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ABSTRACT

This paper examines a longitudinal model of a manpower
system in which the demands for effective manpower is deter-
mined by the state of a finite Markov chain, and there are
delays in training an adequate supply of effective manpower.
We present an operational method of calculating optimal
appointment policies. This calculation can in turn be
used to find the equilibrium operating rules for the system.
The model is a useful device for measuring the impact of
alternate assumptions about continuation rates, manpower
utilization policies, the demands, and the transition
probabilities in the demand process.



O. INTRODUCTION

This paper considers the problem of providing an adequate supply of effec-

tive manpower when demand for manpower is uncertain and there are time lags in

the training of effective personnel. The model described in this paper is

useful in three specific ways: (i) it can calculate optimal manpower input

policy for alternate control objectives, (ii) it cen be used to measure the

effects of alternate training, retention, and utilization policies on system

performance, and finally (iii) it can measure the sensitivity of optimal poli-

cies and system performance to various assumptions on the nature of the sto-

chastic nature of the demand process.

In Section 1 we present a model for the flow of personnel. This model

attempts to capture the essential features of the manpower system in a simple

framework by utilizing the longitudinal stability of various manpower cohorts.

The stochastic nature of the demand process is described in Section 2. At

time t , the demand for trained manpower is determined by the state of a

finite Markov chain. In Section 3 we present two alternate control objec-

tives. The first objective is to minimize the expected, weighted, discounted

square of the error between the effective supply and demand for manpower. The

second objective is to minimize the expected discounted square error between

the actual manpower stocks and ideal stocks for any demand state. In Section 4

we describe tha form of the optimal policy and optimal value function. Numeri-

cal solutions are presented for the two control objectives. In Section 5 we

outline several uses for the model. The first is the determination of the

expected manpower stocks when the optimal appointment policy is used. Calcu-.

lation of the equilibrium stocks can then be used to calculate the expected

cost of the appointment policy along with some expected measure of system

performance. These calculations allow us to measure the t-_adeoff between

cost and performance for alternate manpower policies. In Section 5 we also
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consider the effect of errors in the specification of the stochastic law of

motion. We find it is relatively easy to discover the effects of these errors.

Finally in Section 5 we consider the effect of possible alterations in the

stock of manpower, either by releasing people from the system or allowing

personnel inflow that has a past accumulation of experience.

The appendix is devoted to the theoretical aspect of the model we find

that the optimization procedure is a hybrid of the linear-quadratic optimal

control problem ([1],[4],[7]) and the Markov decision problem. We are able

to show that the optimal decision rules are linear and that the optimal policy

functions are quadratic. In addition, under special assumptions on the prob-

lem data we can show that the optimal decision rules converge to an equilibrium

optimal appointment policy.

The model was motivated by the problem of regulating the supply of naval

aviators. We do not pretend to present an operational solution to that real

problem, however, a numerical example, using the naval aviator problem as a

setting, is used throughout the paper. The author is the sole source of the

data for the numerical example.

The paper is based on a longitudinal manpower flow model; Oliver and

Hopkins [5],[6], that has been used in a similar context by Grinold, Marshall,

and Oliver, [2], and Grinold and Oliver, [3].

7
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1. THE FLOW OF MANPOWER

This section describes the basic manpower flow process. For a more detailed

description of a related deterministic model see [2] and [3].

The state of the manpower system is observed at discrete equally spaced

time points t = 0,1,2,3, T ; where T is a planning horizon. The time

interval (t - 1,t] .er time t 1 and up to and including time t will

be called period t .

At each time t individuals in the system are classified according to

their length of service (LOS). The length of service is simply the number of

occasions the individual has been classified. Thus individuals entering in

period t will have length of service equal to one at time t , since they

are in their first period of service at time t . Individuals entering in

period t - 1 that are still present at time t will be in their second

period of service. We assume that m is the maximum number of period: an

individual can remain in the system.
t

It follows that individuals in the

system at time t in their m
th

period of service must leave the system in

period t + 1 ,

The stock of manpower at time t is described by the length of service

distribution s(t) ; s(t) is a vector with m components, where sk(t) is

the number of individuals at time 1 with LOS equal to k .

