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ABSTRACT
In this report, the theoretical background and
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explored. Conceptual learning is discussed from several points of
view, and axiom systems for the learning process are described. The
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STATEMENT OF FOCUS

Individually Guided Education (IGE) is a new comprehensive
system of elementary education. The following components of the
IGE system are in varying stages of development and implementation:
a new organization for instruction and related administrative
arrangements; a model of instructional programing for the indi-
vidual student; and curriculum components in prereading, reading,
mathematics, motivation, and environmental education. The develop-
ment of other curriculum components, of a system for managing in-
struction by computer, and of instructional strategies is needed
to complete the system. Continuing programmatic research is required
to provide a sound knowledge base for the components under develop-
ment and for improved second generation components. Finally, sys-
tematic implementation is essential so that the products will function
properly in the IGE schools.

The Center plans and carries out the research, development,
and implementation components of its IGE program in this sequence:
(1) identify the needs and delimit the component problem area;
(2) assess the possible constraints--financial resources and avail-
ability of staff; (3) formulate general plans and specific procedures
for solving the problems; (4) secure and allocate human and material
resources to carry out the plans; (5) provide for effective communi-
cation among personnel and efficient management of activities and
resources; and (6) evaluate the effectiveness of each activity and
its contribution to the total program ana correct any difficulties
through feedback mechanisms and appropriate management techniques.

A self-renewing system of elementary education is projected in
each participating elementary school, i.e., one which is less dependent
on external sources for direction and is more responsive to the needs
of the children attending each particular school. In the IGE schools,
Center-developed and other curriculum products compatible with the
Center's instructional programing model will lead to higher morale
and job satisfaction among educational personnel. Each developmental
product makes its unique contribution to IGE as it is implemented in
the schools. The various research components add to the knowledge of
Center practitioners, developers, and theorists.
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ABSTRACT

fir

The study reported in this thesis concerns the learning and use

of mathematical concepts and the learning of relations described by a

hierarchy of mathematical concepts.

The rote-conceptual and reception-discovery dimensions of learn-

ing were studied. The study was designed not only to allow study of

the hypothesized main effects and interactions between these dimensions

but also to determine the feasibility of studying the learning of re-

latinna betwee cnneeprs.

Three types of relations that exist between mathematical concepts

are designated which are used to define a hierarchy of mathematical

concepts. The procedure used was to designate a hierarchy of mathe-

matical concepts. Then, instructional units were prepared and taught,

to students in fifteen sections of college algebra by rote reception,

rote discovery, conceptual reception, or conceptual discovery methods.

The rote treatments allowed, but did not require, rote leateing of

single facts. In the conceptual treatments students were never given

the same items more than once so that only conceptual learning was

demonstrated. The procedure in the reception treatments was to give

the S the correct definitions and examples of concepts; whereas, in

the discovery treatemeats, the 5 had to discover the correct rule.



The results of the study indic4ted differences between rote and

conceptual learning as well as between reception and discovery learn-

ing. No evidence of an interaction between the rote-conceptual and

reception-discovery Limensions were found. Au excellent fit for data

from the conceptual reception treatments to theoretical values from

Bower's mv'el of paired-associate leaguing was found.

Conclusions drawn from the study are: (1) there are differences

between rote and conceptual learning and between reception and discovery

learning that can be s.udied using hierarchies of mathematical concepts

as the content to be learned and by fitting observed data to different

models of learning noting variation in parameters and fit, (2) rote

learning does not hinder conceptuai le.7rn-Ing, and (3) if there is an

interaction between rote-conceptual and rote-discovery learning, either

in learning concepts or in learning relations b,..tween concepts, more

refined methods are needed to analyze them.

Xiv



Chapter 1

THE PROBLEM

How can the psychological methods used in the study of concept

learning and paired-associate learning be adapted to the study of

mathematical concept acquisition and use? Will studies about the

learning of mathematical concepts using these adapted methods produce

results which can be applied to improve the teaching of mathematics?

The research reported in this thesis sought answers to these ques-

tions.

This chapter includes a further discussion of this general prob-

lem, an overview of the study being reported, and description of the

specific problem, of the experiment, and of the other chapters.

The General Problem

In general, the problem studied here is to gain information about

the acquisition and use of mathematical concepts. This problem has

two aspects: (1) to obtain facts in the form of experimental data

gathei,:d to answer theoretical questions and (2) to formulate theories

about the acquisition and use of mathematical concepts. It is not nec-

essary to carry out these activities in a specific order, but, unleis

each is done and related to the other, useful research will not have

occurred; neither part is of value without the other. What is the

value of a theory with invalid assumptions? What good is a set of

1



2

data without a question to he answered?

An experiment to gather data that is designed without a theory

in mind is of little value since the data cannot be processed in any

reasonable way. A theory without factual underpinnings is a fantasy.

Suppes (1972) paraphrased Hume by saying, "...general ideas about edi-

cational policy and practice contain little but sophistry and illusion,

unless they can he defended by abstract reasoning from some other ac-

cepted general principles or be inferred in a definite manner from

particular matters of fact (p. 1)." He continued by stating what he

considers to be the task of research,

Without proper evidence, alleged facts on which edu-
cational policy or practice is based can only be
classed as fantasies. It is the task of research to
convert the 'right' fantasies into facts and to show
the others to be the unsubstantial fantasies they are
(p. 2).

Marx (1970) said that facts were

...the basic raw materials from which theories are
constructed. The primary scientific effort is at
the empirical level and is expressed in terms of
what is often called data language. Because the
more or less direct sensory observations that are
made at this level are likely to be agreed upon by
all observers, they tend to become facts, or symbolic
representations, usually verbal in nature, of such
sensory observations (pp. 6-7).

It seems unnecessary to pursue this point further since it is

unlikely that an advocate for the position of producing educational

research without factual data could be found anyway. The second as-

pect of research, that of theoretical formulations, is somewhat dif-

ferent. In fact, in summarizing the discussion of a conference
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dealing with such questions, Pingry (1967) said that some conferees

"...indicated that research efforts toward model building had such

poor promise of success that priority efforts should be given to solv-

ing immediate practical problems at hand (p. 45)."

A strong ease for theory and model construction has been made by

various researchers. Suppes (1967), Scandura (1967), Forbes (1967),

Helmer (1967), Romberg (1970), Long, Meltzer, and Hilton (1970) have

all supported this position. Their arguments point out that theories

are needed to provide research questions, to aid in prediction of optimum

conditions for learning mathematics, to provide insight into the rela-

tion of the logical structure of mathematics to the psychological na-

ture of learning mathematics, and in general to provide focus for the

research process.

It is felt that these arguments have sufficient force to warrant

serious attempts at theory and model building in the area of mathe-

matical concept acquisition and use. To begin the task it is neces-

sary to relate several psychological terms, each of which has been

researched, but little has been done to form a cohesive theory combin-

ing them. The terms are rote learning, meaningful, learning, recep-

tion learning, and discovery learning. The four terms can be sepa-

rated into two dimensions of learning, rote-meaningful and reception-

discovery. The rote-meaningful dimension describes how learned ma-

terial articulates with a person's previous learning whereas the recep-

tion-discovery dimension describes how material is learned; whether

the definition of a concept is given to the person or is discovered
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by him. Conceptual learning will he given a more precise definition

later but it may be considered, for the time being, as meaningful

learning of concepts.

Any theory that attempts to describe mathematical concept learn-

ing must be concerned with how the student relates material being

learned to previously learned material since, if no connection is

made by the student, learning is isolated and cannot be considered

conceptual learning. A theory describing mathematical concept learn-

ing should take into account the way the concepts were learned (by

being told or by discovering). Perhaps what is really the concern of

such a theory is to relate the two dimensions; to explain the inter-

action between the two dimensions. This interaction presents some

specific problems.

Since reception and discovery learning describe how material is

presented to the learner it is necessary to study student behavior

during instruction. It is not sufficient to simply measure if learn-

ing has or has not occurred at the end of instruction. Mathematical

models of concept identification and paired-associate learning pro-

vide a method of comparing different types of learning as Ss progress

from unlearned states to different levels of learning such as rote or

conceptual.

These levels of learning are especially important in learning

mathematics because of the logical structure of the subject. It was

deemed important to consider the relations between concepts, not just

single mathematical concepts, in conjunction with the psychological
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dimensions of learning. Thus it was necessary to determine these re-

lations before proceeding to other considerations, but the re-

lacions were specified it was possible to use the learning Theory

moaels in studying interaction between the rote-conceptual and recep-

tion-discovery dimensions of learning mathematical concepts and hier-

archies of mathematical concepts and in studying levels of learning in

the rote-conceptual dimension. Stated in this form the general prob-

lem led to some specific considerations. These are discussed in de-

tail in the second chapter and briefly outlined in the next section

of this chapter.

Specific Problems

In proceeding to more specific questions terminology was a prob-

lem. It was necessary to relate various definitions of "concept" that

appeared in the literature. This was done by giving a definition of

"mathematical concept" and comparing other definitions to it. The

next step was to describe what was meant by a "hierarchy of mathematical

concepts" and show how these occurred in mathematics. After doing this

it was possible to state two research questions:

1. Is there a significant interaction between the rote-

conceptual and the reception-discovery dimensions of

learning with respect to learning concepts that occur

in a hierarchy of concepts?

2. Will mathematical models of paired-associate learn-

ing and concept identification provide information

about learning mathematical concepts?
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A full discussion of these questions is the subject of Chapter II.

These questions led to the design and execution of an experiment which

is described in detail in Chapters IV and V. The next section gives

a brief description of the experiment.

The Experiment

The experiment was designed to gather data concerning the acquisi-

tion and use of mathematical concepts. The mathematical content of

the experiment consisted of that portion of the college algebra course

taught at the University of Wisconsin-Madison that deals with sequences

and series. The subjects were students from fifteen class sections;

all the students of five sections and students that volunteered from

the remaining ten sections were included.

