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A learning model appropriate for basic mathematics must
meet two requirements: (a) It Rust be a faithful and com-
plete representation of the rsthematical theory which it is
meant to expose, and (b) the model must be consonant with the
human disposition to learn, that is, be relatively more facili-
tating than other learning models. These two aspects will be
examined separately here. If the model which this paper outlines
can be elaborated in all of the necessary teaching-learning -,

particulars, it should provide a substantially different means
by which to introduce mathematics to children, a means which is
meant to equip the learner at an early time with a-set of quan-
titative concepts he would not otherwise have. The model is
based upon teaching and learning activities that require the
child to assign numbers to continuous variables, variables that
are measured, and avoids entirely counting operations for the
assignment of numbers to objects. The model is intended to
assist the integration of basic mathematics concepts at an
early point in the child's learning. The foundational reper-
toire will reflect a more complete understanding of quantita-
tive concepts than has been true.

In the Tenth Yearbook of the National Council of TeacherS'
of Mathematics, Brownell (1935) outlined the theories which,
in various degrees, underlay the teaching of arithmetic at that
time. There were three such theories, a drill theory, an inci-
dental learning theory, and a meaning theory. According to
Brownell, the complexity of arithmetic learning makes si mean- .

ing theory necessary. The shift in the schools to modern mathe-
matics has been a response to a belief in meaning theory.
Brownell argued the case this way:

Arithmetic, when viewod as a system of quantita-
tive thinking, is probably the most complicated
subject children face in the eLementary school.
Number is hard to understand because it is abstract.
No special 'arithmetic instinct' fits the child
directly to learn arithmetic. Neither does nature
proiide the child with tangible evidence of number

00 which he can apprehend immediately and thus come
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easily to know through sense perception. There is
no concrete quality of 'fiveness' in five dogs
which may be seen, heard, and handled: Color,
barking, weight, and shape may be grasped through
the senses, but the 'fiveness' is not thus open
to immediate observation. Neither is there any
'fiveness' in . . . or 'five' or in 'S.' In each
case the 'fiveness' is the creation of the observer;
it is a concept or an idea which the observer
imposes upon the objective data. . . . One way of
putting ' fiveness,' sevenness,"tenness,' etc.,
into objective representations of number is to
enumerate. The ability to count objects, the
school does develop, but it does little more than
this by way Of providing children with other and
more advanced ways of thinking of concrete numbers.
Too commonly, instruction in counting is immediately
followed by drill on the addition and subtraction
combinations.

This approach to primary number almost totally
neglects the element of meaning and the complexity
of the first stages in arithmetical learning. It
even disregards the evidence provided by children
themselves that they do not understand what they are
learning and that they are in trouble. When chil-
dren know a combination one day and do not know it
the next, there is something wrong in the looming.
(pp. 20-21)

Certainly, advances in modern mathematics have changed the
picture since 1935, but a new difficulty is apparent. Experi-
ences in manipulating quantities that are now given to primary
school children are not as completely quantitative as one might
at first think. "Fiveness" may not be any more apparent to the
child of 1975 than it was in 1935, in spite of the important
movement toward meaning theory.

The Beginning Learner

The child entering school will bring with him certain infor-
mal information that is prequantitative as, for instance, some
knowledge of size comparisons, i.e., large, larger, superlatives,
i.e., largest, and certain number uses like calling the natural
numbers, 1, 2, 3, 4, S, etc., and usually some ability to enumer-
ate objects, whereby the numbers are vocalized in order to give
a cardinal value to the collection of objects counted. Schools
generally emphasize those number tasks that will enlarge the
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child's existing repertoire, namely, more practice in
parisons, larger, smaller, that are based upon visual
and practice in counting.

The Transfer Model for Learning
Introductory Mathematics

3

size com-
judgments

The nek:phyte needs most of all a repertoire of concrete
referents stored in his memory. Organization of these referents
is dependent upon how experience is organized by those who teach
the child and whether the mathematical content of the experi-
ence is both memorable and a true and complete representation
of the basic mathematical concepts. Numerous observers of
mathematics learning have noted a deficit in concrete experience
(Lamon, 1972). We will call these early learnings through
tangible experience "the transfer base" for it is out of these
organized manipulative experiences that transfer can be antici-
pated. Transfer in this instance represents the integration and
consolidation of concrete activities into an abstract organiza-
tion of mathematical concepts.

A fact of human learning is that highly organized teaching
activity does not necessarily translate into highly organized
learning. The information must be in an assimilable form--a
focus of this paper, and the ideas to be learned need repeating
with variations in their form so as to provide a context for .

the storage of new information.

