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FOREWORD

The Statistical Reporting Service (SRS) has been engaged for

many years in the training of agricultural statisticians from around

the world. Most of these participants come under the support of the

Agency for International Development (AID) training programs; however,

many also come under sponsorship of the Food and Agriculture Organization

into the International Statistical Programs Center of the Bureau of the

Census, with which SRS is cooperating.

This treatise was developed by the SRS with the cooperation of

AID and the Center, in an effort to provide improved materials for

teaching and reference in the area of agricultural statistics, not

only for foreign students but also for development of staff working

for these agencies.

HARRY C. TRELOGAN
Administrator
Statistical Reporting Service

Washington, D. C. September 1974
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PREFACE

The author has felt that applied courses in sampling should give more

attention to elementary theory of expected values of a random variable.

The theory pertaining to a random variable and to functions of random

variables is the foundation for probability sampling. Interpretations

of the accuracy of estimates from probability sample surveys are predicated

on, among other things, the theory of expected values.

There are many students with career interests in surveys and the

application of probability sampling who have very limited backgrounds in

mathematics and statistics. Training in sampling should go beyond simply

learning about sample designs in a descriptive manner. The foundations

in mathematics and probability should be included. It can (1) add much

to the breadth of understanding of bias, random sampling error, components

of error, and other technical concepts; (2) enhance one's ability to make

practical adaptations of sampling principals and correct use of formulas;

and (3) maiNe communication with mathematical statisticians easier and more

meaningful.

This monograph is intended as a reference for the convenience of

students 4n sampling. It attempts to express relevant, introductory

mathemat& and probability in the context of sample surveys. Although

some proofs are presented, the emphasis is more on exposition of mathe-

matical language and concepts than,on the mathematics per se and rigorous

proofs. Many problems are given ad exercises so a student may test his

interpretation or understanding of the concepts. Most of the mathematics

is elementary. if a formula looks involved, it is probably because it

represents a long sequence of arithmetic operations.

ii



Each chapter begins with very simple/explanations and ends at a much

more advanced level.. Most students with/only high school algebra should

have no difficulty with the first parts of each chapter. Students with a

few courses in college mathematics and statistics might review the first

parts of each chapter and spend considerable time studying the latter parts.

In fact, some students might prefer to start with Chapter III and refer to

Chapters I and II only as needed.

Discussion of expected values of random variables, as in Chapter III,

was the original purpose of this monograph. Chapters I and II were added

as background for Chapter III. Chapter IV focuses attention on the die-

tribution of an estimate which is the basis for comparing the accuracy

of alternative sampling plans as well as a basis for statements about tht,

accuracy of an estimate from a sample. The content of Chapter IV is

included in books on sampling, but it is important that students hear or

read more than one discussion of the distribution of an estimate, espe-

cially with reference to estimates from actual sample surveys.

The author's interest and experience in training has been primarily

with persons who had begun careers in agricultural surveys. I appreciate

the opportunity, which the Statl ;tical Reporting Service has provided, to

prepare this monograph.

iii

Earl E. Houseman
Statistician
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CHAPTER I. NOTATION AND SUMMATION

1.1 INTRODUCTION

To work with large amounts of data, an appropriate system of notation

is needed. The notation must identify data by individual elements, and

provide meaningful mathematical expressions for a wide variety of summaries

from individual data. This chapter describes notation and introduces

summation algebra, primarily with reference to data fro .nsus and sample

surveys. The purpose is to acquaint students with notation and summation

rather than to present statistical concepts. Initially some of the expres-

sions might seem complex or abstract, but nothing more than sequences of

operations involving addition, subtraction, multiplication, and division

is involved. Exercises are included so a student may test his interpreta-

tion of different mathematical expressions. Algebraic manipulations are

also discussed and some algebraic exercises are included. To a consider-

able degree, this chapter could be regarded as a manual of, exercises for

students who are interested in sampling but are not fully familiar with

the summation symbol, E. Familiarity with the mathematical language will

make the study of sampling much easier.

1.2 NOTATION AND THE SYMBOL FOR SUMMATION

"Element" will be used in this monograph as a general expression for

a unit that a measurement pertains to. An element might be a farm, a per-

son, a school, a stalk of corn. or an animal. Such units are sometimes

called units of observation or reporting units. Generally, there are

several characteristics or items of information about an element that one

right be interested in.
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"Measurement" or "value" will be used as general terns for the

numerical value of a specified characteristic for an element. This

includes assigned values. For example, the element might be a farm and

the characteristic could be whether wheat is being grown or is not being

grown on a farm. A value of "1" could be assigned to a farm growing wheat

and a value of "0" to a farm not growing wheat. Thus, the "measurement"

or "value" for a farm growing wheat would be "1" and for a farm not grow-

ing wheat the value would be "0."

Typically, a set of measurements of N elements will be expressed as

follows: XI, X2,...,XN where X refers to the characteristic that is

measured and the index (subscript) to the various elements of the popula-

tion (or set). For example, if there are N persons and the characteristic

('

X is a person's height, then X1 is the height of the first person, etc.

To refer to any one of elements, not a specific element, a subscript "i"

is used. Thus, Xi (read X sub i) means the value of X for any one of the

N elements. A common expression would be "Xi is the value of X for the

ith element."

The Greek letter E (capital sigma) is generally used to indicate a

sum. When found in an equation, it means "the sum of." For example,

N

iE1Xi represents the sum of all values of X from Xi to XN; that is,

N

E X
i

so X1 + X
2
+...+ XN. Tne lower and upper limits of the index of

inl

summation are shown below and above the summation sign. For example, to

20

specify the sum of X for elements 11 thru 20 one would writ! E X.
i-ll

9



WI AVAILABLE

You might also eee notation such as "EX
i
where i m 1, N" which

3

indicates there are N elements (or values) in the set indexed by serial

numbers 1 thru N, or for part of a set you might see"EXi where i 0. 11,

12,...,°10." Generally the index of summation starts with 1; so you will

N

often see a summation written as EX
i

. That is, only the upper limit of
i

the summation is shown and it is and,brs tood that the summation begins with

Alternatively, when the set of values being summed is clearly under-

stood, the lower and upper limits,might not be shown. Thus, it is under-
,'

stood that EX or EX is the sum of X over all values of the set under

consideration. Sometimes a writer will even drop the subscript and use

EX for the sum of all values of X. Usually the simplest notation that is

adequate for the purpose is adopted. In this monograph, there will be

some deliberate variation in notation to familiarize students with various

representations of data.

An average is usually indicated by a "bar" over the symbol. For

example, R (read "X bar," or sometimes "bar X") means the average value of

N
E X

X. Thus, X . In this case, showing the upper limit, N, of the sum-

mation makes it clear that the sum is being divided by the number of elements

EX
i

and X is the average of all elements. However, 7- would also be inter-

preted as the average of all values of X unless there is an indication to

the contrary.

Do notAmtpstudymathematics without pencil and taper. Whenever

the shorthand is not clear, try writisr it out in long form. This will

often reduce any ambiguity and save tire.



Here are some examp
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of mathematical shorthand:

(1) Sum of the reciprp6ls of X

(2) Sum of thelifferences between
Xi and a constant, C

(3) Sum of the deviations of X
i

from the average of X

(4) Sum of the absolute values of
the differences between X

iand R. (Absolute value,
indicated by the vertical
lines, means the positive
value of the difference)

(5) Sum of the squares of Xi

(6) Sum of squares of the
deviations of X from X

(7) Average of the squares of the
deviations of X from X

(8) Sum of products of X and Y

(9) Sum of quotients of X
divided by Y

(10) Sum of X divided by the
sum of Y

(11) Sum of the first N digits

(12)

(13) t

3-1C.

4.91.+2 XV

N

E (Xi-C)m(XI-C)+(X2-C)+...+(XN-C)
iml

E(Xi-50m(Xl-R)+(X24)+...+(XN-R)
i

zixi-klmIx1-R1+1x2-R1+...+IxN-R1

2 2 2
EXi m X, + X2 + X3

2
+... XN

Z(Xi-502 - (X1-5)2 +...+ (XN-5)2

N
2

l

(X1 2-X)
(X

1
-X) +...+(XN-R)2im

N

N

E XiYi X1Y1 +X
2
Y
2
+...+X

N
Y
Niml

Xi X1 X2 XN
E m + + +

Yi Yl Y2 ".
N

EXi Xl+X2+...+ XN

FY Y +Y Y
i 1 2 N

N

E i 1+2+3+...+ N
jell

N

E iX m X
1
+2X

2
+3X

3
+...+

jell
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Exercise 1.1. You are given a set of four elements having the

following values of X: X
1

2, X
2

0, X
3

0 5, X
4

0 7. To test your

understanding of the summation notation, compute the values of the follow-

ing algebraic expressions:

AEPLEV111111

4

(1) E (Xi+4)
i01

Answer

30

(2) E2(X -1) 20

(3) 2E(Xi-1) 20

(4) E2X -1 27

EX

(5)
3.5

(6) EX
i

2 78

(7) E(-X )
2 78

(8) [EX j
2 196

(9) E(X
2
- X

i
) 64

(10) E(X
2
) - EX 64

(11) Ei(Xi) 45

(12) E(-1) (X ) 0

4

(13) t (X
2

- 3) 66

!el

(14) E X - E (1)

isl 101

66

4

riots: E (3) means find the sum of four 3'3

i01
.)

_it. Ow



Expression (Continued) Answer

(15) E(Xi R)

E(X R)2
29

Ni.- 3

(16)

tix2 - 2x + 5123
29(17)

N-1 3

2 -
EX

i
NX

2

29(18)
3

Definition 1.1. The variance of X where X ,.. X1, X2,..., XN, is

defined in one ;of two ways:

N

E(Xi-R)2
2 .

or

a
. . N

N
-

E(X -X)
2

S
2 iml

N-1

6

The reason for the two definitions will be explained in Chapter TIT.

The variance formulas provide measures of how much the values of X vary

(deviate) from the average. The square root of the variance of X is

called the standard deviation of X. The central role that the abcve

definitions of variance and standard deviation play in sampling theory

will, become apparent as you study sampling. The variance of an estimate

from a sample is one of the measures needed to judge ttlf accuracy of the

estimate and to evaluate alternative sampling designs. Much of the algebra

and notation in this chapter is related to computation of variance. For
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complex sampling plans, variance formulas are complex. This chapter

should help make the mathematics used in sampling more readable and note

meaningful when it is encountered.

Definition 1.2. "Population" is a statistical term that refers to

a set of elements from which a sample is selected ("Universe" is often

used instead of "Population").

Some examples of populations are farms, retail stores, students,

households, manufacturers, and hospitals. A complete definition of a

population is a detailed specification of the elements that compose it.

Data to be collected also need to be defined. Problems of defining popu-

lations to be surveyed should receive much attention in courses on sampling.

From a defined population a sample of elements is selected, information

for each element in the sample is collected, and inferences from the sam-

ple are made about the population. Nearly all populations for sample

surveys are finite so the mathematics and discussion in this monograph

are limited to finite populations.

In the theory of sampling, it is important to distiftguish between

data for elements in a sample and data for elements in the entire popula-
.

tion. Many writers use uppercase letters when referring to the population

and lowercase letters when referring to a sample. Thus X1,..., XN would

represent the values of some characteristic X for the N elements of the

population; and x
n
would represent the values of X in a sample of

n elements. The subscripts in xl,..., x
n

simply index the different

elements in a sample and do not correspond to the subscripts in X1,..., XN

which index the elements of the population. In other wozus, xi could be

any one of the Xi's. Thus,
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N

E X

X represents the population mean, and

n

Z x

x represents a sample mean

In this chapter we will be using only uppercase letters, except for

constants and subscripts, because the major emphasis is on symbolic repre-

sentation of data for a set of elements and on algebra. For his purpose,

it is sufficient to start with data for a set of elements and not be

concerned with whether the data are for a sample of elements or for all

elements in a population.

The letters X, Y, and Z are often used to represent different charac-

teristics (variables) whereas the first letters of the alphabet are commonly

used as constants. There are no fixed rules regarding notation. For

example, four different variables or characteristics might be called X1,

X2, X3, and X4. In that case X11 might be used to represent the i
th

value

of the variable X1. Typically, writers adopt notation that is convenient

for their problems. It is not practical to completely standardize notation.

Exercise 1.2. In the list of expressions in Exercise 1.1 find the

variance of X, that is, find S
2

. Suppose that X
4

is 15 instead of 7. How

1much is the variance of X changed? Answer: From 9-2 to 44-
3

.
3

Exercise 1.3. You are given four elements having the following values

of X and Y

X
1

2 X
2

0 X
3

so 5 X
4

so 7

Y1-2 Y
2
. 3 Y

3
1 Y

4
14



BEST COP! AVAILABLE

Find the value of the following expressions:

Expression Answer ELTIMIRE An

(1)

(2)

(3)

(4)

(5)

(6)

EX
1.

Y
i

(EX
i
) (EY

i
)

E(Xi-R)(Yi-q)

EX
i
Y
i-N RI

x

107

280

37

37

1.625

-6

(7)

(8)

(9)

(10)

(11)

(12)

E Xi -E Yi

E(Xi-Yi)2

E(X
i
-Y )

EX
2
-EY

2

i i

(E(X -Y
i
))2

[EXii2-[EYi]2

-6

74

-132

-132

36

-204

Ti E

E(Xi-Yi)

9

1.3 FREQUENCY DISTRIBUTIONS

Several elements in a set of N might have the same value for some

characteristic X. For example, many people have the same age. Let Xj

be a particular age and let Nj be the number of people in a population
K

(set) 3fNpeople who have the age Then EN aNwhereKis theXj.
jwj

number of different ages found in the population. Also EN 1X1 is the sum

EN X

of the ages of the N people in the population and
EN

represents the

I

average age of the N people. A listing of X
1

N1and 1 is called the

frequency distribution of X, since N
1

is the number of times (frequency)

that the age X is found in the population.

On the other hand, one could let X
i

represent the age of the i
th

individual in a population of N people. Notice that j was an index of age.

We are now using i as an index of individuals, and the average age would

EX EN EN 4X4 EX
i

be written as . Note that ENJX1 EX
i

and that ---"1" The
EN

j
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choice between these two symbolic representations of the age of people in

the population is a matter of convenience and purpose.

Exercise 1.4. Suppose there are 20 elements in a set (that is, N = 20)

and that the values of X for the 20 elements are: 4, 8, 3, 7, 3, 8,4'3, 3,

7,-21,8, 4, 8, 8, 3, 7, 8, 10, 3, 8.

(1) list the values of X and N1, where j is an index of the

values 2, 3, 4, 7, 8, and 10. This is the frequency

distribution of X.

What is K equal to?

Interpret and verify the following by making the calculations indicated:

N K
(3) ZXi= ENX

iml j.1 i J

EX EN X
(4) -1 . .

EN

n
E(X4-

2
x) EN4(X4-x)

2

(5) j.
iN EN

1.4 ALGEBRA

In arithmetic and elementary algebra, the order of the

addition or multiplication is performed does not affect the

familiar arithmetic laws when extended to algebra involving

symbol lead to the following important rules or theorems:

Rule 1.1 E(X -Y +Z ) = EX
i
-EY

i
+EZ

or E(Xli+X2i+...+1Ki) =

Rule 1.2 EaX1 = aEX where a is a constant

Rule 1.3 E(X +b) = EX +Nb where b is constant

numbers when

results. The

the summation
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If it is not obvious that the above equations are correct, write both

sides of each equation as series and note that the difference between the

MO sides is a matter "f the order in which the summation (arithmetic) is

performed. Note that the use of parentheses in Rule 1.3 means that b is

contained in the series N times. That is,

N
E (X +b) * (X

1
+b)+(X

2
+b)+...+(XN+b)

(Xl+Xi+...+XN) + Nb

On the basis of Rule 1.1, we can write

N N N

E (X
i
+b) E Xi + E b

i*1

N

The expression E b means"sum the value of b,which occurs N times." Therefore,

'is.1

N

Zb*Nb.
i*1

N

Notice that if the expression had been E X
i
+b,then b is an amount to add

N

to the sum, E X, .

i
N

In many equations X will appear; for example, E XXi or E

Since R is constant with regard to the summation, Efti REXi . Thus,

EX
i

E(X * E X -ER # EX Ni. By definition,X * . Therefore,

i

NYC * EX
i

and E(X * O.

N

To work with an expression like E(X +b)
2
we must square the quantity

i

in parentheses before summing. Thus,
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E(x + b)
2

me E(x
2
+ 2bx + b 2

)i
EX

2
+ E2bX + Ebz Rule 1

EX
2
+ 2bEX + Nb 2

Rules 2 and 3

Verify this resu't by using series notation. Start with (XI%) 2
+...+(yb) 2

.

It is very important that the ordinary rules of algebra pertaining to

the use of parentheses be observed. Students frequently make errors

because inadequate attention is given to the placement of parentheses or

to the interpretation of parentheses. Until you become familiar with the

above rules, practice translating shorthand to series and series to short-

hand. Study the following examples carefully:

(1) E(X )
2
0 (EX )

2

The left-hand side is the sum of

the squares of Xi. The right-hand

side is the square of the sum of Xi.

On the right the parentheses are

necessary. The left side could

2 2 have been written EX
iExi

(2) E
N Rule 1.2 applies.N2.

(3) E(x +Y ) 2
0 EX2 + Ey2 A quantity in parentheses must be

squared before taking a sum.

(4) E(X2+ Y2) m EX2 + EY2 Rule 1.1 applies

(5) EX Y 0 (EX
i
) (EY

i
) The left side is the sum of products.

The right side is the product of

sums.

(6) E(X
i
-Y )

2
- EX

2
- 2EX Y

i
+EY

2

N N
(7) Ea(X -b) 0 aEX ab



yS

N N

(8)

i

Ea(X2-b) = aEX - Nab

N N

(9) alEXi-b] AEX,-ab

,(10) EXi(Xi-Yi) EXi
2

EXiYi

Elspiske 1.5. Prove the following:

In all cases, assume i 1, N.

(1) E(X 0

(2)

X4Y, Y,

X
2 EX

i

-2
.(EX )

2

(3) NX --N
N

(4) E (aX'+bY
i
+C) 0 aEX

i
+bEY +NC

iMl

Note: Equations (5) and (6) should be (or become)

very familiar equations.

(5) E(Xi-R)2 = EX! Ne

(6) E(X -R)(Y -1) = EX
i
Y

(7) E(Xi
a

+ Y
i
)
2 1

2
0 E(X +AY

i
)
2

a

(8) Let Y n a+bXi, show that f

and ry
2

0 Na(a+2bi) + b
2

EX
i

2

13

(9) Assume that X
i
= 1 for N1 elementS of a set and that X

i
n 0

for N
0

of the elements. The total number of elements in the

set is N Ni+No. Let if

N
1

n P and NO = Q. Prove that

E(x 4)2

N
PQ
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(10) D(Xi-d)2 E(Xi-R)2 + N(R-d)2. Hint: Rewrite (Xi-d)2

as [(Xi-R)+(X-d)12. Recall from elementary, algebra.that

(a+b)
2

mg a
2
+2ab+b

2
and think of (X

i
-30 as a and of (R-d)

as b. For what value of d is X -d) 2
a minimum?

1.5 DOUBLE INDEXES AND SUMMATION

When there is more than one characteristic for a set of elements,

the different characteristics might be distinguished by using a different

letter for each or by an index. For example, Xi and Yi might represent

the number of acres of wheat planted and the number of acres of wheat

harvested on the i
th

farm. Or, X
ij

might be used where i is the index

for the characteristics and j is the index for elements; that is, X
ij

would be the value of characteristic X
i

for the j
th

element. However,

when data on each of several characteristics for a set of elements are

to be processed in the same way, it might not be necessary to use

notation that distinguishes the characteristics. Thus, one might say

E(Xi-51)2

calculate
N-1

for all characteristics.

More than one index is needed when the elements are classified accord-

ing to more than one criterion. For example

of characteristic X for the th
farm in the

the value of X for the k th household in the

, X
ij

might represent the value

th
county; or X

ijk
might be

j
th

block in the i
th

city.

As another example, suppose the processing of data for farms involves

classification of farms by size and type. We might let Xijk represent

the valui of characteristic X for the kth farm in the subset of farms

classified as type j and size i. If N
ij

is the number of farms classified



ij
X
ijk

k
as type j and size i, then -gm

ij.
is the average value of X for

N
ij.

15

the subset of farms classified as type j and size i.

There are two general kinds of classification--cross classification

and hierarchal or nested classification. Both kinds are often involved

in the same problem. However, we will discuss each separately. An

example of nested classification is farms within counties, counties within

States, and States within regions. Cross classification means that the

data can be arranged in two or more dimensions as illustrated in the next

section.

1.5.1 CROSS CLASSIFICATION

As a specific illustration of cross classification and summation with

two indexes, suppose we are working with the acreages of K crops on a set

of N farms. Let X
ij

represent the acreage of the i
th crop on the j

th
farm

where i so 1, K and j 1, 2,..., N. In this case, the data could

be arranged in a K by N matrix as follows:

........g..-efe....wwwww.g.l. -M-m........nim.PM1.11111.

Column (j)
: Row :

Row (i) total :

1

1 : X
11

.

.

.

i X
. : il
.. a

K
XK1

or

: Column : E X
il

: total :

X
1

x
ij

XKj

E X
iji

X1N : E Xlj
: j

. .

. .

.

X E X
iN : ij

. i .
.

E EE X :XiN.
ij
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N

The expression E X
ij

(or E X
ij

) means the sum of the values of X
ij

for a

fixed value of i. Thus, with reference to the matrix, E X
ij

is the total

of the values of X in the i
th

row; or, with reference to the exampleabout

farms and crop acreages, E
Xis

would be the total acreage on all farms of

whatever the i
th

crop is. Similarly, t X (or E X ) is the 'column total
ij

for the j
th

column, which in the example is the total for the
th

farm of-

the acreages of the K craps under consideration. The sum of all values of

KN
X could be written as

ij

El X
ij

or EE X
ij

.

ij

Double summation means the sum of sums. Breakin- A .J.ouble sum into

parts can be an important aid to understanding it. Here are two examples:

KN
(1) El X

ij
E X

lj
+ E X +...+ E X

Kj2j
ij

With reference to the above matrix,Equation (1.1) exnresses the grand total

as the sum of row totals.

AN
(2) EE X

ij
(Y

ij
+a) E X

1J
(Y +a) +...+ E X_

j
(Y
KJ

+a)
ij

E X
lj

(Y
lj

+a) la X
11 11

+a)
X1N(Y1N

+a)

(1.2)

In Equations (1.1) and (1.2) the double sum is written as the sum of K

partial sums, that is, one partial sum for each value of i.

