pop" occurs and control is transfered to the location

on top of the stack.

If the sub-network called by the arc was traversed successfully,

then control is transfered to the node at the head of that arc. Note

that the input nymbol pointer is not advanced for arcs'which call

for a "push" since the pointer will have been advanced by the

successful traversal of the sub-network. If the sub-network called

by the arc was not traversed successfully, then the input symbol

pointer will remain at the position it occupied at the beginning of

0



the calling arc and. the next- arc emanating from the node will be

attempted.

Ott?

/GORE 2.

The recursive transition network of figure 2'recognizes a portion

of the sentences accepted by the finite-state network of figure 1.

The network is entered at node S with the input symbol pointer at the

beginning of the sentence to be parsed (for instance, "the old man

comes"). We use the convention of upper-case letters to represent

calls of sub-networks. There is only one arc leaving node S so we

attempt to traverse it. The label on arc 1 invokes sub-network NP.

pur current location (arc 1) is placed on the stack and control is

transfered to node NP. At node NP, arc 3 is attempted. The word following

the current location of the input symbol pointer is indeed "the" so

arc 3 is traversed successfully, the input symbol pointer is advanced,

and control is transfered to node q3.

The first arc leaving node q3 is arc 4. The next word of the input

string matches the word required by arc 4 ("old"), the input symbol

pointer is advanced, and control is transfered to the :ode at the head

of arc 4. The loop of arc 4 returns us to node q3. Attempting the



first arc in clockwise order from the point of entry of node q3, we

once again attempt arc 4. This time, however, the next word of the

input string is "man" and arc 4 fails. The next arc leaving node q3

is arc 5 which accepts "man," advances the input pointer, and transfers

control to node q4.

As is indicated by the diagonal slash through the circle, node q4

is a terminal node for the NP sub-network. Control is now transfered

to the location stored on top of the stack, that is, arc 1. Since the

NP network was traversed successfully, arc 1 is traversed successfully

and control is transfered to node ql. When node q2 is reached, the

input symbol pointer will be at the end of the input string and the

control transfer stack will be empty. The parsing created by the

successful traversal of the recursive transition network will be-

complete and the input string will have been found acceptable.

Even though by adding recursion to our network, we have increased

its power from that of a finite-state recognizer to a context-free

recognizer, the limitations of even context-free grammars create

difficulties in handling English (Chomsky, 1957; Postal, 1964).

By augmenting our recursive transition networks with a set of

conditions associated with each arc and a set of actions to be carried

out if that arc is traversed, we will strengthen the network substantially.

The actions may take the form of setting values of registers or

variables and the conditions may depend for their success or failure

on the values of registers or variables. Such an augmented transition

network (ATN) will have the full power of a Turing machine and will



be able to represent any grammar that could he parsed by any

machine (Winograd, 1972, p.43).

A suitable ATN for our example n-t of sentences might be the

one shown in figure 3.

arc conditions actions
1 none set subject to NP parsed
2 no. of subject = no. of verb set verb to word parsed

3,4,5 none form noun phrase structure

FIGURE 3. A simple ATN with summarized augmentations.

With the lower-case labels of arcs 2, 3, 4, and 5 we introduce

the concept of syntactic categories of words. A syntactic category is

a set of words which perform the same function in the syntax of a

language. For instance, the English words "a," "an," and "the" all

perform closely similar syntactic functions. We call them "articles"

and abbreviate their category "art." All three are used only in limited

contexts, usually before a noun or before a modifier preceeding a noun.

An arc with a syntactic category label can be successfully

traversed when any word from that category is encountered. The vocabulary

of the language is stored in a lexicon and the parser has thb ability

to look up the lexical entry for words in order to determine their

syntactic category. Additional conditions can be imposed via the
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augmentations. For instance, in the ATN of figure 3, we might impose

the augmentation condition that the number of the article from arc 3

be in agreement with the number of the noun from arc 5. In this way,

we would accept "the clowns" and reject "a clowns."
A

GENERATION OF UNDERLYING SYNTACTIC STRUCTURE VIA ATN PARSING

The sequence of transitions by which a string is parsed generates

a structure in tree form which represents the underlying syntactic

relations among the constituents of the surface string.

If the ATM of figure 3 is applied to the sentence "the merry

clown pirouettes," the sequence of transition arcs traversed can

be represented by the diagram of figure 4.

AP

Zoti

1 1*rge".0efirey 'CLOWN'

FIGURE 4. Underlying syntactic structure for "the
merry clown pirouettes."

The ATN of figure 3 is constructed in such a way that its sub-

networks represent significant syntactic constituents. For instance,

any string parseable by the NP sub-network will qualify as a noun

phrase. This tree structure of parse transitions is the underlying

syntactic structure corresponding to the surface string.

