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FOREWORD

The Statistical Reporting Service (SRS) has been engaged for
many years in the training of agricultural statisticians from around
the world., Most of these participants come under the support of the
Agency for International Development (AID) training programs; however,
many also come under sponsorship of the Food and Agriculture Organization

into the International Statistical Programs Center of the Bureau of the

Census, with which SRS is cooperating.

This treatise was developed by the SRS with the cooperation of
AID and the Center, in an effort to provide improved materials for
teaching and reference in the area of agricultural statistics, not
only for foreign students but also for development of staff working

for these agencies.

HARRY C. TRELOGAN

Admin{strator
Statistical Reporting Service

Washington, D. C. September 1974



PREFACE

The author has felt tnat applied courses in sampling should give more
attention to elementary theory of expected values of a random variable.
The theory pertaining to a random vari{able and to functions of random
variables is the foundation for probability sampling. Interpretations
of the accuracy of estimates from probability sample surveys are predicated
on, among other things, the theory of expected values.

There are many students with career 1nterests.1n surveys and the
application of probability sampling who have very limited backgrounds in
mathematics and statistics. Training in sampling should go beyond simply
learning about sample designs in a descriptive manner. The foundations
in mathematics and probability should be included. It can (1) add much
to the breadth of understanding of bias, random sampling error, components
of error, and other technical cénceﬁta; (2) enhance one's ability to make
practical adaptations of sampling principals and correct use of formulas;
and (3) mane communication with mathematics® statisticlans easier and more
meaningful.

This monograph is intended as a reference for the convenience of
students:Qn sampling. It attempts to express relevant, introductory
mathematfg; and probability in the context of sample surveys. Although-
some proofs are presented, the emphasis is more on exposition of mathe-
matical language and concepts than on the mathematics per se and rigorous
proofs. Many problems are given as exercises so a student may test his
interpretation or understanding of the concepts. Most of the mathematics
is elementary. If a formula looks involved, it 15 probably because it
represents a long sequence of arithmetic operations.

-4
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Each chapter begins with very simple/gxplanations and ends at a much
more advanced level.. Most students wich/gnly high school algebra should
have no difficulty with the first par:s;oi each chapter. Students with a
few courses in college mathematics and statistics might ;eview the first
parts of each chapter and spend considerable time studying the latter parts.
In fact, some students might prefer to start with Chapter III and refer to
Chapters I and II only as needed:

Discussion of expected values of r#ndom variables, as in Chapter III,
was the original puyrpose of this monograph. Chapters I and II were added
as background for Chapter III. Chapter IV focuses attention on the dis-
tribution of an estimate which is the basis for comparing the accuracy
of alternative sampling plans as well as a basis for ;tatements about the
accuracy of an estimate from a sample. The content of Chapter IV is
included in books on sampling, but 4t is important that students hear or
read more than one discussion of the distribution of an estimate, espe-

’éially with reference to estimates from actual sample surveys.

, The author's interest and experience {n training has been primarily
with persons who had begun careers in agricultural surveys. I appreciate
the opportunity, which the Statf:t{cal Reporting Service has provided, to

prepare this monograph.

Earl E. Houseman
Statistician
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CHAPTER I. NOTATION AND SUMMATION

1.1 INTRODUCTION

To work with large amounts of data, an appropriate system of notation
i{s needed. The notation must {denti{fy data by individual elements, and
provide meaningful mathematical expressions for a wide variety of summaries
from individual data. This chapter describes notation and introduces
summation algebra, primarily with reference to data fro nsus and sample
surveys. The purpose is to acquaint students with notation and summation
rather than to present statistical concepts. Iniéﬁally some of the expres~
sions might seem complex or abstract, but nothing more than sequences of
operations involving addition, subtraction, multiplication, and divieion
is involved. Exercises are included so a student may test his interpreta-
tion of different mathematical expressions. Algebraic'manipulations are
also discussed and some algebraic exercises are included. To a consider-
able degree, this chapter could be reparded as a manual of exercises for
students who are interested in sampling but are not fully familiar with
the summation symbol, £. Familiarity with the mathematical language will
make the study of sampling much easier.
1.2 NOTATION AND THE SYMBOL FOR SUMMATION

"Element" will be used in this monograph as a general expression for
a unit that a measurement pertains to. An element might be a farm, a per-
son, a school, a stalk of corn. or an animal., Such units are sometimes
called units of observation or reporting units. GCenerally, there are
several characteristics or items of information about an element that one

right be interested in.



“Measurement’ or "value" will be used as general terms for the

numerical value of a specified characteristic for an element. This

£

fncludes assigned values. For exémple. the element miéht be a farm and
the characteristic could be whether wheat i{s being grown or {s not beinp
grown on a farm., A value of "1" could be assigned to a farm growing wheat
and a value of "0" to a farm not growing wheat. Thus, the "measurement"”
or "value" for a farm growing wheat would be "1" and for a farm not grow-
ing wheat the value would be "0."

Typically, a set of measurements of N elements will be expressed as
follows: xl. xz....,xN where X refers to the characteristic that 1is
measured and the index (subscript) to the various elements of the popula-
tion (or set). For example, if there are N persons and the characteristic

X is a person's height, then X, is the height of the first person, etc.

1

To refer to any one of elements, not a specific element, a subscript "i"
is used. Thus, Xi (read X sub 1) means the value of X for any one of the

N elements. A common expression would be "X, is the value of X for the

i
ith element."

The Greek letter T (capital sigma) is generally used to indicate a

sum. When found in an equation, it means ''the sum of." For example,

N

z x1 represents the sum of all values of X from xl to XN; that is,
{=]
N 4

L X, =X + X, +...+ XN. Tne lower and upner limits of the index of
(=] i 1 2

sumation are shown below and above the summation sign. For example, to

Z0
specify the sum of X for clements 11 thru 20 one would wrige I xi.
4 i=11
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You might also see notation ?“C“ as “xxi where { = 1, 2,...,‘N" which
indicates there are N eléments (or values) in the set indexed by serial
numbers 1 thru N, or for part of a set you mipht see"zx1 where £ = 11,
12,0.4,°20." Generally the index of sumﬁacion starts with 1; so vou will

N
often see a summation written as :xi. That is, only the upper limit of

i
the summation {s shown and it is unéirstood that the summation bepins with
{=1. Alternatively, when the set of values being summed is clearly under-
stood, the lower and upper limits might not be shown. Thus, it {s under-

stood rhat EXi or in {g the sum of X over all values of the set under
i

consideration. Sometimes a writer will even drop the subscript and use
X for4the sum of all values of X. Usuallv the.simplest notation that is
adequate for the purpose {s adopted. In this monosraph, there will be
some deliberate variation in notation to familiarize students with various
representations of data.

An average is usually indicated by a "bar" over the symbol. For

example, X (read "X bar,” or sometimes "bar X") means the average value of

N
. z xi
X. Thus, X 1-; ., In this case,showing the upper limit, N, of the sum~
. mation makes it clear that the sum {8 beinp divided by the number of elements

X
and X is the average of all elements. Mowever.-«;« would also be inter-~

preted as the average of all values of X unless there is an indication to
the contrary.

Do not try to study mathematics without pencil and paper. Whenever

the shorthand is not clear, try writins it out in long form. This will

often reduce any ambiguity and save tire.




(1)

(2)

(3)

(4)

(5)

(6)

7N

(8)

(9)

(10)

(11)

(12)

a3

Here are some ethp 8 of mathematical shorthand:

Sum of the reciprpéﬁls of X

Sum of the differences between
x1 and a constant, C

Sum of the deviations of xi
from the average of X
Sum of the absolute values 4f
the differences between X

and X. (Absolute value,
indicated by the vertical
lines, means the positive
value of the difference)

Sum of the squares of Xi

Sum of squares of the_
deviations of X from X

Average of the squares of the
deviations of X from X

Sum of products of X and Y

Sum of quotients of X
divided by Y

Sum of X divided by the
sum of Y

Sum of the first N digits

N

N | 1 1 1

L o W - + = Teied —=

ge1¥y XX XN
N

L (X ~C)= (X ~C)+(X ~C)+...+( ~C)
i=} xN

N
f(xi—x)-(xl-X)+(x2-x)+...+(xN-x)

2[xi-k1~[x1~§[+ix2~it+...+]xN-§I

2 2 2 2 2
zxi =X Xy + Xy #eos XN
z(xi-X) jad (x1~x) +"'+ (xNﬁx)

N

. o\ 2
L (x,~X) . =2
1-1 1 . (XI-X) +...+(XN X)
N N
N
z xiYi -~ 1Y1+X2Y2+... XNYN
im]
2xi x1+-§-g-+ +XN
7 A AR CIRA
i 1 2 N
zxi X1+X2+...+ XN
EYi Y1+Y2+...+ YN
N
L4 = 14243+.,.+ N
iw]
N
L iX1 -~ x1+2x2+3x +o0 0t NXN
i=]
6 i
£ (-1) X = X +X X.+X, ~X_+X
=] 376757



Exercise 1.1. You are given a set of four elements having the
following values of X: x1 -2, xz = 0, x3 -5, X& = 7, To test your
understanding of the summation notacion}'eombu:e the values of the follow-

ing algebraic expressions:

Expresasion Angwer
4
(1 X (X1+4) 30
. i=]
(2) Z2(Xi~l) 20
' (3)  25(%,-D) 20
(4) 22x1~1 - 27
_ X
() X= w 3.5
6) £x° 78
i
2
(7) 2(-X1) 78
2
(8) [281] 196
@) £(x*-x) 64
i i
. 2
(10) Z(Xi) - in 64
. (11) Ei(Xi) 45
i
(12) I(~1) (Xi) 0
& 2
(13) I (Xi -3 66
{w]l
4 2 4
(14) b X1 - % (W 66
- {m} i=]
4
Note: L (3) means find the sum of four 3':
i=]




Expression (Continued) Ansver
. (15) :(xi-'i) 0
=2
(16) ik Sl 29
N-1 3
z[xf - XX + %2 )
(17) 2
N-1 3
' £x? - nx4
i 29
18 3 3

Defin}ciog l,1. The variance of X where X = xl, Xz,..., XN, is

defined in one of two ways:

N
1 (X
2 _ 4my

N

_§)2

0
or
N

£(X
2 1m1

=2
17X

N-1

The reason for the two definitions will be explained in Chapter III.
The variance formulas provide measures of how much the values of X vary
(deviate) from the average. The square root of the variance of X is
called the standard deviation of X. The central role that the abcve
definitions of variance and standard deviation play in sampling theory
will.begome apparent as you study sampling., The variance of an estimate
from a sample is one of the measures needed to judge th accuracy or the
estimate and to evaluate altemative sampling designs. Much of the algebra

and notation in this chapter is related to computation of variance. For

b



.
T,

e
~e

complex sampling plans, variance formulas are complex. This chapter
should help make the mathematics used in sampling more readable and nore:

meaningful when it 1is encountered.

Definition 1.2. “Population" is a statistical term that refers to

a set of elements from which a sample is selected ("Universe" is often
used instead of "Population").

Some examples of populations are farms, retail stores, students,
households, manufacturers, and hospitals. A corplete definition of a
population is a detailed specification of the elements that compose it.
Data to be collected also need to be defined. Problems of defining popu-
lations to be surveyed should receive much attention in courses on sampling.
From a defined population a sample of elements is selected, {nformation
for each element in the sample is collected, and inferences from the sam-
ple are made about the population. Nearly all populacions for sample
surveys are finite so the mathematics and discussion in this monograph
are limited to finite populations.

In the theory of sampling, it is important to distifguish between
data for elements in a sample and data for elements in the entire popula-
tion. Many writers use uppercase letters when referving to the population

and lowercase letters when referring to a sample. Thus xl...., XN would

represent the values of some characteristic X for the N elements of the

population; and Kyveoos X would represent the values of X {n a sample of
n elements. The subscripts in Xiooeos X simply index the different
elements in a sample and do not correspond to the subscripts in xl...., XN

which index the elements of the population. In other worus, X, could be
»
any one of the xi's. Thus,

-4



N\
N X represents the population mean, and
n

o = X represents a sample mean

In this chapter we will be using only uppercase letters, except for
constants and subscripts. because the major emphasis {s on symbolic repre-
sentation of data for a set of elements and on algebra. For .his purpose,
it s sufficient to start with data for a set of elements and not be
concerned with whether the data are for a sample of elements or for all
eléments in a population.

The letters X, ¥, and Z are often used to represent different ;hatac~
teristics (variables) vhereas the first letters of the alphabet are commonly
used as constants. There are no fixed rules regarding notation. . For
example, four different variables or characteristics might be called xl,
xz, KS, and Xa. In that case xli might be used to represent the 1th value
of the variable Xl. Typically, writers adopt notation that is convenient
for their problems. It is not practical to completely standardize notation.

Exercise 1.2. In the list of expressions in Exercise 1.1 find the

Py R T Ly S

variance of X, that is, find Sz. Suppose that X, is 15 instead of 7. How

4

much is the variance of X changed? Answer: From 9%-:0 44% .

Exercise 1.3. You are given four elements having the following values

of X and Y
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Find the value of the following expressions:

Expression Answer Expression Ansver
(1) zxiYi 107 (7 zxi-zvi -6
2
(2) (in)(ZYi) 280 (8) 2(xi-Yi) 74
= o 2 2 :
(3 2(Xi—h)(Yi Y) 37 (9) E(Xi—Yi) -132
- 2 2
(4) inYi—NXY 37 (10) 2x1~ZYi -132
1. X 2
(%) m T ?: _ 1.625 (11) [Z(Xi-Yi)] 36
2 2
(6) 2(xi~Yi) -6 (12) [zxi] -[2Y11 -204

1.3 FREQUENCY DISTRIBUTIONS
Several elements in a set of N might have tire same value for some

characteristic X. For example, many people have the same age. Let X

3

be a particular age and let N_1 be the number of people in a population
K

(set) >f N people who have the age Xj. Then £ N_1 = N where K is the
jll .

number of different ages found in the population. Also Zijj is the sum

IN. X,
of the ages of the N people in the population and ~§%~1- represents the
’ i

averagre age of the N\people. A listing of xj and HJ is called the
frequency distribution of X, since Nj is the number of times (frequency)

that the age Xj is found in the population.

On the other hand, one could let Xi represent the age of the ith

individual in a population of N people. MNotice that j was an index of age.

We are now using { as an index of {ndividuals, and the average age would

in IN.X in
be written as ~—— . Note that IN X, = ILX  and that —dd m —~— , The
N 33 b ENj N
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10

choice between these two symbolic representations of the ape of people in
the population is a matter of convenience and nurﬁose.

Exercise 1.4. Suppose there are 20 elements in a set (that i{s, N = 20)

and that the values of X for the 20 elements are: 4, 8, 3, 7, 8, 8,73, 3,

/.]-7'"2“!\&!\ [‘, 8, 8, 3: 7, 8; 10, 39 8.

N
(1) \Lést the values of X, and N,, where j is an index of the

b
vajlues 2, 3, 4, 7, 8, and 10, This is the frequency

distribution of X.
Vi

\\\_‘mwjg)f”ﬁhat is K equal to?

Interpret and verify the followinp by makinp the calculations indicated:

N K
(3)y -X,= £ NX
fm1 ey 3
xxi IN. X _
(4) ygree W - x
K| IN
3
s B2 o, (x,-B
(5) _‘ R - _1 i
iN IN
R
1.4 ALCEBRA

In arithmetic and elementary algebra, the order of the numbers when
addition or multiplication is performed does not affect the resﬁlts. The
familiar arithmetic laws when extended to algebra involving the summation
symbol lead to the following important rules or theorems:

Rule 1.1 Z(Xi-Y1+Zi) " xxi~zvi+zzi

or 2(X11+X21+...+XK1) = XX11+EX21+...+EXKi

Rule 1.2 Eaxi = alX 6 where a is a constant

i

Rule 1.3 2(xi+b) = IX +Nb where b is constant

1

. &
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1f it {s not obvious that the above equations are correct, write both
sides of each equation as series and note that the difference between the
two sides s a matter ~f the order in which the summation (arithmetic) is
performed. Note that the use of parentheses in Rule 1.] means that b is
contained in the series N times. That is,
N
iil(xfi-b) - (X1+b)+(xz+b)+. ..+(XN+b)

- (x1+x2+...+xN) + Nb

On the basis of Rule 1.1, we can write

N N N
r (xi+b) = T xi + b g
im] , i=]1 1=1
N
The expression I b meansﬁsum the value of bywhich occurs N times.'" Therefore,
' im]
N
L b = Nb.
i=1
N
Notice that if the expression had been 1 xi+b.:hen b is an amount to add
1
N
" to the sum, I X . - @
i .
i @
In many equations X will appear; for example, I xxi or (xi-x).
i i

Since X is constant with regard to the summation, zixi = X£X, . Thus,

i
Ex:l
Z(Xi-ﬁ) - % xi-zi = IX, ~ NX. By definition, X = i, Therefore,

{ {1y gt N

NX = £X, and z(xi-i) = 0,

i i
N 2

To work with an expression like E(xi+b) we must square the quantity
i

in pérentheses before suming. Thus,

A~
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2(X, 4 5)% = £(x2 4+ 26X, + b2
PX 1 gt b

= TX

[ i o™

+ EZin + sz Rule 1

= IX{ + 2bIX_ + Nb>  Rules 2 and 3

i

a1

Verify this resu'r by using series notation. Start with (X +b) +...+(x*+b)
It is very important that the ordinary rules of algebra pertaining to
the use of parentheses be observed. Students frequently make errors

\

Qecause inadequate attention is given to the placement of\parentheses ox

to the interpretation of parentheses. Untri{l you become familiar with the
above rules, practice translating shorthand to series and series to short~
hand. Study the following examples carefully:

(1) E(Xi) ¢ (in) The left-hand side is the sum of
| (+ The right~hand
side is the square of the sum of xi.

the squares of X

: On the right the parentheses are
necessary. The left side could
2 2 have been written zxf .
. X1 ZXi
(2) ronll Il Bhe s Rule 1.2 applies.
S I - .
2 . 2 '

(3) -Z(x1+Y1) ¢ in + ZYi A quantity in parentheses must be
squared before taking a sum.

(4) Z(xf'} vf) - zxf + zvf  Rule 1.1 applies

(5) Xy, 4 kzx1)<zvi> The left side is the sum of products.

The right side is the product of

sums.
‘ 2 2 ' 2
(6) Z(xi—Yi) - EXi - 22X1Y1+ZY
N N
(7) £a(xi~b) ¢ atx1 ~ ab

1 i 19
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N N
(8) Za(xi-b) - axxi ~ Nab
i i '

# N N
(9) a[ﬂxi—b] - aixi~ab
1 1

i

o ‘ L ory?
. Q0 X (K Y) ;x R

- XY

Exercise L:S. Prove the following!

In all cases, assume 1 = 1, 2,..., N,

tee | (1) z(xi-i)‘ =0

< L) et

(3) NX© =

(4) iil(axi+in+C) -'a£Xi+bZYifNC

Note: Equations (5) and (6) should be (or become)
very familiar equations.

2 c2

' o\ 2
(5) £(X1-X) - IX, - NX

(6) t(xi-X)(Yi—Y) - zxivi-nxv

X
1 2 1 2
(7) TG+ Y 2 L(X +a¥,)

(8) Let Y, = atbX , show that ¥ = a+bX

and ZYi = Na(a+t2bX) + b2 zxi

(9) Assume that X, = 1 for N, elements of a set and that X, = 0

for No of the elements. The total number of elements in the
N N
1 0
set is N N1+N°. Let N P and N 0. Prove Fha;

-2
£(X,~X)
4 - PQ .

ERIC N )
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(10) E(x,~d)? = £(X,~%)% + N(%-d)?. Hint: Rewrite (x,~d)*
as [(xi-§)+(2-d)]2. Recall from elementary algebra .that
2 2 2 ' = =
(atb)” = a"+2ab+b” and think of (xi-x) as a and of (X-d)
as b. For what value of d is £(x1~d)2 a minimum?

1.5 DOUBLE INDEXES AND SUMMATION

When there is more than one characteristic for a set of elements,
the different charaéteris:ics mnight be distinguished by using a different
letter for each or by an index. Eor example, x1 and Y1 might represent
the number of acres of wheat planted and the number of acres of wheat
harvested on the ith farm. Or, xij might be used where 1 is the fndex
for the characteristics and § is the index for elements; that is, xij
would be the value of characteristic xi for thg jth element. However,
when data on each of several characteristics for a set of elements are
to be processed in the same way, it might not be necessary to use

notation that distinguishes the characteristics. Thus, one might say

L(X -i)z '
calculate -§:T—- for all characteristics.

More than one index is needed when the elements are classified accord-
ing to more than one criterion. For example, Xij might represent the value

of characteristic X for the jth farm {n the ith county; or X K might be

13
the value of X for the kth houséhold in the jCh block in the ith city.

- As another example, suppose the processing of data for farms involves
classification of farms by size and type. We might let xijk represent
the value of characteristic X for the RCh farm in thg subset of farms

classified as type § and size {. 1If Nij is the number of farms classified

""
Lo




Nij 15

£t X

as type } and size i, then k N = iij {s the average value of X for
i3, ’

the subset of farms classified as type j and size {i.

There are two general kinds of classification--cross classification
and hierarchal or nested classification. Both kinds are often involved
in the same problem., However, we will discuss each separately. An
exgmple of nested classification is farms within counties, counties within
States, and States within regions. Cross classification means that the
data can be arranged in two or more dimensions as {llustrated in the next
section.
1.5.1 CROSS CLASSIFICATION

As a specific illustration of cross classification and summation with
two indexes, suppose we are working with the acreages of K crops on a set

th

of N farms. Let X,, represent the acreage of the i~ crop on the jth farm

13
where { » 1, 2,..., Kand § = 1, 2,..., N. 1In this case, the data could

be arranged in a K by N matrix as follows:

; ; Column (3) : ;
} Row (1) P
3 1 5 xll oo xlj cee xlN f § xlj f
: i :Xil e e 0 xij L N 4 xiN : § xij :
L e SIS A .-
$: Column : L X L X T X, L X :
¢ total s 1 i1 i 1] i iN: i3 i :
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N
The expression I xi.1 (or ¢ xij) means the sum of the values of X11 for a
b A '
fixed value of {. Thus, with reference to the matrix, I xij is the t6:31
h)

of the values of X in the iCh row; or, with reference to the eiample‘abou:

4

farms and crop acreages, T xij would be the total acreage on all farms of

3 K ) ,

whatever the ith crop {s. Similarly, ¢ xij (or ¢ xij) is the column total
i i ' .

for the jth column, which in the example is the total for :he-jth farm of"

the acreages of the K crops under consideration. The sum of all'values of

KN
X could be wrpitten as If X or LI X,..

Double summation means the sum of sums. 'Break!?f'n‘double sunm into

parts can be an important aid to understanding {t. Here are two examples:

&

KN N o - N
(1) ZZEX,, =S X, + I X, +...+L X (1.1)
19 4T g ™

With reference to the above matrix, Equation (l1.1) exnresses the grand total

as the sum of row totals.

KN N N ,
(2) ii xij(YiJ+a) » § xljcvlj+a) o0t § xKJ(ij+a) (1.2)
- )
N
L xlj(Ylj+a) - x11(Y11+a) +...4+ XlN(Y1N+a)

3
Ih Equations (1.1) and (1.2) the double sum is written as the sum of K
partial sums, that is, one partial sum for each value of {.
Exercise 1.6. (a) Write an equation similar to Equation (1.1) that
‘expresses the grand total as the sum of column totalg. (b) Involved in

Equation (1.2) are KN terms, X (Y  4+a). Vrite these terms in the form of

15744

a matrix.

<3

Q
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The rules given in Section 1.4 also anply to double summation.

‘ KN KN KN
L X, (Y, +a) =2 X,  Y,, +all X (1.3)
iy 131} 11 1y 13 iy 14

Study Equation (1.3) with reference to the matrix called for in Exercise
1.6(b). To fully understand Equation (1.3), you might need to write out
intermediate steps for getting from the left-hand side to the right~-hand

side of the equation.

