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THE STABILITY OF RESULTS: SOME EXAMPLES OF THE EFFECTS
CF SCALE TRANSFORMATIONS

Bernt l.arsson

/ p

Larsson, B. The stability of results: Some examples of the effects of
scale transformations. Didakometry (Malmbo, Sweden: School of
Education), No. 42, 1974.

When the admissible class of transformations for a scale; defined to
measure a certain concept, is broader than the class of transformations
for which a given index-of result is invariant, the question of the
stability of results arises: In such situations one may be interested

in finding the range of the index or perhaps that transformation which
maximizes or minimizes the index. The technique used here to

- obtain these objects is to express a.variable with many categories

as a weighted sum of its binary variables; the weights being the scale
values. -

This report gives some simple examples of stability tor one factor
and 2 x 2 factorial analysis of variance, reliability and correlations.

The findings are very different: from superstability (no transformation

whatsoever can change the result) to almost total instability. This is
followed by a discussion of applications to multivariate analysis, and
by some final remarks. It can be added that the technique can also
be utilized for scaling variables to obtain a best fit to mathematical
models Sther than those involved in usual stati stical analysis.

Keywords: Measurement, transformations, scales

Paper read at the conference with Society of Multivariate
Experimental Psychology in Fra.nkfzxjrt/M. in September 1974.
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INTRODUCTION

Scales used in educational research are, as a rule, loosely defined.
The most common numerical coding of the possible outcomes of a
measurement is sx;ccessive integers. However, there is seldom anything
in the educational measurement procedure which prescribes this rather
than any other coding. Educational researchers will in most cases not
have any fundamental objection tc c-fxchanging this coding for a monotonic
transformation of 1t.. - — #

On the other hand, many statistical methods (or other mathematical

..models used in educa.tmna.l research) are only invariante.g. up to lmear ‘

transformations. The question is: how stable are results, de scribed by these_
methods, when monotonic transformations constitute the class of a.cceptable
codings ? High stability admits conclusions with great generality. It may
also be of interest to choose that scale which, under given restrictions,
maximizes (or minimizes) a ce\rtair{ index of result. S )

The techniques used for investigating the stability are based on a general
principle. By usmg binary coding, each many-valued variable can be
expressed as a we1ghted sum of its binary variables, where the weights '
are the scale values. This implies that almost all analysis will be multivaria-
te, e.7. a certain type of analysis of variance (ANOVA) is transferred to the -
corresponding discriminant analysis, modified due to some restriction of
transformations.

This report gives some simple examples of the stability of results for
some statistical methods, viz. one factor and 2 x 2 factcrial ANOVA with
different cell samples, reliability estimates from a one factor ANOVA with /
repeated measures design, and product-moment correlations. The report
also discusses, though without examples, some possible extensions to
multivariate methods. With one exception, the examples only treat three
or four-valued variables, which make it possible to visualize the results
on graphs. The data are, again with one exception, artificial, constructed
to constitute a first test of some optimization routines.

It can be added that the binary coding technique is not limited to
statistical methods. We can use it to code variables, under given restrictions,
to obtain a best fit to a certain mathematical model (described by a goodness-
of -fit criterion chosen). If this optimal fit is bad, the conclusion that the
model is unsuitable will be quite general. For instance, we may code a

variable to obtain a certain distribution function, code two variables to obtain

.
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a given linear relation, or code a learning variable to be a specified function

of the number of trials.

METHOD

S

In this section we will first describe the binary coding techn.que and

relations between and within many-valued variables and binary variables.
Mgt . '

® Some comments are then made on the general forms of the indices of result

used 1n the examples, followed by a short discussion of the concept of

stability and some simulaticns.

Binary coding : —

s e

The 1dea of binary coding 1s not new. Some information about it is given
.. _in-Larsson {1973) and Bradley et al. (1962) use it in a modified form.
The description will here be sufficieatly general to cover also most of the
discussion concerning multivariate/aﬁlysis. )

Let x, i= {,...., p, be a many-valued variable with k, + i categories.
There are n, measurement objects characterized by category g, -which
has the numerical code a..g; g=0, 1,.... k.. The categories are often
ordered a.nd in such cases g indicates the order In the sequel we only

regaid a certain standardized coding having a, jo= 0anda, ik, * i.
i
The binary variable uig is now defined as

(’ { ifx, = a.

i ig -
@ uig= < ‘ g:l,....,ki..

