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PREFACE

This report was prepared as part of Rand's DoD Training and Man-
power Management Program, sponsored by the Human Resources Research
Offi{ce of the Defense Advanced Research Projects Agency (ARPA). With
manpower issues assuming an even greater importance in defense plan-
ning and budgeting, it {s the purpose of this research program to de-
velop broad strategies and specific solutions for dealing with present
and future military manpower problems. This includes the development
of new research methodol¢ jies for examining broad classes of manpower
problems, as well as specific problem-oriented research. In addition
to providing analysis of current and future manpower issues, it is
hoped that this research program will contribute to a better general
understand}ns of the manpower problems confronting the Department of
Defense.

We believe decision-theoretic psychometrics holds considerable
promige for military selection, training, and other applicetions. 1In
the past, use of this technique has been hampered by the need to orient
people to a new way of answerfhg questions, and the need to process
the much greater amount of information the method yilelds.

Because computers now offer a reasonable and, in many cases, a
cost-attractive solution to these problems, we have devised programs
and procedures for the on-line administration of tests according to
the requirements of decision~theoretic psychometrics. At this time,
these programs are running on certain IBM 360/370 compufer systems
with graphic capability, on the IMLAC PDS~1 “smart terminal’ computer,
and on the PLATO IV system.

This report provides the rationale for these applications, and
thus should be of En:erest to potential users and adapters of these
programs, as well as to educators interested in examining ia depth

the implications of this new methodology.
_ % -
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SUMMARY

A student's choice of an answer to a test question is a coarse
measure of his knowledge about the subject matter of the question;
Much finer mea:urement might be achieved if the student were asked to
estimate, for each.possible answer, the probability that it is the
correct one. Such a procedure could yield two classes of benefits:
(a) students coald learn the language of numerical probability and use
{t to communicate uncertainty, and (b) the learning of other subjects
could be facilitated.

This report describes the rationale underlying a procedure for
eliciting personal estimates of probabilities utilizing a proper scor-
ing rule, and {llustrates some new techniques for calibrating those
probabilities and providing better feedback to students learning to
assess uncertainty. In addition, new results are presented comparing
the incentive for study, rehearsal, and practice provided by the proper
scoring rule with that provided by the simple choice procedure, and
concerning the potential effect of cutoff scores and prizes upon stu-
dent behavior.

A companion report describes an interactive computer program in~
corporating these procedures. See W. L. Sibley, A Prototype Computer
Program for Imteractive Computer Administered Admissilble Probability
Measurement, R-1258-ARPA, April 1974.
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RATIONALE OF COMPUTER~-ADMINISTERED ADMISSIBLE
PROBABILITY MEASUREMENT

1. ELICITATION OF PERSONalL PROBABILITIES IN EDUCATION
Along with the recent growth of the theory and application of the

mathematics of decisfonmaking has come an Increased interest in expres-
sing uncertainty in terms of personal probabilities. Most of the atten~-

tion in this area has been focused upon eliciting personal probabilities
- from decisionmakers and experts to guide policy decisions [1-3]. How-

ever, at the end of his comprehensive and excellent review of this area,

Savage [3] refers to potentfal educational applications of these tech-

niques and states:

Proper scoring rules* hold forth promise as more sophisti-~
cated ways of administering multiple~choice tests in certain
educational situations. The student is invited not merely

to choose one [answer] (or possibly none) but to show in

some way how his opinion {s distributed over the {answers],
subject to a proper scoring rule or a rough facsimile thereof.

Though requiring more student time per item, these methods
should result in more discrimination per item than ordinary
multiple~-choice tests, with a possible net gain. Also, they
seem to open afwealth of opportuni{ties for the educational
experimenter.

Above all, thg educational advantage of training people--
possibly beginning in early childhood--~to assay the strengths
of their own opinions and to meet risk with judgment seems
inestimable. The usual tests and the language habits of our
culture tend to promote confusion between certainty and be-
lief. They encourage both the vice of acting and speaking

as though we were certain when we are only fairly sure and
that of acting and speaking as though the opinions we do

have were worthless when they are not very strong.

Ef fects of nonlinearity in educational testing+ deserve some
thought, but presumably nonlinearity is not a severe threat
when a test consists of a large number of items. One source
of nonlinearity that has been pointed out to me {s this. A

N
Described and discussed in Sec. 5.3.

*These effects are discussed {n Sec. 12.




. student competing with others for a single prize is motivated
to respond so ax to maximize the probability that his score
will be the highest of all. This need not be consistent with
maximizing his expected score, and presumably situations
could be devised in which the difference would be important.

This brief statement characterizes both the promises and the problems
of eliciting personal probabilities from students. The promises come
from two educational goals that might be served by this application:

1. As a subject matter and skill that is valued in and of {tself.
For example, it {s {mportant for students to learn to dis-
criminate degrees of uncertainty and to be able to communi-
cate uncertainty using the language of numerical probability.
2. As a means of facil{tating the learning of other subject
. matter, e.é..‘by providing more information about a student's

state of knowledge.
The problems reside largely in two areas:

1. Students must be taught a new way of answering questions and
they must overcome bad habits and {nappropriate sets induced
by their prior test~taking experience.

2. Great care must be exercised in insuring that the incentive
structure impacting on the student dbes in fact correspond
to that assuﬁed {n the decision~theoretic derivation of the
method, i{.e., the student must be motivated to attempt to
maximize his expected score, rather than maximize the proba-
'bility of exceeding some standard or surpassing his class-
mates. This is a subtle point we discuss-at greater length
in Sec: 12 below.

The purpose of this report is to describe the ratisnale underly-
ing a procedure for eliciting personal estimates of probabilities util-
izing a proper scoring rule, and to illustrate some new techniques for
calibrating ;ersonal probabilities and providing better feedback to

10
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students learning to assess uncertainty. In addition, new results are
presented comparing the incentive for study, rehearsal, and practice
provided by the proper scoring rule with that provided by the simple
choice procedure, and concerning the potential effect of cutoff scores
upon student behavior.

A companfon report [4] déécribes an experimental version of an
interactive computer program incorporating these procedures and focuses

upon the first problem mentioned above.

2. THE CONTEXT OF TESTING

Students are asked a series of questions to ascertain their know~
ledge of the subject matter represented by the questlons., A test {tem
is composed of a questfon and a list of k (k = 2, 3, ...) possible
answers, one and only one of which {s correct. A "test" {s composed
of n of these {tems, usually answered in sequence, and where n typi-

cally has 4 value between 10 and 100.

3. KNOWLEDGE AS A PROBABILITY DISTRIBUTION

While a person holding the answer key is not at all uncertain

about which answer to a question is designated "correct," a student
may encounter a certalin amount of uncertainty. In f{nformation-~

theoretic terms (5], that amount is

k

U=~ ] p, log, p, &
Ly P11oB2 Py

where p, is the likelihood (according to the student's view of the
situation) of the event, "Answer { {s the correct answer.' Because
the pifs may be viewed as probabilities of mutually exclusive and

collectively exhaust{ve events, we have

0xp %1 and P 1.
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The uncertainty measure, called "entropy" by information theorists,

achieves its maximum value (logz_k) when all the pi's are equal and
a;hieves its minimum value (zero) when one Py i{s unity and the rest
are zero, ‘

There may be several sources of this uncertainty. Some examples
are: the student may not be familiar with the standards andvvalues of
the writer of the test {tem; the student may not comprehend all of the
language used in the test item; most important, he may not know encugh
facts and reasons to arrive unequivocally §; the correct answer.

The uncertainty measure itself 1s unsatisfactory as a measure of
useful knowledge, because it {s symmetric or nondirectional with re-
spect to the answers. According to this measure, a student would have
minimal unsertainty (and maximal informat}qn) whengyer one of the~p1's
equals one. A student holding a probability of one for an Incorrect
answer possesses just as much 1nfofmacion (in his own view) as does
another student holding a probability of one for the correct answer.
Uncertainty can serve as a measure of learning, but education and
training is concerned with what is learned.and must focus on the prob~
ability associated with the correct answer., Before a student is ex-~
posed to a subject matter and tries to learn Ait, he might be expected
to be uncertain about answers to questionsL If a question has three
answers, the student's probability associated with the correct answer
might fluctuate over time but remain close to the value of 1/3 corre~
sponding to maximal uncertainty, as shown by the first segment of the
curve {n Fig. 1. '

When the student begins to take an active interest in learning the
subject matter, the probability might be expected to rise and begin to
approach one as the student achieves greater and gréater mastery of the
subject matter., The student's probability associated with the correct
answer when measured over time might trace a path similar to the learn-
ing curve shown in Fi3. 1. Upon completion of the 1eatniﬁg phase and
if the student’s knowledge or skill 4s not reinforced, the probability
might begin to decline toward 1/3 and trace a forgetting curve such as
that shown in Fig. 1.

=
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Fig. 1 - Hypothetical trace of probability over time

While these hypothetical curves resemble those found in the psy-
chology of learning, it should be remembered that much of the experi-
mental data in this area are reported in terms of averages over either
subjects, trials, or both. Such indirect measures must be used because
of the discrete nature of the responses made avail&ble to the subjects.*
If it were possible to take direct and repeated measurements of a sub-
ject's personal probabilicieé, the need for aggregation of data would

be greatly reduced and the results of experiments might appear gquite
different. o

4. THE EFFECT OF LIMITING RESPONSE OPTIONS
In the true~false and multiple-choice methods of test administra-
tion, a student is required to select one and only one of the answers

'

., The major exception, response latency, is a measure continuous in
the time dimansion. * Even so, it 1s frequently averaged because of its
instability and, while possibly reflecting uncertainty, it fails to con-
vey the directional 1nformat#on containe the distribution of per-
sonal probabilities. | S~
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to the test question. Thus, for true-false and two-alternative muitiple~
choice itemé, the student's response is constrained to only twc possible
values; for three-alternative multiple-choice items, the student's re~
sponse is constrained to oﬁly three possible values; and so on. If the
student's state of knowledge and degree of uncertainty with respect to
the question actually can assume more than k different values, it is
clearly impossible to have each different reaponse uniquely assoéiatod
with a state of knowledge. The student would have to use the same re~
sponse for several different states of knowledge and the restricted
response set of the choice method would act as a filter inserted in the
communication channel between student and teacher or experimenter. The
observer of the test behavior could not use the student's response to
recover unequivocably the state of knowledge that led to the response.