. To simplifv notation, a system of dot notation is commonly used, for
example:
§ xij - X, &
"Xy T R :
i? :’(,.j =X

The dot in Xi. indicates that an index in addition to i is involved and

xi. is interpreted as the sum of the values of X for a fixed value of {.
Similarly, X.J is the sum of X for any fixed value of j, and X _ represents
a sum over both indexes. As stated above, averages are indicated by use of

a bar. Thus X, 4s the average of X for a fixed value of i, namely

. { ij
N
L x1j
1:%~w~ - ii- and i.. would represent the average of all values of Xi1.
TZ X
1) \
namely L‘— o
NK
; Here is an example of how the dot notation can simplifv an algebraic

expression. Suppose one wishes to refer to the sum of the squares of the

[]{ﬁ:«row totals in the above matrix. This would be written as E(Xi.)z. The sum
" 5 i
s <1
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of squares of the row means would be z(ii.)z. Without the dot notation the

i -~
N 2
. KN, k| Py
corresponding expressions would be X(XX1 )" and I iﬁ—- . It is very
1 3 4 ¢ LN
KN 2
important that the parentheses be used correctly. For example, z(zxij) is
11}
KN 2
not the same as szij . Incidentally, what is the difference between the
1) .

last two expressions?
Using the dot notation, the variance of the row means could be written

as follows:
K- -
(X .-x..)
{ i

2

VX, =

3 (1.4)

where V stands for variance and V(ii.) is an expression for the variance of
ii- » Without the dot notation, or something equivalent to {t, a formula
for the variance of the row means would look much more complicated.

Exercise 1.7. Write an equation, like Equation (1.4), for the variance

of the column means.

Exercise 1.8, Given the following values of X

1]
X 3
i : * - [l [ 4
: 1 : 2 : 3 ; 4
1 8 11 9 14
2 : 10 13 11 14
3 ;12 15 10 17

'
o
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Find the value of the following algebraic expressions:

Expression Answer
N
(1) %), 42
]
N
£X
2}
2) d— 12
(3 X,, 13.5
(4) IX,, 45
KN
(5) X 144
THE
(6) X, . 12
KN .
(7 DX, -X,.) 78
gy
Ko - 2
(8) NE(X, -X ) 18
i

Expression Answer
N,
(9) K(X, ~X ) 54
jj e
N o o 2
(10) ig(xij-x'j-xi.+x..) 6
YN 2
LIX
kN, (491
(11) EIIX; - —e———~ 78
11 i3 KN
2
T2 ggxxj
{1 i3
(12) 55— - RN 18
N 5 12
(13) i(xlj~xl.) 21
KN .9
(14) Io(X,,.~X, ) 60
1y 11 1.

Illustration 1.1. To introduce another aspect of notation, refer to

the matrix on Page 15 and suppose that the values of X in row one are to

be multiplied by 2y, the values

would then be a. X

of X {n row two by az, etc. The matrix

ver alxlj coe alxlN

as aixij because the index of a and the

<



index { in xij are t
KN '

LLa X .
{4 1744

we can place a, ahead of the summatfon symbol I .

fa XX .
g 151

Exercise 1.9,

Assume that a = -1,

Calculate:

(1)

(2)
(3)

Show algeb

(4)

(5)

(6)

Exercise 1.;9.

he same.

Refer to the matri: of values of X

a, = 0, and as = 1.

dia X
14 1744

) --~1
1]

2
Ifa X
Y

raically that:

Answer :~296

Lfa X ~2X
T 3" j %33 g

£ -~#1 %y, |
13 s
IlaX; = 5X5 ~LXC

1y 7 P55y

That {is,

13

20

The total of all KN values of a.X is

113

Since a, is constant with respect to summation involving 3,

Lla,X -
13 1714

in Exercise 1.8.

P

i’
fer

Study the following equation and if necessary write

the summations as series to be satisfied that the equation {s correct:

KN

ZE(aXij+b"

Illustration 1.

) = arrx

+ bILY
1) " A

gy 1

2. Suppose

13

<7

Y xij+a +bj+c where { = 1, 2,,,,,K anc § = 1, 2,...,N
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The values of Y, , can be arranged in matrix format as follows:

13

Yll = x11 + al+b1+c o« o s e

. Yij L] xtj + ai+bj+c .

.....YIN'XIN+81

+bN+c

YKl.xK1+ak+bl+c.. S .YKN-&N#QK‘H)N*C

Notice that a, is a quantity that varies from row to row but is constant

i
within a row and that bj varies from column to column but is constant
i within a column. Applying the rules regarding the summation symbols we
have
‘ LY s $(X, ,4a,+b +c)

P A S M A

-ixij +Nai+§b+Nc

iY15 i(xij+ai+bj+c)

= X + La, + Kb +Kc

g gt
TIY, = LL(X, . +a,+b +c)

s LIX 4+ NLa, + KIb. <+ KN¢
g4 8 ¢ty

Illustration 1.3. We have noted that X(xiYi) does not equal

(Exi)(tYi). (See (1) and (2) in Exercise 1.3, and (5) on Page 12). But,

. LIX,Y, = (IX,)(IY
g9 14 gty

clear 1f we write the terms of IIX,Y, {. matrix fofmnt aé follows:

) where { = 1, 2,...,K and § = 1, 2,...,N. This becomes

TR
Row Totals
XY+ XY, 4ot XY X,I¥,
FRY L+ KX, b XY X,I¥,

+ xKYI + xKYZ +...4 xKYN - igxi\'j xe &ZYJ
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The sum of the terms in each row is shown at the right. The sum of these.
row totals is X th +.00+ XKEYj - (x1+...+ xK)ZY Exiij One could

get the same final result by adding the columns first. Verv often inter-

nediate summations are of primary interest.

Exercise 1.11. Verify thac thin (in)(ij) using the values of
1}
X and Y in Exercise 1.3. In Exercise 1.3 the subscript of X and the sub~

script of Y were the same index. In the expression izxin that is no longer
the case. j
Exercise 1.12. Prove the following:
KN K 2 N K N N 2
(1) ig(ai 13 j) - iai ix 3 + Zza §bj}(1.1 + Kgbj
KN » K N 2 K _2
@ %y R ¥4y ;:xij - Nhagky.
KN K N K _
(3) iga (xij ~X )(Yij { ) = ia inj 19 Niaixi-yi-

1.5.2 HIERARCHAL OR NESTED CLASSIFICATION

A double index does not necessarily imply that a meaningful cross
classification of the data can be made. For example, xij might represent
the value of X for the jth farm in the iCh county. In this case, j simply
identifies a farm w;thin a county. There is no correspondence, for exrmple,
between farm number 5 in one county and farm number 5 in another. In fact

the total number of farms varies from county to county. Suppose there are

K counties and Ni farms {n the ith ccunty. The total of X for the 1th
Ni K
county could be expressed as X, = LX,, . In the present case XX,, is
i 3 13 q 13
KNy
meaningless. The total of all values of X is LI xij .
1)

s
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When the classification is nested, the order of the subscripts
(indexes) and the order of the summation symbols from left to right should
be from the highest to lowest order of classification. Thus in the above
example the index for farms was on the right and the summation symbol

KN
involving this index is also on the right. 1In the expression zzixij,
summation with respect to i cannot take place before summa:ionigith regard
to j. On the other hand, when the classification is cross classification
the summations can be performed in either order.

In the example of K connties and Ni farms in the ith county, and in

similar examples, you may think of the data as being arranged in rows (or

columns) :

xll’ le’ cov xlNl

Xk1» ¥k2e oo 0 Xku

K

Here are two double sums taken apart for inspection:

- KN N
SRR SR Ll s S LN g“(xx X )? (1.5)
1 h 3 3
3 3 b
(- )
v
xR 2w (KR )2 bk (Ko <R,
;P 17X ) et By oK
Equation (1.5) is the sum of squares of the deviatioms, (xijwi,.), of all
K
values of xij from ti.. overall mean. There are tNi values of xij, and
i

Q :3()




24
KN

£z ix
- 14 i}
X, "= X . If there was no interest in identifying the data by counties,
ENi
1 N
a singlc index would be sufficient. Equation (1.5) would then be S(Xi—ﬁ)z.
i
KN N N
2 .l = 2 K = 2
(2) It (xij g ) b (xl_1 xl.) +oo0+ I (ij xx.) (1.6)
i} h) b
( )
V
N
th(x, -k, )% = (X 2 o (xyy K, )2
lj 1 11" 1 *et 1
3 l
Ny
With reference to Equation (1.6) do you recognize I (xlj ) ? It involves
h|
only the subset of elements for which { = 1, namely X.., X,ns.0. X, - Note
11 12 lNl
' N
that il- is the average value of X in this subset. Hence, 2 (xlj 1 )2 is
h

the sum of the squares of the deviations of the X's in this subset from the
subset mean. The double sum is the sum of K terms and each of the K terms

is a sum of squares for a subset of X's, the index for the subsets being 1.

Exercise 1.13., Let xi.1 represent the value of X for the jth farm in

the ith county. Also, let K be the number of counties and N1 be the number
of farms in the ith county. Suppose the values of X are as follows:

X =3 K=l Xy

Xg1 =4 Xy 6

x31 » 0 xsz =5 x33 w 1 x34 - 2

Find the value of the following expressions:

Expression Answer
K

(1) 231 9
i

31




Expression (Continued)

KNy
(2) X
1y 4
(3) X,, and X,
Ny
() X, =X,
h|
(5) xz. and xs.
(6) X,,» X,,, and 23.
N, X
1%
(7)
IN
KN K
® z'x; )% or 1xZ,
14 1
(9) ZI(x, -%,.)?
gy 4
N
1 = .2
(10) z7ex, -k, )
h
N
4 2
an i, - )
J
KN
{ o (2
(12) ssi(x, .-, )
IR BT
K o o .2
(13) ini(x1,~x,,)

(14) = -

- TN, I,
K

(15) N X N%?,
1 [ ]

Answer

27

27

245

36

25

8, 2, and 14 for { = 1, 2,

24

12

12

and 3 respectively

¢
g
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Expressions (14) and (15) in Exercise 1.13) are symbolic representations

of” the same thing. By definition

Ni KNi K
L%, =X, , IE'X, . =X, and IN, = N
j ii i 13 1] i i
Substitution in (14) gives
(ko :
L it~ (1.7)
i1 2
- X o X, o X =2
Also by definition —— = and — = X . Therefore =—— = N, X7 and
N1 i N o Ni 474 .
5 -1
xoc .-2 K "'2 "'2
N " NX® . hz2nce, by substitution, Equation (1.7) becomes zuixi.- NXT,
i

Exercise 1.14. Prove the following:

KN K

i
(1) X, X . = IX{
g 44T
KN, _ ;
(2) iz R, (%% ) =0
3
K K
(3) =N, (X, X )% - zuixf -Ng?
i L ] 1 [] L

Note that this equates (13) and (15) in Exercise 1.13.
The proof is similar to the proof called for in part (5)

of Exercise 1.5.

KN K, N K K
(4) zzi(aix“-bi)2 Zai Eixfj-ZZaibi (o F zxibf
13 1% 1 1

1.6 THE SQUARE OF A SUM
In statistics, it is often necessary to work algebraically with the
square of a sum. For example,
2

2 2 2 2
(zxi) - (X1+X2+...+XN) - x1+x1x2+...+x2+x2x1+...+xN+xNx1+...

Q :5;3
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) BESTWW“MW"E - Y.

The terms in the square of the sum can be written in matrix form as

follows:

xlxl xlxz coe xlxj oo xlxN

szl x2x2 coe X, X cee . szu '

XXy XSy e KX xNxN
The general term in this matrix is xixj where.xi and xj come from the same
set of X's, namely, Xl,....XN. Hence, 1 and j§ ar; indexes of the same set.
Note that the terms along the main diagonal are the séuares of the value
of X and could be written as in . That is, on the m;in diagonal { = j§
and X,X, = XX, = X7 .

of X with some other value of X. For th.se terms the indexes are never

The remaining terms are all products of one value

equal. Therefore, the sum of all terms not on the main diagonal can be

expressed as IX, X, where { ¥ § is used to express the'fact that the summa-

TR

tion includes all terms where { is not equal to j, that is, all terms other

than those on the main diagonal. Hence, we have shown that (Exi)2 -

2
oXT + X X, .
T
Notice the symmetry of terms above and below the main diagonal:
xlxz = xle.xlxs = x3x1 , etc. When symmetry like this occurs, instead of
£X.X, you might see an equivalent expression 2% X X. . The sum of all
i} 1)
143 i<j
terms above the main diagonal is £ xixj . Owing to the symmetry, the sum
1<3 .

£o
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/

of the terms below the main df{agonal is the same. Therefore, T xixj -
, 144
2L X,X, .
1(1 { 5
4 2 .2
Exercise 1.15. Express the terms of | Exil - [x1+x2+x3+x&] in
’ {=]1

matrix format. Let xl = 2, X2 3'- 5, and xk = 7. Compute the values
2 2

of IX* , 2L X.X. , and [5X,12 . Show that [£X,]% = ZX® + 2 T X.X, .
1025 { { ¥ 2N

=0, X

An important result, which we will use in Chapter 3, follows from the
fact that

+ £ X, X (1.8)

2
(zx,12 = =x
i 164 + 3

2
i

Let X, = Yi-?. Substituting (Yi-?) for X 1in Equation 1.8 we have

- .2 - 2 - o
IE(YinY)] - 2(Y1-Y) + % (Y1~Y)(Y ~Y)

1$ ]

We know that [z(Yi-?)IZ = (0 because 2(?1-?) = ), Therefore,

=2 - -
L(Y,~¥) + T (Y,-¥)(Y,~¥) = O
i 14y 1
It follows that I (Y,~¥)(Y,~Y) = ~Z(Y ~?)2 (1.9)
149 + 1

Exercise 1.16. Consider

- L 4 - —2
L (Y,~-Y)(Y.-Y) = I (Y,Y, - YY, - YY, +Y9)
Wy 40 9y 131
- L ad ~2
rYyY ~YIY ~YZY, + LY
't R T I U T I T Y

2

Do you agree that L Y“ = N(N-l)?z? With reference to the matrix layout,

i¥}]
Y appears N2 times but the specification i{s £ # § so we do not want to

count the N times that 72'13 on the main diagonal. Try finding the values

of I xi and I xj and then show that
144 id3

G
vl
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[y .

- . - -2
T~ D(Y,-T) = LYY, - N(N-1)Y
im§ A | 3 | 144 1]

Hint: Refer to a matrix layout., In I Yi how many times does Yl appear?
' 143

. Does'Yz'appear the same number of times?
"1.7 SUMS OF SQUARES

For vérious reasons statisticians are interested in components of

.variation, that i{s, measuring the amount of variation attributadble to each

‘ of‘yore than one source. This involves computing sums of squares that
correépoﬁd to the different sources sf variation that are of interest.
’ We will di#cuss a simple example of nésted classification and a simple
ex#mple of cross classification.
1.7.1 NESTED CLASSIFICATION

To be somewhat specific, reference is made to the example of K counties
and N, farms in the 1th county. The sum of the squares ~f the deviations

i

of )(1.1 and X_, can be divided into two parts as shown by the following

formula:
KN K KN
cdex, -% )2 =N (R, -k )2+ zhx, R, )2 (1.10)
ij 11 s i 1 i. ) ij ij io

The quantity on the left~hand side of Equation (1.10) is called the
total sum of squares. In Exercise 1.13, Part (9). the total sum of squares
was 36.

The firat quantity on the right-hand side of the equation involves the
squares of (ii.-i.,).which are deviations of the class means from the over-
all mean. It is called the between class sum of squares or with reference
'to the example the between county sum of squares. In Exercise 1.13,‘

Part (13), the between county sum of squares was computed. The answer was

12,

wb
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The last term is called the within sum of saquares because it involves
‘ ﬁeviations within the classes from the class means. It was presented
previously. See Equation (1.6) and the discussion pertaining c§ it. In
Exercise 1.13, the within class sum of squares was 24, which was calculated
in Part (12). Thus, from Exercise 1.13, we have the total sum of squares,
36, which equals the between, 12, plus the within, 24, This verifies
Equation (1.10).

The proof of Equation 1.10 i{s easy if one gets started correctiy.
Write X, ~X_ . = (X {

13
subtracting X

j ) +(X ~X,.). This simple technique of adding and

divides the deviation (X ,) into two parts, The proof

i.

proceeds as follows:

J

KN, ) _ L
L (X )= ZE((X -X, ) + (X .-X‘.)]
13 1j 14 iy 1. i
T 3 T w2
- ii[(xij-x ) + 2(x i_)(xi.—x..) + (xi_-x,_) ]
s o T 2
::;:(xij ~X ) + 2§:(x ;RO &, X )+ ii(x ~X..)
KN o
Exercise 1.17. Show that II"(X, ,~X, )(X -X ) =0
ij j L *
halt : 3205 n 8 % 2
and that 1zt (X X )" =N (X, -X )
ij i. * { { i o0

Completion of Exercise 1.17 completes the proof.
Equation (1.10) is written in a form which displays its meaning rather
than in a form that is most useful for computational purposes. For computa~

tion purposes, the following relationships are commonly used:

KN,
Total = LI’ x,~%, ). zzxf1-Ni2
14 14 4
asny
(O ¥}



K
Between = iNi(xi--x

KN
Within = II (X

14 ‘3

K

where N = IN
1 i

|

Notice that the major part of

K

2
IN. X
{ O

s and Ni?_

K x2
example, one could use I §-
i1

Exercise 1.18,

KN
Iz (X

13

2

ij g.)

A special case that is useful occurs when N1 -

squares becomes

4

K2
LL(X

13

2

ij )

X,,.+X
Since X "~ —iii—ig

iv

2
(XX )" =

2.

and (xiz g )

Therefore the within sum of

1 2
3 (X )

117%42

“» R

which {s a convenient form fo

L)

There are variations of this that one might use.

3
4
1
4

31

22
- IN X,

g2

[N

2 ££X2 ~IN X

)
T

arithmetic reduces to calculating xz‘xf

1

b

K

{nstead of IN xz
{ {1

Show that

ZZXZ ~IN Xi.

LR

2. The within sum of

K

i[(x 2

D%+ x g,k %)

11" 1

it i{s easy to show that

(X;1-X4)

(X17%40)

squares is

r computation,

For
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1.7.2 CROSS CLASSIFICATION
Reference is made to the matrix on Page 15 and to Exercise 1.8. The
total sum of squares can be divided into three parts as shown by the

following formula:

N - 2 Ko N KN
EL(X, -X, )% = NE(X, ~X )% + KE(R ,-X )% 4 £E(x, -K, -k 4% )% (.11
ij 1j i 10 .o j .j ¢ ij 11 1. .j .e

Turn to Exercise 1.8 and find the total sum of squares and the three
parts. They are:

Sum of Squares

Total 78
Rows 18
Columns 54
Remainder 6

The three parts add to the total which verifies Equation (l.11). In
Exercise 1.8, the éum of squares called remainder was computed diractly
(see Part (10) of Exercise 1.8). 1In practice, the remainder sum of squares
is usually obtained by subtracting the row and column sum of squares from
the total.

Again, the proof of Equation (1.11) is not difficult {f one makes the

right start. In this case ihe deviation, (X -ﬁ..), is divided into three

1}
parts by adding and subtracting ii' and i-j as follows:
(X=X, = Ry =R+ (K =X+ (X=X -X 4K, ) (1.12)

Exercise 1.19. Frove Equation (1.11) by squaring both sides of Equa~-

tion (1.12) and then doing the summation. The proof is mostly a matter of
showing that the sums of the terms which are products (not squares) are zero.

KN
For example, showing that zx(ii.-i..)(x

-X
13 )

1j_xi. +x..) - 0 .

39
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CHAPTER 11. RANDO!M VARIABLES AND PROBABILITY

2.1 RANDOM VARIABLES

The word "random” has a wide variety of meanings. Its use in such
terms as "random events,'" ''random v&riable," or "random sample," however,
implies a random process such that the probability of an event occurring
is known a priori. To select a random sample of elements from a population,
tables of random numbers are used. Thare are various ways of using such
tables to make a random selection so any given.element will have a specified
probability of being selected.

The theory of probability sampling is founded on the concept of a
random variable which is a variable that, by chance, might equal cny one
of a defined set of values. The value of a random variable on any partic-
ular occasion is determined by a random nrocess:in such a way that the
chance (probability) of its being equal to any specified valu; in the set
{s known. This is in accord with the definition of a probabilit§ samnle
which states that every element of the population must have a known prob-
ability (greater than zero) of beingp selected. A primary purpose of this
chapter is to present an elemen;ary, minimum introduct’Zon or review of
probability as background for the next chapter on expected values of a
random variable. This leads to a theoretical basis for sampling and for
evaluating the accuracy of estimates fxom a probability-sample survey.

In sampling theory, we usually start with an assumed population of N
elements and a measurement for each element of some characteristic X. A
typical mathematical representation of the N measurements or values is

xl,...,xi....,xN where X1 is the value of the characteristic X for the ith

h

element. Associated with the it element is a probability Pi’ which is the

~ probability of obtaining it when one element is selected at random from the

0
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set of N. The Pi's will be called selection probabilities. If each
element has an equal chancc of selection, Pi - %u The Pi's need not be
equal, but we will specify that each P1>0. tthen refgrring to the probabilictv
of X being equal to xi wve will use P(Xi) instead of Pi'

We need to be aware of a distinction between selection probability
and inclusion probability, the latter being the probability of an element
being included in a sample. In this chapter, much of the discussion {s

oriented toward selection probabilities because of {ts relevance to finding

expected values of estimates from samples of various kinds.

Definition 2.1. A random variable is a variable that can equal any
value xi, in a defined s2t, with a probability P(xi).

When an element is selected at random from a population and a measure~
ment of a characteristic of it is made, the value obtained is a random
variable. As we shall see later, if a sample of elements is selected at
random from Q population, the sample average and other quantities calculated
from the sample are random variables.

Illustration 2.1. One of the most familiar examples of a random

variable is the numbet’Qf dots that happen to be on the top side of a die
when 1t comes to rest after a toss. .his also illustrates the concept of
probability that we are interested in; namely, the relative frequency with
wvhich a particular autcome will occur in reference to a defined set of
possible cutcomes. With a die there are six possible outcomes and we expect
each to occur with the same frequency, 1/6, assuming the die 1s tossed a
very large or infinite number of times. Implicit in a statement that each
side of a die has a probability‘of 1/6 of beinp the top side are some
assumptions about the physical structure of the die and the "randomness"

f the toss.
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The additive and multiplicative laws of probability can be stated in
several ways depending upon the context in which they are to be used. 1In
sampling, our interest is primarily in the outcome of one random selection
or of a series of random selections that yields a probability sample,
Hence, the rules or theorems for the addition or mul;iplication of prob~-
abilities will be stated or discussed only in the coﬁtext of probability
sampling. |
2.2 ADDITION OF PROBABILITILS

Assume a population of N elements and a variable X which has a value
xi for the ith element. That i{s, we have a set of values of X, namely
xl,...,xi,...,xN. Let pl""’Pi""'PN be a set of selection probabilities
where P1 is the probabilitv of selecting the 1th element when a random

selection is made. We specify that each Pi must be greater than zero and

K

that ZPi = 1. When an element is selected at random, the probability that
i

it is either the ith element or the jth element is P, + Pj' This addition
rule can be stated more generally. Let P be the sum of the selection
probabilities for the elements in a subset of the N elements. When a random
y selection is made from the whole set, Ps is the probability that the elerent
selected is from the subset and 1—?5 is the probability that it is not from
the subset. With reference to the variable X, let P(xi) represent the
probability that X equals xi . Then P(xi)+P(Xj) represents the probability
that X equals either Xi or xj; and PS(X) could be used to represent the
probability that X is equal to one of the values in the subset.
Before adding (or subtracting) probabilities one should determine
whether the events are mutually exclusive and whether all possible events

have been accounteéd for. Consider two subsets of elements, subset A and

ERIC g
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subset B, of a population of N elements. Suppose one element is selected
at random. What is the probability that the selected element i{s a member
of either subset A or subset B? Let P(A) be the probability that the
selected element is from subset A; that is, P(A) is the sum of the selec~
tion probabilities for elements in subset A. P(B) is defined similarly.

If the two subsets are mutually exclusive, which means that no element is
in both subsets, the probability that the element selected is from either
subset A or subset B is P(A) + P(B). If some elements are in both subsets,
sece Figure 2.1, then event A (which is the selected element being a member
of subset A) and event B (which is the selected element being a member of
subset B) are not mutually exclusive events. Elements included in both
subsets are counted once in P(A) and once in P(B). Therefore, we must
subtract P(A,B) from P(A) + P(B) where P(A,B) is the sum of the probabilities
for the elements that belong to both subset A and subset B. Thus,

P(A or B) = P(A) + P(B) - P(A,B)

o
»

Figure 2.1

To summarize, the additive law of probability as used above could be
statéd as follows: If A and B are subsets of a set of all possible ocutcomes

that could occur as a resuit of a random trial or selection, the probability

43
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that the outcome is in subset A or in subset B is equal to the probability
that the outcome is in A plus the probability that it is in B minus the
probability that it {s in béth A and B.