l_O if X, 2 aig

The vector or arithmetic means of the binary variables is

- . - - 2"
m, = {nig/n} and the covariance ma.trll:c is Sii = {3 ghn /n: n, gnlh .
where ;gh is Kronecker’s Oandn = ?—0 g’ (We assume that n has the

same value, independent of i .) Likewise, the covariance matrix between
binary variables, corresponding to two x-variables, becomes

sij s 1)h /“ ~ Pighih ;
i, respectwely, and ng(i)h(j) is the number of ob—j’écts which simultaneously

/nz_}'. Here h and j are a.lte/rna.tive indices of g and -

belong to category g of x, and category h of X; -
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\ As a pare'nthe sis, we may mention that the nonnumerical information
of x;, e.g. that contained in S can be used by analogue to m'u.ltiva.ria.te
sta.t1st1cs. The determinant of a_covariance matrix is there one index of
. . et k. +1 o
=" "7 "generalized variance’ ar;dlsii‘ = g;ronig_/n ! may be used as a measure’
of the nonnumeric;al 'variance' of x;. It is related to irformation theoretical
measures of uncertainty, see e.g. Fhaner (1966).

For cases dealt with here, binary coding may be said to split up the

information of x, in a nonnumerical part, u; ’uig}, ‘and a numericalj parffw
a -2 3 We obtam the fundamental formala.

727 x.=a u

= X ivi

. The arithmetic mean of xi'becomes a' m.. and its variance a'isiiai’ while
the covariance of X and xj can be wr1tten asa’ 513 i
f Let us now consider all x-variables simultaneously and define
={x}, m_ = {amy,u-vu»,m =fm }and$ u=\'S }. We also
.- need D a block diagonal ma.tnxpha.vmg a. on the prmmpal diagonal and

NIy

thus of order K x p. where K = Zi ki' Hence

3 x=Du.

{t follows from formu.la 3 that m_ = D'mu and the covariance matrix
of x will be § DS D
XX
In multivariate stat1st1ca.1 analysis it is rather common to define
new variables as a weighted sum of other variables, e.g. z = cx.
We may taket Dc, meaning that z = t'u with m,_ = tm and s tS '.
Thus, the s1tua.t10n is the same as for one x-variable. (But see next sec\‘mn

about formulations of restriction for monotonic transformatmns )

Indices of result I

Almost all indices of result presented in this report has the following

form for one dependent variable x (we now skipi and j)e

® a-%ee
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Both matrices are real and symmetric, and they can be weighted sums

of other, more basic matrices. For all Q here, G will be pesitive

definite. There are, however, cases where G may be positive semidefinite,
e.g. if Qis a F ratio fora random factor. In many cases F will be

positive semidefinite (or definite) but we will also meet exceptions ___;J,eew—-—

e T

from this (F is 1ndef1n1te) I think that. except*ons ‘are rather commor in

__connection With variance components, where negative values are possible.
in some applications there may be other properties, e.g. each diagonal
element of F cannot exceed the corresponding element of G.

For standardized a, but no other restrictions, we can seek for an
optirnal scale in the whole (k-1)-dimensional real space of aand thus
have an eigenvalue problem as e.g. for common discriminant analys1s.

The only restriction taken up here is that of monotonic transformations.

in most cases this will mean 0 < a, Sa, S.... <2y < 1. .The admissible

a space isthena peculiarly cut 'piece of cheese’ in the principle quadrant.
Under certain c1rcumstances, however, monotonic transformations can only-
involve blockwise ranking, for instance 0 < (a ag,2, ) < ag <1, withno .

ranking within blocks. Such a case will appear in this report. Also, for.

many x-variables the monotonic restriction implies that the t vector of the
last section will only be ranked within blocks (c;a ;) but rot between blocks.
I believe that it is not unusual for optimal a to lie’on the boundary of
the admissible space. In particular, corner solutions seem to be
‘favoured’ for min Q, as far as my brief experience hitherto shows, that
is, xis d1chotom1zed Some support for this belief concerning rax Q is
given by Bra.dley et al. (1962). They seem to have analysed rather a lot
of data (one factor ANOVA) ard often found boundary solutions, at least
when k is large.

The 1ncLexAQdaccordmg to formula 4 is not relevant for one of the

e

examples concerning a productmoment correlation. The problem 18 then
simultaneously to cnde two x-variables ané Q will have the general form.

! 2
~ _(aiFijaj)
& Q=
2 G..a.a"'H.a.
1 11 1 ) ) J

For the (squared) correlation, the matrices are different covariance

matrices (between and within u, and uj).