This limitation can be removed only by increasing the number of
response options available to the student. To eliminate the filtering
action described above, the number of response options must be greater
than or equal to the differeat states of knowledge the student may
possess. Because different students and the same student at different
times may experience a varying nﬁmber of states of knowledge and because
these numbers are unknown, the safest way of preventing filtering appears
to be to allow a very large number of response options.

A mathematically and graphically convenient way of doing this is to
allow the student to assign a weight from the real number systeﬁ to each
of the poésible answers to the test question. For reasons which will
become appar&nt, let the student's response be a vector R = (rl. Tos

ceey rk) whe;é\\ \\\\\

-

0O<r, <1, 1 or=1, and k22,

i=1

Thus, for two-answer questions the student's resporse corresponds to
selecting a point on the line segment [0,1) while ror three-answer
questions the response corresponds to selecting a point in an equi-
lateral triangle as shown in Fig. 2. Questions with four possible

11
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Answer ) Answer

Fig.2 — The equiloteral response triangle used ‘for computer assisted
admissible probabilfyy measurement
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answers require three dimensions for a unitary response while questions

with even more possible answers require complex sequential allocation

'3
responses.

5. STRATEGIES FOR RESPONDING TO A TEST ITEM |

Merely/allowfng a student more response options does not insure
that more information about his states of knowledge will actually be
transmiited. The student might, for example, exercise only a minimal
number of the options or, for another example, the way he associates
the response option with his probabilities might be inconsistent or
arbitrary. In either event, the amount of information actually trans-
mitted may be greatly reduced.

A student's state of knowledge, 1.e., the facts recalled, reason-
ing, and other thought processes leading to a probability distribution
over the possible answers, are directly observable only by the student
himself. The student's responses are, of course, directly observable

.by others, but there is no biological law that a student's responses

must reflect his probabilities. It is, in other words, a matter of
free will and volition on the part of the student as to how he asso~
ciates his response with his probabilities. _

In a situation such as this, the best that can be done is to struc~
ture the task glven the student so that he is rewarded for éonsistencly
and accurately associating response with his probabjlities. Although
the association is one~to-many, this is implicitly done with the simple
choice method of responding used in the administration of achievement,

aptitude,” and ability tests.
\
5.1 Simple Choice Testing
To see this, suppose a student wishes to mg#&mize his expected test
score. With the most frequevtly used simple cho#ce scoring system, he
earns one peint for each correct answer selected and no points for an

*
incorrect answer. Because his test score is gimply the sum of his item

-

*

It can be assumed without loss of generality that the student re-~
ceives no points if he omits an item. Thus, the loss of a fraction of !
a point as illustrated by use of the "correction for guessing'" formula

16
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scores, his expected test score can be maximized by maximizing the
expectation for each item score. Thus, for any item on the test, the
decision problem faced by the student is as shown in Table 1; and his
optimal strategy is to choose that course of action or response asso-
_ ciated with the maximum expected score as defined by the information
. available to him at the time of making the decision. This information

/// _ ghould be reflected in the personal probability distributions as de-
, fined in Sec. 3.
// Table 1
N 7 DECISION PROBLEM FACED BY STUDENT ANSWERING ITEM
T UNDER SIMPLE CHOICE METHOD
Probability
(That Answer May Be Correct)
Py Py . . . Py
‘ Correct Answer Expected
Response 1 2 . . . k Score
‘Choose answer 1| 1 0 . . . 0 Py
Choose answer 2| O 1 . . . 0 Py
Choose answer k| O 0 . . . . Py

It should be remembered that the probabilities characterize the
student~~-not the item question and answers. One answer is correct--
the others are incorrect. Two different students, or the same student
at different times, may very well possess different probability dis-
tributions over the answers to the same question. The probabilities
reflect the information available to the student at the time he must

make his decision, and provide his only guide to action.

does not change the structure of the task. The structure is changed,
however, if the penalty for selecting a wroeng answer is greatexr than
k - 1, where k is the number of possible answers to the test question.

17




For a student who wishes to score well on a simple choice test,
the optimal test~taking deéisioh rule is, for each item, to select
that answer he considers most- likely to be correct. If two or more
answers are tied for maximum probability, 1t makes no difference which
he selects, because the expected score is the same. This decision rule
may be displayed graphically for two and three possible answers as
shown in Fig. 3.

This analysis makes it apparent that while the simple choice pro~
cedure can motivate a student to use a consistent and logical mapping
of probabilities onto responses, each response represents a very broad
range of probabilities. When a student chooses an answer, all that
may be inferred from this response 15 that he views no other answer
as being more likely to be correct.

Terms such as "well informed,' "misinformed," and "uninformed"
are sometimes used to describe a person's knowledge with respect to
some subject. These and related terms can be used to characterize
regions of the personal probability space, as illustrated by the de-
composition shown in Fig. 4 for three possible answers. * Because each
point on the triangle corresponds to a possible probability distribu-
tion over the three answers, this classification groups distributions
that may have a similar import. For example, 1f a student had no
reason for very strongly preferring any answer over the others, his
probability distribution would be located near the center of éhe tri-
angle and he would be "uninformed" with respect to the item. Figures
3 and 4 may be compared to see what information ié yielded by the
response~to~probability mapping induced by the simple choice method.
The relations can be summarized as in Table 2.

While the simple choice response is clearly in:apable of discrim-
inating many states of knowledge, a free response such as that described
in Sec. 4 would have the potential of transmitting a great deal more
information about a student's state of knowledge. Will this informa-
tion actually be transmitted?

5.2 Confidence Testing

Suppose, as beforé. that the student wishes to maximize his ex~
pected test score and that he is allowed to distribute 100 points over

18
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Choose Choose
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o £
Probability triangle

Fig.3— Optimal decision rules for two and three answers
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Fig.4— One possible decomposition of the probability triangle
to represent some meaningful categories of knowledge
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Table 2

INFERENCES THAT MAY BE DRAWN FROM THE SIMPLE CHOICE RESPONSE

If the student

has selected Student may be: Sﬁudent is not:
Well informed Misinformed
The correct answer ggi:;ﬁ::y info;med Badly informed
Uninformed
Partially informed | Informed
An incorrect answer Aﬁ::?ﬁ?::::d Well informed

Badly informed

the possible answers to each item as is sometimes done in "confidence

" This would provide a set of responses fine-grained enough

testing.
to transmit considerably more information and it would be quite simple
to score the student according to the number of points he allocated to
the correct answer. To be more explicit, let m11 be the number of

points allocated on the jth item to the 1ith answer, where

k
0« mij < 100 and 121 mij = 100 .

Let the test score be

n

e I

where m*j is the number of points allocated to the correct answer to
item §.

The potential impact of this scoring rule upon student behavior
may be investigated by finding, as before, the oprimal test-taking
strategy for a student who wishes to maximize his expected test score.
Because his test gcore is simply the sum of his item scores, his ex~

pected test score can be maximized by maximizing the expected Jcore

o A0 - 21
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_ for each items There are now far too many response options to list in
a table, but the expected score for any allocation on a single question

(ml, Mys oces mk) may be written as
E(mlg mz’ * s 0y ml(,plg p2’ LI ) pk) = mlpl + mzpz + et e + mkpk ‘e

It is not too difficult to find the optimal decision rule, i.e., to
specify for each probability distribution that response (allocation of
points) which maximizes the expected {tem score. Because the labeling
of the answers is, in a sense, arbitrary, we may aséume without loss
of generality that

plapzzpsk...zpk,

i.e., the answers can be reordered from most likely to least likely to
be correct in the view of the student. The decision problem is one of

allocating points so as to maximize the sum of products as shown below.
my Py + M,Py + ... + m P, -

The points may be placed one at a time because the placing of a point
does not change the structure of the problem. Allocating a point to
answer {1 yields a return of Py because only that proportion Py of the
point will be added to the sum, If P; > Py then the first point should
be placed in the first position in order to yield the largest possible
return, p,; the second point should also be placed in the first posi-
tion; and so on for all 100 points. If Py = Pys OT if Py = Py = Py
and so on, the points can be distributed between thase maximum proba-
bilities, but there is nothing to be gained by so doing. The optimal
test~taking strategy for this scoring rule can be summarized as, "Find
an answer that is at least as likely to be correct as any other and
allocate all 100 points to this answer."

Thus, this scoring rule induces a mapping of response onto proba-
bility that degemerates into the simple choice situation (see Fig. 3).

22
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Although many response options are offered to the student, he is max-
imally rewarded for placing all 100 points on the most likely answer.
If a student follows this best test-taking strategy, his responses will
be essentially indistinguishable from choice type responses and no
additional information will be transmitted about his states of knowl-
edge. This example shows that merely of fering aﬁ increased number of
response options does not guarantee that ‘more information will bdbe

transmitted.

5.3 Admissible Probability Measurement

, What is required [s a scoring rule that can motivate the student
to use more of the response options, each associated with a small region
of probabilfties. In the limit, this relation could be expressed as
r, = f(pi)’ where f Ils a monotone increasing function of p and all of
the potentially available information could be transmitted, There are
other cogent reasons, however, for further constraining f to be the 1
identity function, {.e., r, " py-
-, with the ifdentity relation, the student's responses are directly
interpretable as probahilities and these numerical quantities can be
used in the equations of probability, i{nformation, and decision theory
{1]. Students would be learning to communicate degrees of uncertainty
in a‘universal language of probéhilittes. For this reason and in the
absence of any compelling reasons to do otherwise, {t seems reasonable
to require that scoring rules possess the property that a student can
maximize his expected score [ und -mly i} his responses match his
probabilities. Scoring rules satisfying this condition have variously
been called '"proper" [3], "reproducing" [1,6], and "admissible'" [6].