Exercise 1.6. (a) Write an equation similar to Equation (1.1) that

expresses the grand total as the sum of column totals. (b) Involved in

Equation (1.2) are KN terms, X
ij

(Y
ij
+a). Write these terms in the form of

a matrix.
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The rules given in Section 1.4 also apply to double summation.

KN KN KN

EE X
ij

(Xij +a) 0 EE X
ij

Y
ij

+ a EE X
ij

.

ij ij

17

Study Equation (1.3) with reference to the matrix called for in Exercise

1.6(b). To fully understand Equation (1.3), you might need to write out

intermediate steps for getting from the left-hand side to the right-hand

side of the equation.

To simplify notation, a system of dot notation is commonly used, for

example:

E X
ij

X
i.

j

E

i

EE X
ij

X
ij

The dot in X indicates that an index in addition to i is involved and

Xi. is interpreted as the sum of the values of X for a fixed value of i.

(1.3)

Similarly, X .j
is the sum of X for any fixed value of j, and X represents

a sum over both indexes. As stated above, averages are indicated by use of

a bar. Thus Xi. is the average of X
ij

for a fixed value of i, namely

N
E Xij

1- Xi. and
X.4

would represent the average of all values of Xi),

El. X
ij

namely
NK

ti

Here is an example of how the dot notation can simplify an algebraic

expression. Suppose one wishes to refer to the sum of the squares of the

row totals in the above matrix. This would be written as E(X )

2
. The sum
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of squares of the row means would be E(R,.)2. Without the dot notation the
i

2

K N
corresponding expressions would be E(EX )

2
and E

"
. It is very

K N
important that the parentheses be used correctly. For example, mxii)

2
is

KN
not the same as EEX i2

j
. Incidentally, what is the difference between the

ij

last two expressions?

Using the dot notation, the variance of the row means could be written

as follows:
K

E(X,.-5i )2

V(Rid * (1.4)

where V stands for variance and V(R ) is an expression for the variance of

. Without the dot notation, or something equivalent to it, a formula

for the variance of the row means would look much more complicated.

Exercise 1.7. Write an equation, like Equation (1.4), for the variance

of the column means.

Exercise 1.8. Given the following values of Xij

1 2 3 4.1 =aw.owr..
1 8 11 9 14

2 10 13 11 14

3 12 15 10 17
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Find the value of the following algebraic expressions:

Expression Answer Expression Answer

(1) EX 42 42 (9) KE(R -R )2 54
j j.

N

EX2i

(2)

(3) X3,R
3s

(4) EX
i4

12

13.15
KN ij[KN

tEX
ij

(11) ZEX
2
- ------

ij KN
45 ij

KN

(10) EE (xi 4 4 +21 )2 6
ij .j is

ij

KN

(5) EtX
ij

144

ij

(6) R.. 12

KN
(7) EE((

ij
)2 78

ij

KN

2
[EEX

EX
1. ij

ij
II2

(12)
N KN

N

(13) X
lj 1.

)2

KN

K 2
(14) EE(X

iJ
-R )2

(8) NE(R, -X..) 18 ij

i 1.

78

18

21

60

19

Illustration 1.1. To introduce another aspect of notation, refer to

the matrix on Page 15 and suppose that the values of X in row one are to

be multiplied by al, the values of X in row two by a2, etc. The matrix

would then be alX11
alX1j aiXiN

a
i
X ... a

i
X
ij

... a
i
X
iN

4

aKXK1
aexj aexii

The general term can be written as aiXij because the index of a and the
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index i in X
ij

are the same. The total of all KN values of a
i
X
ij

is

KN
EEa

i
X
ij

. Since a
i

is constant with respect to summation involving j,
ij

N
we can place ai ahead of the summation symbol Z. That is, ELaiXi4

ij
Ea

i
EX

ij
.

i j

Exercise 1.9. Refer to the matrix: of values of X
ij

in Exercise 1.8.

Assume that a A. -1, a
2

se 0, and a
3

00 1.

Calculate:

(1)

ij

EEa
i
X
ij

(2) EE !141
ij

N

(3) EEa X
2

ij
ij

Answer: -296

Show algebraically that:

(4)

ij

EEa
i
X
ij

EX
3j

-EX
lj

(5) EE
a,

ij
3.. 1.

(6) EEa X
2

j
- EX

2

"
-EX

2

Exercise 1.10. Study the following equation and if necessary write

the summations as series to be satisfied that the equation is correct:

KN
EE(dX

ij
+bY

ij
) aEEX

ij
+ bEEY

ij
ij ij ij

Illustration 1.2. Suppose

Y
ij

X
ij
+a

i
+b

j
+c where i As 1, 2,...,K anc j 1, 2,...,N

-47



The values of Y
ij

can be arranged in matrix format as follows:

Y
11

X
11

+ a
1
+b

1
+c Y

IN
X
1N

+ a
1
+b

N
+c

.

Y
ij

X
tj

+ a
i
+b

j
+c

YK1 41(1 ak+bl+C YKN XKN aK4blec

21

Notice that a
i

is a quantity that varies from row to row but is constant

within a row and that b varies from column to column but is constant

within a column. Applying the rules regarding the summation symbols we

have
EY

ij
E(X

ij
+a

i
+b

j
+c)

EX
ij

+ Na
i
+ Eb + Nc

EY
ij

m E(X
ij
+a

i
+b

j
+c)

iXij

+
jai i

Kbj+K c

EZY
ij

EE(X
1

+a +b
j
+c)

ij ij

EEX
ij

+ NEa + KEb + KNcii A
j

Illustration 1.3. We have noted that E(X Y ) does not equal

(EX
i
)(EY

i
). (See (1) and (2) in Exercise 1.3, and (5) on Page 12). But,

EEX
iYj

(EX
i
)(EY

j
) where i 1, 2,...,K and j 1, 2,...,N. This becomes

ij

clear if we write the terms of EEX Y
j

J., matrix format as follows:
ij

X1Y1 + X1Y2 +...+ X
1
y
N

X2Y1 + X2Y
2
+...+ X

2
Y
N

NY NY2 +...+ NYN l'xiYiij

Row Totals

X
1
EY

j

X
2
EY

j

NEYi
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The sum of the terms in each row is shown at the right. The sum of t1 se_

row totals is XIEY.1 +...+ XKEY.1 (X1+...+ XK)EYJ EXLEYj. One could

get the same final result by adding the columns first. Very often inter-

mediate summations are of primary interest.

Exercise 1.11. Verity that EEX,1 Y, a (EX
i
)(EY

j
) using the values of

X and Y in Exercise 1.3. In Exercise 1.3 the subscript of X and the sub-

script of Y were the same index. In the expression EEX Y
j

that is no longer
ij

the case.

Exercise 1.12. Prove the following:

KN
2 K N 2

K N
N

(1) EE(a
i
X
ij
+b

j
) Ea

i

2
EX

ij
+ 2Eai Eb

j
X
ij

+ KEb
j

ij j j

KN
2 K N

K
(2) EEa

i
(X

ij is
) Ea EX -- NEa

i
ij

j
j

KN K N
(3) EEa

ij
Ft )(Y

ij is
) Ea EX EX

ij
Y
ij

NEa
ij j

1.5.2 HIERARCHAL OR NESTED CLASSIFICATION

A double index does not necessarily imply that a meaningful cross

classification of .the data can be made. For example, Xij might represent

the value of X for the j
th

farm in the i
th

county. In this case, j simply

identifies a farm within a county. There is no correspondence, for exrmple,

between farm number 5 in one county and farm number 5 in another. In fact

the total number of farms varies from county to county. Suppose there are

K counties and N
i

farms in the i
th

cc.unty. The total of X for the i
th

Ni K
county could be expressed as Xi. E Xi4 In the present case EX

ij
is

KNi
meaningless. The total of all values of X is EE Xi4

ij



23

When the classification is nested, the order of the subscripts

(indexes) and the order of the summation symbols from left to right should

be from the highest to lowest order of classification. Thus in the above

example the index for farms was on the right and the summation symbol

KN4

involving this index is also on the right. In the expression ErX
ij'

ij

summation with respect to i cannot take place before summation with regard

to j. On the other hand, when the classification is cross classification

the summations can be performed in either order.

In the example of K co'.nties and Ni farms in the i
th

county, and in

similar examples, you may think of the data as being arranged in rows (or

columns):

X11, X12, ... X
11' 12 1N

1

X21, X22, 1 X
2N

2

XKl' XK2' XKN
K

Here are two double sums taken apart for inspection:

(1) EE

KNi
(X

ij
-X..) = E

Ni
(X

lj
-X

.

a) 4...+ E (X_ i
21 )2K

ij

)

1 2 2 - 2
E (X

lj
-X..)

= (X11 -X.
,) +...+ (X1N

1

-X )

Equation (1.5) is the sum of squares of the deviations, (Xij-X..), of all

K

values of X
ij

from th overall mean. There are EN values of X
ij

, and

2()

(1.5)

a'
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KN

44
R
IA

4.0
If there was no interest in identifying the data by counties,

EN
i

N
a singic index would be sufficient. Equation (1.5) would then be E(X -X) .

KN
- 2 1

+...+ E
Nv

(2) EE (X
ij

-X ) E (X
lj 1.

)2 (x -- .2
)ij xlc

C,.17wwwwonmwoomi

(1.6)

1

1

4 .)2(Xj 1 11 1-1.)2 (X 4 8

)2 ++ (X
1

With reference to Equation (1.6) do you recognize E
1
(Xli-X1.)

2
'I It involves

only the subset of elements for which i 1, namely X...., X12, X Note.

1

-that R
1,

is the average value of X in this subset. Hence, E1 (X
1j
-X

1.
)
2

is

the sum of the squares of the deviations of the X's in this subset from the

subset mean. The double sum is the sum of K terms and each of the K terms

is a sum of squares for a subset of X's, the index for the subsets being i.

Exercise 1.13. Let X
ij

represent the value of X for the j
th

farm in

the i
th

county. Also let K be the number of counties and N
i
be the number

of farms in the i
th

county. Suppose the values of X are as follows:

X
11

3 X
12

m 1 X
13

m 5

k21
4 X

22
6

X31 -Q X32.5 X33 -1 X34 -2

Find the value of the following expressions:

Expression Answer

K
(1) EN1

31

9



Expression (Continued)

KN
(2) EEiX

ij
if

(3) X,. and

NI

(4) E'X
lj

= X
1.

(5) X
2-

and X
3.

Answer

27

27 3

9

10 8

(6) RI., R2., and R3. 3 5 2

EN4R
(7)

3EN
i

K
(8) E(E

N
i
X
ij

)
2
or EX

2

i j

(9) EE(X
ij

)2

ij

N
- 2

(10) E (X
lj
-X

1.
)

j

N
-

(11) E (X
i
-X )

2

(12) EE

KNi
(X

ij
wX

1.
)2

K
(13) EN (X4 )2

2

BiXij] [EEiX
iK j

ij

(14) E
N
i

EN
J

K
(15) EN

i
X -NX

is
1.

245

36

8

8, 2, and 14 for i = 1, 2,

and 3 respectively

24

12

12

12

of -4.

040

25
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Expressions (14) and (15) in Exercise 1.13 are symbolic representations

of same thing. By definition

N KN
E
i
X
ij

Xi,
'

EEiX
ij

= X , and EN
i

= N
ij

Substitution in (14) gives

K X X
2. 2

Ni N

x X
2

7, i. -2Also by definition = Ai. and if.. as R.. . Therefore "INX and
i

N
i

i i.

6
X
2

K
.. -2 -2 -27- - NX . hence, by substitution, Equation (1.7) becomes EN X2 NX.,"

Exercise 1.14. Prove the following:

KNi K
(1) EE X X

ij
la EXi.

ii

(2) EE X (X
i

) 0

ij

(3) EN
i

-X )
2

op EN
i
X
2
-Nx

2

i
Note that this equates (13) and (15) in Exercise 1.13.

The proof is similar to the proof called for in part (5)

of Exercise 1.5.

KN K N
2 i 2 2

(4) EE (a
i
X
ij

-b )
2
= Ea

i
j

E X
ij
-2Ea

ibiX1.
+ EN

i
b

ij

1.6 THE SQUARE OF A SUM

In statistics, it is often necessary to work algebraically with the

square of a sum. For example,

(EXi)
2

(XI+X2+...+XN)
2

Xi2 +XIX2+...+Xi+X2X1+...+Xte2XNX1+...

(1.7)
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The terms in the square of the sum can be written in matrix form as

follows:
X1X1 X1X2 XiXi XiXN

X2X1 X2X2 X2Xj
X2C

. .

X
i
X
I

X
i
X
2

... XiXi ... XiXN

. . .

XNX1 XNX2 XNXi ,
XNXN

The general term in this matrix is XiXi where Xi and Xj come from the same

set of X's, namely, Xi,...,XN. Hence, i and j are indexes of the same set.

Note that the terms along the main diagonal are the squares of the value

of X and could be written as EXi . That is, on the main diagonal i mm j

and XiXj XiXi sms X
2

. The remaining terms are all products of one value

of X with some other value of X. For th,se terms the indexes are never

equal. Therefore, the sum of all terms not on the main diagonal can be

expressed as EX
i
X
j
where i 0 j is used to express the fact that the summa-

i0j

tion includes all terms where i is not equal to j, that is, all terms other

than those on the main diagonal. Hence, we have shown that (EX
i
)
2

mm

EX
2
+ EX X .

i0j
j

Notice the symmetry of terms above and below the main diagonal:

X1X2 mm X2X1,X1X3 X3X1 , etc. When symmetry like this occurs, instead of

EXiX4 you might see an equivalent expression 2E XiX4 . The sum of all

i0j icj

terms above the main diagonal is E XiX
j.

. Owing to the symmetry, the sum

i <j
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of the terms below the main diagonal is the same. Therefore, E XiX4
i0j

2 E X4X .

i(j A J

' 2 '
Exercise 1.15. Express the terms of [ EX IX

1
+X

2
+X

3
+X

4
j in

iml

matrix format. Let X
1

ims 2, X
2

0, X3 5, and X
4

7. Compute the values

of EX
2

'

2 E XiXj , and [EX
i

]
2

. Show that [EXi]
2

00 EX
2
+ 2 E XiXj .

i<j i<j

An important result, which we will use in Chapter 3, follows from the

fact that

[EX
i

j

2
EX

2
+ E XiXj

i0j

Let X
i

Y -V. Substituting (Y -V) for X in Equation 1.8 we have

[E(Y 4)12 E(Y -V)2 + E (Y -V)(Y -V)
1.0j

We know that [E(Yi-V)12 0 because E(Yi-V) 0. Therefore,

E(Y -Y)
2
+ E (Y 4)(Y -V) 0

i0j

It follows that E (Y -V)(Y -V) -E(Y 4)2
i0j

Exercise 1.16. Consider

E (Y 4)(Yi-V) E (YiY4 VYi - VYj + V2
i0j i0j

EYY Yi - VEY + E i2
1.99 i0j i0j I 1.0j

-
Do you agree that E Y

2
N(N-1)Y

2
? With reference to the matrix layout,

i0j

(1.8)

(1.9)

2
Y appears N

2
times but the specification is i 0 j so we do not want to

count the N times that Y2 is on the main diagonal. Try finding the values

of E X and E X and then show thati,ji 10j

35
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; (Yi-i)(Y.14) E YiYj N(N-1.)f2
iej .

Hint: Refer to a matrix layout. In E Yi how many times does Y1 appear?
ifj

Does Y
2
'appear the same number of times?

0 '1.7 SUMS OF SQUARES

For various reasons statisticians are interested in components of

,variation, that is, measuring the amount of variation attributable to each

of more than one source. This involves computing sums of squares that

correspond to the different sources of variation that are of interest.

We will discuss a simple example of nested classification and a simple

example of cross classification.

1.1.1 NESTED CLASSIFICATION

To be somewhat specific, reference is made to the example of K counties

and N
i

farms in the i
th

county. The sum of the squares mf the deviations

of X
ij

and R can be divided into two parts as shown by the following

formula:
KN

2 m 2 KNi .2
EE (X

ij
-X .) + rE (Xi

..jai.)

ij
" (1.10)

The quantity on the left-hand side of Equation (1.10) is called the

total sum of squares. In Exercise 1.13, Part (9), the total sum of squares

was 36.

The first quantity on the right-hand side of the equation involves the

squares of (Xi.-31..),which are deviations of the class means from the over-

all mean. It is called the between class sum of squares or with reference

to the example the between county sum of squares. In Exercise 1.13,

Part (13), the between county sum of squares was computed. The answer was

12.
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The last term is called the within sum of squares because it involves

deviations within the classes from the class means. It was presented

previously. See Equation (1.6) and the discussion pertaining to it. In

Exercise 1.13, the within class sum of squares was 24, which was calculated

in Part (12). Thus, from Exercise 1.13, we have the total sum of squares,

36, which equals the between, 12, plus the within, 24. This verifies

Equation (1.10).

The proof of Equation 1.10 is easy if one gets started correctly.

Write Xii-R, (Xii-Xi.) +(Ris-R..). This simple technique of adding and

subtracting Y1. divides the deviation (X R..) into two parts. The proof

proceeds as follows:

KN,

EE1(X
i

.)2 u((x
i
R ) (R

1-*

R M2
ij ii

Emx
11
R )2 + 2(X

ii
)(1

i.
) + (X 5i )2)

1. ..
ij

EE(X
ij i.

)2 + 2EE(X )(R
is

) + Es(R R )2
ij ii

KN
Exercise 1.17. Show that SEi(X

ij
)(31 ) 0

ii

-
and that EE

KN

(X -X )
2 E N (R R )2

ij

Completion of Exercise 1.17 completes the proof.

Equation (1.10) is written in a form which displays its meaning rather

than in a form that is most useful for computational purposes. For computa-

tion purposes, the following relationships are commonly used:

KN
Total - EE

i (X R..)
12 ux2 _NR2

iij j
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K

Between EN (R -R )2 .

KN
Within EE

i
(X

ij
-R )2

EEx2 R2

ij ij
j

N KN

K
E X EEiXij
4 4

where N EN , R - --N an- A R
4

.
i

2
Notice that the major part of arithmetic reduces to calculating EE

i
X44 9

'j

K
-2 -

EN
i
X , and NX

2
. There are variations of this that one might use. For

i

K X
2

K
-2

example, one could use E TT-- instead of EN,1 X,. .

Exercise 1.18. Show that

EKNEi(X
ij

)2 EEX2 -EN
i i
R2

A special case that is useful occurs when Ni 2. The within sum of

squares becomes

K2
2

EE(X
ij i ) E[(x -R

1.
)2 + (X

12 1)21

Since R
1. 2

it is easy to show that

(X
il J.

)2
4

(x
il
-x

/2
)2

and (X
12
-I

1.
)2

4
(x

il
-x

i2
)2

Therefore the within sum of squares is

1
E

(X11-X12)2

which is a convenient form for computation.
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1.7.2 CROSS CLASSIFICATION

Reference is made to the matrix on Page 15 and to Exercise 1.8. The

total sum of squares can be divided into three parts as shown by the

following formula:

KN
n 2 N = 2 N

EE (XNE(X -x ) + KE(X -R )4 + EE(X -R +R )2 (1.11),j
ij I

i. .j
ij

Turn to Exercise 1.8 and find the total sum of squares and the three

parts. They are:

Sum of Squares

Total 78

Rows 18

Columns 54

Remainder 6

The three parts add to the total which verifies Equation (1.11). In

Exercise 1.8, the sum of squares called remainder was computed diro.ctly

(see Part (10) of Exercise 1.8). In practice, the remainder sum of squares

is usually obtained by subtracting the row and column sum of squares from

the total.

Again, the proof of Equation (1.11) is not difficult if one makes the

right start. In this case the deviation, (X -R ), is divided into three

parts by adding and subtracting R and Ri as follows:

(Xi. -X..) + + (Xil-Rie-R,f+R..) (1.12)

Exercise 1.19. Prove Equation (1.11) by squaring both sides of Equa-

tion (1.12) and then doing the summation. The proof is mostly a matter of

showing that the sums of the terms which are products (not squares) are zero.

KN
For example, showing that EE(Xi.-R..)(Xii-Xi.-R.j+R..) 0 .

ij
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CHAPTER II. RANDOM VARIABLES AND PROBABILITY

2.1 RANDOM VARIABLES

The word "random" has a wide variety of meanings. Its use in such

terms as "random events," "random variable," or "random sample," however,

implies a random process such that the probability of an event occurring

is knoWn a priori. To select a random sample of elements from a population,

tables of random numbers are used. There are various ways of using such

tables to make a random selection so any given element will have a specified

probability of being selected.

The theory of probability sampling is founded on the concept of a

random variable which is a variable that, by chance, might equal any one

of a defined set of values. The value of a random variable on any partic-

ular occasion is determined by a random processin such a way that the

chance (probability) of its being equal to any specified value in the set

is known. This is in accord with the definition of a probability sample

which states that every element of the population must have a known prob-

ability (greater than zero) of being selected. A primary purpose of this

chapter is to present an elementary, minimum introduct!.on or review of

probability as background for the next chapter on expected values of a

random variable. This leads to a theoretical basis for sampling and for

evaluating the accuracy of estimates from a probability-sample survey.

In sampling theory, we usually start with an assumed population of N

elements and a measurement for each element of some characteristic X. A

typical mathematical representation of the N measurements or values is

Xl,...,Xi,...,XN where Xi is the value of the characteristic X for the i
th

element. Associated with the i
th element is a probability Pi, which is the

probability of obtaining it when one element is selected at random from the

40
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set of N. The P 's will be called selection probabilities. If each

1
element has an equal chancc of selection, Pi or N. The Pi's need not be

equal, but we will specify that each P >0. When referring to the probability

of X being equal to Xi we will use P(Xi) instead of Pi.

We need to be aware of a distinction between selection probability

and inclusion probability, the latter being the probability of an element

being included in a sample. In this chapter, much of the discussion is

oriented toward selection probabilities because of its relevance to finding

expected values of estimates. from samples of various kinds.

Definition 2.1. A random variable is a variable that can equal any

value X1, in a defined sat, with a probability P(X ).

When an element is selected at random from a population and a measure-

ment of a characteristic of it is made, the value obtained is a random

variable. As we shall see later, if &sample of elements is selected at

random from a population, the sample average and other quantities calculated

from the sample are random variables.

Illustration 2.1. One of the most familiar examples of a random

variable is the number of dots that happen to be on the top side of a die

when it-comes to rest after a toss. .his also illustrates the concept of

probability that we are interested in; namely, the relative frequency with

which a particular outcome will occur in reference to a defined set of

possible outcomes. With a die there are six possible outcomes and we expect

each to occur with the same frequency, 1/6, assuming the die is tossed a

very large or infinite number of times. Implicit in a statement that each

side of a die has a probability of 1/6 of being the top side are some

assumptions about the physical stricture of the die and the "randomness"

of the toss.