There were two parts to the experiment: (1) Part One was designed

to provide data about Ss learning to recognize various sequences and

series and (2) Part Two was designed to provide data about Ss' use

of formulas and computations related to arithmetic and geometric se-

quences. In Part One students were randomly assigned to eight instruc-

tional groups; these groups were determined by the three dimensions:

(1) pretest or no pretest, (2) definitions given or withheld, and

(3) mastery of one segment of the instructional material required or

not required before proceeding to the next segment. The instructional

groups for Part Two were obtained by combining the instructional groups

from Part One that were the same on the last two dimensions, that is

by collapsing, on the pretest - no pretest dimension of Part One. The



/8
rationale for this design and further discussion of the experiment

are given in Chapter IV. The other chapters are described next to

give a perspective for what follows.

The Remaining Chapters

Chapter II gives a full discussion of the specific research prob-

lems. Chapter III cites research literature relevant to the research

problems of Charter II.

The questions of Chapter II led to the experiment described in

Chapter IV. Chapter IV contains a complete description of the experi-

mental design, instructional organization and materials, and other re-

lated matters. Chapter V describes the execution of the plans of

Chapter IV.

Chapter VI presents the analysis of the data and relates it to

the theoretical portion of the thesis.

Chapter VII contains a discussion of the implications of Chapter VI.



Chapter II

THE SPECIFIC PROBLEM

Consideration of the general problem discussed in Chapter I leads

to questions that require research. The purpose of this chapter is

to discuss the specific problem in detail. To do this it is necessary

to give precise definitions to terms that will be used to formulate

research hypotheses. These hypotheses are associated with a theory

that is presented to account for the possible interaction of rote-

conceptual and reception-discovery learning. Three mathematical models

will be described that will be used to analyze different learning that

may occur.

Concepts in Mathematics

It is most important to specify what kind of mathematical content

is to be used in the research as there are a variety of things that

students are called on to learn that are classified as mathematics.

This section provides an explicit definition of "mathematical concept"

and relates this definition to some of the other definitions that are

presentlg being used.

Definition. A mathematical concept is the class of elements

identified by a defined term in a mathematical discourse. Some terms

representing mathematical concepts are "group," "vector space," and
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"topological space." Elements of a class that is a concept are

called examples or positive instances of the concept and elements in

the complement of the concept are said to be non-saanaln or negative

instances of the concept.

The word "concept," in mathematics and elsewhere, has been de-

fined in various ways by various researchers, some individuals have

even chosen not to define the term at all (Fehr 1966, p. 225, Skemp

1971, p. 27).

Bourne (1966) gave the following: "As a working definition we

may say that a concept exists whenever two or more distinguishable

objects or events have been grouped or classified together and set

apart from other objects on the basis of some common feature or

property characteristic of each (p. 1)."

Bourne's definition of concept is closely related to the defi-

nition of mathematical concept. Bourne required that the class have

at least two elements; for mathematical concept it is difficult to

conceive of any defined term that represents a singleton set. For

example, consider "the" group of order three. What is the cardi-

nality of the class of groups with three elements? There is just one

isomorphism class, but there are many ways that groups with three

elements occur in mathematics (the group of units of a field with

four elements and the subgroup of even permutations of the symmetric

group on three letters are two examples). What is usually meant by

"the group of order three" is either a particular group of order three

or the isomorphism class of groups of order three. In any case both
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the definition given by Bourne and that given for a mathematical

concept agree in that there must be a set or class of examples.

Bourne's definition also requires a common property for the ex-

amples of the concept; this is also true of a definition of a mathe-

matical concept. A definition of a mathematical concept simply gives

a set of properties or characteristics for the defined term. So it

is seen that Bourne's definition of concept agrees rather closely

with that given for a mathematical concept.

Klausmeier, et al (1970) said, "...the point is made that one

attrihute of concept is definability (p. 3)." Klausmeier (1971) said

the following about formal concepts:

A high-level formal concept is inferred when the individual
with normal language development can accurately designate
certain objects or events as belonging to the same set and
others as not belonging to the set, can give the name of
the concept, and can name its intrinsic or societally
accepted defining attributes (p. 3).

This statement does not constitute a definition of a concept, however,

Klausmeier saw a set of examples, a definition, and a name as each

being involved with behavior indicating a concept was learned. The

definition of mathematical concept agrees on all three points.

In order to select concepts for inclusion in tests of concept

attainment Romberg, Steitz, and Frayer (1971) used the following criteria:

ft

... (a) the concept had to refer to a category of objects or events

that could be defined on the basis of intrinsic characteristics common

to members of the category, and (b) the concept had to have a one or

two-word name (p. 3)." Criterion (a) agrees closely with the definition
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of mathematical concept and criterion (b) simply limits the class of

concepts to be included.

Gagne (1970) made an important distinction between concrete

concepts and defined concepts:

Many concepts cannot be learned in the manner described. .

that is, as concrete concepts. Instead, they must be learned
:la definition and, accordingly, may be called defined con-
cepts. Sometimes they are called abstract, in order to dis-
tinguish them from the concrete variety. More aptly, they
may be called rational concepts, because they do in fact re-
late two or more simpler concepts. The concept diagonal is
a defined concept, not a concrete concept. The statement,
'A diagonal is a line connecting opposite corners of a
quadrilateral' represents a relation (connect) between the
two concepts 'line' and 'opposite corners of a quadrilateral'
[pp. 189-190].

Thus, in this paper, mathematical concepts are what Gagne' calls defined

concepts.

Consider what Skemp (1971) has said about defining the word

concept:

One other consequence of this principle, that concepts of a
higher order in a hierarchy than those which a person already
has cannot be communicated by definition, can now be deduced.
This is, that concept itself cannot be defined: for any
particular concept must be an example of this concept, which
is therefore a higher order than any other concept. We can
however describe some of the characteristics of concepts,
discuss how they function, and build up a general under-
standing of the idea by relating it to other ideas. This
is adequate for our purpose, as indeed it has to be (p. 27).

This argument may appeal to some but it should be pointed out

that the hypothesis "that concepts of a higher order in a hierarchy than

those which a person already has cannot be communicated by definition"

should be questioned. It seems that in fact mathematical concepts,

at least at some levels, are communicated by definition. For example,
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in an introductory group theory course, one of the things one does is

define "group" and have the students identify various examples and non-

examples of this concept.

Much of what is known about mathematics consists of relational

statements about mathematical concepts. Most mathematical concepts are

built from other mathematical concepts. "Rational numbers" is a

mathematical concept; it is also an example of the mathematical con-

cept "field." "Field" is used in the definition of "vector space,"

and is a subclass of the collection of "rings." Thus subclasses of

mathematical concepts may be mathematical concepts. The following

paragraphs will formalize these ideas.

Three types of relations that may exist between two mathematical

concepts are: (1) mathematical concept A is an example of mathematical

concept Li, (2) mathematical concept C is a subclass of mathematical

concept D, and (3) mathematical concept E is used in the definition of

concept F. In each case the first named mathematical concept will be

called subordinate to the second and the second will be called supra-

ordinate to the first. These ideas are illustrated next.

Consider the conceptual organization of some introductory

topology courses. "Topological space" is defined using the mathematical

concept of "open set" and several examples are presented. "Open &.et"

and each example are subordinate mathematical concepts to "topological

space." Later other mathematical concepts are defined, say, "compact"

and "countably compact." Then a theorem is presented: If a topolog-

ical space is compact then it is countably compact. This theorem
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states that the class of compact topological spaces is a subclass of

countably compact topological spaces. So that the mathematical concept

"compact" is a subconcept of "countably compact." Thus, it is seen

that very often in mathematics implications represent relations between

classes of mathematical concepts. These three relations sometimes

provide structure for sets of mathematical concepts; the following two

definitions formally determine one kind of structure.

A chain of mathematical concepts is a finite set of mathematical

concepts Co, Cl, Cn such that for each i=0, n-1, there is a

subordinate-supra-ordinate relation between C1 and Ci+1. It is not

necessary that Ci be subordinate to Ci+1, often Ci+1 will be subordinate

to Ci.

A hierarchy of mathematical concepts is defined to be a class Q

of mathematical concepts that satisfies the following condition:

For any pair of concepts, Cl, C2 in Q there exists at least one

chain between C1 and C2.

A hierarchy of mathematical concepts is a rule as defined by

Gagne in that a hierarchy of mathematical concepts includes both the

concepts and the relations that exist between them. Scandura (1969)

has argued that the rule should be used as the fundamental unit for

research in complex human behavior. Gagng (1970) concurred in this

when he said:

The ability of human beings to respond to the enormous variety
of situations in which they operate effectively, despite almost
infinite variety in the stimulation they receive, makes it at
once apparent that rules are probably the major organizing
factor, and quite possibly the primary one, in intellectual
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functioning. The Ss -4 R connection, once proposed as the
unit of mental organization, has now been vircually replaced
by the rule in the theoretical formulations of most psychol-
ogists. Even those who still favor the connection as a
fundamental entity of neural functioning are forced to con-
cede that the preponderance of observed huian behavior occur-
ing in natural situations is rule-governed (pp. 190-191).

In mathematics rule-governed behavior is usually desired; methods

of relating the logical and paychological are needed. A hierarchy of

mathematical concepts is defined strictly in terms of the logical struc-

ture of mathematics. This definition serves as a way of determining

logically related mathematical concepts and seems to provide a useful

first step in the process of studying concept acquisition and use.

However there is more to the problem than this. Suppes (1966) said,

"My present view, based partly on our experience and partly on conjecture,

is that the psychological stratification of mathematical concepts will

seldom, if ever, do violence to the logical structure of these

concepts...:' Thus Suppes saw two distinct structures with respect to

mathematical concepts; the logical and the psychological. It is not

always an easy matter to determine when a particular sequence of

concepts is logically or psychologically sound. Weaver and Suydam

(1972) agreed when they said:

Past and present emphases upon aspects of mathematical
structure contribute to confronting children with material
which has logical meaning. This is a necessary but insuffi-
cient condition for that material to have psychological
meaning for a pupil. Meaningful mathematics instruction
facilitates meaningful mathematical learning, and each of
these demands that we look beyond the logical meaning in-
herent in mathematical content per se (p. 60).

The Cambridge Conference on School Mathematics (1963) made no
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attempt to give answers to questions concerning the teaching of their

proposed curricula. They felt that questions of what can be taught, as

well as how; can only be answered by experimentation (p.4). However,

organization of subject matter was considered to be very important. They

said "... the question of what is teachable and what is not depends

largely upon the organization of that subject matter (pp. 2-3)."