Stability

For a certain Q- 1nde>. and given restrictions,” data are more stable,

or more insensitive to admlamble transformatlons the lesser the

d1fference,t;a\t}veen the ma:’)il_ngﬂq;‘n,and»mlnrmum of Q. We will not use

- any special‘msure in this report but it can be needed for
certain comparisons. There are Q-indices, the range of which vary
le.g. as a function of n), and different Q-indices may have quite different
_ranges. For indice/s with finite ranges it is reasonable to relate the
actual range (max Q - min Q for certain data) to the maximally possible
range (without restrictions), e.g. define stability as 1 - (ma.x Q - min Q
for certain data)/(maximal range) : . 1-‘

Total instability is obtained for data which have max1mal\Q—arange

Som examples have data which are almost in this state. The opp051te

N

will be coined superstability, which means that no trvansformation -
monotonic or not - can change Q. For fox;mula\l this implies that-
F is proportional to G. We will glve two Qxamp}.es of this remarkable

property. It is finally obvious, for a def1n1t1on of stability as of the last

paragraph, that for two different restrictions, described by a ¢ R1 and

a ¢ R, with R1 - RZ. the stability cannot be.greater for 1}2 than for Ri'
]

2

Simulations

Two types of simulations will be commented upon here, but only the

first type has yet been performed. The type I subroutine produces
rectangularly distributed random scale. values which are ranked and
exploited for the calculation of Q according to formula 4 (F and G are
fixed and éupplied by the main program). The generation of a is r;apeated
an arbitrarily number of times, thus giving 2 whole distribution of Q.

It is of special interest to know the relative position of Q for equally
spaced scale values. (You may here speak about a kind of inference, with
the generated distxibution as a sample distribution over scales.) Tile
type I runs will also serve as a check of the optimization routines: Ef

the simulated distribution contains more extreme values than those from

the optimization routines, an error is indicated.
The purpose with type II simulations is to get a comprehension of the

variation of the extreme values with repeated samples of measurement |
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objects from the same populdtion. We will construct some convenient
populations, take,a number of samples and apply the optimization
subroutines. In this way we get ah estimate of the common kind of
sample distribution of min Q and max Q, wkich is, no doubt, important.
However, this type of analysis seems to be rather expensive and cahﬁot
always be made. I assume that some priority must be made: it may be
necessary to elucidate this problem By only running type 1I simulations

for the mos* ~ommon Q-1indices.

SOME EXAMPLES

Most of the following examples are illustrated both with tables of
basic cfata and with graphs on Q as a function of a. While the tables o
are presented on successive text pages, the graphs are collected in an
appendix. The matrices F. G and H are not shown but they are e?.sily'

retrieved from the appendix, where the functions are also given.

Two simple ANOVA designs

Factc;rial ANOVA with different cell samples has been studied by some
7 authors (not all referred to here but see Meredith, Fredriksen &
McLaughlin, 1974, for some further references) aiming at finding scales
which optimize a certain effect.. Tukey (1?50) is one of th‘e first to
solve, at least partially, this problem. He maximizes the F ratio but
his method does not guarantee rank invariance. Box & Cox (1964) give
tHis problem a more complete solution, but they restrict themselves to
certain families of functions. In that respect the method described by
Kruskal (1965) and Kruskal & Carmone (1969) is more general: it
considers all functions within the class of monotonic transformations.
.This 1s also the case with the method proposed by Bradley et al. (1962)

and in this report.

One factor ANOVA

For a univariate one factor ANOVA with different samples, the total
sum of squares is divided up into the sum of squares between groups
(samples) and within groups. The corresponding cross product matrices
_in the multivariate case will be denoted T, B and W, respectively. We

generate these matrices, of order k x k, by binary coding of a dependent
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- variable with k + 1- categones The Q index used here, for given scale

_values a, " will be the ratic of the sum of squares Detween groups to the

total sum of squares. In accordance with formula 4 this implies that
F=Band G=T.

The first example is taken from Larsson (1973). As is clear from ‘
table 1, the factor has three levels and the dependent variable three
categories. (The numbering of the latter only indicates order.) Figure 1

of the appendix shows Q as a function of a.