The additive law of probability extends without difficulty to three
or more qubsets. Draw a figure like Figure 2.1 with three subsets so that

/
some poi$ts are common to all three subsets.. Observe that the additive

|
. law extehds to three subsets as follows:

P(A or B or C)=P(A)+P(B)+P(C)-P(A,B)~P(A,C)~P(B,C)+P(A,B,C)

As a casé for further discussion purposes, assume a population of N
elements and two criteria for classification. A two-way classification of
the elements could be disnlayed in the format of Table 2.1.

Table 2.1~-A two-way classification of N elements

—— — — (PR - ——— e

. . X class .
: Y class e 1T
: : 1 oo 3 N s : :
f 1 E Nll’pll oee Nlj’Plj oo le’Pls : Nl-’Pl- f
f i : Nil’Pil P Nij’plj N Nis’Pis 3 N1 ,Pi. 3
$ : :
: ¢ NevoPer ) r‘:j"pci cer NegPes Ne.oPe
: Total : N.1l N.j N.s : N,P=l :

The columns represent a class{fication of the elements in terms of criterion
X; the rows represent a classification in terms of criterion Y; Nij is the

number of elements in X clsss j and Y class 1i; and pij is the sum of the

O
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selection probabilities for the elements in X class } and Y class 1. Any
one of the N elements can be classified in one and only one of the t times
s ;ells.
Suppose one element from the population of N is selected. According
to the additive law of probability we can state that
ipij - P.j is the probability that the element selected is from
X class §, and
P, . = Pi- i1s the probability that the element selected is from
Y class i, where
Pij is the probability that the element selected is from
(belongs to both) X class j and Y class {.
The probabilities P.j and Pi- are called marginal probabilities.
The probability that one randomly selected element is from X class
J or from Y-class 1 1is P'j +'Pi. - Pij' (The answer is not P'j + P, because
in P,J + Pi° there are Nij elements in X class § and Y class { that are

counted twice.)

Ni .
If the probabilities of selection are equal,,-P11 = ~qi N P'j - ~§1',
" A

i.
and Pi‘ ~N -

Illustration 2.2. Suppose there are 5,000 students in a university.

Assume there are 1,600 freshmen, 1,400 sophomores, and 500 students living
in dormitory A, From a list of the 5,000 students, one student {s selected

at random. Assuming each student had an equal chance of selection, the
1600

probability that the selected student is a freshman is 50p * that he is a
sophomore is 1400 and that he {s either a freshman or a sophomore is 1600 +
op 5000 °* P 5000

5000 ° Also, the probability that the selected student lives in dormitory A

45
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is %%%5 . But, what is the probability that the selected student is either

a freshman or lives in dormitory A? The question involves two classifica-
tions: one pertaining to the student's class and the other to where the
student lives. The information piven about the 500G students could be

arranged as follows:

) ; Class : ;
) : Dormitory @ R ) : Total :
: : Freshmen Sophomores Others ¢ :
s A : : 500 :
: Other : : 4500 :
: Total H 1600 1400 2000 5000 :

|
!
|
|
!
|
i
t

From the above format, one can readily observe that the ansver to the ques-~
tion depends upon how many freshmen live in dormitory A. 1f the problem

had stated that 200 freshmen live in dormitorv A, the answer would have

1600 . 500 _ 200

been =555 * 5900 ~ 5000 °

Statements about probability need to be made and interpreted with
great care, For éxample, it is not correct to sayv that a student has a
probability of 0.1 of living in dormitory A simply because 500 students out
of 5000 live in A. Unless students are assigned to dormitories bv a random
process with known probabilities there is no basis for stating a student's
probability of living in (beinp assigned to) domitory A. We are consider-
ing the outcome of a random selection.

Exercise 2.1. Suppose onu has the following information about 4
population of 1000 farms:

Q qﬁ;




of 1000.

600
500
300
100

200

200

One famm

(a)
(b)
(c)
(d)
(e)
(f)
(r)
(h)
(i)

produce corn

produce soybeans

produce wheat

prodace wheat and corn

have one

or more cows

all farms that have cows also produce comn

farms do

not produce any scrops

40

is selected at random with equal probability from the list

nroduces
does not
produces

produces

has no cows?

produces
rroduces
produces

does not

What {s the probability that the selected farm,

corn? Answer: 0.6

rroduce wheat?

corm but no wheat? Answer: 0.5
com or wheat but not both?

Answer: 0.8

corn or soybeans?

corn and has no cows? Answer: 0.4
either corn, cows, or both?

produce corn or wheat?

One of the above questions cannot be answered.

Exercise

2.2. Assume a population of 10 elements and selection

Element i
1 2
2 7
3 12
4 0
5 8

probabilities as follows:

i Element "t Py
.05 6 11 .15
.10 7 2 .20
.05 8 8 .05

02 9 6 .05
b 10 3 .10

47
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Oua‘element {s selected at random with probability Pi'
Find:
(a) P(X=2),. the probability that X = 2,
(b) P(X>10), the probability that X is greater than 10.
(¢) P(X<2), the probability that X is equal to or less than 2.

(d) P(3<X>10), the probability that X {s greater than 3 and less
than 10

(e) P(X<3 or X210), the probability that X is either equal to or less
than 3 or is equal to or greater than 10.

Note: The answer to (d) and the answer to (e) should add to 1.
So f.r, we have been discussirg the probability of an event occurring as
a result of a single random selection. When more than ome random selection
occurs simultaneously or in succession the multiplicative law of prob~-
ability is useful.
2.3 MULTIPLICATION OF PROBABILITIES
Assume a population of N elements and selectionnprobabilities

P,,eeesP,ye0s,P.. Each P, is greater than zero and IP, = 1. Suppose
1 i N b . i

two elements are selected but before the second selection is made the
¢irst element selected is returned to the population. In this case the
outcome of the first selecticn does not change the selection probabilities
for the second selection. The two selections (events) are independent.
The probability of selecting the ith element first and the jCh element
second is, Pin. the product of the selection probabilities P1 and Pj'

If a selected element is not returned to the population before the next
selection is made, the selection probabilities for the next selection are

changed. The selections arxe dependent.,

4N
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The multiplicative law of probability, for two independent events

A and B, states that the joint probability of A and B happening in the
order A,B is equal to the probability that A happens times the prob-
ability that B happens. In equation form, P.aB) = P(A)P(B). For the
order B,A, P(BA) = P(B)P(A) and we note that P(AB) = P(BA). Remember,
independence means that the prosability of B happening is not affected
by the occurrence of A and vice versa. The multiplicative law extends
to any number of independent events. Thus, P(ABC) = P(A)P(B)P(C).

For two dependent events A and B, the multipliéative law states that
the joint probability of A and B happening in the order A,B is equal to
the probability of A happening times the probability that B happens under
the condition that A has already happened. 1In equation form P(AB) =
P(A)P(B[A); or for the order B,A we have P(BA) = P(B)P(A|B). The vertical
bar can usually be translated as "given" or "given that.” The notation on
the left of the bar refers to the event under consideration and the nota-~
tion on the right ;o a condition under which the event can take place.
P(B]A) is called conditional probability and ¢« .d be read "the prob-
ability of B, given that A has already happened,” or simply "the prob~
ability of B given A." When the events are independent, P(B|A) = P(B);
that is, the conditional probability of B occurring is the same as the
unconditional probability of B, Extending the multiplication rule to a
series of thrée events A,B,C occurring in that order, we have P(ABC) =
P(A)P(B|A)P(C|AB) where P{C|AB) 1s the probability of C occurring, given
that A and B have already occurred.

2.4 SAMPLING WITH REPLACEMENT
When a sample is drawn and each selected element is returned to the

oopulation before the next selection is made, the method of sampling is

49
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called "sampling with replacement.” In this case, the outcome of one
selection does not change the se1é¢21on probabilities for another
selection.

Suppose a sample of n elements i§*§e1ected with replacement. Let the
values of X in the sample be xl,xz,....Q;\where %X, is the vaiue of X
obtained on the first selection, Xy the vaiug obtained on the second
selection, etc. Notice that Xy is a random Qariable that could be equal
to any value in the population set of values xl,xz.....xu, and the prob-

. ability that X, equals xi is Pi' The same statement applies to Xy etc.
Since‘the selectioqs are independent, the brobability of getting a sample
of n in a particular order {s the product of the selection probabilities
namely, p(xl)p(xz)...p(xn) wvhere p(xl) is the P1 for the element selected
on the first draw, p(xz) i{s the Pi for the ~lement selected on the second
draw, etc.

'Illus:ration‘g,3. As an illustration, consider a sample of two

%
elements selected with equal probability and with replacement from a popu-

lation of four elements. Suppose the values of some characteristic X for

the four elements are xl, xz, x3, and Xa. There are 16 possibilities:

Xy oKy XK KgXK o XX
Xy0Ky XK, KyX, XX,
XXy XpXg  KyXy o X Xy

X oX, XX, XX, XX,

In this {llustration p(xl) is always equal to‘% and p(xz) is always'% .

Hence each of the 16 possibilities has a probability of (%)(%0 - %E .

ERIC )
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Each of the 16 possibilities is a different permutation that could
be regarded as a separate sample. However, in practice (ss we are not
concerned about which element was selected first or second) it is more
logical to disregard the order of selection. Hence, as possible sanples

and the probability of each occurring, we have:

Sample Probability Sample Probability
X, 0%, 1/16 XX, 1/8
xl,xz 1/8 xz,x4 1/8
X; X, 1/8 X31X4 1/16
xl,xa 1/8 x3,x4 1/8
X, X, 1/16 L 1/16

Note that the sum of the probabilities 1s 1. That must always be the
cage if all possible samples have been listed with the correct prob-
abilities. Aiso iote that, since the probability (relative frequency
of occurrence) of each sample is known, the average for each sample is
a random variable. In other words, there were 10 possible samples, and
any ;ne of 10 possible sample averages could have occurred with the
probability indicated. This is a simple {llustration of the fact that
the sample average sati{sfies the definition of a random variable. As
the theory of sampling unfolds, we will be examining the properties of
a sample average that exist as a result of its being a random variasble.

Exercise 2.3. With reference to Illustration 2.3, suppose the

1 3 1

1
probabilities of selection were Pl - P2 - 3" P3 . 1 and P6 » g

Find the probability of each of the ten samples. Remeamber the sampling

is with replacement. Check your vesults by adding the 10 probabilities.

¢
s
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The sum should be 1. Partial answer: For the sample composed of elements

2 and 4 the probability is (%o(%) + (%9(%p - %g

2.5 SAMPLING WITHOUT REPLACEMENT

When a selected element {s not returned to the population before the
next selection is made, the sampling method is called sampling without
replacement. In this case, the selection probabilities change from one
draw to the next; that is, the seiections (events) are dependent.

As above, assume a population of N elements with values of some
characteristic X equal to xl,xz,...,xN. Let the selection probabilities
for the first selection be Pl""’Pi""PN where each P1>0 and IPi = 1,
Suppose three elements are selected without replacement. Let Xy Xo and
x4 be the values of X obtained on the first, second, and third random
draws, respectively. What is the probability that X, = XS, X, = X6, and
Xy ® x7? Let P(xs,xﬁ.x7) represent this probability,which is the prob-
ability of selecting elements 5, 6, and 7 in that order.

According .0 the multiplicative probability law for dependent events,

P(Xg,Xg0X,) = P(XS)P(XGlXS)P(x7fXS,X6)
It is clear that P(xs) - Ps. For the second draw the selection prob-
abilities (after element 5 is eliminated) must be adjusted so they add

to 1. Hence, for the second draw the selection probabilities are

1f; ' 1f§ , 1ig ’ 1f: ’ 1?2 verry 1i§ . That is, P(X;|X;) = 1fg :
5 5 S ) 5 N 5
P
Similarly, P(-XﬂXs,xs) - 'i-:l;-s—_:i;" .
Pe .. By
Therefore, P(xs,xs,x7) - (PS)(lvPS)(1~P5-P6) (2.1)

(<
(4™
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Ps - Py
Observe that P(XG’XS'X7) » (PG)( X4 —) . Hence, P(X

1~P6 1~P6-P5

P(x6.x5.x7) unless PS = PG’ In general, each permutation of n elements

5°%6:X7)
has a different probability of occurrence unlass the Pi's are all equal.
To obtain the exact probability of selecting a sample composed of ele-~
ments 5, 6, and 7, one would need to compute the probability for each of
the six possible permutations and get the sum of the six probabilities.

Incidentally, in the actual process‘of selection, it is not neces~
sary to compute a new set of selection probabilities after each selection
is made. Make each selection in the same way that the first selection
was made. If an element is selected which has already been drawn, ignore
the random number and continue the same process of random selection
until a new element {s drawn,

As indicated by the very brief discussion in this section, the
theory of sampling without replacement and with unequal probability of
selection can be very complex. However, books on sampling present ways
of circumventing the complex problems. In fact, it is practical and
advantageous in many cases tn use unequal probability of selection in
sampling. The probability theory for sampling with equal probability
of selection and without replacement {s relatively si{mple and will be
discussed in more detail.

Exercise 2.4. For a population of 4 elements there are six possible

1 < 1
AT T
P3 -'%. and Pa ~-%. List the six possible samples and find the prob-

samples of two when gsampling without replacement. Let P

ability of getting each sample. Should the probabilities for the six

samples add to 1? Check your results.
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Exercise 2.5. Suppose two elements are selected with replacement

and with equal probability from a population of 100 elements. Find the
probability: (a) that element number 10 is not selected, (b) that ele~
ment number 10 is selected only once, and (c) that element .mber 10 is
selected twice? As a check, the three probabilities should add to 1.
Why? Find the probability of selecting the combination of elements 10
and 20. |

Exercise 2.6. Refer to Exercise 2.5 and change the specification

- "with replacement” to 'without replacement." Answer the same questions.
Why is the probability of getting the combination of elements 10 and 20
greater than it was in Exercise 2.5?

2.6 SIMPLE RANDOM SAMFLES

In practice, nearly all samples are selected without replacement.
Selection of a random sample of n elements, with equal probability and
without replacement, from a population of N elements is called simple
random sampling (srs). One element must be selected at a time, that is,
n separate random selections are required.

First, the probability of getting a particular combination of n
elements will be discussed. Refer to Equation (2.1) and the discussion
preceding it. The Pi's are all equal to é'for simple random sampling.
Therefore, Equation (2.1) becomes P(xs,xs,x7) ™ (%0(§%i9(§%5). All per-
mutations of the three elements 5, 6, and 7 have the same probability of
occurrence. There are 3! = 6 possible permutations. Therefore, the

probab{lity that the sample is composed of the elements 5, 6, and 7 is

(1) (2)(3)
N(N~1) (N~2) °

probability of occurrence.

Any other combination of three elements has the same

gest COPY AVAILABLE
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" In general, all possible combinations of n elements have the same
chance of selection and any particular combination of n has the following

probability of being selected:

1 2 3 sse A} - !ﬂSN"n!! (2 2)
NzN"’l) {N"’zs so s EN"MI) N! *

N!
ni(N-n).

possible combinations (samples) of n elements. If each combination of

According to a theorem on number of coﬁbinations, there are

n elements has the same chance of being the sample selected, the probability
of selecting a speciffed combination must be the reciprocal of the number
of comtinations. This checks with Equation (2.2).
An 1mportént feature of srs that will be needed in the chapter on
expected values is the fact that the jth element of the population is as
h

1ikely to be selected at the 1t random draw as any other. A general

expression for the probability that the jth element of the population is
th

selected at the {4 drawing is
N-1, ,N-2, N-3 N-i+1, 1 Py
OGP G G Gw D (2.3)

Let us check Fquation 2.3 for 4 = 3, The equation becomes

N-l, N~-2., 1 1
ELy eyl . 1

The probability that the jth element of the population is selected at the
third draw is equal to the probability that it was not selected at either
the first or second draw times the conditional probabilisy of being
seiected at the third draw, given that it was not selected at the first

or second draw. (Remember, the sampling is without replacement). Notice

that Eﬁ* is the probability that the jth element 48 not selected at the
first draw and %E% is the conditional probability that it was not selected

at the second draw. Therefore, (§§£)(§§%) is the probability that the jth

9O
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element has not been selected prior to the third draw., When the third
draw {s made, the conditional probability of selecting the jth element

is Eéi . Hence the probability of selecting the jth element a* tha third

§;1)(g:§)(ni2) - % . This verifies Equation (2.3) for 1 = 3.

draw is (

To summarize, the general recslt for any size of sample is that the

th element in a population has a probability equal to %-ut beins selected
h drawing. It means that x1 (the value of X obtained at the ith

3

at the 1t

draw) is a random variable that has a orobability of é-of being equal to
any value of tge set xl....,xN.

What probability does the jth element have of being included in a
sample or n? We have just shown that {t has a .robability of %-of being
selected at the ith drawing. Therefore, any given element of the popula~-
tion has n chances, each equal to % y» of being included in a sample. The
element can be selected at the first draw, or the second draw,..., Or the
nth draw and it cannot be selected twice because the sampling is without
replacement. Therefore the probabilities, % for each of the n draws, can

be added which gives % as the probability of any given element being
included in the sample.

Illustration 2.4, Suppose one has a list of 1,000 farms which includes
some farms that are out-of~scope (not eligible) for a survey. There is no
way of knowing in advance whether a farm on the list is out-of-scope. A
simple random sample of 200 farms {s selected from the 1list. All 200 farms
are visited but only the ones found to be in scope are included in the

sample. What probability does an in-scope farm have of being in the sam~

ple? Every farm on the list of 1000 farms has a probability equal to %
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of seing in the sample of 200. All in-scope farms in the sample of 200
are included in the final sample. Therefore, the answer is %.
Exercise 2.7. From the following set of 12 vaiues of X a srs of
three elements is to be selected: 2,10, 5, 8, 1, 15, 7, 8, 13, 4, 6,
and 2. Find P(x>12) and P(3<x<12). Remember that the total possible
number of samples of 3 can readily be obtained by formula. Since every
poasible sample of three is equally likely, you can determine which sam~

ples will have an §§3 or an §312 without listing all of the numerous

possible samples. Answer: P(§:12) = 5%6 : p(§§3) = 5%6 : p(3<§<12) o %%%.

2.7 SOME EXAMPLES OF RESTRICTED RANDOM SAMPLING

There are many methods other than srs that will give 2very element
an equal chance of being in the sample, but some combinations of n ele~
ments do not have a chance of being the sample selected unless srs is
used, For example, one might take every kth element beginning from a
random starting point between 1 and k. This is called svstematic sam-
pling. For a five percent sample k would be 20. Thé first element for
the sample would be a random number between 1 and 20. If it is 12, then
elements 12, 32, 52, etc., compose the sample. Every element has an
equal chance, %ﬁ » of being in the sample, but there are only 20 com-
binations of elements that have a chance of being the sample selected.
Simple random sampling cousld have given the same sample but it is the

method of sampling tha% characterizes a sample and determines how error

due to sampiing ‘. io be estimated. One mav think of sample design as a
matter of choosing a method of sampling; that is, choosing restrictions

to place on the process of selecting a sample so the combinations which

£ e
A d
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have: a chance of being the sample selected are generally 'better”" than

|
manygof the combinations that could occur with simple random sampling.

i

At che same time, important properties that exist for simple random sam-
i

ples/ need to be retained. The key properties of srs will be develnped in

)

the #ext two chapters.,
‘Another common method of sampling involves classification of all

elements of a population into groups called strata. A sample is selected

h

fron each stratum., Suppose N, elements of the population are in the it

i

stratum and a simple random sample of ny elements is selected from it.

This is called stratified random sampling. It is clear that every ele-

n
ment in the ith strat. 1 has a probability equal co'EL of Heing in the
n i

sample. If the sampling rvaction, ﬁi , 18 the same fqr all strata,
i n
every element of the population has an equal chance, namely ﬁi , of
i
being in the sample. Again every element of the population has an equal

chanée of selection and of being in the sample selected, but some combi-
nations that could occur when the method is srs cannot occur when
stra%ified random sampling is used.

jSo far, our discussion has referred to the selection of individual
eleménts, which are the units that data pertain to. For sampling purposes
a po&ulation must be divided into prarts which are called sampling units.
A saﬁple of sampling units is then selected. Sampling units and elements
cou#d be identical. But very often, it is either not possible or not

practical to use individual elements as sampling units, For example,
supﬁose a sample of households is needed. / iist of households does not
exiéc but a list of blocks covering the area to be surveyed might be avail-

able. In this case, a sample of blocks migh% be s 'ected and all households

L
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within the selected blocks included in the sample. The blocks are the
sampling units and the elements are households. Every element of the
population should belong to one and only one sampling unit so the list of
sampling units will account for all elements of the population withoué
duplication‘or omission. Then, the probability of selecting any given
element is the same as the probabilitv of selecting the sampling unit
that it belongs to.

Illustration 2,5. Suppose a population is composed of 1800 dwelling
units located within 150 well-defined blocks. There are several possible
sampling plans. A srs of 25 blocks could be selected and every dwelling
unit in the selected blocks could be included in the sample. In this
case, the saiyling fraction is % and every dwelling unit has 1 probability
of % of beirg in the sample. 1Is this a srs of dwelling units? No, but
one could describe the sample as a random sample (or a probability sample)
of dwelling units and state that every dwelling unit had an equal chance
of being in the sample. That is, the term "simple random sample" would
apply to blocks, not dwelling units. As an alternative sampling plan, 1if
there were twelve dwelling units in each of the 150 blocks, a srs of two
dwelling units could be selected from each block. This scheme, which is an
example of stratified random sampling, would also give every dwellirg unit

a probability equal to % of being in the sample.

Illustration 2.6

L
—

Suppose that a sample is desired of 100 adults
living in a specified area. A list of adults does not exist, but a list
of 4,000 dwelling units in the area is available. The proposed sampling
plan is to select a srs of 100 dwelling units from the list. Then, the

field staff is to visit the sample dwellings and list all adults living

o
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in each. Suppose there are 220 adults living in the 100 dwelling units.
A simple random sample of 100 adults is selected from the list of 220.
Consider the probability that an adult in the population has of being in
the sample of 100 adults.

Parenthetically, we should recognize that the discussion which
follows overlooks important practical problems of definition such as the
definition of a dwelling unit, the definition of an adult, and the defini-
tion of living in a dwelling unit. However, assume the definfitions are
clear, that the list of dwelling units is complete, that no dwelling is
on the list more than once, and that no ambiguity exists about whether
an adult lives or does not live in a particular dwelling unit. Incom-
plete definitions often lead to inexact probabilities or ambiguity that
gives difficulty in analyzing or interpreting results. The many practical
problems should be discussed in an applied course on sampling.

It is clear that the probability of a dwelling unit being in the
sample is %5 . Therefore, every person on the list of 220 had a chance
of %a-of being on the list because, under the specifications, a person
lives in one and only one dwelling unit, and an adult's chance of being
on the list is the same as that of the dwelling unit he lives in.

The second phase of sampling involves selecting a simple random
sample of 100 adults from ﬁhe 1ist of 220. The conditional probability
of an adult being in the sample of 100 is %%% - %T . That is, given the
fact that an adult is on the list of 220, he now has a chance of 2 of

11
being in the sample of 100.

Keep in mind that the probability of an event happening is its rela-

tive frequency in repeated trials. If another sample were selected

%0
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following the above specifications,[each dwelling unit in the population
would again have a chance of %3-of being in sample; but, the number of
adults listed is not likely to be 220 so the conditional probability at
the second phase depends upon the number of dwellings units in the sample
blocks. Does every adult have the same chance of being in the sample?
Examine the case carefully. An {nitial impression could be misleading.
Every adult in the population has an equal chance of being listed in the
first phase and every adult listed has an equal chance of being selected

at the second phase. But, in terms of repetition of the whole sampling

!

plan each person does not have exactly the same chance of being in the
sample of 100. The following exercise will help clarify the situation
and 1s a good exercise in probability. :

Exercise 2.8. Assume a population of 5 d.u.'s (dwelling units) with

the following numbers of adults:

Dwelling Unte No. of Adules
1 2
2 4
3 1
4 2
> 3

A srs of two d.u.'s is selected. A srs of 2 adults {s then selected from

a list of all adults in the two d.u.'s. Find the probability that a speci-
fied adult in d.u. No. 1 has ¢f being in the sample. Answer: 0.19. Find
the probability that an adult in d.u. No. 2 has of being in the sample.
Does the probability of an adult being in the sample appear to be related

to the number of adults {n his d.u.? In what way?