It has been shown that there exist an infinite number of scoring

rules that induce the identity relation between response and proba-
bility [1,6]. Only one, however, possesses the property that the
score depends only upon the response assigned to the correct answer,
and not upon how the responses are distributed over the other answers
wﬁen more than two answers are possible [6]. This i{s the logarithmic

scoring rule, which may be written as Si = A log ri + B, where A - 0,

<3
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Notice that' log £ when r, = 0. This means that the loga-
rithmic scoring rule cannot be strictly applied in practice, because
i1f a student ever assigned a response of zero to a correct answer the
logarithmic scoring rule calls for an infinite penalty. However, by
restricting the range of possible responses that a student may use,
so that ry * d (where d might be sat at 0.01 or some other small value) |
the need for a very large penalty i{s avoided, but with the sacrifice N
of some accuracy in measuring very small probabilities {6].*
For many purposes it seems desirable to adjust A and B so that
when a student possesses no information with respect to an item (i.e.,
all p's are equal), his score will be zero. This may be accomplished
by choosing a range, K, of possible scores and setting A = 0.5K and
B = 0,5K 163 k, where, as before, k is the number of possible answers.
The score that the student will receive if answer 1 i{s correct can now
be written:

S(ri) = 0,5 log kr1 , T, > 0.01 .

o

A range of 100 points appears satisfactory for many .applications.
Figure 5 shows graphically the conditional scores for the case of two
possible answers while Fig. 6 shows selected conditonal score triplets
for the case of three possible answers. Notice that in the case of two
alternatives, the maximum score obtainable is about 15, while the mini-
mum score is about ~85. In the case of three alternatives, the maximum
{s about 24 and the minimm is about ~76. This difference in maximum
and minimum scores is caused by the requirement that the scoring func~
tion be zero when all the responses are equal, but it may also be taken
to indicate that prediction may be, in some sense, easler with two
slternatives than with three.

Notice, also, how the peﬁalties tend to be larger than the rawards.
This is a characteristic of all the admissible scoring rules because
the nonlinearity is required in order to induce matching behavior in

*
Yor those special situations requiring the accurate measurement
of very small probabilities, d may be set at a very much smaller value.

<1
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Fig. 5-— Conditional score functions for the case of two possible answers
Because ry 1 ~r;, conditionol score pairs may be found where 1| 1.
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the students. This characteristic of the scoring rule may have other
implications, as 1llustrated by this quotation from a Rand staff mem-
ber after experiencing computer-assisted admissible probabilicy mgasure—
ment as reported in [4]. |

One thought that occurred to me after I took (the) test
was that, contrary to other tests, this one can also be

a learning experience. The situation in which one is
punished severely for emphatically stating what turns out
to be wrong, more so than one i{s rewarded for what {s
right even if emphatically stated, is one that is closer
to the reality situation of everyday life than the simple
tests that look only for right or wrong. Thus, the test
ftself exercises a certain negative reinforcement against
stating too strongly what one 4s not really sure about,
and thus actually conditions a person to using what knowl-~
edge he has, and at the varying degree of certainty with
which he commands it, Jjudiciously. This will be of ad-
vantage to him {n life. For it 1is a fact of 1ife that a
mistake stated wggh aplomb permanently reduces our credi-
bility with others who must rely on our say-so, {.e., it
makes us less likely to succeed in a job, for instance.
Thus (the) test is not only evaluative but educational.

Consider now the optimal test~taking strategy for a student who wishes
to maximize expected test scores. As before, the total test score is
simply the sum of the item scores, so expected test scores can be maxi-

mized by maximizing each expected item score, which may be expressed as
E[S(rl)o S(rz)v cr ey S(rk)fpl, on coey Pk]

k

= E[S(r)|p)l = § P,S(ry)
i~1

k
= Z pi(O.SK log kri)
i=1

k
= 0,5K(log k + 1£1 Py log ri)
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This last form of the equation makes clear a relation between the
logarithmic scoring rule and {nformat fon theory. If a student responds
with ry® Py for all 1, then his expected item score is proportional to

a constsat plus the amount »f information he perceives that he possesses
with respect to the item. This relation makes it easi to derive informa-
tion measures from test 'scores based on the logarithmic scoring rule

(cf. Sec. 8).

Should the student respond with his probabilities or, more speci-
fically, how does the logarithmic scoring rule induce the student to do
this in order to maximize hLis expected scores? Figure 7 shows, for the
case of two answers, expected scores for all possible responses for each
of the four different probability distributions, while Fig. 8 shows ex-
pected score contours for the case of three answers. Not{ce that for
each probability distribution the largest expected score occurs where
the response matches the probability distribution. Witn an admigsible
scoring rule such as the logar:ithmic, this {s true not only for these
selected distributions but for all possible probability distributions.
This means that a student always suffers a loss in expected score when-
ever he deviates from the optimal test-taking strategy of setting
r, = py for all 1. Note further that the loss in expected score in-
creases the more he deviates from this optimal strategy. For those
instances in which the student has no knowledge about an item, {.e.,
all the p's are equal, if he pretends to have complete knowledge by
setting one of the r, = 1, he loses 35 points in expected score when
there are two answers and almost 43 points when there are three answers.
This feature of the logarithmic scoring rule may be expected to serve
as a disincentive toward guessing-type behavior. More important, h&w—
ever, the logarithmic scoring rule can serve to indice an exact asso-
ciation of responses with probabilities. What other impact might it .
have upon student behavior?

6. MARSHALING FACTS AND REASONS BEFORE RESPONDING

Up to this point the decision analyses have taken the student's
uncertainty (his ptobability distribuvtion) as given, and then focused
on finding that résponée which gives the highest possible expected

25
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score. There does come a time during the taking of any test when the
student has to commit himself to some response. The optimal strategies
derived above are appropriate to this problem and, thus, are designated
test~taking strategies in the narrow sense.

The scope of the decision context must be enlarged, however, when
it {s considered that a student may have some control over his proba-~
bility distribution for an item. For one example, while taking a test
he can think more deeply about the questions and answers to bring more
facts and reasons to bear upon the problem at hand. For another ex-
ample, prior to taking a test he can study in order to gain additional
information about the subject matter. What implications does the scor-
ing rule have for these types of behavior on the part of a student?

Given that a student uses the cptimal response strategy, r*. his
optimal expected score, E[S(r*)lp] = Z:Sl piS(r:), can be computed for
each possible probability distribution. Figure 9 shows this relation
when there are two possible answers for both the simple choice or linear
and the logarithmic scoring rules. Notice that as the student acquires
information to move his probability away from the state of being un-
informed (p1 =Py = 0.5), the optimal expected score from the simple
choice procedure increares in proportion to the distance moved along
the probability scale, while that from the logarithmic scoring proce-~
dure increases only slightly at first and then more and more as higher
levels of mastery are achieved. A similar effect is observed in the
case of three possible answers, as shown in Figs. 10 and 11. Thus, the
logarithmic procedurs requires a higher level of mastery to yield any
given optimal expected score (other than zero) than does the simple
choice procedure and, in this sense, can serve as a more stringent in-
centive system for learning. In Sec. 11 we build a model to investigate

this in more detail.

7. _DETECTING BIAS IN THE ASSIGNMENT OF PROBABILITIES

The central theme so far has been concerned with the relation be-~
tween a student's responses and his probabilities. The probabilities
were taken as given and the relation (if anv) between the student's
probabilities and the external world was reflected indirectly in the

student's actual test score.
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Here, the focus will be on the assessment of probabilities them-

sel#es, f.e., on the relation between the student's probabilities and

/the facts and reasons leading to these probabilities. It should be
'/recognized that there {s a point beyond which this type of analysis

cannot go. There exists no completely general descriptive or prescrip-
tive theory of how to derive probabilities from facts and reasons.
Even if such a theory did exist, there is at present no way of knowing
what facts and reasons a student is aware of at a particular moment in
time. Nevertheless, a number of powerful methods for the assessment
of prqbabilities are currently available or under development.

The external nalidity jraph is the most fundamental means of cali~-
brating and operationally defining personal probabilities. Assume that
a student taking a test is following the optimal test~taking strategy

for the logarithmic scoring rule so that r = p. Now let

N(C!p) = number of correct answers-assigned probabilfity p ,
and

N(ilp) = number of {incorrect answers assigned probability p .

Then

. N(C|p)
r{P) = FETpY + N(TTP)

is the empirical success ratio conditional upon the probability assign-
ment p. A student's probability assignments are perfectly valid if
"(p) = p for all p when the number of observations is increased without
limit. Figure 12 {llustrates an external validity graph.

An external validity graph requires an inordinate amount of data
before a student's probabilities can be calibrated. However, by plac-
ing some constraints on the relation Between relative frequency and
probability, it is possible to obtain some results with much less data.
Suppose, now, that R(p) tends to q = ap + b, 0 g £ 1. To estimate
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Fig. 12— An external validity graph based on 28 15~ and 20-
item tests taken by one subject after receiving training
in admissible probability measurement. All tests were
composed of three answer items. Dashed line represents
ideal match between relative frquency and probability.

this linear realism function, let Py < Py < eee < Py, be the level of
probability that the student has assigned, and let

u, = number of times Py has been assigned to a correct answer, and

vy " number of times Py has been assigned to an incorrect answer.