Table i+ Basic data of example 1 '

A1 A2 A3 z

y 0 10 10 20 -

2 1 Le29 20 50

1. j29 ! 0 30

= I30t 40 30 100
|

The two eigenvalues|become 0. 9079 and 0. 0069, of which the largest
one happens to be generated by an admissible scale under the restriction
of monotonic transfornZa.tions. The minimum of Q with this restriction
is 0.1146. It can be added that the scale (0.0, 0.5, 1.0) gives a Q value of
0.6610. We thus have a very instable situation, where different-monotonic
transformations may generate quite different descriptions: the proportions
of the total variance expl.a.ined by group differences may differ as much
as 79 %. Notice also that the dichotomized scale (0.0, 1.0, 1.0) is more
sensitive to group discrimination than (0.0, 0.5, 1.0). I believe that
this can be a rather-general finding: more scale values do not guarantee
higher Q values.

- The basic data of the next example are shown in table 2. It consists
of two parts, each with two levels and a three-valued dependent var1ab1e

Figure 2 of the appendix gives both curves (Q as a function of a).

Table 2. Basic data of example 2 B

Ay AZ = A1 A, =

3 |to 25 35/ 0 30 30 ' .
2 |20 to 30| 40 0 40 '

1+ lto 25 35/ 0o 30 30

s la0 60 100l 40 60 100 : ' ;
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For both pérts, data are constructed so that the scale (0.0, 0. 5', 1. 0)
gives a Q value of 0.0000. The left part has eigenvalues of 0.1270 and
0. 0000 and the maximal Q value for monotonic transformations is
0. 0293. The right part, which involves extremely different distributions,
has elgeﬁ/v/alues of 1.0000 and 0.0000, lwhilej the restricted Q maximum
is 0.2857. Thus, a Q value of zero for equally spaced scale values can
be mcreased, though very dissimilar distributions seem to be needed for
a substantial change. If the distributions have exactly the same form,

Q will be superstable (will be zero independent of a).

Y

2 x 2 factorial ANOVA ' ’

/
For this case the crossproduct matrix between cells will be partioned

into three matrices: BA for the main effect of factor A, BB for the main

effect of factor B, and B for the interaction effect. We use the same

Q index as for one fac{torAENOVA, which means that the numerator matrix
of formula 4 if one of the B matrices, while G is still equal to, T. When.we
describe an effect by this Q value, it is evident that the effect can be totally
eliminated in the numerator matrix is positive semidefinite. This
property is normally obtained when the degree of leeedom_ of the effect
is less than k. Howéver, it is far from certain timat a monotonic transfor-
mation gives Q = 0.~ | )

Two different examples will be given for the 2 x 2 factorial design
with independent cell s\amples. The basic data of the first one is presented g
in table 3. Figure 3 of.the appendix shows the curves of the effects, inclu-

ding that between cells.

Table 3. Basic data of example 3

B g B f2op >
1 2 1 2 ,

5 0 10 15 30

2 15 10 5 - 10 40
1 5 15 10 0 30
= 125 25 25 25 100

For equally spaced scale values we get QA = QAB = 0.1500 and
QB = 0.0000. The B effect is an instance of superstability, QB is
constantly zero, and its curve in figure 3 is not apparant as it coincides
‘with the horisontal axis. The eigenvalues of A and AB are both 0. 1917
and 0. 0000, of which the highest ore is associated with the admissible

a space for monotonic transformations. With this restriction the minimal
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Q value 1s 0. 0476 for both effects. _(Netiée from figure 3 that the A and e
AB curves are reflections of each otlﬁer arounci a = 0.5.) The sum eifect
(between cells) has eigenvalues 0.3000%and 0. 0832, Here again the global
maximum comes from the admissible a space but its minimum is 0.2381.
The Q value between cells is quite 's~ta§1~e for monotonic transformatjons,
while that for A and AHMis not quite so stable. “

We have said that.whenever the di str1but1ons of different groups are
identical, Q = 0 is a superstable result. However, superstab111(y is not
confined to zero effects, as will be shown by the next example. The basic
datd for this can be found in table 4, an\d figure 4 of the appendix ‘illu,strates

:ihe functions. —_

Table 4. Basic data of example 4

\ A, A, I
| B, . B, B B, T : ;
3 10, 40 10 20 - 80 o
2 40 10 10 20 80 j
{ .10 10 40 20 80 ]
T 60 60 = 60 60 240 - .

. For the usual scale (0.0, 0.5, 1.0) we obtain Q, = Qg = 0.0938 and
Q,p = 0.0000. The eigenvalues are 0.1250 and 0.0000 for all three
effects. When re cricting ourselves to monotonic transformations, the
restricted maxima and minima are 0.1250 and 0. 0313 for A and B, while
those for AB are 0.0313 and 0. 0000, However, the remarkable property
of this example is Q) + Qg+ Qpp = 0.1875, irrespective of the scale.
No transformation whatsoever can change the prciportmn of the total
variance due to differences of the cell means. I ha«{e no idea whether data
which, at least roughly, have this property are common or not. Notice ™
that the concept of superstability can be dependent on Q: it is not certain
that an index describes a result as superstable, in spite of the fact that
it has been so described by another index.