And, "We therefore believe that the composition of problem sequences is

one of the largest and one of the most urgent tasks in curricular

development (p. 28)." What is referred to as "organization of the

subject matter" should be expected to be consistent with the logical

structure of the subject.

What is evident is that many feel there is structure in mathematics

which naturally induces a structure on (or relations among) mathematical

concepts, and this in turn is important in instruction. Thus it

becomes necessary to relate the formal definitions of mathematical

concepts to psychological dimensions.

Conceptual Learning

An item (this may be a stimulus in an S-R experiment or an

example of a concept) may be either unlearned or learned by a student.

If it is learned, the correct response is known, and it is assumed

that it is given. If an item is in an unlearned state the correct

response may or may not be given; the fact that an error is made is

assumed to be evidence that the item is unlearned, but a correct
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response does not prove that the item is learned since the correct

response may have occurred as a result of guessing.

Each item at some point is unlearned, call this level U. In level

U, correct responses occur only by chance. When learning occurs it may

be for a single item or for a set of items. in either case, it is assumed

there will be no more mistakes on the item or set of items. Learning

of a single item will be called learning at level P. This would

generally be considered rote learning in that the learning has not

included any other items and the item is learned as an isolated fact.

Suppose a student learns a concept or rule. Then the responses

to a set of items are learned (the set is assumed to have more than

one element), this will be called level R. Evidence of learning at

level R would be correct responses to items not previously seen by the

subject, where these correct responses did not occur by chance. It

is iuportant to keep in mind that learning at level R involves

learning relations between previously learned concepts. It also in-

volves more than rote learning since correct responses to items not

seen before are required. In the following section the levels R and

P are discussed with respect to paired-associate learning and

concept identification.

Paired-Associate Learning and Concept Identification

Norman (1972) described some "more or loss standard experi-

mental paradigms" for learning models as:
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...(consiscing) of a sequence of trials. On each trial

the subject is presented with a stimulus configuration,
makes a response, and an outcome ensues. There are at

least two response alternatives, and there may be
infinitely many....If an outcome raises, or at least does
not lower, the probability of a response in the presence
of a stimulus, it is said to reinforce the association
between stimulus and response (p. 1).

Paired-associate (P-A) learning experiments fit this general outline.

The subject is presented with a list of S-R pairs, usually one at a

time. In the anticipation method the stimulus member is presented before

the response member. The subject is to indicate the response when the

stimulus appears. After the subject gives his response he is shown

the correct response. A trial consists of presenting each stimulus

member of the P-A list together with the subject's response and the

indication of the correct response.

Concept identification tasks also fit the general framework

described by Norman. The subject is to classify stimulus items as

examples or non-examples of concepts, the concepts are usually not

defined to the subject, the object being for the subject to find the

classification rule. After the subject responds, he is told the

correct response.

Concept identification tasks differ from the usual P-A tasks

in that there is a rule that determines the correct response for

concept identification tasks but, at least originally, P-A lists were

constructed to require separate learning of each pair in the list. In

concept identification tasks a stimulus is not presented more than

once (thus if learning occurs it cannot be on level P) whereas in P-A
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learning, trials are repeated until each item in the list is learned

(and due to the nature of the P-A list, learning is usually assumed to

occur at level P). Thus P-A and concept identification learning are

seen to vary in the P-R levels discussed in the preceding section.

Learning at level R will be related to a "meaningful learning" in the

next section. Then P-A and concept identification learning will be

seen to correspond to rote and meaningful learning respectively.

Rote-Meaningful and Reception-Discovery Dimensions of
Mathematical Learning

It is not assumed that the P-R dimension is the same as the rote-

meaningful dimension but it appears that they are closely related and

at least intersect at "rote" since both rote learning and learning on

level P implies learning isolated facts. Also, learning on level R

and meaningful learning share the property that each requires that

relations between concepts be learned. Brownell (1935) said, "The

'meaning' theory conceives of arithmetic as a closely knit system of

understandable ideas, principles, and processes (p. 19)" and that

"...arithmetic instruction according to the 'meaning' theory helps to

make number sensible is by emphasizing relationships within the

subject (p. 25, emphasis added)." Thus learning a hierarchy of math-

ematical concepts would be meaningful in that specific relations are

part of the hierarchy.

Reception learning is learning that occurs when a student learns

a concept by being told the definition. Reception learning is sometimes

called expository learning. Discovery learning occurs when a student
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learns a concept by inferring the definition from known examples and

non-examples of the concept and not by being told the definition. It

is important to note that reception and discovery learning refer to how

learning takes place and that learning at level R, meaningful learning,

and rote learning refer to what is learned.

Weaver and Suydam (1972) in discussing research dealing with

meaning in elementary school mathematics cited reception-discovery as

one of the dimensions that interact with the rote-meaningful dimension

to confound results. The interaction has been considered, at least in

theoretical terms. Shulman's idea (below) will be developed more

fully in the next section.

Ausubel (1961, reiterated in 1968, p. 24) in a defense of

reception learning said:

The distinction between rote and meaningful learning is

frequently confused with the reception-discovery distinc-

tion discussed above. This confusion is partly responsible

for the widespread but unwarranted belief that reception

learning is invariably rote and that discovery learning

is invariably meaningful. Actually, each distinction con-

stitutes an entirely independent dimension of learning.

Hence, both reception and discovery learning can each be

rote or meaningful depending on the conditions under

which learning occurs (p. 17).

Perhaps Shulman (1970) stated the situation most clearly.

Thus, the reception-discovery dimension reflects what the

learner is doing in the course of instruction - the cog-

nitive processes in which he is engaged as he learns. The

rote-meaningful dimension represents the degree to which

what is learned articulates with the learner's prior

knowledge and cognitive structure, with no reference to

how he learns it (p. 38).

When Scott and Frayer (1970) reviewed research on learning
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by discovery they pointed out that

No experiment was performed to measure differences among Ss
who discovered a generalization, Ss who were given a general-
ization, and Ss who learned facts alone. Such a comparison
might suggest how much of the effect was due to Ss discover-
ing a generalization as opposed to Ss using a generalization
(p. 11).

Considering the basic nature of the two dimensions to learning it is

surprising that to date not one single piece of research has been

found dealing with the interaction of these dimensions in mathematics

education.

The Interaction Problem

A simple theory relating the P-R and the reception-discovery

dimension of learning is suggested by Shulman's statement in the

preceding paragraph. Learning a concept involves acquiring the

ability to classify correctly examples and non-examples of the concept.

In learning to do this by discovery the theory is that the student must

have well in mind a number of examples and non-examples to test

hypotheses on. If there is not enough prior knowledge in the form

of known examples and non-examples the discovery of the concepts will

not occur. Thus where there is insufficient prior knowledge, dis-

covery learning will be aided by rote learning of spec".ic facts for

the student to use in the discovery process. In reception learning

after the studedt has been told the correct definition, practice is

needed to provide understanding. Here learning a rote application of
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the concept would have limited value but having a larger number of

examples and non-examples to apply the definition to would aid the

learning greatly.

The theory predicts that what a student knows is important to

the selection of appropriate learning activities. If the student has

a basis of facts to draw on then discovery learning can occur; and if

the student has been told a definition of a concept, to apply that

definition he will need examples and non-examples of it. The theory

will be applied to the following situation.

Learning in the paired-associate paradigm will be considered

to be rote discovery in that if a concept is learned it must be

discovered. There is reception learning at the P level in that the

correct responses are told to the student until they are learned, but

the concepts are never defined for the student. In the concept identi-

fication paradigm learning is assumed to be conceptual discovery since

if correct responses occur as a result of learning, concepts must be

discovered. If the definitions are provided to the students in each of

these cases the learning would change from rote discovery and conceptual

discovery to rote reception and conceptual reception respectively.

The theory predicts that adding the definitions will aid conceptual

learning more than rote learning. Thus the theory led to the hypoth-

esis that the interaction is in the direction stated. The experiment

as described in Chapter Four was designed to test this hypothesis. The

experiment was also designed to provide data that would allow a detailed
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study of learning in each of the four situations. Three different models

were selected to aid the study. These will be described next.

Bower's Model. Bower (1961) gave the following axioms for

paired-associate learning:

1. Each item may be represented by a single stimulus element
which is sampled on every trial.

2. This element is in either of two conditioning states:
C
1

(conditioned to the correct response) or Co
(not conditioned).

3. On each reinforced trial, the probability of a
transition from Cn to C is a constant, c, the
probability of a transition from C1 to C1 is one.

4. If the element is in state C
1

then the probability
.of a correct response is one; if the element is in

state CO, then the probability of a correct response
is 1/N, where N is the number of response
alternatives.

5. The probability c is independent of the trial number
and the outcomes of preceding trials (p. 258).

This model was selected because it is known to fit data

from paired-associate learning experiments very well. The model

was modified for data from the concept identification experiments

by allowing some items (concepts) to be represented by more than one

stimulus element. This modification was necessary because more than

one example of some concepts were included in order to study transfer

from learning one example to learning a set of examples.

Model II. (Observable states paired-associate model). Model II

is quite similar to Bower's model with the exception that the states

are observable. Levine and Burke (1972) discuss construction of

observable states models. It is important to have observable states
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since these states are the levels of learning being investigated. Model

II and Model III provide a means of analyzing probability of learning

a concept rather than single items. The same modifications were made

on these models as were made on Bower's model for the concept identifi-

cation experiments. The axioms are as follows:

Axiom 1. Each item may be represented by a single stimulus

element which is sampled on every trial.

Axiom 2. A stimulus element is in one of three states: U

(unlearned with an incorrect guess for the response), C (unlearned

with a correct guess for the response), or L (learned, hence a correct

response).

Axiom 3. On each trial, the probability of a transition from

U to L is a constant c greater than O. The probabilities of a trans-

ition from C to L, from L to U and from L to C are all O. The probabil-

ity of transition from U to C is a constant d greater than 0 and the

probability of a transition from C to U is a constant e greater than O.

Axiom 4. The subject is in state U with probability f on trial

one and in state C with probability 1 - f.

The item referred to in Axiom 1 will be either a specific example

or a concept depending on the experiment, in paired-associate experi-

ments an item is a single stimulus, in concept identification experi-

ments an item is a concept which will be represented by one (or more

for the modified model) example of the concept.

