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FOREWORD

Some mathematical works of considerable vintage have a timeless
quality about them. Like classics in any field, they still bring joy and
guidance to the reader. Books of this kind, if no longer readily available,
are being sought out by the National Council of Teachers of Mathematics,
which has begun to publish a series of such classics. The present title is
the fourth volume of the series.

A Handbook on Curves and Their Properties was first published in 1952
when the author was teaching at the United States Military Academy at
West Point. A photoithoprint reproduction was issued in 1959 by
Edwards Brothers, Inc., Lithoprinters, of Ann Arbor, Michigan. The
present reprint edition has been similarly produced, by photo-offset, from
a copy of the 1959 edition. Except for providing new front matter, includ-
ing a biographical sketch of the author and this Foreword by way of,
explanation, no attempt has been made to modernize the book in any
way. To do so would surely detract from, rather than add to, its value.



ABOUT THE AUTHOR

Robert Carl Yates was born in .Falls Church, Virginia, on 10 March
1904. In 1924 he received a B.S. degree in civil engineering from Virginia
Military Institute. This degree was followed by an A.B. degree in psy-
chology and education from Washington and Lee University in 1926 and
by the M.A. and Ph.D. degrees in mathematics and applied mathematics
from Johns Hopkins University in 1928 and 1930.

While working on these later degrees Bob Yates was an instructor at
Virginia Military Institute, the University of Maryland, and Johns Hop-
kins University. After completing his Ph.D. degree, he accepted a Posi-
tion as assistant professor, in 1931, at the University of Maryland, where
later he was promoted to associate professor. In 1939 he became associate
professor of mathematics at Louisiana State University.

As a captain in the Army Reserves, Professor Yates reported to the
United States Military Academy for active duty on 6 June 1942. Before
leaving the Academy he rose to the rank of colonel and the title of
associate professor of mathematics.

He left West Point in August 1954, when a reduction in the number
of colonels was authorized at USMA, and accepted a position as professor
of mathematics at Virginia Polytechnic Institute. In 1955 he became
professor of mathematics and chairman of the department at the College
of William and Mary. The last position he held was as one of the original
professors at the University of South Florida, beginning in 1960. He went
to this rew institution as chairman of the Department of Mathematics,
resigning the chairmanship in 1962 in order to devote more time to teach-
ing, lecturing, and writing.

During his tour of duty at West Point, Dr. Yates spent many of his
summers as a visiting professor. Among the institutions he served were
Teachers College, Columbia University; Yeshiva University; and johns
Hopkins University.

Robert Yates was a man of many talents. Although he was trained in
pure and applied mathematics, he became interested In the field of
mathematics education rather early in his professionql career. In both

vii



viii AuouT THE AUTHOR

al'eaS he Wilt lip a (Ilse reputation as a lecturer and a writer. During his
lifetime he had sixty-odd papers published in various research and mathe-
matical-education journals, including the Mathematics Teacher, and in
NCTM yearbooks. He also wrote five books dealing with various aspects
of geometry, the calculus. and differential equations. From 1937 until he

was called to active duty at West Point in 1942, he served on the editorial
hoard, and as editor of one department, of the National Mathematics

Magazine.
These were some of his professional achievements. Ms activities, how

ever, were not limited to the world of mathematics. At VM1 where he

was a member of the track squad, dramatics and journalism claimed some
of his time. Music became a continuing resource. In later life his recrea-
tions included playing the piano as well as sailing, skating, and golf.

Dr. Yates, whose social fraternity was Kappa Alpha, was elected to two
scientific honor societies: Gamma Alpha and Sigma Xi. Holding member-
ship in the American Mathematical Society, the Mathematical Association
of America, and the National Council of Teachers of Mathematics, he
was at one period a governor of the MAA. He was also a member of the
MAA's original ad hoc Committee on the Undergraduate Program in
Mathematics (CUPM ). In late 1961 he was selected by the Association
of Higher Education as one of twenty-five "outstanding college and Uni-

versity educators in America today," and on 4 February 1962 he was
featured on the ABC-TV program "Meet the Professor."

Dr. Yates had been interested in mathematics education before 1939.
Howcwer, when he came to Louisiana State University, his work in this
field began to expand. Owing to his efforts, the Department of Mathe-
matics and the College of Education made some important changes in the
mathematical curriculum for the training of prospective secondary school

teachers. One of the most important additions was six semester hours in
geometry. Dr. Yates was given this course to teach, and for a text he
used his first book, Geometrical Tools, From this beginning his interest
and work in mathematics education increased, while he continued to
lecture and write in the areas of pure and applied mathematics,

The atmosphere at Nk'est Point was quite a change for Dr. Yates. How-

ever, even here he continued his activities in mathematics education. One
of his duties was to supervise and conduct courses in the techniques of
teaching mathematics. These were courses designed for the groups of

menew instructors who joined the departnt staff annually; for most of the
faculty at the Academy, then as now, were active-duty officers who came

on a first or second tour of three to four years' duration. In performing
this duty he was considered a superior instructor and also an excellent

teacher of teachers.
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After leaving the service Professor Yates continued his efforts to improve
mathematics education. During the summers he taught in several different
mathematics institutes, and he was a guest lecturer in many summer and
academic-year institutes supported by the National Science Foundation.
In earlier years he both taught and lectured in the grandfather of all
institutes, the one developed by Professor W. W. Rankin at Duke Uni-
versity. In Virginia and later in Florida he served as a consultant to
teachers of mathematics in various school districts. During the academic
years 1961/62 and 1962/63 the University of South Florida was engaged
in an experimental television program. Professor Yates was the television
lecturer in the course materials deNeloped through this program. As a
result of this program as well as the MAA lectureship program for high
schools, supported by he NSF, he traveled to all parts of Florida giving
lectures and consulting with high school teachers.

Through all these activities Dr. Yates greatly enhanced the field of
mathematics education. He built up a reputation as an outstanding lec-
turer with a pleasing, interest-provoking presentation and a rare ability
to talk while illustrating his subject. Those who have heard him will
long remember bhp and his great ability. Others will find that his writ-
ings show, soinevAat vicariously, these same characteristics.

By his first wife, Naomi Sherman, who died in childbirth, he had three
children. Robert Jefferson, the eldest, is now in business in California.
Melinda Susan, the youngest, is now Mrs. Richard B. Shaw, the wife of a
Missouri surgeon. Mrs. Shaw majored in mathematics at Mount Holyoke
College and works as a computer programmer and systems analyst. The
second child is Daniel Sherman. He is following in his father's footsteps
and has completed his doctorate in mathematics education at Florida
State University. He is a mathematics specialist at the Mathematics and
Science Center, a resource center serving the public schools in the city
of Richmond, Virginia, and in the counties of Chesterfield, Cooehland,
Henrico, and Powhatan.

Dr. Yates passed away on 18 December 1963 and was interred in
Arlington National Cemetery.

HOUSTON T. KARNES
Louisiana State University



NOTATION

x,y = Rectangular Coordinates.

9,r Polar Coordinate, (Radius Vector).

U. Parameter or Polar Coordinate.

4 Inclination of Tangent.

41. Angle between a Tangent and the Radiun Vector

Tangency.

to Point of

Arc Length.

. Are of Evoluto (or Standard Deviation).

p Distance from Origin to Tangent.

V Volume;. Length; A Area; X = Surface Area.

. Surface of Revolution about the X-ratio.

Vx . Volume of Revolution about the X-axis.

N . Normal Length.

R = Radius of Curvature.

K = Curvature.

v . Velocity; a = Acceleration.

a
. = (t . Time or a Parameter).

dx dt

dF ,

x t, (or -&-)

i

z = x + iy, a Complex Variable.

f(s4) = 0: The Whewell intrinsic Equation.

f(170) . 0: The Cestiro Intrinsic Equation.

f(r,p) = 0: The Pedal Equation.
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This volume proposes to supply to student and teacher
a quick reference on properties of plane curves. Rather,
than a systematic or comprehensive study of curve theory,
It is a eoilectioi' of information which might be found
usefu7 in the classroom and in engineering practice. The
alphabetical arrangement Is given to aid In the search
for this information.

Tt seemed necessary to incorporate sections on such
topics as Evolutes, Curve Sketching, and Intrinsic Equa-
ticns to make the items and properties listed under var-
ious curves readily understandable, If the bog': is used
as a text, it would be desirable to present the material
in the following order:

I

ANALYSIS and SYSTEMS

Caustics
Curvature
Envelopes
Evolutes
Functions with Discontinuous

Properties
Clissettes
Instantaneous Centers
Intrinsic Equations
Inversion
Involutes
Isoptic Curves
Parallel Curves
Pedal Curves
Pedal Equations
Radial Curves
Roulettes
Sketching
Prochoide

II

CURVES

Astroid
Cardioid

Cassiniun Curves
Catenary
Circle

Cissold
Conchoid
Conics

Cubic Parabola
Cycloid
Deltoid
Epi- and Oypocycloid
Exponential Curves
Folium of Descartes

Hyperbolic Functions
Kieroid
Lemniscate
Limacon
Nephrold
Pursuit Curves
Semi-cubic Parabola
Spirals
Strophoid
Tractrix

Trigonometric Functions
Witch
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PREFACE

Since derivations of all properties would make the

volume cumbersome and somewhat devoid of general inter-

est, explanations are frequently omitted. It is thought

possible for the reader to supply many of them without

difficulty.

Space is provided occasionally for the reader to in-

sert notes, proofs, and references of his own and thus

fit the material to his particular interests.

It is with pleasure that the author acknowledges

valuable assistance in the composition of this work.

Mr. H. T. Guard criticized the manuscript and offered

helpful suggestions; Mr. Charles Roth and Mr. William

Bobalke assisted in the preparation of the drawings;

Mr. Thomas Vecchio lent expert clerical aid. Apprecia-

tion is also due Colonel Harris Jones who encouraged the

project.

Robert C. Yates
West Point, N. Y.

June 1947

For an informative account see "Historical Stages

in the Definition of Curves" by C. B. Boyer in National

Mathematics Magazine, XIX (1944-5) 294-310.



HISTORY: The Cycloidal curves, including the Astroid,
were discovered by Roemer (1674) in his search for the
best form for gear teeth. Double generation was first
noticed by Daniel Bernoulli in 1725.

1. DESCRIPTION: The Aatroid is a hypocycloid of four
cusps: The locus of a point P on a circle rolling upon
the inside of another with radius four times as large.

(a) Pig. 1 (b)

bauble Generation: it may also be described by a point

on a circle of radius It rolling upon the inside ofsa

fixed circle of radius a. (See 8picycloids)
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2. EQUATIONS:

+ yi . ai

2 2 2
z: a - ,5p

7,a

s = COS 2
1.1

a oos3t = (i)(3 cos t 4 cos 3t)

y = a stk3t - 1)(3 sin t sin 3t)

3. METRICAL PRoPERTTES:

L 6a

Vx = (51.)(ra3)

.11 . t

4. GENERAL tTEMS:

(a) Its cvulute is another Astroid. [See Evolutes

/1(b).]

(h) It is the envelope of a family of Ellipses, the

sum of whose axes is constant, (Fig. 2b)

(a)



ASTROID

(c) The length of its tangent intercepted between the

'cusp tangents is constant. Thus it is the enveloa

or a Trammel or Archimedes. (Fig. 2a)

(d) Its orthoptic with respect to its center is the

curve

a2
r2 = (--2 ).cos2 20.

(e) Tangent Construction: (rig. 1) Through P draw the

circle with center on the Circle of radals 24 which

is tangent to the fixed circle as at T (left-hand

figure). Since the instantaneous center of rotation

of P is T, TP is normal to the curve at P.

BIBLIOGRAPHY

Edwards, J.: Calculus, Macmillan (1892) 337.

Salmon, O.: Higher Plane Curves, Dublin (1879) 278.

Wieleitner, H.: Speziefle ebehe Kurven, Leipzig (1908).

Williamson, B.: Differential Calculus, Longmans, Green

(1895) 339.
Section on Epicycloids, herein.



CARDIOID

HISTORY: The Cardloid is a member of the family of Cy-
cloldal Curves, first studied by Roemer (1674) in an in-'
vestigation for the best form of gear teeth.

1. DESCRIPTION: The Cardloid is an Epicycloid of one
cusp: the locus of a point P of a circle rolling upon
the outside of another of equal size. (Fig. 3a)

(a) Fig. 3

Double Generation: (Fig. 3b). Let the curve be gen-
erated by the point P on the rolling circle of radius a.
Draw ET', OT1F, and PT' to T. Draw FP to D and the circle

through T, P, D. Since angle DPT m t, this last circle

has DT as diameter. Now, PD is parallel to TIE and from
similar triangles, DE m 2a. Moreover, arc TT' m au =
arc T'P = arc T'X. Accordingly,

arc TTIX = 2a0 m arc PP.



CARDIOID

Thus the curve may be described as an Epicycloid in two

ways: by a circle of radius a, or by one of radius 2a,

rolling as shown upon a fixed circle of radius a.

2. EQUATIONS:

5

(x2 + y2 + 2ax)2 = 4a2(x2 + Y2)(Origin at cusp).

r = 2a(1 + cos 0), r = Pa(1 + sin 0)(Origin at cusp).

9(r2 - a2) = 8p2. (Origin at center of fixed circle).

[

x = a(2 cos t - cos 2t)

y = a(2 sin t - sin 2t) '
z = a (2e it -

,,,

esit).

r3 = 4ap2. s = 8a'cos().
3

9R2 + s2 . 64a2.

3. METRICAL PROPERTIES:

L = 16a.

= (i)t

A = 6na2

(10)(ne2)
5

Ex US

R Wtar for r = a(1 - cos 0).

4. GENERAL ITEMS:

(a) It is the inverse of a parabola with respect to

its focus.

(b) Its evolute is another cardioid.

point on the circle.

(d) It is a special limacon: r = a +
a se

(e) It is tAe caustic of .a circle with radiant point

on the circle.

(f) The tangents at the three points whose sub-

tended angles, measured at the cusp, differ by

2S are parallel.

(g) The 29g of distances from the cusp to the four

intersections with an arbitrary line is constant,

respect to a

b cos 0 with

J
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C ARD IOID

(h) Cam. rr the cardiold be pivoted at the cusp and
rotated with constant angular velocity, a pin, con-
traired to a i stra:!-ht and bearin on the

jardiold, will move with simple harmonic motion. Thus
Cor

= -(a sin 0)0,

= -(a cos 062 - (a sin 06.

IV 6 = k, a constant:

= -k2(a cos u) = -k2(r a),

or

d2, 2,--pkr - a) = -k kr - a),dt

the d:fierential equation characterizing the motion
or any point of the pin.

Fig. )1

/0)

A'
C)I

(i) The curve Is the locus of the point P of two
--similar (Proportional) crossed parallelograms, joined
ac shown, with points 0 and A fixed.
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CARDIOID 7

AB = OD = b; AO .BD = CP = a; BP = DC . c= b + 2a.

.:tnd a
2

= bc.

At all times, angle PCO = U = angle CuX. Any point

rigidly attached to CP describes a Limacon.

BIBLIOGRAPHY

Keown and Faires: Mechanism, McGraw Hill (1931).

Morley and Morley: Inversive Geometry, Ginn (1933) 239.

Yates, R.C.: Geometrical Tools, Educational Publishers,

St. Louis (1949) 182.



CASSINIAN CURVES

HISTORY: Studied by Giovanni Domenico Cassini in 1680 in
connection with the relative motions of earth and sun.

1. DESCRIPTION: A Cassinian Curve is the locus of a point
P the produtt of whose distances from two fixed points
Fi, F2 is constant (here = k2).

/ Y
%

1 I
I

Ii

o
/`

Fig. 6

2. EQUATIONS :

[(x - a)' + y2 J [(x + a)2 + y2 j
r4 + a4 - 2r2a2 cos 20 = k4.

(-a,o) F2 = (a on

3. METRICAL PROPERTIES:

(See Section on Lemniscate)

X



C ASSINIAN CURVES

4. GENERAL ITEMS:

(a) Let b - a be the inner
radius 07 a torus whose gen-
erating circle has radius a.
The section formed by a plane
Parallel to the axis of the
torus and distant a units from
it is a Cassinian. If b = 2a
this plane is an inner tangent
to the surface and the section
is a Lemniscate.

(b) The set of Cassinian Curves

(x2 + y2)2 + A(y2 - x2)

+B= 0, S pi 0,

inverts into itself.

(c) If k = a, the Cassinian
is the LemnIscate of
Bernoulli: r2 = 2a7cos 20,
a curve that is the inverse Fig. 7

and 2edal, with respect to
its center, of a Rectangular Hyperbola.

(d) The points P and P' of the linkage shown in

Fig. 8 describe the curve. Here AD = AO = OB = a;

DC = CQ = E0 = OC
'2
CP = PE = EP' = P'C = d.

D

Fig. 8



10 CASSINIAN CURVES

Let the coordinates and P be (p,u) and (r,e),
respcLivol::. c, D, and lie o!: a circle with

1k: ..(4 are always at right
angles, Thus.

= (D0)2 - (Ft)2 uv p2 = (!2 4a2 sin20.

The attached Peatvllier ei1 Inverts the point Q to
P under the property

tqr. d` .

Thus, ,!-1.1m1hatlhr.p :etweet. the lavt two relations:

4
- -2)2 r!2 - 4r2a:2s:n2U.

or, in rectah,.ular coord:nates:

(x2 + y212 + Ax2 + By' + C = 0,

a !urve that may 1)0 Identified as a Cassinian if
d

4

(e) The 1us or the flex points or a family of con-
focal CassInlan curves is a Lemniscate of Bernoulli

5. POINTWISE CONSTRUCTUA:

Fig. 9

(Flx).(F,Y) = k2

Let the foci,
9, be F1,

F2; the con-
stant product
k2. Lay off
F1C = k perpen-
dicular to F1F2.
Draw the circle
with center F1
and any radius
FIX. Draw CX
and Lts perpen-
dicular CY.
Then
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and thus FIX and FlY are focal radii (measured from El
and F2) of a point P on the curve. (From symmetry, four
points are constructible from these two radii.) M is the
midpoint of FIFO and A and B are extreme points of the

curves.

BIBLIOGRAPHY

Salmon, G.: Higher Plane Curves, Dublin (1879) 44,126.
Willson, P. N.: Graphics, Graphics Press (1909) 74.
Williamson, B.: Calculus, Longmans, Green (1895) 233,333.
Yates, R.C.: Geometrical Tools, Educational Publishers,

St. Louis (1949) 186.



CATENARY

HISTORY: Galileo was the first to investigate the Cate-
nary which he mistook for a Parabola, James Bernoulli
in 1691 obtained its true form and gave some of its
properties,

1. DESCRIPTION: The Catenary is the form assumed by a
perfectly flexible inextensible chain of uniform density
hanging from two supports not in the same vertical line.

N

*if

L.-

KI

A

\

Fig. 10

x

2. EQUATIONS: If T is the tension at any point P,

P cos' cp
s= ay' =a tan p p aR = s

a

T sin Y = ks

a %

y a.cosh(!) = H(ea a

2
) ; Y

2
a
2

a



CATENARY

3. METRICAL PROPERTIES:

A = ass = 2(area triangle PCB)

R

N = -R.

Ex= n(YS ax)

Vx = (2)11x

13

4. GENERAL ITEMS:

(a) The tangent at any point (x,y) is also tangent to
a circle of radius a, with center at (x,0).

= sinh(A) 1/2 a2 .

a - a

(b) Tangents drawn to the curves y = ea, y = e a,

y = a cosh
a

at points having the same abscissa are

concurrent.

(c) The path of B, an involute of the catenary, is

the Tractrix. (Since tan U = PB = s).
al

(d) As a roulette, it is the locus of the focus of a
parabola rolling along a line. (See Envelope3, 5g)

(e) It is a plane section of the surface of leaat area
(a soap film catenoid) spanning two circular disks,
Pig. ila. (This is the only minimal surface of reVelu-

tion.)

(a) Pig, 11 (b)



14 CATENARY

(f) it is a plane section of a sail bounded by two
rods with the wind perpendicular to the plane of the
rods, such that the pressure on any element of the
sail is normal to the element and proportional to the
square of the velocity, Fig. lib. (See Routh)

BIBLIOGRAPHY

EncYclonaedia Britannica, 14th Ed. under "Curves,
Special".

Routh, E. J.: Analytical Statics, 2nd. Ed. (1896) I 0458,
P. 310.

Salmon, G.: Higher Plane Curves, Dublin (1879) 287.
Wallis: Edinburgh Trans. XIV, 625.



CAUSTICS

HISTORY: Caustics were First introduced and studied by
Tschirnhausen in 2682. Other contributors were Huygens,
Quetelet, Lagrange, and Cayley.

1. A caustic curve is the

envelope or light rays,

emitted from a radiant

point source S, after re-

flection or refraction by

a given curve f = 0. The

caustics by reflentton

and refraction are called

cataeaustic and diacaus-

tic, respectively.

2. An orthotomic curve (or secondary caustic) is the
locus of the point t, the reflection of S in the tangent

at T. (See also Pedal Curves.)

3. The instantaneous center of motion of is T. Thus

the caustic is the envelope of normals, TQ, to the craw-
to_mtpi i.e., the caustic is the evolute of the orthe-

t0MiP.

4. The locus of P is the pedal of the reflecting curve
with respect to S. Thus the orthotomic is a curve SIMI.-
lard to the pedal with double its linear dimensions.
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5, The Cataeaustic oe a circle is the evolute of a lima-
con whose pole is the radiant point. With usual x,y axes
tradius a, radiant point (c,U)), the equation of the
caustic is:

( ( 402 a2)(x2+ y2) - 2aacx - a2c2) 3 27a4c2y2(x2+ y2..c2)2 s O.

For various radiant points C, these exhibit the fol-
lowing forms:

(a)

(0)

(e)

(b)

Fig. 1, (f)
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6. In two particular cases, the caustics of a circle of
radius a may be determined in the following elementary
way:

(a) Fig.

With the source S at et,
the incident and reflected
rays make angles 0 with
the normal at T. Thus the
fixed circle 0(A) of
radius a/2 has its arc AB
equal to the tv,0 AP of the
circle through A, P, T of
radius a/4. The point P of
this latter circle gener-
ate. the Nephroid and the
reflected ray TPQ is its
tangent (AP is perpendicu-
lar to TP).