(1) s(t) [si(t),s2(t), sm(t)r

In each period t a :lumber of new accessions f(t) enter the manpower

system. The change in the manpower system from time t to time t + 1

depends on three factors: the stock at time t , the accessions in period

t + 1 , and the continuation rates of the stock of manpower at time t . The

continuation rate qk for k = 1,2, ..., m - 1 is defined to be the fraction

Caution: in [2] and [3] the length of service is defined to be the number of
completed periods of service, and is then one less than the measure used here.
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of manpower with LOS equal to k , that remains in the system an additional

period. With this definition we have

(2)

(f(t + 1) if k 0
sic+1(t + 1)

iqksk(t) if k a 1,2, ..., m - 1

The continuation rates are intended to include several factors that in-

fluence the flow of manpower: the organization's retention, promotion, and

retirement policy, natural forces such as mortality, and the behavior of

personnel.

9
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2. THE DEMAND AND SUPPLY OF EFFECTLVE MANPOWER

This section describes the stochastic demand process and the related

deterministic supply process.

The demand Z
t

for effective manpower is a random variable that can

take on a finite number of values z z
2' " zn . The stochastic law of

motion that governs the evolution of the process z
t

is Markovian:

(1)
r
CZ

0-1
z Zt zjl r

ij

We assume r
ij

is independent of t , and that the uncertain demand z

persists through period t + 1 .

The example below is a six state system and the manpower category is

naval aviators. State 1 of the Markov chain represents a calm peacetime

period, while State 2 represents a higher condition of peacetime preparation.

States 3, 4, 5, and 6 represent various stages of a conflict. Notice the

conflict may end, by a return to State 1 or 2, may stay at the same stage or

it may proceed to a higher stage. The transition probabilities are shown

below along with the demand for effective manpower and the equilibrium dis-

tribution of the Markov chain.

Let i(t) be the state of demand at time t : i.e. 2
t

z
i(t)

. The

state of the system at time t depends on two factors: the stock of manpower

s(t) , and the state of demand, i(t) .

We shall now generalize the nation of continuation rates introduced in

(I;2), by allowing the continuation rates to depend on the state of demand.

Thus we have continuation rate qik and the law of motion for manpower is

(3) s
k+1

(t + 1)

ik
s
k
(t) if k = 1,2, ..., m - 1

(t+1)
if k = 0
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2

3

4

5

6

1

6

TABLE 1

2 3 4 5 6

0.90 0.07 0.03

0.5 0.4 0.1

0.05 0.5 0.05 0.4

0.1 0.35 0.2 0.35
9--

0.1 0.30.1 0.6

0.1 0.7 0.2

TABLE 2

Length of Service

z IT

500 0.783

900 0.147

1200 0.040

1200 0.020

1200 0.008

1000 0.002

1' 2 3 4 5 6 7

1 0.9 0.9 0.95 0.95 0.95 0.1 0.9

0 2 0.9 0.9 0.95 0.95 0.95 0.2 0.9
co

3 0.95 0.95 0.9 0.9 0.8 0.8 0.9

4 0.95 0.9 0.9 0.9 0.9 0.9 0.9

ca
5 0.95 0.8 0.9 0.8 0.8 0.9 0.9

6 0.95 0.9 0.9 0.9 0.9 0.9 0.9
a.

11



This allows for alternate retention, mortality, and behavior assumptions for

each state of the demand process. In this paper we shall solve numerical

examples with n = 6 states and m 8 maximum years of service. The con-

tinuation rates are shown in Table 2.