Axiom 3 formalizes the assumptions that there is no forgetting

once learning has occurred and that learning occurs as an outcome
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of the last error. Axiom 4 implies that whatever the response on the

first trial, it occurred by guessing.

. Model III. (Observable states concept learning model). Model III

is an attempt to develop an observable states model from a model devel-

oped by Batchelder (1966, pp. 29-32). The axioms for the model are:

Axiom 1. Each item may be represented by a single stimulus element

which is sampled on every trial.

Axiom 2. A stimulus element is in one of four states: U (unlearned

with an incorrect guess), C (unlearned with a correct guess), P (learned

but the concept to which stimulus belongs is not learned), and R

(learned and the concept to which the concept belongs is also learned).

Axiom 3. On each trial the probability of transition:

from P to
from U to
from U to
from U to
from R to
from P to
from C to

R is a (a
R is b (a
P is c (a
C is d (a
any other
C or U is
P or R is

constant greater than 0).
constant greater than 0).
constant greater than 0).
constant greater than 0).
state is O.
O.

O.

Axiom 4. The subject is in state U with probability f on trial

one and in state C with probability 1 - f.

It should be observed that Axiom 3 simply assumes there is no

forgetting once learning occurs and learning may occur only after an

error with the exception that an item may move to R from P without an

error on that item, however, all examples of a concept will move to

R at the same time, which will be after the last error of any example

of concept.

These models were expected to aid the study by showing differ-
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ences while learning was occurring. It was not expected that these models

would be useful in analyzing the usual posttest data. Research hypoth-

eses related to the posttests and to the learning of relations between

concepts were to be tested using standard analysis of variance proced-

ures. These research hypotheses are:

Hypothesis la. There is a significant difference between
reception and discovery learning on recognition of relations
between concepts.

Hypothesis lb. There is a significant difference between
learning that includes rote learning and learning that is
conceptual on recognition of relations between concepts.

Hypothesis lc. There is a significant interaction between
reception-discovery learning and rote-conceptual learning
on recognition of relations between concepts.

Hypothesis 2a. There is a significant difference between
reception learning and discovery learning on recognition
of examples of concepts learned.

Hypothesis 2b. There is a significant difference between
learning that includes rote learning and learning that is
conceptual on recognition of examples of concepts learned.

Hypothesis 2c. There is a significant interaction between
reception-discovery learning and rote-conceptual learning
on recognition of examples of concepts learned.

Hypothesis 3a. There is a significant difference between
reception and discovery learning on the ability to do
computations related to sequences.

Hypothesis 3b. There is a significant difference between
learning that includes rote learning and learning that is
conceptual on the ability to do computations related to
sequences.

Hypothesis 3c. There is a significant interaction between
reception-discovery and rote-conceptual learning on the
ability to do computations related to sequences.
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Summary

In this chapter mathematical concept was defined and related to

other definitions of concept. The definition made it possible to

state three relations that occur between matnematical concepts and

define a hierarchy of mathematical concepts using the relations.

Following this was a discussion of rote, conceptual, reception, and

discovery learning in the framework of the experimental paradigm often

associated with learning models and paired-associate learning. A

theory relating the rote-conceptual and the reception-discovery dimen-

sions of learning was described. Three learning models were given and

the research hypotheses to be tested by standard analysis of variance

techniques were stated.

This concludes Chapter II. Chapter III contains a discussion of

relevant and related research on rote, concept, reception, discovery

learning and some brief remarks about thz three learning models.



Chapter III

RELEVANT AND RELATED RESEARCH

A summary of relevant and related research could be voluminous

or contained in one sentence, depending on the criteria used. By

the most stringent criterion, that the research be about the inter-

action of the rote-conceptual and reception-discovery dimensions of

learning and teaching mathematics, the discussion is simply, "No rel-

evant research can be found." On the other hand, if the criterion

that all research about any aspect of the two dimensions of learning

be discussed, hundreds of pages would be required.

Since neither of these criteria are practical nor desirable, some

limits between these extremes must be set. A reasonably complete re-

view of research studying the differences between learning mathematics

by discovery and either reception or rote is included. This discovery

research is related to the dimensions of learning being studied. The

difficulty of forming conclusions based on the research reported em-

phasizes the hazards of over simplifying research in complex learning

situations. Thus, it becomes clear that there is a need to find dif-

ferent approaches for studying learning that is as complex as that re-

quired for mathematics. Some guiding principles must be chosen, but

great care must be exercised in how it is done. One reasonable approach

seems to be to hypothesize some, perhaps minimal, cognitive structure,

Al/ 29
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and use this to guide development of further research, Fletcher

(1969) provided one minimal structure when he postulated a model

for describing cognitive processes. The model detailed by Klausmeier

(1971) of learning a formal concept is related to Fletcher's model.

Together these two models provide a focus for concept learning and

only research relevant to these models will be discussed in the sec-

tion on concept learning. Bower's model for paired-associate learn-

ing requires some discussion which is the last consideration of the

chapter.

Research on Rote, Meaningful, Reception, and Discovery Learning.

Much of the research on discovery learning was based on the assump-

tion that discovery learning is meaningful learning. The treatments that

were defined as being the "discovery" or "meaningful" treatments often

encouraged generalization whereas in the "rote" treatments generaliza-

tions were sometimes actively discouraged. Thus the terms "discovery"

and "generalization" were used to describe treatments thought of as

meaningful.

McConnell (1934) studied second graders who were taught 100 addi-

tion and 100 subtraction facts during a seven month period. The treat-

ments were: (1) Rote - students were told to memorize the facts and

(2) Discovery - students learned through "self-initiated discovery

(p. 8)." The rote method produced higher mean scores for speed tests

of retention, but the discovery method produced higher scores on trans-

fer tests. It appears that McConnell promoted meaningful learning

through the discovery of generalizations and that the resulting learning
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promoted transfer.

Thiele (1938) used a design and methodology similar to that em-

ployed by McConnell. The task of second grade students was to learn

100 addition facts either by a drill method corresponding to McConnell's

rote method or a generalization method in which children were expected

to find generalizations from known facts as the teacher introduced

number facts using concrete materials and then proceeded "...in such

a way that the perception of a useful generalization.was required

(p. 46)." The generalization group had higher mean scores on both

retention and transfer tests.

Swenson (1949) used three methods, "generalization," "drill,"

and "drill-plus" to teach 332 second grade students the 100 addition

facts. The materials for the generalization method were presented

"...in such a way that the teacher could, by skillful instruction,

lead the pupils to their own formulation of the generalization (p. 12)."

The method was based on the meaning theory of teaching and learning

arithmetic developed by Brownell and others during the thirties and

forties.'' The "drill" method was essentially rote learning in which

speed was emphasized. In the "drill-plus" method new facts were veri-

fied by children counting or manipulating concrete objects; generaliza-

tion was discouraged and rote learning of the facts after the initial

introduction was expected.

1
Weaver and Suydam (1972) give an excellent treatment of the

theory and research related to this thLory.
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The generalization method was superior in the production of

initial learning, of transfer, and of retention to either of the

other two methods. The drill method was generally better than the

drill-plus method 'although the differences, were not as marked as

for the generalization method on standardized arithmetic tests,

which were essentially retention tests. Students of low achievement

and high ability did better on a test of mathematical thinking if

they had received the generalization method of instruction rather

than the drill method. Some caution should be exercised in viewing

the findings of Swenson, Thiele, and McConnell as the Ss were not

randomly assigned to the treatments in any of these experiments.

Brownell and Moser (1949) conducted a study comparing two methods

of teaching ("mechanical" and "rational") two different subtraction

algorithms (borrowing by either decomposition or borrowing by equal

addition). The students were either taught to do borrowing mechanically

or else they were taught so that the borrowing process was understood

rationally. The rational method of presentation included using con-

crete objects, writing examples in expanded notation, writing crutch

digits, and delaying verbalizing until the process was understood. It

appears the treatments here should not be considered as discovery but

rather reception since the degree of teacher control and direction was

very substantial. In general, the results showed mechanical instruc-

tion produced higher scores on tests immediately following instruction

but rational instruction produced increased retention and transfer.

Tredway and Hollister (1963) studied teaching percentage problems

by rote or by meaningful methods. They found significantly better
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results at all levels of intelligence on posttests with significantly

better retention for average students taught by the meaningful method.

Krich (1964) compared teaching of division of fractions to sixth

grade students by two different methods. One method was to tell stu-

dents the rules for inversion and explain how to use them. The other

method was to explain the meaning of the number symbols for multipli-

cation and division of fractions and then allow the inversion rules

to be discovered. This is another case of meaning through discovery

as one of the treatments while the other treatment was rote or mechani-

cal. No significant differences were found between the low ability

groups but average and high ability students did significantly better

with the discovery treatment on tests of retention administered two

months after the end of instruction.

Worthen (1968) studied teaching by discovery or teaching by ex-

pository methods. Concepts included in the study were "...(1) notation,

addition, and multiplication of integers (positive, negative, and zero),

(2) the distributive principle of multiplication over addition, and

(3) exponential notation and multiplication and division of numbers ex-

pressed in exponential notation (p. 225)." The treatments were admin-

istered to 432 pupils in 16 fifth and sixth grade classes equally

divided among eight elementary schools. Each teacher was carefully

trained in both teaching by discovery and teaching by exposition. Each

teacher taught both a discovery class and an expository class with

careful monitoring to assure adherence to the appropriate techniques

for each class. The study reported initial learning to be significantly
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higher for expository classes with significantly better retention and

transfer for the discovery classes, but the individual student was

used as the unit of analysis which Worthen and Collins later corrected.

When data were analyzed with class means as the unit of analysis there

were no significant differences (Worthen and Collins, 1971).

Hendrix (1947, 1950, 1961) taught the rule "The sum of the first

n odd numbers is n-square (1947, p. 199)." In Method I the teacher

stated the rule then illustrated it with examples. Method II asked

students to find the sum of the first two odd numbers, then of the

first three, then of the first four, etc. As soon as the student re-

sponses indicated he had discovered the rule he was asked to leave the

room. Method III was the same as Method II except after the rule was

recognized the teacher helped the student verbalize it in an accurate

form. After two weeks a test was given with items that could be solved

using the rule. The results favored Methods II and III over Method I

but were not significant at the .10 level.