The form of learning activities required by a transfer
model must now be described and in the description, I will
include an analysis of a transfer model in terms of general num-
bers theory. After that, I provide a learning theory analysis.

Measuring Activities Vice the Counting of Objects

In the transfer model, practice with numbers will be limited
to the taking of measurements. Enumeration of objects will not
be practiced. Measurement of linear distance is a propitious
form of measurement, for it can be performed by small children
to the end that the measured dimension will represent the num-
ber concepts we wish the child to learn. Such measurement should
be practiced by requiring that the learner take in hand some
convenient object to serve as a unit of measure. A blackboard
eraser is such an object. The learner should then be instructed
on how to use the eraser to measure length or width of several
objects. If the first measured object is a table length, the
learner will align the eraser at the edge of the table and

4



4

marking the forward edge of the eraser, transport the eraser
forward one unit distance or eraser length. He will be shown
how to alternately mark and transport the eraser forward until
the table has been fully traversed. The number series will be
called by the child as he marks off the Unit distances. Though
the procedure is quite simple, the symbolic content which can
be drawn from such a measuring activity is quite profound.
Some of the initial content follows, which should be the focus
of attention.

Unit of Measure--The Concept "1"

The concept "1" is not readily grasped and it is quite pos-
sible for a child to generate a misleading concept that will
remain with him for sometime. The mathematical meaning of one-
ness is abstract and cannot be represented appropriately by any
tangible object. This meaning of one is pot,taken from the
natural numbers, which do make reference to,particular objects
and which construe a number as the-object itself. The measure-
ment of a continuous quantity can lead-to a different view of

number. In measuring distance, one is represented, again, each
time a quantity is incremented by the unit:

(((1) 1) 1) 1)

According to Gal'perin and Georgiev (1969), measuring is the
best activity by which to convey to the child a correct meaning

of one. These observers have acquired evidence to show that
failure of a child to conserve quantities is due, in part, to

learning "oneness" by counting objects having idiosyncratic
qualities, and failure to properly associate, a unit to the
quantity to be measured.

When measuring distance, as a way to-introduce the number
series, the object representing a unit should be changed fre-
quently and the linear unit spaces, along the distance marked
off, should be made the focus of explanation and practice until
the child comes to realize that the unit is not the measuring

instrument. Such a practice will represent a radical departure

from the use of a number series formed by cOunting objects as
the means by which to introduce quantitatiieildeas to children.

In time, "one" will come to mean an arbitrary'aistance marked
off in a continuous series.

OrditRtal.itcetIntrinsic
to Measuring :stance

Brainerd (1973) and Hempel (1945) have shoin that ordinality,
as represented in the succession of the natural number series
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is the central concept of the arithmetic of the natural number
series. Brainerd has further shown that children acquire com-
petence in this concept before the easiest addition and sub-
traction skills and before they understand cardinality as a
concept.

In measuring a linear distance where the measuring unit is
transported forward, each ordinal value retains its relative
position, so that when the learner has traversed the progressive
series, it is easy to require him to relocate the fourth ordinal
or the seventh or the successor of some other value. He can,,
therefore, learn, quite explicitly, the meaning of ordinal posi-
tion in a continuous series. Note that the concrete activity of
measuring differs from counting in this respect. In enumerating,
there is no natural order. One can count the objects in any
order he wishes. Then, too, the distinction between ordinal
and cardinal concepts can be made explicitly clear in the oper-
ations of measuring, for they each have their concrete reference;
namely, the cardinal end of the series and the respective ordi-
nal positions enroute to the cardinal terminus.

In similar fashion, transitive relations can be easily
demonstrated when C > B and B > A. It is possible to show C > A
in an obvious way in measuring distance where one has arranged
duplicate copies of the unit of measure in an end-to-end series.
One will simply identify points A, B, and C on the row of measured
units and show their quantity relations visibly arrayed before
the learner with the overlapping distances represented in the
linear segments. Like the concept "unit of measure," the con-
cepts of "asymetrical order'' or a "series of successors" and the
transitive relations made possible by succession of the unit are
very important in theories of number. The measurement model is
more completely consistent with the concept of succession than
is true of object enumeration.