We can utilize personnel in alternate ways depending on the demand en-

vironment. Let d
ik

be the contribution to effectiveness of each individual

in the system 'with length of service equal to k when the demand environment

is i . The total effectiveness is then

(4) 7 d
ik

s
k
(t)

and the excess of the supply of effective manpower is given by

(5) Id
ik

s
k
(t) - z

i
km=1

We shall allow the d
ik

to be nonnegative. Consider the problem of

supplying effective naval aviators. Individuals in the first period of service,

are being trained to fly; thus they are not making any contribution to meeting

the demand for naval aviators. In addition, it takes trained and qualified

pilots to teach new recruits. Suppose one teacher is needed for every two

pupils in state i . Then dil al -.5 . Every two pilot trainees take up the

services of one instructor who is therefore not eligible to meet the demand

for operational pilots. The contributions effectiveness for thd problems

solved in this paper are seen in Table 3.

12
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TABLE 3

Utilization

Length of Service

0

1

2

3

4

5

6

1

0.5

-0.5

0.5

0.5

0.5

0.5

2

0.5

0.5

0.25

-0.3

-0.3

-0.3

3

1

1

1

1

1

1

4

1

1

1

1

1

1

5

0.8

1

1

1

1

1

6

0.8

0.8

1

1

1

1

7

0.2

0.3

0.8

0.8

0.8

0.8

8

0.2

0.2

0.8

0.8

0.8

0.8

13



3. THE CONTROL OBJECTIVE

This section formulates two quadratic objective functions for controlling

the floW of manpower through the system. We selected quadratic objectives for

two reasons. First, they lead to . model for which results can be r,7.adily

calculated. Second, the objectives are a reasonable measure of the departure

of actual system performance from an ideal performance.

The simplest control objective is to minimize the expected weighted

squared error between the supply and demand for effective manpower. Let

wj for j = 1,2, ..., n be positive weights that sum to 1. If i(t) = i ,

and s(t) , then the expected error at time t + 1 , as a function of

f = f(t + 1) , is

2
n m-1

(1) Ei[s(t),f(t + 1)] = r w (rz - f(t + 1) -
cl

( ))

=iksk t
j=1 1

Our second control objective is to provide a smooth flow of manpower

through the system and to come as close as possible to meeting the demand

for effective manpower. If the manpower system was always in state j

then an ideal distribution would satisfy

(2)

and

d ,s = z
k=1 i & k

f if k = 0

k+1 )

jksk
for k= 1,2, ..., m 1O

Note that (2) can be rewritten as

(3)

f if k = 0

sk+1

[II f for k 1,2, ..., m - 1

9
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For k = 2,3, ..., m define

k-1
(4) P

jk
=

1=R1

q
jk

and P
j1

= 1 .

Combining (4), (3), and (2) we obtain

(5)

(6)

sjk = (zjPik)/ d
lo=1 Jk ik

The discrepancy between actual and ideal is measured by

(sk(t + 1) - sk)
2

k=1

Using the law of motion (11;3) we can rewrite (7) as

m7-1

(8) E
ij

[s(t),f(t + 1)] = (f(t + 1) - sji)
2

F (giksk(t) sjk+1)
2

kmal

This is a measure of the discrepancy at time t + 1 conditioned on four

facts; manpower s(t) at time t , demand i at time t , accessions f(t + 1)

in period t + 1 , and demand j at time t + 1 . The function is quadratic,

strictly convex in f(t + 1) and convex in s(t) . The expected discrepancy

is

(9) Et[s(t),f(t + 1)] = r4 Eii[s(t),f(t + 1)]
j=1

is also quadratic convex in f (strictly) and s .

We note that it is possible to weigh the functions Ew[s(t),f(t + 1)]

in order to place greater or less importance on the expected discrepancy from

15
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state j .