41



35

The additive and multiplicative laws of probability can be stated in

several ways depending upon the context in which they are to be used. In

sampling, our interest is primarily in the outcome of one random selection

or of a series of random selections that yields a probability sample.

Hence, the rules or theorems for the addition or multiplication of prob-

abilities will be stated or discussed only in the context of probability

sampling.

2.2 ADDITION OF PROBABILITIES

Assume a population of N elements and a variable X which has a value

X
i

for the i
th

element. That is, we have a set of values of X, namely

X1,...,Xi,...,XN. Let P1,...,Pi,...,PN be a set of selection probabilities

where P
i

is the probability of selecting the i
th element when a random

selection is made. We specify that each P
i
must be greater than zero and

that EP 1. When an element is selected at random, the probability that

it is either the i
th element or the j

th element is Pi + Pi. This addition

rule can be stated more generally. Let Ps be the sum of the selection

probabilities for the elements in a subset of the N elements. When a random

selection is made from the whole set, rs is the probability that the element

selected is from the subset and 1-P
s

is the probability that it is not from

the subset. With reference to the variable X, let P(Xi) represent the

probability that X equals Xi . Then P(Xi) +P(X1) represents the probability

that X equals either X
i

or X ; and P
s
(X) could be used to represent the

probability that X is equal to one of the values in the subset.

Before adding (or subtracting) probabilities one should determine

whether the events are mutually exclusive and whether all possible events

have been accounted for. Consider two subsets of elements, subset A and

I
41 A*1
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subset B, of a population of N elements. Suppose one element is selected

at random. What is the probability that the selected element is a member

of either subset A or subset 3? Let P(A) be the probability that the

selected element is from subset A; that is, P(A) is the sum of the selec-

tion probabilities for elements in subset A. P(B) is defined similarly.

If the two subsets are mutually exclusive, which means that no element is

in both subsets, the probability that the element selected is from either

subset A or subset B is P(A) + P(B). If some elements are in both subsets,

see Figure 2.1, then event A (which is the selected element being a member

of subset A) and event B (which is the selected element being a member of

subset B) are not mutually exclusive events. Elements included in both

subsets are counted once in P(A) and once in P(B). Therefore, we must

subtract P(A,B) from P(A) + P(B) where P(A,B) is the sum of the probabilities

for the elements that belong to both subset A and subset B. Thus,

P(A or B) P(A) + P(B) - P(A,B)

Figure 2.1

To sumnarize, the additive law of probability as used above could be

stated as follows: If A and B are subsets of a set of all possible outcomes

that could occur as a result of a random trial or selection, the probability

43
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that the outcome is in subset A or in subset B is equal to the probability

that the outcome is in A plus the probability that it is in B minus the

probability that it is in both A and B.

The additive law of probability extends without difficulty to three

or more subsets. Draw a figure like Figure 2.1 with three subsets so that

some poi ts are common to all three subsets.. Observe that the additive

law extends to three subsets as follows:

P(A or B or C) P(A)+P(B)+P(C)-P(A,B)-P(A,C)-P(B,C)+P(A,B,C)

As a case for further discussion purposes, assume a population of N

elements and two criteria for classification. A two-way classification of

the elements could be displayed in the format of Table 2.1.

Table 2.1--A two-way classification of N elements

=,, - 11.1.1.1.

X class

: Y class : : Total :

I j

1 : Nil ,P11 Nli,Pli Nls,Pis

.

: N ,P :1 1.

.

N P N
ij

,P
ij

N
is'

P
is

: ,

Ni. Pi
:

.

t :

N
N
tjtl'Pt1

N ,P : N ,P :

to ts t. t.

: Total : N.1* N.J U.s :

The columns represent a classification of the elements in terms of criterion

X; the rows represent a classification in terms of criterion Y; N
ij

is the

number of elements in X class j and Y class i; and P
ij

is the sum of the
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selection ptobabilities for the elements in X class j and Y class i. Any

one of the N elements can be classified in one and only one of the t times

s cells.

Suppose one element from the population of N is selected. According

to the additive law of probability we can state that

EP
ij

0 .0 is the probability that the element selected is fromi
X class j, and

EP
ij

m P is the probability that the element selected is from

Y class i, where

P
ij is the probability that the element selected is from

(belongs to both) X class j and Y class i.

The probabilities P
83

and Pi, are called marginal probabilities.

The probability that one randomly selected element is from X class

j or from Y-class i is +.13i - P
ij

. (The answer is not P + P becauseP..1
j i,

in P.3 + P
i,

there are N
ij elements in X class 3 and Y class i that are

counted twice.)

If the probabilities of selection are equal,,fil m , Pfj m

Ni.
and Pi. m

N

Illustration 2.2. Suppose there are 5,000 students in a university.

Assume there are 1,600 freshmen, 1,400 sophomores, and 500 students living

in dormitory A. From a list of the 5,000 students, one student is selected

at random. Assuming each student had an equal chance of selection, the

probability that the selected student is a freshman is
1600
5000 , that he is a

1400
sophomore is

5000 , and that he is either a freshman or a sophomore is Mg+

1400
Also, the probability that the selected student lives in dormitory A5000
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500
is 5--ao . But, what is the probability that the selected student is either

a freshman or lives in dormitory A? The question involves two classifica-

tions: one pertaining to the student's class and the other to where the

student lives. The information giVen about the 5000 students could be

arranged as follows:

''''.......17.111.,MEM.14-- 11m
Class

: Dormitory : Total .

: Freshmen Sophomores Others :

:

A

Other

Total

500

4500

1600 1400 2000 : 5000

From the above format, one can readily observe that the answer to the ques-

tion depends upon how many freshmen live in dormitory A. If the problem

had stated that 200 freshmen live in dormitory A, the answer would have

1600 500 200
been wro- +

5000 Toon

Statements about probability need to be made and interpreted with

great care. For example, it is not correct to say that a student has a

probability of 0.1 of living in dormitory A simply because 500 students out

of 5000 live in A. Unless students are assigned to dormitories by a random

process with known probabilities there is no basis for stating a student's

probability of living in (being assigned to) dormitory A. We are consider-

ing the outcome of a random selection.

Exercise 2.1. Suppose on.' has the following information about a

population of 1000 farms:
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600 produce corn

500 produce soybeans

300 produce wheat

100 produce wheat and corn

200 have one or more cows

all farms that have cows also produce corn

200 farms do not produce any .crops

One farm is selected at random with equal probability from the list

of 1000. Mat is the probability that the selected farm,

(a) produces corn? Answer: 0.6

(b) does not produce wheat?

(c) produces corn but no wheat? Answer: 0.5

(d) produces corn or wheat but not both?

(e) has no cows? Answer: 0.8

(f) produces corn or soybeans?

(g) produces corn and has no cows? Answer: 0.4

(h) produces either corn, cows, or both?

(i) does not produce corn or wheat?

One of the above questions cannot be answered.

Lxercise 2.2. Assume a population of 10 elements and selection

probabilities as follows:

Element xi Pi
Element Xi i

1 2 .05 6 11 .15

2 7 .10 7 2 .20

3 12 .D3 3 8 .05

4 0 .02 9 6 .05

5 8 .2;) 10 3 .10
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One element is selected at random with probability Pi.

Find:

(a) P(X-2),.the probability that X 2.

(b) P(X>10), the probability that X is greater than 10.

(c) P(X42), the probability that X is equal to or less than 2.

(d) P(3<X,10), the probability that X is greater than 3 and less

than 10

(e) P(X<3.or Xt10), the probability that X is either equal to or less

than 3 or is equal to or greater than 10.

Note: The answer to (d) and the answer to (e) should add to 1.

So fr, we have been discussirg the probability of an event occurring as

a result of a single random selection. When more than one random selection

occurs simultaneously or in succession the multiplicative law of prob-

ability is useful.

2.3 MULTIPLICATION OF PROBABILITIES

Assume a population of N elements and selection probabilities
N

Pi,...,Pi,...,PN. Each Pi is greater than zero and EP1 1. Suppose

two elements are selected but before the second selection is made the

first element selected is returned to the population. In this case the

outcome of the first selection does not change the selection probabilities

for the second selection. The two selections (events) are independent.

The probability of selecting the i
th element first and the j

th
element

second is, PiPi, the product of the selection probabilities Pi and Pi.

If a selected element is not returned to the population before the next

selection is made, the selection probabilities for the next selection are

changed. The selections are dependent.
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The multiplicative law of probability, for two independent events

A and B, states that the joint probability of A and B happening in the

order A,B is equal to the probability that A happens times the prob-

ability that B happens. In equation form,P0B) P(A)P(B). For the

order B,A, P(BA) P(B)P(A) and we note that P(AB) P(BA). Remember,

independence means that the probability of B happening is not affected

by the occurrence of A and vice versa. The multiplicative law extends

to any number of independent events. Thus, P(ABC) P(A)P(B)P(C).

For two dependent events A and B, the multiplicative law states that

the joint probability of A and B happening in the order A,B is equal to

the probability of A happening times the probability that B happens under

the condition that A has already happened. In equation form P(AB)

P(A)P(Bf A); or for the order B,A we have P(BA) P(B)P(0). The vertical

bar can usually be translated as "given" or "given that." The notation on

the left of the bar refers to the event under consideration and the nota-

tion on the right to a condition under which the event can take place.

P(BIA) is called conditional probability and cc. .d be read "the prob-

ability of B, given that A has already happened," or simply "the prob-

ability of B given A." When the events are independent,P(BIA) P(B);

that is, the conditional probability of B occurring is the same as the

unconditional probability of B. Extending the multiplication rule to a

series of three events A,B,C occurring in that order, we have P(ABC)

P(A)P(BIA)P(CIAB) where P(CIAB) is the probability of C occurring. given

that A and B have already occurred.

2,4 SAMPLING WITH REPLACEMENT

When a sample is drawn and each selected element is returned to the

population before the next selection is made, the method of sampling is

49



43

called "sampling with replacement." In this case, the outcome of one

selection does not change the selection probabilities for another

selection.

Suppose a sample of n elements is selected with replacement. Let the

values of X in the sample be x1,x2,...,xn,where xi is the value of X

obtained on the first selection, x2 the value obtained on the second

selection, etc. Notice that xi is a random variable that could be equal

to any value in the population set of values X1.X2,...,XN, and the prob-

. ability that xi equals Xi is Pi. The same statement applies to x2, etc.

Since the selections are independent, the probability of getting a sample

of n in a particular order is the product of the selection probabilities

namely, p(x1)p(x2)...p(xn) where p(xi) is the Pi for the element selected

on the first draw, p(x2) is the Pi for the element selected on the second

draw, etc.

Illustration 2.3. As an illustration, consider a sample of two

elements selected with equal probability and with replacement from a popu-

lation of four elements. Suppose the values of some characteristic X for

the four elements are X1, X2, X3, and X4. There are 16 possibilities:

X
l'
X
1

X
l'
X
2

l'
X
3

X
l'

X
4

X2,X1 X3,X1 X4,X1

X2,X2 X3,X2 X4,X2

X
2'
X
3

X
3'

X
3

X
4'

X
3

X2,X4 X3,X4 X4,X4

1 1
In this illustration p(xi) is always equal to 74- and p(x2) is always T. .

Hence each of the 16 possibilities has a probability of (-1) (-10 h.
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Each of the 16 possibilities is a different permutation that could

be regarded as a separate sample. However, in practice Gas we are not

concerned about which element was selected first or second) it is more

logical to disregard the order of selection. Hence, as possible samples

and the probability of each occurring, we have:

Sample Probabilla Sample, Probability

X
l'

X
1

X
1
,X

2

X X
3

X1,X4

X2,X2

1/16 X
2
,X

3
1/8

1/8 X2,X4 1/8

1/8 X3,X3 1/16

1/8 X3,X4 1/8

1/16 X4,X4 1/16

Note that the sum of the probabilities is 1. That must always be the

case if all possible samples have been listed with the correct prob-

abilities. Also .tote that, since the probability (relative frequency

of occurrence) of each sample is known, the average for each sample is

a random variable. In other words, there were 10 possible samples, and

any one of 10 possible sample averages could have occurred with the

probability indicated. This is a simple illustration of the fact that

the sample average satisfies the definition of a random variable. As

the theory of sampling unfolds, we will be examining the properties of

a sample average that exist as a result of its being a random variable.

Exercise 2.3. With reference to Illustration 2.3, suppose the

1 1
if $probabilities of selection were P1 z, P2 , P3 1F, and P4

1

Find the probability of each of the ten samples. Remember the sampling

is with replacement. Check your results by adding the 10 probabilities.
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The sum should be 1. Partial answer: For the sample composed of elements

1 111
2 and 4 the probability is (w)(-4-1 + (

u
1-4)(-1.)

16.

2.5 SAMPLING WITHOUT REPLACEMENT

When a selected element is not returned to the population before the

next selection is made, the sampling method is called sampling without

replacement. In this case, the selection probabilities change from one

draw to the next; that is, the selections (events) are dependent.

As above, assume a population of N elements with values of some

characteristic X equal. to X1,X2,...,XN. Let the selection probabilities

for the first selection be PI,...,Pi,...PN where each Pe() and EPi = 1.

Suppose three elements are selected without replacement. Let xl, andand

x
3
be the values of X obtained on the first, second, and third random

draws, respectively. What is the probability that xl X5, x2 m X6, and

x3 0 X7? Let P(X5,X6,X7) represent this probability,which is the prob-

ability of selecting elements 5, 6, and 7 ili that order.

According .0 the multiplicative probability law for dependent events,

P(X5,X6,X7) P(X
5
)P(X

6
IX

5
)P(X

7
IX

5
,X

6
)

It is clear that P(X5) 0 P5. For the second draw the selection prob-

.

abilities (after element 5 is eliminated) must be adjusted so they add

to 1. Hence, for the second draw the selection probabilities are

P
6

PN P
61.2 , 1:17-. That is, P(X6IX5) .

r5 4 Ts 1
5

1-5
5

P
7

Similarly, P(X IX ,X )
7 5 6 rs r6

Therefore, P(X
'
X

'

X
7
) gi (P )(11)( )

5 5 5 1-P
5

1-
5
-P

6

(2.1)
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Observe that P(X6,X5,X7) ' (P
6
) (

P
5
)(

7 . ). Hence, P(X
5'
X
6'

X
7

) 0

P(X6,X5,X7) unless P5 P6. In general, each permutation of it elements

has a different probability of occurrence unless the Pi's are all equal.

To obtain the exact probability of selecting a sample composed of ele-

ments 5, 6, and 7, one would need to compute the probability for each of

the six possible permutations and get the sum of the six probabilities.

Incidentally, in the actual processof selection, it is not neces-

sary to compute a new set of selection probabilities after each selection

is made. Make each selection in the same way that the first selection

was made. If an element is selected which has already been drawn, ignore

the random number and continue the same process of random selection

until a new element is drawn.

As indicated by the very brief discussion in this section, the

theory of sampling without replacement and with unequal probability of

selection can be very complex. However, books on sampling present ways

of circumventing the complex problems. In fact, it is practical and

advantageous in many cases to use unequal probability of selection in

sampling. The probability theory for sampling with equal probability

of selection and without replacement is relatively simple and will be

discussed in more detail.

Exercise 2.4. For a population of 4 elements there are six possible

1 1
samples of two when sampling without replacement. Let P1 - z, P2 25 lip

1
P3 it and P4 is w. List the six possible samples and find the prob-

ability of getting each sample. Should the probabilities for the six

samples add to 1? Check your results.

j3
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Exercise 2.5. Suppose two elements are selected with replacement

and with equal probability from a population of 100 elements. Find the

probability: (a) that element number 10 is not selected, (b) that ele-

ment number 10 is selected only once, and (c) that element :':tuber 10 is

selected twice? As a check, the three probabilities shluld add to 1.

Why? Find the probability of selecting the combination of elements 10

and 20.

Exercise 2.6. Refer to Exercise 2.5 and change the specification

"with replacement" to `without replacement." Answer the same questions.

Why is the probability of getting the combination of elements 10 and 20

greater than it was in Exercise 2.5?

2.6 SIMPLE RANDOM SAMPLES

In practice, nearly all samples are selected without replacement.

Selection of a random sample of n elements, with equal probability and

without replacement, from a population of N elements is called simple

random sampling (srs). One element must be selected at a time, that is,

n separate random selections are required.

First, the probability of getting a particular combination of n

elements will be discussed. Refer to Equation (2.1) and the discussion

preceding it. The Pi's are all equal to Ff for simple random sampling.

)(41)(41/.Therefore, Equation (2.1) becomes P(X5,X6,X7) 4 All per-

mutations of the three elements 5, 6, and 7 have the same probability of

occurrence. There are 3! - 6 possible permutations. Therefore, the

probability that the sample is composed of the elements 5, 6, and 7 is

Any other combination of three elements has the same

probability of occurrence.

con 0'441
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In general, all possible combinations of n elements have the same

chance of selection and any particular combination of n has the following

probability of being selected:

(1)c2)3)...(n) ni(N-n)!
N(R-1)(N-2)...(N-n+1) gis N!

(2.2)

Ni
According to a theorem on number of combinations, there are --Rignic-5-4-

possible combinations (samples) of n elements. If each combination of

n elements has the same chance of being the sample selected, the probability

of selecting a specified combination must be the reciprocal of the number

of coeoinations. This checks with Equation (2.2).

An important feature of srs that will be needed in the chapter on

expected values is the fact that the j
th

element of the population is as

likely to be selected at the i
th

random draw as any other. A general

expression for the probability that the j
th

element of the population is

selected at the i
th

drawing is

Let us check Fquation 2.3 for i gm 3. The equation becomes

iN-ls,N-211 1 .1
N "N-1"N-21 N

The probability that the j
th

element of the population is selected at the

third draw is equal to the probability that it was not selected at either

the first or second draw times the conditional probability of being

selected at the third draw, given that it was not selected at the first

or second draw. (Remember,the sampling is without replacement). Notice

that NN'` is the probability that the j
th

element is not selected at the

(2.3)

N-2
first draw and is the conditional probability that it was not selected

N-1
N-1 N-2

at the second draw. Therefore, Nis the probability that the j
th

N -1
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element has not been selected prior to the third draw. When the third

draw is made, the conditional probability of selecting the j
th

element

^4 9 N-
I

2
Hence the probability of selecting the jth element at the third

N.70(2 1
draw is

(
This verifies Equation (2.3) for i 3.

1

)(R-17/i) g

To summarize, the general reca.slt for any size of sample is that the

j
th

element in a population has a probability equal to
1

being selected

at the i
th

drawing. It means that x
i

(the value of X obtained at the i
th

draw) is a random variable that has a probability of F of being equal to

any value of tlfe set Xl,...,XN.

What probability does the j
th

element have of being included in a

1
sample of n? We have just shown that it has a probability of -g of being

selected at the i
th

drawing. Therefore, any given element of the popula-

tion
N

,tion has n chances, each equal to - of being included in a sample. The

element can be selected at the first draw, or the second draw,..., or the

n
th

draw and it cannot be selected twice because the sampling is without

replacement. Therefore the probabilities, for each of the it draws, can

be added which gives as the probability of any given element being

included in the sample.

ti

Illustration 2.4. Suppose one has a Hut of 1,000 farms which includes

some farms that are out-of-scope (not eligible) for a survey. There is no

way of knowing in advance whether a farm on the list is out-of-scope. A

simple random sample of 200 farms is selected from the list. All 200 farms

are visited but only the ones found to be in scope are included in the

sample. What probability does an in-scope farm have of being in the sam-

ple? Every farm on the list of 1000 farms has a probability equal to -}
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of Jeing in the sample of 200. All in-scope farms in the sample of 200

1are included in the final sample. Therefore, the answer is E.

Exercise 2.7. From the following set of 12 values of X a srs of

three elements is to be selected: 2,'10, 5, 8, 1, 15, 7, 8, 13, 4, 6,

and 2. Find P(7012) and P(34i<12). Remember that the total possible

number of samples of 3 can readily be obtained by formula. Since every

possible sample of three is equally likely, you can determine which sem-

pies will have an x<3 or an x>12 without listing all of the numerous

208possible samples. Answer: P(x>12) 3 Dr
x<ji

it 9 ; P(3<x<12)
220 ' 220 220'

2.7 SOME EXAMPLES OF RESTRICTED RANDOM SAMPLING

There are many methods other than srs that will give every element

an equal chance of being in the sample, but some combinations of it ele-

ments do not have a chance of being the sample selected unless srs is

used. For example, one might take every k
th

element bepinning from a

random starting point between 1 and k. This is called systematic sam-

pling. For a five percent sample k would be 20. The first element for

the sample would be. a random number between 1 and 20. If it is 12, then

elements 12, 32, 52, etc., compose the sample. Every element has an

equal chance, , of being in the sample, but there are only 20 com-

binations of elements that have a chance of being the sample selected.

Simple randor; sampling ccelld have given the same sample but it is the

method of sampling that characterizes a sample and determines how error

due to sampling eL, Lo be estimated. One may think of sample design as a

matter of choosing a method of sampling; that is, choosing restrictions

to place on the process of selecting a sample so the cofibinations which
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a chance of being the sample selected are generally "better" than

51

manyof the combinations that could occur with simple random sampling.

At the same time, important properties that exist for simple random sam-

pies need to be retained. The key properties of srs will be developed in

the next two chapters.

Another common method of sampling involves classification of all

elements of a population into groups called strata. A sample is selected

from each stratum. Suppose N elements of the population are in the i
th

stratum and a simple random sample of ni elements is selected from it.

This is called stratified random sampling. It is clear that every ele-
n

ment in the i
th

stratui has a probability equal to of being in the
n

Ni

sample. If the sampling icaction , is the same for all strata,
Ni

n

every element of the population has an equal chance, namely -if- , of
i

being in the sample. Again every element of the population has an equal

chance of selection and of being in the sample selected, but some combi-

nations that could occur when the method is srs cannot occur when

stratified random sampling is used.

So far, our discussion has referred to the selection of individual

elements, which are the units that data pertain to. For sampling purposes

as population must be divided into parts which are called sampling units.

A sample of sampling units is then selected. Sampling units and elements

could be identical. But very often, it is either not possible or not

practical to use individual elements as sampling units. For example,

suppose a sample of .households is needed. I list of households does not

exist but a list of blocks covering the area to be surveyed might be avail-

able. In this case, a sample of blocks might be si'lected and all households
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within the selected blocks included in the sample. The blocks are the

sampling units and the elements are households. Every element of the

population should belong to one and only one sampling unit so the list of

sampling units will account for all elements of the population without

duplication or omission. Then, the probability of selecting any given

element is the same as the probability of selecting the sampling unit

that it belongs to.