(b)

With the source S on the
circle, the incident and
reflected rays makes angles
0/2 with the normal at T.
Thus the fixed circle and
the equal rolling circle
have arcs AB and AP equal.
The point P generates
Cardioid and TPQ is its tan-
gent (AP is perpendicular
to TP).

These are the bright curves seen on the surface of cof-
fee in a cup or upon the table inside of a napkin ring.
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7. The Caustics by Refraction (Diacaustics) at a Line L.
SQ 13 Incident, QT refracted, and S is the reflection of
S In L. Prvdc.co TQ to rtltA Lhu variable circle drawn
through S, Q, and S in P. Let the angles of incidence

01
and refraction be 01 and 02 and p.

sin
------ be the index
sin 02

of refraction. Now SP and -§P make equal angles with the
refracted ray PQT. Thus in passing from a dense to a
rare medium (01 < 02) and vice versa (U1 > 02):

S

A

92
F.

L

Fig. 15

RARE

DENSE

sin 0 AS
sin 0 PS PS

0, > 0, . /I >



u
AS 4, AE

PS 4. PS
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SE

PS + PS

Thus, since SE is ,wistar,t,

PS 4, = SE/14

a constant. The locus of P
is then an ell:pse with S,
S as foci, major axIs SS/i4,

eccentricity 14, ar:d with

PQT as its normal. The
envelope of these rays PQT,
normal, to the ellipse, is
its evolute, the caustic.
(Fig. 16)

- AS SE

PS - PS PE - PS

Thus, since SS Is constant,

- PS = SS /!t

a constant. The locus of P
is then an hyperbola wSth
S, S as foci, major axis
Sg/4, eccentricity V., and
with PQT as its normal. The
envelope these rays PQT,
normal to the hyperbola is
its evolute, the caustic.
(Fig. 17)

F. 16 Pig. 17

8. SOME EXAMPLES:

(a) If the radiant point is the focus of a parabola,
the caustic of the °volute of that parabola is the
evolute of another parabola.
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(b) If the radiant point is at the vertex of a re-
flecting parabola, the caustic is the evolute of a
cissoid.

(c) If the radiant point is the center of a circle,
the caustic of the involute of that circle is the
evolute of the spiral of Archimedes.

(d) If the radiant point is the center of a conic, the
reflected rays are all normal to the quartic
r
2 = A cos 20 + B, having the radiant point as double

point.

(e) If the radiant point moves along a fixed diameter
of a reflecting circle of radius a, the two Cusps of
the caustic which do not lie on that diameter move on

0,
the curve r = acom.-).

(f) If the radiant point is the pole of the reflecting

spiral r = aee eta a, the caustic is a similar Spiral,.

(g) If light rays parallel to the y-axis fall upon the
reflecting curve y = ex, the caustic is a catenary.

(h) The orthotomic of a parabola for rays perpendicu-
lar to its axis is the sinusoidal spiral

r = a.sec 3().
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THE CIRCLE

1. DESCRIPTION: A circle Is a plane continuous curve all
of whose points are equidistant from a fixed coplanar
point.

2. EQUATIONS:

(x - h)2 + (Y -
k)2 a2

X
2

4. y
2

+ Ax + By + C = 0

X
2

-I. y
2

XI
2

+ y.2

X2
2
+ Y2

2

2 2
X3 -I. y3

[x = h + a cos 0

y = k + a sin 0

x y 1

= 0 s = ap
XI Y1 1

R = a
x2 Y2 1 r2

x3 y3 1

3. METRICAL PROPERTIES:

L = 2na E = 4na2

A = na2 V =

R = a

4. GENERAL ITEMS:

(a) The Secant Property. Fig. 18(a). If lines are
drawn from a fixed point P intersecting a fixed
circle, the product of the segments in which the
circle divides each line is constant; i.e., PA.PB
= ppPC (since the arc subtended by L BCD plus that
subtended by L BAP is the entire circumference, tri-
angles PAD and PBC are similar). To evaluate this
constant, p, draw the line through P and the center 0
of the circle. Then (PO - a)(P0 + a) = p = (P0)2 - a2.

The quantity p is called the power of the point P with
respect to the circle. If p (, = > 0, P lies re-
spectively inside, on, outside the circle.
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(n) Fig. 18 (b)

The locus of all points P which have equal power with
respect to two fixed circles Is a line called the
radical axis or the two circles. It' the circles inter-
sect, the radical axis is their courier' chord.

Fig. 18(h).

The three radical axes of three circles intersect in
a point called the radical center, a point having
equal power with re3pect to each or the circles and
equidistant from them.

Thus to construct the radical axis of two circles,
first draw a third arbitrary circle to intersect the
two. Common chords meet on the required axis.

(b) Similitude. Any two coplanar circles have centers
of similitude; the Intersections I and E (collinear
with the centers) of lines Joining extremities of

parallel diameters.

The six centers of similitude of three circles lie by

threes on four straight lines.

The excenter of similitude of the circumcircle and
nine-point circle of a triangle is Its orthocenter.
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Fig. 19

(c) The Problem of

Apollonius is that of con-

structing a circle tangent

to three given non-coaxal

circles (generally eight

solutions). The problem

is reducible (see Inver-

sion) to that of drawing

a circle through three

specified points.

Fig. 20



24 THE CMCLE
N

(d) Trains. A series of circles each drawn tangent to
two given non-intersecting circles and to another mem-
5ov of the sevieo is called a train. It is not to be

Fig. 21

ekpect.3d that such a series generally will close upon
itselv. If such is the case, however, the series is
called a Steiner chain.

Ally Steiner chairs can be inverted into a Steiner
chain tangent to two concentric circles.

Two concentric circles admit a Steiner chain of n
circles, encircling the common center k times if the
angle subtended at the center by each circle of the
train is commensurable with 360°, i.e., equal to

(:)(3600).

If tvo circles admit a Steiner chain, they admit an
infinitude of such chains.



(e) Arbelos. The
figuft bounded by
the semicircular

arcs AXB, BYC, AZC
(A,B,C collinear)
is the arbelos or

shoemaker's knife.
Studied by Archi-
medes, some of its
properties are:

1. AB = A.

THE CIRCLE 25

2. Its area equals Fig. 22

the area of the circle on BZ as a diameter.

3. Circles inscribed in the three-sided figures ABZ,

CBZ are equal with diameter
AC

4. (Pappus) Consider a train of circles co, ol, 02,
... all tangent to the circles on AC and AB (co is
the circle BC). If rn is the radius of cn, and hn the
distance from its center to ABC,

(Invert, using A as center.)
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CISSOID

HISTORY: Diocles (between 250-100 BC) utilized the ordi-

nary Cissoid (a word from the Greek meaning "ivy") in

finding two mean proportionals between given lengths a,b
(i.e., finding x such that a, ax, axe, b form a geometric
progression. This is the cuberoot problem since

,

x =
b
). Generalizations follow. As early as 1689,
a

J. C. Sturm, in his Mathesis Enucleata, gave a mechanical

device for the construction of the Cissoid of Diocles.

1. DESCRIPTION: Given two curves y = fi(x), y == f2(x)

and the fixed point O. Let
Q and R be the intersections
of a variable line through 0
with the given curves. The

locus of P on this secant
such that

OP m (OR) - (OQ) = QR

is the Cissoid of the two
curves with respect to O.
If the two curves are a
line and a circle, the

Fig. 23 ordinary family of Cissoids
is generated. The discus-

sion following is restricted to this family.

Let the two given curves be a fixed circle of radius

a, center at K and passing through 0, and the line L

perpendicular to OX at 2(a + b) distance from 0. The

ordinary Cissoid is the locus of P on the variable

secant through 0 such that OP = r = QR.

The generation may be effected by the intersection P

of the secant OR and the circle of radius a tangent to

L at R as this circle rolls upon L. (Pig. 24)



The curve has a cusp

if b = 0 (the Cis-

sold of Mucles); a

double point if the

rolling circle

passes between 0 and

K. Its asymptote is

the line L.

CISSOID 27

Fig. 24

2. EQUATIONS:

r = 2(a + b)sec 0 - 2a cos H. Y2
x2(2b - x)

[x-2(a+b))

x
2[b + (a + b)t21

=
(1 + t2)

2.(bt + (a + b)t3)
Y = (1 + t2)

x
3

b = 0: r = 2a. sin 0 tan 0; Y2 - % . the= ( 2a -x)

Cissoid of Diocles),

3. METRICAL PROPERTIES:

Cissoid of Dlocles: V(rev. about asymp.) = 2n2a3

1(area betty, curve and asymp.)
3

A(area betw. curve and asymp.)=ne2

Nri
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4. GENERAL ITEMS:

C1SSOID

Fig. 25

(a) A family of these
Cissoids may be generated
by the Peaucellier cell
arrangement shown. Since
(0Q)(QP) = le = 1,
2c.cos 0(2c.cos 8 + r) 1

or

1
r = (--)sec 0 - 2cscos 8,

2c

1
which, for c < - >

2

has, respectively, no
loop, a cusp, a loop.

(b) The Inverse of the family in (a) is, if r'p - 1,
(center of inversion at 0)

y2 + x2(1 - 4c2) = 2cx,

an Ellipse, a Parabola, an Hyperbola if c < = >
1

,

respectively. (See Conics, 17).

(c) Cissoids may

A be generated by
the carpenters
Igare with
right angle at
Q (Newton). The
fixed point A
of the square
moves along CA
while the other

:"4-Q edge of the
square passes
through bp a
fixed point on
the line BO per-
pendicular to

Fig. 26
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AC. The path of P, a fixed point cn AO describes the
curve.

Let AP = OB = b, and BC = AO = 2a, with 0 the origin
of coordinates. Then AB = 2a. sec 0 and

r = 2a. sec 0 - 2`). cos 0.

The point Q describes a Strophoid (See Strophoid 5e).

(d) Tangent Construction: (See Fig. 26) A has the
direction of the line CA while the point of the square
at B moves in the direction BQ. Normals to AC and BQ
at A and B respectively meet in H the center of rota-
tion. HP is thus normal to the path of P.

x3
(e) The Cissold y2 = is the pedal of the

Parabola y2 = -4ax with respect to its vertex.

(f) It is a special Kieroid.

(g) The Cisso-d as a roulette: One of the curves is
the locus of the vertex of a parabola which rolls upon
an equal fixed one. The common tangent reflects the
fixed vertex into the position of the moving vertex.
The locus is thus a curve similar to the pedal with
respect to the vertex.

(h) The Cissoid of an algebraic curve and a line is
itself 12111)1112.
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(I) The Cissoid cr a line and a circle with respect
to Its center is the Con.2hoid of Nicomedeq.

(j) The Strophold Is the Cissoid of a circle and a
1 ne through Its center with respect to a point of the

c:-cle. The Cissold of Dlocles is used in the design
or planing hulls (See Lord).

(k) The Cissoid of 2 concentric circles with respect
to their center is a circle.

(1) The Cissoid of a pair of parallel lines is a line.
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CONCHOID

HISTORY: Nicomedes (about 225 BC) utilized the Conchoid
(from the Greek meaning "shell-like") in finding two mean
proportionals between two given lengths (the cube-root ,

problem).

1. DESCRIPTION: Given a curve
and a fixed point O. Points
PI and Pg are tak.3n on a
variable line through 0 at
distances + k from the inter-

2section of the line and
curve. TheThe locus of PI and P2 0
is the Conchoid of the given 0--
curve with respect to O.

Fig, 27

The Conchoid of Nic-Atedes is the Conchoid of a Line.

Fig. 28

The Limgcon of Pascal Is a Conchoid of a circle, with
the fixed point upon the circle.
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2. EQUATIONS:

General: Let the given curve be r = f(0) and 0 be the
origin. The Conchoid is

r = f(Q) + k.

The Conchoid of Nicomedes (for the figure above) is:

r = a.csc 0 + k, (x2 y2)(y a)2 k2y2,

CONCHOID

which has a double point, a cusp, or an isolated
point if a < = > k, respectively.

3. METRICAL PROPERTIES:

4. GENERAL ITEMS:

(a) Tangent Construction. (See Fig. 28). The perpen-
dicular to AX at A meets the perpendicular to OA at 0
in the point H, the center of rotation of any point
of OA. Accordingly, HP/ and HP2 are normals to the
curve.
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(b) The Trisection of c.n Angle XOY by the marked ruler
involves the Conchoid
of Nicomedes. Let P and
Q be the two ma:kr: or.

the ruler 2k units
apart. Construct BC
parallel to OX such
that OB = k. Draw BA
perpendicular to BC.
Let P move along AB
while the edge of the
ruler passes through
0. The point Q traces
a Conchoid and when
this point falls on BC
the angle Is trisected.

Fig. 29

(c) The Conchoid of Nicomedes is a special Kieroid.
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CONES

1. DESCRIPTION: A cone is a ruled surface all of whose

line elements pass through a fixed point called the

vertex.

2. EQUATIONS: Given two surfaces f(x,y,z) = 0,

g(x,y,z) = 0. The cone through their common curve with
vertex V at (a,b,c) is found as follows.

Let PI:(xlal,z1) be on
the given curve and
P:(x,y,z) a point on the
cone which lies collinear
with V and Pi. Then

Fig. 30

i, - a = k(xl a),

y - b = k(yi - b),

z - c = k(zi - c),

for all values of k.

Thus the curve

1

f(x1,5,1,z1) = 0

g(xial,z1) = 0

pro uces the cone:

[

(y -

k
4. b

b) (z - c)
4.

fc(x -
k

a)
4. a' , cl =0

k

(x - a) (y - b) lEIE/
gf k + a' k + 1), k + c]

=0

Since this condition must exist for ell values k, the

elimination of k yields the rectangular equation of the

cone.

*Thus
any equation homogeneous in xpytz is a cone with vertex at

the
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3. EXAMPLES: The cone with vertex at the origin contain-
ing the curve

x2 + y2 - 2z I 3 0

z 1 . 0

x2 32

is or x2 + y2 - 222 = 0.

Z - k 0

The cone with vertex at the origin containing the curve

The

x2- 22 + 32- 143 =0

is

Z2 - 4y = 0

cone with vertex

= 0

in

z - 4 0

f (

I2-21sx + 32- 4ky . 0
or 2x

2y - xz
2 3 2

+ 2y - 2yz =0.
z2 wry

at (1,2,3) containing the curve

x-1)2k+ ( y-2)21 2( x-1) + 4(y -2)) 2( z-3)
1 0e - k-k

1 st 0

or ( x 1)2+ (y-2)2+ 2(x-1)(z -3)+4(y -2)(z -3)- 3(z -3)2 0.
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CONICS

HISTORY: The Conics seem to have been discovered by
Menaechmus (a Greek,c.375-325 BC), tutor to Alexander the
Great. They were apparently conceived in an attempt to
solve tr,a three famous problems of trisecting the angle,
duplicating thg cube, and eauaring the circle. Instead
of cutting a single fixed cone with a variable plane,
Menaechmus took a fixed intersecting plane and cones of
varying vertex angle, obtaining from those having angles
< = > 90° the Ellipse, Parabola, and Hyperbola respec-
tively. Apollonius is credited with the definition of
the plane locus given first below. The ingenious Pascal
announced his remarkable theorem on inscribed hexagons
in 1639 before the age of 16.

1. DESCRIPTION: A Conic is the locus of a point which
moves so that the ratio of its distance from a fixed
point (the focus) divided by its distance from a fixed
line (the directrix) is a constant (the eccentricity e),
all motion in the plane of focus and directrix (Apol-
lonius) . If e< =,> 1, the locus is an Ellipse, a
Parabola, an Hyperbola respectively.

72+ (1.02)? 2kx +kg

Fig. 31

ek
,

(i* e ein 0)
r 0-

(3. t COO 0)
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2. SECTIONS OF A CONE: Consider the right circular cone
of angle p cut by a plane
APFD which makes an angle
m with the base of the cone.
Let P be an arbitrarily
chosen point upon their
curve of intersection and
let a sphere be inscribed to
the cone touching the cut-
ting plane at F. The element
through P touches the sphere
at B. Then

PF = PB.

Let ACBD be the plane con-
taining the circle of inter?
section of cone and sphere.
Then if PC is perpendicular
to this plane,

PC =(PA)sina = (PB)sin 0 me

(PF)sin 0,

or

PF sins
(PA sin 0 'I e,

Fig. 32

a constant as P varies (01,I3 constant) . The curve of inter-

section is thus a conic according to the definition of
Apollonius. A focus and corresponding direotrix are F
and AD, the intersection of the two planes.

NOTE: It is evident now that the three types of conics
may be had in either of two ways:

(A) By fixing the cone and varying the intersecting
plane (0 constant and a arbitrary); or

(B) By fixing the plane and varying the right circular
cone (a constant and 0 arbitrary).

With either choice, the intersecting curve is

an Ellipse if a < 0,

a Parabola ifamo,
an Iblierbola if a > 0
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3. PARTICULAR TYPE DEMONSTRATIONS:

Pro Pe, pro pe
er,-00,t Aft, a Constant

Fig. 33
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It seems truly remarkable that these spheres, inscribed
to the cone and its cutting plane, should touch this
plane at the foci of the conic - and that the directrices
are the intersections of cutting plane and plane of the
intersection of cone and sphere.

4. THE DISCRIMINANT: Consider the general equation of
the Conic:

Axe + 2Bxy + Cy2 + 2Dx + 2Ey + F .2 0

and the family of lines y = mx.

Figs 34

This family meets the conic in points whose abscissas
are given by the form:

(A 2Bm + Cm2)x2 + 2(D + Em)x + F sa 0.
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If there are lines of the family which out the curve in
one and only one point,* then

2
A + 2Bm + Cm2 = 0 or m =

B * /B -AC

The Parabola is the conic for which on1:4 one line of the
family cuts the curve just once. That is, for which:

B2 - AC = O.

The Hyperbola is the conic for which two and only tvo
lines cut the curve just once. That is, for which:

B2 - AC > O.

The Ellim is the conic for which no line of the family
cuts the curve just once. That is, for which:

B2 - AC < O.

5. OPTICAL PROPERTY: A simple demonstration of this out-
standing feature of the Conics is given here in the case
of the Ellipse. Similar treatments may be presented for
the Hyperbola and Parabola.

Fig. 35

The locus of points P for

which FLP + F2P 2a, a con-
stant, is an Ellipse. Let
the tangent to the curve be
drawn at P. Now P is the
only point of the tangent
line for which FiP + PaP is
a minimum. For, consider any
other point Q. Then

FiQ + FaQ > FiR + F2R 2a -

FiP + PgP,

But if FLP + FRP is a
minimum, P must be col-
linear with FL and Pie, the
reflection of Fa in the

T
A point of tangency he is counted algebraically as two points,

the "point at 0" is excluded.
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tangent. Accordingly, since a = 0, the tangent bisects
the angle formed ny the focal radii.

o. POLES AND POLARS: Consider the Conic:

Axe + 2Bxy + Cy 2 + 2Dy + 2Ey + F = 0

and the point P:(h,k)

The line (whose equation
has the form of a tangent P: (1,111

to the conic):

Ahx + B(hy + kx) + Cky

+ D(x + h) + E(y + k)

+ F = 0 (1)

is the polar of P with
respect to the conic and
P is its pole.

Let tangents be drawn
from P to the curve, meet-
ing it in (xIal) and
(k21y2), Their equations are satisfied by (h,k) thus:

Ahxi + B(hyl+kxx) + Ckxi + D(xx + h) + E(yx +k) + F 0

Ahx2 + B(hy2+kx2) + Ckx2 + D(x2+k) + E(y2 +k) + F 0.

Evidently, the polar given by (1) contains these points
of tangency since its equation reduces to these identi
ties on replacing x,y by either xial or x2a2. Thus,
if P is a point from which tangents may be drawn, its
polar is their chord of contact,

Let (a,b) be a point on the polar of P. Then

Aha + B(hb +.ka) + + F = O.

This expresses also the condition that the polar of
(a,b) passes through (h,k). Thus

(At.Y2)

Fig. 36
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Tr P lies on the polar of g, then S lies on the polar
of P.

Ir. other words, .1f a point move on a fixed line, its
polar passes through a fixed point, and conversely.

Note that the location of P relative to the conic does
not affect the reality of its polar. Note also that if P
lies on the conic, its polar is the tangent at P.

7. HARMONIC SECTION: Let the line through P2 meet the
conic in Ci1,Q2 and its polar

in Pi. These four points
form an harmonic set and

iPIQ1) (Q2P1
i.e., Q1

(Q02) (Q2P2

and Q2 divide the segment
PIP2 internally and extern-
ally in the same ratio, and
vice versa. In other words,.
given the conic and a fixed
point P2: A variable line
through P2 meets the conic
in Ci1,Q2. The locus of Pi
which, with P2, divides
Q1Q2 harmonically is the

Fig. 37 polar of P2.

The segments P2Q1, P2Pi, P2Q2 are in harmonic progres-
sion. That is:

2 1

+
1

(POI) (PAO 7172 0
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S. THE POLAR OF P PASSES THROUGH R AND S, THE INTERSEC-
TIONS OF THE CROSS-JOINS OF SECANTS THROUGH P. (Fig. 38a)

(a) Fig. 38 (b)

Let the two arbitrary secants be axes of reference (not
necessarily rectangular) and let the conic (Fig. 38b)

Ax 2
2Bxy .1. Cy

2 2Dx 2Ey F = 0

have intercepts al,a2; bl,b2 given as the roots of

Ax2 2Dx F = 0 and Cy2 2Ey F = O.

Prom these

1 2D
or D = (- E)(1-

al a2 2 al a2

1 .1 2g.
= - or E (- )(T)1:

bl be

Nov the polar of P(0,0) is Dx + Ey + F = 0
or

1 1 1 1
x(-- --) y(-- --) - 2 = O.

al a2 b2
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The cross-joins are:

+
D a

. and 25.- +
b l

. 1
al a2

The family of lines through their intersection R:

A. jL 1 + x(A. JL 1) 0.
al b2 a2 bl

contains, for , m 1, the polar of P. Accordingly, the
polar of P passes through R, and by inference, through S.

This affords a simple and classical construction by the
straightedge alone of the tangents to a conic from a
point Ps

Draw arbitrary secants from P and, by the intersections
of their cross- joins, establish the polar of P. This
polar meets the conic in the points of tangency,



9. PASCAL'S THEOREM:

One of the most far reaching and productive theorems
in all of geometry is concerned with hexagons inscribed
to conics. Let the vertices of the hexagon be numbered
arbitrarily*

1, 2, 3, 1', 2', 3'. The intersections X, Y, Z of

the loins (1,2'0112)

(1,31;11,3) (2,3';2',3) are

collinear, and conversely.