Zero and Continuity as Related
Concepts in the Measurement Model

In the natural numbers series, as represented in the count-
ing of objects, zero is a number, but not the successor of any
number. In continuous quantities, the relation of zero to other
numbers is similar, but there is perhaps a more ready grasp of
its meaning. Regardless of the unit size, minuscule or great,
zero appears in contrast to some quantity or position on the
scale; in contrast to some of any unit size selected. Zero,
viewed in this way, probably has no special merit in mathematical
theory, but because zero is, in a sense, more readily present --
as the point of origin in the measured continuum, it likely
has special pedagogical merit. The learner can see zero in
relation to the infinitely divisible continuum. Rational numbers,
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fractionality, ratio, and proportion are each appropriately
explainable within the measurement of overlapping or parallel
linear distances, where, in each case, zero holds a comprehen-
sible position.

Accuracy in Determining a Quantity

Discrete quantities, as counted, can be reported with com-
plete accuracy; that is, one can obtain a ready consensus for
the cardinal value obtained by counting objects. Not so with
the measurement of continuous quantities, for we almost always
measure with inaccuracy and can never know if a completely accu-
rate measure has been taken, regardless of the quality of the
measuring instrument. Neophyte learners are prone to cavalier
use of a measuring device and the process of,teaching them that
in measuring length, the unit distances must coincide at coter-
minal points is a kind of fundamental concrete exercise in the
meaning of accuracy. Two advantages of measurement exercises
are immediately apparent in a discussio-, of accuracy. The child
will learn something of the need to preserve the integrity of
the unit of measure--that the unit is always constant. He may
also acquire a habit of compulsive carefulness in the practice
of accurate measurement. A trait peculiarly valuable for one
learning mathematics.

Unit-Quantity Relations and the Assignment
of Numbers to Measured Dimensions

There is possibly a reason to view conservation ability as
a degree of sophistication in quantity relations. Measurement,
.

in its various forms, requires first that one select an appropri-
ate unit by which to take the quantity. When a distance is to
be measured, the learner must choose the unit of length that
will yield a happy compromise between accuracy of the measure
and time saving efficiency--not too short and not too long.
The decision is one which requires a rudimentary choice of ratio
or unit-quantity relation. Knowledge about the determination of
quantities within various dimensions is apparently gained rather
slowly as demonstrated in the vast number of conservation studies
and focused in the work of Piaget.

Naturally, small children tend to regard quantities in a
gross way, in terms of perceptual comparisons of larger than,
smaller than, largest, etc. The disposition of the child to
look and declare A to be larger than B or to fail to conserve a
quantity under transformation was demonstrated by Piaget to be
typical of small children. He has said that they fail to decenter
their perceptions. The child's attention is drawn only to visual
transformations he sees in, for instance, a pile of that is
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spread out and made to cover more area or a dimensional change
created in some other quantity. According to Piaget, measurement
is a rote exercise until the child has developed conservation
ability and, therefore, measurement should be delayed until
that time (Piaget, 1960; Sawada & Nelson, 1967). Probably,
what the developing child eventually does is what Piaget's term,
decenter, implies. He comes to acknowledge compensating changes
at the same time in two or more dimensions. Or simply speaking,
the child sees more than one change at a time, one dimension
adjusting for the other, leaving the quantity unchanged..

But what does it mean to say that a child does or does not
decenter his perception? Success in conserving quantity might
be given a meaning quite different from the one Piaget has given
it. Namely, that there are particular learnings in assessing
quantity that can come about by assigning numbers to quantities,
so that the learner will acquire a grasp of unit-quantity rela-
tions. The child will then no longer simply look to form a
quantity judgment. He will measure until he has formed the
generalization that a transformation does not change the quantity.
Mind you, this is probably the more sophisticated way of doing
it. Small children do not typically experience formal measure-
ment training, and yet they eventually come, in some unknown
way, to conserve.

Mathematics books in the elementary school generally treat
measurement as an ancillary topic or a skill learning to be
acquired periodically and largely independently from other topics.
In the measurement model for teaching and learning mathematics,
the apprehension of unit-quantity relations is a superordinate
concept whether for taking dry and liquid measure, for taking
two dimensional space and linear distance, or for measurement
within otherdimensions. That measurement activities, in their
various forms, should be the concrete representation of the most
fundamental mathematics ideas is in agreement with the view that
complex subject matter needs a common and continuous organizer,
one to which the learner will be referred time and again.

Arithmetic Operations

The arithmetic operations of addition, subtraction, multi-
plication and division can each be carried out by the manipula-
tion of line segments and other forms of measurement. There may
well be advantages for mastery of these basic operations in
tangible space, as in adding line segments and, subtracting them,
or for doing similar operations with dry and liquid meac=e
before the learner is required to do paper-pencil operations of
arithmetic. If the abstract paper computations are delayed until
the child has numerous concrete referents for the symbolic oper-
ations, it is conceivable that a more comprehensible form of the
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knowledge may emerge. Paper-pencil operations can be taught,
conceivably, so as to call up, in the child's memory, images of
a tangible dimension that serves as a check on the reasonableness
of paper-pencil outcomes. If the transfer model is to afford
unique advantages, these measurement images must, of course, be
more adequate representatives of number theory than obtain with
object counting.