Kersh (1958, 1962) conducted two experiments. In each experiment

the task was to learn two rules. The first rule was the same as the

one Hendrix used; this rule is an example of the second rule which was

the formula for the sum of the first n terms of an arithmetic sequence.

In the 1958 experiment the treatments were termed "no-help," "direct-

reference," and "rule-given." The Ss in the "no-help" group were re-

quired to discover the rules without help. The "direct-reference" group

was given examples and diagrams as aids. The "rule-given" group was

told the rule directly and given practice in applying the rule without

reference to why the rules were valid. The subjects were 60 college
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students from the experimenter's educational psychology class. A

posttest immediately followed instruction and indicated perfect scores

for Ss learning the rules. Four weeks later Ss were tested to determine

if they used the rules or simply added. In the "no-help" group fewer

Ss used correct rules on the posttest immediately following instruction

than used correct rules on the test four weeks later. The number usir.,

correct rules in "direct-reference" and "rule-given" groups decreased.

The difference led Kersh to speculate that the "no-help" group was

motivated to learn the correct rules after the treatment and hence that

apparent superiority of discovery learning in tests of retention may

be accounted for in terms of motivation to continue learning.

In the 1962 study Kersh had a rote treatment in which Ss learned

the rule without explanation, a directed learning treatment in which

Ss were given careful explanations of the rules, and a guided discovery

treatment where the rules were taught to the Ss tutorially using Socratic

questioning. The rote group did significantly better on tests three

days, two weeks, and six weeks after the instruction. Kersh concluded

"Indeed, these data suggest that under certain conditions of learning,

highly formalized 'lecture- drill' techniques, ordinarily considered

sterile and meaningless, produce better results than techniques which

attempt to develop 'understanding' (p. 69)."

Gagne. and Brown (1961) taught 33 Ss in grades 9 and 10 formulas

for the sum of the first n odd whole numbers, for the sum of the first

n terms of the geometric sequence 1, 2, 4, 8, ..., and for the sum of

the first n terms of the sequence 1, 2, 3, .... The treatments were

Rule and Example, Discovery, and Guided Discovery. The Rule and
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Example treatment began by giving Ss the correct formula and then pro-

viding practice until the formulas were used correctly. The Discovery

treatment asked the Ss to find the rule and proceed by providing hints

that were more and more explicit, but the Ss were never given the formulas.

The Guided Discovery method was similar but the hints provided more help

than did the Discovery method. The dependent variables were the time

required to solve new but related problems, the number of hints required

to solve the problems, a weighted average of these first two scores,

and the proportion of mistakes. The proportion of mistakes provided

"...few usable scores, and was not employed in analysis of results

(p. 319)." The other measures indicated a significant difference favor-

ing the Guided Discovery treatment over the Discovery and the Rule and

Example treatment.

Scott (1970) conducted two experiments "...to determine the differ-

ential effects on immediate acquisition, retention, and transfer, of two

methods of presenting geometry concepts to sixth graders (p. 81)." The

treatments were Expository and Discovery. The studies had 256 sixth

grade students as subjects. The first experiment dealt with the effects

of method of presentation on retention and the second experiment dealt

with the effect of method of presentation on initial acquisition and

transfer. The results showed no difference between acquisition or trans-

fer but the Discovery method produced better retention than the Ex-

pository method.

Most of the studies described up to this point were discussed by

Wittrock (1966), Scott and Frayer (1970), Henderson (1963), or Weaver
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and Suydam (1972). Concerning the discovery learning studies Wittrock

stated "... the current state of research on discovery is very disappoint-

ing and precludes any important conclusions about teaching or learning

(p. 45)." Henderson said "One conclusion is that the evidence is not

conclusive (p. 1020)." Scott and Frayer were able to conclude

The general, though by no means universal,
.

finding of these studies appears to be that
discovery methods are not superior to rote
or drill methods when the criterion is imme-
diate learning or short-term retention but
become superior when the criterion is either
long-term retention or transfer (p. 11).

Of interest also is another statement by Scott and Frayer

No experiment was performed to measure dif-
ferences among Ss who discovered a general-
ization, Ss who were given a generalization,
and Ss who learned facts alone. Such a
comparison might suggest how much of the
effect was due to Ss discovering a generaliza-
tion as opposed to Ss using a generalization
(p. 11).

It may be noted that the three methods mentioned are closely re-

lated to the conceptual discovery, conceptual reception, and rote

reception treatments described in Chapter V. Why not include rote

discovery learning? It appears likely that requiring Ss to learn a

large number of related facts in a rote manner will result in the

discovery of relations (it may even be true that Ss will create re-

lations to simplify Learning). Do students examine items learned and

classify them by some conceptual rule (generalization)? If so, will

this kind of learning be different from conceptual discovery where

Ss are not asked to learn specific facts, but rather to guess a gen-

eralization and test it with new examples? Or, do both rote discovery
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and conceptual discovery involve basically the same mental processes?

Consideration of questions of this sort lead directly to questions of

the effects of different kinds of learning on cognitive structure.

It was, in fact, the effects of learning a given rule or discover-

ing the rule on the cognitive structure of the learner that led Egan and

Green° (1973) to perform two experiments investigating an aptitude treat-

ment interaction (ATI) between three levels of ability and rule given or

discovery treatments. They stated the following:

A simple hypothesis suggests that skills involved
in solving problems and generalizing are more
important to success in learning by discovery
than in learning by rule. This idea leads to the
expectation of an ATI such that the skills of
subjects learning by discovery should be strongly
related to their performance while the skills of
subjects learning by rule should be less strongly
related to performance (p. 85).

To test the hypothesized ATI, 57 subjects were taught to solve prob-

lems involving binomial probability using programmed texts. The rule

given treatment included stating the formula on the first page and then

proceeding with multiple choice questions through a branching program

until the formula was used correctly. The Ss in the discovery treat-

ment were given basically the same questions without being given the

formula. Three tests of abilities were used in the analyses of the

data: (1) a test of probability concepts, (2) a test of computational

ability, and (3) the scores from the Scholastic Aptitude Test -

Mathematics. For each test Ss were ranked as low, medium, or high to

provide the three levels of aptitude. Three dependent measures were

obtained: (1) the number of errors in answering the multiple choice

questions in the instructional programs, (2) the time required to
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complete the instructional program, and (3) the proportion of errors

made on the posttest. Analyses of the data gave weak support to the

hypothesized ATI. This weak result led to a second experiment to repli-

cate the result and to extend understanding of what was acquired in each

type of instruction.

In the second experiment, 72 Ss were taught to solve problems in-

volving joint probability by a computer-assisted instruction (CAI) system.

The treatments and tests of ability were similar to those in Experiment I,

however, the posttest was more carefully constructed. It consisted of

18 problems chosen to test different aspects of transfer. Egan and Greeno

were able to conclude

The present results suggest that subjects lack-
ing in skills necessary to solve problems may
learn more efficiently when instructed by tech-
niques requiring interpretation and application
of a rule. By every measure, subjects low in
relevant abilities performed better when instructed
by the rule method. That the rule method used in
this study was not inherently better can be inferred
from two results found in Experiment I and replicated
in Experiment II (pp. 92-93).

Evidence of real differences (as indicated by statistical significance

as well as observation) in cognitive structure seemed apparent.

More emphasis will be given to cognitive structure in the next

section than has been possible here.

Models of Concept Learning

A model that was useful in suggesting the effect of learning on

cognitive structure was described by Fletcher (1969). There are four

stages:
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Stage 1. Attentional Processes ...includes
all processes which serve to detect those cues
which are relevant to the particular problem

(p. 7).

Stage 2. Transformation Processes ...includes
all those processes which serve to encode appro-
pria:e information. In the trivial sense, S

responds only to encoded information, never to
actual stimuli, so transformations are funda-
mental. However, we use the term 'transforma-
tion' in the nontrivial sense to refer to those
initial active processes which convert cues into
meaningful information. These rule-governed
processes are, of course, subject to change or
enrichment as, for example, when the child trans-
forms stimuli into first letters, then words,
then sentences. Of the potentially many ways
in which stimuli can be transformed into mean-
ingful information, there does seem to be one
easily identifiable 'dimension', which can be
labelled as the analytic-synthetic dimension
Appearing as two separate cognitive factors in
Bloom's taxonomy, these labels refer to those
cognitive operations which serve either to
break down stimuli into individually meaningful
elements or to impose initial overall meaning
upon discrete elements (p. 8).

Stage 3. Generation Processes ...[includes] all
the processes or operations which serve to gener-
ate solutions by systematically going beyond the
already transformed information. Appropriate
processes would include all logical manipulations,
the detection of relationships, and the identifica-
tion of rules or patterns of sequential stimuli
(p. 8).

Stage 4. Evaluation Processes ...contains all
processes which serve to determine whether or not
solution has been achieved. Interestingly, an
argument may be made that only the single evaluative
process of comparing exists, and that one is always

comparing two units of information against each
other or one unit of information against some
internal or external criterion. In any event, the
stage functions as the decision point. ...if
a negative evaluation occurs, there is feedback

to each prior stage and the entire information-
processing sequence may recycle with different
rules involved at each stage.
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Some general comments about the model are in
order. Clearly, memory is a cognitive process
and, as such, must be involved in processing
information. The model explicitly admits this
--in fact emphasizes the point--by showing
that memory is involved at all stages. Stored
in memory are not only currently generated
outputs but also the more permanent types of
information and solution rules which may be
utilized at each particular stage (p. 8).

Fletcher stresses the importances of memory at each stage.

Figure 3.1 shows a diagram of the model. It seems that rote learning

should be included in the Transformation Processes stage and discovery

learning and generalization should be included in the Generation

Processes stage.

stimulus

Attention

111111111111111111111111111111

MirMlle
Evaluation

Figure 3.1. Schematic representation of a general
operational model of information process-
ing with four functional stages of
cognitive processes (Fletcher, 1969,
p. 8).