Apparently simple in character,

it nevertheless has over 400

corollaries important to the

structure of synthetic

geometry. Several of these

follow.

Fig. 40

By renumbering, many such Pascal. lines correspond to a single

inscribed hexagon,
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10. POINTWISE CONSTRUCTION OF A CONIC DETERMINED BY FIVE
GIVEN POINTS:

Let the five points be numbered 1,2,3,11,2'. Draw an

arbitrary line through 1

which would meet the conic

in the required point 3'.

Fig. 41

Establish the two points

Y,Z and the Pascal line.

This meets 2'3 in X and

0
0 finally 2,X meets the

arbitrary line through 1

in 3'. Further points are

located in the same way.

11. CONSTRUCTION OF TANGENTS TO A CONIC GIVEN ONLY BY'

FIVE POINTS:

In labelling the points, consider 1 and 3' as having

merged so that the line 1,3' is

the tangent. Points X, 2 are

determined and th. Pascal line

drawn to meet 11,3 in Y. The

line from Y to the point 1=3'

is the required tangent. The

tangent at any other point,

determined as in (10), is con-

structed in like fashion.

Fig. 42
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12. INSCRIBED QUADRILATERALS: The pairs of tangents at

opposite vertices, to-

gether with the oppo-

site sides, of quadri-

laterals inscribed to

a conic meet in four

collinear points.

This is recognized as

a special case of the

inscribed hexagon

theorem of Pascal.

47

Fig. 43

13. INSCRIBED TRIANGLES: Further restriction on the

Pascal hexagon pro-

duces a theorem on

inscribed triangles.

For such triangles,

the tangents at the

vertices meet their

opposite sides in

three collinear

points.

Fig. 44
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14. AEROPLANE DESIGN: The construction of elliptical
sections at right
angles to the center
line of a fuselage is
essentially as follows.
Construct the conic
given three points Pi,
P2, P3 and the tangents
at two of them. To ob-
tain other points Q on
the conic* draw an
arbitrary Pascal line
through X, the inter-
section of the given
tangents, meeting P1P2
in Y; P1P3 in Z. Then
YP3 and ZP2 meet in Q.

Fig. 45

15. DUALITY: The Principle of Duality, inherently funda-
mental in the theory of Pro-
jective Geometry, affords a
corresponding theorem for
each of the foregoing.
Pascal's Theorem (1639)
dualizes into the theorem
of Brianchon (1806):

If a hexagon circumscribe
a conic, the three joins of
the opposf vertices are
concurrent. (This is apparent

on polarizing the Pascal
hexagon.)

Fig. 46



CONICS

16, CONSTRUCTION AND GENERATION; (See
The following are a few selected from
are given only where necessary.

(a) String Methods:

El I. I ph,.

Fig. 47

(b) Point-wise Construction:

49

also Sketching 2.)
many. Explanations

.1
4

Hyperbola

f. cog i
t

Q

0-1111* Ygd (at-11)1

Fig. 48

1* Site I
ys b ton t
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(c) Two Envelopes:

(i) A ray is drawn from the fixed point F to the
fixed circle or line. At this point of intersection a

line is drawn perpendicular to the ray. The envelope

of this latter line is a conic* (See Pedals.)

(ii) The fixed point F of a sheet of paper is

folded over upon the fixed circle or line. The crease

so formed envelopes a conic. (See Envelopes.) (Use

wax paper.) (Note that i and ii are equivalent.)

*
This is a Oliesettes the envelope of one Side of a Carpenter's

square Whose corner moves along a circle While its other leg passes

through a fixed point. See Cissoid 4, and aliesettee 60.
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(d) Newton's Method: Based upon the idea of two pro-
jective pencils, the
followin:!: is due to

Newton. Two angles of
constant magnitudes
have vertices fixed
at A and B. A point
of intersection P of
two of their sides
moves along a fixed
line. The point of
intersection Q of
their other two
sides describes a
conic through A and
B.

Fig. 51

17. LINKAGE DESCRIPTION: The following is , selected from
a variety of such
mechanisms (see TOOLS).

For the 3-bar linkage
shown, forming a vari-
able trapezoid:

AB =CD =2a; AC BD= 2b;
a > b;

(AD)(BC)=4(a2 - b2).

A point P of CD is
selected and OP = r
drawn parallel to AD
and BC. OP will remain
parallel to these lines and so 0 is a fixed point.

Let OM = c, MT = z, where M is the midpoint of AB.

Fig. 52

Then

L
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Al) = 2(AT)cos 0 = 2(a + 2)cos 0,

73,7 = 2(BT)cos 0 = 2(a - v)oos 0.

Their product produces:

(a2
21 2

42
.2

a - z !cos = 4 - b2.

Combining this with r = 2(c + z)cos 0 there results

2
- c.cos 0)2 = b2 - a2sin20

as the polar equation of the path of P. In rectangular

coordinates these curves are degenerate sextice, each
composed of a circle and a curve resembling the figure W.

If now an inversor OEPFP' be attacoed as shown in

Fig, 53 so that

r.p = 2k, where p = OP',

Pig. 53

the inverse of this set of curves (the locus of P') is:

(k - c.p.cos 0)2
b2 a2.p2,sin20,

or, in rectangular coordinates:

(a2 - b2)y7 - (b2 - c2)x2 2c.k.x +k2 m 0

a conic. Since a > b, the type depends upon the relative

value of cj that is, upon the position of the selected

point P:
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An Ellipse if c > b,

A Parabola if c t),

An Hyperbola if c < b.

(For an alternate linkage, see Cissoid, 4.)

18. RADIUS OF CURVATURE:

For any curve in rectangular coordinates,

and N2 = y2(1 + y12).

Thus

IRI = 427 .

Y Y

The conic y2 = 2Ax + Bx2, B > -1, where A is the
semi-latus rectum, is an Ellipse if B < 0, a Parabola if
B = 0, an Hyperbola if B > O. Here

yy' m A + Bx, yy" + y'2 = B, and y3y" ysy,e Bye.

Thus y3y" By2 - (A + Bx)2 = -A2

IRI 111A32

53

and

19. PROJECTION OF NORMAL LENGTH UPON A FOCAL RADIUS:

Consider the conics

pi(1 - e cos 0) = A, (A = semi-latus rectum).

Fig. 54
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Since the normal at P bisects the angle between the

focal radii, we have for the central conics:

-1PSF=-P-g
FIQ pi

or, adding 1 to each side of the equation for the El-

lipse, subtracting 1 from each side for the Hyperbola:

That is

2c 2a
FIQ = pi '

FIQ ge epi .

Now if H be the foot of the perpendicular from Q

upon a focal radius,

Fill I= epicos

and
PH = pi - epi.cos 9 = A = Ncos a.

For the Parabola, the angles at P and Q are each

equal to a and FA = pi. Thus

PH = pi - woos 0 = A = Ncos a.

twcordingly,

The projection of the Normal Length upon a focal

radius is constant and equal to the semi-latus rectum.

20. CENTER OF CURVATURE:

Since ccc a = -4
'
from (19),

N

and IRI 11; , from (18),

we have
IRI = Nsec2 a.



WOOS
Thus to locate the center
of curvature, C, draw the
perpendicular to the
normal at Q meeting a
focal radius at K. Draw
tae perpendicular at K
to this focal radius
meeting the normal in C.
(For the Evolutes of the
Conics, see Evolutes, 4.)
(In connection see Keill.)

55

Fig. 55

BIBLIOGRAPHY

Baker, W. M.: Algebraic Geometry, Bell and Sons (1906)
313.

Brink, R. W.: A First Year of College Mathematics,
Appleton Century (1937).

Candy, A. L.: Analytic Geometry, D. C. Heath (1900) 155.
Graham, John and Cooley: Analytic Geometry, Prentice-

Hall (1936) 207.
Niewenglowski, B.: Cours de G4om4trie ApiejlyliguE, Paris

(1895).
Salmon, 0.1 Conic $ectons, Longmans, Green (1900).
Sanger, R. G.: Synthetic Projective Geometry, McGraw

Hill (1939) 66.
Winger, R. M.: Projective Geometry, D. C. Heath (1923)

112.

Yates, R. C.: Geometrical Tools, Educational Publishers,
St. Louis (1949) 174, 180,

Kern, J.: Philosophical Transactions, XXVI (1708-9)
177 -8.



14,

CUBIC PARALJOLA

HISTORY: Studied particularly by Newton and Leibnitz

(1675) who sought a curve whose subnormal is inversely
proportional to its ordinate. Monge used the Parabola

y = x3 in 1815 to solve every cubic of the form

x
3 hx + k = O.

1. DESCRIPTION: The curve is defined by the equation:

y = Ax3 + Bx2 + Cx + D = A(x - a) (x2 + bx + c).

b'- 4c >0 e_ 4c. 0

Fig. 56

2. GENERAL ITEMS:

(a) The Cubic Parabola has max-min. points only if

B2 - 3AC > 0.

(b) Its flex point is at x = :13, (a translation of
3m

the y-axis by this amount removes the square term and

thus selects the mean of the roots as the origin).

(c) The curve is symmetrical with respect to its flex

point (see b.).

(d) It is a special case of the Pearls of Sluae.

(e) It is used extensively as a transition curve in

railroad engineering.
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(C) It is continuous for all values of x, with no
asymptotes, cusps, or double points.

(g) The Evolute of ey = x3 is

3a2(x2 2va)2 128,2 2 9 4

125 125
3 a - xy)(:7 a

(114 x40
(h) For 3a2y = x3, R = 1

20x

(1) Graphical and Mechanical Solutions:

1. Replace x3 + hx + k = 0 by the system:

-
3 "2 243

y
4
) 2: 0y -

4

= x3

y + hx +k = 0,

the abscissas of whose

intersections are roots

of the given equation.

Only one Cubic Parabola

need be drawn for all

eubics, but for each

cubic there is a particu-

lar line.

Fig. 57

2. Reduce the given cubic xI3 + hxi k = 0 by

means of the rational transformation xi = x to the
form

h ax3 + m(x + 1) = 0 in which m a

*
The diecriminant (the squaLe of the product of the differences of
the roots taken in pairs) of this cubic is:

A = 412( 27 + 4m) .

Thus the roots are real and unequal if m < . T7 j two are complex

27if m
27

j and two or more are equal if m ft 0 or m = 174

Thee° regions of the plane (or ranges or m) are separated by the

line through (.1,0) tangent to tne curve as shown.
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This may be replaced

by the system

ty=x3, y+m(x+1)=0). Since

the solution of each

cubic here requires only

the determination of a
x

particular slope, a

Fig. 58

straightedge may be at-

tached to the point (-1,0)

with the y-axis accom-

modating the quantity m.

(j) Trisection of the Angle:

Given the angle AOB ge 30. If OA be the radius of

the unit circle, then the projection a is cos 30. It

is proposed to find cos U and thus 0 itself.

Since

cos 30 m 4 0°830- 3 cos 0,

we have, in setting

x = cos 0: 4x3- 3x- aft 0

or the equivalent systems

y= 4x3, y 3x - a 0.

Thus, for trisection of

0 30, draw the line through

(0,a) parallel to the

fixed line L of slope 3.

This meets the curve

y 4x3 at P. The line

from P perpendicular to

Pig, 59
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OB meets the unit circle in T and determines the required
distance x. The trisecting line is OT.

BIBLIOGRAPHY

Yates, R. C.: Geometrical Tools, Educational Publishers,
St. Louis (1949).

Yates, R. C.: The Trisection Problem, West Point, N. Y.
(1942).



CURVATURE

1. DEFINITION: Curvature is a measure of the pate of
change of the angle of inclination of the tangent with
respect to the arc length, Precisely,

K = A2 I

do '

AL a maximum or minimum joint K y" (or. 02, 0)1 at a flex
if y" is continuous, K = 0 (or 02); at a puap, R = O.

(See Evolutes).

2. OSCULATING CIRCLE:

The osculating circle of

/'"-- a curve is the circle having
(x,y), y' and y" in common

77 ;I
with the curve. That is, the

)

'1,..., 1
relations:

\\\ oca)

(x a)2 (y 02 r2

., (x - a) + (Y - 0)Y' m 0

(1 4. Y12) 4. (Y - 0)Y" 00

must subsist for values of
x,y,y',y" belonging to the
curve. These conditions
give:

Fig. 60

r = R, a rd X - R,sin 4,, 0 = y Ricos 11),

where y is the tangential angle. This is also called the

Circle of Curvature.

3. CURVATURE AT T1 ORIGIN (Newton): We consider only
rational algebraic curves having the x-axis as a tan-

gent at the origin. Let A be the center of a circle

tangent to the curve at 0 and intersecting the curve
again at Pt(x,v). As P approaches 0, the circle ap-

proaches the osculating circle, Now BP m x is i mean
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proportional between OB = y

and BC = 2R - y, where

AO = R. That is,

2R - y =
x

, and

x2
Ro m Limit R = Limit (-4-).

2y
P 0 x 0

y-.0

61

Examples: The Parabola 2y = x2 has Ro = 1.

x2

2y
The Cubic y2 = x3 or -- %has Ro = O.

2
The Quintic y2 = X. or

1
= ,.- has Ro = 6".

2y 2vx

Generally, curvature at the origin is independent of all
coefficients except those of y and x2.

If the curve be given in polar coordinates, through the
pole and tangent to the polar axis, there is in like
fashion (see Fig. 61):

2R'sin 0 = r or R =
2 sin U

Ro = Limit r Limit (1
e - 0 '2 sin 0' 0 0 '20)

&Eau: The Circle

= a' sin 0 or r a(sin
has Ro =20 20 2

The Cardioid

r = 1 - cos 0 or -11- = (1 cos
b)

has Ro = O.
20 20
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4. CURVATURE IN VARIOUS COORDINATE SYSTEMS:

(1 z.2)3

Y

d
2
X 2 la 2

+.(
da2

)

ds

x2

Bo = Limit (--) .

2y
x 0

0

R2
(i2 + Y2)3 )3

(xy -

[where the curve is

x = x(t), y y(t) and

(-1.

dt
1.

v
2

R = , where v, an are
an

magnitudes of velocity and

normal acceleration of a

moving point.

R = de/dY .

R = r(2)
dp

R = p + .

(r2 + r'2)3 (polar

(r2 + 2r,2 - rr")2 coords.)

0'3062 2fxyfxfy + fyyfx2T2'

[where the curvo is f(x,y) = 0].

N
3

, where
B2 pey"

N2 y2(1 vs)

(See Conics, 18).

5. CURVATURE AT A SINGULAR POINT: At a singular point of

a curve f(x,y) = 0, fx = fy = O. The character of the

point is disclosed by the form:

F a fzy2 - fxxfyy.

That is, if F < 0 there is an isolated Loint, if F = 0,

a cusp, if r > 0, a node. The curvature at such a point

(exclAing the case F < 0) is determined by the usual

(1 + y1

11

)

after y' and y" have been evaluated.

The slopes y' may be determined (except when y' does not

exist) from the indeterminate form -711 by the appropriate

process involving differentiation.
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6. CURVATURE FOR VARIOUS CURVES:

63

IHVE:1 E:JJATION 11

Rect.,

Hyperbola
r
,
sin 2U . 2k

2 r
o

2k2 .

Catenary :' 2 ,
r.: c .4. s''

2
4z._

= c'sec
2
y

(See con-

c struction

under Cate-

nary)

Cycloid s 4 Oay

x = a(t - sin t)

y = a(1 - .10d t)

Ital 1 - -1-
(See construe-

2a tion under

Cycloid)

t
.4e.ein (--2 )

Tractrix a = cln sec y c tan y

Equiangular

Spiral
s = a(e1114 - 1) maellf

Lemniscate r3 = alp (See construction under

3r Lemniscats)

Ellipse
2

a2 b2
-

r2 2___

P2

a
2
b
2

1-
P

Sinusoidai

Spirals
rn = a n cote nU

an

(n + 1)rn'1 ((n + 1)p

Aatrold a
x + y

g
.

3 3 3( ax Ali 3

Epi- and

Hypo-cycloids
= a sin by a(1-b

2)sin by. (142)p

7. UNERAL ITEMS:

(a) Osoulatilu; circles at two corresponding points of
inverse curves are inverse to each other.

(b) If R and R' he radii of curvature of a curve and
its pedal at corresponding points:

R1(2r2 - pR) r3.
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(c) The curve y = xn is useful in discussing curva-

ture. Consider at the origin the cases for n rational,

when n < > 2. (See Evolutes.)

(d) For a parabola, R is twice the length of the

normal intercepted by the curve and its directrix.
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CYCLOID

HISTORY: Apparently first conceived by Mersenne and
Galileo Galilei in 1599 and studied by Hoberval, Des-
cartes, Pascal, Wallis, the Bernoullis and others. It
enters naturally into a variety of situations and is
justly celebrated. (See 4b and 4f.)

1. DESCRIPTION: The Cycloid is the path of a point of a
circle rolling upon a fixed line (a roulette). The
Prolate and Curtate Cycloids are formed if P is not on
the circle but rigidly attached to it. For a point-wise

Pig. 62

construction, divide the interval OH (= na) and the
semicircle NH into an equal number of parts: 1, 2, 3,
etc. Lay off 1P1 = H1, 2P2 = H2, etc., as shown.

x a(t - sin t)

y = a(1 - cos t) = 2a.sin2*.
s = 4a.sin 0 R2 + s2 = 16a2.

(measured from top
of arch).
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3. METRICAL PROPERTIES:

(a) y
("2

2

(b) L(one arch) = 8a (since Ro = 0, RN = 4a) (Sir Chris-.

topher Wren, 1658).

(c) y' = cot* (since H is instantaneous center of

rotation of P. Thus the tangent at P passes through

N) (Descartes).

(d) R = 4a.cos 0 = 4asin() = 2 (PH) = 2(Normal).

(e) s = 4a.cos) = 2(NP).

(f) A(onearclo = 3naa (Roberval 1634, Galileo approxi-

mated this result in 1599 by carefully weighing
pieces of paper cut into the shapes of a cycloidal

arch and the generating circle).

4. GENERAL ITEMS:

rig. 63

(a) Its evolute is an equal

Cycloid. (Huygens 1673.)

(Since s = 4a.sin 0,

a = 4a.cos0 = 4a.sinP)

R = PP' (the reflected

circle rolls along the hori-

zontal through 0'. P' de-

scribes the evolute cycloid.

One curve is thus an in-

volute (or the evolute) of

the other. (See Evolutes, 7.)
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t ds t,
(b) Since s 4a.cos(-2 ),

dt
= lay .

(c) A Tautochrone: The problem of the Tautochrone Is
the determination of the type of curve along which a
particle moves, subject to a specified force, to ar-
rive at a given point in the same time interval no
matter from what init!al point it starts. The follow-
ing was first demonstrated by Huygens in 1673, then
by Newton in 1687, and later discussed by Jean
Bernoulli, Euler, and Lagrange.

A particle P is confihed in a vertical plane to a

curve s = f(y) under the influence of gravity:

ms = -mwsin T.

Fig. 64

If the particle is to produce harmonic motion:

ms = -les, then

s = (')sin T,

that is, the curve of restraint must be a cycloid,

generated by a circle of radius 11/1k. The period of

this motion is 2n, a period which is independent of

the amplitude. Thus two balls (particles) of the same

mass, falling on a cycloidal arc from different

heights, will reach the lowest point at the same

instant.
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Since the evolute (or an involute) of a cycloid

is an equal cycloid,

a hob B may be sup-

ported at 0 to de-

scribe cycloidal

motion. The period

of vibration of the

pendulum (under no

resistance) would

be constant for all

amplitudes and thus

the swings would
Clocks designed upon this

0

\\\

..'
. ,\ \

Fig. 65

cuur.t equal time intervals.

prihciple were short lived.

(d) A Brachistochrone. First proposed by Jean
Bernoulli in 1696, the problem of the Brachistochrone
is the determinatic, of the path along which a parti-
cle moves from one p.cint in a plane to another, sub-

ject to a specified

force, in the short-

est time. The fol-

lowing discussion

Is essentially the

solution given by

Jacques Bernoulli.

Solutions were also

Fig. 66 presented by Leibritz,

tt

h

Nr!wtLA), aLd 3111.)cp1 tal.

For a body rallirr* under gravity along any curve

1137of rest-Rint: y = g, y = y = or t =

At any instant, the velocity of fall is



CYCLOID

= 8.17Ei Vr25-.

69

Let the medium through which the particle falls have

uniform density. At any depth y, v = V2gy . Let
theoretical layers of the medipm be of infinitesimal
depth and assume that the velocity of the particle

changeS at the surface of each layer. If it is to
pass from Po to PI to P2 in shortest time, then

according to the law of refraction:

sin al stn ag sin a3
..4

vITT /747i1 V 6gh

Thus the curve of descent, the limit of the polygon

as h approaches zero and thr number of layers increases

accordingly), is such that (Fig. 67):

sin a = PVT or cos2U = k2y,

an equation that may be iden-

tified as that of a Lycloid.

(e) The parallel projection

of a cylindrical helix onto a

plane perpendicular to its

axis is a Cycloid, prolate,

curtate, or ordinary. (Mon-

tucla, 1799; Guillery, 1847.)

(f) The Catacaustic of a cycloidal arch for a set of

parallel rays perpendicular to its base is composed of

two Cycloidal arches. (Jean Bernoulli 1692.)

(g) The isoptic curve of a Cycloid is a Curtate or

Prolate Cycloid (de La Hire 17C4).

(h) Its radial curve is a Circle.

(I) It is frequently found desirable to design the

face and flank or teeth In rack gears as Cycloids.

(Fig. 68).

rig. 67
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Pig. 68
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DELTOID

HISTORY: Conceived by Euler in 1745 in connection with a

study of caustic curves.

1. DESCRIPTION: The Deltoid is.a 3-cusped Hypocycloid,

The rolling circle may be either one-third (a = 3b) or

two-thirds (2a = 3b) as large as the fixed circle.

Fig. 69

For the diouble generation, consider the right-hand

Pa
figure. here OE = OT = a, AD = AT = ":, where 0 is the

3

.enter olf the fixed circle and A that of the rolling

circle which carries the tracing point P. Draw PP to T',

T'E, PD and T10 meeting in F. Draw the c!rcumcircle of

F, P, and T' with center at A'. This circle is tangent

t,1 the fixed circle at T' since angle FPT' = -;-1 and its

diameter FT' extended passes through O.