61
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An alternative is to take a constant fraction of the adults listed
{instead of a constant number. For example, the specification might have
been to select a random sample of %-of the adults listed in the first
phase. In this case, under repeated application of the sampling speci-
fications, the probability at the second phase does not depend on the
outcome of the first phase and each adult in the population has an equal
chance, (%6)(%) = %5 , of being selected in the sample. Notice that
under this plan the number of adults in a sample will vary from sample
to sample; in fact, the frumber of adults in the sample is a random variable.

For some surveys, interviewinpg more than one adult in a dvelling unit
;s {nadvisable. Again, suppose the first phase of sampling is to select
a srs of 100 dwelling units. For the second phase, consider the following:
When an interviewer completes the listing of adults in a sample dwelling,
he is to select one adult, from the list of those living in the dwelling,
at random in accordance with a specified set of instructions. He then
interviews the selected adult if available; otherwise, he returns at &
time when the selected adult is available. What probability does an adult
1iving in the area have of being in the sample? According to the multi-
plication theorem, the answer is P°(D)P(A|D) where P°(D) is the probability
P of the dwelling unit, in which the adult lives, being in the sample and

P(A|D) is the probability of the adult being selected given that his

dwelling is in the sample. More specifically, P°(D) = %ﬁ and P(A|D) = %I .

h

where k, is the number pf adults-in the it dwelling. Thus, an adult's

i
chance, (%59(%~), of being in a sample is inversely proportional to the
i .
number of adults in his dwelling unit,

Exercise 2.9. Suppose there are five dwelling units and 12 persons

L ]
A~
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Dwelling Unit Individuals
1 1, 2
2 - 3, 4, 5, 6
3 7, 8
4 9
5 | 10, 11, 12

1. A sample of two dwelling units is selected with equal probability
and without replacement. All individuals in the selected dwelling units
are in the sample. What probability does individual number 4 have gf being
in the sample? Individual number 9?

2. Suppose from a list of the twelve individuals that one individual
is selected with equal probability. From the selected individual two
items of information are obtainec: his age and the value of the dwelling
in which he lives. Let xl, xz,...,x12 represent the ages of the 12 i{ndi~
vidualc and let Yl....,YS represent the values of the five dwelling units.
Clearly, the probability of selecting the ith individual is %E-and there~
fore P(X,) = §5 . Find the five probabilities P(Y,),...,P(Y,). Do you
agree that P(Y3) -~ %5 ? As a check, ZP(Yj) should equal one.

3. Suppose a sample of two individuals is selected with equal prob~

ability and without replacement. Let Ylj be the value of Yj obtained at
the first draw and Y“.,._1 be the value of YJ obtained at the second draw.

Does P(Ylj) = P(Yzj)? That is, is the probability of getting Yj on the
second draw the same as it was on the first? If the answer is not evident,
refer to Section 2.5.

Exercise 2.10. A small sample of third-grade students enrolled in

public schools in a State is desired. The following plan is presented only

L3
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as an exercise and without consideration of whether it is a good one: A

sample of 10 third-grade classes is to be selected. All students in the

10 classes will be included in the sample.

Step 1. Select a srs of 10 school districts.
Step 2. Withi each of the 10 school districts, prepare a list
of public schools having a third grade. Then select one
school at random from the list.
Step 3. For each of the 10 schools resulting from Sten 2, list
- the third-prade classes and select one class at random.
(If there is only one third-grade class in the school,
it is in the samnle). This will give a sample of 10 classes.

Describe third-prade classes in the population which have relatively
small chances of being selected. Define needed notation and write a
mathematical expression representing the probability of a third-grade
class being in the sample.

2.8 TWO-STAGE SAMPLING

For various reasons sampling nlans often employ two or more stages
of sanpling. For example, a sample of counties might be selected, then
within each sanple county a sample of farms might be selected,

Units used at the first stagse of samplinp are usually called primary
sampling units or psu's. The sampling units at the second stage of sam-
pling could be called secondarv sampling units. However, since there has
been frequent reference earlier in this chapter to "elements of a popula-
tion," the sarnling units at the second stage will be called elements.

In the simple case of two-stage sampling, each element of the popu~

lation is associfated with one and only one primary sampling unit, Let 1

ERIC 6}




58

be tiie index for psu's and 1=t § be the i..dex for elements within a psu.

Thus xij represents the value of some characteristic X for the jth element
in the ith nsu. Also, let

M = the total number of psu's,

m = the number of psu's selected for a sample,

N1 = the total number of elements in the ith pPsu, and

n1 = the number of elements in the sample from the ith psSu.,

Then,

M

E“i = N, the total number of elements in the population, and

i
m

Zni = n, the total number of elements in the sample.
i

Now consider the probability of an element being selected by a two
step process: (1) Select one psu, and (2) select one element within the

selected psu. Let,

Pi = the probability of selecting the 1th psu,
lei = the conditional probability of selecting the jth
element in the ith nsu given that the ith psu has already

been selected, and
Pij = the overall probability of selecting the jth element in
the ith psu.
Then,

Pij - Pip_ﬂi

_ If the product of the two probabilities, Pi and P i° i{s constant for

il

every element, then every elemeut of thg population has an equal chance of

GO
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being selected. In other words, given a set of selection probabilities

1
' ——
Pl”"’PM for the psu's, one could specify that Pij * N and compute lei ’

where Pj[i - ﬁ%ﬂ , 80 everv element of the population will have an equal

i

chance of selection.

Exercise 2.11. Refer to Table 2.1. An element is to be selected by

A————

a three-step process as follows: (1) Select one of the Y classes (a row)

. N
with probability ﬁi', (2) within the selected row select an X class (a
N
N column) with probability ﬁii , (3) within the selected cell select an
i

element with equal probability. Does each element in the population of N
elements have an equal probability of beinp drawn? What is the probability?
The probability of an element being included in a two-stage sample
is given by
P;j - P{Pj“ { (2.4)
where

P; = the probability that the 1:h psu is in the sample

of psu's, and
lei = the conditional probability which the j element has
of being in the sample, given that the 1th psu has
been selected.
The inclusion probability Pij will be discussed very briefly for three

important cases:

(1) Supposc a random sample of m psu's is selected with equal prob~-

ability and without replacement. The probability, P; , of the 1th psu

i

being in the sample is fl - ﬁ- wvhere fl is the sampling fraction for the
first-stage units. In the second stage of sampling assume that, within

each of the m psu's, a constant proportion, fz, of the elements is selected.

ERIC 66
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That s, in the ith psu {n the sample, a simple random sample of n, ele-

i

ments out of Ni is selected, the condition being that n1 = fz”t' Hence,

the conditional probability of the jth element in the ith nsu beinp in
n

the sample {s P{‘i - §£ = fz . Substituting in Equation 2.4, we have

. i

P;j - f1f2 which shows that an element's probabilitv of being in the
sample i{s equal to the product of the sampling fractions at the two stages.
In this case P;j is constant and is the overall sampling fraction.

Unless Ni is the same for all psu's, the size of the sample,

n, = f N, varies from psu to psu. Also, since the psu's are selected

i 24
: m n
at random the total size of the sample, n = Zni = f2 ENi' is not constant
i i

with regard to repetition of the sampling plan. In practice variation in
the size, N of the sample from psu to psu might be verv undesirable. If

appropriate information is availaule, it is possible to select psu's with

-

probabilities that will equalize the sample sizes n 1

i and also keep P

constant.
N
i

(2) Suppose one psu is selected with probability P1 ~ g This

is commonly known as sampling with pns (probability proportional to size).
Within the selected psu, assume that a simple random sample of k elements

is selected. (If anv Ni are less than k, consolidations could be made so

all psu's have an Ni greater than k). Then,

N N
Py oW 0 Pyl N, and Pryo= g N, TN

which means that everv element of the population has an equal probability,
% y of being included in a sample of k elements.
Extension of this sampling scheme to a sample of m psu's could

encounter the complications indicated in Section 2.5. ilowever, it was

oy
Q' ¢
[



61

stated that means exist for circumventing those complications. Sampling
books 1/ discuss this matter quite fully so we will not include it in this

monograph. The point is that one can select m psu's without replacement
N

in such a way that m qi is the probability of including the 1th psu in
' N

the sample. That is, Pi = m Ei . If a random sample of k elements is

selected with equal probability from each of the selected psu's,

. Wk
lei.'N and

N
i.,k mk n
TIRA PRl

Pij s (m :

Thus, if the N, are known exactly for all M psu's {n the population,

i
and Lf a list of elements in each psu is available, it is possible to
gselect a two-stage sample of n elements so that k elements for the sample
come from each of m psu's and every element of the population has an equal
chance of being in the sample. In practice, however, one ugually finds
one of two situations: (a) there is no information on the number of ele~
ments in the psu's, or (b) the information that does exist is out-of~-date.
Nevertheless, out-of-date information on number of elements in the psu's
can be very useful. It is also possible that a measure of size might

exist which will serve, more efficiently, the purposes of sampling.

(3) Suppose that characteristic Y is used as a measure of size. Llet

Y
Yi be the value nf Y for the 1th psu in the population and let Pi = ?i
M
where ¥ = ZYi . A sample of m psu's is selected in such a way that
i

Y

P; - 7£ is the probability that the ith psu has of gfing in the sample.

- T P a1 M AN W MR A W e v N e S S AR

1/ For example, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory. Volume I, Chapter 8. .John Wiley and Sons. 1953,

()
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With regard to the second stage of sampling, let f2£ be the sampling

fraction for selecting a simple random sample within the ith psu in the

sanple. That is, Psli " f21 . Then,
Yy

In setting sampling specilications one would decide on a fixed value T
for sz. In this context sz is the overall sampling fraction or propor~

tion of the population that 1s to be included ia the sample. For example,
' 4
1f one wanted a 5 percent sample, Pij would be ,05. Or, if one knew there

were approximately 50,000 elements in the population and wanted a sample

cf about 2,000, he would set Pi’1 = ,04. Hence, we will let f be the over-

all sampling fraction and set P{,

the measure of size to be used and on the number, m, of nsu’'s to be selected.

equal to f. Decisions are also made on

In Equation 2.5, this leaves f21 to b2 determined. Thus, fz1 is computed

as follows for each psu in the sample:

(. fr

21 in

Use of the sampling fractions f2i at the second stage of samplinp will give
every element of the population a probability equal to f of beine in the
sample. A sample wherein every ~lement of the population has an equal

chance of inclusion is often called a self-~weishtae? sample.

PR
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ﬂghPTER 111. LAPLCTED VALULS OF RANDOM VARIABLES

3.1 INTRODUCTION
The theory of exnected valucs of random variables is used exten-
sively in the theorv of samplinn; in fact, it is the foundation for
sampling theorv. Interpretations of the accuracy of estimates from
probability samples depend heavilv on the theorv of exnected values.
. Tihe definition of a random varfable was discussed in the nrevious
chapter. It {s a variable that can take (be equal to) anv one of a

defined set of values vith known probabilityv. Let Xi he the value of X

for the ith element in a set of N elements and let Pi he the nrobability

th *
that the i eleront has of heine selected by some chance oneration so

that Pi {5 known a priori. ihat is the expected value of X?

Lefinition 3.1, The exnected value of a random variable X is

[3)
it

- P.X, where

i P =1. The rathematical notation for the expected value
i=1 i

1 i

| B B

.
W

' of X is L(X). Hence, bv definition, II(X) = " Pixi .
=1

Observe that iPixi is a weighted averagse of tae values of X, the
welgihts beine the probabilities of sclection. ''Lxrected value" is a

substitute expression for "averare value." In other words, ¥ means "“the

average value of' or "find thc averare value of' whatever follows 6. For

s
exanple, L(i7), read “the exrected value of 37 V' refers to the averare value
of the sauaresof the valyes that X can equal. That is, bv definition,

A
¢ )
" “

ﬁ(Xz) = ¥ piﬁi .
i=1l

1f all of the W elements have an eaual chance of beinp selected, all

values of Pi must equal % hecause of the requirement that HPi =1, In
N

=0
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N 1 :xi
this case, E(X) = ¥ &2 X «
i-lN i N

for all . elements.

= X , which i{s the simple average of X

Illustration 3.1. Assume 12 elements having values of X as follows:
kl = 3 Xs = 5 X9 = 10
Xy, =9 X =3 Xm =3
o Xy=3 X7 = 4 Xll = 8
X, =5 Xg =3 Xyp = &
For this séL,E(x) = éig%éiiti = 5, assuming each element has the same

chance of selection. Or, bv counting the number of times that each

e

unique Qﬁlue of X occurs, a frequency distribution of X can be obtained

as follows:

1 —d
3 5
4 2
5 2
8 1
9 1
10 1

where Xi is a unique value of X and Nj i{s the number of times Xj occurs,

IN,X ZX
We noted in Chapter I that IN = N, IN X, = IX,, and that S 15, R - X .
j 374 i ZNJ N

Suppose one of the Yj values {s selected at random with a probability equal

N, N
to Pj where Pi = Eﬁ« = qi . What is the expected value of Xj ? By
. 1 .

r"ii'




N "
* (3 - ---i --———-L-‘ls.;
definition t(Aj) SPij ZN Xj N X .

that in this fllustration E(X‘) = 5, Note that the selection specifica~

The student may verify

tions were equivalent to selectinp one of the 12 elements at random with
equal probability.
Incidentally, a frequency distribution and a probability distribution

are very similar. The probabiiity distribution with reference to Xj would

be:

21 I1
3 5/12
4 2/12 )
5 2/12

'8 1/12
9 1/12

10 1/12

The 12 values, P for the 12 elements are also a probability distri-

- X
i N

bution. This illustration shows two ways of treating the set of 12
elements.

Wwhen finding expected values be sure that you understand the defini-
tion of the set of values that the random variable mipght equal and the
probabilities involved.

®
Definition 3.2. When X 1s a random variable, by definition the

A ——— A - gy ca w——— -

expected value of a function of X is

N
E[£(X)] = £ Pi(f(xi)}
{=1

Some examples of simple functions of X are: f(X) = aX, f(X) = Xz,
f(X) = a + bX + cxz, and f(X) = (x—i)2 . For each value, xi , in a
defined set there is a corresponding value of f(xi).

LA ]
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.L££2§EEQE£QQ-2L§' Suppose f(X) = 24+3., With reference to the set
of 12 elements discussed above, there are 12 values of f(xi) as follows:
f(Xl) = (2)(3) +3 =9
f(xz) = (2)(9) + 3 = 21

f<x12) = 2(4) + 3 = 11

Assuming, Pi = % the expected value of f(X) = 2X+3 would be

12
. el U Ll 1 1 B}
E(2%+3) = EOREEAD = G OIHE) QD4 LG AD = 13 (3.1)

In algebraic terms, for f(X) = ai{+b, we have
N

E(aX+b) = T P (aX,+b) = Ip (aX.,) + IP b

e b 197 i

By definition ZPi(axi) = E(aX), and ZPib = E(b). Therefore,

E(aX+b) = £ (aX) + E(b) (3.2)
Since b 1is constant and ZPi = 1, ZPib * b, which leads to the first
important theorem in expected values.

Theorem 3.1. The expected value of a constant is equal to the
constant: E(a) = a,

By definition E(aX) = ZPi(axi) = aEPiXi. Since EP’,_)(i = E(X), we have
another important theorem:

Theorem 3.2. The expected value of a constant times a variable equals
the constant times the expected value of the variable: E(aX) = agE(X).

Applying these two theorems to Equation (3.2) we have E(aX+h) =
aE{X) + b. Therefore, with reference to Illustration 3.2, F(2X+3) =

ZE(X) 4 3= 2(3) 4+ 3 = 13, which {s the same as the result found in

\‘{'Auation (30 l) . "‘,fs
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Suppose a random variable X can toke any of the

following four values with the probabilities indicated:

X, = 4 X

Al = 2 X, =5 3 4 6
P1 = 2/6 P. = 2/6 P3 = 1/6 PA = 1/6
(a) Find E(N) Answer: 4
(b) Find E(X7) Answer: 18%. Note that E(Xz) # [E(X)]2
’ (¢) Find E(X~X) Answer: O Note: By definition
-~ & -
" L(X-X) = L P, (X -X)
it
i=]
.. e 32 | S
(d) Find E(X-X)~ Answer: 25. dote: By definition
4
E-X 2 = £ P, (x, -
{=1 > SR |

Lxercise 3.2,

From the following set of three values of Y1 one

-

=g

value 1¢ to be selected with a probabilite P;:

Yl = 2 Y2 = 2 Y3 = &4
Pl = 1/4 P2 = 2/4 P3 = 1/4
(a) Find ECY) Answer: l%
‘ 1 , 1 L
(b)Y Find L(Y) Answer: 3/16. Note: C3) ¢ E(Y)
- 7
(&) Find E(Y-§)°  Answer: 4%

3.2 EXPECTED VALUE OF ThE SUM OF TWO RANDOM VARTAR" “§

Tie sum of two or more random variables is also a random variable.
If X and ¥ are two random variables, the e.pected value of X + Y is equal
to the expected value of X plus the expected value of Y:E(X+Y) = E(X)+E(Y).
Two numerical iilustrations will help clarifv the situation.

Illvstration 3.3. Consider the two random va.iables X and Y in

———— ..

Exercises 2.1 and 3.2:

"/t
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X, =2 P = % Y, =-2  Prai
X, 5 P, = % Y, =2 P =2
Xy=4 P % Y, = 4 S %
Xy =6 By %

Suppose one element of the first set and one element of the second
set are selected with probabilities as listed above. What is the expected
value of X + Y? The joint probabilitv of ge:cing.xi and Yj is Pin because
the two selections are independent. Hence bv dufinition
4 3

E(X+Y) = T I PpPr(X +Y.) (3.3)
(=] 4=3 13 1 4

The possible values of X + Y and the probability of each are as follows:

X+Y PP’ X+Y PP’

U S A R 5 NI
.2 .1
X +Y, =0 ppiel Xp+¥, =2 rpral
X, +Y,. =4 P.pPrm . X.+Y. =6 DPP’m -
1 ¥ Y, 12 = 7 3+ Y, 32 ™ 7
X, +Y. =6 PP’ =2 N.+Y. =8 popssi
1 v Y, 173 ® 77 3t Yy = 373 ® 7%
P = 2.._.. B S }"""
X, +¥ =3 el A, ¥
X. +¥. =7 ppre X +Y. =8 pPpro= -
2+ Y 2Py * 7 AP W2 = 7
X, + Y. =9 pplai. X, + Y. =10 pp:wi
Ry + Y35 2"y " g, REAE Wy = A

As a check the sum of the probabilitieg rnust be 1 {f. all possible
sums have been listed and the probahilitv of each has been correctly
determined, Substituting the values of xi + Yj and PiP{ in Eauation (3.,3)

we obtain 5.5 as follows for exnected value of X + Y:

E0) + G + ...+ Goan = 5.5
24 24 v 24 y

L

c“\j
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From Exercises 3.1 and 3.2 we have E(X) = 4 and E(Y) = 1.5. There~
fore, E(X) + E(Y) = 4 4+ 1.5 = 5.5 which verifies the earlier statement
that E(X + ¥Y) = E(X) + E(Y).

Illustration 3.4. Suppose a random sample of two is selected with

replacement from the population of four elements used in Exercise 3.1.

Let xl be the first value selected and let x2 be the second. Then xl and

2 are random variables and xl + x, is a random variable. The nossible

values of Xy + X, and the probabilitv of each, P(xl,xz).are listed bhelow,

Notice that each possible order of selection is treated separately.

X

X X% P(x,+%,) xl+xg X % P(xy4%,) §i+%g
Xl Xl 4/136 4 X3 Xl 2/36 6
Xl xz 4/36 7 XB XZ 2/36 9
Xl X3 2/36 6 X3 ﬂ3 l/éb 8
Xl XA 2/36 8 X3 Xa 1/36 10
Xz xl 4/36 7 XA Xl 2/36 8
XZ X2 4/36 10 K& XZ 2/36 11
Xz XB 2/36 9 XA X3 1/136 10
X2 Xb 2/ 36 11 Xa Xé 1/36 12

By definZtion E(x1 + xz) is

4 4 2 Lﬁ -
gg(é) + 3-5(7) + ~3-(;-(6) + ...+ 36(12) 8

In Exercise 3.1 we found E(X) = 4. Since Xy is the same random variable

as X, E(xl) = 4, Also, X, i{s the same random variable as X, and E(xz) s 4,

Therefore, E(xl) + E(xz) = 8, which verifies that E(x1+x2) = E(xl) + E(xz).
In general if X and Y are two random variables, where X mipht ecqual

xl,...,xN and Y might equal Yl"“’Y%’ then E(X + Y) = E(X)+E(Y). The

e )
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NM
proof i{s as follows: By definition E(X+Y) = I P

) where P is
gy U

(X1+Y 13

i

the probability of getting the sum X, + Y, and LIP, = 1. The double

i 3 i3
summation 1is over all possible values of Pij(x£+Yj)' According to
the rules for summation we mav write
N NM NM
~ s Y

13
In the first term on the ripht, Xi is constant with regard to the summation
over j; and in the second term on the right, Y_1 is constant with regard
to the summation over i. Therefore, the right~hand side of Equation (3.4)

can be vritten as

. 1} h 1)
M N
And, since I P . =P and £ P, = P, Equation (3.4) becomes
i i1 i { ij b |
NM N M
SIP, (X +Y ) =5 X, P + 5 Y, P
ij L I S { i1 3 A
N M
By definition £ X P, - E(X) and £ Y. P, = L(Y) .
{ i i A

Therefore E(X+Y) = E(X) + E(Y) .

If the proof is rot clear write the values of Pi (xi+v ) in a matrix

3 h
format. Then, follow the summation manipulations in the proof.

The above result extends to any number of random variables; that is,
the expected value of a sum of random variables is the sum of the expected

values of each. 1In fact, there is a very important theorem that applies

to a linear combination »f random variables.
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Theorem 3.3, Let u = alu1 +...4+ 8y Uy where Uy oereslly are random
variables and al,...,ak are constants. Then
E(u) = aIE(ul) +,..t a, E(uk)

or in summation notation

k k
E(u) = E i au, = i aiE(ui)

The generality of Theorem 3.3 is impressive. For example, with refer-
ence to sampling from a population xl,.... XN, uy might be the value of X
obtained at the first draw, u, the value obtained at the second draw, etc.
The constants could be weights. Thus, in this case, u would be a weighte
average of the sample measurements. Or, suppose §1.§2,...,§k afe averages
from a random sample for k different age groups. The averages are random
variables and the theorem could be applied to any linear combination of the
| averages. In fact uy could be any function of random varia?les. That 1s,
-

the only condition on which the theorem is based is that “il”“sc be a

random variable. -

Illustration 3.5. Suppose we want to find the expected valpe of

(X + Y)2 where X and Y are random variables. Before Theorem 3.3 can be
q
applied we must square (X + Y). Thus E(X + Y)" = s(x? + 2XY + Yz) .
) The application of Theorem 3.3 gives E(X + Y)° = E(X)Z + 2E(XY) + E(M)Z.

Illustratfon 3.6. We will now show that

E(X-X) (Y-¥) = E(XY) - X¥ where E(X) = X and E(Y) = ¥
Since (X~X)(Y-¥) = XY ~ XY ~ X¥ + XY we have

E(X-X) (Y-¥) = E(XY-Xy-xV+X¥)
and application of Theorem 3.3 gives

E(X-X) (Y-Y) = E(XY) - E(XY) - E(YX) + E(XYV)
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Since X and Y are constant, E(XY) = X E(Y) = i?, E(YX) = ?i, and E(ﬁ?) = XY.
Therefore, E(Xwi)(Y~?) = E(XY) - XY
Exercise 3.3. Suppose E(X) = 6 and E(Y) = 4. Find
(a) E(2X+4Y)  Answer: 28
(b) [E(20)1°  Answer: 144
(c) VYE(Y) Ansver: 2
(d) E(5Y-X) Answer: 14
Exercise 3.4. Prove the following, assumine E(X) = X and E(Y) = ¥:
(a) E(X~X) = 0
(b) E(aX-bY) + cE(Y) = aX + (c~b)Y
(¢) E[a(X-X) + b(Y-¥)] = 0

(d) E(x+a)2 - E(XZ) + 2a% + a%

(e) E(x-B)? = £x?) - %2
(£) E(aX+bY) = O for any values of a and b if E(X) = 0 and E(Y) = 0.
3.3 EXPECTED VALUE OF AN ESTIMATE
Theorem 3,3 will now be used to find the expected value of the mean
of a simple random sample of n elements selected without replacement from
a population of N elements. The term "simple random sample’ implies equal

probability of selection without replacement. The sample average is

+I..+
xl xn

5 - B
n

where X, is the value of X for the 1th element in the sample. Without

loss of generality, we can consider the subscript of x as corresponding
to the ith drawv; {.e., 3 is the value of X obtained on the first draw,
X, the value on the second, etc. As each X is a random variable, X

is a linear combination of random variables. Therefore, Theorem 3.3

applies and

)
RIC ’zs)
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E(x) = -é- [E(x)) +..0t E(xn)]

In the previous chapter, Section 2.6, we found that any piven element of

the population had a chance of %-of being selected on the ith drav.