Klausmeier (1971) gave a model for cognitive operations in the

attainment of a formal concept. The first successive operations were:
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attending to objects, discriminating one object from another, remember-

ing discriminated object, generalizing that two or more perceptible

forms of the same thing are equivalent, generalizing that two or more

instances are equivalent in some way, and discriminating the attributes

of a formal concept. Concurrent with discriminating the attributes of

a formal concept, the process of acquiring and remembering the attribute

labels occurs. Next to infer the concept either the operation of

cognizing common attributes of positive instances may occur or else a

processs of forming a hypothesis and testing the hypothesis with positive

and negative instances may occur. In either case, the formal concept

is inferred and a concept label is acquired and remembered to complete

the operations in the attainment of a formal concept. Once the concept

is inferred, generalization may occur. Superordinate, coordinate, sub-

ordinate relations, and relationships involving cause and effect, cor-

relation, and other contingencies may be cognized. The concept may also

be generalized to problem solving situations. Figure 3.2 is a diagram

of this model that combines the parts of two diagrams (Klausmeier,

1971, p. 2 and p. 3) that represent learning related to formal concepts

(the parts not included represent lower level concept attainment).

The operations of discriminating and labeling the attributes of the

concept were felt to be implied by Klausmeier (1971) as the result of

studies by Kalish (1966), Lynch (1966), Fredrick and Klausmeier (1968),

and Klausmeier and Meinke (1968) which showed that "...instructions

making explicit the attributes that define the concept population do

facilitate subsequent concept attainment (p. 3)."
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Attending to Objects

Discriminating One Object from
Other Objects

Remembering the Discriminated
Object

vir

Generalizing that Two or More
Perceptible Forms of the
Same Thing are Equivalent

Generalizing that Two or More
Instances are Equivalent in
Some way

ir

Discriminating the Attributes
of a Formal Concept

Hypothesizing
Relevant
Attributes

Remembering
Hypotheses

Evaluating Hypo-
theses Using Pos-
itive and Nega-
tive Instances

Acquiring and
Remembering the
Attribute Labels

Cognising Common Attributes
of Positive Instances

Inferring the
Concept

Acquiring and
Remembering
the Concept
Label

Generalizing to new
instances of the
concept

Cognizing other concepts as
superordinate, coordinate,
and subordinate

Cognizing relationships involv-
ing cause and effect, correl-
ation, and other contingencies

Generalizing the concept to
problem-solving situations

Figure 3.2. A diagram of Klausmeier's model showing
cognitive operations in the attainment
of a formal concept, extension and use.
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That a concept may be inferred by hypothesizing relevant attributes,

remembering the hypothesis, and then evaluating positive and negative

instances was argued using research by Levin (1967) and Klausmeier, Harris,

Davis, Schweun, and Frayer (1968). Research by Tagatz (1967) crovided

support for the operation of using only positive instances to infer a con-

cept at least in children.

it appears that Klausmeier has provided reasonable support for his

model through efforts of researchers at the Wisconsin Research and Develop-

ment Center for Cognitive Learning. (He indicates other supporting re-

search as well.) Some other research will now be discussed that provides

further support.

Anderson and Kulhavy (1972) found that "...people can easily learn

concepts from definitions, provided the meanings in the definitions are

accessible to the reader (p. 389)." The study used undergraduates as

subjects in an experiment to "...explore to what extent people can acquire

concepts from exposure to definitions ('p. 385)." Subjects were given

definitions of wo.ds they did not know. A random half of the Ss received

instructions to create and say aloud a sensible sentence using the de-

fined word. The other half was instructed to read each definition

aloud three times. Ss composing the sentences did significantly better.

Requiring S to read aloud the definition three times increases

focus on only a portion of the operations in Klausmeier's model, speci-

fically, knowing relevant attributes. Telling the definition is essen-

tially showing Ss the correct hypothesis, which is also only a portion

of the operations involved in learning a concept. Whereas using the
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word in a sentence does require the understanding of relevant attributes

it also involves the other operations. Note the implications for

Fletcher's model. Reading the definition aloud, without using it in a

sentence, involves only the first two stages of the model but using

the word in a sentence requires all four stages.

Johnson and Stratton (1966) cite four ways used to teach a concept:

by using it in a sentence, by requiring students to classify objects as

positive or negative instances, by defining the concept for the student,

and by giving synonyms. The four methods and a fifth method that com-

bined the four were used to teach Ss the concepts. Learning of concepts

by each of the four stated methods were not found to be significantly

different but the combined method was better (p <.01). However, more

learning did occur (p <.01) in each of the groups when they were com-

pared to a control group. The first four treatments involve single

operations in Klausmeier's model of use or hypothesizing and testing

positive and negative instances, but the combined method involves more

operations which aid in cognizing a concept.

Feldman and Klausmeier (1974) used the concept "equilateral tri-

angle" to study the effects of two kinds of definitions on attainment

of the concept. One definition was stated in "technical" terms with

all defining attributes specified. The other definition was stated

in common language and did not include all of the defining attributes.

The subjects were fourth grade and eighth grade E,tudents. A 2 x 2 anal-

ysis of variance indicated a significant main effect for grade level

and a weak interaction between grade level and kind of definition (n<.07).
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The fourth grade students performed better using the common language

definition, and the eighth grade students petformed better using the

"technical" definition. In terms of the model, this study indicates

that formal definitions are of more value in understanding attributes

of the concept to eighth grade students than to fourth grade students

while the common language definition help fourth grade students more

than eighth grade students.

In viewing research on concept learning and discovery learning

it seems that there is a need to consider more than just differences

in posttest scores produced by different treatments. It is important

to recognize that one way treatments produce different effects is

through exercise of different cognitive operations in the learner.

Thus different patterns of learning promise to be useful dependent

variables in the study of learning. Some of the patterns can be

described mathematically.

Mathematical Considerations

The axioms for Bower's model of paired-associate learning were

stated in Chapter II. These axioms imply distribution functions for

two statistics that are used in Chapter VI to test the fit of Bower's

model to data gathered in the study described in Chapter IV and

Chapter V.
.r /

A discussion of the statistics used is given below that summarizes

a thorough treatment in Atkinson, Bower, and Crothers (1965).

Let x
n

be.a random variable with value 0 if a correct response is

given for an item on trial n and 1 if an error is made. The probability
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of an error on trial n is given by:

P(x
n

= 1) = (1 - c)n-1 (1 - g)

where (1-c)
n-1

is the probability that the subject is in the unlearned

state and (1-g) is the probability of an incorrect response given that

the subject is in the unlearned state. (Recall .Lat g is the prob-

ability of a correct guess and c is the probability of changing from

the unlearned state to the learned state.)

Let T be the total number of errors made before learning an item

so that

co

P(T = 0) = [8(1 - c)]
i-1

Sc.

i=1

This follows from observing first that the probability of learning on

trial i with no preceding errors is [g(1-c)]"gc since g(1-c) is the

probability of guessing correctly and not learning on each of the

preceding i-1 trials and gc is the probability of a correct guess followed

by learning. But P(T=0) is the sum of the probabilities of learning

on each trial without preceding errors. Next observe that

co
..i-1

IB(1-c)J gc simplifies to
1 -g(1

1=1

To simplify further computations let

b=
1 - g(i - c)

The probability of no further errors following an error is b, so that

to have exactly k errors an error must occur (the probability is 1-gb),

there must be k-1 errors followed by at least one more error (the

probability is (1 -b) 1) and there must be no further errors after the
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k
th

error (the probability is b) giving

'
P(T=k) = (1-gb)(1-b)

k-1
b

1
for k-1.

The parameters g and c are estimated in Chapter VI by minimizing
2

[observed - theoretical]
D
2

= theoretical

which is asymptotically distributed as a Chi-square random variable

with degrees of freedom equal to three less than the number of inde-

pendent observations, since there are two parameters estimated (Brunk,

196Q; Levin and Burke, 1972). Due to the small sample size it is

not desirable to assume that D
2
has a Chi-square distribution, how-

*
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ever, for an exploratory studyLthis method oFives sufficient informa-

tion in that what is sought is an indication that complex learning

can be analyzed with these methods. This analysis will be presented

in Chapter VI.

Summary.

In this chapter research related to the study has been considered.

Experiments that were designed to study various aspects of rote,

meaningful, discovery, and reception learning were described. Two

models of learning, with supporting research, were presented. The

experiments cited in this chapter provide a background for the next

chapter which contains a description of the development of the study.
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DEVELOPMENT OF THE STUDY

This chapter gives a detailed description of the study. The

considerations of Chapter II indicated a particular experimental

design and certain procedures; these are described first, followed

by a description of the selection and preparation of the unit and

materials.

Experimental Design and Procedures

The experiment was divided into two parts. In Part One the

students were to learn to identify examples and non-examples of the

mathematical concepts in the unit and in Part Two, they were to learn

to use formulas related to these mathematical concepts.

The basic unit of instruction was a trial. A trial consisted

of reading the definitions (in Part One) or reading the formulas

(in Part Two) if the student was in a reception treatment, otherwise

this part was omitted. Next the student was given a list. A list

consisted of a set of eight mathematical concepts and twelve examples

and non-examples (to be referred to as items) for Part One and twenty

computations to perform (five computations for each of four sequences)

for Part Two. The student then responded to items on the list and was

then given the correct responses. The lists will be described in more

detail later. A trial was completed when the student had finished

49
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studying the correct responses for the list.

Part. One - Concept identification

The concept identification part of the experiment (Part One) was

a factorial design with two levels in each of three dimensions; pretest

given or not given, rote-conceptual, and reception-discovery. The rote-

conceptual dimension was determined by whether or not it was possible

to respond correctly to some of the items by having previously learned

that specific item by rote. In the rote treatments it was possible to

learn a concept. In fact, trials were repeated until the concepts were

learned. In conceptual treatments no item was repeated so it was

impossible to give correct responses by having previously learned a

particular item by rote. The reception-discovery dimension was determined

by whether or not the definitions were given to the students before

giving them the lists. In the rote reception, rote discovery, concep-

tual reception, and conceptual discovery treatments described next, half

the students received pretests and half did not to constitute the

pretest given or not given dimension.

The rote reception treatment. In the rote reception treatment

students were first given instructions to follow. These instructions

are shown in Figure 4.1. They were then given definitions of the

concepts, exakples of the concepts, and an explanation of the

relations that existed between the concepts (see Figure 4.2). Each
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A Unit on Sequences and Series

You will be given a set of definitions. You are to learn to identify the
different kinds of sequences and series that are defined there.