Illustystion_2.. Suppose a population is composed of 1800 dwelling

units located within 150 well-defined blocks. There are several possible

sampling plans. A srs of 25 blocks could be selected and every dwelling

unit in the selected blocks could be included in the sample. In this

1
case, the saipling fraction is -6- and every dwelling unit has a probability

1
of -6- of being in the sample. Is this a srs of dwelling units? No, but

one could describe the sample as a random sample (or a probability sample)

of dwelling units and state that every dwelling unit had an equal chance

of being in the sample. That is, the term "simple random sample" would

apply to blocks, not dwelling units. As an alternative sampling plan, if

there were twelve dwelling units in each of the 150 blocks, a srs of two

dwelling units could be selected from each block. This scheme, which is an

example of stratified random sampling, would also give every dwelling unit

1
a probability equal to -6- of being in the sample.

Illustration 2.6. Suppose that a sample is desired of 100 adults

living in a specified area. A list of adults does not exist, but a list

of 4,000 dwelling units in the area is available. The proposed sampling

plan is to select a srs of 100 dwelling units from the list. Then, the

field staff is to visit the sample dwellings and list all adults living

519
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in each. Suppose there are 220 adults living in the 100 dwelling units.

A Ample random sample of 100 adults is selected from the list of 220.

Consider the probability that an adult in the population has of being in

the sample of 100 adults.

Parenthetically, we should recognize that the discussion which

follows overlooks important practical problems of definition such as the

definition of a dwelling unit, the definition of an adult, and the defini-
.

tion of living in a dwelling unit. However, assume the definitions are

clear, that the list of dwelling units is complete, that no dwelling is

on the list more than once, and that no ambiguity exists about whether

an adult lives or does not live in a particular dwelling unit. Incom-

plete definitions often lead to inexact probabilities or ambiguity that

gives difficulty in analyzing or interpreting results. The many practical

problems should be discussed in an applied course on sampling.

It is clear that the probability of a dwelling unit being in the

1
sample is -4-6 . Therefore, every person on the list of 220 had a chance

1
of -a; of being on the list because, under the specifications,a person

lives in one and only one dwelling unit, and an adult's chance of being

on the list is the same as that of the dwelling unit he lives in.

The second phase of sampling involves selecting a simple random

sample of 100 adults from the list of 220. The conditional probability

100
of an adult being in the sample of 100 is 220 1

That is, given the

5
fact that an adult is on the list of 220, he now has a chance of Tr of

being in the sample of 100.

Keep in mind that the probability of an event happening is its rela-

tive frequency in repeated trials. If another sample were selected
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following the above specifications, each dwelling unit in the population

would again have a chance of 40 of being in sample; but, the number of

adults listed is not likely to be 220 so the conditional probability at

the second phase depends upon the number of dwellings units in the sample

blocks. Does every adult haVe the sane chance of being in the sample?

Examine the case carefully. An initial impression could be misleading.

Every adult in the population has an equal chance of being listed in the

first phase and every adult listed has an equal chance of being selected

at the second phase. But, in terms of repetition of the whole sampling

plan each person does not have exactly the same chance of being in the

sample of 100. The following exercise will help clarify the situation

and is a good exercise in probability..

Exercise 2.8. Assume a population of 5 d.u.'s (dwelling units) with

the following numbers of adults:

Dwellinji Unit No. of Adults

1

2

3

4

5

2

4

1

2

3

A srs of two d.u.'s is selected. A srs of 2 adults is then selected from

a list of all adults in the two d.u.'s. Find the probability that a speci-

fied adult in d.u. No. 1 has of being in the sample. Answer: 0.19. Find

the probability that an adult in d.u. No. 2 has of being in the sample.

Does the probability of an adult being in the sample appear to be related

to the number of adults in his d.u.? In what way?

Gi.
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An alternative is to take a constant fraction of the adults listed

instead of a constant number. For example, the specification might have

been to select a random sample of z of the adults listed in the first

phase. In this case, under repeated application of the sampling speci-

fications, the probability at the second phase does not depend on the

outcome of the first phase and each adult in the population has an equal

chance, ( 1(
1
1

1%. I. T3-0- , of being selected in the sample. Notice that

under this plan the number of adults in a sample will vary from sample

to sample; in fact, the dumber of adults in the sample is a random variable.

For some surveys, interviewing more than one adult in a dwelling unit

is inadvisable. Again, suppose the first phase of sampling is to select

a ars of 100 dwelling units. For the second phase, consider the following:

When an interviewer completes the listing of adults in a sample dwelling,

he is to select one adult, from the list of those living in the dwelling,

at randc'm in accordance with a specified set of instructions. He then

interviews the selected adult if available; otherwise, he returns at a

time when the selected adult is available. What probability does an adult

living in the area have of being in the sample? According to the multi-

.

plication theorem, the answer is P'(D)P(AID) where P'(D) is the probability

of the dwelling unit, in which the adult lives, being in the sample and

P(AID) is the probability of the adult being selected given that his

1

dwelling is in the sample. More specifically, r(D) 471 and P(AID)
1

where k is the number of adults. /in the i
th

dwelling. Thus, an adult's

chance, (
1

)( ), of being in a sample is inversely proportional to the
' -ki

number of adults in his dwelling unit.

Exercise 2.9. Suppose there are five dwelling units and 12 persons

living in the five dwelling units as follows:
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Dwelling Unit Individuals

1 1, 2

2 3, 4, 5, 6

3 7, 8

4 9

5 10, II, 12

1. A sample of two dwelling units is selected with equal probability

and without replacement. All individuals in the 'selected dwelling units

are in the sample. 'What probability does individual number 4 have of being

in the sample? Individual number 9?

2. Suppose from a list of the twelve individuals that one individual

is selected with equal probability. From the selected individual two

items of information are obtainer: his age and the value of the dwelling

in which he lives. Let X1, X2,...,X12 represent the ages of the 12 indi-

viduals and let Y1,...,Y5 represent the values of the five dwelling units.

1Clearly, the probability of selecting the i
th

individual is yi and there-
'

fore P(Xi) . Find the five probabilities P(Y
1
),...,P(Y

5
). Do you

agree that P(YI) ? As a check, EP(Yj) should equal one.

3. Suppoue a sample of two individuals is selected with equal prob-

ability and without replacement. Let Y
lj

be the value of Y
j

obtained at

the first draw and Y
2j

be the value of Y
j

obtained at the second draw.

Does P(Y
lj

) a P(Y
2j

)? That is, is the probability of getting Y
j

on the

second draw the same as it was on the first? If the answer is not evident,

refer to Section 2.5.

Exercise 2.10. A small sample of third-grade students enrolled in

public schools in a State is desired. The following plan is presented only

63
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as an exercise and without consideration of whether it is a good one: A

sample of 10 third-grade classes i$ to be selected. All students in the

10 classes will be included in the sample.

Step 1, Select a srs of 10 school districts.

Step 2. Withi each of the 10 school districts, prepare a list

of public schools having a third grade. Then select one

school at random from the list.

Step 3. For each of the 10 schools resulting from Step 2, list

the third-grade classes and select one class at random.

(If there is only one third-grade class in the school,

it is in the sample). This will give a sample of 10 classes.

Describe third-grade classes in the population which have relatively

small chances of being selected. Define needed notation and write a

mathematical expression representing the probability of a third-grade

class being in the sample.

2.8 TWO-STAGE SAMPLING

For various reasons sampling plans often employ two or more stages

of sampling. For example, a sample of counties might be selected, then

within each sample county a sample of farms might be selected.

Units used at the first stage of sampling are usually called primary

sampling units or psu's. The sampling units at the second stage of sam-

pling could be called secondary sampling units. However, since there has

been frequent reference earlier in this chapter to "elements of a popula-

, tion," the swirling units at the second stage will be called elements.

In the simple case of two-stage sampling, each element of the popu-

lation is associated with one and only one primary sampling unit. Let i

6.1
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be Cue index for psu's and 19!t j be the i..dex for elements within a psu.

Thui X
ij

represents the value of some characteristic X for the j th
element

in the i
th

T:su. Also, let

Then,

M m the total numbel. of psu's,

m = the number of psu's selected for a sample,

N the total number of elements in the ith psu, and

n m the number of elements in the sample from the ith psu.

M
MIii 0 N, the total number of elements in the population, and

m
En

i
n, the total number of elements in the sample.

Now consider the probability of an element being selected by a two

step process: (1) Select one psu, and (2) select one element within the

selected psu. Let,

Then,

P . the probability of selecting the i
th

psu,

Pili the conditional probability of selecting the 1th

element in the i
th

psu given that the i
th

psu has already

been selected, and

P
ij

a the overall probability of selecting the j
th

element in

the i
th

psu.

P a P P

If the product of the TWO probabilities, Pi and Pjlit is constant for

every element, then every element of the population has an equal chance of

3
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being selected. In other words, given a set of selection probabilities

P1,...,Pm for the psu's, one could specify that Po -51. and compute Pik ,

where Pili
1

, so every element of the population will have an equal

chance of selection.

Exercise 2.11. Refer to Table 2.1. An element is to he selected by

a three-step process as follows: (1) Select one of the Y classes (a row)

with probability (2) within the selected row select an X class (a
N44

column) with probability
N
4'4 , (3) within the selected cell select an

_

element with equal probability. Does each element in the population of N

elements have an equal probability of being drawn? What is the probability?

The probability of an element being included in a two-stage sample

is given by

P PP'
J

(2.4)

where

P' . the probability that the i
th

psu is in the sample

of psu's, and

- the conditional probability which the j element has

of being in the sample, given that the ith psu has

been selected.

The inclusion probability P will be discussed very briefly for three
ij

important cases:

(1) Suppose a random sample of m psu's is selected with equal prol.-

ability and without replacement. The probability, P; , of the ith psu

being in the sample is fl Ft where f1 is the sampling fraction for the

first -stage units. in the becond stage of sampling assume that, within

each of the m psu's, a constant proportion, f2, of the elements is selected.

itg';
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That is, in the i
th

psu in the sample, a simple random sample of n
i
ele-

ments out of Ni is selected, the condition being that ni = f2Ni. Hence,

the conditional probability of the j
th

element in the i
th

psu being in
ni

the sample is Pitt = = f2 . Substituting in Equation 2.4, we have

P.
i

f
1
f
2
which shows that an element's probability of being in the

sample is equal to the product of the sampling fractions at the two stages.

In this case Pik is constant and is the overall sampling fraction.

Unless N
i

is the same for all mat's, the size of the sample,

ni f2Ni , varies from psu to psu. Also, since the psu's are selected

at random the total size of the sample, n = Zni = f2 ENi, is not constant

with regard to repetition of the sampling plan. In practice variation in

the size, ni, of the sample from psu to psu might be very undesirable. If

appropriate information is availai.le, it is possible to select psu's with

probabilities that will equalize the sample sizes n
i
and also keep

Pik

constant.constant.

N
(2) Suppose one psu is selected with probability Pi . This

is commonly known as sampling with pns (probability proportional to size).

Within the selected rsu, assume that a simple random sample of k elements

is selected. (If any N
i
are less than k, consolidations could be made so

all psu's have an Ni greater than k). Then,

Ni
kP; , and P;

k

it i

which means that every element of the population has an equal probability,

5 , of being included in a sample of k elements.

Extension of this sampling scheme to a sample of m psu's could

encounter the complications indicated in Section 2.5. However, it was

6';
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stated that means exist for circumventing those complications. Sampling

books 1/ discuss this matter quite fully so we will not include it in this

monograph. The point is that one can select m psu's without replacement

in such a way that m
N
i is the probability of including the i

th
psu in

N
the sample. That is, Pi m m . If a random sample of k elements is

Ni

selected with equal probability from each of the selected psu's,

Pitt if and

N
k mk n

P (m
ij

-
N N N N

Thus, if the N
i

are known exactly for all M psu's in the population,

and if a list of elements in each psu is available., it is possible to

select a two-stage sample of n elements so that k elements for the sample

come from each of m psu's and every element of the population has an equal

chance of being in the sample. In practice, however, one usually finds

one of two situations: (a) there is no information on the number of ele-

ments in the psu's, or (b) the information that does exist is out-of-date.

Nevertheless, out-of-date information on number of elements in the psu's

can be very useful. It is also possible that a measure of size might

exist which will serve, more efficiently, the purposes of sampling.

(3) SUppose that characteristic Y is used as a measure of size. Let
Y

Yi be the value of Y for the i
th psu in the population and let Pi n Yi

M
where Y EY, . A sample of m psu's is selected in such a way that

i

Pi
Y

m i is the probability that the i
th psu has of being in the sample.

--100*....

1/ For example, Hansen, Hurwitz, and Madow. Sample Survey Methods and

Theory. Volume I, Chapter 8. John Wiley and Sons. 1953.

Gcl
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With regard to the second stage of sampling, let f2i be the sampling

fraction for selecting a simple random sample within the th
psu in the

sample. That is, Pik mg £21 . Then,

Y

(m V-) (f21)

In setting sampling specirications one would decide on a fixed value

for Pfd. In this context P'
j

is the overall sampling fraction or propor-

(2.5)

tion of the population that is to be included in the sample. For example,

If one wanted a 5 percent sample, Pij would he .05. 0r, if one knew there

were approximately 50,000 elements in the population and wanted a sample

of about 2,000, he would set P m .04. Hence, we will let f be the over-

all sampling fraction and set Pi) equal to f. Decisions are also made on

the measure of size to be used and on the number, m, of psu's to be selected.

In Equation 2.5, this leaves f2i to be determined. Thus, f2i is computed

as follows for each psu in the sample:

f
fY

=
2i mY

Use of the sampling fractions f2/ at the second stage of sampling will give

every element of the population a probability equal to f of being in the

sample. A sample wherein every dement of the population has an equal

chance of inclusion is often called a self-weightc-! sample.
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fitAPTER Ill. EXPUCTED VALU' :S OF RANDOM VARIABLES

3.1 INTRODUCTION

The theory of expected values of random variables is used exten-

sively in the theory of sampliir; in cact, it is the foundation for

samplinp theory. Interpretations of the accuracy of estimates from

probability samples depend heavily on the theory of exnected values.

The definition of a random variable was discussed in the previous

chapter. It is a variable that can take (he equal to) any one of a

defined set of values 17ith known probability. Let X
i

he the value of X

for ti i
th element in a set of N elements and let P1 he the probability

that the i
th eler,,,nt has of bein,, selected by some chance operations so

that P iA known a priori. 111.1t is the expected value of X?

Definition 3.1. The expected value of a random vIlriable X is

I
.4

P.X.
i

(where 7 P 2.1. The rathematical notation for the expected value

i=1 f=1
4.

of X is L(X). Hence, by definition, E(X) = " PiXf .

1=1

Observe that 7P
i

X
i

is a weir,hted average of the values of X, the

weights being the probabilities of selection. "Exr,ected value" is a

substitute expression for "avera,,e value." In other words, r means "the

average "clue' of" or "find the average value of" whatever follows V For

exanple, L(X
2 ),rend "the exnected value of X :irefers to the average value

of the squaresof the values that X can equal. That is, by definition,

E(X
2

) = P X'
i

f=1

If all of the N elements have an equal chance of being selected, all

1
values of P

i

must equal because of the requirement that
I

1. In
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EX
i -this case, E(X) = E X

N
m X , which is the simple average of X

iml
N

for all N elements.

Illustration 3.1. Assume 12 elements having values of X as follows:

X
1
m 3 X

5
m 5 X

9
m 10

',X
2

im 9 X
6

m 3 X
10

m 3

X3= 3 X
7

m 4 X11 =3
X
4

m 5 X
3

3 X
12

m 4

For this s(t,E(X) m
1+9+12 .. +4

m S, assuming each element has the same

chance of:selection. Or, by countinA the number of times that each

unique vilue of X occurs, a frequency distribution of X can be obtained

as follows:

3 5

4 2

5 2

,-
S 1

9

10 1

where X
1

is a unique value of X and N1 is the number of times X1 occurs.

EN X EX
We noted in Chapter I that EN m N, EN X = EX

i
, and that

EN
j

Suppose one of the Y values is selected at random with a probability equal

N, N
P4 where P

j EN
to = m . What is the expected value of X, ? By
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N ENX,
definition E(X

j
)0EPjXj 0EN 1Xi 0 -R. The student may verify

that in this illustration E(X1) S. Note that the selection specifica-

tions were equivalent to selecting one of the 12 elements at random with

equal probability.

Incidentally, a frequency distribution and a probability distribution

are very similar. The probability distribution with reference to X would

be:

3 5/12

4 2/12

5 2/12

8 1/12

9 1/12

10 1/12

The 12 values, Pi 0 , for the 12 elements are also a probability distri-

bution. This illustration shows two ways of treating the set of 12

elements.

When finding expected values be sure that you understand the defini-

tion of the set of values that the random variable might equal and the

probabilities involved.

Definition 3.2. When X is a random variable, by definition the

expected value of a function of X is

N

E[f(X)) E Pi[f(Xi))

1.01.

Some examples of simple functions of X are: f(X) aX, f(x) X
2

,

f(X) R a + bX + cX2, and f(X) (X-502 . For each value, X , in a

defined set there is a corresponding value of f(Xi).

.";:
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Illustration 3.2. Suppose f(X) = 2X+3. Uith reference to the set

of 12 elements discussed above, there are 12 values of f(X1) as follows:

f(X1) = (2)(3) + 3 = 9

f(X
2

) = (2)(9) + 3 = 21

f(X12) = 2(4) + 3 = 11

Assuming P1 = -7- the expected value of f(X) = 2X+3 would be

,1.(2X+3) =

12
I
-(2X +3) = (--)(9)+(1--)t21)+.,,+(--)(11) a 13N i 12 12 12

In algebraic terms, for f(X) = aX+b, we have

N

E(aX+b) = Pi(aXi+b) = EPi(aXi) + EPib
i=1

By definition ZPi(aXi) = E(aX), and El'ib = E(b). Therefore,

(3.1)

E(aX+b) = 1.(aX) + E(b)
(3.2)

Since b is constant and 7,Pi = 1, EPib = h, which leads to the first

important theorem in expected values.

Theorem 3.1. The expected value of a constant is equal to the

constant: E(a) = a.

By definition E(aX) = :Pi(aXi) = aEriXi. Since Eyi = E(X), we have

another important theorem:

Theorem 3.2. The expected value of a constant times a variable equals

the constant times the expected value of the variable: E(aX) = aE(X).

Applying these two theorems to Equation (3.2) we have E(aX+b) =

+ b. Therefore, with reference to Illustration 3.2, E(2X+3) =

2E(X) + 3 = 2(3) + 3 = 13, which is the sire as the result found in

Equation (3.1).
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Exercise 3.1. Suppose a random variable X can tt,ke any of the

following four values with the probabilities indicated:

X
3
= 4 X

4
= 6

P
3
= 1/6 P

4
= 1/6

(a) Find E(X) Answer: 4

X
I

P

=

=

2

2/6

X2=

P
2

=

5

2/6

(b) Find E(X-) Answer: 183. Note that E(X
2
) 0 (E(X)]

2

(c) Find E(X-R) Answer: 0 Note: By definition

4

E(X -X) = E P. (X -R)

1 =1 I i

(d) Find E(X-R)2 Answer: 2. Note: By definition

4

E(X-R)2 = N P X 402

Exercise 3.2. From t;)e following set of three values of Y
i
one

yllue 1,1 to be selected with a probability P':

Y
1

-2 Y
2

= 2 Y
3

= 4

P"
1
= 1/4 P"

2
= 2/4 P"

3
= 1/4

1

(a) Find E(Y) Answer: 15

(h) Find E(Y) Answer: 3/16. Note: ETT5.-. 0 E(Y)

(c) Find E(Y-1')2 Answer: 42
4

3.2 EXPECTED VALUE OF THE SUM OF TWO RANDOM VARIAB'S

The sum of two or more random variables is also a random variable.

If X and Y are two random variables, the expected value of X + Y is equal

to the expected value of X plus the expected value of Y:E(X+Y) = E(X)+E(Y).

Two numerical illustrations will help clarify the situation.

Illustration 3.3. Consider the two random variables X and Y in

Exercises 3.1 and 3.2:

7.1
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1X
I
a 2 Y

1
a -2

Pi " T4

X
2
* 5 P

2

2
=

6
Y
2

as

2
a

2

4
2 P'

4

1X
3

.0 4 P
3

I
a

6
Y
3

a 4 P
3

0.

1
X4 N. 6 P 00

4 6

Suppose one element of the first set and one element of the second

set are selected with probabilities as listed above. What is the expected

value of X + Y? The joint probability of getting,Xi and Yi is PiP because

the two selections are independent. Hence by (4'.!finition

4 3

E(X + Y) = ti EPP' (X +Y)
i=1 1=1 ijij

The possible values of X + Y and the probability of each are as follows:

X + Y Pip' P' X + Y PiiP'
2X1 + Y1 * 0 PlPi * -2-1-0. X

3
+ Y

1
a 2 r

3
p

1

.
24

4 2X
I
+ Y

2
= 4

PIP; X3 + Y2 .3 6 P3P2' ,.. ii:24

, 1X
3
+ Y a 8 P P * --

3 33 24

1X
4
+ Y

I
5 4 P

4
P1 a --

24

x
1

+ Y
3

* 6

X
2
+ Y

I
* 3

XI + Y2 * 7

PIP;

,
P
2
V
1

.0

24

2
--
24

4

24
X
4
+ Y

2
* 8 P

4
P
2

, a
24

2 1X1 + Y3 sa 9 P2P3 .0 ii; X
4
+ Y

3
a 10 P P *

4 3 24

As a check the sum of the probabilities must be I if_all possible

sums have been listed and the probability of each has been correctly

(3.3)

determined. Subatitutinp the values of X + Y and P P' in Enuation (3.3)

we obtain 5.5 as follows for exnected value of X + Y:

(.)(0) + (--4) (4) + + (A)(10) = 5.524 24 24
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From Exercises 3.1 and 3.2 we have E(X) = 4 and E(Y) = 1.5. There-

fore, E(X) + E(Y) = 4 + 1.5 = 5.5 which verifies the earlier statement

that E(X + Y) = E(X) + E(Y).

Illustration 3.4. Suppose a random sample of two is selected with

replacement from the population of four elements used in Exercise 3.1.

Let x
1
be the first value selected and let x

2
be the second. Then x

1
and

x
2

are random variables any' x
1
+ x

2
is a random variable. The possible

values of xl + x2 and the probability of each, P(xl,x2),are listed below.

Notice that each possible order of selection is treated separately.

x
1

x
2

P(x
l'

x
2
) x

1
+x

2 xl x2
P(x1,x2)

x1 +x2

X1 X
1

4/36 4 X
3

X
1

2/36 6

X
I

X
2

4/36 7 X
3

X
2

2/36 9

X
1

X
3

2/36 6 X3 ; 1/36 8

X
1

X
4

2/36 S X
3

X
4

1/36 10

X
2

X
1

4/36 7 X
4

X
1

2/36 8

X
2

X
2

4/36 10 X4 X2
2/36 11

X
2

X
3

2/36 9 X
4

X
3

1/36 10

X
2

X
4

2/36 11 X
4

X
4

1/36 12

By definftion E(x
1
+ x

2
) is

4 4
--(4) + --(7)
36 36

2
+ --(6)

36
+ + --(12) = 8

36

In Exercise 3.1 we found E(X) = 4. Since x
1

is the same random variable

as X, E(xl) = 4. Also, x2 is the same random variable as X, and E(x2) = 4.