Triangles TET', TDF, and T'FI are all similar and
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Tp

1
= . Thus the radius of this smallest circle isT'P

Furthermore, arc TP arc T'P = arc TT'. itcordingly, if
P were to start at X, either circle would generate the
same Deltoid - the circles rolling in opposite direction.
(Notice that PD is the tangent at P.)

2. EQUATIONS: (where a = 30.

{x= b( 2 cos t + cos 2t)
( x2+y2)2+8bx3 - 24bxy2 + 18C( x2+y2) ft 27b4.

y = b( 2 sin t - sin 2t) .

s = (112) cos )y. R2 + 9s2 = 64b2. r2 = 9b2 - 8p2.3

p = h.sin 34.

3. METRICAL PROPERTIES:

L lob.
t

=

E = b(Loit 0.'21+).

ds
R -8p.

dy

A. 2nb2 = double that of the inscribed ylriv,

4b = length of tangent (BC) inter,:epted hy

4. GENERA?. ITEMS:

(a) It is the envelope of the SLMSOtt uf a fixed
triangle (the line formed by the feet of the perpen-
diculars dropped onto the sides from a variable point
on the circumclrcle). The center of the curve is at
the center of the triangle's nine-point-circle.

(b) Its evolute is another Deltoid.

(c) Kakeya (1) conjectured that it encloses a region
of least area within which a straight rod, taking all
possible orientations in its motion, can be reversed.
R3wever, Beslcnvitch showed that there is no leant
area (2).

(d) Its inverse is a Cotes' Spiral.

(e) Its ocial with respect to (c,0) is the family of
folia

f(x - c)2 + y2jfe + (x c)x) = 41)(x - c)y2



DELTOID 73

(reducible to:

r = In) cos u sIn`u c.cos U)

(with respect to a cusp, vertex, or center: a simple,

double, trl-follum, rasp.).

(f) 291119nt Con)Aruction: Since T is the instantaneous

center of rotation or P, `PP is normal to the path.

The tangent thus passes through N, the extremity of

the diameter through T.

(g) The tangent lenPth intercepted by the curve is

constant.

(h) The tangent BC is bisected (at N) by the inscribed

(I) 1:r catacaust12 for a set or parallel rays is an

Astrold.

(j) Its urthoptic curvg., is a Circle. (the inscribed

circle) .

(k) Its radial curve Is a trifolium.

(1) It is the envelope of the tangent fixed at the
vertex or a )arabola which touches riven lines (a

Roulette). It is also the envelope of this Parabola.

(m) The tangents at the extremities B, C meet at right

angles on the inscribed circle.

(n) The nor:Ials to the curve at B, C, and P all meet

at T, a point of the cIrcumcIrcle.

(o) If the tangent BC be held fixed (as a tangent)

and the Deltoid allowed to mwe0 the locus of the

cusps is a Nephroid. (For an elementary geometrical

proof of this elegant property, see Nat. Math. Mag.,

XIX (1945) p. 330.
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ENVELOPES

HISTORY:Leibnitz(1694) and Taylor (1715) were the first
to encounter singular solutions of differential equa-
tions. Their geometrical significance was first indicated
by Lagrange in 1774. Particular studies were made by
Cayley in 1872 and Hill in 1888 and 1918.

1. DEFINITION: A differential equa-
tion of the nth degree

,*

defines n p's (real or imaginary)
Cor every point (x,y) in the plane.

Its solution

F(x,y,c) = 0,

X

4 )1

of the nth degree in c, defines
r

X

n c's for each (x,y). Thus at-
tached to each point in the plane
there are n integral curves with
n corresponding slopes. Throughout Fig, 70
the plane some of these curves
together with their slopes may be real, some imaginary,

some coincident. The locus of those points where there

are two or more equal values of p, or, which is the same

thing, two or more equal values of c, is the envelope of

the family of its integral curves. In other words, this

envelope is a curve which touches at each of its points

a curve of the family. The equation of the envelope

satisfies the differential equation but is usually not a

member of the family.t
.

p is used here for the derivative to conform with the general

cuatom throughout the literature. It should no: be confused with

the dint/ince from origin to tangent an used eleWhere in thin

book.

tlhe line y 0 to a pert or the envelope and a member of the fam-

ily y c(c-4x)2
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Since a dcuble root of an equation must also be a
root of Its dcrIvatIve (and conversely), th envelope is
obtained from either of the sets (thf dli:rant rela-
tion):*

f(x,y,p)

[fp(x,y,p)

=

=

0

0

F(x,y,c)

Fc(x,y,c)

= 0

= 0

Each of these sets constitutes the parametric equations
of the envelope.

2. EXAMPLES:

Fig. 71

Fig. 72

4
:7 y- px - -

P
= 0

4

VP ' x + M =.0.
P

F '-- y - cx - -1-- = 0

Fc 7 7 + ..M _0.
C

yieldinv: lye
t= 16x as the envelope,

f .

fp

2--
Y

- px - - 0
(p-1 )

- (17).-.11- = 0.

F x'soc2u y'csc2u - 1 = 0

Fc 2xasec2u tan U

2yacsc2u cot u = 0 .

yields r:,' the parabola + =

as the envelope of lines, the sum of
whose Intercepts is a positive constant.

Such questions na tats locuu, ,,uapilal rind nodal loci, !tc., whose

eontionu nppenr aa factors in one or both discriminanta, are die-

Cusa$1 in Rill (191A). For exarplun, nee Cohen, Murray, Olaisher.
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MUTE: The two preceedir: examples are differential equa-
tions of the Clairaut form:

= PY +

The m,.t.h.d s,lution is that of differentiating

w!th res.pe.t to x:

P P + x(-1dx 2) (dp -11:)(-(-12)
dx'

Hence, (-1:1)1qx + (IC)] = 0, and the general solu-
dx dp

tion !r1 o
112obtained from the first factor: = 0, or
dx

p = c. That is, y = CY g(c).

dE
seccnd Castor: x

dp
= 0 is recognized as

fp = 0, a requirement for an envelope.

3. TECHNrQUE: A family of curves may be given in terms

or two parameters, a, b, which, themselves, are con-
nected by a certain relation. The following method is
proper and is part:cniarly adaptable to forms which are
homogeneous in tit parameters. Thus

give.; :(x,v,a,0 0 and e(a,b) = 0.

Their part:al d!l'ferentials are

facia + Vbdil = 0 and gada + gydb = 0

and thus fa = Ngn, fb =

where is a factor of propot:onality to be determined.
The quantities a, b may be eliminated amoni!, the equations

to give the envelope. Per example:

(a) Consider the envelope of a
line of constant length mcvin !
wIth its ends upon the coordi-
nate axes (a Trammel of Archi-

medes): + Y = 1 where
a b

a2 + b2 = 1. Their differentials

(fl ,give )da + ("is)dn = 0 rn.ci
b-

a.da + b.db = 0.

a'-
b, Fig. '(3
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Multiplyln: tht. first by a, the second by b, and add-
x

i = 1 x(a2 I-j21 = x, by virtue or the,
a

given functons. Thus, - 1 and a` + b2 = 1,

x = a3, y = b3, or xl + y5 =-71] an Astroid,

(b) Consider concentric and coaxial ellipses of con-
s

V
2

-Tstant area: + 4-T = 1, where
a

Fig. 71+

y2 1/2
ab = k. We hhve (-s)da + V-5)db =0,

a

bda + ndb = 0, from whicn
2 2

= Xb, xa. Multiplying the

first by a, t.'u second by b: and

addirw:

= ak and thus X
1
2k.

, a pair of

A w.dHh. WL, paper.
C H o: r and P

a r. .t Fold P ti: circle
P' at:,1 P' upon. L11:. 'Ircle, the

creases onv-.1ope a ,p:.tral P and C as roc::

Fig.

P'
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an El]lpse if P be inside the circle, an Hyperbola if

outside. (Draw CP' cutting the crease in Q. Theh PQ =

P'Q u, QC = v. For the Ellipse, u + v = P; for the

Hyperbola u - v = r. The creaser; are tangents singe they

bisect the angles formed by the focal radii.)

For the ParaboTh, a fixed point P ts rohied over to

P' upon a fixed line L(a circle of infinite radius).

P'Q is drawn perpendicular to L and, since PQ = P'Q, the

locus of Q Is the Parabola with P as focus, L as direc-

trix, and the crease as a tangent. (The simplicity of

this demonstration should be compared to an analytical

method.) (See Conics 16.)

5. GENERAL ITEMS:

(a) The Evolute of a _liven curve Is the envelope of

Its normals.

(b) Tne Catacaustic of a given curve is the envelope
of it3 reflected light rays; the Diacaustic is the

envelope of refracted rays.

(c) Curves parallel to a given curve may be considered

as:

the envelope of circles or fixed radius with cen-

ters on t!o given curve; or as

the imvelope of circles of fixed radius tangent

to the given curve; or as

the envelope of lines parallel to the tangent to

the given curve and at a constant distance from the

tangent.

(d) The first positive Pedal of a given curve is the

envelope or circles through the pedal point w!th the

radius vector from the pedal point as diameter.

(e) The first negative Pedal is the envelope of the

line through a point of the curve perpendicular to

the radius vector from the pedal point.

(f) if L, M, N are linear functions of x,y, the

envelope of the family Lc4 + 214i.c + N = 0 in the

conic

Fte = L'N '1
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where L = 0, N = 0 are two of its tan-
gents and M = 0 their hord of contact.
(Fig. 76).

(g) The envelope of a line (or curve)
carried by A curve rolling upon a fixed
curve is a Hcrolette. For example:

the envelope of a diameter of a
circle rolling upon a line is a Cycloid;

Fig. 76 the envelope of the directrix of a
Parabola rolling rpon a line is a Cate-
nary:

(h) An important envelope arises in the following
calculus of variations problem (Fig. 77): Given the

eurva r = 0, the point A, both
in a plane, and a constant

Y2 C force. Let y = c be the line
of zero velocity. The shortest
tire path from A to F 0 is

E0 A the Cycloid normal to F = 0
generated by a circle rolling
upcn y = c. However, let the
family of Cycloids normal to
F = 0 generated by all circles
rolling upon y = c envelope the
curve. E = O. f this envelope

Fig. 77 passes between A and F = 0,
there is no unique solution of
the problem.

F.0
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EPI- and HYPO-CYCLOIDS

HISTORY: Cycloidal curves were first conceived by Roemer
la Dane) in lo74 while studying the best form for gear
teeth. Onlileo and Mersenne had already (1599) dis-
covered the ordinary Cycloid. The beautiful double genera-
tiori theorem of there curves was first noticed by Daniel
Bernoulli in 1725. Astronomers find forms of the cycloidal
curvet in various coronas (see Proctor). They also occur
as Caustics. Rectification was 4 .,iven by Newton in hit

Principia.

1. DESCRIPTION:
The Epicyclo'd is gen-

erated r: a point of a
circle ro.lin extornall2
upon a fixed circle.

The Hypocycloid is gen-
erated by a point of a
circle rolling internally

upon a fixed circle.

Pig. 78

2. DOUBLE GENERATION:
Let the fixed circle have center 0 and radius OT =

OE = a) and the rolling circle center A' and radius
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A'1" = A'P = 6, the latter carrying the tracing'point P.
(Set Pb. r 79.) Draw ET', oTT, anu PT' to T. Let D be the
interse.'t: of TO and FP and draw the circle on T, P,
and D. Th:s circle is tanr,ent to ':he Ci>ed circle since
angle DPT is a rlitt afwle. Now sin-:e PD Is parallel to
T'E, triangles LET' and oFD are isosceles and thus

DE . 2b.

Furthermore, arc TT' = au and are T'P = bu

arc T'X.

Accordtr-ly, arc. TX = (a b) u = arc TP, ror the
Eyipyclold,

= (a - b) U . arc PP, for the

Hypocycloid.

Thus, each of these sycloidal curves may be generated in
two ways: by two roll121g circles the sum, or difference,
of whose radii is the radius or the fixed circle.

Or'

Fig. 79

The theorem is also evident from the analytic viewpoint.

Consider the case or the Hypocycleid: (Euler, 1784)

t
. (a - ')cos t b'cos(a

y = (a b) sin t h.sin(a - 4.1
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EP!- and HYPOCYCLOIDS

(a + c) ( + c.)tiand let b = ---7---- , t a= ---- . ,Thy equations
2

brwome: (drot.....iv, JuorliA)

= ["1

JE1.-,:!)1,s (a+ ,:.)t (a+4 con ----(a-c)tr

x.'

r117_.211sLn 1.12.211L (a:c)
2 ' 0 2

. (a-,..,)t

(!

Noti,:c that a Lllani.!c in aim or c does not alter these
(a + c).....--equations. Accordincly, rollin..: circles of radii

or (a c) b,,enerate the same curve upon a fixed circle of
radius a. That is, the difference of the radii of fixed
circle and rollini,7 circle iri.ves the _radius of a third
circle which will mneratf: the same imilcloi.d.

An analc,ous demonstration for the Epicz;1.old can be
constructed w.i thou t, cri rficulty.
3. EQUATION:3:

EPTCYCLOID HYPOCYCLOID

v (a +b)coa t - bLos(a+1) 1 x .. (a-b)cos t + bcos(a-b)

... 7

b

tx

y .,... (a+b)olu t bsin(a+b)- y (a-b)sin t - b'sin(a-b) .

83

x.

(X-axlc thrugh

(a+b)..:os t + b'cos(a+o)-
U

z (u+b)utn t + b'oin(a+b)-

(x-axis through a cusp)

= (u-b)coa I - hcos(a-b)!
b

I;
y = (a -b)uin I + b'Sin(a-b)-

b
,

(x -axis bisecting arc betwetn 2 successive cusps)

4.Lb_.:L.L.q. a.
8 a. -...:-.................- ti Lii --.-...- . (F a t, sin -- q.,u a - 2b

Lib(a k 1) a

a a + 2b

[

OP

Aain F3'1

where 13 < 1 Epicyclold,

13 = 1 Ordinary Cycloid,

13 > 1 Hypocycloid.

*.ft';iis equation, A' ,:ourse, maw (lust as well iLvolve the cosine.
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[R2 + 8262 = A2B2

2

I

r = a2 4+
km + 1)-

/1122.n1

[

where

2 (32(1.2 a2)

where
e 2b)2

4b(a + b)

(a - 2b)2
or =

4b(b - a) '

(a + h)
m for the Epicycloid

(b - a)
M = for the Hypocycloid.

1Bp = a'sin By

4. METRICAL PROPERTIES:

% 8b2k
L (of one arch) = where =

a + b)
or

a

A (of' segment formed by one arc:. and the center)

na
)

2

= k(k
(k

where k has the values above.
1

R = AB'cos By = (k +

4p
1)g

with the foregoing values of

k. (y may be ohtaintql in terms of t from the given

figures) .

(See Am. Math. Monthly (1944) p. 587 for an elementary

demonstration of these properties.)

5. SPECIAL CASES:

Epicycloidst

Hypocycloids:

If b = a...Cardioid
2b = a...Nephroid.

If 2b = a...Line Segment (See Trochoids)

3b . a...Deltoid
4b = a...Astroid.

.1
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6. GENERAL ITEMS:

(a) The Evolute of any Cycloicial Curve is another of
the same species. (For, since all such curves are of

s
the form: s = A sin By, their °volutes are

d = a =
dy

AB in By. These evoluces are thus Cycloidal Curves
similar to their involutes with linear dimensions al-
tered by the factor B. Evolutes of Epicycloids are
smaller, those of Hypocycloids larger, than the curves
themselves).

(b) The envelope or the family of lines:
x cos u y sin U = c.sin(nU) (with parameter U) is
an Epi- or' Hypocycloid.

(c) Pedals with respect to the center are the Rose
Curves: r = c.sin(nU). (See Trochoids).

The lsoptic of an Epicycloid is an Epitrochoid

(Charles 183y).

(e) The Epicycloids are Tautocnrones (see Ohrtmann).

(f) Tangent Construction: Since T (see figures) is
the instantaneous center of rotation of P, TP is
normal to the path of P. The perpendicular to TP is
thus the tangent at P. The tangent is accordingly the
chord of the rolling circle passing through N, the
point diametrically opposite T, the point of contact
of the circles.
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EVOLUTES

H1STCRY: Idea of evolutes reliutedly uii,!nated with

EFly;,,ens in ,on:,en with his studies on light.

H,.wevor, tile ma:( be tr A to Apollonius (about
_q.10 BC) where :t appears .1 ILL fifth book (if his Conic

Suot ;ors,

1. DEFINITION: The Evulute of a curve is the locus of
Its centers of curvature. If (a,p) is this center,

Fig,. 80

a = x - R.sin T,

p y + Rcos p,

where R is the radius of
curvature, y the tangential
angle, and (x,y) a point of
the given curve. The quan-
tities x,y,R,sin y, cos y

may be expressed in terms
of a single variable which
acts as a parameter in the
equations (in a,p) of the
evolute.

2. IMPORTANT RELATIONS: It' s is the arc length of the

given curve,

da dx
R cos y(dy/ds) - sin 4(-1y;),

ds ds

But

Thus

Hence

R sin y(dy/ds) + cos pg
ds ds

).
ds

dx ds
sin y = ds cos R .dp

da -sin y(--)
dR,

. cos 4.11.,

ds ds ds ds'

1.1.0

da
= -cot y .

_
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Lanoents to the evAute art nnrmals to
the cu, fn ,:ther words, the evolute Is the
enveluif L,raji:. *.c r!ven

Prom the

d . 4 dR where da2 = (ice + de,

Thus I cr = R i

That IL ;, Lhe of the

evolute (Jr R is mknotone) is the
dLrference of ti,p radt: LZ curva-
ture of the fr:ver curve measured
yrom the end IntF. el: the are a
Furthermore, :ver, curve is
an rIvuluto

Fig. 81

3. GENERAL ITEMS: rMany or these may be estal)lished most
s!roply by ustnr the Whewell equation, of the curve. See
3e.. 7 rC.]

a :em1:Ihtc

(b) The evu.:ute of a central coniL: the Law; curve:

(A)
-

(1) = 1.+
B

(c) The evolute or an equiangular spiral is an equal
equiangular

(d) The evolute of a Tractrix is a CatenarI.

(e) Evolutes of the Epi- and Rypocycloids are curves
of the same specie3. (See Intrinsic Eqns. and 4(b)
following.]

(f) The evolute or a Cayiel !!er.te is a Nephroid.

(1') The Cata,.aust'e of a phien curve evolute of
ort.ftJt_ (Sec Caustic:3.)

(h) Gnevall::, to a flex point or: a curve corresponds
an asymptote to it, evolute. (For exceWon see
y3 = xs, 4(c) roll:dwing.]
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4. EVOLUTES OF SOME CURVES:

(a) The Conics:

The Evolute or

2 d i i
The Ellipse: () + (az) ..:, 1 is (21) 4. (2) . 1

a 1. A B

Aa = Bb = a2 - be.

2 2 i
The Hyperbola: (!) - (i) = 1 is (i) - (K) = 1 ,

Ha = Kb = a2 + b2.

The Parabola: x2 = 2ky is x2 m 47; (y - k)3 .

(An elegant construction for the center or Curvature of
a conic i' given in Conics 20.)
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(h) The Cycloids (their evolutes are of the same
species):

s act

Rocs 1'

tY. 41 cost

Br; r.os 5' X

sfi

Fig. 83

s: co sn .

89

4

(c) The Family y = xn.

If the x-axis is tangent at the origin:

ty" ;1sIn 2t

.2

2

2-n

Ro = Limit (-'2) Limit (=--). [See CurvatureCurvature.]
2y

Thus: Ro = 0 if n < 2; Ro = co if n > 2;

Ro =
1

if n = 2.
2
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P163.

5. GENERAL NOTE: Where there Is symmetry In the given

:111-ve with respect to a line (except for points of

osculation or double flex) there will correspond a cusp

in the evolute (approaching the point of symmetry on

either sld-, the normal forms a double tangent to the

evolt,Le). This is not sufficient, however.

if' a curve has a cusp of the first kind, its evolute in

genc.ral passes through the cusp.

If a oore has a cusp the second kind, there corre-

sponds a flex in the E.volute.
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6. NoRMALS TO A GIVEN CURVE: The Evolute of a curve
separates the plane Into regions containing points from
which normals ma:, be drawn to the curve. For example,
consider the Parabola y2 . 2x and the point (h,k). The
normals rPOM (h,k) are determined from

y3 + 2(1 - h)y 2k = 0,

where y represents the ordinates of the feet of the nor-
mals at the curve. There are thus, in general, three
normals and at their reet:

Y1 Y2 Y3 = 0.

If we ask that. two of the three normals be coincident,
the fore;oinc* ;:ublo must have a double root. Thus between
this ,!uh::: ank !ts derivative; 3y2 + 2(1 - h) = 0, are
the cohditIons on h and k:

7 2
h -t 1 + 21' k -y3.

2

The locus of (h,k) Ls t:els recognizable as the Evolute
of the given Parabola: the envelope of tts normals. This
evolute divides the plane into two regions from which
one or three normals may be drawn to the Parabola. From
points on the evolute, two normals may be estLblished.

An elegant theorem is a consequence of the preceding.

The circle x2 y2 + ax + by + c = 0 meets the Psrabola
y' = x in points such that

Y1 + Y2 Y3 Y4 = 0.

If three of these points are feet of concurrent normals
to the Parabola, then y4 = 0 and the circl? must neces-

sarily pass through the vertex.

A theorem involving the Cardiold can be obtained here

by inversion.
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7. INTRINSIC EQUATION OF THE EVOLUTE:

Let the given curve he n =

with the points 0' and P' of

Its evolute corresponding to

0 and P of the given curve.

Then, if a is the are length

of the evolute:

Fig. 85

ds
a

p
-R 0 -R0 =f'(q) -Ro.

In terms of the tangential

angle 0, (since p = q +t):

a t."(0 1i) Ro

[Example: The Cycloid: s 4a.sin (f; a = Ita.cos y

4tcos(0 - 2) = 4a.oin pl. (See Cycloid 4,a).
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EXPONENTIAL CURVES

HISTORY: The number "e" can be traced back to Napier and
the year 1614 where It entered his system of logarithms.
Strangely enough, Napier conceived his idea of logarithms
before anything was known of exponents. The notion of a
normally distributed variable originated with DeMoivre
in 1733 who made known his ideas in a letter to an
acquaintance. This was at a time when DeMoivre, banished
to England from France, eked out a livelihood by supply-
ing information on games of chance to gamblers. The
Bernoulli approach through the binomial expansion was
published posthumously in 1713.