For either objective in a T stage problem, where s(t) , and f(t) are

the observed values of the manpower stocks and accessions for t = 1,2, ..., T

and i(t) is the state of demand, the total discounted error is

(10)
T

151.....t.4"."[S(t),,f(t)]
tag'

where 0 < 8 < 1 is a discount factor. The objective is to minimize the

expected value of (10) over all possible appointment sequences.
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4. THE OPTIMAL APPOINTMENT POLICY

This section presents two examples of optimal appointment policies: one

for each of the objectives presented in Section 3.

A theoretical description of the optimization procedure is presented in

the appendix. We shall use three important results from the appendix:

(i) For any finite planning horizon T , and any demand state i ,

there is an optimal appointment policy that is a linear function

of the manpower stock s . For our model

f = biO'
T + L bk' sk

k=1

(ii) For any finite planning horizon T , and any demand state i , the

minimum expected error is a convex quadratic function of the man-

power stocks s :

swP
i

'

T
s + qi'

Ts
+ ri'T

(iii) As the planning horizon T becomes large, the values of bi'T ,

iT iT iT
P ' $ 41.1 9 r , converge to bi , Pi , qi , ri .

In the examples we have solved to date, the convergence has been quite

rapid. For the first example below a 1% change was observed between a 20 and

21 period horizon. In the second example convergence was nearly perfect in 5

periods.

The first solution below uses the objective (3:1) with discount factor

6 = 0.95 and weights

1/18 if j = 1,2
=

J 4/18 if j = 3,4,5,6

17
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The optimal appointment policy is shown in Table 1.

For the second control objective, (3:9), there is a considerable

1;1i ,simplification in the optimal decision rule: f = bn + L b
i
K
sk

. In the
k=1

second case b
k

= 0 for k s 1 . Thus f =
i

independently of the current

manpower stock s .

The optimal input as a function of i is shown in Table 2. In this

calculation we set 6 = 0.95 and did not weigh the various terms in the sum

(3:9).

18
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TABLE 1

i b
0

b
1

b2
2

b
3

I b
4

b
5

bb6 b
7

b8

1 667 .95 .17 I -.14 .25 .30 0.0 .10 0

2 604 .95 .16 .12 .27 .31 .03 .16 0

3 285 -.97 .04 .08 .37 .35 .29 .39 0

4 105 -.91 .04 .21 .48 .47 .40 .46 0

5 345 -.95 0.00 .06 .36 .36 .28 .32 0

6 475 .98 1 .08 .03 .34 .36 .22 .25 0

4.

TABLE 2

b
0

1

2

3

4

5

6

19

304

332

370

374

357

354
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5. COST PERFORMANCE TRADEOFFS

This section examines the use of the manpower planning model presented

in earlier sections to measure the tradeoff between cost and system performance.

We shall considsr this tradeoff in the specific contekt of the naval aviation

problem. In particular, we shall assume that costs are determined by the dis-

tribution, s(t) , of manpower stocks.

When an optimal linear appointment policy has been calculated, then it is

possible to express the evolution of the manpower stocks in a linear fashion

(1) sk+1(t + 1) =

1

bio +
m

bijsj (t) if k= 0
1=1

q
ik

s
k
(t) if k = 1,2, ..., m - 1

This can be written in matrix form

(2) s(t + 1) = A
i
s(t) hi

The equilibrium expected values of s as a function of the demand state

j can be calculated.

Let IPji be the probability that the previous demand state was i given

that the current demand state is j . These are the inverse transition proba-

bilities for the Markov chain. When the Narkov chain is in equilibrium, a

simple application of. Bayes's Law gives

(3)

12:12rii

/Pj

where n = "" -n) is the stationary distribution vector of the Markov

chain.

Nowlet sj for j = 1,2, ..., n be the expected manpower stock in demand

state j when an optimal linear appointment policy is used.

The sl must satisfy 20



(4)
n

sJ t
ji

(A
isi

+ hi)

16

for j ,.. 1,2, ..., n .