A convenient estimation procedure f{s to find a and b 90 as to minimize

Ii u, 2
. (u, + v,) (-—-—-—*—-—-—-— -~ ap, -~ b)
{1 i i u, -f-v1 i
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The least square estimat rs are (see [15]):

;. I(ui +v,) Zuipi - ):(u1 +vdpg Xui
- 2
(ug + v*)pi 2("i +vy) - Iy(ui + Vi)pil

I

- l(“; +vpy }:uip1 + Z(ai + vi)pi 2“1

Z(u‘ + vt)pi )j(ui +v,) - [2(“1 + Vi)Pilz

b =

As long as a reasonably wide range of p's i{s used by the student, this
estimation procedure can yield fairly stable results with 15- and 20-
ftem tests, so {t represents a tremendous improvement in efficlency
over the external validity graph. It should be noted that 1if the slope
estimate & » 1, the student appears to be undervaluing his subject
matter {nformation, while {f a < 1, the student {s anparently over-
valuing his {nformation (see Fig. 13). This analysis of bias appears
to be completely satisfactory for the case of just two possible answers
to each test {tem. Where three or more answers are allowed, however,
this analysis requires that each response/probability is independent of
the others {n the distriSuLion. This is not necessarily true for all
persons. For example, some people might tend to overvalue information
when deducing reasons i{n favor of an answer, but tend to undervalue
information when deducing reasons against an answer. In Appendix A we
give a planar estimation procedure for the case of three possible
answers. This procedure is capable of detecting the separate dimen-
sions of bilas.

The calibration results yielded by the realism function are re-
lated not only to Savage's conjecture quoted at the beginning of this
report but also to a familiar saying of Confucius: "When you know a
thing, to hold that you know it and when you do not know a thing, to
acknowledge that you do not know it. This is knowledge."

8. PERCEIVED VERSUS ACTUAL INFORMATION
This aspect of student behavior may be explored further by com-
puting (under the assumption of independence among test items) the
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Relctive frequency

Probability

Fig. ! i— Two reclism functions based on probability assignments
for two answer questions, Person | undervalues his information
while person 1l overvalues his information

amount of information the student perceives he possesses with respect
to the subject matter of the test, as indicated by his probability

assignment; 1{.e.,

k

n
n log k + z

1o .
ih i Pyy 108 Pyy

If the logar{thmic scoring rule is used, this expression when multi-
plied by 0.5K becomes the difference between the test score the student
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exppcis and the test score he would expect {f he had no fnformation
rel(_;wmt to. the subject matter.

The amount of {nformation the student actually possesses with re-
spect to the subject matter of the Lest mav be estimated by subst ftut-
ing bij = max[Q, mindl, apij + Bil iur the pij in the above expression,
Comparison of these two {nformation'measures reflects the extent and
direction of student bias.*“ This comparfison may be made graphically
in terms ot the "ty o acipe shown o Fig. 14, which has been

drawn to illustrate the aptness here of the Arabian proverb,

AY

]
. He who knows and kiows that he knows,
He {s wise, follow him.
He who knows and knows not that he knows,
k \ He s asleep, awaken him,
\
He who knows not and knows not that he knows not,
.\ He is 4 fool, shun him,
He who knows nét and knows that he knows not,
He 1s a8 child, teach him.
Wise
n log b / n log k
~
[
c Q
o g
g o
£ £
. £ &
B, c
c o
- °
— Y
O A
3 .-~
- m
(4 [
L Y
0.
0 0
Child
Fiag 1 The information s «ie
Under certain conditions, however, the information measures may Baas N

be equal but the realism function reveals that the student s tending
to overvalue his information. These instances tend to be extreme and
even pathological, ¢.g., when a student trice to minimize his (xpocted

test score. _
39



32w

At Rand we have demonstrated, and tried out, computer-administered
decision-theoretic testing with many different people using as sample
tests Reader's Digeat vocabulary tests; Humanities, Natural Scienéés,
and Social Sciences items from a workbook for the College Level Examin-
ation Program tests; and a midterm postgraduate~level test in Econo-~
metrics. About halfway through these demonstrations we decided to begin
keeping a permanent record of what people were doing at the terminal.

Figure 15 compares the two information measures for the first test
taken by each of 66 people. Most of the data points fall below the
diagonal, indicating that most of the "subjects" at least initially
overvalue their knowledge of these subject matter areas. A few people
fall close to the dfagonal, suggesting that some people may exist who
can discriminate with great accuracy what they know well from what they
know less well. :

What happens when people take more tests and, thus, gain more ex-
perience with decision~theoretic testing? We find th~* many people can
reduce their score loss due to lack of realism [4]. I think that this
improvement comes as they begin to experience the consequences of the
admissible scoring system [6] and learn to reduce their risk-taking
tendencies by making their utilities more nearly linear in points earned
or lost. There does, however, appear to be a limit to this improvement.

A number of people were encouraged or challenged to take more tests,
and to try to be as realistic and to score as well as they possibly could.
We ended up with 11 subjects who took an appreciable number of tests--
enough so we could discard the early ones they took while they were
learning the procedures and the consequences of the admissible scoring
system.

Figure 16 shows the apparently stable state behavior of the most
biased of the 11 subjects. The line designated T, is located at the

A
mean of the actual information measures, while the line designated I

{8 located at the mean of the perceived information measures. The 12—
tersection of the two lines gives a gfoss indication of actual versus
perceived information for those tests the subject decided to attempt.
By taking the ratio of T} to TA we can obtain a rough measure of the
extent and direction of bias. The ratio for this subject is 2.44, in-
dicating that,she thought that she had almost two and one~half times

as much information as she actually had.

40



e
2
.) ‘6
E
2
£
;]
§
<
- \
0 Perceived 1
~Fig. 15 = Information comparisons for 66 subjects
while taking first computer~odminstered
N admissible probability test
| :
A
5 °
4. .§ ®
_ § o
£
— ®
]
e .
U
<
. ’ >
3 ®
J X
. | A
0 I, 1

Parceived information

Fig. 16 = Information comparisons for subject A, the
most biased subject. Early tests excluded. Dota shown
for last 18 tests token by subject

41

©

ERIC

Aruitoxt provided by Eic:



/
; ~34m
Table 3 lists some pe}sonal characteristics for the 11 subjects

arranged in deareaqing or4er of bias, which goes down almost to the
unbiased value of 1,00, ﬂotiae that no subject yielded an cverall
ratio less than one, whiih would have indicated a person who typically
undervalued his informagéon. Figure 17 compares the finformation wéas~
ures for subjects B thréugh K. Subject B, although apparently striv-
ing to reduce bias and to improve his score, was\unable to do so. The
remaining subjects, dep;cted in decreasing order of bias, were more and
more often successful;in producing a realistic asﬁessment of their un-
certainty. Subjects J and K, the two most accurate subjects, were
remarkably consisten; in demonstrating their ability to assess their

uncertainties accurdtely.

4 Table 3

; SUBJECT CHARACTERISTICS

‘Subject IP/IA I, Tests Sex Age Education

2.44 0.31 18 Woman 20-~30 Master's +
2.42  0.17 12 Man 30~4Q0 Doctorate
2.26 0.28 7 Man 50~60 Doctorate
2.11  0.32 27 Woman 20-30 Bachelor's
1.81 0.18 20 Woman 20-~30 Some college
1.67 0.40 12 Woman 50~60 Doctorate
1.52  0.30 20 Woman 30~40 Bachelor's
1.33 0.35 9 Girl 9 Third grade
1.22  0.38 21 Girl 12 Fifth grade
1.02 0.71 34 Man 40~5C Doctorate
1.00+ 0.85 8 Man 40-50 Doctorate

ARbam I QOnmm 0O S

In conclusion, the introduction of decision~theoretic testing makes
it possible to define and to measure for the first rime a human ability,
call it rezliem, which may prove to be a very important determinant of
individual and team performance. For example, to what extent and {n
what manner is an unrealistic student handicapped in his’ attempts to
learn and to study effectively? For another example, does a team of
realistic people tend to out~perform a team of overvaluing people and,
if so, for what types of tasks? Answers to these and many other ques-~

tions must await further research.
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Fig. 17 — Continued

We have shown here that some people can be very realistic over a
wide range of subject matter while others characteristically overvalue
their information. We do not yet know whaf deficits in this‘ability
exist within different subgroups of the population nor do we know
exactly how to go about educating people to become mcre realistic. The
results for subject A, summarized in Fig. 16, certainly prove that
level of education does not insure realism in assessing and communicat~

ing uncertainty. !
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9. THE CONSEQUENCES OF BTASED PROBABILITIES

Decomposing the test score provides a convenient means for showing

a student the consequences of having less than perfect realism in
assessing the value of information. It is also related to a major, buc
l1ittle known, property of an admissible scoring system: 4 student’s
actual test scove is maximized if and only if his responses match the
conditional success ratios defined in the previous section. Thus, the
effect of experience upon a student who desires to score well on admis-
sible probability tests should be in the direction of making his re-
sponses conform moyre closely to the conditional success ratios.* In
other words, the student should develoﬁ his ability to give better
probabilistic predictions.

The maximum test score obtainable on an n~1tem test with the loga-
rithmic scoring rule is M(n) = n(0.5K log k), while the minimum score
is m(n) = n(0.5K log 0.01K) because of the restriction on r. If S(n)
is the total test score earned by a student, then M(n) -~ S(n) 1is the
amount of improvement left in order to achieve perfect mastery.of the
test, and when K = 100 this total improvement score can range between
0 and 100n.‘<Thus, one function served by the use of an improvement
score is the elimination of negative scores.

This total improvement score may now be broken down into two scores,
each of which has a meaningful interpretation. Suppose the test i: re-~
scored using the adjusted probabilities pij' computed from the student 8
realism function as described above, instead of the student's actual
responses r, y° This procedure yields a new score, S(n), which typically

1.

is greater than or equal to S(n). The adjusted score S(n) 1s an esti-

mate of the score the student could have made 1if he were unbiased and

*For a student who is biased in assessing uncertainty, i.e.,
p # r(p), we have the possibility of conflict between maximizing ex-
pected score versus maximizing actual test score. While of profound
importance, a detailed treatment of this subject 4s beyond the scope
of this report. The conflict is resolved, of course, f the student
is able to change his probabilities to match the conditional success
ratios.