Tree diagrams of syntactic structure are easy to read, but they

require excessive space to draw and are not readily amenable to computer
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print-out. Frequently we will prefer to represent the syntactic

structure in a nested parentheses form. Figure 4 would then become

CS(NP(art("theladj(Imerryln("clown"))v("pirouettes"))).

TWO FORMS FOR ATNs

In the article inaugurating ATNs in natural language parsing

applications, W.A. Woods (1970, p.601) suggests using "standard

finite state machine optimization techniques" to reduce repetition

of arcs with the same label. We call this approach the "minimal- node"

form. To quote Woods:

Whenever the grammar contains two or more subgraphs

of any size which are essentially copies of each other,

it is a symptom of a regularity that is being missed.

That is, there are two essentially identical parts of

the grammar which differ only in that the finite state

control part of the machine is remembering some piece

of information, but otherwise the operation of the two

parts of the graph are identical. To capture this

generality, it is sufficient to explicitly store the

distinguishing piece of information in a register (e.g.

by a flag) and use only a single copy of the subgraph.

(Woods, 1970, p.601)

The truth of this observation is obvious, but the advantage Woods

imputed to it seems illusory. While the practice of minimalizing the

ATNs will undoubtedly simplify the graphs themselves, it merely

transfers the burden to the augmentations. In reducing the number

of arcs and nodes, it increases the conditions which must be tested

for the remaining arcs and multiplies the space required to.store

the registers.

We do not take minimalization nearly so far as Woods. Instead,

ws prefer a pseudo-tree form for our ATNs. In this form, when two

I 0
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or more arcs diverge from a node we do not allow them or any of their

descendants to merge into common nodes. We say "pseudo-tree" instead

of "tree" because we do allow an arc to loop back and re-enter the

node from which it originated, thus violating the usual definition

of a tree.

Contrary to the horizontal form which Woods uses to draw his

minimal-node ATNs, we follow the usual tree conventions for our

pseudo-tree ATNs. The starting node or origin of the ATN will be

placed at the top with its arcs descending from it. At each node

the exit arcs will be attempted from left to right (i.e., counter-

clockwise from the point of entry).

In pseudo-tree form, the ATN will have only a few augmentations

(conditions to be tested and actions to be implemented) per arc and

will instead store such information in the structure of the graph

itself. Since this information usually refers to the syntactic structure

of the input string, it seems appropriate (aesthetically, if not

also logically) to make it explicit it the structural component of

our grammar, that is, the ATN graph.

SYNTACTIC AMBIGUITY IN ATNs

We say that a sentence is ambiguous in its syntactic structure

if it is possible to find two or more syntactic structures for it

such that each word has the same syntactic category assigemsntaand

the same meaning in every parse.
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Consider the string "put the blue book on the red book on the

shelf." The two ambiguous interpretations of this string are diagranined

in figure 5.

.........

r---Ar,
r 1.. ,Ng.f.
s: .. ,:,. --- ..- ...,

..... f: V.. ' ... , ..

PM( ,NP

A. '..f. .....
Pir. dig 44 %;)% PP par AIP:I: I. e: % . ... .

3*riie- 414' *NW / %. '4". ftlis '``. 1.1% ff.' .00.,
7' %""

fir
,
',dr 'sir- we aide-

*rose 'stme.O, e 16I
Ale

fee ,, pfr
'rim" qeet." *kok" .

'eve 4.i.i A
'nit' 'aro'

FIGURE 5. Two possible parsings for "put the blue book
on the red book on the shelf." Parse I (---) might be.
paraphrased as "the blue book that is on the red book is
to be put on the shelf." Parse II ( ) might be para-
phrased as "the blue book is to be put on the red book on
the shelf."

These two parsings are obtained by taking two different paths

through the ATN. For parse I, we push down to PP during the first

pass through NP thereby interpreting "on the red book" as an adjectival

prepositional phrase rid then pop up to S where we push down to PP,

interpreting "on the shelf" as an adverbial phrase. For interpretation

II, we do not push down to the PP network during the first pass through

the NP network and so "on the red book on the shelf" becomei an adverbial

prepositional phrase.

Note that our definition of syntactic ambiguity excludes the

linguistically interesting form of ambiguity which results when a word
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has multiple meanings. Consider the sentence "the pitcher hit the

umpire." This string is ambiguous because "pitcher" may be interpreted

as either denoting the ball-player who stands on the mound and throws

balls across the plate or denoting an utensil from which drink is

poured at the dining table (as in "a pitcher of beer"). This form

of ambiguity is excluded by our restriction of syntactic ambiguity

to those forms in which ambiguity occurs without varying the meaning

of the words.

When the grammar of the parser is represented by ATNs the problem

of finding all interpretations of a syntactically ambiguous string

reduces to a simple and direct task. One merely finds all paths

through the ATN which accept the string without requiring variation

of the lexical data of any of its words.