There are several cor%:ewable indices suitable for describing ANOVA
results. Besides the proportion already used, we may mention the F ratic
and different combmatmns of var1ance components. As an example of an

alternative 1ndex, we take Q = ¢ A/ " , the ratio of the espmated

variance component of factor A to the correspondmg component of error,

and apply this index to the first 2 x 2 factorial example. TN
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We assume that A and B are both fixed a;.rid estimate ;he components

by'equating the observed mean squares with their exfaecféd values.

The index has the form shown by formula 4 with F = (,BA - w/96) / 50

and G = W/96. Its lower limit is thus dep€ndent of data (here -1/50),

while the upper limit may be set to infinity. The eigenvali~s are, for

this example, 0.4786 och -0.0200; For monatonic tr7 ¢:. .Jons,

0.1000 = Q <0.4786. As is seen from figure 5, the curve for this index

bears a close resemblance to the QA curve of figure-3. This may, however,

be a2 mére colncidence. For instance, if we take the same index but assume

the factors to be random, the ‘es‘ulting curve is rather different from

the QA‘cq}\?e of fig\;re 3.

¢

. _ Reliability
Determine.tion of a we‘:lgh'ted sum of variables with maximal reliability

is by no means a new problem. One of the older methods is presénted e. g.
in Lord & Novick (1968, pp. 123-124) and another more general method
is described by Abelson (1960). These methods work with the same form
of Q (see formula 4) as the method proposed here, but the matrices are
not the same. Besides, my method can guarantee a solution within the
class of monotonic transformations and can i)g used for a single variable.
This is not the case with the other two methods.

We shall take an example which admits a comparison with.Abelson’ s

“method. The example comprises a 'test’, con?/qéed_ t;y two binary items,
which is measured on ten persons on two occasions. The basic data are

given in table 5 and a Q function in figure 6. .

Table 5. Basic data of example 5

5 v

Item 1 Item 2
Occasion Occasion
) L 27 - -
R S SO G
2 1 0 o ) 7o
31 A W |
4 1 1 0 0 o .
Person's; 1 1 0 0 e
6 0 1 - I 0 T
‘70 0 | 0 T \
8 0 0 1 0 - i
9 0 0 TUOUT T ‘ ’
10 0 0 0 0
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A '’ may be interpreted as a correct answer, a '0’ as a erng
answer. The test-has four poss1b1e outcomes: (0 0),(0, 1), (1,0) and (1, 1)

with scale values 0 a,, 2, a.nd 1, respectively. The restriction to

monotomc transformatlons will here imply 0 < ag, 2, < 1, since there is no

clear way of internally ranking the outcomes (0,1) and (1 ,0). Table 5
corresponds to a one factor ANOVA with repeated measures for a- iven
scale. In such a design the total sum of squares is split up into chae
sums for occasions O, persons P and interaction (plus error) OP and
. the same split 1s valid for the cross product matrices: T = BO ¥ BP
BOP'
in this case,"F = By - B and G= B + Byp-

OoP
The eigenvalues ane 0.8383, '0. 6762 and -0. 4645, none of which

Thg estimates of variance components relevant to reliability give,

corre sponds to the a.dm1ss1b1e a space for monotomc transformations.
The common scale (0.0, 0.5, 0.5; 1.0) g1ves a reliability of 0. 6327.
If we do not d1fferent1ate between ‘the outcomes (0, 1) and (1,0), this
value can still be 1mproved on: the scale (0.0, 0.15, 0. 15, 1.0) has °
a reliability of 0.7747. (It happens to be the la.rger eigenvalue for the
Q fuhction with. 2y = 2. ) According to Spearma.n -Brown’ s.formula,
this is equa.l to a doubled test with the common scale.
Abelson’ s method d1st1ngu1shes between (0, 1) and (1,0) but the
] solution is, for this example‘ confined to the line a, + a, = 1. It givee
~the re11ab111ty valuc 0. 6939, which-corresponds to 1. 32 times the length
of the commonly sca.led test. (It seems to me that Abelson’s method
coincides with mine when the outcome of the items is reproducible from
“the sum score.) However, best of‘all monotonic transformations is
%0.0, 0.2, 0.0, 1.0), generating the value 0.8029:(2.37 times the |
length of-the common test). Finally, it can be said that the situation is
unstable: the minimum value is 0..0875 when (0, 1) and (1,0) are separated
and 0.2162 w1thou} this separation.