Therefore, E(x
1
) + E(x

2
) = 8, which verifies that E(x

1
+x

2
) = E(x

1
) + E(x

2
).

In general if X and Y are two random variables, where X might equal

X1,... ,Xs and Y might equal Y1,... ,Y4, then E(X + Y) 0 E(X)+E(Y). The
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NM
proof is as follows: By definition E(X+Y) EE P

ij
(X

i
+Y

j
) where P

ij
is

ij

the probability of getting the sum Xi + Yj,and EEPij = 1. The double

summation is over all possible values of P
ij

(X
i
+Y

j
). According to

the rules for summation we may write

NM NM NM
Er P (X +Y ) = EE P

ii
X
i
+ XX Pi4Yi

ij ij ij

(3.4)

In the first term on the right, Xi is constant with regard to the summation

over j; and in the second term on the right, Y is constant with regard

to the summation over i. Therefore, the right-hand side of Equation (3.4)

can be written as

N M M N
E

i

X,EP
ij
+EY EP

ij

N N

And, since E P = P
i

and E P
ij

= P , Equation (3.4) becomes

NM
EE P

ij
(X

i
+Y ) = E XiPi + E Y Pij j

ti
By definition E XiPi E(X) and E YiPi n E(Y) .

i

Therefore E(X+Y) = E(X) + E(Y) .

If the proof is not clear write the values of P
ij

(X
i
+Y

j
) in a matrix

format. Then, follow the summation manipulations in the proof.

The above result extends to any number of random variables; that is,

the expected value of a sum of random variables is the sum of the expected

values of each. In fact, there is a very important theorem that applies

to a linear combination If random variables.
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Theorem 3.3. Let u 01 a
1
u
1

+...+
akuk

where ul,...,uk are random

variables any' al,...,ak are constants. Then

E(u) = alE(121) +...+ ak E(uk)

or in summation notation

k k
E(u) = E E aiui = E aiE(ui)

The generality of Theorem 3.3 is impressive. For example, with refer-
,

ence to sampling from a population X1,..., X4, ul might be the value of X

obtained at the first draw, u2 the value obtained at the second draw, etc.

The constants could be weights. Thus, in this case, u would be a weighted

average of the sample measurements. Or, suppose xi,x2,...,xk are averages

from a random sample for k different age groups. The averages are random

variables and the theorem could be applied to any linear combination of the

' averages. In fact ui could be any function of random variables. That is,

the only condition on which the theorem is based is that sitncOlust be a

random variable.

Illustration 3.5. Suppose we want to find the expected valpe of

(X + Y)2 where X and Y are random variables. Before Theorem 3.3 can he

applied we must square (X + Y). Thus E(X + Y)` = E(X
2
+ 2XY + Y

2
) .

The application of Theorem 3.3 gives E(X + Y)
2

w E(X)
2
+ 2E(XY) + E(Y)

2
.

Illustration 3.6. We will now show that

E(X-R)(Y-q) = E(XY) XY where E(X) = X and E(Y) =

Since (X-X) (Y-i) XY XY Xi; + 56 we have

E(X-R)(Y4) 1.40 E(XY-XY-Xil+Ti)

and application of Theorem 3.3 gives

E(X-R)(Y-q) = E(XY) E(XY) E(YX) + E(XY)
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Since X and i are constant, E(XY) = X E(Y) = XY, E(yR) = iR, and E(XY) = Rf.

Therefore, E(X-X) (Y-Y) = E(XY) XY

Exercise 3.1. Suppose E(X) = 6 and E(Y) = 4. Find

(a) E(2X+4Y) Answer: 28

(b) [E(27012 Answer: 144

(c) i(Y) Answer: 2

(d) E(5Y-X) Answer: 14

Exercise 3.4. Prove the following, assuming E(X) R and E(Y) =

(a) E(X-R) se 0

(b) E(aX-bY) + cE(Y) = aR + (c-b)V

(c) Eja(X-R) + b(Y-q)] = 0

(d) E(X+a)2 E(X2) + 2aR + a2=

(e) E(X-R)2 = E(X2) - R2

(f) E(aX+bY) = 0 for any values of a and b if E(X) = 0 and E(Y) = O.

3.3 EXPECTED VALUE OF AN ESTIMATE

Theorem 3.3 will now be used to find the expected value of the mean

of a simple random sample of n elements selected without replacement from

a population of N elements. The term "simple random sample" implies equal

probability of selection without replacement. The sample average is

x
1
+...+x

n
X III

n

where x
i

is the value of X for the i
th

element in the sample. Without

loss of generality, we can consider the subscript of x as corresponding

to the i
th

draw; i.e., x
1

is the value of X obtained on the first draw,

x
2

the value on the second, etc. As each x
i

is a random variable, x

is a linear combination of random variables. Therefore, Theorem 3.3

applies and
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E(x) n [E(x1) +...+ E(x
n
)1

In the previous chapter, Section 2.6, we found that any given element of

1
the population had a chance of g of being selected on the i

th
draw.

1
This means that xi is a random variable that has a probability equal to if

of being equal to any value of the population set Xi,...,Xm. Therefore,

E( ) = E(x
2
) = = E(x

n
) = R

Hence, E(x) =
R + +

X
n

= A. The fact that E(x). X is one of the very

important properties of an average from a simple random sample. Inciden-
.

tally, E(i) . X whether the sampling is with or without replacement.

Definition 3.3. A parameter is a quantity computed from all values

in a population set. The total of X, the average of X, the proportion of

elements for which Xi<A, or any other quantity computed from measurements

including all elements of the population is a parameter. The numerical

value of a parameter is usually unknown but it exists by definition.

Definition 3.4. An estimator is a mathematical formula or rule for

making an estimate from a sample. The formula for a sample average,

Ex
i

x , is a simple example of an estimator. It provides an estimate of

EXi

the parameter X Fr .

Definition 3.5. An estimate is unbiased when its expected value

equals the parameter that it is an estimate of. In the above example, x

is an unbiased estimate of X because EGO ... R.

Exercise 3.i. Assume a population of only four elements having values

of X as follows: X1 = 2, X2 . 5, X3 4, X4 . 6. For simple random samples

of size 2 show that the estimator NT( provides an unbiased estimate of the

population total, EXi . 17. List all six possible samples of two and
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calculate Nx for each. This will give the set of values that the random

variable Nx can be equal to. Consider the probability of each of the

possible values of Nx and show arithmetically that E(Nx) = 17.

A sample of elements from a population is not always selected by

using equal probabilities of selection. Samnling with unequal probability

is compl;:ated when the sampling is without replacement, so we will limit

our discussion to sampling with replacement.

Illustration 3.7. The set of four elements and the associated prob-

abilitiesabilities used in Lxeroise 3.1 will serve as an example of unbiased

estimation when samples of tan elements are selected with unequal prob-

ability and with replacement. Our estimator of the population total,

n xi

E --

i=1
n

i
2.5+4+6 = 17, will be x' = ------- . The estimate x' is a random variable.

Listed below are the set of values that x' can equal and the probabiliiy

of each value occurring.

Possible Samples
x

X
1
X

1
6 4/36

X
I

X
2

10.5 8/36

X
1

x3 15 4/36

X
1

x4 21 4/36

x
2

x
2

15 4/16

X
2

X
3

19.5 4/36

X
2

x4 25.5 4/3(

x
3

x
3

24 1/36

X
3

x4 30 2/36

X
4

X
4

36 '/36
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Exercise 3.6. Verify the above values of x' and Pi and find the

expected value of x'. By definition E(x') - EP
1 i

x'. Your answer should

be 17 because x' is an unbiased estimate of the population total.

To put samPline with replacement and unequal probabilities in a

general setting, assume the population is X1,...,X1,...,XN and the selec-

tion probabilities are P1,...,P1,...,PN. Let xi be the value of X for

the i
th

element in a sample of n elements and let p
i
be the probability

n x

i=1 i
P

which that element had of being selected. Then x' = - is an unbiased

N

estimate of the population total. We will now show that E(x') = E X .

:1=1

To facilitate comparison of x' with u in Theorem 3.3, x' may be

written as follows:
x x

x, 0
p

1

+...+
n p

n

x

It is now clear that a = and u = . Therefore,
n p

i

x x
E(x') 1[E(--4 +...+ E(-11)]

n p
n

1
The quantity , which is the outcome of the first ranlom selection from

P
1

(3.5)

the population, is a random variable that might he equal to any one of the

X
1

XN

P
9 ... , f ... , p

X X
1

X4

set of values -- ---- . The probability that -- equals -'L is P
i

.p
1 1 N pl i

Therefore, by definition

1 n1

Xs

E(--1) =1, P (-1 ) = 7. X .

P
I

P

x

r

i

Since the sampling is with replacement it is clear that any - is the -0

x
1

random variable as .

21
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Therefore Equation (3.5) becomes

E(x i 0:

.

X
j
+...+ E X

i

]

n

Yore are n terms in the series it follows that

N

E(x') a E X .

Exercise 3.7. As a corollary show that the expected value of !- is

equal to the population mean.

By this time, you should be getting familiar with the idea that an

estimate from a probabiliL sample is a random variable. Persons respon-

sible for the design and sele"tion of samples and for making estimates

from samples are concerned about the set of values, and associated

probabilities, that an estimate from a sample might be equal to.

Definition 3.6. The distribution of an estimate generated by prob-

ability sampling Is the sampling distribution of the estimate.

The values -f xi and Pi in the numerical Illustration 3.7 are an

example of a sampling distribution. Statisticians are primarily inter-

ested in three characteristics of a sair' ling distribution: (1) the mean

(center) of the sampling distribution in relation to the value of the

parameter beim, estimated, (2) a measure of the variation of possible

values of an estimate from the mean of the sampling distribution, and

(3) the shape of the sampling distribution. We have been discussing the

first. When the expected value of an estimate equals the parameter being

estimated, we know that the mean of the sampling distribution is tival to

the parameter estimated. But, in practice, values of parameters are

gene, Ily not known. To judge the accuracy of an estimate, we need
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information on all three charact, ristics of the sampling distribution.

Let us turn now to the generally accented measure of variation of a random

variable.

3.4 VARIANCE OF A RANDOM VARIABLE

The variance of a random variable, X, is the avera,,,,e value of the squares

-
of the deviation of X frOm its mean; that is, the average value of (X-X)

2
.

The square root of the variance is the standard deviation (error) of the

variable.

Definition 3.7. In terms of expected values, the variance of a random
. .

variable, X, is E(X-X)
2
where E(X) = R. Since X is a random variable,

(X-X)
2

is a random variable and by definition of expected value,

N
E(X -X)4 = E P (X

i
-R)2

In case P =
N
we have the more familiar formula for variance, namely,

Z(X

E(X-R)2 = = (5

Commonly used symbols for variancOnclude: o2 o2
X'

V2, S", Var(X)

.7.(Xi-R)2

and V(X). Variance is often defined as -7FT . This will be discussed

in Section 3.7.

3.4.1 VARIANCE OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES

Two random variables, X and y, are independent if the joint probability,

Pij, of getting Xi and Yj is equal to (Pi)(Pi), where Pi is the probability

of selecting X
i

from the set of values of X, and P1 is the probability of

selecting Y. from the set of values of Y. The variance of the sum of two

independent random variables is the sum of the variance of eacn. That is,
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o
+Y

= m + my

Illustration 3.n. In Illustration 3.3, X and Y were independent. We

had listed all possible values of X
i
+Y and the probability of each. From

that listing we can readily compute the variance of X+Y. fly definition

- 2 - - 2

X+Y 1[(X+Y)-(X+Y)] P P [(X +Y )-(X+Y)]
ij

Substituting ir1 Equation (3.6) we have

2 1 4 2 85
0 700-5.5)- + +...+ --(10-5.5) =
X+Y 2 24 24 2

The variances of X and Y aye computed as follows:

'3
2 1 2

X 6

2

6

1 I 1 7
= E(X-R)-

3
= -(2-4)- + ±-(5- + -(4-4)- +

6
= 5

1

0
1

E(Y-Y)- = -(-2-1.5)- + :1(2-1.5)
2

4
+ -(4-1.5)

2
=

19

A
X

2

3

7

4

91 35

21.

now :lave 0 + 0
Y

= - + = which verifies the above statement that

the variance of the sum of two independent random variables is the sum of

the variances.

- 7

Exercise 3.8. Prove that EE(X+Y)-(R+Y)1- = E(X +Y) (R+q)2. Then

(3.6)

calculate the variance of X+Y in Illustration 3.3 by using the formula

2 -
0
X+Y

= E(X+Y)
2

(X+Y)
2

. The answer should agree with the result obtained

in Illustration 3.8.

Exercise 3.9. Refer to Illustration 3.3 and the listing of possible____________

values of X + Y and the probability of each. Instead of X +Y list the

products (X -X)(Y -q) and show that E(X -R)(Y = 0.

Exercise 3.10. Find E(X-X) (Y-i") for the numerical example used in

Illustration 3.3 by the formula E(XY) XY which was derived in Illustra-

tion 3.6.
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3.4.2 VARIANCE OF THE SUM OF TWO al,"IENDENT RANDOM VARIABLES

The variance of dependent random variables involves covariance which

is defined as follows:

Definition 3.8. The covariance of two random variables,X and Y,is
___----

E(X-R)(Y-q) where E(X) * X and E(Y) * Y. By definition of expected value

E(X-R)(Y-q) * EE Pik (X -50(Y -47)

where the summation is over all possible values of X and Y.

Symbols commonly used for covariance are cxy, Sxy, and Cov(X,Y).

Since (X+Y) (X +Y) * (X-R) + (Y -Y) we can derive a formula for the

variance of X+Y as follows:

c2 * EUX+Y) (M)12
X fY

Ef(X-R) + (Y-"I))2

= MX-502 + (Y-b2 + 2(X-X) (Y-q))

Then, according to Theorem 3.3,n-2
E(X-X)

2
+ E(Y-Y)

2
* 2E(X-R)(Y-i7)

X+Y

and by d-finition we obtain,

2 2
a
2

X+Y
* cX + aY + 2c

XY

2
Sometimes ou is used instead of cX

to represent va7iance. Thus

2

X+Y
= + a

YY
+ 2c

AY

For two adependent random variables, P
11

* PiPj . Therefore

E(X-X) (Y-q) * EE PIP (Xi
j
-;;)

ij

Write cut in longhanl', if necessary, and be satisfied that the following

is correct:



EE PiPi (X
i
-30(Y -"i) a EP

i
(X

i
J)rr

i

-7) o
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(3.7)

which proves that the covariance
Xt

is zero when X and Y are independent.

Notice that in Equation (3.7) EP(X JO E(X -X) and EPi(Yi-"f) E(Y -Y)

i 1 J

which, fot independent random variables, proves that E(X-51)(Y-q) a

E(X -X) E(Y-"2"). When %.:irking with independent random variables the following

important theorem is frequently very useful:

Theorem _3.4. The expected value of the Product of independent random

variables u1, u
2

u
k

is the product of their expected values:"
E(ulu2...uk) a E(ul)E(u2)...E(uk)

3.5 VARIANCE OF AN ESTIMATE

The variance of an estimate from a probability sample depends upon

tife method of sampling. We will derive g.he formula for the variance of x,

the mean of a random sample selected with equal probability, with and

without replacement. Then, the variance of an estimate of the population

total will he derived for sampling with replacement and unequal probability

of selection.

3.5.1 EQUAL PROBABILITY OF SELECTION

The variance of x, the mean of a random sample of n elements selected

with equal probabilities and with replacement from a population of N, is:

2 E(X )
2

2
Var(x) =

n
X where a

X
22

i

The proof follows:

- -
By definition, Var(x) = E[x-E(x)]

2
. We hnve shown that E(X) = X. Therefore,

2
Var(x) = E(x-X) . By substitution and algebraic manipulation, we obtain
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x,+...+x
Var(x) = E[ A n 302

(x
1
-R)+...+(x JO

= El
n

1

2

n

.

=
1

El E(x -R)2 + E E(x -R)1.
i=1 iJj

Applying Theorem 3.3 we now obtain

- -
Var(x) = f EE(x

i
-X)

2
+ a(x

j
JO]

n
2

i=1 ij

In series form, Equation (3.8) can be written as

(3.8)

1 -
Var(x)= 2- [E(xl-X)

2
+ E(x2-R)

2
+...+ + E(x1-7)(x3-R)+...]

Since the sampling is with replacement xi and xj are independent aid

the expected value of all of the product terms is zero. For example,

E(x
1
-5l)(x

2
-50 = E(x

1'
--R) E(x

2
-R) and we know that E(x

1
-50 and E(x

2
JO are

zero. Next, consider E(x1-502. We have already shown that xl is a

random variable that can be equal to any one of the population set of

values Xi,...,XN with equal probability. Therefore

E(X -R)2

aE(x
1
-502 = 4 III

X

The same argument applies to x2, x
3
, etc. Therefore,

E E(x
i
-X)

2
=

2

x
+...+ a

2

x
= na

2

x
and Equation (3.8) reduces to Var(x) =

X

i=1

2

The mathematics for finding the variance of x when the sampling is

without replacemenl is the same as sampling with replacement down to and

including Equation (3.8). The expected value of a prAuct term in Equation

(3.8) is not zero because x
i
and xj are not independent. For example, on



82

the first draw an element has a probability of
1
-of being selected, but

on the second draw the probability is conditioned by the fact that the

element selected on the first draw was not replaced. Consider the first

Product term in Equation (3.8). To find E(xl-X) (x2-R) we need to consider

the set of values that (x
1
-)(x

2
-R) could be equal to. Reference to the

followine matrix is helpful:

1

-R)2

(X2 -R)(X1-R)

cAN-Rxxl-F0 mcRm2-R) (xv-R)2

(X1-R)(X2 -R) (X1-R)(XN-R)

(X
2
-R)2 (X2-R)(XN-R)

The random variable (x
1
-R)(

x2
-R) has an equal probability of being any of

the products in the above matrix, except for the squared terms on the main

dianpnal. There are NC -1) such products. Therefore,

N N
(x.-3-0(X -R)

"xl-X) (x2-X)

AcCording to Equation (1.9) in Chapter 1,

Hence,

N N
V 7. (xi-i(X = E (Xi-X)

E(Xi-R)2

h(x --R)(x _ (')(
2

2 N(N-1) -1

The same evaluLtion applies to all other product terms in Equation (3.8).

There are n(n-1) product terms in Equation (3.8) and the expected value of

2
0
X

each is - . Thus, Equation (3.8) becomes
N-1
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- o
Var(x)

I
[7. E(x -X)

2

N-X I
- n(n-l) -]

n
2

i

- 2 2
Recognizing that E(x

i
-X) = o

X
and after some easy algebraic operations

the answer as follows is obtained:

2

N-n
(5

X
Var(x) =

N-1 n

83

N-nThefactor
N-

is called the correction for finite population because it
I

does not appear when infinite populations are involved or when samnling

(3.9)

with replacement which is equivalent to sampling from an infinite population.

For two characteristics,X and Y, of elements in the same simnle random

sample, the covariance of x and v is given by a formula analogous to

Equation (3.q); namely,

N-n XI
Cov(x,v) =

3.5.2 UNEnrAt PRnBABILITY OF SPLECTION

n x
E

n
1

In Section 3.3 we proved that x" = ----
n

is an unbiased estimate

of the population total. This was for samnling with replacement and

unequal probability of selection. We will now proceed to find the vari-
.

ance of x" .

By definition Var(x") = E(x")r- . Let X = 7, X4 . Then since
i

E(x") = X, it follows that

x,

-a
P
n 2 I

x
1

x
,2

Var(x") "
1

Xj = 71(- X)+...+(--
Pn

n
- X))

n
2

1

x x
k1 xi

= - X)
2 + E X)(-- X)]

n
2

Pk
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Applying Theorem 3.3, Var(x.) becomes

xk
1

2
Var(x')

n
-- [EE(-- - X)- + :E(-- - X))

P
1.01 ri Pk

(3.11)

Notice the similarity of Equations (3.8) and (3.11) and that the steps

leading to these two equations Avre the same. Again, since the sampling

is with replacer it, the expected value of all product terms in Equation

(3.11) is zero. Therefore Equation (3.11) becomes

n x

Var(x') (E E(-- - X)21
n2 i

Pi

N X
By definition E X)2 . P (-- - X)

2

P

Therefore

N

P (P X)
2

Var(x')

Exercise 3.11. (a) Refer to Exercise 3.1 and compute the variance

(3.12)

of x' for samples of two (that is, n 2) using Equation (3.12). (b) Then

tut. to Illustration 3.7 and compute the variance of x' from the actual

values of x'. Don't overlook -le fact that the values of x' have unequal

prob-13ilities. According to Definition 3.7, the variance of x' is

10
Z P4, X)

2
where X = E(x') , IC is one of the 10 possible values of x',

j
P
1

is the probability of x'

3.6 VARIANCE OF A LINEAR COMBINATION

Before presenting a general theorem on the variance of a linear

combination of random variables,a few key variance and covariance rela-

tionships will be given. In the following equations X and Y are random

variables and a, b, c, and d are constants:
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Var(X+a) a Var(X)

Var(aX) * a
2
Var(X)

Var(aX+b) * a
2
Var(X)

Cov(X+a,Y+b) a Cov(X,Y)

L..v(aX,bY) a abCov(X,Y)

Cov(aX+b,cY+d) a acCov(X,Y)

Var(X+Y) Var(X) + Var(Y) + 2Cov(X,Y)

Var(X+Y+a) Var(X+Y)

Var(aX+bY) a a"Var(X) + h
2
Var(Y) + 2abCov(X,Y)

Illustration 3.9. The above relationships are easily verified by

using the theory of expected values. For example,

Var(aX+b) E[aX+b-E(aX+b)j4

* EfaX+b-E(aX)-E(01

E[aX-aE(X) ]
2

Ela(X-51)12

2

2 2 2
a E(X-X) a a Var(X)

Exercise 3.12. As in Illustration 3.9 use the theory of expected

values to prove that

Cov(aX+b,cY+d) acCov(X,Y)

As in Theorem 3.3, let u a alui+...+akuk where al,...,ak are constants

and ul,...,uk are random variables. By definition the variance of u is

Var(u) Efu-E(u)l-

By substitution

Var(u) * E[alui+...+akuk-E(alui+...+ uk) 12

-
= Eial(ul-u1) +...411k(uk-uk)]

2
where E(ui) - ui
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By squaring the quantity in [ 3 and considering the exnected values of

the terms in the series, the following result is obtained.

