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Paced with a nonstandard, complicated practical

‘problem in statistical inference, the applied statistician sometimes
must use asymptotic approximations in order to compute standard
errors and confidence intervals and to test hypotheses. This usuwally
requires that he derive formulas for one or more asymptotic sampling
variances (and covariances) for one or more statistics. He must then
compute the numerical value of an estimate of some function of these
variances and covariances. If a statistic is a nonlinear function of
more than two or three sample statistics, the mathematical derivation
of the necessary variance (and covariance) formulas may be

hurdensome, or even prohibitive. The\Purpose of the present paper is
to call attention to computer program.LASAHT that computes estimated
asymptotic sampling variances and covariances numerically and carries
out hypothesis tests without need for the statistician to derive
formulas for them. (Author/RC)
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Automated Hypothesis Tests and Standard ¥rrors for Nonstandard Problems
Frederic M. Iord

Fducational Testing Service
Introduction

Faced with a nonstandard, cofiplicated practical problem in statistical
inference, the applied statistician sometimes must use asymptotic approxima-
tions in order to compute standard errors and confidence intervals and to
test hyvotheses. This usually requires that he derive formulas for one or
more asymptotic sampling variances (and covariances) for one or more
statistics EI,EQ,.H . He must,then compute the numerical value of an
gstimate of some function of these vagiances and covariances.

~

g
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1 is a nonlinear function of more than two or three sample
statisﬁics, the mathematical derivation of the necessary varianée (and
covariance) formulas may be burdensome, or even prohibitive. The purpose
of the present paper is to call attention to computer program LASAHT
that‘computes estimated asympiotic sampling variances and covariances
numerically and carries out'hyyobhesis tests without need for the statis-
ticiaﬂ to derive formulas for them. AUTEST, written by Martha Stocking{
and instructions for its use (Ctocking and Lord, 197%) are available

from the authores.

fsymptotic Variances and Covariances

Let ¢ = £(t) be a differentiable function of sample statistics
AN

denoted by the vector L {tu} z {bu(g)} . Denote the expectation of

by T

-1 .
fTu} « If the tu have variances of order N , where N is the
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sample size, 'then the asymptobtic variance of E if finite is given
(Kendall and Stuard, 1993, eq. 10.12) by
R og () 0&(r)
Var § = £ 8~ ———Cov(t ,t ) (1)

oT aT
uv u v

provided (1) is nonzero.

A consistent estimator is usually obtained by substitutigg t

C
[ L0200

for 1 in (1): '

o vt (t) o&(t) - (2)
8% = 5 5 —— — 2
’ g ? Z ot ot C¢V(tuﬁtv)
w v u v S

where .

4 c¢v(tu,tv) z Cov(tu,tv) L .

~ o~

-

is o ratilonal Dumetlion, corsictency follows from a proposition due

]
ey
~~
i -
p—
[k

(Tramer, 1oh . 1. 0U9)e 4 clilar resuld is deduced from dif-

-
v Y b4 -

) . . o . ¥
ferepl azsuryvions by o {1 o, 1o M ). The covariance between Lwn

v
)
"

functinns ¢ a5 to o sirtiaety ~otirnbed from

= (1) 7 (L)

& 2 —— cpv(t ) ()
Pop =1 — — efv(t - 5
=B i Y v . vov
a’'o iV 11 v

»

; . , . A ~noon
(We will econsistently use the notation Gp ¢ rather than c¢v(&a,&b)
a’h

»

4o denobe the quantity derined by (5).)
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The comy uber obtains numerical values for Oga(t)/dtu directly by

numerical differentiation. It then obtains cﬁv(tu,tv) from standard

formulas, as will be explained later, and proceeds directly to compute

A

(2) and (5) for all k(k + 1)/2 pairs in the set El,€2,...,gk .

Asymptotic Hypothesis Testing

Ir the preceding section, we started with some statistics tu con-

venient for defining the ia . Tt will not matter what set of statistics

s . ! .
we choose so long as the tu are functionally independert of each other.

For (C) and (J), the vector t = {t ] must include all statistics needed
for estimating all parameters in the matrix “COV(tu,tV)” + For example,

1 1 z

vwe might have ¢, - m, , £.=m,, and HCov(ml{mg)ﬂ 5”“13” , where m.

denotes a samrle mean and Gii population covariance. In this case t

(&

must include estimators of the o,. : t: {m ,m,,6.,,0.,,0
s v 3 { 17727117 12! 22]

In the present section, we start with a set of parameters denoted by
w and consider an I-by-n matrix X of observations drawn from the
distribution f(§!§0 . The jarameters w are assumed to be functionally
independent of each wther. We wish 1o test the composite hypothesis
Hyt § = 0, vhere § z (gl,g?,...,ik)' is a v?étof of k elements-

Let be an estimate of E . If k=1, ¢t is simply a scalar,
&, gnd . can usually be tested by computing E/Sg where 32_ is the
asymptotic sampling variance of ? with t substituted for the unknown
parameters T The rejection region for “O consists of one or both

tails of the asymptotic distribution »f E/Sg under ”O . In most common

problems, this distribution is normal with zero mean and unit variancc.
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If ¢ is a vector of k elements, Ho can usually be tested by

'

computing Q is an estimate of C = ”Cov(ga,gb)” ob-

[P

€'6'1g , where
(3

3). The rejection region for HO consists of all

large values of Q,»' In most common problems, the asymptotic distribution

tained from (2) and

of Q is chi.square with k degrees of freedom.