The example presented above can be generalized to more complex -
univariate deSIgns, . g. those described by Cronbach et-al. (1972). As
far as I can see this involves no mathematma.l novelties: it is only a
matter of correctly choosing the weighted sums of basic matrices

(from the ANOVA) which define F and G.

Correlations ; l /

The usual stability analysis of 2 squared bivariate correlation involves

/

o
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5. As we shall see, however, there are,

a Q index according to formula

occasions when a correlation takes the form hitherto discussed for Q.

m table 1, where we now

'fh'e first example makes use of data fro
also assume the levels to be ordered (according t
Figure 7 of the appendix shows the Q function. The eigenva
the same as for example 1, 0.9079 and 0. 0069, with the largest one :

missible a space for monotonic transformations.

o index numbers).

lues are

coming from the ad

There are nonmonotonic transformations for which Q becomes zero,

but for monotonic transformations the minimal Q value is 0. 0476.

The scale (0. 0\‘ 0.5. 1.0) for both variables gives 2 value of 0.5173.

This example thus shows a very unstable situation.

example and example

Figure 7 also gives some relations between this
is connected to figure 1: the curve of f1gure 1

{. The curve denoted P
shows the height when followmg P of figure 7.
e corresponding curve to P when 1ndependent and depe

(Only parts of P and P2 are

g

In the same manner .-

we get PZ’ th ndent

variables change places in example 1.

shown in figure 7.)

Suppose that it is de sirable to determine the same scale for a;}number

and to define an average

ce to the average

of variables with equally many categories
correlation as the ratio of the average covarian

(The reliability estimate of ékample 5is suc

h a correlation.)

variance.
We then have a correlation analysis where the form of

Q is given by

formula 4. No example of such an analysis is shown here, but we wiil

a of another correlation problem conformable to

-

instead present dat

formula 4.

This exariple comprise

s 'real’ data from a pilot study (n = 44).
e relation between frequency

and verbal statements for

The correlation problem concerns th

statements (the number of days per year)
six different que stmns. The verbally anchored variables have categories

'labelled almost never, seidom, sometimes, often and almost always.
The six questions asked rgfer to how often you/i watch TV, 2. go to

3, wake up rested, 4. have a headache, 5. are stressed

the pictures,
and 6. feel expectant.

and verbal statements are

Some correlations between frequency statements

given in table 6 for each que stion.
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~

min Q) common Q max Q
1 0.2921 0.7526 0.7553
2" 0. 1464 0.4570 0.5319
3 0.1212 . 0.7194 0.7447
4 0.0650 0. 6065 0.6268
5 0.0950 0.4007 0.4212
6 0.0729 0.5838 0. 6891

It is reasonable, for this example, not to recode the frequency
variables: we regard 'the number of days per year’ as a fixed scale
and are only in;ere sted in numerically coding the verbal categories
to obtain miﬁimal and maximal squared correlations between frequency
statements and verbal statements. This problem gives a Q index
according to formula 4, with F = s s’ /s and G = S. Here s is the
vector of covariances between the binary variables and the frequency.
variable, which has variance sz, and § is the covariance matrix of the

binary variables.

As F is positive semidefinite, it is possible to obtain zero correlations

but they do not correspond to scales within the a spacé of monotonic
transformations. The minimal Q values for this space are all generated
by corner solutions, that is, the worst admissible dichotomizations.

The restricted maximal Q value coincides with the greatest eigenvalue,
except in questions 2 and 3, which give the only boundary solutions, but
their maximal Q values are almost the same as their nonzero eigen-
values. The second column of table 6 refers to Q when the verbal scale
has equally spaced values. We see that these comrqon Q values are of the

same magnitudes as the corresponding maximal Values, perhaps with

- the exception of question 6. On the other hand,’ L:he/ ability to predict

frequency statements from verbal statements is ™M no case very high.
!

EXTENSIONS /

I

This section contains some rather loose ideas about possible applications

of stability analysis to multivariate statistical methods. I do not know if
!

there are new numerical problems not encountered in univariate analysis.
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O! course. the multitude of values to determine may in itself raise

ditticulties. | will now comment superficially upon principal component
analvsis. discriminant analvsis. canonical correlation analysis and

5 £
tactor analysi1s \_/ ) < J

We discuss principal component analysis only by tre‘ating the problem

. -—of-finding a weighted variable z - c¢x¥: ¢'D'u = t'u with maximal variance.