1. DESCRIPTION: "e". Fundamental definitions of this
important natural constant are:

e limi. , 1.1c limit
x ("L +X) (1 x)I0

57

Ta 2.718281 .

0

Fig. 86

('
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2. GENERAL ITEMS:

(a) ',ne dollar at 100.1' !nterest compounded k times a
year rroduces at the end of tit:. year

Sk (1 + 1)k =
kk-1) 1 k(k-1)(k-2)

2! 7 "
dollars.

IC the interest be compounded continuously, the total

at the end of the year Is

LL r.

1,i4,.11n,1 (1 + t)k $2.M.

(b) The Euler Corm:
Ix

e 16sin x
1

produces the numerical relations:

in 15
e 1 = 0 , e = 1.

From the latter

7 i a

(/=11 = (e1-2) = e 1- 0.208.

3. The Law of Growth (or Decay) is the product of exper-

ience. In an ides' state (one in which there is no

disease, pestileh 3, war, famine, or the like) many

natural population' increase, at a rate proportional to

the number present. Tnat Is, :C x repr-:.ents the ntaber

of individuals, and t 11.2 time,

dx
= kx or

cektdt

This occurs in controlled bacteria cultures, decomposi-

tion and conversion oC chemical substances (such as

radium and sugar), the accumulation of interest bearing

money, certain types cq' electrical circuits, and in the

history of colonies such as fruit f11,.o and people.

A further hypotl:i :suppr:; the ioverning law as

dx

t
= k.x.(n-x, x = (c e-nkt)
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whore n Is the maximum possible number of inhabitants -

a number regulated, for instance, by the food supply. A
more general form devised to rtt observati9ns Involves
the function r(t) (which may be periodic, for example):

dx
= f(t)x.(n - x) or x

en

f.dt
. (Fig. 87a)

(e + e

AL moderate velocities, the resistance offered by water
to a ship (or air to an automobile or to a parachute) is
Approximately proportional to the velocity. That is,

a = § = v = k2v, or s = (2?)(1 - 0-1tt).

s Z.,

(al Fig. (h)

4. THE PROBABILITY (OR NORMAL, OR GAUSSIAN) CURVE:

(Fig. 87b).

(a) Since y' = .-xy and y" = y(x2 - 1), the
points are (+1, e-1/2). ,Jo bed rectan w!th
one side on the x-axis has area = xy =
largest one is given by y" = 0 and thus two corners
are tit the flex points.)
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/2(b) Area. By definition r (n) = zn-lezdz. In this,

0
co 2

let V (n) = x211-2.e 'I .2x dx = 2 if X
211-'1

.e
X2

IdX.

0

Putting n =
'

2 ir2

I'() 2 dx = 47= Area between y = e and

its asymptote.

The Normal Curve is, more specifically:

(x1)2
20

y a.71 e

For this population, n is the size, g the mean, and

the standard deviation. Rewriting for simplicity:

-x
2/2a2

= kie

-the flex points are (+ a, k'e-7) (+ a,Y0). It is evi-

dent that the flex tangents:

- Yo (21g)(x a)
-

have x-intercepts which are completely independent or the

selected y-unit.

rig. 38

A stream of shot
entering the "slot
machine" shown is
separated by nail ob-
structions into bins.

The collection will
form into a histogram
approximating the
normal curve, the num.
bee of shot in the
bins proportional to
the cuefficients in a

binomial expansion.
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FOLIUM OF DESCARTES

HISTORY: First discussed by Descartes In 1638.

1. EQUAT1uNS:

X
3

y
3 yixy

or J.)

-co lower - upper Q locp +

Fig. 89

2. METRICAL PROPERTIES:

(a) Area ot' loop:

asympt,te.

;A-2
2

:5at
X

(1 + t3)

3at2

(1 +

)e.sln U cos

r (;riTu c(43

area between curve and



FOLIUM OF DESCARTES

3. GENERAL:

(a) its asymptote is x + y i a = 0.

(b) Its Hessian is another Polium of Descartes.

BIBLIOGRAPHY

Encyclopaedia Britannica, 14th Ed. under "Curves,

Special."
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FUNCTIONS WITH DISCONTINUOUS PROPERTIES

This collection is composed of illustrations which
may be useful at various times as counter examples to
the more frequent functions having all the regular
properties.

1. FUNCTIONS WITH REMOVABLE DISCONTINUITIES:

(a) y , undefined for

x = 2, is represented by the line

y = x + 2 except for the point

where x = 2. Since Limit y = 4,
x 4 2

y

Fig. 90

2 this is a removable discontinuity.

Fig. 91

12(2 - 1
(b) y - , undefined for

x = 1, is represented by the Para-

bola y = x2 + r. + 1 except for the

point where x = 1. Since Limit y = 3,

x 4l
this Is a removable discontinuity.
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(c) The impor-
tant function

sin X
= , un-

defined for
x = 0 has

Limit y = 1
x 0

and thus has a
removable dis-
continuity. The
hyperbolas
xy 1 form a
bound to the
curve.

(d) The function
1,

y = xsin(-) is not

defined for x = 0.
However, Limit y = 0

x 0

and the function has
a removable disconti-
nuity at x = 0. The
lines y = + x form a
bound to the curve
near x = 0.

Fig. 92

Fig. 93
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2. FUNCTIONS WITH NON-REMOVABLE DISCuNTINUTTlES:

Fig. 9h

x

1
(al y = art! tar ; , undefined

for x = 0.

n
Limit y Limit

2
x > 0+ x 0-

The left and right limits are

both finIte but different.

Fig. 95

(b) y = sin* is not

defined for x = 0. In

every neighborhood of

x = 0, y takes all

values between +1 and

-1. The x-axis is an

asymptote.

1,
Limit sin(X) does not
x 0

exist.
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(c) y = UmIt. (1 + sin ny)t + I
( 1"!r ny )t -

Is discort:nlIbuc

+ X fl, 1, ;),

but ha o values il ur -1 c,lse-

where.

1

(d) y = 2x is undefined for

x = 0. Limit y = 0;
x 0-

Limit y m
x 0+

Left and right

limits different.

tY

1

Fig. 96

Fig. 97
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(0) Y -
2x + 1

is undefined for x = O.

Since Limit y = 1, and
x 0-

Fig. 98

Limit y = 0, left and
x 0+

right limits at x = 0

a.e both finite but

different.

3. OTHER TYPES OF DISCONTINUITIES:

(a) y = xx is undefined for

r. = 0, but Limit y = 1.
x i 0+

The function is everywhere dis-

continuous for x < O.X

Pig. 99
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1

(b) y = xx is undefined for x = 0, but Limit y = 0.
x 0+

The function is everywhere discontinuous for x < G.

" ............ ......

4

Fig. 100

.................



106 FUNCTIONS WITH DISCONTINUOUS PROPERTIES

Cc) By halving the sides
G., AC and CB of the

.sos,!eles triangle ABC,

and continuing this
process as shown, the
"saw tooth" path between

<5,/ <>1 .A and B is produced.
This path is continuous
with constant length.

Fig. 101
The nth successive
curve of this procession

has no unique slope at the set of points whose co-
ordinates, measured from A, are of the form

AB
K 71i , K = 1, ..., n.

(d) The "snowflake" (Von Koch curve) is the limit of
the procession shown.*(Each side of the original

Fig. 102

equilateral triangle is trisected, the middle segment
discarded and an external equilateral triangle built
there). The limiting curve has finite area, infinite
lerzlh, and no derivative anywhere.

The determination of length and area are good
exercises in numerical series.

Cv") Cy-

This procession is the one devised by Boltzmann to visualize cer-

tain theorems in the theory of gases. See Math. Annalen, 50(1898).
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(e) The SterpInski urv( Is the limit
!.he f, has 0 area, Inr.!nite

Fig. 10!.

n,L., derivative anywhere, and passes through

every p,7:int w!thin the orivinal square.

(f) The WeLer;trass func tion y = bncos(annx),

where a is an cdd positive Inter,er, b a positive
::nstant less than unity, althcugh contInuous has no

derivativp

at, >
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GLISSETTES

HISTORY: The idea of Glissettes in somewhat elementary
form was known to the ancient Greeks. (For example, the
Trammel of Archimedes, the Conchold of Nicomedes.) A
systematic study, however, was not made until 1869 when
Be.sant published a short tract on the matter.

1. DEFINITION: A Glissette is the locus of a point - or
the envelope of a curve - carried by a curve which slides
between given curves.

An interesting and related Glissette is that generated
by a curve always tangent at a fixed point of a given

curv'. (See 6b and 6c below.)

2. SOME EXAMPLES:

(a) The Glissette of the vertex P of a rigid angle
whose sides slide upon two fixed points A and B is an

arc of a circle. Furthermore, since P travels on a

circle, any point Q of AP describes a Limacon.

(See 4).

Fig. 104

(b) Trammel of Archimedes.

A rod AS of fixed length slides with its ends

upon two fixed perpendicular lines.
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1. The Glissette of any point P of the rod (or

any point rigidly attached) is an Ellipse.

2. The envelope Glissette of
Astroid. (See Envelopes, 3a,)

(c) If a point A of a rod, which
a fixed point 0, moves along a

given curve r = f(U), the Olis-
sette of a point P of the rod k
units distant from A is the

Conchoid

r = f(0) k

the rod itself is the

passes always through

of the given curve. (See
Moritz, R, E., U. of Wash. Pub.
1923, for pictures of many Fig. 105

varieties of this family,

where the base curve is r = cos(29)].

3. THE POINT GLISSETTE OF A CURVE SLIDING BETWEEN TWO

LINES AT RIGHT ANGLES (THE x,y AXES):

ty

If the curve be given
p = f(T) referred to the
tied point P, then

y = p = f(T) and x = +

are parametric equations of
the Glissette traced by P.
Por example, the Astroid
p = sin 2T, referred to its center, has the

x = sin 2T, y = - sin 2,

by

car-

Glissette

(a segment of x + y = 0) err the locus of its center as

it slides between the x and y axes,
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h. A TRTANAR TUCHINC; FIXEL ()flits:LES:

! v-1 a ,-.!vpr: irl-

aL,:ie ABC, w. \.:!1 :; :' i xod 10:3 vi. th

,1t.or... X, Y. As this

tv!ano,..le moves, lines

XA' and YA' drawn
parallel to the sides
are lines fixed to the
triangle. Let the circle
described by A' meet the
parallel to BC through
A' it' D. Then angle

PA'X = angle A'B'C
angle AEC, all con-
stant, and thus D is a
fixed point of the
circle. The perpendicu-
lar DP from D to BC is
the altitude of the in-

variable triangle A'B'C' and thus BC touches the circle
with that altitude as radius and center D.*

Fig. 107

The pc,Int Olissottos (For example, any point P or
A'C' or thf m le are L:ma..ons. (See Troehoid:; 3th)

5. GENERAL THEOREM: Any mtion of a confkuration its
_Aisne can be reprocented 11 the rolling of A certain
doterminate curve on another' determinate curve. This

reduces the problem of Glis-
setten to that of Roulettes.
A simple illustration is the
trammel AB sliding upon two
perpendicular lines. the

instantaneous center of rota-
tion of AB, lies always on
the fixed circle with center
0 and radius AB. This point
also lies on the circle having
AB as diameter - a circle car-

Flm. ,;3 rted with AB. The action then

..,is' the sties or Iry pf,lywon envelope cirf:lea If two sides

tWx.'n c'n!iPq or ;.sso througL two fixed points. Phin enters the

iesign of a rotor, n convex c,irve which reenina tnngent to all

0H 6r or s fired nlygon while the curve Is rotated. See

';ollbetw, X.: v950 W-ht.r.



GLISSETTES

is as if this smaller circle were rolling internally
upon a fixed circle twIL'e as llrge. Hence, any point

of AB describes an Eliipse awl the envelope or AB is

the Astroid.

GENERAL ITEMS:

(a) A Parabola slides on the x,y axes. The locus c:

the vertex is: A

x2y2(x
Y2 3a2) = a6 ;

the focus is: 1

x2y2 = a2(x2 + y2).

(b) The path of the center of an Ellipse touching a
straight line always at the same point is

x2y2 (a2 y2)(y2 b2).

(c) A Parabola slides on a straight line touching it
at a fixed point of the line. The locus of the focus

is an Hyperbola.

(d) The bar APB, with PA = a, PB = b, moves with its

ends on a simple closed

curve. The difference

between the area of the

curve and the area of the

locus described by P is

nab.

Fig. 109
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(e) The vertex of a carpenter's square moves upon a

circle wh!le one arm passes through a

fixed point F. The envelope of the

other arm is a conic with F as focus,

(Hyperbola if F is outside the circle.

Ellipse if inside, Parabola if the

circle be replaced by a line.)

(See Conics 16.)

Yig. 110
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HYPERBOLIC FUNCTIONS

HISTORY: or disputed origin; either by Mayer or by
Riccati in the 18th century; elaborated upon by Lambert
(who provel the irrationality of n). Further investigated
by Gudermann (1798-1851), a teacher or Weierstrass. He
complied 7-place tables for logarithms of the hyperbolic
functions in 1532.

1. DESCRIPTION: These functions are defined as follows:

(ex ex) (ex + ex) 1

Binh x - , cosh x =
2

' . V(1 + sinh24,
2

sinh x 1
tanh x =

cosh x
coth x =

tanh x

sech x =
1 1

cosh x
, each x =

el x

y = cash r ---
y sech x -

Fig. 111
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2. INTERRELATIONS:

(a) [liv,,r.sk- Rlat!_2r1r2:

arc sInh x = ln(x + vix2 + i), x2 < .;

arc cosh x = ln(x +Ix - I), x7 1;

arc tanh x = (1)' r(i+x) 2

2'11(1-x)" x < 1;

/1% r)
arc coth x = Tlni(x(x+101, x2 > I;

(b)

arc sech x

arc csch x

Identities:

,

i

0

x
2

= 1n(- 1 + ).2
X - X

- 1)

1
= 1n

1
- 1 /

X2X
(

+ 1

< x
2

< 1;

> 0.

cosh2r sinh2x = 1; sech2x = 1 - tanh2x;

csch2x = coth2x - 1;

sinh(x + y) = sinh x.cosh y 4 cosh vsinh y;

cosh(x + y) = cosh x'cosh y + sinh x'sinh y;

sinh 2x = 2sinh xcosh x;

cosh 2x = cosh2x + sin2x;

tanh x f tanh y X f COS11. 1.
Yl -1 + tanh x tanh y , s'-- 2 = 2

iy p0Sh X + 1
cosh .

2 2

sinh x + sinh y = 2sinh cosh 1:1
2

cosh x + cosh y = 2cosh I±X cosh
2 2 '

sinh 3x = 4sinh3x + 3sinh x;

cosh 3x = 4cosh3x 3cash x;
%k

(sinh x + cosh x) = sinh kx + cosh kx.
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(c) Differentials and Integrals:

d( Binh x) = cosh xdx;

d( cosh x) = sinh k dx;

d( tanh x) = sech2x dx;

d( coth x) - -cach2x dx;

d( sech x) = -sech xtanh x dx;

d(oeoh x) = -cech xcoth x dx;

ftanh x dx = In cosh x;

coth x dx = In I einh x I :

sech x dx = arc tan( sinh xl =

gd x ;

x
cech x dx = lnitanh(-2 )1 3

dx
d( arc e inh t ; d( arc cosh = +

*1 417:37

dx
d(arc tanh x) = = d( arc coth x), ( in different inter-

(1 x
vale);

d( arc each x) = +

x I x2

dx tdx
; d( arc cech x) =

x

(called the "gudermannian") x = sec y dy = In' eeo y + tan y I .

0

3. ATTACHMENT TO THE RECTANGULAR HYPERBOLA: A comparison
with the trigonometric (circular) functions is as fol-

lows.

Fig. 112
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x = ucos t

y = asin t

HYPERBOLIC FUNCTIONS

For the shaded sectors ( A):

[x . :ocosh t

y :-, rosinh t .

1
di\ (-2 )p

2
dO,

u . arc tan Y
= t, U =arc tun arc tan(tanh t),

dO = dt. dU -
(coset + oinhat)

dt

But

p2 . a2( cos2t + sin2t) = a2, p2 = a2(cobh2t + sinh2t),

and thus
t. t

A. (1) jf a
2dt

.
2 '

A = (-) a
2
dt = ---

a
2
t

2
.

2

ir

-2-

1a
2t

0 0

In Other case:

2A
" L. a2

or

i'x

. acos EA
a2

x = a.cosh 3-1.
a2

2A
i

. 2A
y = asin -7 y = wsnn 7 .

a

Thus the Hyperbolic functions are attached to the
Rectangular Hyperola in the same manner that the
trigonometrIl funolons are attached to the circle.

4. ANALTIICAL REW ::ONS WITH THE TRIGONOMETRIC FUNCTIONS:

The Euler

+ "sin x; e"x = cos( lx) + 181n( Ix);

(,"1"4 . -os x isln x; ex = cos( lx) ix);

produce;

K; , os I; cosh x = cos( ix);

Binh ( i - t sin xi Binh x = -1.0In(IX);

from uhich relat Iona a a be derived.
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5. SERIES REPRESENTATIONS:

2k-1

;

A

2

, n2, X ...
2

;

.... x< 1+

117

;

sink x
(2k-1)

cc 21:
2

X".2 < cc;
: '

x
2

<

2x
a

17X
7 e2

cosh x = ----
( 21C )

0

X
3

tanh x = X +
3

coth x = -
1

+
x 3

1 2
...sech x 1 - x

1 x
csch x =

x 6

arc sinh x = x -

15 + .4., X < 7

3 5 7
x 2x X 2(
45 945 4725 4.

5 4 61 .3 1385 8
+ x . gr X +

8:
x

7x3 31x5 2x2
+

x < n
360 15.120 46.- .

1 x3 1.3 x5 1.3.5 x7

3
+

2.4 5 2.4.6 7

1 1 1.3 1 1.3.5 1
. in 2x +

2 2x2 2.4 4x4 2.4.6 6x6
so., X > 1 ;

1 1 1.3 1 1.3.5 1
arc cosh x = In 2x - - + se., X > 1 ;

2 2x2 2.4 4x4 2.4.6 6x6

arc tanh x =

Q
x2k

1

1
2k-1

1 1
x

61
gdx= arc tan (sinh x) =x-gx

3
+ -

24 540
7

X +

6. APPLICATIONS:

(a) y m a'cosh the Catenary, is the form of a

flexible chain hanging from two supports.

(b) These functions play a dominant role in electrical
communication circuits. For example, the engineer
prefers the convenient hyperbolic form over the ex-
ponential form of the solutions of certain types of
problems in transmission. The voltage V (or current I)
satisfies the differential equation

it?
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d2V
--7 = zyV,
dx

where x is distance along the line, y the unit shunt
admittance, and z the series impedance. The solutions

V = Vricosh x yz + x "Yr,

gives the voltage in terms of voltage and current at
the receiving end.

(c) Mapping: In the general problem of conformal
world maps, hyperbolic functions enter significantly.
For instance, in Mercator's (1512-1594) projection
of the sphere onto its tangent cylinder with the N-S
line as axis,

x = 0, y = gd y,

where (x,y) is the projection of the point on the
sphere whose latitude and longitude are y and 0, re-

spectively. Along a rhumb line,

p = gd(Otan a + b),

where m is the inclination of a straight course (line)

on the map.
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INSTANTANEOUS CENTER OF ROTATION and

THE CONSTRUCTION OF SOME TANGENTS

1. DEFINITION: A rigid body moving in any manner whatso-
ever In a plane has an instanta-
neous center of rotation. This
center may be located if the
direction of motion or any two
points A, B of the body are known.
Let their respective velocities be
VI and V2. Draw the perpendiculars
to V1 and V2 at A and B. The cen-
ter of rotation is their point of
intersection H. For, no point of
HA can move toward A or H (since
the body is rigid) and thus all
points must move parallel to V.

Fig. 113
Similarly, all points of HB move
parallel to V2. But the point H cannot move parallel to
both VI and V2 and so must be at rest.

2. CENTRODE: If two points of a rigid body move on known
curves, the instantaneous center
of rotation of any point P of the
body is H, the intersection of VH
the normals to the two curves.

1-\

The locus of the point H is
/

called the Centrode. (Chasles)

Pig. 114
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3. EXAMPLES:

Fig. 115

Fig. 116

(a) The Ellipse is
produced by the
Trammel of Archi-
medes. The extremi-
ties A, B of a rod
move along two per-
pendicular lines.
The path of any
point P of the rod
is an Ellipse.* AH
and BH are normals
to the directions
of A and B and thus
H is the center of
rotation of any
point of the rod.
HP is normal to the
path of P and its
perpendicular PT is
the tangent. (See
Trochoids, 3n.)

(b) The Concholdt
is the path of Pi
and P2 where A, the
midpoint of the con-
stant distance P1P2,
moves along the fixed
line and PiP2 (ex-
tended) passes
through the fixed
point 0. The point
of P1P2 passing
through 0 has the
direction of PiP2.
Thus the perpen-
diculars OH and AH
locate H the center
of rotation. The
perpendiculars to

* The path of P is an Ellipse if A and B move along any two inter.

secting lines.

(For a more general definition, see Oonohold, 10
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Pill and PRH at PI and P2 respectively, are tangents
to the curve.
(c) For the Limacon, B moves alung the circle while
OBP rotates about 0. At any
instant B moves normal to
the radius BA while the N,c)

N
point on CP at 0 moves in

-",..:.-11;-..---;:\the direction OP. The _It-.-:_--- -:---, - -;,(6.j ,center of rotation Is
,-</T ->thus H (a point of the

/ 1--' /, . \circle) and the tangent
6 .<2-to the Limacon described .,,!.N .--

n 7"--
'i.

. 1

,,
by P is perpendicular to ,-11; 'Ago
PH. 7'

\ \
/7

/\ /7
. a /
\, /7 /

-... _....---

Vig. 117

(d) The Isoptic of a curve 1s the locus of the inter-
section of two tangents which meet at si constant
angle. Ii' these tangents meet the curve In A and B,

ro-mals there to the given curve meet in R. This
Is the center of rotation of any paint of the rigid
body formed by the constant angle. Thus HP Is normal
to the path or P. For example,
(see Glissettes, 4) the locus
of the vertex of a triangle,
two of whose sides touch
fixed otr,clec, 18 a Limacon.