THREE ATN METHODS FOR PARSING SYNTACTICALLY AMBIGUOUS STRINGS

There are at least three methods available by which an ATN-based

parser may detect syntactic ambiguity and, furthermore, generate all

possible parsings (i.e., all possible syntactic interpretations) for

the string. These methods are Simultaneous Parallel Analysis (SPA),

Backtracking (BT), and Amputate And Re-enter (AM).

If we merely wish to test for the existence of syntactic ambiguity,

we attempt all possible paths until all paths are tested and only one

is found acceptable (no ambiguity) or two acceptable paths ire'found

(indicating ambiguity). Alternately, if we wish to generate all possible

interpretations we do not stop with merely two paths but continue

until all paths are attempted.
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1. Simultadeous Parallel Analysis

In the Simultaneous Parallel Analysis (SPA) technique when the

parse arrives at a node from which two or more arcs diverge, a copy

of the previously formed portion of the underlying structure and all

other information stored in registers is made for each arc and both

routes are attempted simultaneously.

When implemented, the simultaneity of SPA is usually simulated

by seqdentially executing one operation of each of the "simultaneous"

parsings. For this reason, SPA is sometimes referred to as "Parallel

Partial Analysis" or "Simultaneous Partial Analysis." When an arc

is not traversed successfully, the registers for that path and any

underlying structure components that had been constructed are wiped

from memory.

Note that while SPA isqin effective technique for parsing syntactic

ambiguities, it requires duplication of storage since an independent

copy is needed for each active path. Though many paths will drop

from consideration soon after they are begun, the combinatorial

explosion of the worst case would impose a relatively enormous

peak demand on memory space. As mentioned earlier, the register storage

requirement will be slightly less for pseudo-tree ATNs than for minimal-

node forms since the structural relationships of the grammar are

stored in the structure of the ATN graph. In many cases, however,

this advantage of the pseudo-tree form would be slight compared to

the worst case peak demand of the SPA method.



13

The space requirements for SPA are larger than for either of

the other two techniques. However, if truly simultaneous processing

were available, SPA might well be faster than the other two techniques

since its time would be equal to the time required for the slowest

path, rather than the sum of the times for all paths (as is the case

for AA). In practice, however, this advantage is reduced by the

requirements to execute each path one step at a time and swap back

and forth among copies of memory. In this form, the time for SPA is

the sum of the traversal time for each arc plus the time for swapping

memory.

2. Backtracking

Contrary to the breadth-first method of SPA, the technique of

Backtracking (BT) is a depth-first method. The parser first traverses

the ATN until an acceptable termination is reached. The syntactic

structure for this parse is stored. Then, beginning from the terminating

end of the path, the parser backtracks up the path (traversing the

arcs in reverse, as it were) until a node is reached from which diverges

an arc that was not attempted on the first parsing. The registers are

reset to the values they had previously at this node and parsing begins

anew. The parser switches back to a forward (downward, for pseudo-tree

ATMs) direction and attempts to find a new path in the usual way.

Note that a set of register values must be stored for each node

in order to reset memory when the parser backtracks to that node.

Obviously, nodes with mutually exclusive exit arcs cannot qualify

as origins for new ambiguous parsing@ after backtracking. This is

1 e)
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because to backtrack to an arc one must have descended from it successfully

and cannot therefore successfully traverse any of the other mutually

exclusive arcs emanating from it. For nodes of this sort, it is not

necessary to preserve a copy of the register values.

The backtracking mechanism itself is much simpler to implement

for pseudo-tree ATNs than for minimal-node since most nodes have at

most one immediate ancestor. The exceptions are nodes with arcs which

loop back to that node. An effective though simple-minded method is

to use the so-called "Dewey Decimal notation" (Knuth, 1973) to number

the arcs of the tree. Then, from the number of the current arc, it

is a simple matter to derive the number of the parent. The insertion

of pre-determined heuristics can often generate more efficient back-

tracking at the cost of a more complicated control structure.

The time required to develop all possible parsings using BT will

be the sum of the traversal time for each arc plus the time to compute

the backtracking destination plus the time to reset the registers for

the nodes backtracked to.

3. Amputate And Re-enter

The third method railable to test for syntactic ambiguity and

to find all possible parsings is Amputate And Re-enter (AAR). A&R

like BT, is a depth-first method. Unlike SPA and BT, A&R does not

require that copies be stored of registers nor does it requiie.the

computation of backtracking destinations.

In the A&R method, when the parser in traversing the ATN encounters

.1 6
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a node whose descendants provide a possibility for syntactic ambiguity,

an amputation flag is set on the exit arc traversed from that node.

When the path terminates successfully, the syntactic structure for that

interpretation is stored. The parser then resets the input symbol

pointer to the beginning of the string, re-initializes all other

registers except the amputation flags, and re-enters the ATN at the

beginning.