*Recall that the realism function 1is only a least-squares fit to
the data. If the realism function were fitted using a maximum like-~
1ihood procedure, the logarithmic score would be strictly maximized
and there would be more assurance that S(n) = S(n).
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made more effective use of the {nformation available to him. Now,
§(n)_* S(n) represents the improvement possible through more effective
use by the student of the information already available to him, while
M(n) - §(n) represents the improvement possible as a result of his gain-
ing additional information pertaining to the subject matter of the test.
These two improvement scores are a decomposit}on of the total test score
because, when summed, they equal the total improvement score. Such an

analysis, of course, is not possible with the simple choice method.

10. A LIKELIHOOD: RATIO MEASURE OF PERSPICACITY

Realism appears to be an important goal for human behavior: There

is some indication, however, that it may not be sufficient as an ideal.
For example, by using complex strategies which sacrifice potential test
score, a student might be able to produce a realism function with a
slope nearer to one. This kind of pseudorealism must not be produced
at the expense of test score and if the proper emphasis is placed upon
score, it probably will not be.

For another example, there is the question of a student's ability
to discriminate levels and patterns of uncertainty. To illustrate,
consider some data from a 15-item, three-answer test. Figure 18 shows
the 15 probability distributions elicited from a student inexperienced
in explicitly assessing uncertainty. It appears that this student was
thinking in terms of which answer was most-likely to be correct and, as
a result, responded along the line going from the no-~-information point
up to complete information. Figure 19 shows the 15 probability distribu-
tlons elicited from a student with considerably more experience in ex-
plicitly assessing uncertainty. [t appears that this student would
sometimes use information to 'rule out' one of the answers and perform
other kinds of complex discriminations yielding a variety of probability
distributions. .

Consider now using just one probability distribution to represent
each student's knowledge. Let pj be the highest probability assigned
for item §, p' be the next highest, and p''jJ' the smallest. The .verage

| R
probability distribution (p, p". p"') may be found by calculating
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I15-item test ond yielding a likelihood ratio of 36.55. Circle

represents average probability distribution.
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This average probability distributi. . is displayed as a circle in Figs.
18 and 19. Notice that they are not strikingly different for the two
students. ' '

Which set of probability distributions, the original set or the
average one used for all items, is the better predictor of the set of
correct answers? To be more specific, consider the "data" to be the
sequence of correct answers and let ch be the original probability
assigned by the student to the ccrrect answer to item §. Then, the
likelihood of the data under the hypothesis that they were generated
by the student's probability distributions is

L, = ﬂ p"
1 j=1 ci ’

Now consider the hypothesis that the data were generated by the con-
stant averaggﬁ?rotébilitz distribution. That is, look at pcj and give
it the value p', p", or p"' according to whether it was the largest,
middle, or smallest probability in th¢ -2t, Or, equivalently, let

n' = the number of times pcj wvas largest,

"

n'" = the number of times pcj was next largest, and

n"' = the number of times Pey was the smallest, so that

a' +n" + n't = .,

1f there are ties among the p e’ fractional numbers must be used. The
1ikelihood of the data under this second hypothesis can be wri.ten as

Lz - ;'nﬁgﬂn"?"n"l
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The likelihood ratio can now be computed as I,I/Lz. For the data shown
in Fig. 18 this likelihood ratic is about 0.2, {ndicating that the data
are about five times more likely hﬂder the constant probability hypothe~
sis. For the data shown in Fig. 19“thie likelihood ratio is about 37,
indicating that the data were about i( t imes more likely using the
student's original set of varying probékility distributions than using
the constant average probability d}stribk;ion. Thus, this likelihood
ratio may prove to be a useful measure of alstudent's progress in learn~

ing how to extract and process information in probabilistic terms.

11. _POTENTIAL IMPACT OF TESTING METHOD UPON STUDY BEHAVIOR

Because lower levels of mastery often require much less effor: to

achieve _than do the higher levels, the logarithmic may prove to be a
very appropriate reward system that can motivate students to achieve
higher levels of mastery of a subject matter than they do at present.
To investigate this, assume that the student has, for each question,

an exponential '"learning curve'" of the form
1 %
p=1-3exp (-2)c) ,

where ¢ represents the cost to the student in time and energy, say, of
the effort he puts into studying the question; } i{s a parameter that
reflects the "easiness' or rate of learning of the subject matter of
the question; and p {s the student's pfobability associated with the
correct answer. For the sake of definiteness and simplicity, assume
that each question has only two possible answers. Thus, {f the student
puts na study at all into the question ({.e., ¢ = 0), his probability
for thé correct answer is 0.5, but as he invests effort in studying the
subjectamatter his probability increases asympiotically toward 1.0, as
illustrated in Fig. 20.

There are two ways of modeling the way a student will choose to
spend his study time and effort. You may either assume that he has a
fixed amount of time available and seeks to allocate it across the

questions {n such a way as to maximize his optimal expected score; or

:;().
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Fig.20 — Probability as a function of effort, ¢, where p 1-1/2 exp(=2 Ac)

you may assume that there is some 'exchange rate" between study time

and score (e.g., one point of score is worth three minutes of time to
this particular student) and that he will "spend" his time on each ques~
tion in such a way as to maximfze his "profit," 1i.e., the difference
between his optimal expected score on a question and the value of the
time he expends on studying it. These approaches will be discussed

' separately, but 1c\will become apparent their soclutions are closely

related.

11.1 Allocation of Study Effort Among Topics

First, suppose that the student has a fixed and limited amount of
study time avallable and wishes to allocate it over the questions likely
to be asked in such a way that he will maximize his optimal expected
score. On & given question, by following the optimal test-taking strat-

egy he will expect to score
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where p(c) (s the function of study time and effort defined in the pre-
vious section. Figure 21 shows optimal expected score as a function of
effort for a single question under both the simple choice or linear and
the logarithmic scoring procedures. The maximum return (in terms of
expected score) per unit of effort may be found graphically by measur-
fng the slope of the steepest line through the origin which is tangent
to the optimal expected score function, E*. Analytically, {t can be
determined by finding the point where the derivative of (%) with re-

spect to ¢ is zero. Now in fact,

dE
d & . 1ldedp [ 7 P8R0 - g, -
de ‘¢ ¢ dp de c2 c2 R ’

Because of the particular form chosen for p(c), it follows that the
numerator of this expression depends on p alone, not on ¢ or A. Thus,
there exfsts a "critical value” of p, .y p*, for any given scoring
rule such that on'any question and regardless of what A may be, the
student will get maximum reward per unit effort to bring his probability
for the correct answer up to p*.

It is easy to calculate p* for any given scoring rule (see Appen-
dix B). To be specific: |

SCORING RULE CRITICAL PROBABILITY
Simple choice or lipear 0.5
Logarithmic 0.891....

An allocation procedure that yields an approximately optimal solu-
tion to the overall problem (and an exactly optimal solution in most
cases) is as follows. Arrange the questions in order of increasing
study difficulty so that Al = Az - SRR A The student should work
on the first question until he has expended enough effort so that p 2 p
and the ratio of marginal return to marginal cost (that is, dE/dc) s

S<
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]
£
0.5
Simple choice or linear
: f - é
Effort (c)
1
£*
0.5

Logarithmic -

Effort (c)

Fig. 21— Optimal espected score as o function of effort (c) when A 0.5

just equal to the maximal achievable gain per unit effort on the second
question. Then he should work on the se’»nd question until p > p* and
then work on the first and second question (keeping marginal return
ratios eqﬁal) until the marginal return ratios equal the maximal achiev-
able gain per unit effort on the third question. The process is con-
tinued until the student has allocated all the effort he has available.
This allocation procedure will yield the true optimum for the scor-
ing rules considered above 1f the student "runs out of gas" at a point
where every question he has worked on at all has been worked on to a

®
point where p 2 p . In more complex, nonreproducing scoring procedures

, o3
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that do not have steadily diminishing marginal returns for p 2 p*, the
optimal allocation procedure will not work so well.

Now, obviocusly, a "real-life" student will not go through a care-
ful quantitative anplysis of how to allocate his study ~fforts, but the
quantitative model (which may come to represent the behavior of experi-
enced, test-wise students fairly well) does catch one aspect of study
behavior that is worth remarking: The use of a logarithmic scoring
rule encourages the student to study fewer questicns to a higher degree
of mastery, while the conventional simple~choice procedure encourages
the study of more questions to a lower degree of mastery. Which in-
centive svstem is to be preferred depends upon the tradeof fs between
scope and retention of the subject matter for the particular learning
situation at hand.

Neither incentive system {s beyond fault when study time is strictly
limited. On the one hand, use of the conventional simple~choice proce-
dure may mean that the student will remember none of the subject matter
more than a few hours or days after he takes the test. On the other
hand, {f he uses the logarithmic pfocedure he may remember some of the
subject matter, but not enough for it to be of any use to him. "Cram-
ming" for a test can easily be a losing proposition which, with the
simple-choice procedure, vields an adequate test score but produces

little learning.

A - O ——

An alternative way of modeling the student's study incentives is
to assuae that his study time is not strictly limited and that his time
has a value to him which is commensurable to the value of the test score
he may earn., If the tota! amount of time which he may spend on study
i{s flexible, he would peri.aps attempt to maximize his "profit" on each
test question. That is tc say, he would choose an expenditure of time
c* on each question that maximizes E[r*!p(c)] - sc, where g is the
value, in units of test score, of a single unit of time (or study ef-~
foft). Assume for the moment that the units of time (or study effort)
have been normalized in such a way that s = 1.

Within the context of the quantitative model it is an easy task to

calculate (see Appendix C) as a function of }, the optimal investment

o4
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strategy and maximal point uhder both the simple choice and the loga-
rithmic scoring rules. The results of these calculations are graphed
in Fig. 22. For a given ) the simple choice procedure allows the
1af§§? ?rofit and, in this sense, i5 a more¢ lenient reward system than
is the logarithmic. Under the simple choice procedure it never pays
to work on a question where A < 0.5, while under the logarithmic the
student cannot make a profit 1f A < 1.5, If A » 1.5, the student will
expend considerably more effort under the logarithmic scoring rule.
Note, by the way, that {f the student studies a question at all under
the "maximum profit" hypothesis, he atudies it at least up to th: level
where his probability exceeds p*.