Theorem 3.5. The variance of u, a linear combination of random

variables, is given by the following equation

k

Var(u) a o +
. LI'

where o
i

2
is the variance of u

i
and

oil
is the covariance of u

i
and u .

Theorems 3.3 and 3.5 are very useful because many estimates from

probability samples are linear combinations of random variables.

Illustration 3.10. Suppose for a srs (simple random sample) that

data have been obtained for two characteristics X and Y, the sample

values being x1,... ,xis and v ...,v . What is the variance of ;-,?

From the theory and results that have been presented one can proceed

immediately to write Cie answer. From Theorem 3.5 we know that Var(x-y)

Var(x) + Var(y) -2Cov(x,v) . From the sampling specifications we know the

variances of x and v and the cova lance. See r.quations (3.9) and (3.10)

Thus, the following result is easily obtained:

1 2 2
Var(x-v) = (!v:1)(-;) (ox + oy 2oxy)

Some readers might he curious about the relationship between covar-

lance and correlation. By definition the correlation between X and is

ryv =
"L /ETTX)Var(Y)

Cov(X,Y) XY

0 0
X

Therefore, one could substitute r
KY

o
X
o for o

XY
in Equation (3.13).

Y

Exercise 3.13. In a statistical publication suppose you find R7

bushels per acre as the yield of corn in State A and 83 is the estimated

yield for State '3. The estimated standard errors arc given as 1.5 and

(3.13)
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2.0 bushels. You becore interested in the standard error of the differ-

ence in yield between the two States and want to know how 1are the

estimated difference is in relation to its standard error. Find the

standard error of the difference. You may assume tnat the two yield

estimates are indenendent hcause the samnle selection in one State wits

completely independent of the other. Answer: 2.5.

tItustration 3.11. No doubt students who are familiar with samnlin"

have already recornized the annlication of Theorems 1.3 and 1.5 to several

snmnlinr olans and Methods of estimation. For example, for stratified

saw; 1 ;Ill t'S E. i riator the nopulation total is

:; * .+ N, 7!:
1 i I.

the ronulation numUor of sarm1in- units in the' i
th

stratum

and x
i

is T.w avtrare rer sannlinf. unit of charteteristic,:c from a samnle

of n sanT,Ii:1- units :rom the
th stratu. Accordia7 to rhenrcr 3.1

= 1-N = N Nx )
i

If the sa nliw. is such thit r(xi ) for all strata, x- is an unbiased

estimate of tn.' porulatich tnt.tl. Accordin- to Theorer 1.1

Vir(x') = Var(xl) Var(x0 (3.14)

There are' no covariance torrn in Lquation (3.14) because the sample selection

In one stratur-, is ini!enendent of another stratur. Assumirir, rs fror, coch

stratu, -rrultion (;.14' 4) ')ecorlo,-;

V.ir x
-n I

1

1-n 1

ni -1
k

where is tilt. variance of X ;mon, smr1im units thc
th

stratum.

1
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Illustration 3.12. Suppose xi,...,x1; are independent estimates of

the same quantity,T. That is,E(xp = T. Let 4. be the variance of xi".

Consider a weighted average of the estimates, namely

wixi wicc.

where Ew = 1. Then

E(x') = wlE(xi) +...+ wk E(x0 = T

That is, for any set of weights where Ew = 1 the expected value of x' is

T. how should the weights be chosen?

The variance of x' is

Var(x') = w
2
a
2
+...+ w

2
0
2

1 k k

1If we weight the estimates equally,w =
k

and the variance of x' is

2

1
Ea

i
Varisx') = (---1

k k

which is the average variance divided by k. However, it is reasonable to

give more weight to estimates having low variance. Using differential

calculus we can find the weights which will minimize the variance of x'.

The optimum weights are inversely nronorticinal to the variances of the

estimates. That is, wi
1

n1

(3.15)

(3.16)

(3.17)

As an example, suppose one hns two independent unbiased estimates of

the same quantity which originate from cwo different samples. The optimum

weighting of the two estimates would be

1 , 1

Y "1 2 '2
01

a2

1 1

2 2

1
a2
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As another example, supnose xi,...,x1; are the values of X in'a sample

of k sampling units selected with equal probability and with replacement.

In this case each x; is an unbiased estimate of R. If we let wi
1

, x'

00

is x, the simple average of the sample values. Notice, as one would expect,

Equation (3.16) reduces to EGO la R. Also, since each estimate, xf , is the

same random variable that could he equal to any value in the set X1,...X11,

E( X4-5-)2

it is clear that all of the of.'s must be equal to 0" 0 . Hence,

2

Equation (3.17) reduces to which agrees with the first part of Section

3.5,1.
xi

Exercise 3.14. It you equate x' in Equation (3.15) with in
Pi

Section 3.5.2 and let w1
1
- and k = n, then x' in Equation (3.15) is the
n

x

P

same at; x in Section 3.5.2. Show that in this case Equation (3.17)

becomes the same as Equrtion (3.12).

3.7 ESTIMATION OF VARIANCE

All of the variance formulas presented in previous sections have

involved calculations iron a population set of values. In practice, we

have data for only a sample. hence, we must consider means of estimating

variances from sample data.

3.7.1 SIMPLE RANDOM SAMPLING

In Section 3.5.1, we found that the variance of the mean of a srs is

where

2

N-n
a
X

Var(x)
N-I n

N

X -X)"
2 i

c
x

0
N
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(3.18)
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E(x
i-x)
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As an estimator of a
X

, - seems like a natural first choice for

consideration. However, when sampling* finite populations, it is customary

to define variance among units of the population as follows:

N
ki

4) 2

S
2 i

N-1

n
\\E(x -x)

2

and to s
n-1

as an et:kmator of S2 . Ason for this
2 i

2
will bec me apparent when we find the expected value of a as follows:

The forMula for s
2

can be written in a form that is more convenient

for finding E(s2).

n 2
E(x -x) 2 2

2 i
Ex nxs...,...

n-1 n-I

and
n

E(s2)
[EE(xi) Et

We have shown previously that xi is a random variable that has an equal

probability of being any .value ;in 'the set X1,...,XN. Therefore.

X
2

nEX
2

2 i
E(x ) '"'""' and EE(x

2
)i N N

EX2, ,

Hence, - E(s2) elr Fe *04)1 (3.19)

We know, by definition, that al 'Is Ea - R)2 and it is easy to show that

E(1.4)2 EGO) R2

-2 2 -2
Therefore, E(x ) a- + X .
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By substitutionsin Equation (3.19) we obtain,

EX
2

E(s2) "j"'"'"n

(
"w X2 -03)n-I N x

E(X
2

ric4
2

By definition 022c N
n

N
2 and since the specified method of

. 2 2

2 N-41
o 2 N-n X]

sampling was srs, 0; ..5"'',10 we have Elsa) O.
n-s a :7-u

. width after simplification is

N 2
E(s2) ox

2
Note f!3:3 the above definitions of 0X

and SZ that

Therefore

2 N 2

E(s
2
) S

2

Since s
2

N-1
an unbiased estimate of S

2
, we will now substitute S

2
for

is

2 in Equation 0.10 which gives

Vara)
N-n s2

N r

(3.20)

Both Equations, (3.18) and (340), for the Var(x) give identical results

and both agree with:E(x -R)2 as a definition of variance. We have shown

that s
2 is an unbiased estimate of S

2
. Subitituting s

2
.for S

2
in Equation

(3.20) we have
2

var(;) m 121 ItN n

as an estimate of the variance of x. With regard to Equation (3.18),

2 N-1
9
2 is an unbiased estimate of ox . When -ir- 9

2
is substituted for

2

x
, Equation (3.21) is obtained..

(3.21)

-n
Since in Equation (3.20),

NN
is-is exactly 1 minus the sampling fraction

and s
2 is an unbiased estimate of S

2 there is some advantage to using

4.
9S
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Equation (3.20) and S :!

;30 2
as a definition of variance among

sampling units in the population.

Exercise 3.15. For a small population of 4 elements suppose the

values of X are X
1
-0.2, X

2
- 5, X

3
m 1; and X

4
6. Consider simnle

random samples of Size 2. There are six nossible samples.

(a) For each of the six samnles calculate ; and s
2

. That is,

find the sampling distribution of ; and the samnling

distribution of s
2

.

(b) Calculate S
2
, then find Var(x) using Equation (3.20).

(c) Calculate the variance among the six values of ; and compare

the result with Var(x) obtained in (b). The results should

be the same.

(d) From the sampling distribution. of s2, calculate E(s
2
) and

verify that E(s
2
) a S

2
.

3.7.2 UNIQUAL PROBABILITY OF SELECTION

In Section 3.5.2, we derived a formula for the variance of the

estimator x' where

92

(3.22)

The sampling was with unequal selection probabilities and with .replacement.

We found that thevariance ofx' was given by

N X
EP _. X)

2

Var(e)
It (3.23)

As a formula for estimating Var(x") from a sample one might be inclined,

as a first guesi, to try a formula of the same form as Eouation (3.23) but
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that does not work. Equdtion (3.23):ia a.4aighted average of the squares

of deviations X)
2 which reflects the unequal selection probabilities.

Pi

If one _applied the same weighting systdM in f formula forltstimating
0

variance from a sample he i,ould in effect be applying the:weights twice;

first, in the selection process itself and secelnd, to the sample data.,

The unequal probability of selection is already incorporated into the

sample itself.

4,

As in some of the previous discussion, look at the estimatoi. as follows:

x
1
+...+ LI

P Pn

0

,,... ..

x; +.. + x"
.. _ .....................-

n
.. xi

n
where x'

n i

Each xi is an independent unbiased estimate of
0
the population total. Since

i

each value of x' receives an equal weight in determining x' it appears that

the following formula for estimating Var(x') might work:.

where

s2

var(e) n

E(x'-x")
2

82 i

n-1

By following an approach similar to that used in Section 3.7.1, one can

ptove that
N Xi

E(s
2)

g. E - X)
2

i

That is, Equation (3.24) does provide an unbiased estimate of Var(e) in

Equation (3.23). The proof is left as an exercise.

Exercise 3.16. Reference is made to Exercise 3.1, Illustration 3.7,

and Exercise 3.11. In illustration 3.7 the sampling distribution of x'

190

(3.24)
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(See Equation (3,22)) is given *foi samnles of 2 from the volluIation of

4 elements that was given in ,Exercise 3.1.

. 2 .

(a) Compute var(e) (Equation (3.24)) for eech of the 10

. possible samples.

(b) Compute the expected value of var(x") and compare it with the

result obtained In,Exercise 3.11. The results should be the

*same" Rchember; when finding the expected value of var(e),

that the x" `s do not occur with equal frequency.

3.8 RATIO OF TWO ,RANDOM VARIABLES

In sampling theory and practice one frequently encounters estimates

that are ratios of random variables. It was pointed out earlier that

L(w ) #
E(
URI where u and w are random matiiiles. Formulas for the expected

)

value of a ratio .and for the variance of a ratio will now be Orezented

without derivation. The formulas are approximations:

2

where
I

and

a
E(q) a !I+ u C.Ji
w -2

W W w

p a
utt, u w

uti

2 2a
Var(R) A 1 1112/ w 2ouw au ow

w T12 i;2
uw

is E(u)

c7, E(w)

E(u-u)
2

a
2

E(W-w)
2

0
p jel- where a E(u-u) -W)uw 0

U
a
W

uw

(3.25)

(3.26)

For a discussion of the conditions under which Equations (3.25) and

(3.26) are good appsoximations reference is made to Hansen, Hurwitz, and

1t./1:

a

F4
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Madow. 2/ The:conditions Are usually satiified with .regard to. estimates

from sample surveys. As a rule of thumb the variance formula is usually

accepted as satisfactory if the coefficient of variation of the variable
a

in the denominator is less theta 0.1; that is, if -It< 0.1. In other words,

this conditionstAites that the coefficient of variation of the estimate in

the denominator should be less than 10 nercent. A larger coefficient of

Variation Mgt, be tolerable before becoming concerned about Equation (3.26)

as an approximation.
a

The'condition < 0.1 is more strintent than necessary for regarding

the bias of a ratio as negligible. With few -exceptions in practice the

bias of a ratio is ignored. Some of the logic for this will appear in

the illustration below. To summarize, the conditions when Equations (3.25)

---and (3.26) are not good approximations are such that the ratio is likely to

be of questionable value owing to large variance.

If u and w are linear combinations of random variables, the theory

presented in previous sections applie4 to u and to w. Assuming u and w

are estimates, from a sample, to estimate Var(w) take. into account the

sample design and substitute in Equation (3.26) estimates of u, w, a!, a!,

and per. Ignore Equation (3.25) unless there is reason to believe the,,bias

of the ratio might be important relative to its standard error.

It is of interest to note the similarity between Var(u-w).and'Vnt0.

According to Theorem 3.5,

...e.o.

var(u-w) Iwo
2 + 2

- 20 a
u
a
wu w uw-

2/ Hansen, Hurwitz, and Madow, Sample Surv*Methods and Theory,

Volume I, Chapter 4, John Wiley and Sons, 1953.
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By definition the relative variance of an estimate is the variance of the

estimate divided by the snizare of its expected value. Thus, in terms of

the relative variance of a ratio, Equation (3.26) can be written.

2 2au aw a as
u tfRe' Var() 72 UV ""mIf tat

The similarity is an aid to remembering the formula for Vare.

Illustration 3.13. Suppose one has a simple random sample of n

elements from a. population of N. -Let x and v be the sample means for

characteristics X and Y. Then, u 0 x, w i,

2
2 N-n SX 2 N-n SY0 ...Ie.. and a go ---
u N n w N n

a
liotice.that the condition discussed above, c 0.1, is satisfied if the

sample is large enough so

S2
N-n Yg c 0.1

2

nY

Substituting in Equation (3.26) we obtain the following as the variance

the ratio:

Var(3) m
ES1+ S11 2pxySxSyl

-n -12 -2 -2 nnX y AT

The bias of as an estimate of is given by the second term of

Equation (3.25). For this illustration it becomes

2
N-n 1 X sY riXereY
N n Y y2

As the size of the sample increases, the

standard error of the ratio decreases at

bias decreases as 1
whereas the

a slower rate, namely -A-

1.,t13
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Thin, we heed not be concerned about a possibility of the bias becoming

impc4tant relative to sampling error as the size of the sample increases.

A possible exceptin occurs when several ratios are combined. An example

is stratified r m.sampling when strata are involved and separate

ratio stimates are made for the strata. This is discussed in the books

on s ling.

CONDITIONAL EXPECTATION

4

, The theory for conditional expectation and conditional variance of a.

random variable is a very important part of sampling theory, especially

in the theory for multistage sampling. The theory will be discussed with

reference to two-stage sampling.

The notation that will be used in this and the next section is as

-

follows:

11 is the number of pouts (primary sampling units) in the population.

in is the number of pales in the sample.

N is the total 'number of 'elements in the ith psu.

M .

'N s.EN
1

is the total number of elements in the population.

n
I

is the sample number of elements from the 1
th

psu.

.00

n.s En
i
is the total number of elements in the sample.

1 is the value of X for the j
th element in the i

th
rosu. it

J:J

refers to an element in the population, that is, j m NNi,

and I Is..., M.

104
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xis
is the value of X for the jth element in the sample from the

I
th

psu in the sample, that is,. the indexes i and j refer to
vh.

the set of psu's and elements in the sample.

No

X
1.

- "Xis is the population total for the i
th

psu.

X,

Xis * -46:** is the average of X for all elements in the

MN M.

EE X fXi.
R is the average of all N elements.

psu.

M
EX

X. is the average of the psu totals. Be sure to note the

difference.hetween R.. and R. .

n

x
L-

x
ij

is. the sample. total for the i
th

psu in the sample.

x
x - is the average for the n

i
elements in the sample fromL. n

i

tacti

. M x

the I
th

1 u.

X le
n is the average for all elements ipn the sample.

98

Assume simple random sampling, equal probability of selection without

replacement, at both stages. Consider the sample of ni elements from the

- ith psu. We know from Section 3.3 that xf. is an unbiased estimate of the

psu mean R
I.

; that is, Ea ) R and fora fixed i (a specified psu)

EN
i
; m N

I.
) m Mir(

I.
m

is'.
But, owing to the first stage of sampling,

105
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ENiiiit must be treated aS.a random variable. hence, it is necessary to

become involved with the expected value of an expectedwalue.

.First, consider X as a random Variable, in the context of single-

stage sampling, which could equal any one of the values X in the

population set of N a EN
i

. Let P(ij) be the probability of selecting
i

the j
th

element in the I.
th psu; that is, P(ij) is the Probability of X

bett y. equal to X
ij.

By definition

MN

E(X) SEIP(IDX
it

ij

Now consider the selectio

(1) selected a psu with probab

of an element as a two-step procedure:

lity P(i) , and (2) selected an element

within the selected psu with probability In,words,P(i11) is the

probability of selecting the element in the i
th

psu given that the

i
th

psu has already been selected. Thus, P(ij) a NOP(j li). By sub-

stitution,Equation (3.27) becomes

MN

E(X) ti
ij

or E(X) EP(i) E POIOX
ij

j

Ni

By definition, E POIOXii is the expicted value of X fot a fixed value

j

of i. It is calleduconditional expectation."

Ni

Let E
z
(Xli) me E i)Xij where E

2
(Xli) is the form of notation we

will be using to designate conditional expectation.. To repeat, E2(01)

means the expected value of X for a fixed I. The subscript 2 indicates

106

(3.27)

(3.28)
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that the conditional expectation applies to the second stage of sampling.

E
1
and E

2
will refer to expectation at the first and second stages.

respectively.

Substituting E2()1li) in Equation (3.28) we obtain

E(X) EP(i) E2(X1i)

There is one value of E
2
(X1i) for each of the M psu's. In fact E

2
(Xli)

is a random variable where the probability of E2(X11) is P(i). Thus the

right-hand side of Equation,(3.29) is, by definition. the expected value

of E2(XIi). This leads to the following theorem:

Theorem 3.b.3.6. E(X) ElE2045.)

Suppose POO a and P(i) mg . Then,

and

i 1
2(Xli) E

Ni

n
E(X) E.(R. ) E(4)(R )

eg-111s

In this case L(X) is an unweighted average of the psu averages. It is

impOrtant to note that, if P(1) and P(i(i) are chosen in such a way that

P( Ai) is constant, every element has the same chance of selection. This

point will be discussed later.

(3.29)

Theorem 3.3 dealt with the expected value of a linear combination of

rando variables. There is a corresponding theorem for conditional expecta-

tion. Assume the linear combination is

k

Uma1 1u E atilt
oval

1 07



Ohate al,...,ak are constants

E(Ulc ) be the expected value

/101

and ul,...,uk are random variables. Let-
oft under a specified Clondition,c

i°
where

c
i

is oqe of the conditions out of a set of M conditions that could occur.

The theorem on conditional expectation can than be stated symbolically as

follows:

Theeiem.1.7. E(Ulci) ualE(ulici) +...+ akE(ukici)

or E(Ulc ) Ea
t
E(u

t
Ic )

Co pare Theorems 3.7 and 3.3 and note that Theorem 3.7 is like

Theorethi3.3 ekcept that conditional expectation is applied. Assume c is ,

a random event and that the probability of the event ci occurring is pay.

Then E(Ulci) is a random variable and by definition the expected value of

M
E(Ulci) is EP(i)E(Ulci) whiCh is E(U). Thus, we have the following

i
theorem:

Theorem 3.8. The expected value of U is the expected value of the

conditional expected value of U, which in symbols is written as follows:

E(U) EE(Ulc )

00

(3.30)

Substituting the value of E(Ulci) from Theorem 3.7 4 Equation (3.30)

we have

E(U) galE(ulici)+...+akE(ukici)) R E(Ea..E(utici))

Illustration 3.14. Assume two-stage sampling with simple random

sampling at blth stages. Let x', defined as follows, be the estimator of

the population total:

M i
x' E

N'I
x

n ij

(3.31)

(3.%2)
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Exercise 3.17. EXamlne the estimator, e Equation?(3.32). Expresi
ti

At in other forms that might help show its logical structure. For example,'

N ni
for a fixed 1 yhat is E x

ij
? Does it seem like a reasonable way,of

n
i

1 j

estimating the population total?

To display x' as a linear combination of random variables it is

convenient .to--eoress it in the following form:
!! 0, mr ;.'

.% M 1
It ..),z+. -14 el -11! x +...+" x S (3.33)-

.! Ica l'iiil:n1.14....4-1;laticld.', m n mil m n En

Suppose we want to find the expected value of x' to detAIne whether it

.744
is equal to the population total. According to Theorem 3.8,

E(x') E
1E2

(ell)

m N n
E(x') E ftt E Eix

m ni ij

Equations (3.34) and (3.35) are-obtained simply by substituting x'.as

the random variable in (3.30). The c mow refers to any one of the m

Pliuts in the sample. First, we must solve the conditional expectation,.
N

E (x"Ii). Since - and
n
-- are constant with respect to the conditional
i

41. expectation, and. making use of Theoren 3.7,'we can write

E
2
(x'li)

m Ni 21.

In ni ij

We know for any given .psu samplei that x
ij

is an element in a

simple random sample from the psu Alta apcording'to Section 3.3 its

expected value is the psu mean, Xi. . at 1st.,

E
2
(x

ij
li) Xi.

.1.09

(3.34)

(3.35)

(3.36) .

.e ,



n N
.E
i

x
i

li) - n
i
i
1.

i
1

Substituting the result from Equation (3.37) in Equation (3.36) gives

m
Ni

m
E
2 m(xl 11i) - E it

Next we need to find the expected value of E2
(xli)." In Equa4on

103

(3.38)

(3.38), Ni is a random variable, as well as Xi., associated with the firsts

stage of sampling. Accordingly, we will take Xi. * N i as the random

variable which givesin lieu of Equation (3:38).

m
E2(x-ii) ; X.

i 4

Therefore,
M m

E(x") E X..)

From Theorem 3.3

Since

E1 111 2 x m
m

Eyx )
i

m
X:E

EE (X ) so 4.711 i M

m
U-1 m

M /

Therefore, E(x') - E Xi. X.. This shows that x' is an unbiased

i

estimator Ofthe populatioit total.

3.10 CONDITIONAL VARIANCE

Conditional variance refers to the variance of a variable under a

specified caadition or limitation. It is related to conditional probes

. ability and. to conditional expectation.
77 110
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To find the variance of .x' (See Equation (3.32).oi (3.33))-the following

important theoiem will be used:

Theorem 3:9. The variance of, x' is given by

V(x') VIC2(eli) + ElV2(eli)

where V
1
is the variance for the first stage of*sampling and V

2
is the

"conditional ". variance for the second stage.