Normals to these tangents
pass through the centers of
the circles and make a con-
stant angle with each other.
They meet at It, the center
of rotation, and the locus
of H is accordingly a circle
through the centers of the
two given circles.

,.. /

1

/ 4N

Pig. 118
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INSTANTANEOUS CENTER OF ROTATION

(e) The point Glissette of a curve is the locus of P,

a point rigidly attached to the

curve, as that curve slides on

given fixed curves. If the points

of tangency are A and B, the nor-

mals to the fixed curves there

meet in H, the center of rotation.

/

Thus HP is normal to the path of

(P.

Fig. 119

(f) Trochoidal curves are generated by a point P

rigidly attached to a curve that

,----

(7
1

;

1

rolls upon a fixed curve. The

point of tangency H is the center.

of rotation and HP is normal to

\\\

the path of P. This is particu-

H
larly useful in the trochoids of

a circlet the Epi- and Hypo-

cycloids and the ordinary Cycloid.

Fig. 120
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INTRINSIC EQUATIONS

INTRODUCTION. The choice of reference system for a par-
ticular curve may be dictated by its physical character-
istics or by the particular type of information desired
from Its properties. Thus, a system of rectangular
coordinates will he selected for curves in which slope
i3 of primary importance. Curves which exhibit a central
property - physical or geometrical - with respect to a
point will be expressed in a polar system with the cen-
tral point as pole. This is well illustrated in situa-
tions involving action under a central force: the path
of the earth about the sun for example. Again, if an
outstanding feature is the distance from a fixed point
upon the tangent to a curve - as in the general problem
of Caustics - a system of pedal coordinates will be
selected.

The equations of curves in each of these systems,
however, are for the most part "local" in character and
are altered by certain transformations. Let a transforma-
tion (within a particular system or from system to
system) be such that the measures of length and angle
are preserved. Then area, arc length, curvature, number
of singular points, etc., will be invariants. If a curve
can be properly defined in terms of these invariants its
equation would be intrinsic in character and would ex-
press qualities of the curve which would not change from
system to system.

Two such characterizations are given here. One, re-
lating arc length and tangential angle, was introduced
by Whewell; the other, connecting arc length and curva-
ture, by Cesiro.
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1. THE WHEWELL EQUATION: The Whewell equation is that

connecting arc length s and tangen-

tial angle y, where y is measured

from the tangent to the curve at the

initial point of the arc. It will be

convenient here to take this tangent

o, /0 x as the x-axis or, in polar coordi-

nates, the initial line. Examples

Fig. 121 follow.

(a) Consider the Catenary: y = a.cosh(i).

Here y' = sinh(i) = tan y; ds2 = (1 + sinh2(8))dx2.

z

f

ix. ,x.
, andThus s = cosh( -)dx = a.sinhka )

a
o

Is
sx a.tan

(This relation is, of course, a direct consequence of
the physical definition of the curve.)

(b) Consider the Cardioid: r = 2a(1 - cos e).

- cs
Here tan y

(1

sin

o
tan(11) and thus y =

0

0)

2

However, y = y + 0, and thus y, m

The arc length: ds2 = 8a2(1 - cos e)de2

0
s -8a'cos(-2 ) -8a.cos(1) .

3
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The equation of an involute of a given curve is
obtained directly from the Whewell equation by inte- .

gratIon. example,

the circle:

has for an involute:

a = a.y

_s
2 '

the constant of integration determined conveniently.

NOTE: The Inclination y depends of course upon the
tangent to the curve at the selected point from
which s is measured. If this point were selected
where the tangent is perpendicular to the original
chdtce, the Whewell equation would involve the co-
function of y. Thus, for example, the Cardioid may be

given by eitheo 'of the equations: s = k.cos(1) or

s = k.cin(2).

2. THE CESARO EQUATION: The Cesttro equation relates arc
length and radius of curvature. Such equations are
definitive and fellow directly from the Whewell equations.
For example, consider the general family of Cycloidal
curves:

s = asin bc.

Here
R

d

ds
= = are. cos h c.

y

Accordingly, R2
4

bs.sa a2bs,
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3. INTRINSIC EQUATIONS OF SOME CURVES:

Curve Whewell Equation Ceettro Equation
r

Actroid a = ElC08 2y 46 + R2 = 14a2

Cardioid 8 = coe(1) 62 + 9R2 = a2

Catenary a = atan y 6
2

+ a
2

. aR

Circle 6 = y

a = a( sec y - 1)

R = a

--------7
Clem) id 729( 6 + a) = a21 9( 6 +a R2]3

Cycloid 6 = wen y ,
8
2 2+ n si a

2

Deltoid
81)

2 = -- coo 3,
3

9a2 + R2 = 64b2

Epi- and

Hypo-cyclolds

*
s = wain by

R2 0 . a2 a2b2

Equiangular

Spiral
a = aqe" - 1) m(6 + a) R

Involute of

Circle
6 = 2:2!

2
2an = R2

Nephroid a = 6bsin 2
2

4R2
es

36b2

Tractrix a a 01n 80C q, a
2

+ R
2

= a
2
46

213/a

----...

b < 1 Epi.

b = 1 Ordinary.

b > 1 Hypo.
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INVERSION

HISTORY: Geometrical inversion seems to be due to
Steiner ("the greatest geometer since Apollonius") who
indicated a knowledge of the subject in 1824. He was
closely followed by Quetelet (1825) who gave some ex-
amples. Apparently independently discovered by Bellavitis
in 1836, by Stubbs and Ingram in 1842-3, and by Lord
Kelvin in 1845. The latter employed the idea with con-
spicuous success in his electrical researches.

1. DEFINITION: Corsider the circle with center 0 and
radius k. Two poilts A and A, collinear with 0, are
mutually inverse with respect to
this circle if :

(0A)(64 = k2.

In polar coordinates with 0 as
pole, this relation is

r.p =k2

in rectangular coordinates:
//

c)K

Fig. 122

k2x leyxi 777 / Y1 xm yg

(If this product is negative, the points are negatively
inverse and lie on opposite sides of 0.)

Two at:I'VE:3 are mutually inverse if every point of each
has an inverse belonging to the other.
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2. CONSTRUCTION OF INVERSE POINTS:

Fig. 123

For the point A inverse to
A, draw the tangent AP,
then from P the perpendicu-
lar to OA. From similar
right triangles

OA k

k OA
or (0A)(0A) = k2.

=

A
0

Compass Construction: Draw
the circle through 0 with
center at A, meeting the
circle of inversion in P, Q.
Circles with centers P and Q
through 0 meet in A. (For
proof, consider the similar
isosceles triangles OAP and
PdA.)

3. PROPERTIES:

(a) As A approaches 0 the distance OA increases in-

definitely.

(b) Points of the circle of inversion are invariant.

(c) Circles orthogonal to the circle of inversion are

invariant.

(d) Angles between two curves are preserved in magni-

tude but reversed in direction.

(e) Circles:

r2 Ar.cose B.r.sine C = 0 = x2+ y24. Ax +By+C

invert (by rp = 1) into the circles:

1 +lop.cose +B.() 'sine C p2 = C(x2 +y2)+ Ax By + 1= 0
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unless C = 0 (a circle through the origin) in which
case the circle inverts into the Line:

1 + A.p.cos0 + B.p.sin0 = 1 + Ax + By = 0.

(f) Lines through the origin:

Ax + By = 0 = A.cos0 + 'Paine

are unaltered.

(g) Asymptotes of a curve invert into tangents to the
inverse curve at the origin.

4. SOME INVERSIONS: (k = 1)

(a) With center of inversion

at Its vertex, a Parabola in-
1Y

verts into the Cissoid of
.--.

i

// i \Dioeles.
\

,
( xY'y2 = hx*--* (x2 7 = hx,
l

/

\`. ,/2 hx a
\..

Y ° (1 - hx)
or

(b) With center of inversion

at a vertex, the Rectangular

Hyperbola Inverts into the

ordinary Strophoid.

x2 - y2 + tax = 046-0x2 - y2 +

2ax(x2 + y2) = 3,

2 2 1 2axor
Y '1 - 2ax

Fig. 124

Fig, 125
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(c) With center of inversion at its center, the

Rectangular Hyperoola inverts

into a Lemniscate.

r2cos20 1. p2 m cos 20.

r /

x
1:

Fig. 126

(d) With center of inversion at a focus, the Conics

invert into Limacons.

r ,

1 = a + b'cos Q.
(a + bcos 0)

a J r

Fig. 127
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(e) With center of inversion at their center, con-

focal Central Conics invert

into a family of ovals and

"figures eight."

1
(a2

x +
X+ X) (b + )

X2
2

efe gY

(x2 y2)2.

5. KECHANICAL INVERSQRS:

Fig. 129

Fig. 128

The PeAuPellier Cell (1860,1 The Hart Crossed Parallel-

the first mechanical ogram carries four collinear
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inversor, is formed of two
rhombuses as shown. Its
appearance ended a long
search for a machine to
convert circular motion
into linear motion, a
problem that was almost
unanimously agreed insol-
able. For the inversive

property, draw the circle
through P with center A.
Then, by the secant prop-
erty of circles,

(OP)(0Q) = (0D)(0C)

(a-b)(a+b) = a2 - b2.

Moreover,

(P0)(PR) .-(0P)(00 =b2-a2

if directions be assigned.

points 0, P, Q, R taken on
a line parallel to the
bases AD and BC.* Draw the
circle thrutwh D, A, P,
and Q meeting AB in P. By
the secant property of
circles,

(BF)(BA) = (BP)(BD).

Here, the distances BA, BP,
and BD are constant and
thus BF is constant. Ac-
cordingly, as the mechanism
is ueformed, F is a fixed
point of AB. Again,

(013)(0Q) = (OF)(0A) = con-

stant

by virtue of the foregoing.
Thus the Hart Cell of four
bars is equivalent to the
Peaucellier arrangement of
eight bars.

For line motion, an extra bar is added to each mechan-
ism to describe a circle through the fixed point (the
center of inversion) as shown in Fig. 130.

Pig. 130

These remain collinear ae the linkage is deformed.
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In each mechanism, the line generated is perpendicular

to the line of fixeu points.

6. Since the Inverse k cf 7 lies 'in the polar of I, the

subject of inversion 's that of

poles and polars, with respect
to the given circle. The
points 0, P, A, and A form an
harmonic set - that is, A and
X divide the distance OP in
"extreme and mean ratio". A
generalization of inversion
leads to the theory of polars
with respect to curves other
than the circle, viz., conics.
(See Conics, 6 ff.) Fig. 131

7. The process of inversion forms an expeditious method

of solving a variety of problems. For example, the cele-

brated problem of Apollonius (see Circles) is to con-

struct a circle tangent to
three given circles. If
the given circles do not
intersect, each radius is
inc..eased by a length a

so that two are tangent.
This point of tangency is
taken as center of inver-
sion so that the inverted
configuration is composed

of two parallel lines and

a circle. The circle tan-

gent to these three
elements is easily ob-
tained by straightedge -----
and compass. The inverse

(with respect to the same

circle of inversion) of
this circle followed by an alteration of 'ts radius by

the. length a is the required circle.

Fig. 132
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8. Inversion is a helpful means of generating theorems
or geometrical properties which are otherwise not readily

obtainable. For example, con-
sider the elementary theorem:
"If two opposite angles of a

.

quadrilateral OABC are supplemen-
tary it is cyclic." Let this con-
figuration be inverted with re-

A :, spect to 0, sending A, B, C into
X, S, t and their circumcircle

4 into the line A. Obviously, .5
lies on this line. If B be al-
lowed to move upon the circle, t
moves upon a line. Thus

"The locus of the intersection
of circle.) on the fixed points
0,X and 0,C meeting at a con-
stant angle (here n - 0) is the
line AC."

Fig. 133
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INVOLUTES

HISTORY: The Involute of a Circle was discussed and
utilized by Huygens in 1693 in connection with his study
of clocks without pendulums for service on ships of the

sea.

1. DESCRIPTION: An involute of a curve is the ruulette of
a selected point on a line that rolls (as a tangent

upon the curve. Or, it is the path of a point of a
string tautly unwound from the curve. Two facts are evi-
dent at once: since the line is at any point normal to
the involute, a].1 involutes of a given curve are parallel
to each other, Fig. 134(a); further, the evclute of a
curve is the envelope of its normals.

(a)

k

j

Fig. 134 (b)

The details that follow pertain only to the Involute of

a Circle, Fig. 134(b), a curve interesting for its appli-

cations.
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2. EQUATIONS:

[x = a(cost + t.sint)

y = a(sint - t.cost) .

p2 = r2 - as (with respect to 0). zr2 TEs2= /10 + a.arc cos (11)

2a = ace = ate 2aa (= a2t2 1.

). METRICAL PROPERTIES:

A = 2 (bounded by OA, OP, AP).
6a

4. GENERAL ITEMS:

(a) Its normal is tangent to the circle.

(b) It is the locus of the pole of an Equiangular
spiral rolling on a circle concentric with the base
circle (Maxwell, 1849).

(c) Its pedal with respect to the center of its base
circle is a spiral of Archimedes.

(d) It is the locus of the intersection of tangents
drawn at the points where any ordinate to OA meets the
circle and the corresponding cycloid having its vertex
at A.

(e) The limit of a succession of involutes of any
given curve is an Equiangular spiral. (See Spirals,
Equiangular.)

(r) In 1891, the dome of the Royal Observatory at
Greenwich was constructed in the form of the surface
of revolution generated by an arc of an involute of a
circle. (Mo. Notices Roy. Astr. Soc., v 51, p. 436.)

(g) It is a special case of the Euler Spirals.

(h) The roulette of the center of the attached base
circle, as the involute rolls on a line, is a para-
bola.
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(i) Its inverse with respect to the base circle is a
spiral tractrl.x (a curve which in polar coordinates

has constant tangent length).

(j) It is used frequently in the desiol of cams.

(k) Concerning its use in the construction of gear
teeth, consider its generation by rolling a circle
together with its plane along a line, Fig. 135. The

path of a selected point P
of the line on the moving
plane is the involute of a
circle. At any instant the
center of rotation of P is
the point C of the circle.
Thus two circles with
fixed centers could have
their involutes tangent at
P with this point of tan-
gency always on the common
internal tangent (the line

of action) of he two
circles. Accordingly, a
constant velocity ratio is transmitted and the funda-

mental law of gearing is satisfied. Advantages over
the older form of cycloidal gear teeth include:

1. velocity ratio unaffected by changing distance

between centers,
2. corstant pressure or the axes,

3, siirle curvauure teeth (taus easier cut),

4, more uniform wear on the teeth.

Fig. 135
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ISOPTIC CURVES

HISTORY: The origin of the notion of isoptic curves is
obscure. Among contributors to the subject will be found
the names of Chasles on isoptics of Conics and Bpi-
trochoids (1837) and la Hire on those of Cycloids (1704).

1. DESCRIPTION: The locus of the intersection or tangents
to a curve (or curves) meeting at a constant angle % is
the Isoptic of the given curve (or curves). If the con-
stant angle be n/2, the isoptic is called the Orthoptic.
Isoptic curves are in fact Oli'ssettes.

A special case of Orthoptics is the Pedal of a curve
with respect to a point. (A carpenter's square moves with
one edge through the fixed point while the other edge
forms a tangent to the curve).

2. ILLUSTRATION: It is well known that the Orthoptic of
the Parabola is its directrix while those of the Central
Conics are a pair of concentric Circles. These are im-
mediate upon eliminating the parameter m between the
equations in the sets of perpendicular tangents that fol-
low:



y mx .1- pm
2 =0

in
2
y mx p = O.
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[y - mx ± Vg777= 0
my + x ± /a2 t b2m2 = O.

(The Orthoptic of the
Hyperbola is the circle
through the foci of the
corresponding Ellipse and

vice versa.)

3. GENERAL IliMS:

(a) The Orthoptic is the envelope of the circle on PQ
as a diameter. (Fig. 1::,7)

(b) The locus of the intersection
of two perpendicular normals to a
curve is the Orthoptic of its
Evolute.

(c) Tangent Construction: Fig. 137.
Let the normals to the given cur.te
at P and Q meet in H. This is thf
instantaneous center of rotation
of the rigid body formed by the
constant angle at R. Thus HR is
normal to the Isoptic generated
by the point R.

4. EXAMPLES:

Given Curve Isoptic Curve

Cycloid
Epicycloid

Sinusoidal Spiral
Two Circles
Parabola

Curtate or Prolate Cycloid
Epitrochoid

Sinusoidal Spiral
Limacons (see Glissettes, 4)

Hyperbola (same focus and directrix)
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Given Curve

Two Confecal Conics

Hypocycloid

Deltoid

Cardioid

Orthoptic Curve

2 2 2

Astroid: x + y
3

= a3

Sinusoidal Spiral:

rn = an cooth

2 x3
y = x

3(x + y) =x3

x2-2y 4a(x3 + y3) +

18a2ry - 2ya4 . 0

Equiangular Spiral

Concentric Circle

-rr = ( a 21))421.111( a.2b)
1(

2
-

u)

Its Inscribed Circle

A Circle and a Limacon

2
Quadrifollum: r2 = (--)008220

Sinusoidal Spiral: r - woos k (--0) where

k=
(n + 1)

72972 = 180x - 16

8172( x2 + y2) - 36( x2 - 2xy + 5y2) + 128 0

x + y + 2a = 0

A Congruent Spiral*

NOTE: The m-Isoptic of the Parabola y2 = 4ax is the
Hyperbola tan2m.(a + x12 y2 - 4ax and those of the
Ellipse and Hyperbola: (top and bottom signs resp.):

tan2 co(x2 y2
-
a2 b2)2 4(a2u.2 b2x2 a2b2).

(these include the n - m Isoptics).
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KIEROID

HISTORY: This curve was devised by P. J. Kiernan In 1945

to establish a family relationship among the Conchoid,

the Cissoid, and the Strophoid.

1. DESCRIPTION: The center B or the circle of radius a

moves along the line BA. 0 is a fixed point, c units

distant from AB. A secant is drawn through 0 and D, the

midpoint of the chord cut from the line DE which is

parallel to AB and b units distant. The locus of PI and

P2, points of intersection of OD and the circle, is the

Kieroid.

Fig. 138

The curve has a double point if c < a or a cusp if c = a.

There are two asymptotes as shown.
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2. SPECIAL CASES: Three special cases are of Importance:

If' U = 0, the If 1) . a, the

curve is a Con- curve ts a Cls-
chold of sold (plus an
Nicomedes. asymptote).

Fig. 139

If b a = -0
(points 0 and A
coincide), the
curve is a Stroph-
old (plus an
asymptote).

It is but an exercise to form the equations of these
curves after suitable choice of reference axes.



LEMNISCATE OF BERNOULLI

HISTORY: Discovered and discussed by Jacques Bernoulli

in 1694. Also studied by C. Maclaurin. James Watt (1784)

of steam engine fame is responsible for the crossed

parallelor:Tam mechanism given at the end of this sec-

tion. He used the device for approximate line motion -

thereby reducing the height of his engine house by nine

feet.

1. DESCRIPTION:

The Lemniscate is a special
Cassinian Curve, That is,
it is the locus of a point
P the product of whose dis-
tances from two fixed
points F1, F2 (the f 2a

units apart is constant and
equal to a2.

It is the Cissoid of the
circle of radius a/2 with
respect to a point 0 dis-
tant a 1/7272 units from

its center,

s
/

Fig. 140

(F1P)(FpP) = a2

A Point-wise Construction:
Let OX = a 47. Then) by the
secant property of the cir-
cle on FiF2 as diameter:

(XA)(X8) = a2.

Thus) take PIP at XB,
F2P s XA, etc.

r = OP = OB - OA = AB.

Since sin r2 = sin ()
a v2/2 a

2

r a.cos a =a Al- 2sin20),

r2 = a2.cos 20.
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2. EQUATTaIS:

p`' = a' .Jr, 20, or = a2:::20,

(x2 + n?(x2 - 12). (' = 2a2' :1,

p3 = a26pe

3. METRICAL PROPERTIES:

A = a".
1 16.; 161,65

L = 4a(1 ...) (elliptic).25 26469 26466613

V (of r2= a2 co P 20 revolved about the polar axis)

= 2ma2(2 - 72).

R = a2 = r2' W = 2U
)1, 2

4. GENERAL ITEMS:

(a) It Ls the Pedal of a Rectwular Hyperbola with
respect to its center.

(b) It is the Inverse of a Rectanp:ular Hyperbola with
respect to Its center. (The asymptotes of the Hyper-
bola invert into ta:1ents to the Lemniscate at the

(c) It Is the Sinusoidal Spiral: rn = ancos nO for
n = 2.

(d) It is the locus of flex points of a family of
confocal Cassinian Curves.

(e) It is he enve]ope of circles with centers on a
Rectangular Hyperbola which pass throull its center.
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(f) Tanient Contruct:on:

+ , the

normal ma'.:es 2t,

with the L.adius vector

and 5U with the pJlar

a;;Is. The tan[.ent Is

thus easily construe d.

(r) Radius of Curvature

a2
(Fir. 141) R = 7

5r
. The

projection or R on the radius vector is

a
2

R-oos 20 = H)-cos 2u =
.50

145

Fig. 141

Thus the Ur pendicular to the radius vector at Its
trisection 2...).1nt farthest from 0 meets the normal in
C, the center or curvature.

(h) It is the path of a body acted upon by a central
force varyin inversely as thee seventh power of the
distance. (See Spirals 2r and 3rj----
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(j) Generation Jay Linkages:

Fig. 142

OA =AB =la; BC CP set OC =a

Since angle BOP = always,

r2
(N)2 (011)2 =

2a2 - 4a2sin20,

or r2 = 2e-cos 20.

AS CD gm a ,C2-.

AD = BC = a.

P and 0 are midpoints of
DC and AB, rasp.

r
2 m a2COS 20,

(See Tools.)
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LIMACON OF PASCAL

HISTORY: D!scuvered ry Etienn,7- (rather of Blalsc) Pascal

and d:scusred 1.):; R:nerval in 1650.