Stroud (197la) proved that the asymptotic hypothesis teéting procedure
just described is valid under the conditions that

1. The functions § 3 ‘3a(1) (a=12.0nk ) have bounded and

continuous second derivatives in the neighborhood of £ =0 .

o

. The vector t is asymptotically normal with mean T and
nonsingular ”Cov(tu,tv)ﬁ .

e Hcﬁv(tu,tv)ﬂ is-nonsingular with probability wne and con-

verges in probability to ﬁCov(tu,tv)l .
These conditions are fulfilled by a broad ciass of prohlems, some of which
are illustrated in Tables 1 and ¢.

1f the Ea are the maximum likelihood estimates of the §a
(a=1212...,k ), obtained without the restriction £ =0, then the
test described is asymptotically most stringent and is also locally
asyuptotically most powerful (Muran, 197035 Wald, 194%). A regularity

condition worth noting is (as already implied by condition 1 above) that

£ = 0 must not be on the boundary of the'range of ¢ .
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Tmplementation

As presently written, IASAHT assumes that® f(%l@) is multivariate
normal. It would be fairly simple to substitute some other &ssumption,
as will be seen. If there are no restrictions oni£he parameters, the
elements of w are presently taken to be the usual parameters: the means
(ui) , variances (Gii or .Gi) , and covariances (Gij) of the random
variables Xl,Xg,...,Xn . HNaturally, the tu are taken to we the suf-

. . s s . 2
ficient statistics: sample means (mi) , sample variances (sii or s7),

i
and sample covariances (Sij) . For asymptobic work, it is immaterial

whether the Sij are the unbiased or the usual biased estimators of the
ij . When there are no restrictions, estimated w , denoted by o, is

identical with t ; ® and T are identical asymptotically.
LASAHT uses standard formulas for the cév(tu,tv) required in (2)
and (J). The standard formulas for the multivariate normal case, presently

incorporated into LASAHT, are
cﬁv(mi,mj) = Gij/d
- P ~ ~ N , .
cﬁv(sgh,sij) (Ggidhj + cgjchi)/N (%)

chrng,5) = O

"~ . » .
where © denotes a consistent estimatnr of a covariance.

" When using LASAIT, the statistician specifies k functions

gl(),g?(),...,gk() in which he is interested. Hec does this simply by
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writing a FORTRAN arithmetic assignment statement for each function,

expressing the corresponding gé as a function of t . He inserts these

~

statements in a place provided in the program. LASAHT proceeds automati-
(e (£)), llog /ot Ii

, and Tinally the percentile

”~

7 ~
cally from this point, computing ¢t , £ = {&a}

o

trnd

legv(e, e ), € = I3 gbll , Q
rank of :Q in the apprzpriate chi square distribution.

if f(%l@) is not multivariate normal, it is only hecessary to re-
dgfine the tu as functions of the observations 5 and to replace (h)
by correct formulas for- Hc¢v(tu,tv)“ . With these chenges, TASAHIT can
proceed just as described. g

Without user ac%iou, the program accommodates two samples, each com-
posed of any number of observations on a ma#imum of 10 random variableé.
More samples (up to 20) with fewer random variables can be accomaodated
if the user sets all population covariances betwecen variables from aif-

ferent samples equal Lo zero (see below). 1In addition, the maximum of 10

random variables per sample can be increased, 1f desired.

Restrictions on the Parawmcters .

In the normal multivariate case, there is a total of n(n + 5)/2
sample means, variances, and covariances. Uniess instructed otherwise,
LASAHT autowmatically uses these n(n t 3)/2 sample statistics as estima-
tors for the corresponding parameters in W .

If r restrictions are imposed on the parameters (for example,
certain means or variances are known {0 be equal, or certain covariances

are known to be zero), then K , the number of parameters'in ®w, is

5 ,




_"{ -

- correspondingly reduced. 1If r restric%ions are imposed in the normél
multivariate case, then K = n(n + ?)/2 -r . When r restric-

tions are to be imposed, the statistician must arrange matters so that =
of the estimators are functions of the remaining K iﬁaependent estima-

tors, to be denoted by &i’a?’°'°’ak .

ile does this by inserbting in the program TORTRAN arithmetic assignment

statements defining whatever estimators he wishes. For example, if it
S

is known that two population means p, and p, are equal, the statisti-

1

cian would supply a FORTRAMN statement defining in terms of ﬁl s ﬁe s

)

and other estimators. 1If, for example, the sample sizes are equal, he could

then insert in the program the FORTRAN equivalent of the definitions ﬁl =

(ml +,mg)/g and Q: = (ml : mn)/:.