We have discussed Epeli) and noted there is one value of E2(x 1.) .

for each psu in the-population. Hence V1E2(00-es simply the variance

of the M values of E
2
(eli),

In Theorem 3.9 the conditional variance, V
2
(eli), by definition is

V2(01) n E2fbe-k2(eli) j2 III

To understand V2 (x-Ii) think of x' as a linear combination of random

variables (see Equation (3.33)). Consider the variance of'x' when i is .

held constant. All terms (random variables) in the linear combination

are now constant except those originating from sampling within the ith

psu. Therefore, V2(x'J i) is associated with variation among elements in

the it psu. V
2
(eli) is a random variable with n values in the set, one

for each psu. Therefore, EIV2(eli) by definition 14

E
1
V
2
(xli) = EP(i)V

2
(eli)

That is, 1112(0 M1) is an averape of values of V2(01) weighted by

1P(i),the 7robability that the i
th

psu had of being in the sample.

Three illustrations of the application of,Theorem 3.9
7
will be given.

In each case there will be five steps in finding the variance of x':

Step 1, find 'E2(xli)

Step 2,"find V1E2(01.)

111
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,?

Step,3, find V2(x#11.)

Step 4, find E
1
V
2
(x'li)

Step 5, combine results from Steps 2 and 4.

4

IllustrAtion.1.15. This is a simple illustration, selected because

we know what the ansifer'is from previous discussion and a linear combine-

Lion of random variables iwnot involved. Suppose x' in TheoreM 3.9 is

simply the' ndom variable X where X.has an equal probability of being

any one of the X
ij

valties in the set of N EN . We know that the

Variance of X can be expressed as follows:

1 -lV(x (X14-.X.)
2

1j J

(3.39) I."

In the case of two-stage sampling an equivalent method of selecting a

value of X is to select a psu first and thin select an element within the

psu, thecondition being thatP(ij) P(i)P(jii)-0 k . This condition is

satisfied by letting P(i)i
Yi
tr endl/(j[i) . We-now want to find

V(X) by using Theorem 'g.9 and check the result with Equation (3,39).

Step 1. From the random selection spicifications we know that

E
2
(ell) 0 R . Therefore,

..

Step 2. VIE2(eli) 4 VI(Ri.)
N 4

Wiknow that R is a random variable that has a proba14
i

,117y ofp.=4 of being
slif, i. N :

equal to the i
th

value in the set 311,..., Rm . Thereforelsby definition
i

of the variance of a random variable, -1r,- i

,

M
Ni

, / -1-
VIE(eli) 0 I i.,,4 (Ri-R..r (3.40)

t
i

M
a

Rsi E tr..

'' 1 N
Xl me-N 112 L

where



Step 3. By definition

-
V
2
(xli) 0 Z

Ni 1
(xiixis)

2

Ni
Step 4. Since each value of V2(xii) has a probability

N

om Equations (3.40) and (3.41) we obtain

M NPt

V(x') R [EN iR )4 E Ei (X
ij i)2 1

106

The fact that Equations (3.42) -and (3.39) are the same is verified

(3.41)

(3.42)

by Equation (1.10) in Chapter I.

Illustration 3.16. Find the variance of the estimator x' given by

Equation (3.32) assuming simple random sampling at both stages of sampling.

Step 1. Theorem 3.7 is applicable. That is,

mni Ni
E2(xli) o E m n x lij'

ij
2

i

which means "sum the Conditional expected values of each of the n terms

in equation (3.33)."

With regard to, any one of the terms in Equation (3.33), the

conditional expectation is

.N X
x I i] E (x II) R n2 m ni ij m ni 2 ij m n .m ni

Therefore
mai X

2
E (e ll) 0 EE ---

ij
m n

With reference to Equation (3.43) and summing with respect to j, we have

113
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niM X- x
m

ni m

Hence Equation (3.43) becomes

(xli) E X
2 m is

EX
i

Step 2. Find V
1
E
2
(eli). This is simple because in Equation

(3.44) is the mean of a random sample of m from the set of psu.totals

1...0., X Therefore,

O

eli) 2 M-Inm (ini. .

ikere

E (X, -X. )

2 i

able Al

In the subscript' to a2, the

and 5±7..

M
EX

ft.
indicates betWeen psu variance and461"

distinguishes this-variance from between psu variances in later illustre-

Lions.

Step 3. Finding V
2
(x11), is mores involved because the conditional

,-

variance of a linear vombination of random variables must be derived.

(3.44)

(3:45)

However, this is analogous to using Theorem 3.3 for finding the variance

of i linear combination of random variables. Theoren 3.5 applies except

that V(u1i) replaces V(u) and conditional variance and conditional co-

variance replace the variances and covariances in the forpula for V(u).

As the. solution proceeds, notice that the strategy is to .shape the problem

so previous results can be used,.

Look at the estimator x', Equation (3.33), and determine whether any

cavviancel exist. An element selected from one psu is independent of an

I 4 .

0
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elementse1eFted from another; but within a psu the situation'is the same

as the one we'had liven finding the variance of the mean of a simple 'random

sample. This suggests writing le in terms of 7ii..becauat. the rcis's are

inaependent. Accordingly, we will start with

Mxlmam Nixi.

Hence -
2

V
2
(Xli) V

2 m
(U-
M

,
E N

1
x jii)

0
SinCe the

i.
Is are independent

M2
V
2
(xli)

2 EV2(Niii-ii)m

and since Ni is constant with regard to the conditional variance

M2
2 m

-
2
tx
;-

i.
v
2
(xli) EN v ii)

w
Since the sampling within each psu is simple random sampling

V
2
(xI. I )

where

N -n a
2.

r I I% _A
xi-1 ni

(3.46)

(3.47)

o
El 1 Iv .7, 12

i \

Step 4. After substituting the val e of V2(x0i) in Equation (3.46),

and then applying Theorem 3.3, we have,

2 m
2

E1V2( 11) EliNi 171 ;74
m t

Since the first stage of sampling was simple random sampling and each psu

had an equal chance of being in the sample,

115
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m .2 2
M N -n a

2 alilai 1 2 i I iE iN N.
1 i N

i
-1 n M

i
I.

i

2

M N4 '1'114 (74
E,Mx°11) = -- N
4 4 m N -1 n

.

M

1 i

(3.48)

Step S. Combining Equation (3.48) and Equation (3.45) the answer is.

. .2 .2
2 H-m 70. M 1'1!

Ni
NI-"ivi

V(x ) = H
m " -1 n

(3.49)
I i I

1 Illustration 3.17. The sampling specifications are: (1) at the first
Ni.

stage select m'psuts with-replacement and probability P(i) ir 9 and (2)

at the second stage a simple random sample of i; elements is to be selected

from each of the m pates selected at the first stage. This will give a. sam-

ple of n = mix-elements. Find the variance of the sample bstimsite of the

population total.

The estimator needs to be changed because-the pales are not selected

.

with equal probability. Sample values 604-to be weighted by the recip-
t.0

:rocals of their probabilities of selection, if the estimator is to be

unbiased. Let

Then

Plij) be the probability of element ij being in the sample,

!I'M be the relative frequency df.the
th

psu being in a sample

of m, and let

P"(jii) equal the conditional probability of element ij being in

the sample given that the ith psu is already in the sample.

i) N
.

According to the sampling specificationa PPM = m . This prob-.:.

ability was described as relative frequency beCause "probability of being

.116
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in a sample of m pea's" is subject to misinterpretation. The ith psu .

can appear in a sample more than once andit is counted every time it
t

appears. That.is, if the i
th psu is selected more than once, a ample of

; is selected within the i
th

nsu every time that it is selected. By

substitution
Ni n;

P#(ii) m 1A1 Xi N
. a (3.i0) .

Equation (3.50) means that every element has .an equal probability of .being

in the sample. Consequently, the estimator is very simple,

m;
x' 0 --. ZEx

mn ij

ExerAseA.18. Show that x', Equation. (3.51), is an-unbiased estimator

(3.51)

of the population total.

TO finding V(x') our first step was to solve for
V

Step I. By definition

on;

2
(eli) a

2
rt (U-- EEx

ij
110

mn ij

Since i is constant with regard to E2,

mn
E
2
(01) = EE E

2
(x

ij
(i)

ij

Proceeding from Equation (3.52) to the following result is left as an

exercise:

E
2
(eli)

.Step 2. From Equation (3.53) we.,have

V
1
E
2
(eli) = V1( EX i.)

1
i.

117

(3.52)

(3.53)

7.*



Since the R s are independent

3
2

2 m
V
1
E
2
(eli) m E V

1
(R )

m

BEST COPY MOIOJIBLE

111

Because the first stage of sampling in sampling with probability propor-

tional to Ni and with replacement.

-
N' (X

M 2i - - 2
V
1
(X

is
) m S )( -X

I

Let

Then

V1(Ri) a
°b2

N
2

2
2 N2 2

2
V1E2(xi IR (ma

b2
) --

bm
m

Exercise 3.19. Prove that E(Ri.) - R.. which ahOws that it is

appropriate to use R.. in Equhtion (3.54).

Step 3. To find V
2
(eli), first write the estimator as

m m
. x' 01 Exm

Then, since the ;1.*s are independent

2

V
2
(e 4

li) m E V
2

)
2
m i

and

whete

V
2

)

(3.54)

(3.55)

(3.56)



Therefore

Step 4.

N2 m N
i
4. (12

elf) a E
N -1miin

1N2. ,M N44
EIV2(01) E El(e-7-04)

m i a'

N4
Slice the probability of V2(00. islet.

which becomes

2 m MN
IL- . 1441

in n i
LEI W." :.1)af)

M N N
E11/2000 E .0.....Am2

M; N Ni1"I

112

Step S. Combining Equation (3.55) and Equation (3.57) we.have the

answer
2

Imo N2 Pa + E (5±.)021

yin N i-i

(3.57)

(3.58)
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CHAPTER IV. THE DISTRIBUTION OF AN ESTIMATE

4.1 PROPERTIES OF SIMPLE RANDOM SAMPLES

The distribution of an estimate is a primary basis for judging the

accuracy of an estimate from a sample survey. But an eptimate is only

one number. How can one number have a distribution? Actually, "distri-

bution of an estimate" is a phrase that refers to the distribution of

all possible estimates that might occur under repetition of a nrescribed

sampling plan and estimator (method of estimation). Thanks to theory

and empirical testing of the theory, it is not necessary to generate

,-
physically

and making

Lion of an

prepared.

Illustration 4.1.

assumed population of 8

samples. In Table 4.1,

the distribution of an

an estimate from each.

eitiste,...by selecting numerous samples

However, to have a tangible diskribu

estimate as a basis for discUssion, an-illustration has been

Consider simple random samples of 4-from an

elements. There are -1-141.--rtio w 04\7 70 possible

the sample values for all of the 70 pOssible sam-

plea of four are shown. The 70 samples were first listed in an orderly

manner to facilitate getting all of them accurately recorded. The mean,

Tc, for each sample was computed and the samples were then arrayed

according to the value of ; for pisrpoies of presentation in Table 4.1.

The distribution of ; is the 70 values of ; shown in Table 4.1, including .

they fact that each of the 70 value, --of ; has an equal probability of being

the estimate. These 70 values have been.arranged as a frequency distribu-

tion in Table 4.2.

As discussed previously, one of the properties of simple random

sampling is that the sample average is an unbiased estimate of the popu-

lation average; that is, 8(;) I. This means that the distribution of

ILO
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Table 4.1-- Samples of four elements from a population of eight 1/0 .1 01.41hOW.OWV.,....WW... .,,..04,*.,1104...440.N.T.0*.004....i.MIEMPmM

Values of
Sample
number. :

x
r

owe.w..Wow..mw....mhwmmmoOm0,N.a....oe,mm.,wmomewo.wwewwmw,....*...mwo,Vft,va,oW,4m,O.O..www.,qm,mwom4m.*ooWww,w
I

0

0
2 :

:

Values of
Sample:
number: x

2

lc 2,1,6,4 3.25 4.917 : 36s 1,6,8,9 6.00 12.667
2 2,1,4,7 3.50 7.000 : 370 1,418,11' 6.00 19.333
3 2,1,4,8 3.75 9.583.: 38s 2,6,8,9 6.25 9.583
4 2,1,6,7 4.00 8.667 : 39s 2,4,8,11 6.25 16.250
5' 2,1,4,9 4.00 12.667 : 40s: 1,6,7,11 6.25 16.917

6 2,1,6,8 4.25 10.917 : 4/0 1,4,11,9 6.25 20.917
7 2,1,6,9 450 13.667 : 42 1,7,8,9 6.25 12.917
8 . 2,1,4,11 4.50 20.333 : 43cs 6,4,7,8 6.25 2.917
9cs 2,1,7,8 4.50 12.333 : 440 2,6,7,11 6.50 13.667

10 1,6,4,7 4.50 7.000 : 45s 2,4,11,9 6.50 17.667

110 2,1.7,9 4:75 14017 : 46 42,7,8,9 6.50 9.667
12 2,6,4,7 4.75 4.917': 470 1,6,8,11, 6.50 17.667
43 1,6,4,8 4.75 8.917 : 48s 6,4,7,9 6.50 4.3'33

14 2,1,6,11 5.60 20.667 : 49s 2,6,8,11 6.75 14.250
150 2,1,8,9' 5.00 16.667 : 500 1,6,11,9 6.75 18.917

16 2,6,4,8 5.00' 6.667 : 51 1,7,8,11 6.75 17.583

17 1,6,4,9 5.00 11.337 : 520 6,4,8,9 6.75 4.917

18s 1,4,7,8 5.00 10.000 : 53s 2,6,11,9 7.00 15.333

19s 2,1,7,11 5.25 21.583 : 54 '2,7,8,11 7.00 , 14.000

20. 2,6,4,9 5.25 8.917 : 55 1,7,11,9 7.00 18.667

210 2,4,7,8 5.25 7.583: 560 6,4,7,11 7.00 8.667

220 1,4,7,9 5.25 12.250 : 51 4,7,8,9 7.00 4.667

23s 2,1,8,11 5.50 23.000 : 58 2,7,11,9 7.25 14.917

240 2,4,7,9 9.667 : 59 1,8,11,9 7.25 18.917
25 1,6,4,11

,5.50
5.50 17.667 f 604 6,4,8;11 7.25 8.917

e

260 1,6,7,8 5.50 . 9.667 : 61 2,8,11,9 7.50 15.000

270 1,4,8,9 5.50 13.667 : 62cs 6,4;11,9 7.50 9.667

28cs 2,1,11:9 5.75 24.917 : 63 6,7,8,9 7.50 1.667

29 2,6,4,11 5.75 14.917 s' 64 4,7,8,11 7.50 8.333

300 2,6,7;8 5.75 6.917 65 4,7,11,9 7.,5 8.917

310 .2,4,8,9 5.75 10.917 : 66 6,7,80.1 8.00 4.667

32s 1,0,9 5.75. 11.583 : 67 4,8,119 8.00 8.667

330 1,4,7,11 5.75 18.20 : .68 6,7,11,9 8.25 4.917

340 2,6,7,9 6.00 , 8.667 :. 69 6,6,11,9 8.50 4.333

350 2,4,7,11 6.00 15.333 : 70c 7,8,11,9, 8.75 2.917

41...0.0*10.4011.140.
ow.

Values of X for the population of eight elements are $1 M 21 X, m 1,.
X
3
m 6, X

4
m 4, X

5
7, X

6
m 8, X

7
11, X

8
901; X 6.00; and

2

2
E(X

S 12.

ve

V

A
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Table 4.2- -Sampling distribution of

Ic ./01,.. !My -. WD ..mwmA weoMI.......M

.1140. - seA..... -, Www 0.NO 4,* IyORelative frequency of

-
x : Simple

: sampling
:Illustration

W11. w m-.

random 'Cluster
:Illustration

4.1

:Stratified random
sampling

: sampling
4.2 :Illustration 4.2,mm. . YOMMIN=11.1101.

3.2 1

3.50 1

3.7.5 1

4.00 2

4.25 1.

4.50 4 3. 1

4.75 3 1

5.00 5 2

5.25 4 3

5.50 5 4

5.75 6 1 5
0011

6.00 4 4

6.25 6 5

6.50 5 4

6.75 4 3

7.00 5 2

7.25 3 1

T.$0 4

7.75 1

8.00 2

8.25 1

8.50 1

8.75 I 1

Wm* 4
Total 70 6 .

mommm 4.
.14.0.0.006.-A14-eMpodWv0. .

Expected value
of x 6.00 6.00 6.00'

Variance of x 1.50 3.29 0.49
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10

x is centered on X. If the theory is correct, the average of ; for the

70 samples, which are equally likely to occur, should be equal to the,

population average, 6.00. The average of the 70 samples does equal 6.00.

From the theory of expected values, wt also know that the variance

of ; is given by

2 N-n 82
Sob

X N n
where

N
E(X -R)

2

2 i
in

N-1

With reference.to Illustration 4.1 and Table 4.1, S2 12.00 and SI

8-4 12
1.5 . The formula (4.1) can be verified by computing the:8 4

variance among the 70 values of ; as follows:

S
2 2

3.2511:922±11:12:16491...t44Litattidta
2

1.5
70

Since S
2

is a population parameter, it is usually unknown. Fortu-

nately, as discussed in Chipter 3, E(12) S2 where

In Table 4

average of

is another

used as an

-- 2
E(x

1-x)
i

s"
2

n-1

2

(4.1)

.1,"ihe value of s, is shown for each of the 70 samples. The

the 70 values of s
2

is equal to TheThe fact that 11(s
2
)

2

mportant property of simple random samples. In practice s
2

is

estimate of 82. That is,

2 N-n s
2

-x N n

is an unbiased estimate of the variana of x.

To recapitulate, we have just verified three important properties of

simple random samples:

123
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(1)

(2)

(3)

E(t) .gm

s. offiti
x N

°E(E12) S2

s

r--
vn

The standard error of X, namely Si , is a measure of how much.; varies

der repeated sampling from R. Incidentally, notice that Equation (4.1)

shows how the variance of it is related to the size of the'sample. Now

we need to consider the form or shape of the distribution of 7c.

Definition 4.1. The distribution of an estimate is often called the

sampling-distribution. It refers to the distribution of all possible

values of an estimate that could occur under a prescrihed sampling plan.

4.2 SHAPE OF THE SAMPLING DISTRIBUTION

For random sampling there is a large volume of literature on the

distribution of an estimate which we will not attempt to review. In

practice, the distribution is generally' accepted as being normal (See

Figure 4.1) unless the sample size is "small." The theory and empirical

tests show that the distribution of an estimate approaches the normal

distribution rapidly as the size of the sample increases. The clOiseness

of the distribution of an estimate to the normal distribution depends on:

(1) the distribution of X (i.e., the shape of the frequency distribution

of the values of X in the population being sampled), (2) the arm of the

estimator, (3) the sample design, and (4) the sample size. It is not

possible to give a few simple, exact guidelines for deciding when the

degree of approximation is good enough. In practice, it is generally a

matter of working as though the distribution of an estimate is normal but

being mindful of the possibility that the distribution might differ
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E(x")-2ox. E(e)-ox. E(e) E(x")+ox, E(x")+2ox.

Figure 4.1-;-Distribution of an estimate (normal distribution)

considerably from normal when the sample is very small and the population

distribution is highly skewed. 3/

It is very fortunate that the sampling distribution is approximately

normal as it gives a basis for probability statements about the precision

of an estimate. As notationx" will be the general expression for any

estimate, and is is the standard error of x".

Figure 4.1 is a graphical representation of the sampling distribution

of an estimate. It is the normal distribdtion. In the mathematical

equation for the normal distribution of a variable there are two parameters:

the average value of the variable, and the standard error of the variable.

:+................
3/ For a good discussion of the distribution of a sample estimate, see

Vol. I, Chapter 1, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory, John Wiley and Sons, /953.

Oa
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Suppose x' is an estimate from a probability sample. The characteristics

of the sampling distribution of x° are specified by three things: (1) the

expected value of x', E(x "), which is the mean of the distribution; (2) the

standard error of x', andand (3) the assumption that the distribution is

normal. If x' is normally distributed, two-thirds of the values that x'

could equal since between (E(x') ox,1 and (E(x') + ee)) 95 percent of the

possible values of x' are between (E(x') 20 and (E(x") + 20
x

and

99.7 percent of the estimates are within Sax, from E(x ").

Exercise!..1. With reference to Illustration:4.1, find E(;) all and

'E(a) + o- . Defer to Table 4.2 and find the proportion of the 70 values

of 7: that are; between E(;) as .and E(;) + as . How does this compare\with

the expected roportion assuming the sampling distribution of ; is normal?

The normal approximation is not expected to be close, owing to the small

size of the poi4iten and of the sample. Also compute E(x) - 2o- and
-

E(x) + 2o- and finiiitelgoportion of the 70 values/Of ; that are between
x

these two limitC

4.3 SAMPLE DESIGN

There are many methods of designing'And selecting samples and of making

estimates from samples. Each sampling method and estimator has a sampling

distribution. Since the Sampling distribution is assumed to be normal,

alternative methods are compared in terms of E(x') and ax, (or o
2
,).

For simple random sampling, we have seen, for a sample of n, that

every passible cosibination of n elements has an equal chance of being the

sample selected. Some of these possible combinations (samples) are much

bette than others. It is possible to introduce restrictions in sampling

so some of the, combinations cannot occur or so'some combinations hove a



120

higher probability of occurrence than others. This can be done without

introducing bias in the extimate s' and without losing a basis for esti-

mating oe. Discussion of particular sample designs is not a primary

purpose of this chapter. However, a few simple illustrations will be

used to introduce the subject of design and to help develop concepts of

sampling variation.

Illustration 4.2. Suppose the population of 8 elements used in

Table 4.1 is arranged so it consists of four sampling units as follows:

Sampling Unit Elements Values of X Sample Unit Total

1 1,2 X1 2, X2 0 1 3

2 3,4 X3 0 6111 X4 - 4 10

3 5,6 X5 7, X6 0 8 13

4 7,8 X7 11, X6 9 20

For sampling purposes the population now Consists of four sampling

units rather than eight aliments. If we select a simple random sample of

two sampling units from the population of four sampling units, it is clear

that the sampling theory for simple random sampling applies. This illus-

tration points out the importance of making a clear distinction between a

sampling unit and an element that a measurement pertains to. A sampling

unit corresponds to a random selection and it is the variation among saw.

piing units (random selections) that determines the sampling error of an

estimate. When the sampling units are composed of more than one element,

the sampling is commonly referred to as cluster sampling because the ele-

menti in a sampling unit are usually close together geographically.

41,

Po
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/
For a simple random sample of 2. siMpling.units, the variance of sic

where ac is the sample average per sampling unit, is

where

S
2

N -n
S is 13.17
mc n

4 it 2, and

2
2 (3-12)

2
+ (10-12)

2
+ (15-12).

2
+ (20-41. Ili

N , Sc 3 3

Instead of the average per sampling unit one will probably be interested

zc
in the average Sr element, which is x since there are two elements

in each samplinklunit. The variance of ; is one-fourth of the variance

of ;
c*

Hence
t
the variance of ; is LW° 3.29.