1, DESCRIPTION:

It is the. EpltrJch::d

c6.nerated a

attac:.ed a

circle roll ino. up ,)n an

equal fixed circle,

Tt Is the Conchold a

cir.:!le where the fixed

point is on the circle,

Pig. 143

Cusp it 2a = k; Double point: 2a < k; Indentation:

> k.

2. EQUATIONS:

x = 4acost - lcos2t

y = liasint - ksin2t

r = 2acose + k.

(x2 y2 - 2ax)2 = k2(x2 + y2),

(origin at singular point).
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3. GENERAL ITEMS:

(a) It is the Pedal of a circle with respect to any
point. (If the point is on the circle, the pedal is
the Cardioid.) (For a mechanical description, see
Tools, p. 188.)

(b) Its Evolute is the Catacaustic of a circle for
any point source of light.

(c) It is the Glissette of a selected point of an
invariable triangle which slides between two fixed
points.

(d) The locus of any point rigidly attached to a con-
stant angle whose sides touch two fixed circles is a
pair of Limscons (see Glissettes 2a and 4).

(e) It is the Inverse of a conic with respect to a
focus. (The inverse of r = 2acose k is
r(2acos0 k) = 0, an Ellipse, Parabola, or Hyper-
bola according as 2a < k, 2a = k, 2a > k). (See
Inversion 4d.)

(f) It is a special Cartesian Oval.

(g) It is part of the Orthoptic of a Cardioid.

(h) It is the Trisectrix if k = a. The angle formed
by the axis and the line Joining (a,o) with any point
(r,$) of the curve is 3U. (Not to be confused with
the Trisectrix of Maclaurin which resembles the
Folium of Descartes.)
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(i) Tangent Construction:

The point A of the bar has
direction perpendicular to
OA while the point of the
bar at B has the direction
of the bar itself. The nor-
mals to these direct!.ons
meet in H, A point, of the
circle. Accordingly, HP is
normal to the path of P and
its perpendicular there is
a tangent to the curve.

(a)

Since T is the center of
rotation of any point
rigidly attached to the
rolling circle, TP is
normal to the path of P
and its perpendicular at
P is a tangent.

Fig. 144 (b)

(j) Radius of Curvatures (2a * 1
2

R = Oa k

The center of curvature is at C, Pig. 144(a).

Draw HQ perpendicular to HP until it meets AB in Q.

C is the intersection of Q0 and HP.

(k) Doutle veneration: (See Epicycloids.) It may also
be generaLed by a point attached to a circle rolling

internally (centers on the same side of the common
tangent) to a fixed circle half the size of the roll..

ing circle.
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(1) The Limacon may be generated by the followijle/
linkage: CDKF and COED
are two similar (pro-
portional) crossed
parallelograms with
points C and F fixed
to the plane. CHM is
a parallelogram and P
is a point on the ex-
tension of JD. The
action here is that
produced by a circle
with center D roll-
ing upon an equal
fixed circle whose

center is C. The
locus of P (or any
point rigidly at-
tached to JD) is a
Limacon. (See an
equivalent mechanism
under Cardiold.)

Fig, 145
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N PHROID

HISTORY: Studied by Huens sndTschirnhausen about 1679

in connection with the theory of caustics. Jacques

Bernoulli in 1692 showed that the Nephroid is the cata-

caustic of a cardioid for a luminous cusp. Double genera-

tion was first discovered by Daniel Bernoulli in 1725.

1. DESCRIPTION: The Nephroid is a 2-cusped Epicycloid.

The rolling circle may be one-half (a = 2b) or three-

halves Oa 2b) the radius of the fixed circle.

Fig. 146

For this double generation, let the fixed circle have

center 0 and radius OT = OE = a, and the rolling circle

center A' and radius A'T' = A'F' = a/2, the latter carry-

ing the tracing point P. Draw ET',OT,F, and PT' to T

Let D be the intersection of TO and FP and draw the

circle on T, P, and D. This circle is tangent to the

fixed circle since angle DPT = m/2. Now since PD is

parallel to TIE, triangles OET' and OPT are isosceles and

thus
TD = 3a.



NE PHROID 153
Furthermore, arc TT' = 2au and arc TIP = aft = arc T' X.

Thue ar:. TX !au arc 'PP.

Accordingly, if P wore at-Ached to either rollim circle
the one of radius a/2 or the one or radius 3a/2 - the

same Nephrold would be p:enerated.

2. EQUATIONS: (a = 2b) .

X . b(3cost - cos-..5t)

2 2(x2 + y2 - 4)3 = 108a4y .y . b(3sInt - stn3t) E1

s = 6b'sin(2), 4R2 + s2 = 36b2.
2

p 413'sit:(1).

. 2

VP - 4b2 +

(r/2)4 = a4 . [sin4(2
2

) + coA-91].

x.cosy + y.sinp = 4b.sin(2).

3. METRICAL PROPERTIES: (a = 2b).

L = 24b. A = 12nb2. R -2
'

4. GENERAL ITEMS:

(a) It is the catacaustic or a Cardloid for a luminous
cusp,

(b) It Is the catacaustic of a Circle for a sot of
parallel rays.

(c) Its evolute is another Nephroid.

(d) It is the evolute of a Cayley Sextic (a curve
parallel to the Nephroid).

(e) It is the envelope of a diameter of the circle
that generates a Cardioid.

(f) Tangent Construction: Since T' (or T) is the
instantaneous center of rotation of P, the normal is
T'P and the tangent therefore PF (or Pa). (Fig. 151.)
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PARALLEL CURVES

HISTORY: Leibnitt: was the first to consider Parallel
Curves in l69-4, prompted no doubt by the Involutes of
Huygens (1673).

1. DEFINITION: Let P be a variable point on a given
curve. The locus of Q and Q', + k
units distant from P measured along
the normal, is a curve parallel to
the given curve. There are two
branches.

For some values of k, a Parallel
curve may not be unlike the given
curve in appearance, but for other
values of k it may be tutally dis-

Fig, 147similar. Notice the paths of a pair
of wheels with the axle perpendicu-
lar to their planes.

I;

2. GENERAL ITEMS:

(a) Since Parallel Curves have common normals, they
have a common Evolute.

(b) The tangent to the given curve at P is parallel
to the tangent at Q. A Parallel Curve then is the
envelope of lines:

ax + by + c kys7717,
distant + k units from the tangent: ax + by + c 0 0
to the given curie.

(c) A Parallel Curve is the envelope of circles of
radius k whose centers lie on the given curve. This
affords a rather effective means of sketching various
parallel curves.
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(d) All Involutes of a given

(fury° are parallel to earh

other (Fig. 1.48).

A
1 I

i I

t e 1\Y

r /

Fig. 1.4.8

(e) The'differenee in lengths of two branches of a

Parallel Curve is link.

3. SOME EXAMPLES: Illustrations selected from familiar
curves follow.

(a) Curves parallel to the Parabola are of the 6th
degree; those parallel to the Central Conics are of

the 8th degree. (See Salmon's Conics).

(b) The Astroid x = a has parallel curves:.

x2 y2
a2) 4k21C-

2
127aXY 9/0 X2+ y2) - 18s2k 8k3 j2 = 0.



_A
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4, A LINKAGE FOR CURVES PARALLEL TO THE ELLIPSE:

--- L

P 0../1//4E

Fig. 150

: 0

IV

A straight line mechanism is built from two propor-
tional crossed parallelograms 001EDO and 00'FAO. The
rhombus on OA and OH is completed to B. Since 001 (here
the plane on which the motion takes place) always bi-
sects angle AOH, the point B travels along the line 00'.
(See Tools, p. 96.) Any point P then describes an El-
lipse with semi-axes equal in length to OA + AP and PB.

Since A moves on a circle with center 0, and B moves
along the line 00', the instantaneous center of rota-
tion of P is the intersection C of OA produced and the
perpendicular to 00' at B. This point C'then lies on a
circle with center 0 and radius twice OA.

The "kite" CAPG is completed with AP 1. PG and
CA sm CO. Two additional crossed parallelograms APMIA
and PMARP are attached in order to have PM bisect angle
APO and to insure that PM be always directed toward C.
Thus PM is normal to the path of P and any point such as
Q describes a curve parallel to the Ellipse.
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PEDAL CURVES

HISTORY: The idea of positive and negative pedal curves

occurred first to Colin Maclaurin in 1718; the name

'Pedal' is due to Terquem. The theory of Caustic Curves

includes Pedals in an important role: the orthotomic is

an enlargement of the pedal of the reflecting curve with

respect to the point source of light (Quetelet, 1822).

(See Caustics.) The notion me I be enlarged upon to in-

clude loci formed by dropping perpendiculars upon a line

making a constant angle with the tangent - viz., pedals

formed upon the normals to a curve.

1. DESCRIPTION: The locus C1, Fig. 151(a), of the foot

of the perpendicular from a fixed point P (the Pedal

Point) upon the tangent to a given curve C is the First

Positive Pedal of C with respect to the fixed point.

The given curve C is the First Negative Pedal of Cl.

(a) Fig. 151 (b)

It is shown elsewhere (see Pedal Equations, 5) that

the angle op between the tangent to a given curve and the

radius vector r from the pedal point, Fig. 151(b),

equals the corresponding angle for the Pedal Curve. Thus

the tangent to the Pedal is also tangent to the circle

on r as a diameter. Accordingly, the envelope of theee

circles is the first positive 22141.
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Conversely, the first negative Pedal is then the
envelope of the line through a variable point of the
curve perpendicular to the radius vector from the Pedal
point.

2. RECTANGULAR EQUATIONS: If the given curve be
f(x,y) = 0, the equation of the Pedal with respect to

the origin is the result of eliminating m between the
line:

y = mx +k

and its perpendicular from the origin; my + x = 0, where
k is determined so that the line is tangent to the curve.
For example;

The Pedal or the Parabola y2 = 2x with respect to its
vertex (0,0) is

[y = mx +
2m

or y
2

2X

2x s

1 9
a Cissoid.

1

my + x = 0

3. POLAR EQUATIONS; If (r0,00) are the coordinates of
the foot of the perpendicular from
the pole:

dO
tan = r(-c-17,), ro = .sin

and

Thus

*

v2

+

=

(0

1

- 00)

1
+

rro

=

d 2r

e
.

d

Among these r,8 and yrelat'ons,
2

may be eliminated to give the
Fig, 15

polar equation of the pedal curve with respect to the
origin.

For example, consider the Sinusoidal Spirals
,r1%

r1 = ancos nu.* Differentiating: nk7R) = -ntan nO

= n4cot y; thus p =-
2

+ ne.

1 1
Rectifiable when- is an integer.
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But e eo + - eo - ne and thus 0 =
2 (n +l

Now ro = rsin rcos ne a acoe nOoos ne,

or ro oos (n+i)/nne a acos(144)/4[1*0

Thus, dropping subscripts, the first pedal with respect

to the pole is:

r a Icos ni0 where ni a

another. Sinusoidal Spiral. The iteration is clear. The

kth positive pedal is thus

rnk a
nk cos nk0 where nk

Many of the results given in the table that follows can

be read directly from this last equation. (See also

Spirals 3, Pedal Equations 6.)

4. PEDAL EQUATIONS OP PEDALS: Let the given curve be
r f(p) and let pi denote the per-
pendicular from the origin upon the
tangent to the pedal. Then (See
Pedal Equations):

p2 rp. f(p)p..
f\ 7 Thus, replacing p and pi by their

\ respective analogs r and p, the
pedal equation of the pedal is:

Pig. 45 I r2 f(rT.EI]

Thus conAidgr the circle rill = ap. Here f(i., .,Virand

f(r) ms/(ark). Hence, the pedal eruation of its Pedal

with respect to a point on the circle is

ra 4/7---ar)13 or Ira ape

a Cardioid. (See Pedal Equations, 6.)

Equations of successive pedals are formed in similar

fashion.
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PEDAL CURVES

5. SOME CURVES AND THEIR PEDALS:

163

Given Curve Pedal Point Pint Positive Pedal

Circle Any Point Limacon

Circle Point on Circle Cardioid

Parabola Vertex Cieeoid

Parabola Inoue
Tangent at

Vertex See

Central Conic Focus
Auxiliary

Circle

Conics)

16.

Central Conic Center r2 = A + Bcos20

Rectangular Hyperbola Center Lemniscate

Equiangular Spiral Pole Equiangular Spiral

Cardioid (pea . r3) Pole (Cusp)
'sCayley

( r4

Sextic

= ap3)

Lemniecate (pas . r3) Pole r
5

is ap
3

Cataoaustio of a

Parabola for rays

perpendicular to its

axle

0rcos3
(-.
3
) a a

Pole Parabola

Sinusoidal Spiral

(rte ap)
Pole Sinusoidal Spiral

Astroidt x4 + yl. . e Center

2r . t asin20 (Quadri.

folium)

Parabola Foot of Direotrix Right Strophoid

Parabola
Arb. Point of

Dirsotrix
Strophoid

Parabola

Reflection of

Focus in Direc.

trix

Trisectrix of

Maclaurin

Cieeoid Ordinary Focus Cardioid

121. and Hypocycloida Center Roeee
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(Table Continued)

PEDAL CURVES

Given Curve Pedal Point First Positive Pedal

Deltoid * Cusp Simple Folium

Deltoid Vertex Double Folium

Deltoid Center Trifolium

Involute of a Circle Center of Circle Archimedian Spiral

+ y3 = a
3

Origin 1 3
(x2+ y2)4 = dece + y)

xmyn = awn Origin

n+m
r =

am+n.(m+n)1114.n.co8mosinn0
mmnn

n n
X 7() + () = 1
a b

(Lame Curve)

(which for n = 2 is an

Origin

Ellipse; for n =

)n/( n..I.) +( by)
n/(n.q.)

r2

y2)n/(n..1)

1/2 a Parabola).

Its pedal with -eepect to (b,0) has the equation:

[(x - b)2 + y2jfy2 + x(x-b)) = 4a(x - b)1,

where x2 + y2 = gat is the circumcircle of the Deltoid.

6. MISCELLANEOUS ITEMS:

(a) The 4th negative pedal of the Cardioiu with re-
spect to its cusp is a Parabola.

` )%(b) The 4th posit've pedal of r cos(.-)0 = a with
9

respect to the pole is a Rectangular Hyperbola.

(c) RI(2r2 - pR) = r 3
where R, R' are radii of curva-

ture of a curve and its Pedal at corresponding points.
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PEDAL EQUATIONS

1. DEFINITION: Certain curves have simple equations
when expressed in terms of a radius vector r from a
selected fixed point and the perpendicular distance .2

upon the variable tangent to the curve. Such relations
are called Pedal Equations.

2. PROM RECTANGULAR TO PEDAL EQUATION: If the given
curve be in rectangular coordinates,

the pedal equation may be established
among the equations of the curve, its
tangent, and the perpendicular from
the selected point. That is, with

{

f(xo,Yo) = 0,

(fy)o(Y- Yo)+(fx)0(x- xo) = 0,

P
2

((f(x ,2 4.)0

+

(

Yfs

;

(:

2)]

'2, r2=X024101

where the pedal point is taken as the
origin.Pig. 154

S. FROM POLAR TO PEDAL EQUATION:

Among the relations: r = f(0), p = raisin 111,

tan yr = 7, where the selected point is the origin of

coordinates, 0 and 41 may be eliminated to produce the
pedal equation. (For example, see 6.)
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4. CURVATURE IN PEDAL COORDINATES: The expression for

radius of curvature is strikingly simple:

:;,..01VE

:.,._:::46.
...:HVE

+30

Fig. 15,

dO
Since ds2

dr2 r2d02 and tany = = r(71),

t = Hit) = pilre( )/r and thus dO/ds = p /r2

Now p = r.sin y and dp'n (sin Odr + r(cos Ody,

or LIS a\rdrl + tr.:43\

ds ri'ds' ds"

Thus 1.12 /210.2)
ds u' rdr' r .

da dy d ©_ (.110.2
Accordingly,'K = or

ds ds ds 'r"dr

r(SIS)
dp

5. PEDAL EQUATIONS OF PEDAL CURVES: Let the pedal equa-

tion of a given curve be r = f(p). If pi be the perpen-

dicular upon the tangent to the first positive pedal of

the given curve, then, since p makes an angle of

4
2

with the axis of coordinates,

tan 0 a /4) (see Fig. 155).
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Now tan y(13) = resin 41.()(2)

and thus tan y = sin y. (t) = tan %P..

Accordingly, y = y and p2 = rpi.

In this last relation, p and 131 play the samo roles as do
r and p respectively for the given curve. Thus the pedal
equation of the first positive pedal of r = f(p) is

1r2 = pf(r) (.

Equations of successive Pedal curves ere obtained in the
same fashion.

6. EXAMPLES: The Sinusoidal Spirals are E = ansin nel.
Here,

7 = tan ne = tan W.

Thus y = nO, a relation giving the construction of tan-
gents to various curves of the family.

ra+1
p = r.sin y = r.sin nO =

a

or a
n

= r
/14.1

, the pedal equation of the given

curve Special members of this family are included in
the following table:

n rn= ansin ne Curve
Pedal

Equation
an r

2

=(n+1)rn-q(r1+1)p

r2sin20 + a2= 0 Reet.11y-perbola rp = a2 -r3/a2

-1 r.sin9+ a= 0 Line p= a 0,

-1/2 2a
Parabola p2 = ar 2 ,r7 /E7r- 1-cos 0

+1/2 a,r=(-2 )(1-cos U) Cardioid pea = r3 , 2,khrel,
3

+1 f 0 wain 0 Circle pa . r
2 a

+2 r2' = a2uin 20 Lomniooate a2
=

as'"
314

tSeo also Spirals, 3 and Pedal Curves, 3.)
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Other curves and corresponding pedal equations are given:

CURVE
PED

NT

AL

POI
PEDAL EQUATION

Parabola (12 = 4a) Vertex
all( r2 ..p2 )2

Itt
2( r2+4a2

) (p2+4a2)

Ellipse Focus
b2

r

2 2a
-- = -- - 1
p

Ellipse Center
,--r -r2 =a2 2

+ 0
a

132

b
+

2

Hyperbola Focus
b2 2a

-17 0 17 + 1

Hyperbola Center

2
b
2

a 2 2
b2- r = -a +

P
2

--,

Epi- and Hypocycloids Center
* *

p
2

= Ar
2

+ B

Astroid Center r
2

+ 21)
2 = a

2

Equiangular (a) Spiral Pole p = risin a

Deltoid Center
8p2 9r2 (12

Cotes' Spirals

____,...

Pole
p2

A
= + B

2 r2

*zn = am() (Sacchl

1854)
Pole

pe(me.rem aem) m2.r2M+2

*m = 1:Archisedean Spiral; m = 2:Fermat's Spiral;

m = -1:Hyperbolic Spiral; m = 2:Lituus.

** (a + 2b)2,
A e

4b(a + b)
B r -a A.
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PURSUIT CURVE

HISTORY: Credited by some to Leonardo da Vinci, it was
probably flyst conceived and solved by Bouguer in 1732.

1. DESCRIPTION: One particle travels along a specified
curve while another pursues it,
its motion being always di-
rected toward the first particle
with related velocities.

If the pursuing particle is
assigfied coordinates (x,y) and
there is a function g relating

the two velocities .ds da
dt dt

then the thr,e conditions

Fig. 156 f(4, OJ x) Y

If)

among which 4, n (coordinates of the pursued pArUse)
may be eliminated, are sufficient to prodUoe the dif.
feretAlal equation of the curve or pursuit.

Re PECIAL CA: at the partiole pursued travel rroM
rest at the x-iwis along the llne x a, Pig. Int Oho
pursuer starts a, the sem* Oar from the origin with
Velocity k times the forlt.P. Son

YI 09
ri y 40 (000xY4

ds k,00 or d-X2 + dy2 ka.de

There follow dx2 + dy2 = k fdy - 50,0 + (a - x)W12

kg(a x)2(dyl)k

1-1 yie e(,,,Ltd P
OP

(a differentiel equation solviAle by first setting
y' = p), Its solutions are
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kaIlk(a - x)(k-i)/k -i/k(k+i)/k
= +

ka (a x) 2ka if k i 1;
1 k 1 + k 1 - k21

t 4ay (a - 102 2a2 la a x
a

a2, if k = 1.

The special case when k = 2 is the cubic with a loop:

a(3y - 2a)2 = (a - x)(x + 2a)2.

3. GENERAL ITEMS:

(a) A much more difficult problem than the special
case given above is that where the pursued particle

travels on a circle. It seems not to have been solved
until 1921 (F. V. Morley and A. S. Hathaway).

(b) There is an interesting case in which three dogs
at the vertices of a triangle begin simultaneously to
chase one another with equal velocities. The path of
each dog is an Equiangular Spiral. (E. Lucas and

H. Brocard, 1877).

(c) Since the velocities of the two particles are
given, the curves defined by the differential equa-
tion in (2) are all rectifiable. It is an interesting
exercise to establish this from the differential
equation.
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RADIAL CURVES

HISTORY: The idea of Radial Curves apparently occurred
flirt w Tucker in 1864.

1. DEFINITION: Lines are drawn from a selected point 0
equal and parallel to the radii of curvature of a given
curve. The locus of the end points of these lines is the
Radial of the given curve.

2. ILLUSTRATIONS:

(a) The radius of curvature of the Cycloid (Fig.

157(a) (see Cycloid) is (R has inclination n - t = 0):

R = 2(PH)

Thus, if the fixed point be taken at a cusp, the
radial curve in polar coordinates Is;

1 r = 4asin(i) = 4asin 6

a circle or radius 2a.

(a) Fig. 15'1' (b)
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(b) The Equiangular Spiral s = a(en* - 1) Fig. 157(b)
has R = ma.03(f. Thus, if 0 be the inclination of the

radius of curvature, U = 2 + y, and

m.a.em(U 4/2) 1

is the polar equation of the Radial: another Equi-

angular Spiral.

3. RADIAL CURVES OF THE CONICS:

x3 = f k'(x2 + y2)

Fie. 158

(a2x2 +b2y2)3=a4b4(x2+ y2)2

(Ellipse : b2 > 0;

Hyperbo:ta: b2 < 0) .

4. GENERAL ITEMS:

(a) The degree of the Radial of an algebraic curve is
the same as that of the curve's Evolute.