For instance, for two variables with three categories each, we have
t'= (cia“, Cyr Colp1s cz). The usual restrictions imply that a,, will
be seperately ranked and that c'c = 1. However, Iimagine that there
will often be more restrictions. To use Joreskog’'s words, see e.g.
Joreskog (1973), every element of t can be fixed, constrained or free.

Some variables, like the frequency variable of example 7, may be so
well defined that its scale vector is fixed. Another instance of fixed
values is to predetermine ¢: you have a model about how z should be
d=‘ined and investigate whether the best scaling reaches a sufficiently
high variance. If you are not satisfied with the resulting variance then
your model is not good under any monotonic transformations. In case
some OT ‘all variables have the same number of categorles it may be
de51rab1e to let the scale vectors be identical. This is a reasonable
example of constrained values. Under some combination of flxed s
constrained and free elements of t one is now interested in dete rmm\mg
t such that ma.x tS t (and perhaps also mjip max tS, t) is obtained.

Discriminant ana1y51s is illustrated by flndmg the best discriminant
function for a one factor design with independently sampled groups.
Let B, ij be the crossproduct matrix retween grdups for u, and uj and
T. be the corre spondmg matrix for the total group. We further define

fB } and T = {T J The Q index can be t'Bt/t'Tt, which corresponds

to formula 4, The K va.lues of t may be restricted in different ways,
analogous to the case of principle component analysis. To take a very
restricted case, suppose that all x have k+1 categories and that we
want to find a scale common to all x which gives maximal discrimination
for the unweighted sum of the variables. Then cis fixed and D is
constrained, so that there are only k-1 ranked values to determine.
Other designs may also be trea.ted '

In ca=onical correlation analysis we also use a second set of variables.

Lety., i=l, ..., q, have m.+1 categories, with scale vector b. and v,
i . i i i
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asts binary variables, such that y; = b'ivi. Define D, as a block |
diagonal matrix of order Mxq, having,bi on the principal diagonal
q .

(M = ©m.). We further need a weighted sum d'y = d'D'bv = ti)v, where
v = {v. . Finally, define the covariance matrices s =I1s 1,8 =
i vv T Tvpvdt Tuy

{s  “ands_ ={s %, of orders MxM, KxM and KxK, respectively.
ui‘j uu uiuj

_(For instance, the gerferal element of Suv is the covariance matrix

between u, and vj.) If we take Q as thcza squared correlation between c'x

and d'y it can be written as (t'aS avt b) /(t'aS aut at'bS oot b) and thus has

the form according to formula 5. Of course, this is also applicable

to multiple correlations, in which case q=1. As a new example of

restrictions we can mention ¢ = d and ba = Db’ provided that p = q and

k. = m,. This is a reasonable constraint if x and y are the same

variables, measured on two occasions. . -

For factor analysis, we are interested in scaling the manifest
variables so that they fit, as well as possible, to a given fa.lctor model.
Several goodness-of-fit criteria are conceivable, such as the common
or generalized least squares criterion‘, a likelihood function or perhaps
the index suggested by Tucker & Lewis (1973). In gencral, the factor
model is not fully specified, meaning that there are factor parameters
. as well as scale values to determine. I imagine that this will imply
an iterative process which 'walks’ to and.fro between scale values and -
parameters: starting with a set of scales, one estimates the parameters,
which constitute the basis for a new set of scale values, and so on.

If the fit is bad, the model is not compatible with data undeKr any

admissible transformations of the manifest variables, which is quite

a general conclusion.

FINAL REMARKS

The intention of stability analysis is to get knowledge about how
differently you can describe results due to different scales-—We-may -
imagine two classes of trankformations: R(Q), for which the Q index:of
resnlt is invariant, and R(C), the admissble class of scale transforma-
tions for a certain concept. The word 'admissible’ has the following

(loose) meaning: given a definition of a concept, the possible ;outcomes

of the instrument chosen (to measure this concept) can be scaled

A8




-17 -

according to any element in R(C) without fundamental objections as
to a change of the concept. The most common example in educational
research woyld be the class of linear transformations for R(Q) and
all monotonic transformations for R(C). l

Stability analysis is only necessary if R(Q) < R(C), since otherwise
the result is totally stable. (If R(Q) — R(C), there are perhaps better,
stable Q ir\\dices.) However, when R(Q) — R(C) it is not unusual to
choose a no\‘e‘w Q, such that R(Q) ' R(C). Several devices for this
can be foun;;d in nonparametric statistics. In my opinion, it is better