,

There are only six possible random samples as follows:

Sample

Sample average per
Sampling Units sampling unit,

c
s
2

11.=IMIMMFMNIM,WRI.M 11111=1.0.0..01.1POOPPIRM.

1 1,2 6.5 24.5

2 1,3 9.0 72.0

3 1,4 11.5j\ 144.5

4 2,3 12.5 \ 12.5

5 2,4 15.0 50.p

6 3,4 17.5
,.

12.5

n
E(x

i-xc
)

where s
c
2 1 and x

1
is a sampling unit total. Se sure to notice

n-1

that s
2 (which is the sample estimate of Sc) is the variance among sampling

units in the sample, not the variance among individual elements in the

sample. From the list of six samples, it is easy to verify that sic is an

unbiased estimate of the population average per sampling Unit and that s
c

2

158
is an unbiased estimate of -- , the variance among the four sampling

S
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units in the population. Also, the variance among the six values of ; is

13.17 which agrees with the formula.

The six possible cluster samples are among the 70 samples listed in

Table 4.1. Their sample numbers in Table 4.1 are 1, 9, 28, 43, 62, and

70. A "c" follows these sample numbers. The sampling distribution for

the six samples 10 shown in Table 4.2 for comparison with simple random

sampling. It is clear from inspection that random selection from these

six is less desirable than random selection from the 70. For example,

ne of the two extreme averages, 3.25 or 8.75, has a probability of . of

occurring for the cluster.sampling and a probability of only 33. when

selecting a simple random sample of four elements. In this illustration,

the sampling restriction (clustering of elements) increased the sampling

variance from 1.5 to 3.29.

It is of importance to note that the average variance among elements

within the four clusters is only 1.25. (Students should compute the within

cluster variances and verify 1.25). This is much less than 12:00,the

variance g the 8 elements of the population. In esslity, the variance

among elemen s within clUsters is usually less than the variance among all

elements in fthe population, because clusters (sampling units) are usually

composed oflelements that are close together and'elements that are close

together usually show a tenctency to be alike.

Exercise 4.2. In Illustration 4.2, if the average variance among

elements within clusters had been greater than 12.00, the sampling variance

for cluster sampling would have been less than the sampling variance for a

- simple random sample of elements. Repeat what was done in Illustration 4.2

19
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using as sampling units elements 1 and 6, 2 and 5, 3 and 8, and 4 and 7.

Study the results.

Illustration 4.3. P'erhaps the most tommon method of sampling is to

-assign samplOg units of a population to groups called strata. A simple

randoM sample is then selected from each stratum. Suopose the population

used in Illustration 4.1 is divided into two strata as follows:

Stratum 1 X
I

2, X
2
w 1, X

3
w 6, X

4
4

Stratum 2 is w 7, X6 - 8, X7 - 11, X8 - 9

The sampling plan is to select a simple random sample of two elements

from each stratum. There are 36 'possible samples of'44 two from each

stratum. These 36 samples are identified in Table 4.1 by an s after the

sample number so you may compare the 36 possible stratified random samples

with the 70 simple random samples and with the six cluster samples. Also,

see Table 4.2.

Consider the variance of 7c. We can write

-
;
1

x

where ;
1

is the sample average. for stratum 1 and x is the average for

stratum 2. According to Theorem 3.5

1
S- (-)(S-

2
+ S-

2
+ 25- )

x 4 x
1 2 12

We know the covariance, S- is zero because the sampling from one
x1x2

stratum is independent of the sampling from the other stratum. And,

since the sample within each stratum is a simple random sample,

3

1 2
2 E (X 11-X

1.
)

1n1 S1
- ""'"'""-"'" where

X
1

N
1

n
1

I N -1

140 BEST COM AVIINABLE



Tne subicript "1" refers to stratum 1. S-
2

is of she same form as S-x
2

Therefore,

Since

2 2
,2 1

N
1
-n

1
S
1 ,

N
2
-n

2
S
2 ..r

x 4 N1
-nl

N2 n2

NI -ni n ,

go = and n
1

00 n
2

la 2,

2
N1

2 2
2 1 S1 S2 1 X4.92+2.921 40

imws.m.,x 8 2 8 2
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The variance, 0.49,1s comparable to 1.5 in Illustration 4.1 and to 3.29 in

Illustration 4.2.

In Illustration 4.2, the sampling units were groups.of two elements and

the variance among these groups (sampling units) appeared in the formula

for the variance of x. In Illustration 4.3, each element was a sampling

unit but the selection process (randomization) was restricted to taking

one stratum (subset) at a time, so the sampling variance was determined'by

variability within strata. As you study sampling plans, form mental pictures

of the variation which the sampling error depends on. With experience and

accumulated knowledge of what the patterns of variation in various popula-

tions are like, one can become expert in judging the efficiency of alterna-

tive sampling plans in relation to specific objectives of a survey.

If the population and the samples in the above illustrations had been

larger, the distributions in Table 4.2 would have been approximately nor-

mal. Thus, since the form of the distribution of an estimate from A prob-

ability sample survey is accepted as being normal, only two attributes of

an estimate need to be evaluated, namely its expected value and its

variance.

1.31
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,
In the above illustrations ideal conditions were implicitly assumed.

Such conditions do not exist in the real world so the theory must be

extended to fit, more exactly, actual conditions. There are numerous

sources of error or variation to be evaluated. The nature of the relit-

tilinship between theory and practice is a major governing factor deter-

mining the rate of progress toward improvement of the accuracy of survey

respite.

We will now extend error concepts toward more practical settings.

4.4 REiPONSE ERROR
,r e

So far, we haw discussed sampling under implicit assumptions that

measurements are obtained from all n elements in a sample and that the

measurement for each element is without error. Neither assumption fits,

exactly, the real world. In addition, there are "coverage " - errors of

various kinds. For example, for a farm survey a farm is defined but

application of the definition involves some degree of ambiguity about

whether particular enterprises satisfy the definition. Also, two persons

might have an interest in the same fare tract giving rise to the possibility

that the tract might be counted twice (included as a. part of two farms) or

omitted entirely.

Partly to emphasize that error in an estimate is more than a matter

of sampling, statisticians often classify the numerous sources of error

into one of two general classes: (1) Sampling errors which are errors

associated with the fact that one has measurements for a sample of elements

rather than measurements for all elements in the) population, and (2) non-

sampling errors - -errors that occur whether sampling is involved or not.'

Mathematical error models can be very complex when they include a term for

1;32
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each of many sources of error and attempt to represent exactly the real

world. However, complicated error models are not always necessary,

depending upon the purposes.

For'purposes of discussion, two oversimplified response-error models

will be used. This will introduce the subject of response error and'give

some clues regarding the nature of the impact of response error on the

distribution of an estimate. For simplicity, we will assume that a

measurement is obtained for each element in a random sample and that no

ambiguity exists regarding the identity or definition of an element. Thus,

we will be considering sampling error and response error simultaneously.

Illustration 4.4. Let Tl,...,TN be the "true values" of some variable

for the N elements of a population. The mention of true values raises

numerous questions about what is a true value. For example, what is your

true weight? How would you define the true weight of an individual? We

will refrain from discussing the problem of defining true values and simply

assume that true values do exist according to some practical definition.

When an attempt is made to ascertain Ti, some value other than Ti might

be obtained. Call the actual value obtained X
i

The difference, Si
X
i

Ti, is the response error for the ith element. If the characteristic,

for example, is a person's weight, the observed weight, Xi, for the ith

individual depends upon when and how the measurement is taken. However,

for simplicity, assume that Xi is always the value obtained regardless of

the conditions under which the measurement is taken.. In other words,

assume that the response error, ei, is constant for the 1
th

element. In

this hypothetical case, we are actually sampling a populatiod set of values

311,...,XN instead of a set of true values TI,...,TN.

1133
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Under the conditions as stated,:the sampling theory applies exactly

to the set of population values XI...,XN. If a simple random sample of

elements is selected and measurements for all elements in the sample are

N
ET1

obtained, then B(;) = R. That is, if the purpose is to estimate f
ip

,

the estimate is biased unless f happens to be equal to 1. The bias is

I - T which is appropriately called "response bias."

Rewrite e Xi - Ti as follows:

Xi n Ti + e

Then, the mean of a simple random sample may be expressed as

or, as

Lai I(ti+ei)
x = 7-

; .

From the theory of expected values, we have

E(;) - E(i) + E(e)

Sind E(x) 1 and E(L) = f it follows that

I + E(e)

Thus, ; is a biased estimate of unless E(a) 0, where E(;) .

That is, E(;) is the average of the response errors, ei, for the whole

population.

For simple random sampling the variance of ; is

N
2 E (xt-it) 2

.2 N-n SX .2 i
D- = "all."--- where a mo

x N n X N-1

Row does the response error affect the variance of X and of z? We have

already written the observed value for the i
th element as being equal to

(4.2)



128

its true value plus a responsi error, that is, 41 Ti *ter Assuming

random sampling, Ti' and ei are random variables. We can use Theorem 3.5

Ross Chapter Ili and *rite

2
8 S-

2
+ 8

2
+ 2SX -r e Tos (4.3)

2where 8
2

X is the variance of X, S
T is the variance of T, S

e
2

is the response

variance (that is, the variance of e), and STA is the covariance of T and

e* The terms on the right-hand side of Equation (4.3) cannot be evaluated

unless data on X
i
and T are available; however, the equation does show how

the response error influences the variance of X and hence of u.

As a numerical example, assume a population of five elements and the

following values for T and Xt

T X
i

el

23 26 3

13 12 -1

17 23 6

25 25 0

7 9 2

Average 17 19 2

Students may wish to verify the following results, especially the variance

of e and the covariance of T and e:

2
S
X 62.5 8

2
54.0 S

e
2
m 7.5 0.5ST

As a verification of Equation (4.3) we have

62.5 54.0 + 7.5 + (2)(0.5)

1;i5
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E(xi-x)
2

From data in a simple random sample one would compute q n-1

s

and use 1.4- -a as an 4:etiolate of the variance of x. Is it clear that
N n

s
2

x
is en unbiased estimate of S2 rather than of S2 and that the impact of

-..

2

\
variation in et is included 1.0 sx2

To summarise, response error caused a bias in it as an estimate of T

that was equal to I - T. In addition, it was a source of variation included

in the standard error of ic. To evaluate bias and variance attributable to

response error, information on Xi and Ti must be available.

Illustration 4.5. Dithts case, ra assume that the response e r

for a given element is notilystant. That is, if an element were asured

on several occasions, the observed values for the ith element could vary
ow.

even though the true value', Ti, remained unchanged. Let the error model be

X Ti + e'
ij ij

where X
ij

is the observed value of X for the i
th element when the

observation is taken on a particular occasion, j,

T
i

is the true value of X for the ith element,

and e'
j

is the response error for the i
th element on a particular

occasion, j.

Assume, for any given element,. that the response error, e:j, is a random

variable. We can let e'
j

+ a
ij°

where ; is the average value of a
ij

for a fixed i, that is, ;1, E(q.111). This divides the response error

for the ith element into two components: a constant component, ii, and a

variable component, e4j. By definition, the expected value of sij is uro

4

for any given ale:lent. That is, X(01411.) 0.

Ix 6
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Substituting ei + eij for eij, the model becomes

ij
T + + e

ij

The model, Equation (4.4), is now,in a good form for comparison with

the model in Illustration 4.4. In Equation (4.4), 71i, like ei in

Equation (4.2) is constant for a given element. Thus, the two models

are alike except for the added term, eij, in Equation (4.4) which allows

for the possibility that the response error for the 1 th element might not

be constant.

Assume a simple. random sample of n elements and one observation for

each elemmnt. According to the model, Equation (4.4), we may uow write

the sample mean as follows:

Et
i

.

n n n

(4.4) i

Summation with respect to j is not needed as there is only one observation

for each element in the sample. Under the conditions specified the expected

value of x may be expressed as folio's:

Ea) - T +

N..

ETi Eei
where T i and e 111

-r

The variance of x is. complicated unless some further assumptions are

'made. -Assume that all covariance terms are zero. Also, assume that the

conditional variance of e
ij

is constant for all values of i; that is, let

ti) 0 S e2
'

Then, the variance of ; isV(ej

2 2
- S

2 N-n S2
T N-

Se
n e

MIIMPIRVE. 0111I + -
x N n N n n

137
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N N

E(T -i)2 e
4)2

i
i 2 i

where S w s
e
MD MF....P.M.IM

T N-I 9 N-I

and S
e

2 is the conditional variance of e
ij'

that is, V(e
ij

ii). For this

model the variance of ; does not diminish to zero as nil. However, assuming

2
S

N is large, the variance of
e

which becomes , is pro ably negligible.

Definition -4.2. Mean- Square Error. In terms of th theory of expected

values the mean-square error of an estimate, x', is E(x'-i)2 where'T is the

target value, that is, the value being estimated. From the theory it is

easy to show that

E(x'-T)2 [E(x")-T)2 + Elx' -ROO]
2

Thus, the mean-square error, mse, can be expressed as follows:

mse B
2

+ o
x
2

, (4.5)

where .B E(x') T (4.6)

d o
2

'
0 Efx"-E(x"))

2 (4.7)
x

Definition 4.3. Bias. In Equation (4.5), B is the bias in x' as

an estimate of T.

Definition 4.4. Precision. The precision of an estimate is.the

standard error of the estimate, namely, ox, in Equation (4.7).

Precision is a measure of repeatability. Conceptually, it is a

measure of the dispersion of estimates that would be generated by repetition

of the same sampling and estimation procedures many times under the same

conditions. With reference to the sampling distribution, it is a measure

of the dispersion of the estimates from the center of the distribution and



132

does not include any indication of where the center of the distribution

is in relation to a target.

In Illustrations 4.1, 4.2, and 4.3, the target value was implicitly

assumed to be i; that is, T was equal to X. Therefore, B was zero and

the mean-square error of x' was the same as the variance of x'. In

Illustrations 4.4 and 4.5 the picture was broadened somewhat by intro-

ducing response error and examining, theoretically, the impact of response

srror on EN") and In In practice many factors have potential for

influencing the sampling distribution of x'. That is, the data in a

sample are subject to error that might be attributed to several sources.

From sample data an estimate, x', is computed and an estimate of the

variance of x' is also computed. How does one interpret the results? In

Illustrations 4.4 and 4.5 we found that response error could be divided

into bias and variance. The error from any source can, at least concep-

tually, be divided into bias and variance. An estimate from a sample is

subject to the combined influence of bias and variance corresponding to

each of the several sources of error. When an estimate of the variance

of x' is computed from sample data, the estimate is a combination of

variances that might be identified with various sources. Likewise the

difference between E(x') and T is a combination of blues that might be

identified with various sources.

Figure 4.2 illustrates the sampling distribution of x' for four

different cases: A, no bias and low standard error; Be no bias and large

standard error; C,. large bias and low standard error; and D, large bias

and large standard error. The accuracy of an estimator is sometimes defined

as the square root of the mean-square error of the estimator. According
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C: Large bias--low standard error
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T
E(e)

II: No bias - -large standard error

1 E(x')

D: Large bias-large standard error

Figure 4.2--Examples of four sampling distributions,

T

Figure 4.3-- Sampling distribution--
Each small dot corresponds to an estimate
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to that definition, we could describe estimators having the four sampling-

distributions in Figure 4.2 as follows: In case A the estimator is precise

and accurate; in B the estimator lacks precision and las therefore inaccurate;

in C the estimator is precise but inaccurate because of bias, and in Bathe

estimator is inaccurate because of bias and low precision.

Unfortunately, it is generally not possible to determine, exactly,

the magnitude of bias in an estimate, or of a particular component of bias.

However, evidence of the magnitude of bias is often available from general

experience, from knowledge of how well the survey processes were performed,

and from special investigations. The author accepts a point of 'View that

the mean-square error is an appropriate concept of accuracy to follow. In

that context, the concern becomes a matter of the magnitude of the mse and

tie size of 13 relative to ax,. That viewpoint is important because it is

not possible to be certain that B is zeta. Our goal should be to prepare

survey specifications and,to conduct survey operations so B is small in

relation to ,. Or, one light say we want the mae to be minimum for a
x'

given cost of doing the survey., Hays of getting evidence on the magnitude

of bias is a major subject and is outside the scope of this publication.

. As indicated in the previous paragraph, it is important to know some-

thing about the magnitude of the bias, B, relative to the standard error,

ox,. The standard error is controlled primarily by the design of a sample

and its size. For many survey populations; as the size of the sample

increases, the standard error becomes small relative to the bias. In fact,

the bias might be larger than the standard error even for samples of

moderate size, for example, a few hundred cases, depending upon the circumr

stances. The point is that if the mean-square error is to be small, both

141
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B and o
x'

must Le small. The approaches for reducing B are very different

from the approaches for reducing ox,. The greater concern about non-

sampling error is bias rather than impact on variance. In the design and

selection of samples and in the processes of doing the survey an effort is

made to prevent biases that are "sampling" in origin. However, in survey

work one must be constantly aware of potential biases and on the alert to

minimize biases as well as random error (that is, ox,) .

The above discussion puts a census in the same light as a sample..

Results from both have a mean-square error. Both- are surveys with refer-
%A

ence to use of results. Uncertain inferences are.involved in the use of

results from a census as well as from a sample. 'The only difference is

that in a census one attempts to get a measyrement for all N elements,

but making n N does not reduce the mse te.tero. Indeed, as the sample

size increases, there is no positive assurance that the mse will always

decrease; because, as the variance component of the mse decreases, the

bias component might increase. This can occur especially when the popu-

lation is large and items on the questionnaire are such that simple,

accurate answers are difficult to obtain. For a large sample or a census,

compared to a small sample, it might be more difficult to-control factors

that cause bias. Thus, it is possible for a census to be less accurate

(have a larger mse) than a sample wherein the sources of error are more

adequately controlled. Much depends upon the kind of information being

collected.

4.5 BIAS AND STANDARD ERROR

The words "bias," "biased," and "unbiased" have a wide variety of

moaning among various individuals. As a result, much confusion exists,

12
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especially since the terms are often used loosely. Technically, it seems

logical to define the bias in an estimate as being equal to B in Equation

(4.6), which is the difference between the expected value of an estimate

and the target value. But, except for hypothetical cases, numerical values

do not exist for either E(x') or the target T. Hence, defining an unbiased

estimate. as one where B E(e) - T 180 is of little, if any, practical

value unless one is willing to accept the target as being equal to E(xl.

From a sampling point of view there are conditions that give a rational

basis for accepting E(x') as the target. However, regardless of how the

target is defined, a good practical interpretation of E(e) is needed.

It has become common practice among survey statisticians to call an

estimate unbiased when it is based on methids of sampling and estimation

that are "unbiased." For example, in Illustration 4.4, ; would be referred

to as an unbiased estimate--unbiased because the method of sampling and

estimation was unbiased. In other words, since ; was an unbiased estimate

of R, i could be interpreted as an unbiased estimate of the result that

would have been obtained if all elements in the population had been

measured.

In Illustration 4.5 the expected value of ; is more difficult to

describe. Nevertheless, with referenceo the method of sampling and

estimation, ; was "unbiased" and could be called an unbiased estimate

even though E(;) is not equal to T.

The point is that a simple statement which says, "the estimate is

unbiased" is incomplete and can be very misleading, especially if one is

not familiar with the context and concepts of bias. Calling an estimate

unbiased is equivalent to saying the estimate is an unbiased estimate of
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its expected value. Regardless of how "bias" is defined or used, E(x')

is the mean of the sampling distribution of x; and this concept of E(x')

is very important becausell(e) appears in the standard error, ax of x'

as well as in S. See Equations (4.6) and (4.7).

As a simple concept or picture of the error of an estimate from a

survey, the writer likes the analOgy between an estimate and a shot at

a target with a gun or an arrow. Think of a survey being replicated

many times using the same sampling plan, but a different sample for each

replication. Each replication would provide an estimate that corresponds

to a shot at a unit.

In Figure 4.3, each dot corresponds to an estimate from one of the

replicated samples. The center of the cluster of dots is labeled E(x')

because it corresponds to the expected value of an estimate. Around the

point E(x') a circle is drawn which contains two-thirds of the points.

The radius of this circle corresponds to ow., the standard error of the

estimate. The outer circle has a radius of two standard errors and con-

tains 95 percent of the points. The target is labeled T. The distance

between T and E(x') is bias, which in the figure is greater than the

standard error.

In practice, we usually have only one estimate, x', and an estimate,

s of the standard error of x'. With reference to Figure 4.3, this

means one point and an estimate of the radius of the circle around E(x')

that would contain two- thirds of the estimates in repeated samplings. We

do not know the value of E(x'); that is, we do not know where the center

of the circles is. However, when we make a statement about the standard

error of x", we are expressing a degree of confidence about how close a
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partiular estimate prepared from a survey is to E(x'); that is, how

close one of the points in Figure 4.3 probably is to the unknown point

E(x"). A judgment as to how far E(x') is from T is a matter of how T

is defined and assessment oh, the magnitude of biases associated with

various sources of error.

Unfortunately, it is not easy to make a short, rigorous, and complete

interpiitative statement about the standard error of x'. If the estimated

standard error of x' is three percent, one could simply state that fact

and not make an interpretation. It does not help much to say, for example,

that the odds are about two out of three that the estimate is within three

percent of its expected value, because a person familiar with the concepts

already understands that and it probably does not help the person who is

unfamiliar with the concepts. Suppose one states, "the standard error of

x' means the odds are two out of three that the estimate is within three

percent of the value that would have been obtained from a census taken

under identically the same conditions." That is a good type of statement

to make but, when one engaged considerations of the finer points,

interpretation of "a census taken under identically the same conditions"

is needed--especially since it is not possible to take a census under

identically the same conditions.

In summary, think of a survey as a fully defined system or process

including all details that could affect an estimate, including: the method

of sampling; the method of estimation; the wording of questions; the order
0

of the questions on the questionnaire; interviewilg procedures; selection,

training, and supervision of interviewers; and editing and processing of
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data. Conceptually, the sampling is then replicated many times, holding

all specifications and conditions cons . This would generate a sam-

pling distribution as illustrated in Figu 4.2 or 4.3. We need to

recognize that a change in any of the surve specifications or conditions,

regardless of how trivial the change might se has a potential for

changing the sampling aistribution, especially expected value of x'.

Changes in survey plans, even though the definition of the parameters
A

being estimated remains unchanged, often result in screpancies that

are larger than the random error that can be attributed to sampling.

The points discussed in the latter part of,this chapter were included

to emphasize that much more than a well designed sample is required to

assure accurate results. Good survey planning and management calls for

evaluation of errors from all sources and for trying to balance the effort

to control error from various sources so the mean-square error will be

within acceptable limits as economically as possible.
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