Thus, the same basic pattern appears under the "maximum profit"
hypothesis as under the "optimal allocation" hypothesis. Specifically,
the student is theoretically motivated to‘sCudy fewer questions (through
avoidance of the harder ones with A < 1.5) but to a higher degree of

mastery under the logarithmic scoring rule than under the conventional
| simple choice procedure. In the case of the investment problem, how-
ever, the studert may be induced to study all of the questions by in-
creasing the reward for learning or by increasing the rate of learning
(1) either through improving learning efficiency or through reorganiza-
tion of the subject matter. Any of these steps may serve to resolve
the conflict between scope of learning and retention.

Whether these effects will be observab}e in real students in real-
life situations will be an interesting matter to investigate empirically.

12. IMPACT OF INAPPROPRIATE REWARDS UPON TEST-TAKING BEHAVIOR

A fundamental assumption underlying all of the above analyses of
optimal behavior i{s that the student wishes to maximize his expected
test score.f What may happen when this condition is relaxed?

With the simple choice procedure, a sﬁudent desiring to maximize
expected test score does it by selecting,ffor each question on the
test, that answer he considers most likely to be correct, as shown {n

Sec. 5.1. Suppose, however, that a cutting score or some grading
limits are imposed on the test so that the student now wishes to maxi-
mize the probability that his test score will equal or exceed a speci-
fied score, say N or more answers correct.

S
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To find the optimal test-taking strategy under this reward struc-~

" ture, assume that the student perceives all the questivns to be inde-

pendent. That is to say, he feels that the probable correctness of
the answers to one question would not be affected by what the correct

answer turas out to be on another question. Now let

Pi(j),j = probability of gettin; question j correct given that
student chooses answer {(3j),

pQ(K) = probability of gett}ng K correct out of the first £
questions, s L

pgéﬁf) = probability of getting K or ﬁore'ybrrect’éﬁt of the -
first R questions. :

Then,

) n
p, (W) = hZN P (h)

T |
= hZNl pi(n).n Pn--l(h -1+l - pi(n),n] Pn-l(h)‘

" Pitn),n Tna M D AP, (B

Since Pn_l(N -~ 1) » 0, regardless of what strategy the student uses
on the first n -~ 1 questions, it follows that choosing 1(n) so that
pi(n).n_W111 be a maximum will give the student an equal or better
chance of getting N or more correct as will any other choice on the
nth question. Clearly, the questions could be renumbered to make any
question the 'nth question,” and thus the obvious strategy 1is, indeed,
an optimal one.

The assumption of independence among the test items was used in
the proof given above. Consider now an example showing that this re-~

sult does, in fact, depend on the assumption of independence. Here is
the test:

o7
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1. It rained in Santa Monica on July 24, l932. True or False?
2. 1t did not rain in Santa Monica on July 24, 1932, True or False?

You must get at least one item right to pass the test. Obviously, if
you answer both items ''True" or both items "False" you are certain to
pass. If you are 90 percent certain that {t did nof rain in Santa
Monica on July 24, 1932 and you use the "obvious" strategy, then there
is a 10 percent chance that you will flunk. This shows that the ob-
vious strategy‘is not necessarily optimal if the questions are not
independent.

Be that as it may, the simple~choice procedure is relatively in-
sensitive to the reward structure within which it is embedded. As a
consequence of this property of the widely used simple-choice scoring
procedure, test .{vers havae probably gotten in the habit of {ignoring
reward structures and can afford to use cutoff scores and prizes with

abandon. Such behavior can cause great difficulty when one attempts

. to improve testing through the elicitation of peréonal probabilities.

The notion that the student should answer each question in such a
way as to maximize his expected score 1s based upon the assumption that
he has a linear utf{lity for points. In many educational contexts as
they currently exist, this assumption will be manifestly out of line
with the factél

For example, suppose that some special prize is to be given to
whoever gets the best score for a given test. This will tend to make
students overstate their probabilities (or, to put it another way, to
appear to overvalue their information), because the chance of getting
a really high score will be worth more than the risk of getting an un-
usually low score (which will be no worse for the student than a medi-
octe score). The precise quantitative measurement of this effect is
very difficult in general, because it involves a multiperson game that
is afferted not only by each player's perception of the difficulty of
the questions but also by his perception of the ability of the other
players. However, an analysis of what happens if two players are asked
a single question will be found in [7], pp. 12-13.

The special case in which a prize is awarded only in the event that

the student makes a perfect score is very easy to understand. With this

o8
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reward structure, the student should always set one of the ry = 1 ao
matter how great his uncertainty because if he fails to do so, he will
foreclose any possibility of making a perfect score.

Another context in which students might be motivated to give re-
sponses other than their personal probabilities is any situation in
which all that matters is to achleve a given level of score. For ex-~
ample, if the students are on a "pass~-fail" system, where they pass
the course if they achieve a certain test score or better, and fail
the course otherwise, then they may have considerable incentive to
shade their responses up or down from their probabilities. The gen-
eral problem of determining an optimal response strategy under these
circumstances is mathematically very complex and no solution is knowm.
The following simplified example, however, can be solved and it illus-
trates very clearly how the {mposition of a "pass-fail" reward struc-
ture on tdp of a reproducing scoring system may completely destroy any
incent e for students to respond with their probabilities.

Suppose a student faces an exam consisting of n two-answer items.
Suppose these quéstions all "look alike" to the student, in the sense
that on each question he has & fixed probability distribution, p and
ﬁ, with p > 1/2. Suppose that he requires a total score T on the

- test in order to pass. He wants to choose a fixed response r to assign

to the preferred answer to each question. What value of r should he
choose in order to maximize his probability of passing the test? It

is not hard to show (see Appendix D), that he will have the maximal
probability of passing if he chooses r such that E[S(r)|r] = T/n. Note
that this r does not depend on p at all! So the student's opcimal test~
taking strategy depends only on what gcore he must make in order to pass,
and not on his level of knowledge with respect to each test item. 1In
short, this reward structure utterly destroys the reproducing character
of the scoring rule. TFigure 23 {llustrates the student's probability

of passing as a function of his response strategy in the particular case
where T = 0.58, n = 20, and p = 0.8. Note that the student will be
about nine times as likely to fail the test if he pursues the "maxi{mum
expected value" strategy as he will be if he follows the "maximum proba~
bility of passing" strategy. '

o9
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In ah actual situation, however, the reproducing character of
the scoring rule would not be completely washed out, because the stu-
dent would not have precisely the same probability distribution for
each item. It seems intuitively evident (although a rigorous proof
has not yet been discovered) that his best strategy would be to hedge
all his responses tut still let his responses vary somewhat with his
probabilities.

But the best remedy is to avoid creating reward structures which
put a highly nonlinear value on points earned under. an allegedly re-
producing scoring rule. Another (partial) remedy is to avoid letting
the student know how many questions there are on a test, or how dif-
fiéglc they are, before he begins to take it.

13. SUMMARY AND CONCLUSIONS
We have seen that it is patently desirable to broaden the responses

that students are permitted to make to multiple~choice questions. The
reasons for this are as follows: the student is then able to transmit
more information to the teacher on each item; conventional multiple-
choice tests do nothing to train the student to weight the strength of
conviction justified by his knowledge on a given item; and students
themselves prefer greater freedom of response apd chafe under the limi-
tations of the conventional one-choice response format. '

However, it is meaningless or even deceptive to permit students
to give a weighted response rather than a unitary choice if the scor-
ing system is not carefully chosen so0 as to encourage students to use
the full range of choice available to them. For example, if the stu-
dent 1s allowed to respond with weights (which add up to one over all
alternative rasponses on each question) and is then given a score on
each question equal to the weight he ascribed to the correct alterna-~
tive, then it will not take an intelligent student long to recognize
that he should not utilize the freedom you have made availaﬁle to him,
but simply respond with weights of zero and one as in a conventional
multiple~choice test. One excellent solution to this problem appears
to be the use of "admissible scoring systems," which are designed to
provide the student with a maximum expected score if he makes his re-
sponses correspond to his subjective probabilities.

o 61
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Admissible scoring procedures have many desirable features, They
link the student's responses to the well-developed disciplines of sub-
jective probability, information theory, and Bayesfan decisionmaking.
The student who becomes 'test~wise' against a reproducing scoring sys-
tem has learned to express his uncertainty 1n the universal language
of probabflity theory. He has also learned to weight the facts, clues,
and reasons available to him and come up with a "risk-balancing" re-
sponse. Preliminary data from computer-administered admissible proba-~
bility testing show that, while some people possess this aptitude,
others are quite biased in their assessment of uncertainty and could
benefit greatly from further training in this skill. Admissible scor-
ing procedures also have the theoretical advantage that they lead the
student toward higher degrees of mastery than do conventional scoring
procedures. That {s to sav, the student perceives increased rewards
for higher degrees of certainty on each question under an admissible
scoring system than under a conventional multiple-choice scoring sys-—
tem. The latter tends to encourage superficial knowledge of a wide
variety of topics; the former encourages total mastery of a smaller
number of topir .. This perception should have a desirable effect on
the student's study habits. Whether this effect will be observed in
practice makes an interesting topic for future experiments.