\
to keep the original Q and sharpen the definition of the ‘concept, such
that R(Q) - R(C) or, if this is not possible, to perform a stability .
analysis. Suppose we have a Q which we regard as a good Jescription
of data, but with R(Q) =R(C). I cannot see any reason why we should
lose information by choosing a new Q with R(Q) 2 R(C) instead of
performing a stability analysis. ‘

It may be clear from the examples that one is sometimes most
interested in obtaining an extreme value of Q, e.g. a minimal'interaction
or a maximal group differentiation. Discussion of such optimal
scaling for more or less special cases is not rare in research literature.
However, there may be occasions when‘one wants to report a typical Q
value. This can be defined in severaf ways but let us take
the expected value. \This integral can be difficult to evaluate but type |
simulations discussed earlier give information about the expected value.
It is reasonable to use the arithmetic mean of tuhe éenerated distribution.

Of the examples dissussed above, such simulations have been performed
for examples 1, 3 and 7 with 200 repetitions. One cén, for instance, ask
if Q from the scale with equally sl‘i%aced values is typicai. We answer
by reporting the standardized Q va{ue: example 1 gives 0.11, example
3 gives 0. 14 for A, 0.13 for AB anﬁl 1.29 for between cells (the value of
B is not defined due to supers*abilit‘y) and example 7 has values between
0.51 and 1.27. The answer is consequently not an unequivpcal}@yes or no.
Moreover, when a2 measurement is made on different populatl’%;gns and/or
the data are treated with different methods, stability, minimal Q, typical
Q or maximal Q may vary. In conformity with a test having different
reliabilities for different situati‘ons, it can also have different scales

’

for different situations, prcvided that R(Q)-.R(C).
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-by putting together categories with lowest possible distortion of data.
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For complex methods, 1t may be difficult to construct an etfective
algorithm for scanning R(C) in order to find special Q values. An
alternative 1s to resort to selected transformations and investigate
the variation of Q among these. 1 have done this for factor analysis,
Larsson (1974), and found the results robust to (some) monotonic
transformations. However, this 1s not a satisfactory approach and one
must at least try to use more general methods, like the one proposed
in this report.

Binary coding is not the only alternative here. It seems to me that
one can also use polynomials. For an arbitrary, monotonic scoring, w,

we represent x as a polynomial of w of degree k. Then (w, WZ, cees wk

)
corresponds to u and the polynomial coefficients correspond toa. But
the formulation of the monotonic restriction is probably more complicated:
instead of only ranking the elements of a, you now have to rank weighted
sums of the coefficients. ’

When k is large the use of a polynomial may be advantageous. For,
instance, a truly continuous variable implies k = n-1, an ’'impossible’

number of categories to work with. The problem is to reduce the number

For a polynomial, the ’obvious’ way is to reduce its degree but I do
not know how to handle the binary variables.

Provided that the 0pt1m1zat1on routines turn out to be dependable,
it is my intention to investigate the stability of some univariate statistical
methods on various data sets. It may be interesting to know whether
stability varies with e. g. different educational research-areas, different
statistical methods and different numbers of categories. The investigation
will give access to programs de signed to determine minimal and maximal
Q (and perhaps typical Q) for some statistical methods. It seems to me
to be more sensible to report minimal and maximal Q, perhaps along
with Q for equally spaced scale values, than only the latter. Suppose:
that the latter Q is 0.25 in two different cases (possible range of Q:
0 <Q < 1). Suppose further that 0.00 < Q < 0.75 in the first case and
0.20 < Q < 0,30 in the second case. I do not think that the stability
information will cause one to judge the cases identically, although Qlfor

equally spaced scale values is the same in both cases.
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APPENDIX

Figure i. The Q index of example 1.

Figure 2. The Q indices of example 2.

Figure 3. The Q indices of example 3.

Figure 4.' The Q indices of example 4.

Figure 5. Alternative Q index for factor A of example 3.
Figure 6. The Q index of example 5.

Figure 7. The Q index of example 6.
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Figure 2. The Q indices of example 2
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his report gives some simple examples of stability for
&e factor and 2 x 2 factorial analysis of variance,
reliability and correlations. The findings are very
different: from superstability (no transformation whatso-
ever can change the result) to almost total instability.
This is followed by a discussion of applications to multi-
variate analysis, and by some final remarks. It can be
added that the technique can also be utilized for scaling
variables to obtain a best fit to mathematical models
other than those involved in usual statistical analysis.
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