DIRECTIONS:

1. After you finish reading the directions, spend a few minutes
reading the definitions. It is not necessary to memorize each
one since you will find as you use them that you will learn
them easily.

2. After you have read the definitions, return them to the instruc-
tor and get a booklet containing examples from him/her. In
the booklet place an X in front of those terms that describe
the example. For instance:

Phydeau (a local dog)
X animal X dog

plant

3. The correct responses are marked on the back of the page.
Your answers are not used to determine your grade. PLEASE
DO NOT CHANGE ANY OF YOUR ANSWERS:

4. When you have finished your booklet be sure your name is on
it and give it to your instructor.

5. Get a list of definitions from the instructor and reread any
you wish, then return the definitions and get a new booklet.

6. Repeat this fun process until you can use the definitions
correctly. Don't spend more than 20 minutes per table since
a certain amount of speed is necessary.

PLEASE WORK INDIVIDUALLY.

Figure 4.1. Instructions for the rote-reception treatment of
Part One.
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DEFINITIONS

A set of real numbers al, a2, a3, ... in a definite order and

formed according to a definite rule Is called a sequence. Each number

in a sequence is called a term of the sequence. Any sequence with a

finite number of terms is called a finite sequence, and any sequence
with an infinite number of terms is called an infinite sequence. Often

an ellipsis (...) is used to indicate some terms are not written but

understood to be included. For instances 1, 2, ..., 10 means 1, 2, 3,

4, 5, 6, 7, 8, 9, 10 and the counting numbers can be written 1, 2, 3,

4, ...,
An arithmetic sequence is a sequence in which any pair of succes-

sive terms differ by a fixed number (the first term of the pair is

always subtracted from the second to find the fixed number). This

fixed number is called the common difZerence for the arithmetic sequence.

The arithmetic sequence 1, 11, 21, 31 is formed by starting with 1

then adding 10 to get the second term, 11, then adding 10 to get the
third term, 21, and the fourth term is 21 plus 10 or 31.

A geometric sequence is a sequence in which the quotient of any

pair of successive terms is a fixed number (the first term of the pair

is always divided into the second). This quotient is called the

common ratio for the geometric sequence. The geometric sequence

1, 2, 4, 8 is formed by multiplying by 2; 1, 1 x 2 = 2, 2 x 2 = 4,

4 x 2 = 8.
A series is the indicated sum of the terms of a sequence. Finite

series, infinite series, arithmetic series and geometric series are

formed from finite sequences, infinite sequences, arithmetic sequences,

and geometric sequences respectively.
NOTE: A. Every sequence and series is either finite or infinite but

not both.
B. Every example given in the unit will be either a sequence

or a series but not both.
C. Each kind of series is defined by the kind of sequence

that it is formed from.
D. The only sequence that is both an arithmetic sequence and

a geometric sequence is a sequence that has every term the

same (for instance 4, 4, 4, ...). In such a case the common

difference is 0 and the common ration is 1. No examples

like this will be given in the unit.

Figure 4.2. *Definitions given in reception treatments of Part One.
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student was allowed to study the definitions as long as he wished and

when finished he was given a list in booklet form. After choosing

a response to an item the S was then given the correct response and

compared his response to it. Then the S proceeded to the next item

in the booklet and repeated this process until the booklet was completed.

Then the experimenter checked the S's responses on the booklet to

determine whether or not there were mistakes. If there were

mistakes, the student was given the definitions to read

again and the routine continued using the same form of the booklet

until he completed a list with no mistakes. Upon completion of the

first form of the booklet without mistakes the student was again given

the definitions to read and then given a different form of the booklet

which he marked and checked as before. The procedure continued until

a student completed two different forms in succession with no mistakes.

At this point the student took the posttest and went on to the

second part of.the experiment. An example of this procedure might be:

a student reads the definitions and marks form A (the different forms

were indicated by A through J) making some mistakes. He then repeats

the trial and again makes mistakes but on the third time through form

A he makes no mistakes. He then does a trial using form B and makes

mistakes the first time but not the second time. On his first trial

in form C he makes no mistakes and so is ready to take the posttest

for Part One and then go to Part Two. The first few lists could be

done correctly by rote learning but to complete Part One the student

had to eventually learn the concepts.
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The rote discovery treatment. The rote discovery treatment was

the same as the rote reception treatment except that the definitions

of the mathematical concepts were not given to the students of the

group. To complete Part One it was necessary to discover the correct

definitions.

The conceptual reception treatment. The conceptual reception

tre.atment resembled the rote reception treatment in that the students

were given the definitions but differed in the way the lists were used. .

The lists were in grid format (see Figure 4.3) instead of a booklet.

The same list was never given to a student more than once. After

reading the definitions the student marked the entire list and gave it

to the experimenter. The experimenter gave the student the correct re-

sponses to study. If there were mistakes the student was given the

definitions to read before he was given a different form of the grid

list. If there were no mistakes he took the posttest for Part One and

went on to Part Two. A student, after reading the definitions the first

time, might make some mistakes on form A of the grid list and would be

given the correct responses to study. When he finished studying the

correct responses he would study the definitions and mark his responses

on form B of the grid list. Again, if there were mistakes he would

repeat the process except he would mark his responses on form C of

the grid list, if this time there were no mistakes he would take the

posttest for Part One and begin Part Two.

The conceptual discovery treatment. The conceptual discovery

treatment was the same as the conceptual reception treatment except
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the definitions of the mathematical concepts were not given to the

students of the group. To complete Part One it was necessary to

discover the correct definitions.

Part Two - concept Use

The concept use part of the experiment (Part Two) was a factorial

design with two dimensions and two levels in each dimension; rote-

conceptual and reception-discovery. As in Part One the rote-conceptual

dimension was determined by whether or not it was possible to respond

correctly to some of the items by having previously learned that specific

item by rote. In the rote treatments trials were repeated until the

computations were performed correctly on new examples so that conceptual

learning eventually occurred even though the initial learning may have

been rote. In the conceptual treatments no item was repeated so that

it was impossible to give correct responses by having previously learned

a particular item by rote. The reception-discovery dimension was

determined by whether or not the formulas and examples of their use were

given to the students before giving them the lists (see Figure 4.4).

The treatments were .ns same as the corresponding treatments in Part

One except a list, either booklet or grid format, was successfully com-

pleted if no more than two mistakes were made (as opposed to no mistakes

in Part One).

The Unit and Materials

This section gives a description of the selection of the unit

and the methods used to construct the materials used in the study.
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FORMULAS

If a is the first term of an arithmetic sequence and d is the common .

difference then:

a. The nth term is a + (n-1)d. The 20th term of 1, 3, 5, ... is

1 + 19 2 = 39 since a = 1 and d = 2.

b. The sum of the first n terms is --la[2a + (n-1)d]. The sum of

1
the first 20 terms of 1, 3, 5, ... is y 20[2 1 + 19 2].

If a is the first term of a geometric sequence and r is the common

ratio then:

a. The nth term is am -1. The 20th term of 1, 1, 4, 8, ... is

1(2)19.

b. The sum of the first n terms is a(1-rn). The sum of the

1 1
1-r 120

.

first 20 terms of 1, y, ... is 1(1 - )

c. For Irl<1, the sum of the terms of an infinite sequence is

a . The sum of 1,
1 1 1

... is. 1 = 2.
1 r

1
1 -

2

Figure 4.4. Formulas given in the reception treatments of
Part Two.
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Criteria for Selection of the Unit

Four criteria for selecting the unit were used. These are

described and discussed below.

Criterion 1. The unit was to have content that is taught as a

part of the regular school mathematics curriculum. This criterion was

included because the study deals with learning and teaching mathematics

of the kind that is taught in regular school programs. If the material

in the unit is not usually taught, generalizations would be required

to make the results of the study apply to the classroom. These

generalizations may be quite sound but the point is the problem could

be avoided altogether. Another reason for the criterion, which was

perhaps more important, was that the study would be carried out using

students in mathematics classes and would deal in part with ways of

organizing course content and teaching course material.

Criterion 2. The unit was to have a hierarchy of concepts as

the main content to be taught. One question to be investigated con-

cerned students' learning the structure of a hierarchy of concepts

and so this criterion was absolutely essential.

Criterion 3. The unit was not to require extensive previous

mathematical knowledge. This criterion was a practical consideration.

It was possible that the unit might be taught (for the purposes of

the study) at a time that would not be in the usual textbook sequence

for some of the classes. The criterion was also intended to minimize

the effect of previous knowledge interacting with the learning of the

unit.
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Criterion 4. The unit was to be appropriate for various levels

of the curriculum, preferably for junior high school, high school, and

college. This was to facilitate acquisition of subjects. It would

also be possible to compare learning of students in these different

groups.

These criteria led to the selection of the following unit.

The Instructional Unit

The instructional unit was approximately the material covering

sequences and series in the college algebra courses at the University

of Wisconsin - Madison. Immediately following this unit, mathematical

induction was usually taught. One week was allowed for the instruction.

The eight mathematical concepts that were chosen were: (1) infinite

sequence, (2) infinite series, (3) finite sequence, (4) finite series,

(5) arithmetic sequence, (6) arithmetic series, (7) geometric sequence,

and (8) geometric series. Students were to be able to recognize

examples and non-examples of each of these mathematical concepts as

well as be able to find the twentieth term, the formula for the nth

term, the sum of the first twenty terms, and the formula for the sum

of the first n terms of arithmetic and geometric sequences. The

students were also to be able to find the sum of the terms of an

infinite geometric sequence if it exists.

It should be noted that while the definitions of sequence (see

below) is somewhat imprecise it is essentially the one used by Groza
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and Shelly (1969), which was the text for the course and it does

communicate the basic ideas. The more correct definition that a

sequence is the range of a function from the natural numbers into the

real numbers was considered but not used because of criteria three

and four.

The following are the definitions and formulas that were

included in the unit:

A set of real numbers a1, a2, a3, ... in a definite order and

formed according to a definite rule is called a sequence. Each number

in a sequence is called a term of the sequence. Any sequence with a

finite number of terms is called a finite sequence, and any sequence

with an infinite number of terms is called an infinite sequence.