This system of n x m equations with it x m unknowns can be solved for

the equilibrium expected values of s' . For the first objective (3:1), u.:cs

the appointment policy in Table 1 of Section 4, we obtain the equilibrium ex-

pected values following in Table 1.

For the second objective (3:9) the expected equilibrium stock levels are

shown in Table 2.

With these figures, suitable cost data and the vector w , it is easy to

calculate the expected cost per period of operating this manpower system using

the optimal linear appointment policy. Let cik be the cost of an individual

in the k
th

period of service. The equilibrium expected cost per period is then

(5) wi

k=1
ciksk

We can also construct a measure of system performance. Suppose we choose

the expected weighted squared discrepancy between the demand and the steady

state expected supply level. This would be

(6) w iwi( -

k=1
.d
ik

s

2

With a measure of expected system performance and a measure of expected

cost", we compare alternate manpower policies. For example, it is possible to

changethedemandsz.and recalculate a new optimal appointment strategy.

We can also change the continuation rates q
ik

, or the utilization policy

note these changes would probably produce a corresponding change in thedik ;

costs cik . It is also possible to change the objective function by either

21



i

1

2

3

4

5

6

1

2

3

4

5

6

1 2 3

TABLE 1

4 5 6 7 8

371 332 298 283 268 254 29 30

350 325 296 279 262 243 73 57

362 328 297 282 267 251 42 41

285 329 308 270 251 216 199 66

376 279 289 276 240 223 195 179

328 348 241 252 222 194 195 175

2 3

TABLE 2

4 5 6 7 8

307 279 252 241 229 217 25 26
. .

330 295 262 243 226 209 63 49
. .

318 285 257 243 229 215 36 35

371 312 273 234 217 186 171 57

373 353 281 246 209 192 , 168 153

357 351 289 254 203 171 169 1 151

17
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using alternate weights or an entirely different objective function. Using

our model, and trying alternate manpower policies we can discover, and explore

the cost-performance tradeoffs that exist.

There is a second type of sensitivity analysis. If the probabilities in

the Markov ratrix are changed, this amounts to an alternate assumption about

the stochastic nature of the demand process. By recalculating for several dif-

ferent values of the transition probabilities we can measure the impact of

alternate assumptions concerning the demand process. A related question is

to measure the impact of an incorrect assumption about the demand process.

This leads to an easier calculation. Suppose we assume the transition proba-

bilities are r
ij

, when they actually are i
ij

with equilibrium distribution

vector n . In this case the appointment policy will not change. However, the

calculations (3)-(6) would have to use the values i
ij

and w
i

In this way

we can measure the effect of incorrectly specifying the probabilities.

In some cases it is possible to alter the manpower stock in an ad-hoc

fashion. In the language of the naval aviator problem, we can either bring in

reserves or allow pNple in the system to leave before their obligated service

is completed. If possibilities of this sort exist, then some of the information

we have calculated can help in designing an alteration of the manpower stock.

Recall that the Lnimum expected error starting in demand state i with stock

s is

(7) sP s + qis + ri .

The increase in this optimal expected error as a function of an increase in sk

is simply

m
2 s

j
P
jk

+ qi

23
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This tells hew an increase or decrease in s
k

will effect the minimum expected

error.

In addition, if the current demand state is i ,.then the current manpower

stock s should be contrasted with its equilibrium value s . It is in the

interest of system stability to change s closer to its equilibrium value.

It is even possible to calculate an optimal value for s when the demand

state is i . The optimum is simply -1/2(Pi)(qi)' , the s that minimizes

(7). The optimal values are not always realistic, as we indicate below. How-

ever, they do indicate a direction in which favorable changes can be made.

For the objective (3:1) we find the following optimal distributions shown

in Table 3. Note any value of sis is optimal.

The distributions for demand states i 1,2 are unreasonable, probably

close to the low weight attached to the objective for those states. The dis-

tribution for States 3 and 4 is quite good. It indicates that a large increase

in the three year group would have a favorable impact, as well as a large in-

crease in the six year group.