It will be very important, in practical applications of admissible
probability testing, to insure that the external incentive system (i.e.,
what is done with the test scores) be corsistent with the basic assump-
‘tion of admissible probability testing. That is to say, the students
must perceive the maximization of expected score as being their best
strategy. In theory, the use of a "pass~fail' system, or the use of
extreme competition, may have the effect of distorting the students'
responses away from their true subjective probabilities. The value of
the students' rewards must be somehow proportional to the total score
they each receive. Whether this problem turns out to be serious or not

is another question that can be answered only by empirical tests.
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Appendix A

FITTING A PLANAR REALISM FUNCTION

1. NOTATION, NORMALIZATION, AND SYMMETRY
Assume there are n questions in the test, with three possible

answers for each question. We reorder the answers so that pi z_p% > p%,
where pi is the probability the student ascribes to the i{h answer on

the jth question. We let ij denote the correct answer on the jth

question.

We wish to find a linear transformation
q; = 811P) + 81,Py + 8, 4P,
G = 8Py + 855y + 8y3P, (a.1)
A3 * 83;P1 + 8350y * a34P,
that will minimize the quantity,

n 3
jzl 21 (qi ~ ei)2 = A, (A.2)
= {=

where ei is zero or one depending upon whether answer { to the jth
question is incorrect or correct.

In addition to minimizing expression (A.2), we require the trans-
formation to meet certain conditions of normality and symmetry:

3 3
) 1 ] p, =1 then J q, =1.
(=1 1 S ey &

(8) 1f Py ™ Py » then q; = gq, .

(c) 1If P, ®* Py » them g, = q, .
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All three of these conditions together imply that p = (g, g. %p

is carried into q = (3. ;. 3) by our transformation; thus for all {,

Z 8y " 1. (A.3)
k=l

Condition A, applied in turn to p = (1,0,0), p = (0,1,0) and
p = (0,0,1), implies that for all {,

3

a,, = 1. (A.4)
kel ki

Condition B, applied to (%, %, 0), implies

a1y +ay;, * ay + 85y (A.5)
Condition C, applied to (1,0,0), implies

Now let us denote a4 by n, and 844 by B. From (A.6) and (A.4)
we see that

l~a
31 ™ 831 = 73 . (A.7)
From (A.3) we see that
349 ™ l1~a-8. (A.B)
From (A.5), (A.7), and (A.8) we have
l4+0a ~ 28
8y = 3 . (A.9)
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From (A.8), (A.9), and (A.3) we derive
85y ™ B . (A.10)
Applying (A.4) now yields

ol 4o+ 48
R4, 3 and 333

- 1 - 28 . (Aoll)

In summary, the application of normality and symmetry conditions
shows that system (A.l) may be written

q; = ap, + (1 ~a-~8) Py + 8p3

_l1-a (1+a -~ 28)
q; 7 Pt

-~

1 ~a (-1 + a + 48)
43 = =5 P + > P, + (1 ~ 28)p3 .

It is easy to szee that these expressions are necessary and suf-
ficient conditions for (A),. (B), and (C; to hold.

The parameters 0 and B have an {mmediate interpretation, as follows.
The requirement that Py 2Py 2 Py means that we are restricting our
attention to one-sixth of the "answer triangle' (the shaded area in the
upper 1eft~hand triangle of Fig. 24). The mapping (A.12) leaves the
poinc (3, 3, 3) fixed, carries (1,0,0) into (a, 0 ,0), and carries
G, Lo meo A58, 158, 8,
of the shaded triangle, and by knowing what happens to them it 1is easy
to visualize what happens to all other points in the triangle. Figure

These three points are the vertices

24 includes three examples of what the mappings look like for different
values of a and 8.

2. MINIMIZATION OF A

This section gives the formulas required to calculate values of
a and B that will minimize A, the quantity defined by (A.2). The der~
ivation of these formulas is by taking the derivative of A with respect
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to a and 8. We skip the {ntermediate steps in this routine calcula-~
tion, and jump directly to our final formulas:

“a. ©88 ~ ©g. a8 .
€ax “88 ~ “Ba a8

x =

(A.13)

[ o [ - [
B. “an ~ “a. “Ba

“aa 88 " “8a a8

The quantities appearing in these formulas are defined as followse.

Let
b I R | y_ 3 _ 4 h BN
Ay =r - P Bl = Py - Py Q% P
y_ b b/
S S S R N 1.1 P
A3 ) - Byt R ¢ 7 (A.14)
y _ 3 3 h)
s TP a3 LIS S T
Ay 7 By = 2(p; - p3) 3 7t P
The reader will note that
al = Al o+ B e+ c] (A.15)
Now we define
n 3 n 3
= X Aj Aj c = ¢ = Aj Bj
oo jm1 1s1 > SR § al Sa jzl =1 i 74
n 3
b I |
Cgg ™ L ) BB
B8 I
| (A.16)
n n 3
3 14
c, = ) A, - Y VAl
o jm1 ij je1 4=1 i7s
n n 3
3 h I,
c, = J B, -7 J Blc
B gm Yy gmigm P



Recall that ij {s the subscript of the probability ascribed to the
correct answer on the jth question. Now the reader may be bothered

by the following question: suppose a respondent on the first questions
lists probabilities (0.4, 0.2, 0.4), and the third answer is in fact
correct. We reorder the probabilities to get (0.4, 0.4, 0.2), but
what value do we take for 11? Should it be 1 or 2?7 It does not matter, K
as far as calculating our coefficients & and 8 is concerned, for 13
enters {nto the calculation only as a subscript for A's and B's; when
this ambiguity arises about whether 1j = 1 or ij = 2, we have pi = p%
and so A{ = A% and Bi & B%. Simi{larly, if there 1is ambiguity over
whether ij = 2 or ij = 3, we have A% = A% and B% - B%. Because of the
symmetry buflt into Eq. (A.12), it also makes no difference which pos-
sible value of ij,we select (Qhere ambiguity éxists) in calculating

the total score awarded to the "transformed" estimates.

3. TRUNCATION AND RENORMALIZATTON

The procedure above does not necessarily lead to a vector (ql,

9y q3) (hat is a proper probability vector. Although the q's will
sum to one, they will not necessarily fall between zero and one. We

truncate and renormalize in the obvious way:

TS (1, max (0, qi))
Q3 = min - g
3

(A.17)

3
dj = z min (1, mex (O, qi)) .
{=}

This truncation may seem rather arbitrary and ad hoc. Recall,
however, that it will take place only if the respondent undbrestimatgp
his knowledge (and a and 8 do not fall between Z&ro and one), a phenom-
enon that so far has occurred only rarely and with naive subjects.
Therefore, the use of a more sophisticated truncation and renormaliza~

tion routine hardly seems justified.
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Appendix B \

|
HOW TO CALCULATE THE VALUE OF "p" AT WH%CH MAXTMUM
EXPECTED RETURN PER UNIT EFFORT IS ACHIEVED

!

Recall that in Sec. 11 we assumed, for a given true-false ques~
tion, that a student's probability, p, of choosing the correct response ..
could bé expressed as an exponential function of the effort he put into
studying the question. Specifically, we assumed that ‘

p=1-~ %-exp(~2%c) s | (B.1)

where ¢ represents the study-time ("cost") and )\ {s a parameter reflect-
ing the "easiness” of the question. Recall also that the expected score
a student 1s able to make on a question can be expressed as a function
of his probability of choosing the correct response. Specifically,

E[S(p) [p] = pS(p) + (1 ~ p)S(1 ~ p) . (B.2)

We assume in the formula (B.2) that the scoring function is sym~
metric; i.e., the student gets exactly as much credit for 0.7 true;
0.3 false" 1if "rrue" 4s correct as he gets for "0.3 true; 0.7 false"
if "false" is correct. By cc .ining (B.1) with (B.2) we may express
maximum expected score directly as a function of "cost," ¢, and "easi~
ness,”" \:

E[Y,c] = (1 - %: exp(~-2ic))S(1 - % exp(~2Xc))

+ 7 exp(-2Dc)S G exp(-20c)) . (8. 3)

Now, it 1s immedistely evident that E[1,Ac] = E[A,c] for all posi-~
tive values of A and c. If we are looking for the maximum return per

unit effort, we may apply this observation as follows:
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-
nax BCHE) - oy 1 ELAS) Ly gy EiC) (B:4)
c»0 ¢ c20 >0
*
In other words, if c, represents the cost that maximizes ESltEl“

* *
then ch =y This is true, i.. an obvious sense, even if the c; are

not unique. In our learning model, p depends on the -product of '\ and
c; This {s extremely convenient, for if we let p; = Xc;, we see that
Py = Pq- In other words, the maximum return per unit effort is achieved
on a given true~false question by studying that question until a given
probability of choosing the correct answer is achieved; and this
"mastery level' (which we shall call p*) does not depend on the easi-
ness of the gquestion, but only on the scoring function used. This
critical mastetry leve} i{s thus a characteristic of the scoring func~-
tion; presumably studénts will study harder when faced with a scoring
function with a high critical mastery level than they will when faced
with a scoring function having a low one.

If the scoring function is differentiable, elementary calculus
may be used to calculate the value of p*. One good way to do this is

to use the chain rule, as follows:

g__(E[SQg)Jg_l) _1dEdp _E_ (B.5)
de c . .

Example 1: Let S(p) = igg g) . This is the logarithmic scoring rule

normalized so that S(%) = 0 and S{1) = 1. Then

g = R1og(2p) + (1 - p) log(2(1 - p))

log 2
do (—*jL-
dE | J._L:__P.)_ (B.6)
P log 2

= X exp(~2ic) = 2(1 ~ p)X .

2ig
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Therefore,

2 log(2) %g'(g)

c [log(i~g~;)] * 2(1 ~ p)A

-p log(2p) + (1 ~ p log(2(1 ~ p)) . (B.7)

Since

c = "103122(1 - P)J , (B.8)

\ we see that (B.7) may be expressed as

c? 1082 §= &) < -log(rBo) 0g2(1 - BNIL - )

- p log2p -~ (1 - p) log(2(1 ~ p)) . (B.9)

The ma#imum value of g will be achieved at the point where the
right-hand side of (B.9) equals zero. Solving this transcendental
equation is very difficult by hand, but is easy (using the method of
false position or Newton's method) on any compute~. The derivative
in (B.9) is zero at p = %; is positive for %—< p < 0.8910751 ...; and
is negative for 0.8910751 ... < p. Thus the maximum expected score

per unit effort 1s achieved for p = 0.8910751 ....