Often an ellipsis (...) is used to indicate some terms are not

written but understood to be included. For instance 1, 2, ..., 10

means 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and the counting numbers can be

written 1, 2, 3, 4, *toe

An arithmetic sequence is a sequence in which any pair of

successive terms differ by a fixed number (the first term of the pair

is always subtracted from the second to find the fixed number). This

fixed number is called the common difference for the arithmetic

sequence. The arithmetic sequence 1, 11, 21, 31 is formed by starting

with 1 then adding 10 to get the second term, 11, then adding 10 to

get the third term, 21, and the fourth term is 21 plus 10 or 31.

A geometric sequence is a sequence in which the quotient of any

pair of successive terms is a fixed number (the first term of the pair
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is always divided into the second). This quotient is called the

common ratio for the geometric sequence. The geometric sequence 1, 2,

4, 8 is formed by multiplying by 2; 1 x 2 = 2, 2 x 2 = 4, 4 x 2 = 8.

A series is the indicated sum of the terms of a sequence. Finite

series, infinite series, arithmetic series, and geometric series are

formed from finite sequences, infinite sequences, arithmetic sequences,

and geometric sequences.

If a is the first term of an arithmetic sequence and d is the

common difference then the nth term is a + (n-1)d and the sum of the

1
first n terms is 1-n[2a + (n-1)d].

If a is the first term of a geometric sequence and r is the

common ratio then the nth term is am -1, the sum of the first n terms

is all-V.1), and for Irie.1, the sum of the terms of an infinite sequence
1-r

is a
1-r

This concludes the definitions; next, the hierarchy of concepts

determined by the foregoing definitions will be discussed.

The Hierarchy of Concepts

In Chapter II three possible relations that could exist between

mathematical concepts were given. They were: (1) mathematical concept

A is an example of mathematical concept B, (2) mathematical concept C

is a subclass of mathematical concept D, and (3) mathematical concept

E is used in the definition of mathematical concept F. In each case

the first named mathematical concept will be called subordinate to the
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second and the second will be calle supra-ordinate to the first.

The mathematical concept "sequence" was used in the definition of

"finite sequence," "infinite sequence," "arithmetic sequence," "geometric

sequence," and "series." "Series" and "finite sequence" were used in

the definition of "fin4Le series"; "series" and "arithmetic sequence"

ere used in the definition of "arithmetic series"; and "series"

and "geometric sequence" were used in the definition of "geometric

series." This determined the subordinate - supra-ordinate relations

described in (3) above.

"Finite sequence (series)," "infinite sequence (series),"

"arithmetic sequence (series)," and "geometric sequence (series)"

are all subclasses of "sequence (series)," these are the relations

described in (2). The relations described in (1) will not be included

here but there were many examples of each concept in the unit. The

examples and method of selecting them will be given later. Figure 4.5

is a diagram of these relations.

....... ........

4
4 4 i

Infinite 'ermief
Series 1 !-= Al: 44 **I P S

1
I +

Sequence....... It I y
T

1 44 11
;1 hript 4.0

A 0i IF .1 r.;IN-1.ors

A Indiertte.r. A is lee(' !to the ,ie:"..c.+i(0.1 .. 1.

;Por.( . 0
71. : '10

Figure 4.5. Hierarchy of Concepts in the Instructional Unit.



63

The preceding discussion has shown that the mathematical concepts

of the unit do form a hierarchy of concepts so that criterion two for

the selection of the unit was satisfied. Criterion one was satisfied

since the content of the unit was taken from an existing mathematics

course that is a standard part of the college mathematics curriculum.

It seemed that criteria three and four were also met., three being more

or less obvious after examining the mathematical concepts and four by

the fact that the high school curriculum also often includes these

concepts in either a second year algebra course or a fourth year

mathematics course. It was deemed that the unit probably was not

appropriate for junior high school, not because of the difficulty but

rather the material leads to problems that require mathematical

induction which may not be appropriate for junior high school.

The Lists for Part One

On each list of Part One the eight mathematical concepts were

given. The items (the examples of the mathematical concepts) for

the lists were chosen so that each list had one item that was an

infinite sequence (series) but was neither an arithmetic nor geometric

sequence (series), one item that was a finite sequence (series) but

neither an arithmetic nor a geometric sequence (series), one infinite

geometric sequence (series), one finite geometric sequence (series) and

two finite arithmetic sequences (series). Thus the twelve items

represented six sequences, six series, four finite sequences, four
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finite series, two infinite sequences, two infinite series, two

arithmetic sequences, two arithmetic series, two geometric sequences,

and two geometric series.

Selection of the Examples

It was estimated that students would master the mathematical

concepts of Part One in at most ten trials. Thus it was necessary

to have a pool of at least twelve examples of each concept (examples

were needed for the pre- and posttests also). The following rules

were established to generate these examples.

Rule for infinite sequences. The examples of infinite sequences

that were non-examples of arithmetic and geometric sequences were of

the form 1/a, 1 /b, 1/(a+b), 1/(2a+3b), ...where a and b were randomly

chosen integers between 0 and 10.

Rule for finite sequences. The examples of finite sequences that

were non-examples of arithmetic and geometric sequences were of the

form a, a+b, a+2b+1, a+3b+3. The method of selection of a and b was

the same as for the infinite sequences.

Rule for infinite series. The examples of infinite series that

were non-examples of arithmetic and geometric series were of the form

a/b + a/2b + a/3b + a/4b + . Selection of a and b was the same as

for the infinite sequences.

Rule for finite series. The examples of finite series that

were non-examples of arithmetic and geometric series were of the form

a + (a+b) + (ai-b +l) + (a+2b+3). Selection of a and b was the same as
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for the infinite sequence.

Rule for selecting geometric sequences and series. All examples

of infinite and finite geometric sequences and series were determined

by the same rule. The first term was a randomly selected integer between

0 and 10. The ratio c/d was reduced to lowest terms and randomly chosen

to be positive or negative. The absolute value of c was less than

the absolute value of d. A pair of integers between 0 and 10 was

selected randomly, the larger was assigned as the value for d and the

other c, the fraction was then reduced and the predetermined sign

affixed.

Rule for selection of arithmetic sequences and series. Examples

of arithmetic sequences and series were selected using the same rule.

The first term and common difference were randomly selected integers

between 0 and 10. The common difference was then randomly determined

to be either positive or negative.

The booklets. A booklet consisted of a cover page with a place

for the student's name and section number (from the college algebra

classes) and form (A through J). The odd numbered pages had an

example of one of the mathematical concepts from the pool of examples

and under this example the eight mathematical concepts from the

hierarchy of concepts were listed in random order. (The order was the

same for each page of a booklet, but was different between forms.)

On the back of each of the pages the same example and the mathematical

concepts were reproduced in the same order with the correct mathematical

concepts marked. Thus, a student could mark responses on one side of
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the pagv and then turn it over to check them. There were 24 pages, 12

for the student to mark and 12 with answers already given (see

Figures 4.6 and 4.7).

The grids. The grid forms used the same examples as the

1-
corresponding booklet forms. Across the top of an 8-i" x 11" sheet of

paper were wr".ten the eight mathematical concepts and down the left

side the items were given. The students were to mark the intersection

of the row and column if an item in the column of examples corresponded

to the mathematical concept in the column above (see Figure 4.3).

After marking the responses, the students were given the correct

responses.

The Lists for Part Two

Ten forms of the lists for Part Two were prepared in booklet

and grid format. Form A of Part Two had the examples of the arith-

metic and geometric sequences for form A of Part One and each of the

other forms for Part Two had examples from the corresponding forms

of Part One; two arithmetic and two geometric sequences.

The booklets. The front of each page of the booklet had an

example of either an arithmetic or a geometric sequence at the top

of the page with a place to write the twentieth term, the formula

for the nth term, the sum of the first twenty terms, and the sum of

the infinite series if it existed. On the back of the page the

example was repeated and the correct answers given (see Figures

4.8 and 4.9).
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The grids. The grids were constructed with the examples down

the left side and the indicated computations across the top. Figure

4.10 shows a typical grid for Part Two.

The Tests

The pretest_. The pretest was either in booklet or grid format

and had the same eight concepts as the lists of Part One. The only

difference was that the pretest had only six items instead of the

twelve items in Part One and answers were not given. The six items '

were examples of an infinite sequence that was neither an arithmetic

nor a geometric sequence, an infinite series that was neither an

arithmetic nor a geometric series, a finite arithmetic sequence,

a finite arithmetic series, a finite geometric sequence, and an

infinite geometric series.

The posttest, for Part One. The posttest for Part One was

either in booklet or grid format, had the same eight concepts as

the lists and had 12 items chosen from the same categories as the

lists but no answers were provided. The first six items were a

finite series that was neither an arithmetic nor a geometric series,

a finite geometric sequence, a finite arithmetic sequence, an infinite

series that was neither an arithmetic series nor a geometric series,

a finite geometric series, and a finite arithmetic series. These

six items were on form A of the lists and in some cases were

originally learned in a rote manner. The other six items were new
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examples of a finite arithmetic sequence, a finite arithmetic series,

a finite sequence that was neither an arithmetic nor a geometric sequence,

an infinite sequence that was neither an arithmetic nor geometric

sequence, an infinite geometric series, and an infinite geometric

sequence.

The posttest for Part Two. The posttest for Part Two was either

in booklet or grid form and had the same computations as the lists of

that part. The first two items were a geometric sequence and an

arithmetic sequence from form A of the lists. The next two items wcle

new examples of a geometric sequence and an arithmetic sequence.

The final examination questions. Five problems were included on

the final examination for the college algebra course that was given

ten days after the completion of the study. These questions were to

compute the twentieth anu nth terms for an arithmetic and a geometric

sequence and find the sum of the terms of an infinite geometric sequence.

Summary

A description of the planning of the study has now been given.

This chapter contains a discussion of the experimental design, the

planned procedures including the twelve treatments (eight for Part

One and four for Part Two, the instructional materials, both tests and

lessons, are in Appendix A), the criteria for selecting the unit to

be taught, the unit that was selected, the hierarchy of concepts in

the unit, the procedures for selecting the examples, the construction

of the lists (both booklet and grid), and closes with a description of
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the posttests. Information concerning the execution of the study will

be found in Chapter V.
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