The Transfer of Basic Mathematical Concepts

The concept of transfer of training is a relatively old
one in pedagogy and in the psychology of learning but it is an
awkward concept, one which may eventually be represented by a
large number of laws of learning. The progress of knowledge
about transfer has been slow and its processes seem immensely
complex. Generalizations that represent transfer in today's
literature are crude statements. Central among these generali-
zations are those which emphasize similarity, similarity of

. stimulus conditions from an original to a transfer task and
similarity of response conditions between those two tasks.
Ellis (1965) has provided a summary of transfer literature and
has listed what he called principles of transfer. Among these
principles is one which anticipates that learning of one task
will benefit or transfer to another task when the training con-
ditions are highly similar. Among the remaining principles are
these: (a) learning to learn--cumulative practice from task to
related task eventuates in an increased capacity of the learner
to learn new tasks; (b) emphasis on early tasks in a series- -
more transfer will occur when practice and emphasis are given
to the early tasks in a series of connected tasks; (c) learner
insight--insight or quick solutions to problems comes about
only through extensive practice in a limited range of related
tasks; (d) practice with a variety of stimuli--variation in
the training experience facilitates transfer.

Aspects of Memory and the Transfer Base

The evidences, which Ellis has brought together, show the
improtance to transfer of establishing a large working repertoire
of organized experience in the learner. Early learning should
center on closely related concrete tasks that are memorable in
the sense that the mathematical content is salient and can be
easily organized to represent mathematical concepts. The first
part of this paper outlined attributes of a kind of measuring
that embodies intrinsic mathematical meanings, like the important
unit-quantity relation or the continuous nature of measured'
variables. Memory will benefit from the assignment of numbers
accompanied by tangible cues but,paradoxically, the basis for
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one of the first and most important abstractions will have been
laid. The learner must come to know that "one" is not really
the unit by which he is measuring at that instant, but the idea
of oneness as taken from all of the measures and that the quan-
tity can be given by any of the unit sizes. Obviously, the
learner must repeat the measuring operations many times before
he will gain a correct understanding of number. The activities
must be organized to demand interpretations of oneness, contin-
uity, unit-quantity relations, and perhaps through these inter-
pretations the concept of a stable quantity. Note that while
the conditions of practice vary with the measuring object, the
dimension measured, and the problem to be solved (i.e., the sum
of two line segments to be taken), the manipulanda and the cir-
cumstances remain much the same. Overlearning is, therefore,
likely. One who has formed a discrimination and is required,
subsequently, to redemonstrate many times his knowledge of the
discrimination is said to have overlearned (Travers, 1972).

Learning Set

There is a wide consensus that overlearning contributes to
the formation of a transfer base. Consider the problem of
explaining learning set or "learning to learn" in the now famous.
Harlow (1949) experiment wherein monkeys made two choice discrim-
ination responses. Harlow's monkeys were presented a problem:
In which of two food wells can raisins be found? The principle
finding was that when many trials (SO) were given on each of the
first 32 problems, the animals began to learn how to solve the
problems, so that as problems were combined into blocks, the
monkeys came to solve each successive block more rapidly than
the previous block and only six trials were then given on each
problem. The monkey's second encounter with a particular prob-
lem revealed what had been learned from his immediately prior
choice. There was an orderly and systematic increase in the
proportion of these second encounters for which the monkey made

correct response. The progressive improvement was described
by Harlow es the formation of a learning set. The monkey had
learned how to attend to the relevant stimulus dimension. But
what were the conditions that permitted the learning phenomenon
to occur? They were similarity of circumstances from problem
to problem and massive experience with the discriminanda.
Probably, the concept "overlearning" describes or explains the
result best. Unfortunately, a microanalysis was not possible
to show which 'mall stimulus chanties were accompanied by learn-
ing increments.
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A Basic Learning Set: Whatever the
anu the Unit, Give the Quantity

Quite naturally, children do not come with ready-made con-

ceptions of quantity. Curiously, failure of small children to
conserve. quantity is sometimes met by unusual effort on the

part of investigators to show that the child already possesses
the ability but far some reason cannot exhibit what he knows;
i.e., that the child does not know the language or understand

the question. A different view is that early experience is

qualitative and that the child obtains from time to time bits
of informal information that is only prequantitative. Pre-

schcol and early-school experience is marked by references to
comparatives and superlatives that imply quantities, but only

gradually is the child given quantitative information and then

usually limited to enumerated quantities from objects counted.