The optimal distributions for the second objective (3:9) are more reasonable.

Those values shown in Table 4 should be contrasted with those of the equil-

ibrium distribution in Table 2.

24
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2

3

4

5

6

1

2

3

4

.5

6

1 2 3

TABLE 3

4 5 6 7 8

288 32 474 367 -16 7290 .104 0-.--, -------- ,

311 -61 481 556 131 2720 47 0

302 159 514 401 268 437 39 0

363 254 415 350 306 271 150 0

242 244 583 398 137 369 102 0

184 169 682 392 -6 412 -201 0

2 3

TABLE 4

4 5 6 7 8

303 272 243 228 213 296 27 0

334 303 274 263 249 256 54 0

360 332 328 295 280 14.3 131 0

379 355 341 299 217 130 143 0

350 377 323 342 274 91 98 0

342 330 318 305 266 80 83 0

25

20
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APPENDIX

DISCRETE TIME, LINEAR-QUADRATIC, DYNAMIC PROGRAMS WITH NARKOVIAN PARAMETERS

This appendix presents, in a more general form, the theoretical results

used in the paper. We employ a notation close to that of the text.

The state of the system with T + 1 periods remaining is (s,i) . Given

action f , the state of the system with T periods remaining will be

(D (s,f),j) with probability r
ij

, where, for each i D (s,f) is a

linear function of s and f .

The error associated with choosing f in state (s,i) is E (sof) ,

where for each i E1(s,f) is quadratic and convex in s and strictly convex

in f . Future errors are discounted at rate 6 .

For i = 1,2, n define VT(s,i) to be the minimum expected discounted

error for a T period problem that starts with manpower stocks s , and demand

state i .

For any choice of f , we have

(1)

n
V
T+1

(s
'

i) < Ei(s,f) + 6 rij V
T
Oi(s,f),j)

j=1

By the usual principal of optimality arguments we can establish that the func-

tions V
T+1

(s
'
i) must satisfy the following functional equation.

(2)

n
V
T+1

(s,i) = Min [E (s,f) + 6 r
ij
V
T
(D (s,f),j)]

j=1

where V
o
(s,i) = 0 for each s and i .

Now assume, that VT(s,i) is a convex quadratic function of s for each

i . Thus we can write V
T
(s,i) = s'P

i,T
s + q

i,T
s + r

i,T
where P

isT
is

positive semi-definite, and symmetric. It is easy to show that VT(Di(s,f),j)

is a convex quadratic function of (s,f) , and therefore that



(3)

n

Ei(s,f) 6 r
ij
V
T
(Di(s,f),j)

j=1

is quadratic, convex in s , and strictly convex in f .

When the quadratic function (3) is differentiated with respect to f

then a linear equation results, and the unique f that minimizes (3) as a

function of s is in the form

(4) fT+1 (s i) B 'T+
1
(s)
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where for each i and T + 1 , Bi'T+1(s) is linear in s . When the optimal

policy (4) is substituted into (3) we obtain a convex quadratic expression for

VT+1(s'i)

Thus for any finite horizon T the optimal value and policy functions

are, respectively, linear and quadratic. We now turn to the question of con-

vergence of policies as the planning horizon increases.

Let V
T
(s,i) = s'P

1,T
s + qi9Ts + ri'T be the optimal value function starting

in state i for an L period problem.

When the discount factor 6 is strictly less than 1, then the sequence

V
T
(s,i) will remain bounded if there exists a policy f(s,i) such that this

policy leads to a bounded sequence s(t) for any initial s(o) and any evolu-

tion of the demand sequence i(t) . In the model described in this paper, the

policy f(s,i) = 0 will insure s(t) = 0 for t > m . The general question

of convergence of V
T
(s,i) and B

T
(s,i) is difficult, and is currently the

object of further inve;tigation by the author.