This means that L is a random variable that has a probability equal to %

of being equal to any value of the population set xl,...,xN. Therefore,
E(xk) - E(xz) L E(xn) - X

X+ oo + X
n

Hence, E(x) = X. The fact that E(X)= X is one of the very

{mportant properties of an average from a simple random sample. Inciden-
tally, E(x) » X whether the sampling {s with or without replacement.
Definition 3.3. A parameter is a quantity computed from all values
in a population set. The';oCal of X, the average of X, the proportion of
elements for which xi<A. or any other quantity computed from measurements

including all elements of the population is a parameter. The numerical

value of a parameter is usually unknown but it exists by definition.

making an estimate from a sample. The formula for a sample average,

Ix
X = -;i , is a simple example of an estimator. It provides an estimate of

o IX,

the parameter X = TRl

Definition 3.5. An estimate is unbiased when its expected value

ety utiy - A——

equals the parameter that it is an estimate of. In the above example, x
is an unbiased estimate of X because L(x) = X.

Exercise 3.5. Assume a population of only four elements having values
of X as follows: X, = 2, X, = 5, X, -4, X, = 6. For simple random samples

of size 2 show that the estimator Nx provides an unbiased estimate of the

population total, in = 17. List all six possible samples of two and

¢3)
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calculate NX for each. This will pive the set of values that the random
variable Nx can be equal to. Consider the prrobabilitv of eacﬁ of the
possible values of NXx and shov arithmetically that E(Nx) = 17.

A samnle of elements from a ponulation is not alwavs selected bv
using equal prohabilities of selection, Samnling with unequal probability
is comple:ated when the sampline is without replacement, so we will limit
our dircussion to ;ampling with replacement.

Illustration 3.7. The set of four elements and the associated probe-
abilities used in ixercise 3.1 will serve as an eﬁamnle of unbiased
estimation when samples of tuvo elements arc selected with unequal prob-
ability and with replacement. Our estimator of the population total,

AR
: i=1 "1
2454446 = 17, will be x” = 5« The estimate x" i{s a random variable,
Listed below are the set of values that x° can equal and the probabilicy

of each value occurrine~,

Possible Samples ii. Iy
Xy Xy 6 47136
Xy %, 19.5 8/36
Xy X4 15 47136
X, X, 21 4/36
X, X, 15 4/ 16
Xy Xq 19.5 4/36
Xy X, 25,5 4/136
X4 X4 24 1/36
Ky X, 10 2/136
X, %, % /36

£51



75

Lxercise 3.6. Verify the above values of x; and P, and find the

3 1

expected value of x°, By definition L(x") = ZP’ ;. Your answer should

be 17 because x° is an unbiased estimate of the population tqtal.

Té put sampline with replacement and unequal probabilities in a
general setting, assume the population is xl,....xj,...,xN and the selec~
tion probabilities are Pl""'Pj"'°’PN' Let Xy be the value of X for

the ith element in a samnle of n elements and let Py be the probability

n x
o 1
I L L
which that element had of being selected. Then x” = — is an unbiased ’
N :
estimate of the population total. We will now show that E(x”) = I X1 . t
i=1
To facilitate comparison of x“ with u i{n Theorem 3.3, x° may be ‘%
written as follows: '
X X
e A e 2D
U1 n
| 4
It is now clear that a, = - and u, = ~~- . Therefore, {
1 n i pi |
1,01 *n
E(x”) = =[L(~) +...+ E(—)] (3.5)
n'op »
1 n
*1
The quantity 6" , which is the outcome of the first ran'om selection from
1
the population, is a random variable that might be equal to any one of the
X X { X X
set of values L seary . serey iﬁ + The probability that-«L equalswL is P .
P P P. P P .
1 i N 1 i
Therefore, by definition
x X N -
E(B-Ji) =% Pi(f,l) - 1%,
1 i i
%
Since the sampling is with replacement {t is clear that anv 6~ is the same
X i

random variable as ;l . .y
"1 o P
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Therefore Equation (3.5) bécones

1 N N
E x ' = ons :: x +0'.+ S x
i i
Sin:v t»re are n terms in the series it follows that

N
E(x?) = £ X, .

g

Exerc.se 3.7. As a corollary show that the expected value of % is

equal to the population mean.

By this time, yvyou should be getting familiar with the idea that an
estimate from a probabilii; sample {s a random variahle. Persons respon-
sible for the design and sele~tion of samples and for making estimates
from samples are concerned about the set of values, and associated
probabilities, that an estimate from a sample might be equal to.

Definition 3.6. The di~tribution of an estimate generated by prob-
ability saﬁplinn is the sampling distribution of the estimate.

The values ~f x{ and P

3 3

example of a sampling distribution. Statisticians are primarily inteyr-

in the numerical Illustration 3.7 are an

ested in three characteristics of a sarpling distribution: (1) the mean
(center) of the sampline distribution in relation to the value of the
parameter heing estirated, (2) a measure of the variation of possible
values of an estimate from the mean of the sampling distribution, and

(3) tihe shape of the s.mpling distribution. We havé been discussing the
first. When the expected value nf an estimate equals the parameter beinp
estimated, we know that the mean of the sampling distribution is ejual to
the parameter estimated, But, in practice, values of parameters are

pener .11y not known. To judge the accuracv of an estimste, we need

&3
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information on all three charact. ristics of the sampling distribution.
Let us turn now to the generally accented measure of variation of a random
variable.
3.4 VAKIANCE OF A RANDOM VARIABLE

Tue variance of a random variable, X, is the averare value of the squares
of the deviation of X from {ts mean; that {s, the average value of (X«i)z.
The square root of the variance is the standard deviation (error) of the
variable.

Definition 3.7. In terms of expected values, the variance of a random
variable, X is E(X-;()2 where E(X) = X. Since X is a random variable,
(x~i)2 is a random variable and by definition of expected value,

E(x-K)? = g P -0

In case P1 = % we have the more familiar formula for variance, namely,
K| _
E(X1~X)

E(X-K)° = 2 T Oi

2

Commonly used symbols for variance ‘include: 02, oi. V2, Sz, Var(X)

S(Xi—i)2
and V(X). Variance is often defined as - T This wil! be discussed

in Section 3.7,
J.4.1 VARIANCE OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES
Two random variables, X and Y, are independent if the joint probability,

Pij' of getting X, and Y, is equal to (Pi)(P ), where P_ {s the probability

i 3 A

of selecting Xi from the set of values of X and P

i

i is the probabilitv of

selecting Yj from the set of values of Y. The variance of the sum of two

independent random wvariables is the sum of the variance of eacn. That 1is,
-

£y 4
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, .
0L, = 0L+ 0
KC X

Illustration 3.8. In Illustration 3.3, X and Y vere independent. We
nad listed all possible values of X£+Y§ and the probabilitv of each. From

tnat listing we can readily compute the variance of X+Y. v definition

00 = BL(HY) - (R4F) 1%m 5T PP [(X.4Y )~ (R+T) ]2 (3.6)
X+Y i3 i3 i
Substituting in Equation (3.6) we have
2 2 e b e L1om5.5)2 o 8
0_\+Y = 24(” .)OJ) + 24([0 J.S) +c..+ 24(10 515) 12

The variances of X and Y arve computed as follows:

2 e m Zeon? p 2pe. 2L 2 o Legoiy? o2
g, = E(X-X)" = g(e*w) 6(5' ;T o+ 6(4"4) E( ~4)" = 3
2o pyeind o Lo e 2 2 L 219

2 35 .
e now ave 0 + 03 = % + }2 = I%—uhich verifies the above statement that
A + -~

the variance of the sum of two independent random variables is the sum of

the variances.,
. R - e .2 . 2 = = 2
Lxercise 3.8. Prove that E[(X+Y)~(X+Y)]™ = E(X+Y)" ~ (X+Y)". Then

calculate the varfance of X+Y in Illustration 3.7 by usine the formula

2 - -
”5+Y = 1(A+Y)" - (X+Y)2. The answer should apree with the result obtained

in Illustration 3,8,
Lxercise 3.9. Refer to Illustration 3.3 and the listing of possible

values of X + Y and the probabilitv of each. Instead of Xi+Y1 list the

products (Xi-i)(Y -?) and show that ﬁ(xi~§)(Yj-?) = (),

3
Exercise 3.10. Find E(X-X)(Y-Y) for the numerical example used in
Illustration 3.3 bv the formula E(XY) ~ XY which was derived in 1llustra-

tion 3.6,
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3.4.2 VARIANCE OF THE SUM OF TWO o.”ENDENT RANDOM VARIABLES
The variance of dependent random variables involves covariance which
{8 defined as follows:

Definition 3.8. The covariance of two random variables, X and Y, is

S o T v . .

E(X-i)(?~?) where E(X) = X and E(Y) = Y. By definition of expected value

. E(X-%) (Y-¥) = ii Py X R (4D

where the sumnation is over all possible values of X and Y.
Symbo:s commonly used for covariance are Oyy* SXY’ and Cov(X,Y).
Since (X+Y) -~ (X+Y) = (x-i) + (Y-Y) we can derive a formula for the

variance of X+Y as follows:
2 r - e 2
Ovey ™ E[{X+Y) - (X+Y)]
= E[(X~-X) + (Y—?)}Z

. E[(X-%)% + (Y-7)° + 2(x-%) (¥-T) ]
Then, accordine to Theorem 2,3,

2 =2 S S R
Oyy = ECERT # EQ-DT 4 206K (Y1)

and by d-finition we obtain,

2 - 02 + 02 + 20x

%ey T %x T %y Y

2
Sometimes 0wy {s used instead of oy to represent variance. Thus

2

X4Y = g.,, +C + 20.

J X YY AY

For two adependent random variables, PH - PiPi. Therefore

E(X-X) (Y-§) = £L P P (X ~X)(Y,-Y)
O A ¢ 3
1]
Wwrite cut in longhan', if necessary, and be satisfied that the following

is correct:
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L% Pin(X1~X)(Y3-Y) o ZPi(Xi-X)XPj\?j~{) = ) (3.7)
i} i 3
which proves that the cavariance O, is zero when X and Y are independent.
Notice that in Equation (3.7) zpi(xi-i) = E(X-X) and EPi(Yi—?) = E(Y-Y)
i j . .

which, for independent random variables, proves that E(X-X)(Y-Y) =
E(X-X) E(Y-¥). When wurking with independent random variables the following
important theorem i{s frequentlv very useful:

Theorem 3.4. The expected value of the praduct of independent random
variables Ups Mogeeny U is the product of their expected values:

E(uluz...uk) = E(ul)E(uz)...E(uk)
3.5 VARIANCE OF AN ESTIMATE
, The variance of an estimate from a probability sample depends upon

tﬁé method of sampling. Ve will derive ghe formula for the variance of §,
the mean of a random sanple selected with'equai ﬁfobability, with and
without replacement. Then, the variance of an estimate of the population
total will be derived for sampling with replacement and unequal probability
of selection.
3.5.1 EQUAL PROBABILITY OF SELECTION

The variance of §, the mean of a random sample of n elements selected

with equal probabilities and with replacement from a population of N, is:

o? | | Z(Xi~X)

Var(x) = ;5 s where 0., = S —m——eme

The proof follows:

By definition, var(x) = E[E—E(§)}2. We have shown that E(x) = X. Therefore,

Var(i) = E(E—g)z. By substitution and algebraic manipulation, we obtain
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- 1 o2
Var(x) = E{ ) - X}
(x,~X)+. . +(x_~X)
- E| 1 n ]2
n
1 N =2 = -
=5 E{ E(xi—X) + I I(xi-X)(xj~X)].
n i=]1 1#4
Applying Theorem 3.3 we now obtain
. - n =12 - -
Var(x) = ~5 { XE(xi-x) + I ZE(xi~X)(x -X) 1] (3.8)
n"  i=} i#3 ]

In series form, Equation (3.8) can be written as

Var(x)= 15 [s(xl-i)z + s<x2~§)2 +o..+ E(xl-i)(x2~i) + s<xl~i)(x3-i)+...1
n

Since the sampling is with replacement X, and xj are independent a.d

the expacted value of all of the product terms is zero. For example,
E(x1~i)(x2—i) s E(xl1§) E(xz-i) and we know that E(xl-i) and E(xz-i) are
zero. Next, consider E(xl~§)27 We have already shown that Xy is a
random variable that can be equal to any one of the population set of

values xl,....xN with equal probability. Therefore

o

: z(xj~i)2
* X 2 = ~ 2
E(xl X) 1_7T**". Oy
. The same argument applies to Xys Xqs etc., Therefore,
n =2 2 2 2 - °i
px E(xi*X) - Oy +...+ 05 = no, and Equation (3.8) reduces to Var(x) = — .
{=1 X X n

The mathematics for finding the variance of x when the sampling is
without replacemen! is the same as sampling with replacement down to and
including Equation (3.8). The expected value of a pr.duct term in Equation

(3.8) is not zero because x, and x, are not independent. For example, on

i 3

£y
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the first draw an element has a nrobabilitv of % of beins sclected, but

on the second draw the nrobabilitv is conditioned by the fact that the

1

element selected on the first draw was not replaced. Consider the first
product term in Equation (3.8). To find E(xl~§)(x2~§) ve need to consider
the set of values that (xl-ﬁ)(xq-ﬁ) could be equal to. Reference to the

‘

follovine matrix is helpful:

F %y 2 Y Y v T
(hl~h) (X1~X)(X2—X) aee (X1~X)(XN~R)
(Xz-x)(XI-X) (X2~X)“ e (XZ-X)(XN~X)

v = = . Tare T o Tl
(AN—X)(X1~A) (XN~X)(AE~X) .o (£N~X)

The random wvariable (xl~§)(x?~§) has an equal probabilitv of being any of
the products in the above matrix, excent for the squared terms on the main
diaponal.,  There are N(i-1) such products. Therefore,
n N _ _
L8 (X, -X)(X,-X)
- - i#3 1 i
L(x1~X)(x2—X) = Wl

Accdording to Equation (1.9) in Chapter 1,

DI _ _ N o,
SN, -0 (X,-X) = - T (N,-X)T
R § ) i
i#] i
Hence,
2(xi~x)2 2
x_

—~———

Oy =X) (%) =X) T(N-1) -

The same evaluction applies to all other product terms in Equation (3.8).

There are n{(n-1) product terms in Equation (3.8) and the expected value of

P OS]

each is =~ Thus, bguation (3.8) becomes

|

-
i
Pt

’ ‘ | (""l: ’
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2
n o

Var(x) ='15 [ E(xi~§)2 - n(n-1) §§Ii
. n i

"

Recognizing that E(xi-—?{)2 = 0

X and after some easv algebraic operations

the answer as follows is obtained:

2

- N-n X
Var(x) = <1 on

Q

(309)

The factor §§% is called the correction for finite population because it

does not aprear when infinite populations are involved or when samnling

with replacement which is equivalent to sampling from an infinite population.
For two characteristics, X and ¥, of elements in the same simnle random

sample, the covariance of x and v is given by a formula analorous to

Equation (3.4):{ namely,

a

Cov(X,¥) = %}% ~§i (3.10)

3.5.2 UNEOUAL PROBABILITY OF SFELECTION

it

i

I o B ]

In Section 3.3 we proved that x™ = is an unbiased estimate
of the population total. This was for samnlinp with replacement and
unequal probahility of selectinn. ‘e will now proceed to find the vari-
ance of x° .
" N
By definition Var(x") = E[{x"- E(x)]” . let X =270 Xi .  Then since

i
E(x“) = X, it follows that
X X f
;l 4o b B . .
Var(x") = E[— ANUREVS A ST A S S . G T
n 2 n p
n 1 n
X b X
e R e ST R
n Yy 1#k 1 "k
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Applving Theorem 3.3, Var(x’) becomes

) 1 P 2 X5 .
Var(x”’) = =3 [TE(— = X)" + T SE(—~ -~ X)(— -~ X)] (3.11)
' n Py 1y "y Py

Notice the similarity of Eauations (3.8) and (3.11) and that the steps
leading to these two equations tere the same. Again, since the sampling
fs with replacemc it, the expected value of all product terms in Equation

(3.11) is zero. Therefore Eauation (3.1]) becores

n _ x
Var(x‘) = -1—2- [ E(- - x)z}
n i pi
X N X
By definition E(— - X)° = & P (<t ~ X)°
P i'p
i i i
W) X
TPt~ )2
g 1Py
Therefore Var(x”) = o (3.12)

Exercise 3.11. (a) Refer to Exercise 3.1 and compute the variance
of x° for samples of two (that is, n = 2) using Equation (3.12). (b) Then
tut to Illustration 3.7 and compute the variance of x”° from the actual
values of x”°. Don't overlook :1e fact that the values of x” have unequal
prob-51ilities. According to Definition 3.7, the variance nf x° is

10

LP - X)2 where X = E(x”), xj is one of the 10 nossible values of x~7,
R
andd P? is the probability of x3 '

3.6 VARTIANCE OF A LINEAR COMBINATION

Before presenting a general thecrem on the variance of a linear
combination of random variables, a few key variance and covariance rela-
tionships will be given. In the following equationg X and Y are random

variables and a, b, ¢, and d are constants:

Q é .

.‘ nF oa
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Var(X+a) = Var(X)

Var(aX) = aZVar(x)

Var(aX+b) = aZVar(X)

Cov(i+a,Y+b) = Cov(X,Y)

C.v(aX,byY) = abCov(X,Y)

Cov(aX+b,cY+d) = acCov(X,Y)

Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)

var(X+Y+a) = Var(X+Y)

Var (aX+bY) = aZVar(X) + bZVar(Y) + 2abCov(X,Y)
Illustration 3.9. The above relationships are easily verified by

using the theory of expected values. For example,

Var(aX+b) s[ax+b~E(ax+b)12

E [aX+b~E (aX)~E(b) ]2

£[aX-ak(X) ]2

- 4
Ela(X-X)]"

aZE(X--'i)2 = 82Var(X)

Exercise 3.12. As in Illustration 3.9 use the theory of expected

values to prove that
Cov(aX+b,cY+d) = acCov(X,Y)
. L[4 = +l“+ [ 2 ]
As in Theorem 3.3, let u au, akuk where al, ’Bk are constants

and ul""’uk are random variables. By definition the variance of u is
\ _
Var(u) = E{u~E(u)]”
By substitution

2
Var(u) = E[alul+...+akuk—E(alul+...+akuk)]

= E{al(u1-§1)+...+;k(uk~ak)]2 where E(u) = b,

$ 0t
Al re



By squaring the quantitv in [ ] and considering the exnected values of
the terms in the series, the followine result is obtained.

Theorem 3.5. The variance of u, a linear combination of random

variables, is given by the following equation

k 2
Var{u) = o a o + 07 a,a,0,

i TTRERIE

[l g%

r

where of is the variance of u, and Gii i{s the covariance of u, and ui.
Theorems 3.3 and 3.5 are very useful because many estimates {rom

probability samples are linear combinations of random variables.
Illustration 3.10. Suppose for a srs (simple random sample) that

data have been obtained for two characteristics X and Y, the sample

values befnp x oo aX and VireeeaY Wwhat is the variance of x-v?

1
From the theorv and results that have been presented one can proceed

immediatel: to write tae answer., From Theorem 3.5 we know that Var(§-§) =
Var(x) + var(§) -2Cov(§,5). Frors the sampline specifications we know the

variances of x and v and the cova fance. See Lauations (3.9) and (3.10)

Thus, the following result is eas{lv obtained:

Var(x-v) = (%E%)(%)(ai + oy - 20,) | (3.13)

Some readers night be curious about the relationship between covar-

fance and correlation. By definition the correlation between X and Y is

Cov(X,Y) T3y
"xy ” R
‘ YVar(X)Var(y) Y

Therefore, one could substitute r.., o.9., for o,, in Equation (3.13).
AY Xy XY
Exercise 3.13. 1In a statistical publication supposc vou find R7

bushels per acre as the vield of corn in State A and 83 i{s the estimated

yield for State . The estimated standard errors arc piven as 1.5 and
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2.0 bushels. You becorme Interested in the standard error of the differ-
once in vield betveen the two States and want to know hov larese the
estimated Jdifference is in relation to ies standard error., Find the
standard error of the difference. You mav assume that the two vield
estimates ire independent because the s.amnle selection {n one State was
completelv independent of the other. Answer: 2.3

Tliustration 3,110 o Joubt students who are familiar with sampline
have already recopnized the annlication of Theorems 3.3 and 3.5 to several
sanpline nlans and methods of estimation. For examnle, for stratificed

randot: sarpline, an estimator of the nopulation total is

-~ -~

T m ol bl NUK, o= oTNLR
171 TRl i
. - , . . . th
wile re vy {4 the ponulation nurber nf samplin~ units in the i stratun

and X, (s tae averare ror sarmling unit of characteristic, i from a samnle

. , . . th
of ni Gt line units from the d stratur.  Accordins te Theorem 3.1

(n) = !."':},xi = :i:.'i'r',(xl.)

-
.

1€ the sampline is such that E(§i) = X for all strata, x~ is an unbiased

estirmite of the populaticen tatal. Accordin~ to Theorer 1.5

3

- y -
Var(s") = \; Var(w.) +...% 7 Vnr(xk) (3.14)

i k

There are no covariance terrms in Laquation (3.14) because the sample selection

{n ope stratum is inderendent of another stratum, Assumine a srs from cach

stratur, ..auition (3.14) hoevones

" ,
voen, Noengoay
. e 1 1 2 k 'k [N
\"lr(x ) = ‘1( - -1-') - +Oo -+ ‘:;\ (.,;.......,....,) ,;-"
' 11 . -
! ! 1% j
2 ) . . , o . .th
vhere Ji iw the variancee of K ameae sarpline anits witain tne | stratum,
oL
F o}
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tion 3.12. Suppose xi,...,xﬂ are independent estimates of
the same quantity,T. That is,E(x{) = T. Let of be the variance of xi.
Consider a weiphted average of the estimates, namely

X° = WXy +o0ot Wy Xy (3.15)

where Xwi = 1. Then

E(x") = wls(ki) +.0.t Yk E(xg) - T (3.16)

That i{s, for any set of weights where ;wi = ] the expected value of x* is
T. liow should the weights be chosen?

The variance of x° is

. 22 2 2
Var(x ") vi%) +.. .+ w, o
If we weight the estimates equally,w1 -'% and the variance of x”° is
Lo
‘x’) m N e
Var{x”) ol Sn ] (3.17)

which is the average variance divided by k. However, it is reasonable to
glve more weinht to estimates havinpg low varjance. Using differential
calculus we can find the weights which will minimize the variance of x”.

The optimum weights are inverselv nreportional to the varjances of the

I~

estimates. That {s, Wy«

Q
[aalli S}

As an example, suppose one has two independent unbiased estimates of
the same quantity which oripinate from cwo different samples. The optimum

welightinp of the two estimates would be

1 .1 .
7% + Z%
1 2
T
7+ 2
% 2

50
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As another example, supnose xi,...,xﬁ are the values of X in a sample
of k sampling units selected with equal probability and with replacement.
In this case each xi is an unbiased estimate of X. If we let w, = % . X°
is §. the simple average of the sample values. Notice, as one would exvect,
Equation (3.16) reduces to E(x) = X. Also, since each estimate, x£ , is the

same random variable that could be equal to any value in the set Xl....XV.