A direct way to inform a child of the meaning of quantity
is to give him a large amount of experience in determining

quantities. Practice in taking measurements, like determining
linear distance, weight and volume, will, of course, cumulate

to the end that the learner has a general set of rules and the

appertinent mathematical concepts required for assigning num-

bers to concrete quantities.

The Form of Memoryand Its
Restructuring it Knowledge

Well educated adults show a remarkable capacity to utilize

directly abstract information without first forming concrete

referents. Children are particularly dependent upon concrete

formulations. These tangible experiences are built up slowly

in a child's memory and called up by a teacher to provide refer-

ence points for an explanation she will give of alnovel concept.
From high dependence on concrete experiences organized for them,

to practically no dependence, how do humans restructure informa-

tion so as to become increasingly more competent? Paivio (1974)

has discussed two theories of the orgarization of memory. In

the theory he favors, knowledge is believed to be acquired as
perceptual images of things or events together with verbal com-

mentaries. The other view holds that stored information is more

abstract and organized, like a computer program. Paivio has

cited evidence to show that the brain accepts imaginal and verbal

information differently, and further, that the dominant hemi

sphere stores verbal information and the other stores spatial

and nonverbal information. Communication between the halves

varies with the corcreteness of the information. Concrete repre-

sentations, as verbal labels, fon, direct associations to the
imaginal side as a picture might elicit a term for its central

figure. Abstract nouns make only indirect connectionvto the
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imaginal system. Paivio has cited evidence that the two con-
nected systems can act independently, as when engaging visual
imagery in one channel while the other is'Iistening to speech.
Interference occurs, on the other hand, when both a memory task
and a perceptual task involve the same ierceptual motor system.
Memory comes to be restructured or reorganized as the particu-
lar visual experiences merge. Imaginal memory may evolve,
gradually, to the eventual retention of only imaginal prototypes
that best represent categories of experience. These are the
most salient analogues by which to summarize related activities
and the subconcepts which form the prototype image. According
to this view, the prototype imago is based upon many experiences
with variations of the class it represents. Again, as in the
evidences cited by Ellis, transfer and the integrative processes
follow much practice and it is rersonable to assume that effi-
ciency of the practice depends on the nature of the task, its .

manipulanda, and how representative these are of the universe
of concepts the learner is meant to acquire. Then, too, faulty-
and incomplete notions are certain to arise from sporadic and
disjointed practice. Practice must be relatively intensive and
the tasks must be fairly homogeneous for mastery of the initial
experiences and for the purpose of forming a transfer base.
Overpractice, of an initial set of measurement tasks, will be
required before a child can separate an appropriate abstract
concept of unit and number from the real dimensions the child

measures. Nonetheless, these /earnings s%oald develop more
quickly by measuring than where objects are counted. In count-
ing, the prototype image of number is likely to remain for a long
time as apples, or bottles, or whatever is counted. The basis
for that persisting image is that numbers are associated,
directly, with the objects counted and it is not easy to thialk

of a way to wean the learner from the image of a counted object.

In measuring, however, the child marks off the distances,
assigning numbers as he measures. As the child learns to select
an appropriate unit size, he has the basis for grasping the
abstract meaning of number, a meaning independent of the unit

size. Shaeffer (in press) has recently argued for a theory of
memory organization, unlike the theory of images. Though the
theory is unlike that of Paivio, it, too, provides a means of
explaining the formation of higher order concepts from the par-
ticulars of experience called, "skill representatives" or "memory
locations." When skills are thoroughly practiced, it is said
that they are automated and can be used by the learner without
requiring much of his attention. Before a skill is automated,
it can be practiced only with the support of cues. When a child
counts objects, he may use the common mnemonic device of sequen-
tial pointing of the finger as a means of keeping track of which
objects were counted.



Integration of skills requires multiple skill representa-
tives, that is, a great many repetitions at each level of the
hierarchy of skills. Two or more skills can be integrated if
they are activated together, that is, "kept in mind and used
together." If they integrate, the new skill will have a new
memory location and be capable of integration with still other
skills. Shaeffer illustrated integration as a case where a
child counts three objects and recognizes al'o by visual pat-
tern the-three objects and so forms the cardinality rule. Both
counting and pattern recognition being well automated, the
child is able to focus on the terminal value--three as counted
and the visual pattern three.

I 3
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