"~
In this way the éa and the &h are directly or indirectly defined
as funchtions of the my and the Sii e It will be convenient to refer
(’
to the mg  and the 553 collectively as the Tp ;, p=LlL2,..4,

n(n + 3)/2 .

By (3); ’ . )
ua)u u&}v
c«/ﬂv(wu,wv) =Lz 5T C'/V(TP,TQ) s (5)
pa oy 4
where c¢v(Tp,Tq) z CUV(TP,Tq) e . Replaéing the t  in () vy

~ ~

and using (5), we have by the chain rule for differentiation




og ogb ow Ow

’&gg =ZZ&G;-58—ZZS—-\)T C'}‘V(T,L)

a uv

o, Ot

EZWBTCQgV(T T)

The c%v(Tp,Tq) are given by (4). IASAHT conveniently obtains

from (6) rather than from (3).

~

Example 1 x

Suppose the statistician wishes to test the hypothesis § =

>
[

under the restriction ul = U For the normal bivariate case,
- 2 2
? = {-Tp} = {ml) m/)) sl)sle) 32}

It does not matter whether « is defined as {u

-,

2 2
1’01’612’02} or as

‘{p,,cl, l,}G;] . ‘The statistician éﬁéplies the FORTRAN definitions

(ml 4 m?)/z
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. 2
without much loss have chosen ;Gi =sT , O =s]

_9_

LASANT proceeds automatically from this point on. In accordance

with (6), Var & is computed from the COV(Tu’Tv) given by (4).

”n

The {I and T given avae are well known as the maximum likelihood
esbimators under- the restriction Hy = By o LASAIT does not automatically
<
obtain MLE. If the statistician does not have formulas for the MLE, he

can use any consistent estimators-in their place. In example 1, he -ould

2 A 2 A .
<y Oy =8y, If in-

=Tl e P
efficient estimators are used, the test of the Wypothesis is still valid,

&

but the pouer of the test is reduced.

?

Illustrative Problems

v

TASAHT has been checked out by applying it to numerical examples,

testing some three dozen different null hypotheses for which the numerical

answers could be verifiod.fﬂ?he partial listing in Tables 1 and 2 may

25

suggest the score of the program. Primes are used to distinguish parameters

of btwo different porulations: pij z cij oiqj, i z {El’&e? = {ui} , and
5 z
“1L 21 y

T =z z o, 0.

~ |z, © =
SOl RDc

i1
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Example 2

Consider testing the null hypothesis that the tetrad p12p5h -

. pljp2h = 0 , with the restrictions that 65 = G Ony =

W %15 % %0 %25 = %2 K
(Lord, in press). First, let us replace the null hypothesis by.the equivalent

.3 4 = - - . s gy, N . ‘
hypothesis that § = 0120.9.l¥ 015O2h = 0 . This definition of the function

Ls prévided to the computer by inserting in the program the arithmetic

i)

assignment statement

!

XIHAT(1) = (FORTRAN equivalent of 858, - Olssqu .

Tt is further necessary to provide FORTRAN statements defining the

>

in terms of sample means, variances, and covariances. We choose

t 1

85 = B, = (5 +5)/2

= - 3 - o 4 o ’
8o = By, = (55 1 s)/2 5,

2 2
G, =0, = (55 ' sh)/2 s

which are the maximum likelihodd estimators under the stated restrictions.

A2 A2 A . - o
The estimators oy > S5 5 and 012 are not defined explicitly in the
prograﬁ, with the result that the computer resorts to a default procedure

that assumes (correctly) that Si S

t

5= - s . =5 and
11’ 2 Tee? 127 T2’

’,6:._4’ = 8 - .
Provided with the FORTRAN definitions shown, the computer will now
R - X A*/Ebmpute 2 , its estimated asymptotic variance 3? , the test statistic

E/G? , and the percentile corresponding to the test statistic. All this

is easier for the statistician bhan deriving the formula for Gf --an

v O

ii
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eighth degree polynomial containing ten terms involving seven statistics--

and then computing the test statistic from this formula.

Example 3
In a Monte Carlo study, 1000 values of ‘E/ag and their probability

levels were computed by LKSAHT, where

A P1oPsn ™ Py
/By, - By3) VB, - B3)

\ (Lord, in press). The time required on a 360/05 for all 1000 was about

- B0 seconds.

Example %

The last example in Table 2 was carried through for sets of data
(Strpud, 1971b) having 8 observed variables in each of two groups. Thus
there were 88 dirferent sample statistics T involved in the double

summation in (v). The vector null hyiothesis ¢ that was tested con-

~

sisted of k = 18 separate equations of the form ga =0 . TIn three

separate applications, LASAHT produced values for the test statistic

identical to those obtained b; Stroud using complicated analytic formulas.
The nypothesis tested ma; be described'as a multivariate analysis

of covariance hypothesis with {hree criterion variables andsfive covari-

ables, modified to take account of random errors‘of measurement in the

covariables. Problems of this complexity are very difficult to

carry through without the aid of a program such as LASAHT.
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