2 2 18, -B’
. it 18 clear that all of the ci's must be equal to 0 =~ . llence,
c2
Equation (3.17) reduces to = which aprees with the first part of Section
3.5.1,
‘ Xi
Exercise J.14. It vou equate x{ in Equation (3.15) with o in
i
Section 3.5.2 and let wo s % and k = n, then x° in Equation (3.15) is the
x
L;i:-
) same as x = M;i in Section 3.5.2. Show that in this case Equation (3.17)

becomes the same as Eauction (3.12).
3,7 ESTIMATION OF VABIANCE

All of the variance formulas presented in previous sections have
involved calculations from a population set of values. In practice, ve
have data for only a sample. hence, we must consider means of estimating
variances from sample daia.
3.7.1 SIMPLL RANDOM SAMPLING

In Section 3.5.1, we found that the variance of the mean of a srs is

02
Var(x) = 3= ;5 (3.18)
N,
X(Xi—X)

where 02 = i BEST mPY AVA".ABLE

X N
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: x(xinﬁ)z .
» | .
As an estimator of ,; , é-1;-—- seems like a natural first choice for

consideration. However, when sampliny finite popnlaiidns. it is customary

to define variance amony units of tﬁp porulation as follows:
. l\ ’
N
£(¢,-%)2
' 2 1
s - "=

n -2 o
x(xi-x) - AN
2 1

' and to uie 8" = S——r—— as an eé?imator of Sz .\\R\tggson for this
.F . c

will become apparent when we find the expected value of s? as follows:

The formula for s2 can be written in a form that is more convenient

s, fOT finding E(sz). ’Iﬁus,
: n

. =2
| 2 i(xi %) in - ox?
~ s N e 88 | V...
' n-1 . n~-1 .
' 2 1 D2 -2
and E(s“) -~ [Bﬁ(xi) A‘ns(x )]
. T i

\

We have shoun previously that x ifs a random variable that has an equal
probability of being any value in'the set XI,...,XN. Therefore.

N, .
. fxt . nzxf[
B(xil - ~§~  and iE(xi) =5
2 | - .o
£x% - -
- Hence, - ) = B 2 - e (3.19)

We know, by definition, that cé'- E(x - %2 and it is easy to show that

EG-R)% = E(xD) - X2

Therefore, E(iz) - oé + % .

: , ltmﬂ'ﬁ"ﬁ!Wﬁluu‘un‘E
e . | 97 : o

r

14

i

Li:ij-”
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By substitution in Equatfon (3,19) we obtain

2 o
X
2 n i =2 2
E(S ) = n_l (-i.‘ - X - O;l .

x(xi-ii),z | zxi 5 K .

By definition oy = N R X“ and since the specified method of
o ““‘.—‘ . 02 az

sampling wes srs, o3 = :{-’% 2. ve have E(s?) = - [of - 3 ~

wnich after simplification is

S 2 .-E-;- 2
E(s™) = 51 %
. Note f£<o» the above definitions of oi and Sz that
2 N 2 ' :
$° = 5T % :
Therefore E(s ) - 82

N-1

- Since s2 is an unbiased estimate of Sz. wve 9111 n&w substitute 5 S2 for

ci in Equation (3.18) which gives
| - N-n S2
Var(x) = N ‘3.20)

‘e

Both Equations, (3.18) and (3.20), for the Var(x) give identical results

and both agree with E(x~X) as a definition of variance. We have shown
that 32 is an unbiased estimate of Sz. Substituting s2 for S2 in Equacion
(3.20) we have

- N~n 32
var(x) = - ;'-‘ : ' (3.21)

as an estimate of the variance of x. With regard/to Equation (3.18),

is an unbiased estimate of Oy » When N 8 is substituted for

N
oi , Equation (3.21) is obtained. -

Since in Equation (3.20), gﬁg-is exactly 1 minus the sanpling fraction
and's2 is an unbiased estimate of 52, there is some advantage to using

I35
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= 2
£(X,~X)

2 - = as a definition of variance among

Equation (3.20) and S

sampling units in the population.
Exercise 3.15. "For a small.oopqlation of 4 elements suppose the

values of X are X, = 2, xz =5, x3 = 3. and x& = 6, Consider simnle

1
random samples of size 2. There are six nossible samples.
2

(a) Fbr each of the six samnies calculate x and s“. That is,
find the samnling distribution of x and the samnling

| discribution of sz. | t

'_.(b) Calculate SZ, then find Var(x) usine Equation (3.29).

(¢) Calculate the variance among the six values of x and compare
the result with Var(x) ohtained in (b) The results‘shnuld
be the same. |

(Q) From the samplinr-distribétion‘of sz_éalculate E(az) and

verify that B(s ) - 92
3.7. 2 UNEQUAL PROBABILITY OF SELECTION

In Section 3.5.2, we derived a formula for the variance of the

estimator x° where

o .
I ”
(Ve

-

X »

:, e
o

(3,22)

The sampling was with unequal selection probabilities and with replacement.

We found that the-varifance of x° was given bv

N X i //’
| rP(-~x> B
Var(x”) = & : (3.23)

As a formula\for estimating Var(x”) from a sample one might be inclined,

as a first puesa, to try a formula of the same form as Eauation (3.23) but

49

e

[ 3



F
:

I ) . - . . e -
. . . .. : .
. .
P ) . . ) .
’ . .
‘
v . ° N

‘that does not work. Equation (3.23) s a’&éigheed avarage of the squares

. ]

X

'of deviations («- - x) which reflecto the unequal selection probahilittes.

i
If one applicd the same weightinn systen in g formula for ‘&stimting

vartance from a sample he would in effect be applying cae weights twice,‘

fitst. in the selection process {tself and secbnd, to :he sample data.,

< The unequal probability of selection is alveady inco:poraced tnto the

sanple itself. Co e oot
As in some of the previous diécu;;iog, look at the e@timstoiFAs.iolloqge_‘
x . .- * " . .
B—l""'“'*'i""f_ %y ook 17 ox -
x* = - = 8. - n w.here xi - ;‘:— .
' } ¢ ' . ) .‘.

Each x; is an independent unbiased es\timaée of ‘the population ;otai. _.S;lx'i,ce

-

each value of xi receives an equal weight in _d-etemining x* it appears that . .

the following formula for estimating Var(x”) might work:.

-

2 L ’ .
var(x’) = %— o (3.24)
' n
. Z(x{-—x‘)z ' o,
where gz -
n-1
By following an approach similar to that used in Section 3.7.1, one can- . |
prove that ' , : T
' N X .
EGe?) = £ P G5 - x) 2
i i .

| ' .
That is, Equation (3.24) does provide an unbiased estimate of Var(x”) in

Equation (3.23). The proof is left as an exercise.

Exercise 3.16. Reference is made to Exercise 3.1, Illustration 3.7,

and Exercise 3.11. In Illustration 3.7 the sampling distribution of x*

190
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:/1(See Eguafton f3‘22))';s given for samnles of 2 from.the ponulation of

P élehunts that was giéen in Exercise 3;1.

TR ¢ : 2 '
J S (a) Compuce var(x ) --«* (Lnuacion (3.24)) for epch of the 10

possible samples. .
(b) Conoute the expected value of vnr(x ) and compare it with the
result ohtained in nxereise 3 1l1. The results should_be the
fsamet; Renenber, when findipa the expected value of var(x”),
chét_the.x"s do not occur vith equal frequency.
3.8 RATIO OF r.wo_w;mu VARIABLES
Ih'aamplin& theéky and practice one freguencly encounters estimates
_that are ratios of random variables. It was pointed out earlier that -
h(&) ¢ %%ﬁ%» vhere uknnd.§ are random.nnfiﬁglés; Formulas for the expected
vénlug of a rat;o-and for the variance of a ratio will now be nresented

witiiout derivation. The formulas are apnroximations:

’ . (% % + -g- [:.2. - ...‘..n_..:..-_‘.‘...._..] (3.25)
~ | Y e e ow w ' .
2 2 .
: - 0 ¢ 20 _© 0o
Var(l) & (‘.‘.]2[_‘.‘. - . ._.‘.‘.‘.".....‘}....‘!] . (3.26)
w -" f=2 -2 -
) v u W
B vwhere u = E(u)
W E(w) - :
» . 2
. aﬁ - h(u-:d)
02 = Ew-m?
c.w ' ey -
and ‘ P ™ 5:5; where ouw ] h(u-g)(w—w)

.’For a discﬁgsion of the conditfions under which Equations (3.25) and

f3 26) are good approximations, reference is made to Hansen, Rurwi:z, and

101
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Hnduw. 2/ The-condi:ions are usually satisfied with regard tqgesttmacei

£ rom sample_surveys. As a rule of thumb the variance formula ts usually

.

Ay

accepted as satisfactory if the coefficient of variation of the variable
‘ . . o

iﬁ the denominator is less that 0.1; that is, if :2'< 0.1. In other words,
L")

this condition.stéces_chat the coefficien:.of variation of the estiﬁa:e in
the denominator sh;uld be less tﬁan 10 nercegt: A larper coefficieni of
variation migh . be tolerable before becoming concerqu about Equation (3.26)
as an épproximation. . | |

o -
The condition :3-< 0.1 is more strineent than necessary for reparding

b3 ) W

the bias 6f a ratio as nepligible. With few'Exgeptiong in practice-the
bias of a ratio is ignored. Some of the losic for this will appear in

the 111ustration below. To summarize. the conditions when Equa:ions (3.25)

--“and (3.26) are not pood approximatinns ave such that the ratio is likely to '

be of questionable value owing to large variance.

If u and v are linear combinations of random variables, the theory

eemne

presented in previous.secpiens applieh to u and to w. Assuming u and w

- are estimates from a sampie, to estimate Vard%) take.into account the

sample design and substitute in Equatfon (3.26) estimates of u, ¥, oi. o:,

and 0 e’ Ignore Equation (3.25) unless there is reason to believe the bias
: g .

of the ratio éight be important relative to its standard error.
It is of intzrest to note the similarity between Vér(u-w)_and'Vax(so.

According to Theorem 3.5,

- al 2
var{u-w) L + o,

-2 00" . -
uw. u w .

- - -- - -n oo

ZI Mansen, Hurwitz, and Madaw, Sample Surv;‘ Mhthods and Theory,
Volume I, Chapter 4, John Wiley and Sons, 1953.

192
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By definition the relative variance of an estimate {s the variance of the

3

the relative variance of a ratio, Equaticnr (3.26) can be written. .

02 o*

GO
u u w ., uw .
Rel Va::(w) -~ _2’+ =" 2°uw — | | ,
u w o uw :

The similaritv is an aid to remenbering ‘the formula for Var(%);
Illustration 3.13. Suppose one has a simple randém sample of n

elements from a ponulation of N. ‘Let X and ¥ be the sample means for

' e'si:imate divided by the sauare of its expected ;mlue. "ﬂt_gm, in terms of

characteristics X and Y. Then, ums x, w = y, i
‘ 2 . 2
S S
az - ______N-n ..-..x.. and (’2 - E:.‘.‘. ....Y..
u N n w N n
a, :
Qlo:ice-tha: the condition discussed above, — < 0.1, is satisfied {f the
w b
sarnple is large'enough so
2
S
’ Ty <0’
nY

[

Substituting in Equation (3.26) we obtain the ‘fou_owing as the variance of

the ratio:

2 2
o - w2 S S 20.,05,8
ver® - G G fe - LY
'y Y- X Y Xy

The bias of ;’5- as an estimate of-_—’f— is given by the second term of

Yy .
Equation (3.25). For this fllustration it becomes:

2
- ) 1 X {..s.‘.'. - Pxy GXOY]
N "'n 7 ?2 T

As the size of the sample increases, the bias decreases aé i’-whereas the

standard error of the ratio decreases at a slower rate, n_amely g .

o~
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‘Thus, we need not be concerned about a pbasibility of the hias becoming

' _impd;tant relative to sampling error as the size of the sample {ncreases.

A nogsible exceptd 2 occurs when several ratios are combined. An example
is stratified ¢ . sampling when® many strata are {nvolved and separate
ratio atinétes are made for the strata. Thts is discussed in the books

on sahpling. A

CONDITIONAL EXPECTAIION

The theory for eonditﬁonai exveccation and conditional variance of a

randon variable ts a very important part of sanpling theory. especially

in the theory for mnltiscage sampling. The theory will be discussed with

) reference to cwo~ecage sampling.

The notation that will be used i{n this and the next section is as

~ioile&s:

M {s the number of psu’'s (primary sampling units) in the population.

m 1s the number of psu's in the saumple. /
_Nigia the total number of elements in the 1th'psn.
, Moo
- N -.zxi {s the total number of elementa in the population.
’:
0, is the sample number of elements from the 1th psu.
. o | ’ -~
- n-- Eni {s the total number of elements in the sample.
i
a.n
‘M 'y
. th th X
-xij {s the value of X for the §  element in the £ osu. It .

refers to an element in the population, that is, §= lyeey Ni'

m.d"l..lO' M. %

101
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%3 . xij {3 the value of X for the jth clement in the sample from the
; . ich psu {n the sample, that is, the indexes { and j }efer to.
= & ' ~ _ ) -
| the set of psu's and elements in the sample.
N, " ¢h
X, - z‘xij is the population total for the 1~ psu. A
3 ) .
T ~ , (P" |
' xi. % -~ 18 the average of X for all elements in the i psu.
- g
MN, M. ke
reix. X #
_ g 1 gt
X.. = = = <y is the averape of all N elements.
M- -
X

i. ] .
X. -i£ﬁ~ is the average of the psu totals. Be sure to note the

difference hetween X_, and X, .

n
xi.'- Iixij is. the sample. total for the £th psu in the sample.
j . . .
L] xi [ '
o \ xi. -~ is the averape for the "1 elements i{n the samnle from
: i
- the 1 pgu.
hiwie §
X xtj
" 51;~f- is the average for all elements in the sample.

Agssume simple random sampling, equal probab{lity of sqlegtion witﬁout

replacement, at both stages. Consider the sample of ni elemencs from the

.* ith ﬁau. We know from Section 3.3 that §i- is an unbiased estimate of the
| psu mean ii-.; that is, E(ii.) - ii. and for a fixed { (a speéifigd psu)

ENixi. - Nig(xi-) o "1*1. " xi.i. But, owing to the first stage of sampling,

145




EN**t must be treated as a random variable. Hence, it is necessary to

become involved with the expected value of an expected "value.
.First.'consider X as a random variable, in the context of sinnle~
gtage sampling, which could equal any one of the values xi1 {n the

M
population set of N = IN, . Let P(ij) be the probability of selecting

g
the jr'h element in the iCh psys that is, P(tj) {8 the nrobability of X
Betna cqual to xij. By definition
MNi
E(X) = L% P(ij)xi
{4 i
Now consider the selection of an element as a two-step procedure?
(1) selected a psu with probability P(i), and (2) selected an element
within the selected psu with probabilitv P(l*t). In words, P(i}1) is the
probabilicy of selecting the j[h element in the Ith psu given that the
ith psu has already been selected. Thus, P(i)) = P(1)P(3}1). By sub~

stitution, Equation (3.27) becomes

HNi '
E(X) = SErP(YPQl 0K

{ 14

}

M :1 .
or E(X) = IP(i) £ P(jmxi

i j j

’ N l ' .
By definition, = Pf”i)xtj is the expected value of X for a fixed value
h] : ’
of 1. It is called"conditional expecﬁation." ' .
Ny
Let E.(X]1) = P(jli)xij vhere szcxii) is the form of notation we
e j ‘; .

will be using to designate conditional expectation. . To repeat, Ez(xii)

means the expected value of X for a fixed 1. The subscript 2 indicates

106
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that the conditional expectdtion annlies to the second stage of sampling.

R
-

'Bl and.Bz vill refer to expectation at the first and second stages.
'rnanectively. e . |
Su$st1tut1ng EZ(X{t) in Equation (3.28) we obc#iu
. S - ' -
E(X) = i?(n sz(xm | (3.29) |

There i{s one value of az<x(1} for each of the M psu's. In fact Bz(xlift
is a random variable wﬁéte.ehe probabiltt& of Ez(x!i) is P(L). Thus the
right-hand side of Equatton.(?.29) 1s,Iby definition, the expected value .
of E,(X[1). This leads to the following tbeor;m:

Theorem 3.6. E(X) = E,E,(X]1)

- - —

Suppose P(j]i) = %n and P(1) = %r.v Then,
[ i J . \
. N
. i1 .. g
E,(x|1) = & %y = 3,
b i
| ‘ I S IX,,
and E(X) = El(xi.) - i(ﬁ)(xi.) -

In this case E(g) ig‘an unﬁeigh:gd average of the psu averapes. It is
important to‘nose that, {f P(4) and P(4]1) are chosen in such a way that
P(11) is constant, every element has ;he same chance of selectfoa. This
po{pc w{ll be discussed later. |

Theorem 3.3 dealt witi the exmected value of a linear combination of

randoh variables. There i3 a corresponding theorem for condifional expecta~
| tiog. Assune thevlineat combination is
' k

S au -

u-au*olt* L -~
11 "% gwp C F

:i“ » 107 lV
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= | /
%m_ vhetre 8540008, are constants and u 100 oY are rnndom variables. Let

%- '. E(U[c ) be the expected value of U under a saecified condieion,ci. vhere

——, -

} N is one of the conditions out of a set of M conditions that could occur.

-

4
I

t
! N,

| k
or s(u[ci) -_SatE(ut]ci)

Cohpnre Theorens 3.7 and 3.3 and note that Theorem 3.7 is like

-Theomeﬁ 3.3 ekcept that condicional expee:a:ton is applied. Assume c¢ is

a random event and chat the probabilicy of the event c, occurring is P(4).

Then E(U!ci) {s a random variable and by definition the expected value of

Mo |
E(U|c,) 1s IP(1)E(U]c,) vhich 45 E(U). Thus, we have the following

.
4 »

theorem:
- . Theorem 3.8. The expected value of U is the expected value of the

conditional expected vgiue of U, which in gvmbols is written as foliows:'

. E(U) = EE(U|c,) | (3.30)

Substituting the value of E(Ulci) from Theorem 3.7 tQ‘Equacion (3.30)

\)

ve have : \

. k
E(U) = E[als(ullc1)+...+akE(ukIci)] - E[Zatﬁ(utlci)} (3.31)

¢

~ xlluatration 3.14. Assume two-stapge sampling with simple random

sampling at both stapes. Let x“, defined as follows, be the estimator of
! .

the population total:

m N n T
O R ' | (3.32)
moyon I i} .

108

The theorem on conditional expectatisn can then be sﬁa:ed symbolically as -

ol

g _foilowa: | '
i Theotem 3.7. E(ulct) = als(ultci) +ooot akE(uk!ci) . L"<’fﬂnﬂf'

f'/
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expected value is the nsu meen, ii- . rha: is,
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 Exercise 3.17. Examine the estimator,x”, Equation(3.32). Express

it in other forms that might help show ita logical s:ruetnref For example,

N

fn o . )
for a fixed 1 yhat is ;L :1 ij ? Does it seem like a reasonable way-of
1} o

. 'esftmgting the populhgion total?

To display Xx° as a itnear combination of random variables it is _

conventen:.:n.eﬁpress it 1n the followinﬁ form: . p;h?{'
/CT' r_“n— .y /r';:;~
. 3 ] N .,Aa\_‘ ,_.ﬁ.d.‘ N .
- oM 1 M1 < oM Tm Mm
X = I"""""’ "’ooo+""'$“ "’)‘*o:{f [“'""""x g 'h-d"‘“""x % (3033)
- mny %11 mnl*lnr | %mnm ml ma _m -
Y
Suppose we want to find the expected value of x° to deteémiue whe;ﬁet it
" is equal to :he population total. Accordinp to Theorem 3. 8. "7& :
| E(x°) = EE, (x°} 1) o | (3.38)
| | m® N0y |
CE(x") = Exgz{‘ﬁ’i ;r-x RiL | . (3.35)
13 | _ . .
Equations (3.34) and (3. 35) are obtained stmplv by substi:uctng x° .as
the random variable in (3 30) The cifnaw refers’ :o any one of the m
pdu's in the sample. First we must solve the conditional expectation, .
. N . ' \
'gé?x‘[i)a Since g'and ;i'ére constant with respect to the conditional
2 { .
expectation, and making use of Theorenf3.7.'wé can write
mN, n
Ey(x[1) =2 2 Lol 00 . (3.36)
m 1%y g 13

————

3 We know for any given,psu-Ihathe sanple; that kij is an element in a

simple random sample from the psu und'apcording'to Section 3.3 its

i "~

: az(x“!u - X, T

109 \
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) _ n-;_\\ - | | -
| 3 By(xgylt) = ny X, | o ('3'\’\”
Substituting the result from Equation (3.37) in Equation (3.36) gives
0 ,

N - . M L. ' - -
E,(x 1) = = si MK, | - | (3.38) &
Next we need to find the expected value of Ez(x‘li).' In léquat'j.on / B}
(3.:}8), Ni is _é random variseble.-'as well as ib, associgﬁed with the first;
. ) acage ?f smﬁbung. ' Accordingly. we will take X '. " Niiio as the random
. variab&e which gives: 1n lieu of Equation (3.38). h e
3 ' ‘ ’ - !,‘{_ - .
- , . E,(x°[1) = 2 EX .,
. : o { . J \
it ; Therefore, . ' ' ok
] | | E(x )'-E[-}:xil | : A
1 *
‘From Theorem 3.3 . _
R L,y ™ ' |
E, = ; X,.] ’;31("1-’
Since :
.
2 . m "fxio ‘
. :ial(xi,) = a{5—]
y D . M ' |
' E f=IX, ] = ZX, - -

a

M . .
‘rherefore, E(x’) = X,. ™= ?(.. This shows that x“ is an unbiased
i

/estim:or of the populacio[‘ total.
3,10 CONDITIONAL VARIANCE

- o~ - CO_nditional variance refet':s'to the veriahce of a jmrisble under a
specified céndition or limitation. It is related to conditipnal _prob-

.+ ability and to conditional expectation.

. ' 420 .
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‘l‘o find che varianee of x° (S'ee Equation (3.32) .ot (3.33)) the following

important chequm will be used:

Theorem _ 3.9. The variance of.x‘ is gfven by

-—

V(x) = Y E,(x°[1) + £ z(x‘tii

~

where Vi is the varighhe for the first stage of sampling and V2 is the

"conditional" variance for the seccnd stare.

We have discussed E,(x ‘1) and noted there 1s one value of E,(x fi)

for each psu in :he'population. Hence Vlﬁz(x (i) -i8 simply ahe variance

.of the M values of E (x fi).

In Theorem_}.9 the conditional variance, Vz(x‘li), bv defin;tion 13_
Vo (x“{1) - 52{[xf-hz(x‘t1)]3 {1}
To understand-vz(x‘[i) think dflx‘_as a linear combination of random
variables (see Eqﬁation (3.33)). Consider the variance of x” when i1is
heid constant. All terms (random variables) in the linear qpmbination
are now constanht except thoée oripinating from samplfhg within ﬁhe‘ith
psé. Therefore, Vz(x‘fi) is gssoéiéted with variat;oﬁ anony, elements in
th

the 1~ psu. V (x‘[i) is a random vériable with M values in the set, one

for each psu. Therefore, E,V,(x ]1) by definition 1s

M

Vz(x'!i) - EP(!)VZ(x‘fi)

That.ls,/flvz(x‘fi) is an average of M values of Vz(xflt) wginhted'by

~robability chaﬁ the 1th

P(1), the psu.had of being in the sample.
Three illustrations of the aﬁpltcation of Theovrem 3.§jw111 be given.
In each case there will be five steps in findina the varfanée of x°:
_ Step 1, £ind B,(x"|1)
Step 2, find Vlsz(x‘fi)

113
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. we know what “the angwer'is from previous discussion and a linear combina-~

105

Step 3, find Vz(g‘Ii) - ’ -

Step 4, find El\’z(x‘[i) ) )

. § P e E
‘Step 5, combine resglts from Steps 2 and 4.

Illustracion 3. 15. Th;s is a simple illustration, selected because

it

tion of tandom variables is not tavolved. Supgose x* in Theorem 3.9 is

v

simply the' [andom variable X where X has an equal probability of being
- - | M

14 values in the set of N = 2N, . We know that the

any one of the X N
' i

variance of X can be expressed as follows: : : :

. —rt @' .
V(x“) = ot (X ) ' (3.39) " .~
. N 14 ij ; 3

ap
»

In the case of two-~stage sampling an equivalent method of selecting a
value of X is ﬁo select a psu first and then select an element within tﬁe

pu, the-condition betng that PCLY) = P‘i)P(jH) =% . This condition fs

- T
aactaﬁied by lecting P(i) - ki and P(jli) -'£~ . We now want to find

- A
L
-

.