Example 2: Let S(p) = 1 -~ 4(1 ~ p)z. This 4s the ''quadratic scoring

system," !

or "Brier score," often used by meteorologists to evaluate

the quality of probabilistic weather predictions. In our case, we
normalize it so that s(%) = 0 and s(1) = 1. Then

Ew (2p -~ 1)2

dE

d
zf" 2(1 ~ p)A .

71
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2d

5 (§)=c° Bp - 4) 2+ (1-ph-(2p-1°. (B.11)

Using relation (B.8), we see that

AL B8 reg2 A0 - @ -D]@ D
(B.12)

Simple calculation shows that the derivative in (B.12) is zero at
p = %; positive for % <p < 0.857665933 ...; and neggg}veJier'ﬁmg
0.85766593 .... Thus the maximum expgg;gd'scofé'§;; unit effort against
the quadratic scoring system {is écﬂieved at p-s 0.85766593 .... 1In

short, the quadratiq scoring system is apparently slightly less effective

(theoret ically) than the logarithmic scoring system in stimulating stu-
dents to work hard on individual questions.

Example 3: The techniques of this appendix may also be applied to scor-
ing systems that are not admissible. For example, suppose a student is
approaching a true-false test that is tc be marked and graded in the
traditional way (+1 for a right answer; -1 for a wrong one). Then if

a student has probability p of selecting the right answer, his expected
score on the question will be p « (+1) + (1 -~ p) ¢ (~1). We therefore

have
E=2p ~ 1
%g-a 2 (8.13)
P20 -
Thus
Fh G220 - @ -1 (B.14)

7S
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It follows that
N 2d E
<" Ie (E) = ~2(1 - p)log(2(1 - p)) - (2p - 1) . (B.15)

The derivative in (B.15) is negative for % <p <1l. It follows

that (%) is a maximum at p = %. In other words, the maximum return
per unit effort against a conventional true-false question is achieved

by putting forth an infinitesimal amount of effort.
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Appendix C

ALLOCATING STUDY EFFORT TO MAXIMIZE PROFIT

©

In Appendix B we analyzed the problem of how much study would get
the maximum return per unit effort. Another approach to the question
of how students will be motivated to study is to suppose that study
effort and points gained on a test question can be measured in com-
mensurable terms. The student is then in the position of 'purchasing"
expected score with study effort. You might expect the student to
attempt to maximize his "profit'; that is, to try to make the differ-
ence between the value of the score he expects to gain and the value
(to him) of the effort he expends in study. In shqrt, he will try to

maximize
E(\,c) ~¢ . . | (c.1)

If the reward system is such that E is a differentiable function
of p, then this maximization problem may be solved by finding the point

at which the derfvative 1is zero.

d (g - o) = 9EdR _
de (E - ¢) dp dc 1 (C.2)
We assume, as {n Appendix B, that
1
p~1- 5 exp (~2\c)
(C.3)

g.% = A exp(-2X¢) = A2(1 - p) .

Combining (C.2) with (C.3) we see that the derivative of profit

will be zero where

) = 1 5 - (C.4)
2(1 ~ p) dp
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Although we would ordinarily think of fixing ) and then solving
for p (or what is the same thing, c¢), Expression (C.4) is such an easy
formula that the best way to derive numerical values seems to be to
regard p as a parameter and derive the maximum expected profit as a
function of A by plotting the cprvej(ﬁ(p) +1 gX%P; » A(pP) } .

Exaﬁgle 1: Considef the logarithmic scoring system, S(p) = log 2p .

log 2
Then we have
o log 2
Mp) 2(1 ~ p)[log(p/1 ~ p)]
E(p) -c =14 2.-—]."-9-3 p + (1 i P)IQ_&(I ""'B) (C-S)

log 2

+ - pllog(p/l - p)log 2(1 -~ p)
log 2 ’

Carrying out these calculations yields the following values:

it

P lambda cost profit
0.99 7.542 0.25934 0.65986
0.98 4,453 0.36146 0.49710
0.97 3.323 0.42327 0.38233

- 0.96 2.726 0.46321 0.29449
0.95 2.354 0.48906 0.22454
0.94 2.099 0.50500 0.16756
0.93 1.914 0.51360 0.12048
0.92 1.774 0.51658 0.08124
0.91 1.664 0.51514 0.04839
0.90 . 1.577 0.51018 0.02082
0.89 1.507 0.50238 ~-0.00229
0.88 1.450 0.49226 ~0.02163

Note that for p less than about 0.9 there is really no value of X
for which such a p is optimal, since it {s better not to study at all
(and get zero profit) than to do any studying and get a ﬁegative profit.

Example 2: Now let us turn to the quadratic scoring system, S(p) =
2
1 ~-4(p - 1)".

7O
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E(p) ~c = (1~ 2p)2 + (1 ~ p)4(2p ~ 1)log 2(1 - p) .

Carrying out these calculations leads to the following:

lambda

<

12.755
6.510
4.433
3.397
2,778
2.367
2.076
1.860
1.694
1.563
1.457
1.371
1.299
1.240
1.190

0000 O 00 U0 WO \O \O \D WO \O O 0 DO
MONDODOYLOFHENWESUVNON DO

Y L] » 3 . L] 3 . »

CCOCCCOOOOUOO0O00

If A is less than about 1.2, it 1s better not to study at all, and

cost

0.15335
0.24721

0.31735

0.37179
0.41447
0.44780
0.47344
0.49260
0.50621
0.51502
0.51965
0.52061
0.5.1835
0.51326

0.50567

profit

0.80705
0.67439
0.56625
0.47461
0.39553
0.32660
0.26616
0.21300
0.16619
0.12498
0.08875
0.05699
0.02925
0.00514
~0,01567

(C.6)

accept zero profit, for no finite amount of effort expended will lead

to a commensurate reward.

Example 3: As a final example, consider a normal true-~false test.

This 18 not an admissible scoring system, but we can see that E(p) =

2p -1 (p2 %). Thus

1

A\p) = )

p)

E(p) - c=2p -~ 1+ 2(1 - p)log 2(1 - p) .

Computation yields the following:
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lambda

5.000
2.500
1.667
1.250
1.000
0.833
0.714
0.625
0.556
0.500

~6G~

cost

0.23026
0.32189
0.36119
0.36652
0.34657
0.30650
0.24967
0.17851
0.09482
0.0

profit

0.66974
0.47811
0.33861
0.23348
0.15343
0.09350
0.05033
0.02149
0.00518
0.0

If X £ 0.5, then any positive amount of study is unremunerative.

i
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Appendix D

SOME RESULTS OF OPTIMAL STRATEGIES TO
ACHIEVE A PASSING GRADE

Let us suppose a student faces a test consisting of N questions,
each with two alternativé answers. He knows the test will be scored
using an admissible scoring system S, but that the only thing that
matters is that his total score exceeds a certain "passing threshold"
.T. Suppuse all the questions "look alike" to him, in the sense that

on each question he feels there is probability p > %'that one alterna-
tive is correct, and probability 1 ~ p that the other is correct.

Assume also that the questions are independent (in the stochastic sense).
Then the student will perceive that his chance of ascribing the higher

probability to the correct slternative on exactly K out of N questions
is exactly

N, K N~
p - VK, (0.1)
If he makes the same response (\r, 1 - 1), r >-%) on each question,

then the value (V) of his score, if he ascribes the higher probability
to the correct alternative on K out of N questions, will be

V(K, r) = KS(£) + (N - K)SCL - 1) . 0.2

Ifr> l, S(r) > S(1 - r). Therefore, if Kl > Kz, then V(Kl’ r)
*
> V(KZ’ r). Now let us define K (r) as follows:

* T - NS(1 ~ r
K (r) = §?;S~:~é71~:~%3'. (p.3)

*
K (r) 1is not necessarily an integer. By virtue of the above equa~

*
tion, however, if K is an integer such that K > K (r), then

KS(r) + (N -~ K)S(1 -~ r) >T. (D.4)
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Therefore, the student will maximize his probability of "passing the
test” ({.e., getting a score greater than T) if he selects that r which
minimizes K*(r). I assert that the optimum value of r (which we shall
call r*) is that r which satisfies the equation,

r*S(r*) + (1 - r*)s(l - r*) = % . (D.5)

By substituting (D.5) in (D.3) we see that

L(.‘ﬁ(!.ﬁ). = r* . (D.ﬁ)

* * O
Now consider some r ¢ r , r > %. We will show that K (r) > K (r ),

*
thus proving that r 18 an optimal response. By definition of what an

admissible scoring system is, we know that

x & X P
KL 56 o (1- B8 sa - o > B8 50
(D.7)
P
+ (1 - IS“l\f'r'*-)")s(l - 1)
From this, and (D.3), we deduce
* * P
K (r)S(r) + (N -~ K (£))S(1 - r) =T > K (r )S(r)
(D.8)
+ (N - K*(r*))s(l - r)
Thus
* o
K (e)[S(r) - S(1 ~ r})}] K (r )Y[S(r) - s(1 - r)]
Ky - kT, (0.9)

The fact that the solurion to (D.5) is an optimal response in this
setting is a striking illustration ot the fact that nonlinear utility

for score may destroy the admissible property of a scoring system, for

7Y



Eq. (D.5) does not depend upon the student's subjective probability p
at all! '

It is interesting to note, by the way, that the optimal total test
strategy‘may not involve making the same response on all questions, even
when the student's subjective probabilities on all questions are the
same, For example, i{f T = S(1) and he 1s completely uninformed (p = %)
on all questions, then he will secure a 50 percent chance of passing
by making a (},0) response on one question and a (%n %) response on all
the rest. This is manifestly a better chance than he can secure by any

strategy that calls for the same (r, 1 ~ r) response on eyery question.
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