The parser will, of course, retrace the same path through the

ATN until it encounters an arc with an amputation flag. The amputation

flag does not allow the parser to traverse that arc and so the next

arc leaving that node is ttempted. As with the first pass through

the ATN, if new nodes are encountered with the option of ambiguity

new amputation flags are set. The parser continues to re-enter the

ATN until it is no longer able to traverse a successful path. When

that happens, all possible syntactic interpretations of the string

have been found.

The advantage of A&R over BT or SPA is the simplicity of its

control structure and its saving in storage space. This elegance of

the control structure and saving in storage are, however, paid for

with a decrease in speed. In theory (i.e., discounting time for

swapping memory and computing backtracking) MR is slower than either

SPA or BT. The time for developing all possible parsings using MR

will be the sum of the time for each path from the origin to its

termination. Obviously, AM will traverse some of the early arcs
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repeatedly. It is this repetition that increases the time required

for A&R.

While A&R is theoretically slower than HT or SPA, it clearly

requires much less memory space than either of those methods. There

is no need in A&R to store an independent copy of memory for every

active branch in the parsing tree (as is the case for SPA). Nor is there

a need to store a copy of memory for every node with an option for

ambiguity (as is the case for BT).

The time-space tradeoff is not the only difference to consider.

With a decline in the relative cost of computer time and space, we

have seen an increasing emphasis on minimizing programming time (not

only in creating the program but also in subsequent modification).

The A&R control structure has this advantage of programming simplicity.

There is no need to constantly switch back and forth among several

active paths (SPA), nor to repeatedly swap copies of memory (SPA),

nor to compute backtracking destinations (BT). With A&R, the control

structure merely re-initializes all registers except amputation flags

and jumps back to the ATN entrance node. A&R's advantage of simplicity

is relatively small for simple ATNs (e.g., the illustrative examples

used above). However, as the ATNs become more complex, A&R's advantage

of simplicity far outstrips SPA or BT.

111PLZHENTATION

An experimental parser, FROTH, based on ideas presented here has

been implemented in SNOBOL4 / SPITBOL (Griswold, 1973; Tharp, 1974)

lh
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on the Triangle Universities Computation Center's IBM 370/165 system.

Since FROTH was merely constructed to test the implementation of

A&R on pseudo-tree ATNs, it does not attempt to serve as a general-

purpose parser for English. The program is deliberately limited to

a few of the more simple syntactic structures of English.

The grammar for FROTH is built into the code of the program in

the form of a pseudo-tree ATN. For this reason, FROTH is a "syntax-oriented"

parser rather than being "syntax-directed." In other words, the program

is identical to the grammar rather than using an external grammar.

Froth is oriented to the particular built-in syntax rather than being

directed by whatever syntax is provided to it as input.

This syntax-oriented aspect of FROTH is not an innate characteristic

of ATM parsers. Instead, it represents a programming decision resulting

from the experimental nature of FROTH. In fact, we suspect that

pseudo-tree ATNs may well be a naturally appropriate format for input

of grammars to a syntax-directed parser.

Within its limited domain, FROTH rejects syntactically ill-formed

strings and successfully uses A&R to detect syntactic ambiguity by

generating two parsings of syntactically ambiguous sentences. For

example, in response to the input sentence "the student obeyed the

queen who made the laws on the sidewalk," FROTH returns two syntactic

structures. The first interprets "on the sidewalk" as describing which

laws the queen made. The second construes "on the sidewalk" as an

adverbial phrase telling where the queen made the laws. If FROTH

bad been programmed to produce all possible interpretations, it would

15



have returned a third syntactic structure with "on the sidewalk" as

an adverbial phrase telling where the students obedience occurred.

SUMMARY AND COMMENT

We have reviewed here the well-known application of ATNs to

parsing natural language. In examining the two pre-dominant forms

of ATNs, we found that while minimal-node simplifies the ATN graph,

it merely transfers the burden to the augmentations. Pseudo-tree

form, however, stores the syntactic structure of the grammar explicitly

in the structure of the ATN graph and lightens the burden on the

augmentations.

When three methods (SPA, BT, A&R) for parsing syntactically

ambiguous strings were compared, SPA was found to be the fastest

(in its theoretical form) and to require the most storage. A&R minimized

storage and was slowest (in the worst case form). BT has time and space

requirements intermediate between the extemes of the other two methods.

A&R has the further advantage of an extremely simple control

structure. This advantage increases with increasing complexity of

the ATNs. While at present the author prefers A&R over BT or SPA, it

would be unwise to make a blanket prescription. The choice should be

determined by the constraints of the particular application. One might

find advantage in combining two or more methods. For instance, if the

ATN had no possibility for ambiguity in its early nodes, one Wight

Choose to backtrack to the first ambiguous node and then use A&R

from there.

2 (i
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