V(X) by using Theorem 8.9 and check the result with Equntion $§,39).
Step 1. From the randoﬁ selec:tén specifications we know that

Ez(x‘fi) - Ri . Therefore, : -
Step 2. v Ez(x‘li) sy (x ) / R

N .
w§ knw that x is a random variable that haa a probabuiyy ofg«-— of being .

equal to the i h value in the set xl..... XH Therefor \*by definition

l

of the variance of ‘a random variable. o o .'/
MoN, / -
ViE(x[1) = & o= (X, -X,))

ZIFZ
el
]

LR J

>
]
R o I 4

1. "N | 112 /
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~Step 3. By definition
- N L.
| v szt xR )2
¥ N, 13T
3 i
| . Ny
‘Step 4. Since each value of Vz(x’fi) has a probability =
M N, N .
SR B 35 DT -
v, (x7[4) i R Ol G Y (3.41)
b i !
yom Equations (3.40) and (3.&1)'we_obtain -
| LN M N, | - | -
V(x7) = = [ZN (X, X ) +2I 3z (x ) ] (3.42)
N. { i i- 19 1 : )

The fact éhae Equations (3.42)~and (3.39) are the same is'verified

by Equation (1.10) in Chapter I.

1llustration 3.16. Find the variance of the estimator x” given by
Equation (3.32) assuming simple random sampling at both stages of sampling.-

Step 1. Theorem 3 7 is applicahle. That is,

g mn a‘i ‘
E,(x*]1) = 22! B p~ <= x  j1]
2 13 | ny ij

vhich means “sum the conditional expected values of each of the n terms

- in Lquation (3.33)."

With regard to any one of the terms in Equation (3.33), the

conditional expectation is

Xy N N X
M ML R N S s 1Y
hZ m n [13 n on, BZ(Xijli) m n ki- "mn
i he! 1
-Therefore
X .
- By (x"]1) = it R O - (3.43)
. n n .
R — i} i Vs :

7

With reference to Equation (3.43) and summing with réépect to j, we have

. 113
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|
|
!
i
i
1
i
]
|
|
:
+

4
il
s

a3
g

© In th; sybscript’ to 02. the "b" indicates betwéen psu variance and®*1"

it

| : \ 3
A TR
> m 1 m if .
Hence Equation (3.43) becomes R
n . . :
- M ) £ '
Ez(x ‘1) w m z xi‘ m I_i (3.46)
i X ;
. “ (]
Step 2. Find v E (x !1). This is simple because £-- 1n Eqnacion
(3.44) s the mean of a random sample of m from the set of psu_totals
pe oo K Therefore. - oo . i
| 2 / |
. Y
\ ViE, (x| 1) = <M SN _ (3:.45) /7
. , \ é £
b&fre | P
L M - .2 ! M
LN z (xi 'X. ) -:“ zxi . .
_ 2 _1 ™ s 1 ’ ©
. gh‘ o‘bl }’ and h. M ﬂ

distinguishes this variance fr9m between psu variances in later {llustra~

tions.

Step 3. Finding Vz(x'li), is moréi{nvolved beeausé the conditional

variance of a linear-eomhinatiod of random variables muit-bevderived.

However. this i{s analogous to using Theorem 3.5 Eor'finding the variance

-+ of & linear combination of random variables. Theorem 3.5 applies exeept

| that V(u!i) rgélaces ﬁ(u) and conditional variance and comiitional co-

vafiagce replace the variances and covariances in the forpula\for V(u).
As_thg-golut;on proceeds, notice that the scrategy_is_to,éhape the problem
‘80 previous results can be used,:

look at the estimator x”, Equation (3.33), and determine whether any

—— L

-

- covariances exist. An element selected from one psu {3 independent of an
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4

"elemané"selegeed from another: but within a_psu‘the situation is the same

as the one we'had w?en finding che variance of the mean of a simple ‘random

-

sarple. ‘This suggests writing x* tn termms of xi becansc the x1 *s are

1ndepéndqnt. chordtnaly, we will start with

\
\
3

x;\-'ﬂ 2s-
m

X, ;
e
! i - ,
Hence ! . _ E \ .
| | M0 j
) . :- \\ -
Since the x, 's are independent o R

) )
V.z(x‘.l!.) _';'2‘ i"z‘“s":-‘“

and since X, is constant with regard to the conditional variance

) MZ m o, ' .
Vz(x’[i) == INj Vz(xi.{i) (3.46)
_ n 1 ' ~ . '

® . . ,
Since the sampling within each psu is simple random sampling

v (x !i)- ——-1-) o~ _ (3.47)
o - n - .
i 1 . .
where : -
N .
2 11 2
o, = £° = (x ~X, ) f
PR © X
g MY \ .
Step 4. After substituting the value of ﬁz(iiéii) in Equation (3.46),
and ther applying Theorem 3.3, we have - ¢ '
. . . ) 2 )
; 2 m N,= o,
. M 2 1 1 i
E,V, (x°[1) = = L E,IN ~=]
2000 = 7 PR R A

Since the first stape of sampling was simple random sampling and each pau .
_ N

had an equal chance of being in the sample,

115
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. . o2 N oen wl

N E. [N2 "t 33-1 .1.53{“2 e %

171 Ni-'l ng M { i Ni"l n,

;_ , aénce ’

\ PRILAN "i

. E,V,(x !p - i“‘ N1 n, (3.48)

- ' Step 5. Combining Equation (3,48) and Equation (3.45) the answer is.

_ S 2 2

: . M N,=-n, ¢

‘ _ o2 M Jp1 oM 7 254 % -
G s V) =MD 4o DN T A (3.49)

(1) at the first
: N, .
stage select m psu's with -replacement and probability P(1) = ﬁi-. and (2)

Illustration 3.17. - Tﬁg sanpling specifications are:

at the second stage a simpie random sample of n elements is 6o'be_se1écted
"from each of the m psu's sélected«at the fitst étage. This will give a'sém;
pleofns= mﬁ'elements._‘rind the variancé of the éambie &stiqgte;of the
population total. o .

) ~ The estimator needs to be changad'béeausQ“:he psu's are not selected

wi:h equal probability. Sample val&esfﬁqé&'éd_be weighted by the recip~ -
.rocals of their probabilities of-selectigg if the estimator is to be
*unbiased. Let |

. _ P“(1j) be the probability of ele;;ﬁt 1§ being in the sample,

) P°(4) be the relative frequency df‘the ich

psu being in a sample
~ of m, and iec‘ | |
P°(3]1) equal the condd tional probability of eiemept i3 betng‘in
| the sample piven that the ith psu is aiready in the Qanplg.
Then o K | f
PA(1)) = PA(P(4]0) ) | N .
i

According to the'iampiing épecificaqiqns P(4) » m N

. This Pmb‘.;_

ability was described as relative frequency because "probability of being

R
‘. “»
4. ’ ’

i );lit_i_ )

.
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in a sample of m\psn's" is subject to misid:erpre:a:ion. The lth psu ..'-

'cpn appear in a samﬁle more than once and it is counted every time it

b psu {s sélected more than once, a sample of

; is selected within the ith psts every time that it is selected. "By

gsubstitution )
Y. R _m

PUAY) = [m ) =

4 |-

Equation (3.50) means that every element has an equhl ptnhabilicy of beinp -

in the sample. Consequently, the estimator is veryfsimple,

y ™ ,
X" = 52x11 (3.51)
m o 1§ © : ' ¥

. Exercise 3,18. Show that x°, Equation-(3.51); is an unbiased esttmator

qf'the pooulation total.
) ) . . "ﬂ'\

In finding V(x“) our first ster was to solvé’for_Ez(x‘fi):

© .

Step 1. By definition

( t. o - 111}
"TBL.(x"l1) =B - NEx i
=2 T A

Since { is cgpstapt.wich repard to Ez,

i

g B R
E (x°[1) = == II t:zcx“m (3.52)
m 13 . '
Proceeding from Equation (3.52)_:0':he following result is left as an
exercise:
w M . .
; Lz(x I1) - xx#tﬂ | .j | | (3.53)

Step 2. From Equation (3.53) we' have
m_ |
IX, )

- I
V,E,(x f1) vl(m'i

447

(3.50)_ :



= s R ———— s e - —— = - - Coe ema - - . e, - L . . g 4 g
R — . . . P . P L B R e e
T : -o- : AN . voETEE
- N . . \ . N . LI
» . . - . -, -f
. .
i . :

- 111

 sthco the %, 's aro trdependent BEST COPY AVAILABLE

i ) 12' mL_
- i K] e T ¢
Vzhz“ 1) 5 : V1(“1m’

- Because the first stape of sampling is sanmplinp with probability btopor-

“"\:"

tional to 31 and with replacement,

w
=
L]

v (&) - ; A L
ACRER

Then _ , )
VyEp(x7l 1) '\f‘; (“‘-"52’_ - %: °§z

Exercise 3.19. Prove that E(ii-) = X . which shows tbat'it is
appropfiate to use X__ in Equation (3.54).
Step 3. To findﬂvz(x‘[i), first write the estimator as

%

R

]
3=
e 3

Then, since the X, 's are independent

TS R |
Vo (x“j1) = = I V. (x o
-2 m2121_-
and
.o - Ni-n df
| Volxy ) = § o1 =
n
3
where
N
2 il - 2
Giu:: _Ni (x“ xi.)

4
.r',
%
“(3.54)
AN
o .\Q
(3.55)
-~ (3.56)

g
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= Therefore _ - 2
- “2 m Ni-n' o4
Vp(x|t) » 55 £ A 2
= : n® 1 "4 n '
’ Step 4. ' ' %
; ' | ' r m N,-n
. P N 1 ‘ 1 2
- E, V. (x°]1) = = I Ex5™—5 0,)
1°2 m m g YN8
S S N,
= Since the probability of V,(x"|1) is =t
- . 2 ., m MN, N,-n
- . N® 1 1 470 2
9 E,V (x°|1) = =5 = I [I o= (c5=7)o)]) .
B A IR I RS e )
& '_ : §
whtctg becomes .
. .2 M N N-a IR
: . 1 2
- E\V, (x°|1) = — = (=)o » (3.57)
. 12\ w g ¥ AT .
Step S. Combining Equation (3.55) and Equation (3.57) we have the ;
answer |
z -
N N, -n
2 %2 .1 S
V(x") = N[22 + 3= £ (2)of) - (3.58)
. n . mh N Ni 1771
t & .
» o
-y
4 -
- .
"o | liﬁﬁ
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CHAPTER 1V, THE DISTRIBUTION OF AN ESTIMATE

113
4.1 PROPERTIES OF SIMPLE RANDOM SAMPLES

’

~

The distribution of an estimate {s a primary basis for judging the

accuracy of an estimate from a sample survey. But an estimate is only

ons number. How can ons number have a distribution? Actually, "distri~
dution of an estimate" is a‘phrase that refers to :he-dilt;ibution of

all posaible estimates that might occur under repetition of a nrescribed

sanpling plan and estimator (method of estimation). Thanks to theory

and empirical testing of the :heory.‘§; ;g not necessary to generate

L)

physically the distribution of an eht;ﬁz;éfby selecting numerous samples
pr&pn:cd.

tion of an eitinate as a basis for discussion, an-tllustration has beap

and making an estimate from each. ﬂaééver, to have a tangible distribu~
, - :

~

Illustration 4.1. Consider simple rand&m sanples of
sssumed population of 8 elements. There are ~r

4 from an
-‘-n) ) m’-w 70. poélible ‘
samples. In Table 4.1, the sample values for all of the 70 pdbsible sam~
ples of four are ihown. The 70 samples were first listed in an orderly
nanner to facilitate getting all of them accurately recorded.

The mean,
i, for each sample was computed and the samples were then arrayed

-

‘according to the value of x for purposcs of presentation in Table 4.1.

The distribution of X 1s the 70 values of X shown in Table 4.1, including =~

tion {n Table 4.2.

the fact that each of the 70 values—of x has an equalvprobabilicy of being
the estimate. These 70 values have béon.nrranié& as a frequency distiibu-

Q

- ERIC

As discussed previously, one of the properties of simple random
lation average; that is, é(i) » X. This means that the distribution of
T

smmpling is that the sample average is an unbiased estimate of the popu-

120
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Table 4.1--Samples of four elements from‘a population

- -

Sample ; Values of : _
number : | X{ ; X
" 1le 2,1,6,4 3.25
2 2,1,4,7 3.50
3 2,1,4,8 3.75
4 2,1,6,7 - 4,00
5 2,1,4,9 4.00
6 2,1,6,8 4.25
7 2,1,6,9 5 4.50
8 . 2,1,4,11 4.50 -
9cs 2,1,7,8  4.50
10 1,6,6,7 ° 4.50
1l1ls " 2,1.7,9 4.75
12 2,6,4,7 4.75
23 1,6,4,8 ° . 4.75
14 2,1,6,11 5.00
15s 2,1,8,9° 5.00

16 2,6,4,8 5,00
17 1,6,4,9 5.00
18s 1,4,7,8 5.00
19s 2,1,7,11 5.25
20. 2,6,4,9 5.25
21s 2,4,7,8 5,
22s 1,4,7,9 5.
23s 2,1,8,11 5.

. 24s 2,4,7,9 5,
25 1,6,4,11 5.
268 1,6,7,8 5.50
278 . 1,4,8,9 5.50
28cs 2,1,11,9 " 5.75
29 2,6,4,11 5:75
30s 2,6,7¢8 5.75
31s .2,4,8,9 5.75
328 . 1,6,7,9 5.75.
33s 1,4,7,11 5.75
34s 2,6,7,9 6.00
35s 2,4,7,11 6.00

o

-

'2 z(xi-x> ,
8§ - —g 12,

-7, XG

WmwmilnheNn
(e Ro SRV BT

— — o ——

of eight 1/
H ' ' H H H H
t s2 ¢ Sample: Values of oz s 82
: . ¢ number! X4 : :
H H H H H
* z ' -
4,917 : 36s 1,6,8,9 6.00 12.667
7.000 : 37s 1,4,8,11°  6.00 19.333
9.583: 38s 2,6,8,9 6.25 9.583
8.667 : 39s 2,4,8,11  6.25 16,250
12,667 ¢ 40s: 1,6,7,11  6.25 16.917
. : )
10.917 : 4l1s 1,4,11,9  6.25 20.917
13.667 ¢ 42 1,7,8,9 6.25 12.917
20.333 : 43cs  6,6,7,8 6.25 2.917
12,333 : 44s  2,6,7,11  6.50 13.667
7,000 : 45s 2,4,11,9 6,50 17.667
14,917 ¢ 46 2,7,8,9 6.50 - 9.667
4.917°: 47s 1,6,8,11. 6.50 17.667
. 8,917 : 48s  6,4,7,9 6.50 4,333
20,667 : 498  2,6,8,11 6.75 14,250
16.667 : 50s 1,6,11,9  6.75 18,917
6,667 : 51 1,7,8,11 6.75 17.583
11,337 : 528 - 6,4,8,9 6.75 4.917
10.000 : 53s 2,6,11,9 7.00 15.333
21,583 ¢+ S4 2,7,8,11  7.00 [ 14.000
8.917 : 55 1,7,11,9 7.00 18.667
7.583 ¢ 568  6,4,7,11 7.00 8.667
12,250 : 57 4,7,8,9 - 7,00 4,667
23,000 : 58 2,7,11,9 7.25 14.917
. 9.667 : 59 1,8,11,9  7.25 18.917
17,667 ¢ 60s 6,4,8:11 7.25 8,917
» 9,667 ¢ 61 2,8,11,9 7.50 15.000
13,667 ¢ 62¢cs. 6,4,11,9 7.50 ' 9,667
- 24,917 63 - 6,7,8,9 7.50 1,667
14.917 s* 64 4,7,8,11 7.50 8.333
" 6.917 : 65 4,7,11,9 7.75 8.917
10,917 1 66 . 6,7,8y11 8.00- 4,667
11.583 ¢ 67 4,8,11,9 8.00 8.667
18.250 : .68 6,7,11,9  8.25 4,917
8.667 :. 69 6,8,11,9  8.50 4.333
15.333 : 70¢ 7,8,11,9, 8.75 2.917
e 1 " 2!,X2 -1,.
= 8, x7 = 11, x8 =®*9: X = §,00; Tand L

3
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s Table 4.2--Sampling distribution of x

|

-

Relative frequency of X

Simple random
sanpling
Illustration 4.1

o9 =mw ma 88 o
e 99 o6 5%

l

Cluster sampling

Illustration B.2 .yyy cerarton 4.2

: ,
sStratified random
: sampling

-

1

3.25 1

_ fmee 3450 1
. 3,75 1
o ' 4,00 2
.  4.25 1
| . 4.50 4
. 4,75 3
R 5.00 5
| 5.25 4

, "5.50 5

e . 85,75 6
- 6.00 4
e Y . 6.25 6
- 6.50 5
DU 6.75 4
; . 7.00 5
. 7.25 3

. i 7.50 4
7.75 1
e 8.00 2
| 8,25 1
8.50 1
8.75 1

&,

2 - B WS W P D W N

Total 70

>~
»

36

do M A A —— T S~

Expected value
of x 6.00
Variance of x 1,50

L4

P PR P el ¢ T Gl S -G S VD UL ST A o - -

6.00
3.29

6.00 -
0.49
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‘-6& x is given by
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, x is centered on X. If the theory is correct, the average of X for the

70 samples, which are equally likely to occur, should be equal to the.
'”populntion average, 6.06.' The average of the 70 samples doel”equal 6.00,
" From the theory of expected values, we also know that the varfiance

2 ‘
N-n 8 :
“Fa - (4.2)

‘uih

wheré

N .2
z(xi-i)
2 4

= TF3

2 2

With reference .to Illustration 4.1 and Table 4.1, 8" = 12,00 and S; -

.§.“§.‘..¥. = 1.5 . The formula (4.1) can be verified by computing the

variance among the 70 values of x as follows

' £3.25-6.000% + (3.50-6.000% +...+ (8.75-6,0002 _ , ¢
70 . :

Since S2 is a pophlation parameter, it is usually unknown. Fortu~

2

nately, as discussed in Chapter 3, B(sz) = S° where

B9

t(xi-:)

'2 |
£y wel

In Table 4.1, the value of s s shown for each of the 70 samples. The

average of the 70 values of .2 is equal to sz. The fact that x(az) - 82

is snother important property of simple random samples. In practice 02 is

ulid as an estimate of 82. That is,

2
2 _N-ng
e e

18 an unblased estimate of the variance of X.
‘To recapitulate, ve have just verified three important properties of

simple random samples:

ERIC | | 123
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(1) E@).» X

N-n
(2),8;- pind ]

S
N m
(3 E(s?) = §? .
The standard error of X, nemely S= , is a measure of how much x varies
under repeated sampling from X. Incidentally, notice that Equation (4.1)
Qhows hﬁw the variance of x is related to the size of the'shmple. N;w

we need to consider the form or shape of the distribution of X.

Definition 4.1. The distribution of‘an‘eatimace is often called the

sampling distribution. It refers to the distribution of all possible

values of an estimate that could occur unde; a prescribed sampling plan.
4.2 SHAPE OF THE SAMPLING DISTRIBUTION

For random sampling there is a la?gn volume bf literature on the
distribution of an‘estlmace which we will not attempt to review. In

practice, the distribution is generally accepted as being normal (See

Figure 4.1) unless the sample size is "small." The theory in# empirical

tests show that the distribution of an estimate approaches the normal
distribution rapid1y4as the size of the sample increases. The closeness
of the distribution of an estimate to the normal distribution depends on:

(1) the distribution of X (i.e., the shape of the frequency distribution

of the values of X in the population being sampied), (2)'=he form of the

estimator, (3) the sample design, and (4) the sample size. It is not

- possible to give a few simpie, exact guidelines for deciding when the

‘degree of approximation is good enough. In practice, {t is generally a
matter of working as though the distribution of an estimate is normal but

being mindful of the possibility that the distribution might differ

1¢1
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E(x‘)~2ox. E(x‘)-ox, E(x”) E(x‘)+ox. E(x‘)+208.

Figure 4.1~--Distribution of an estimate (normal distribution)
. |

1

considerably from normal when the sample is very small and the population
distribution is highly skewed. 3/

It is very fortﬁna:e that the sampling distribution is approximately
normal as it gives a basis for probability statements about the precision
of an estimate. As notation,x” will be the general expression for any
estimate, and 0, - 18 the standard error of x”.

. Figure 4.1 is a graphical representation of the saﬁpling distribution
of an estimate. It is the normal distribution. In the mathematicasl
_ equation for the normal distribution of a varisble there_ﬁre‘ewo paramsters:

the average value of the variable, and the standard error of the varisble, /

3/ For a good discussion of the distribution of a sample estimate, see
, Vol. I, Chapter 1, Hansen, Hurwitz, and Hadaw. Sample Survey Methods and
Theory, John Wiley and Sons, (953. -

A<
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Suppose x” is an estimate from a probability sample. The characteristics
of the samplifig distribution of x” are specified by three things: (1) the

cxpected value of x, B(x”), which is the mean of tha distribution; (2) the

standard error of x°, Oy rs and (2) the assumption that the distribution is

'norlal. 1f ; is normally distributed, two-thirds of the values that x

could equal are between [E(i‘) - qx,] and [E(x‘)‘+ ox,}, 95 percent of the

possible valucs of x* are between [E(x”) =~ 26 ] and [E(x7) + 20*,]. and
|
99.7 percent Lf the estimates are within 3a , from BE(x"),

Fesns

Baercise b 1., With reference to Illustration ‘4.1, find E(x) - o3 and

'scx) + 0= . nsfer to Table 4.2 and find the proportion of the 70 values

of X that are'becween E(x) ~ oz and E(x) + oz . ' How does this comparn\with
the expected ?roportion assuming che sampling distribution of x is normal?
The normal ap&roximation is not expected to be close, owing to the small

size of :he popuiaxibn and of the sample. Also compute E(x) -~ 20- and
E(x) +‘20- and find:ihewp;oportion of the 70 values(of x chat are between

O
.

these two limits. ’"';_

-4
N

4.3 SAMPLE DESIGN i
There are many methods of designing‘and selecting samples and of naking
esciaates from sanplea. Each sampling method and estimator has a sanpltng

diotribufion. 51nce the aanpliug distribution is assumed to be normal,

. alternative ncthoéu are conpared in terms of E(x”) and o_. (or o, .)

For alnple random sampling, we have seen, for a sample of n, chlc
every possible combination of n elements has an equal chance of being the

sample selected. Some of these possible combinations (samples) are q#ch

" bette than others. It is possible to 1n:rbduce restrictions in sampling

'so some of :qucoubinations cannot occur or so some combinations hyv& a

1<6
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| higher ptubnbiliey of occurrence than others. This can be done without

" introducing bias in the extimste x” and without losing a basis for esti-

mating 0_.. Discussion of particular sample designs is not a primary

'.phrpoan of this chapter. However, a few simple illustrations'willzbe

used to introduce the'subject of design and to help develop concepts of

sampling variation.

Illustration 4.2. Suppose the population of 8 eleweqts used i{n

Table 4.1 is arxanged so it consists of four sampling units as follows:

§ Sampling Unit Elements Values of X Sample Unit Total

1 1,2 Xy =2, %y =1 3
2 3,4 Xy = 6, X, = & 10
3 5,6 Ry =7, % = 8 15
4 7,8 X, = 11, Xg = 9 20

.

For sampling purposes the pdﬁulation now consists of four sampling

-~

units rather than eight elements. If we select a simple random sample of

tvo sampling units from the population of four sampling unite, it is clear

~ that the sampling theory for siﬁple random sampling applies. This illus-

tration points out the importance of making a clear distinction between a

laaﬁlins unit and an element that a measurement pertains to. A sampling

undt corri:ponds to a random selection and it is the variation among sam-
pling units (random selections) that deterwmines the sampling error of an

" estimate. When the sampling units are composed of more than one element,

the sampling is connoniy referred to as cluster sampling because the ele-~

ments in a sanpling unit are usually close together geographically.

7
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For a simple random imle of 2 uwung units, the variance of ic"

" where 'ic is the lﬁph"mnp per sampling unit, is

g2 LN e 13,17
' 'c N n |
wvhere
2 1202 + (10-12)2 + (15-12)% + (20-12)% _ 15
u--a.m-zz.m;cxs:e-ﬁ--——--‘—-—-2——-1—--—1-———1—*--)—3 --—9-3

Instead of the average per sampling unit one will probably be mum\ud

in the averags ver element, which is x= T since ehcriv* are two elements

in each .mlﬁ&*gmit. The variance of x is one-fourth of the variance

of ic’ uenco‘“:hé variance of x 1is -L:L;-ll - 3,29,

‘There are 6n1y six possible random samples as follows:

, P Snnﬁle average per 2

Semple Sampling Units sampling unit, X c . 8

1 1,2 , 6.5 24.5

2 1,3 9.0 72.0

3 1,4 11.5] 144.5

4 2,3 12:5 \ 12.5

5 2,4 ' 15.0 50,0

6 3,4 175 12,5

Pyt
vhere -: -l vy y and X is a sampling unit total. Be sure to notice

that oi (wvhich is the sample estimate of s:) is the variance among ssmpling
units in the sample, not the variance among individual elements in the

sample. From the list of six samples, it is easy to verify that X_is an

unbiased estimate of the population average per sampling unit and that ci

is an unbiased estimate of -Lg-g , the variance among the four sanpling

1S :

vy
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ﬁnittdén the population. Also, the variance among the six values of X is
‘13.17 which agrees with the formula{

The six possible cluster samples are among the 70 samples listed in
Table 4.1. Their sample numbers in Table 4.1 are 1, 9, 28, 43, 62, and
70. A '"c" follows these sample numbérs. The aamplin; distribution for
the six san is shown in Table 4.2 for comparison with siufple random
sampling, It is clgar fr&m 1nspection‘;hat randoﬁ selection from these
six is less deslrable than random selection from the 70. For example,

ne of the two extreme averapes, 3.25 or 8.75, has a prob&bility of %-of
occurring for the cluster. sampling and a.ptbbability of only %g-when
selecting a simple random sample of four elements. In this 111us:tation,
ﬁhe satpling restriction (clustering of elements) increased the saﬁpling
variance from 1.5 to 3.29, \ |

It is of importance to note that the<average variance among elements
within the four élusters is only 1.25. (Students should compute the within

</ cluster variances and verify 1.25)., This 1is much 1d@ss than lzzob.che'

: variance g the 8 elements of the population. In reslity, the variance
among elemén s within clusters is usually less than the variance among all
elements in the population, because clusters (sampling units) are usually
composed of 'elements that are close together and elements that are close

together usually show a tendency to be alike.

Exercise 4.2. In Illustration 4.2, if the average variance among

elements within clusters had been greater than 12.00, the sampling variance
for cluster sampling would have been less than the sampling variance for a

-simﬁle random sample of elements. Repeat what was done in Illustration 4,2

; 1249
.
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;- '«Qsins as sampling units elements 1 and 6, 2 and 5, 3 and 8, and 4 and 7.
séudy the results.
Illustration 4.3. ;érhaps the most tommon method of sampling is to
- assign sampling units of .a population to groups called strata. A simple
réndém saﬁple is then.selected from gach stratum. Sunpose the popﬁlation

used in Illustration 4.1 is divided into two strata as follows:

- Stratum 1 -xl = 2, xz =1, x3 =6, Xa -4
Stratum 2 xs “ 7, x6 = 8, x, - 11, xs =9

The éampling plan is to select a simple random sample of two elements
from each stratum. There are 36 possible samples of 4, two from each
stratum. These 36 samples are identified in Table 4.1 by an s after the : ‘
sample number so you may compare the 36 possible stratified random samples
"with the 76 simple random samples and with the sig cluster samples. Also,
| see Table 4.2.
ConsiAer the variance of x. We can write
+x

172
2

R

X =

where §1 is the sample average. for stratum 1 and §2 is the average for

stratum 2. According to Theorem 3.5

2 1, /02 2
S5 = (5)(S= + S= 4 25= =)
X 4 x1 Xy )

Wé know the covariance, S; = is zero because the sampling from one
172

stratum is independent of the sampling from the other stratum. And,
since the sample within each stratum is a simpie random sample,

N

1 s 2
q.-n. S% . L (xli-xl.)
62 m XL L i ? wd
x. N n, wherg o, ¥ N, -1
1 1 1 1

We 150 BEST COPY MNLABLE
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The subscript "1" refers to stratum 1. sé i of the same form as s% .

, 2 1
Therefore, . ) .
| s2 »l [Nlml 51 o 22" f..z.]-,
x 4 Nl n, -Nz n,
Since
N.=n 'N -n .
"ﬁ;‘l - 52 e fimdn ny ez,
2 15%% | 4,9242.92,

The variance, 0.49, is comparable to 1.5 in Illustration 4.1 and to 3.29 n

" Illustration 4.2.

In Illustration 4.2, the sampling units were groups of two elements and
the variance among these groups (sampling units) appeared in the formula |
for the variance of x. In Illustration 4.3, each element wés a sampling

unit but the selection process (randomization) was rei;ricted to taking

 one stratum (subset) at a time,so the sampling variance was determined by

variability within strata. As you study sampling plans, form mental piéturesv
of the variation which the sampling error depends on. With experience and
accumulate& knowledge of what the patterns of variation i{n various popuihﬁ
tions are like, one can become expert in Judging the efficiency of alterma~
tive sampling plans in relation to specific objectives of a survev.

If the population and the samples in the above illustrations had béen
larger, the distributions in Table 4.2 would have been approximately nor-~
mal. Thus, since the form ofl;he distribution of an estimate from a prob-
ability sample survey is accepted as being normal, only two attributes of
an estimate need to be evaluafed, namely its expected value and its

variance.
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In tbc above 111ua:rnttcas ideal condttionl wvere implicitly assumed.

Such eouditions do not exist in the real world so the theory must be
cztoadcd to fit, more exactly, nctual conditions. There are numerous
sources of error or variation to be evaluated. The naturc of the rels-
:t&nﬁhip between theory and practice is a major governing factor deter-
mining the rate of prograss toward improvement of the accuracy of survey
!l'pltl. |

e will now extend error conccp:: toward more prnctical settings.
4.4 nx§?onss ERROR

#’So far, ve hawr diﬂcuﬂsed sampling under 1:9A4c1t assumptions that -
measuremsnts are obcaiued from all n elements in a sample and that the
nnuaﬁralcn: for each element is without ertor} Neither nsbﬁiption fits,
o:actly.‘:hc veal world. In addition, therxe are “coverage' -errors of
various kinds. For example, for a farm suévuy a farm 1is defthed but
appliéntion of the definition involves some degree of ambiguity about
whether gar:igular enterprises satisfy ghc definition. Also, two persons
i&;ht have an interest in the same farm tract giving rise €o the possibility
that the crict might be counted twice (included as s_part of two farms) or
omitted entirely. | |

Partly to emphasize that exror in an estimate is wore than a matterx

of sampling, statisticians oitcn/claosify the numerous sources of errox
{nto one of two genaral classes: (1) Sampling errors which are errors

associated with the fact that one has measuraments for a sample of slements

rather than messurements for all elements in the population, and (2) non-

sampling errors--srrors that occur wvhether sampling is involved or not.

~ Mathematical error wodels can be very co-plcx'ﬁhen they include a term for

. 132
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each of many sources of error and attempt to represent exactly the real
world. ﬂowcver. eonpllciged error models are not always nec#usary.
depending upon the pquosei.

For purposes of diccussion. two oversimplified response~error models
will be used. This will introduce the subject of response error and ‘give
séna clues regarding the nature of the impact of response error on the
distribution of an estimate. For simplicity, we will assume that a
measurement is obtained for each element in a random sample and that no
ambiguity exists regarding the identity or definifion of an element. Thus,

we will be eonéidering sampling erxror and response error simul taneously.

Illustration 4.4, let Tl.....TN be the "true values” of some variable

for the N elements of a population. The mention of true values raises

numerous questidha about what is a true valuc. For example, what is your ’

true weight? How would you define the true weight of an individual? We
will refrain from discussing the problem of defining true values and simply
assume that true values do exist accordﬁng to souelbractical definition.
When an attempt is made té aaceriain Ti' some value other than Tfﬁnight

be cbtained. Call the actual value obtained X, The difference, e, =

|
th element., If the characteristic,

xi - Ti,lis ghe response error for the {
for example, is a person's weight, the observed weight, xi. for the 1‘“
individual depends upon when and how the measurement is tsken. However,
for ytmplicity. assume that xi is always the value obtained regardless of
the ;oﬂditionu under which the measurement is taken. In other words,
assume that the response error; € is constant for the 1th element., In

this hypothetical case, we are actually sampling a population set of values

81.....8N instead of a set of true values Tl....,Th.

133
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. Thus, X is a biased estimate of T unless E(e)= 0, where E(e) » -—é-.

127

Under the conditions as stated, the sampling theory appltesAesactly
to the set of population values xl....,xN. 1f a simple random sample of

eieunnts is selected and measurements for all elements {n the sample are

N
ST

ohtnincd. then E(x) = X. That is, 4f the purpose is to estimate T = -ir"
the estimate is biased unless T happens to be equal to X. The bias is
% - T which is appropriately called "response bias.” |

Revrite e, - x1 - '1'1 as follows:

Then, the mean of a simple random sample msy be expressed is

n n
Ix £(t,de,)
i Wik b L
n n
or, as xX=t+e.

From the theory of expected values, we have
E(x) = E(E) + E(e) '
Since E(X) = % and B(T) = T 1t follows that
X =T+ E@E)
N
That is, E(3) is the avciase of the response exxors, e,, for the whole
population.

For simple random sampling the variance of x is

N 2
g2 z(x1-§>
2 Nen X 2 4
S " W & vhere Sy = TR

How does the responle error affect the variance of X and of x? We have

th

'Alrcndy wrictcn the observed valu. for the 1~ element as bctng equal to

134
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its true value plus a response errxor, that is, X, =T, Ne,. Assuming
random sampling, 'ri‘md e, are random variables. We can use Theorem 3.5
from Chapter III and write

2 2.2 |
Sy = Sp + sc + zsr.e (4.3)

' 'wher; s§ is the variance of X, si is the variance of T, s: is the response
variance (that is, the variance of e), and !’A.l.’e is the covariance of T and
e, The terms on the right-hand side of Equation (4.3) cannot be evaluated
unless data on X, and T, are avatlable; however, the equation does show how
the response error influences the variance of X and hence of x.

Ai a numerical oxinpl;. assune a population of five elements and the

following values for T and X:

T 21 e
23 26 3
13 12 -1
17 23 6
25 25 0
1 s 2
. . Average 17 | —i9 2

‘Students msy wish to verify the following results, especially the variance
of e and the covariance of T and e:

3 2 2 2
: Sx - ‘62.5 S.r » 54.0 .S° = 7.5 S

‘As 8 verification of Equation (4.3) we have

62.5 = 54.0 + 7.5 + (2)(0.5)

135
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cooEa , o ' ‘ 8(:,_-:)2
; From data in a simple random sample one would compute sé iy
/‘/ i 2 . Lo
a ﬂ .8 - g . I ' - '
/ and use -§§»~;~ as an clciuata of the variance of x. Is it ciear that

f 32 is an unbtased estimate of s

<2 2

rather than of s and that the 1npact of

varlntion 1n .\ is included 1ip s ?

L .
Tb auunnrixe. yesponse error caysed a bhias in X as an catiuate of T

that was equal to % -~ T. 1In addition, it was a source of variation included
in the standard error of x. To evaluate bias and variance ltttibut‘blﬂ to

response error, information on xi and 'r1 must be available.

Illustration 4.5. 1n this case, 3 assume that ths response :Stor

asured

for a gtwm element is not&umt. That is, if an element wexe

th

on several occasions, the observed values for the i element could vary

even though the true value, Ti.'tewuihed unchanged. Let the error model be

| x‘j - T + eij |
wvhere xij is the observed value of X for the ith element when the
observation is taken on a particular occasion, j,
Ti is the true value of X for the 1"h element,
N and e;j is the response error for the 1th element on a particular

he occasion, j.

Assune , for any given elcnont..:hgcfthc response c:for. e’ ., is a random

1

%W yarisble, We can let e;j - 31 te where Zi is the nvetisn valus of e
for a fixed i, that is, 2 - E(e; lz). This divides the response error

" ﬂ for the 1'“ element into two components: a constant componsnt, 01. and a

=l : varisble conponcnf. °13’ By definition, the expacted value of ‘1j is xzero

."for any given alement. That is, 5(‘15‘1) = 0,

' 176

e



s

130

for e/, , the model becomes

13 1)
, xij -T, + 31 + ey (4.4)

Substituting 81 + e

|

The model, Equation (4.4), is now in a good form for comparison with

the model in Illustration 4.4, In Equation (4.4), &,, lke &, n
Equation (4.2) is constant for & given element. Thﬁs. ﬁhe tvo models

are alike except for the added term, °159 in Equation (4.4) which allows
for the possibility that the response'erro: for the ith'elemenc might not

be constant.

. & [ S
Aséume a simple random sample of n elements and one observation for a
each elemant, 'Accordihg to the model, Equation (4.4), we may uow write -
the sample mean as follows: |
It, Is, = Ze
- i i 1)
n n n
Summation with respect to j is not needed as there is only one observation
for each element in the sample. Under the conditions specified the expected
value of x may be expressed as folloss: -
E(x) =T+ e
*-—--"‘?"M'MN';“# 1;" -
where T . and e -

- Théfviriance of x is. complicated unless some further assumptions are
"madé. " Assume that all covarianceé terms are zero. Also, assume that the
coﬁditional variance of e11 is constant for all values of {; that is, let

V(eijli) - Si. Then, the variance of x is

g2 2 g2
2 N-n T N-n Ve e
" F w'F wots
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N | N
£(T,-T)2 £(a,-e)>
where | 52 - 1 : sg - 3-i
r T N-1 v N=1 ’

and sz i{s the conditfional variance qf eij' that ia. V(eijli). For this
Anodel the variance of x does not diminish to zero as n+i. However, assuming
| 2
N is large, the variance of x, which becomes ﬁs , ig probably negligible.
Definition 4.2. Mean-Square Error. In'terms of the theory of expected

}

values the mean-square error of an estimate, x°, is E(x*—*)z where T 1is the

target value, that is, the value being estimated. From the theory it is
easy to show that
E(x*-T)% = [E(x")~T]% + Elx"~E(x")]?

Thus, the mean-square error, mse, can be expressed as follows:

mse = B2 + o2, | - (4.5)

x
wherse B = E(x*) ~ T (4.6)
.and 6%, = Elx"-E(x"))? ' 6.7

Definition 4.3. Bias. In Equation (4.5), B is the bias in x° as

an estimate of T.

Definition 4.4. Precision. The precision of an estimate is the

standard error of the estimate, nemely, Oy - in Equation (4.7).

Precision is a measure of repeatability. Conceptually, it is a
measure of the dispersion of estimates that would be generated by repetition
of the same sampling and estimation procedures many times under the same
conditions. With reference to the sampling distribution, it is a measure

o{ the dispersion of the estimates from the center of the aistribuciou and
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does not include any indication of where the center of the distributfon
is in relation to a target.
In Illustrations 4.1, 4.2, and 4.3, the target value vas implicitly

assumed to be X; that 1s, T was equal to X. Therefore, B was zero and

' the mean-square error of x* was the same as the variance of x°. In

Illuatratiqna 4.4 anJ 4.5 the picture was brondtnéd sonewhat by intro-
ducing response error and examining, theoretically, the iupaét of response
2rror on E(x”) an& 9.-+ In practice many factors have potential for
influencing the sampling distribution of x*. That is, the data in a : I
sample are subject to error that might be attributed to several sources.
From sample data an estimate, x°, is computed and an estimate of the
variance of x“ is also computed. How does onetinterpfet the resuits? In
Illustrations 4.4 and 4.5 ﬁe found that response error could be divided
into bias and variance. The error from any source can, at least concep-
ﬁgally, be divided into bias and variance. An estimate from a sample is
subjdct to the combined influence of bias and variance corresponding to
each of the several loutceivof error, wheﬁ an esfimste of the variance
of x” is computed from sample data, the estimate is & combination of
vngiancec that might be identified with varfous sources., Likewise the
difference between E(x”) and T 1is a combination of biises that might be C W
igentified with various sources. ‘
Figure 4.2 {llustrates the sampling distribution of x* for four
different cases: A; no bias and low standard error; B, no bias and large
standard error; C, large bi;- snd low standard error; and D, large bias
and large standard error. The accuracy of an estimator is sometimes dqfincd

a8 the -éunro root of the mean-square error of the estimator. According
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.to that definition, we could describe estimators having the four ssmpling
distributions in Figure 4.2 as follows: In case A the estimator is precise

sad accurate; in B the estimator lacks precision and {s therefore inaccurnte;

in C the estimator is precise but inaccurate because of bias, and in D ‘the
estimator is inaccurate because of bias and low precision.
Unfortﬁnately.'it is generally not possible to detemmine, exactly,

the magnitude of dias in an estimate, or of a particular component of biﬁs.
However, evidence of the magdicuAe of bias is often available from general
expexience, from knowledge of how well the survey processes were performed,
and from speci&l investigations. The author accepts a point of view that
the mean-square error i{s an appropriate concept of accuracy to follow. In
that context, the concern becomes a matter of the magnitude of the mse apd
the size of B relative to Oy-+ That viewpoint is important becgus§ it 1s
not passible to be certa@n thaé B is zero. Our goal should be to prepare

survey specificatiohs edd\to conduct survey operations so B is small in

relation to O -+ Or, on§ might say we want the mse to be minimum for a
e b

given cost of doing the survey. Ways of getting evidence on the magnitude
of bias is a major subject and is outside the scope of this publication.
As indicated in the previous paragraph, it is {mportant to know some-
thing about the magnitude of the bias, B, relative to the standard error,
0_.. The standard error is controlled primarily by the design of a spmple

x
and its size. For many survey populations, as the size of the sample
increases, the standard error becomes small relat;ve to the bias. In fact,
the bias might be larger than the standard error even for samples of
moderate size, for example a few hundred cases, depending upon the circum~

stances. The point i{s that if the mean-square error is to be small, both

141

gk



135

B and o . must Le snall. The approaches for reducing B are very different
from the approaches for reduciﬁg c .+ The greater concern about non-

sampling error is bias rather than {mpact on variance. In the design and '

‘aelection of samples and in the processes of doing the survey an offoit in

made to pravent biases that are "sampling" in origin. However, in survey
work one must be constantly uware 6! potential biases and on the :‘alert to
minimize biases as well as random error (that is, o ,)

The above discussion puts a census in the same light as a sample.,
izsults from both have a mean-square error. Both- are surveys with refer-
ence to use of results. Uncertain inferences a;e.§nvolved i:kthe udéjof
results from a census as well as from a sample. The only difference is
that in a census one attempts to get a nesgﬁ;ement for all N elements,
but making n = N does not reduce the mse tglg;;o. Indeed, as the sample
size increases, there is no positive assurqncé that the mse will always
decrease; because, as the variance component of the mse decreases, the.
bias component might increase. This can occur especially when the popu-
lation is large and items on the questionnaire are such that simple,
accurate answers are difficult to obtain. For & large sample or a census,
compared to a small sample, it might be more difficult ;o'contgol factors -

that cause bilas. Thus, it is possible for a census to be less accurate

(have a larger mse) than a sample wherein the sources of error are more

1adequnte1y controlled. Much depeﬁds upon the kind of information being

collected.
4.5 BIAS AND STANDARD ERROR

The words "bias," "biased,"” and "unbigsed" have a wide variety of

meaning among various individuals. As a reésult, much confusion exists,
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gspecially'since the texms are often used loosely. Technically, it seems

logical to ;efine thd bias in an estimate as being equal to B in Equation
/ (4.6), which is the diff&:nnce between the expected value of an estimate

and the target value, But, except for hypothetical cases, numerical values

do not exist for either E(x°) or the target T. Hence, defining an unbiased

estimate as onc_where BwE(X’) -T=0 is of iittle, if any, practical

value unless one is willing to accept the target as Seins equal to E(x”),

From a sampling point of view there are conditions that give a rational

basis forlaccepttng E(x’) as the target. However, regnrﬁless of how the s
'target is defined, a good practical interpretation of E(x’) is needed. .

‘It has become common practice among survey statisticians to call am
.eécima:e unbiasedlwhen it is based on methnds of sampling and estimation
that are "unbiased.” For example, in Illustration 4.4, x would be referred
to as an unbiased estimate--unbiased because the method of sampling and
estimation was unbiased. In other words, since x was .an unbiased estimate
of ?, X could be interpreted as an unbiased estimate of the result that
would have been obtained if all elements in the population had been

"yeaspred.

In Illustration 4.5 the expected value of x is more difffcult to
describe. Nevertheless, with reference to the method of sampling and
ectimation, x was "unbiased” and could be called an unbissed estimate
even though E(x) is not equal to T,

The point is that a simple statement which says, 'the estimate is
unbiased" is incomplete and can be very misleading, especially if one is
nof familiar with the contéxt and conc;ptl of bias. Calling an estimate

unbiased is equivalent to saying the estimate is an unbiased estimate of
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its expacted value. Regardless of how "bias” is defined or used, E(x")
is the mean g! the sanpling distribution of x; and this concept of B{x")

is 7ery important b@cau.e'!{x') appears in the standard error, Oy e of x*

,,.' vell as in B. See Equations (4.6) and (4.7).

As a simple concept or picture of the srror of an estimate from a
survey, the writer likes the aﬁal&sy between an estimate and a shot at
a target with a gun or an arrow. Think of a ;urvey being replicated |
many tises using the ssme sempling plan, but a different sample for each
replication. Each r-plicncioﬁ would provide an estimate that corresponds

.0 & shot at a ti.xget.

In Figure 4.3, each dot corresponds to an estimate from one of the
replicated samples. The center of the cluster of dots is labeléd E(x")
because it corresponds to the expected value of an estimate. Around the

point E(x”) a circle is drawn which contains two~thirds of the points,

* The radius of this circle corresponds to O st the standard error of the

estimate. The outer circle has a radius of two standard errors and con~
tains 95 percent of the points. The target is labeled T. The distance
boeu.oa'T and E(x°) 4s dias, which in the figure {s greater than the
standaxrd ervor.

In practice, we usually have only one estimate, x°, and an estimate,
8 - of the standard arror of x”. With reference to Figure 4.3, this
means one point and an estimate of the radiua of the circlc‘around E(x”)
that would con:ain tvo-thirds of the estimates in repeated samplings. We
do not knowv the value of E(x°); that is, we do not know vhere the center
of the circles is. ;ownvar. wvhen we make a statement abou:;the standard

erzor of x”, ve are expressing a degree of confidence about how close a
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\
par:ibplar estimate prepared from a survey is to E(x°); that\is, how

\ ‘
close one of the points in Figure 4.3 probably is to the unknown point

_!.)‘“'}

E(x"). A jgdgmnn: as to, how far E(x°) is from Tgis a matter of how T \
is defined and assessment o. the magnitude of biases assoéiatcd with
Ymous sou‘rces of error.
Unfortunately, it is not easy to make a ahort, rigorous, and complete
1nterpthtative statement about the standard error of x°. If the estimated
standard error of x° is three percent, one could simply state that fact
and not make an interpretation. It does not heip much :o'say, for example, t
that thé’odds are about two out of three that the estimate is within three
percent of its expected value, because a person familiar with the concepts
already understands that and it probably does not help the ﬁerson who is
unfamiliar wicﬁ the concepts. Suppose one states, "the standard erxor of
x° means the odds are two ﬁut of three that the estimate is within three
percent of the value that would have been obtained from a census taken
under identically the same conditions.” That is a good type of statement
to make but, when one engageuy considerations éf the finer points,
interpretation of "a census takgn under identically the same conditions"
is needed~~especially since it is not possible to take a census under
f{dentically the same conditions.

In summary, think of a survey as a fully defined system or process
including all deia;is that could affect an estimate, 1n§1ud1ns: the method
of sampling; the method of estimation; the wording of questions; the order

. & .
of the questions on the questionnaire; interviewing procedures; selection,

training, and supervision of interviewers; and editing and processing of
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data. Conceptually, the sampling is'\then replicated many times, holding

. a1l specifications and conditions constant. This would generate a sam-

pling discribution as {1lustrated in Figu 4.2 or 4.3, We need to
--~mggggggize that a change in any of the surve spcéificattons or conditions,
regardless of how trivial the change might seeg, has ; potential for
changing the sampling distribution, especially the expected vnlge of x°,
Changes in survey plans, even though the definition of the parameters
being estimated remsins unchanged, often result in screpancies that

} are larger than the random error that can be attributed to sampling.

The points discussed in the latter part of this chapter were included
to emphasize that much more than a well designed sample is required to
assure accurate results., Good survey planninj and management calls for
evaluation of errors from all sources and for trying to balance the effort
to control error from various sources so the mean-square efror will be

, within acceptable limits as economically as possible.
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