174

5. EXAMPLES:

RADIAL CURVES

Curve Radial

Ordinary Catenary Kampyle of Eudoxus

Catenary of Un.Str. Straight Line

Tractrix Kappa Curve

Cycloid Circle

Epicycloid Roses

Deltoid Trifolium

Astroid Quadrifolium

BIBLIOGRAPHY

EncyclAPEwlia BrItaquiaa 14th Ed., "Curves, Special."
Tucker: Proc. Lon. jowl. sop., 14 (1465).
Wieleitner, H.: Saeliel-1e Otno Amtlyen, Lei.psig (1908)
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ROULETTES

HISTORY: Besant in 1869 seems to have been the first to
give any sort of systematic discussion of Roulettes al-
though prviously, Myer (1525), D. Bernoulli, la Hire,
Desargues, Leibnitz, Newton, Maxwell and others had
made contributions in one form or another, particularly
on the Cycloidal Curves.

1. GENERAL DISCUSSION: A Roulette is the path of a
point - or the envelope of a line - attached to the
plane of a curve which rolls upon a fixed curve (with
obvious continuity conditions).

Fig. 159

Consider the Roulette of the point 0 attached to a curve
which rolls upon a fixed curve referred to its tangent
and normal at 01 as axes. Let 0 be originally at 01 and
let T:(xl,y1) be the point of contact. Also let (u,v) be
coordinates of T referred to the tangent and normal at
0; y and T1 be the angles of the normals as indicated.

Then

[

x = v'sin(Y + 411) - u.cos(cf + yi) - xi

y = -1vcos(T + yl) - U.sin(y + y1) + yi ,
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where all the quantities appear In the pie.ht member

may be exp-.:,::!ed In terms o!' t!:0 arc! s. These

then ar, lx.us 0. Tt Is

not difficult to eneral:e for any cprrItA point.

Familiar examples of Roulet;es or a point 'we the
Cy,!lo:ds, the Trcchoids, and Involutes.

2. ROULETTES UPON A LINE:

(a) Polar Equatftn: 1:ersider the Roulet'e renevated
by the point Q attPched to the curve - 1'()), re-

ferred to Q as pole (with Q0I as initial line),, as it
rolls upon the x-axis. Let P be the point of tan-
,.ncy and the point O o: the curve be oricinally at
O. The insta!taus centr of rotation of Q is P and
thus for the locus JV 0:

= cot y
dx

Fl. 160

For example, considpr, Fig. 161, the locus of the
focus cam;' the Parabola rnlling upon a line: originally
the tangent at Its vertox:

But tan T. r(ar) and

,dx,
y = r.sin = rk--).

ds

Thu , among the relations:

dx ,dx%
r I( ) = rk--) y =rk)

dy dr ' ds

the quantities r, U may be

el* Alated Lc, (q0.111 the

rectangular equation of the

path of Q.

2a dx 1 - sin 0 dx
r = =

1 - Llitt 0 dy cos U Y r.ds
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Fi1;. 161

From thev.e, r and U are eliminated to :,ive

x

ads = dx or a s = dx = A

a definitive property of the Catenary (See Catenary,

(b) P-,.dal Equation: If the rollirn! .curve is in the

form p f(r) (with respect to Q), then p = QN y

,dx,
= rk v and the vectarwular equation of the roulette

lo ,.aver. by

.S-111)

dx

For example, cow:Ider the li:mlette or the pedal point
(here the center of the fixed circle) of the Cycloidal

2 = A2(rP a2)I where A . a 2b, and

B 4b(a + b), as curve rolls upon the x-axis

(ori?,inallo, a cusp tangent) .
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The Roulette is given by

ds 2Bye
= A2(y-D /'dx---) - a2] = A2y2(1 + y'2) a2A2.

From this

2adx 2ydy
A TAT_ y2

and

Ax
= - ,/ A2 -y

the constant of integration being discarded by choos-
ing the fixed tangent. Thus the Roulette is

e y2 ax2 A4I

an Ellipse. As a particular case, Fig. 1b2, the
Cardiold has a = b, and the Roulette of its pedal
point Is

X
2 + 9y2 = 81a2.

Fig. 162
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The Card old rolls on "top" of the line until the
cusp tolJhes, then upon the "bottom" in the reverse
direction.

179

(c) Elegant theorems due to Steiner connect the areas
and lengths of Roulettes and Pedal Curves:

I. Lett point rigidly attached to a closed curve
rolling upon a line generate a Roulette through one
revolution of the curve. The area between Roulette and
line Is double the area of the Pedal of the rolling
curve with respect co the generating point, For
example

The area under one arch of the Ordinary Cycloid
generated by a circle of radius a is 3na2j the
area 'or the Cardioid formed as the Pedal of this
circle with respect to a point on the circle is

2
22A_
2

The Pedal of an Ellipse with respect to a focus

is the ci:cle on the major axis (2a) as diameter.
Thus the e:,11 under the Roulette (an Elliptic
Catenary. lee 8) of a focus as the Ellipse rolls
upon a linD is 2na2.

XI. If Anz curve roll upon a line, the are length
of the Roulette described by a 2sInt is equal to the
corresponding arc length of the Pedal wlth respect to
the generating point. For example

The length, 8a, of one arch of the ordinary
Cycloid is the same as that of the Cardioid,

The length of one arch of the Elliptic Catenary
is 2na, the circumference of the circle on Ve
major axis of the Ellipse,

3. THE LOCUC OP THE CENTER OP CURVATURE OF A CURVE,
MEASURED AT THE POINT OF CONTACT, AS THE CURVE ROLLS
UPON A LINEt

Let the rolling curve be given by its Whewell
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intrinsic equation: s = f(y).
Then, if' x,y are coordinates of
the center of curvature,

x = s = r(Y), Y = R = f'(i)

are parametric equations of the
locus. For example, for the
Cycloidal family,

s A.sin B y

x = A'sin Bp, y = AB'cos By

and the locus is

y

Fig. 163

R

B2x2 y2 = A2B2 , an Ellipse.

4. THE ENVELOPE OF A LINE CARRIED BY A CURVE ROLLING UPON

A FIXED LINE:

Draw PQ perpendicular to the
carried line. Then Q is the
point of tangency of the car-
ried line with its envelope.
For, Q has, at the instant
pictured, the direction of
the carried line and every
point of that line has con-

.- P\ ter of rotation at P. The
envelope is thus the locus of

points Q.

Let the curve roll to a
neighboring point Pi carry-

ing Q to Q1 throuch the angle dry. Then ifs represents
the arc length of the envelope,

da Qy + TQA siny'ds z'dY,

Fig. 16

or

stny(--,2) + 2
dy dtf

a relation connectirw radii or curvature or rollin curve

and envelope, tntrinsic equations or the envelope are

frequfAlt1:,' easily obtained. For example, consider the

thvi1(pr a diameter or a civole or vadlus a. Hero
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z = a'sinp

and ds

dy
= a.

Thus 0
= 2a.siny and

dy

ra = -2a.cosd , an

intrinsic equation of an

ordinary Cycloid,

181

Fig. 16,

5. THE ENVELOPE OF A LINE CARRIED BY A CURVE ROLLING
UPON A FIXED CURVE:

If one curve rolls upon

another, the envelope of a carried

line is given by

= (cos a).-----
dy (RI + R2)

where tha normals to line and

curves meet at the angle a, and

the ills are radii of curvature of

the curves at their point of

contact.

Fig. 166
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6. A CURVE ROLLING UPON AN EQUAL CURVE:

Fig. 167

7. :SOME ROULETTES;

Its one curve rolls upon an
equal fixed curve with corrb
spondAng points in contact, thAe
whole configuration is a refleo-

tior in the common tangent
(Maclaurin 1720). Thus the
Roulette of any carried point 0
is a curve similar to the pedal
with respect to 01 (the reflec-

tion of 0) with double its
linear Oimenslons. A simple
illustration Is the Cardioid.

(See Caustics.)

Rolling Curve Fixed Curve Carried Element Roulette

Circl© Line Point of Circle Cycloid

Parabola Line Focus
Catenary (ordi-

nary)*

Ellipse Lino Focus
Elliptic Cate.

narY4

ByTerbola Line FOCUA
Eyperbolic Cato

nary*

Recip:ocal

Spiral
Lino Polo Tractrix

Involute of

Circle
Line Center of Circle

--,

Parabola

Cycloidal

Family
Line Center Ellipse

Line Any Curve Point of Line
Involute of the

Curve

Any Curve ;goal Curve Any Point
Curve similar to

Pedal
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SOME ROULETTES (Continued):

183

Rolling Curve Fixed Curve Carried Element Roulette

Parabola
Equal

Parabola
Vertex Ordinary Cissoid

Circle Circle Any Point Cycloidal Family

Parabola Line Directrix Catenary

Circle Circle Any Line
Involute of

Epicyoloid

Catenary Line Any Line
Involute of a

Parabola

*The surfaces of revolution of these curves all have constant mean

curvature. They appear in minimal problems (soap films).

8. The mechanical arrangement of four bars shown has an
action equivalent to Roulettes. The bars, taken equal in
pairs, form a crossed parallelogram. If a smaller side
AS be fixed to the plane, Fig. 168(a), the longer bars
intersect on an Ellipse with A and B as foci. The points
C and D are foci of an equal Ellipse tangent to the
fixed one at P, and the action is that of rolling
Ellipses. (The crossed parallelogram is used as a "quick
return" mechanism in machinery.)

A

Fig, 168

11
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On the other hand, if a long bar BC be fixed to the

plane, Fie. 168(b), the short bars (extended) meet on an

Hyperbola with B and C as foci. Upon this Hyperbola

rolls an equal one with foci A ani D, their point or

contact at P.

If P (the intersection of the long bars) be moved

along a line and toothed wheels placed on the bars BC

and AD as shown, Fig. 169(a), the Roulette of C (or D)

r (

Fig. 169

A

Is an Elliptic Catenary, a plane section of the Undulpid

whose mean curvature is constant. The wheels require the

motion of C and D to be at right angles to the bars in

order that P be the center of rotation of any point of

CD. The action is that of an Ellipse rolling upon the

line.

If the intersection of the shorter bars extended,

Fig. 169(b), with wheels attached, move along the line,

the Roulette of D (or A) is the Hyperbolic Catenary.

Here A and b are foci oC the Hyperbola which touches the

line at P.
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SEMI-CUBIC PARABOLA

IISTORY: ay2 = x 3 was the first algebraic curve rectified

(Neil 1659). Leibnitz in 1687 proposed the problem of
finding the curve down which a particle may descend under
the force of gravity, falling equal vertical distances

In equal time intervals with initial velocity different

Crom zero. Huygens announced the solution as a Semi-Cubic

Parabola with a vertical cusp tangent.

DESCRIPTION: The curve is defined by the equation:

y2 = Ax3 + Bx2 + Cx + D = A(x - a)(x2 + bx + c) ,

which, from a fancied resemblance to botanical items, is

sometimes called a Calyx and includes forms known as

Tulip, Hyacinth, Convolvulus, Pink, Fucia, Bulbus, etc.,

according to relative values of the constants. (See

Loria.)

In sketching the curve, it will be found convenient

to draw as a vertical extension the Cubic Parabola.(See

Sketching, 10.)

yi = y2.

Values for which yl is negative correspond to imaginary

values of y. There is symmetry with respect to the x-

axis. For example:
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= (x-1)(Y-2)(Y-A yl = y2 = (x-1)(x-2)2

Fit. 170

Slope at x = 1 (etc.):

Limit y
=0(-1,

Limit\/(x-2)(x-.3)
X 4 1 X"1

Slope at x = 2 (etc.):

Limit y

x -, 21(x-2)

Limit + 077-r 1.

(NOTE: Scales on X and Y-axes difi'erent).

2. GENERAL ITEMS:

(a) The Semi-Cubic Parabola 27ay2 = 4(x - 2a)3 is the
Evolute of the Parabola y2 . 4ax.

(b) The Evoiute of aye = x3 is

a'a - 18x)3 = (54ax + (*)y2 + a2)2 .

BIBLIOGRAPHY

Lorla, G.: Spezielle Algebraische and Transzendte ebene
Kurven, Lelpsig (1902) 21.
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ALGEBRAIC CURVES: f(x,y) = U.

1. INTERCEPTS - SYMMETRY - EXTENT are items to be
noticed at once.

2. ADDITION OF ORDINATES:

The point-wise construction of some functions, y(x),
is often facilitated by the addition of component parts.
For example (see also Fig. 181):

ytl
I

/1 . . coo 1

1 t;, 5, :411 t, /

4

I;

Fig. 171

. 11 .)1.ah

c, 4, ./..z c1/4, 1 y,

x

The general equation of second degree:

Axe + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 (1)

may be discussed to advantage in the same manner.

Rewriting (1) as

Cy = Bx- E (1177-AC)x2+ 2(BE - CD)x +E2- OF, C 0,

we let Cy = yl yv,



where yl = -Bx - E,

and y2 = VA82 AC)x2 2(BE - CD)x + E2 - CF. ..(3)

More Y22 (B2 - AC)x2- 2(BE- CD)x - E2+ CF = 0,

in which it is evident that the conic in (3) or (1) is
an Ellipse if B2 - AC < 0, an Hyperbola if B2 - PC > 0,
a Parabola if B2-AC =O. The construction is effected
by combining ordinates in (2) and (3):

SKETCHING 189

( 2)

Fig. 172

Some facts are evident:

(a) The center cf the conic (1) Is at

CD - BE AE - BD
X B2 - AC ' e 132 - AC

(b) Since yl = -Bx - E bisects all x = k, this
CD - BE

line is conjurate to the diameter x =
- AC In

the case the Parabola, yi = -Bx - E is paranel to
the axis of symmetry. Thls axis of symmetry is thus

i-B%
inclined at Arc tan( --) to the x-axit. The point of

tanF,:ency of the tangent with slope is the vortex of

the Parabola.
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(c) Tangents at the points or Intersection of the

line yl =-Has - E and the curve (1) are vertical.

(In coralectIon, see Conics, ).

3. AUXILIARY AND DIRECTIONAL CURVES: The equations of

some curves may be put into forms where simpler and more

familiar curves appear as helpful guides in certain re-

gions of the plane. For example:

2
-x 77-

)X
y = e cosx

Fig. 173

Ir the neighborhood of the
1

or' .in --- dominates and the
x

given curve follows the
1

Hyperbola y = - As
3x

x oc, the term x2 domi-

r nates and the curve follows
the Parabola y = x.

The quantity ex here con-
trols the maximum and
mirimum values of y and is

called the damping factor.
The curve thus oscillates
between y = ex and
y = -ex since cosx varies

only between -1 and +1.

(See also Fig. 92.)
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4. SLOPES AT THE INTERCEPT POINTS AND TANGENTS AT THE
ORIGIN: Let th.,, given curve pass through (a,0). A line
through this 1.,:int and a neighboring point (x,y) has
slope:

Limit y
(x-a) x 4 a .(x-a) m s

the slopc of the curve at (a,0).

For example:

y = 2x(x 2)(x - 1)

has m =
Limit
x 4 2 (x-2)

Limit , ,

2xlx-1! = 4
x 2

for its slope at (2,0).

Fig. 1714

Y2 = 2x(x - 2)(x - 1)
Limithas m = imit y
x 2 (x-2)

Limit i2x(x-Al
x 4 2 ± (x-2)

for its slope at (2,0).

If a curve passes through the origin, its equation
has no constant term and appears:

0 = ax + by + cx3 + dxy + ey2 + fx3 + so,'

or
0 = a + b4) + cx + dy + ey(Y) + fx3 +

Taking the limit here as both x and y approach zero, the

quantity approaches m, the slope of the tangent at

(0,0):

0 = a + bm or m = .1--/ whence [ax 4. by . 61.

Thus the collection of terms of first degree set plUal
to zero, is the equation of the tangent at the origin.
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If, however, there are no linear terms. the equation

of the curve may he written:

0 c + d(1) + e(2)2 + fx +

and 0 = c + dm + em2

gives the slopes mat the origin. The tangents are,

netting m = y :

0 . c + d(1) + e(1)2 or 0 = cx2 + dxy 4. "2 I
'

It is now apparent that the collection of terms of

lowest degree set equal torero is the equation of the

tangents at the origin. Three cases arise (See Section 7

on Singular Points):

if this equation has no real factors, the curve has

no real tangents and the origin is an isolated point

of the curve;

if there are distinct linear factors, the curve has

distinct tangents and the origin is a node, or mul-

tiple point, of the curve;

if there are equal linear factors, the origin is gen-

erally a cusp point of the curve. (See Illustrations,

9, t'or a: isolated point where a cusp is indicated.)

For example:

y2 = x2(x-1)
2

=
x2(1-x) V2 = X3

Pig, 175

has (0,0) as an I
has (0,0) a3 a I has (0,0) as a

isolated point node cusp

X
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5. ASYMPTOTES: FOP purposes of curve sketching, an
avymptoto is defined as "a tangent to the curve at In-
finity". Thus :s askod that the line y = mx + k meet
the curve, generally, in two infinite points, obtained
in thrs fashion of a tangent. That is, the simultaneous
solut:on of

f(x,y) Tr. 0 and y = MX k

or anx
n

+ an_Ixt1-1 + a n-2 Y
n-2

+ + alx + ao = 0..(1)

where the a's are functions of m and k, must contain two
roots x = =. Now if an equation

aozn + alzn'*1 + + an.lz + an =0 (2)

has two roots z = 0, then an = an.1 = 0. But if z = ,

ths equation reduces to the preceding. Accordingly, an
equation such as (1) has two infinite roots if

= an_i = 0.

To determine asymptotes, then, set these coefficients
equal to zero and soave for simultaneous values of m and
k. For example, consider the Folium:

x3 + y3 3xy = O.

re sr:= mx k:

(1+m3)x3 3m(mk-i)x2

3k(mk-1)x k3 = 0.

For an asymptote:

1 + m3 = 0 or m -1

and 3m(mk-1) =0 or k -1.

Thus x + y + 1 = 0 is the

asymptote.

Fie. 176
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OBSERVATIONS: Let Ill, Qn be polynomial functions of x,y

of the nth degree, each of which intersects a line in n

points, real or imaginary. Suppose a given polynomial

function can be put into the form:

(y - mx - a).P11.1 + -110 -1 = 0. (3)

Now any line y = mx k cuts this curve once at infinity

since its simultaneous solution with the curve results

in an equation of degree (n-1). This family of parallel

lines will thus contain the asymptote. In the case of

the Flium just given:

(y + x)(x2 - xy + ya) - 3xy = 0,

the anticipated asymptote has the form: y + x - k = 0

and the value of k is readily determined.*

Suppose the given curve of the nth degree can be

written as:

(Y - mx - k).Pn_i + Q11.2 = 0. (4)

Here any line y - mx - a = 0 cuts the curve once at

infinity; the line y - mx k = 0 in particular cuts

twice. Thus, generally, this latter line is an asymptote,__
For example:

*Thus: 5-
3x),

+ x2 + yg y 2
3. - + (17)

As x,y - a, - - 1 and the last term here -1.

X 1 . ( .1) + 1

Thus y = -x - 1 is the Asymptote.
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y3 - x3 + x o
1 (2y + x ) ( y x) - 1 m 0

X

Fig, 177

fY

has y = x for an asymptote. 1 has asymptotes 2y + x = 0,
y - x a 0*

The line y = mx + k meets this curve (4) again in
points which lie on Qn.2 m 0, a curve of degree (n-2).

Thus

the three possible asymptotes of a cubic meet the
curve again in three finite points upon a line;

the four asymptotes of a quartic meet the curve in
eight further points upon a conic; etc.

Thus equations of curves may be fabricated with specified
asymptotes which will intersect the curve again in points
upon specified curves. For example, a quartic with
asymptotes

x= 0, y 0, y - x = 0, y + x = 0

meeting the curve again in eight points on the Ellipse
x2 + 2y2 se 1, is:

xy (x2 - y2) - (x2 + 2y2 - 1) = 0.

* In fact, any conic whose equation oan be written as

(y.ax)(7.bx)+on0 has asymptotes and is accordingly a Hyperbola,
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6. CRITICAL POINTS:

(a) Maximum-minimum values of occur at points (a,b)
for which

. 0 m
dx

with a change in sign of this derivative as x passes
through a.

Maximum- minimum values of x occur at those points
(a,b) for which

dx

dy O' m

with a change in sign of this derivative as y passes
through b. For example:

y2 = x3(1 - x) y3 = (x - 1)2(x + 1)9

"N.

.r

Fig. 178

(b) A Flex occurs at the point (a,b) for which (if Y"
is continuous)

y" = 0, Co

with a change in sign of this derivative as x passes
through a. For example, each of the curves:



n

SKETCHING 197

Y = x3s y "0 = 0 y
3 = x5, y "o = c°

Fig. 179

has a flex point at the origin. Such points mark a
change in sign of the curvature (that is, the center
of curvature moves from one side of the curve to an

opposite side). (See Evolutes.)

Note: Every cubic y = ax3 + bx2 + cx + d is

symmetrical with respect to its flex.

7. SINGULAR POINTS: The nature of these points, when

located at the origin, have already been discussed to
some extent under (4). Care must be taken, however,

against immature judgment based upon indications only.
Properly defined, such points are those which satisfy

the conditions:

assuming f(x,y) a polynomial, continuous and differenti-
able. Their character is determined by the quantity:

F (fxy)2 fx afYY

That is, for

F < 0, an _isolated (hermit) point,

F = 0, a .P.01),

F > 0, a node (double point, triple point, etc.).
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AiThus, at such a point, the slope: = - v.,;; has the
LY

indeterminate
0

form .

0

Variations in character are exhibited in the examples
which follow (higher singularities, such as a Double
Cusp, Osculinflexion, etc., are compounded from these
simpler ones).

8. POLYNOMIALS: y = P(x) where P(x) is a polynomial
(such curves are called "parabolic"). These have the
following properties:

(a) continuous for all values of x;

(b) any line x = k cuts the curve in but one point;

(o) extends to infinity in two directions;

(d) there are no asymptotes or singularities;

(e) slope at (a,0) is Limit(V211] as x -4 a;

(f) if (x-a)k is a factor of P(x), the point (a,0) is
ordinary if k = 1; max-min. if k is even; a flex if
k is odd ( 1).
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Fig. 180
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ILLUSTRATIONS (Continued):

X

y

X

X

X

I 1--
Yn

)

!FY' /

\

Fig. 181
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10. SEMI-POLYNOMINALS: y' = P(x) where P(x) is a

nomial (such curves are called
sketch 1141 semi-paraboll(!

curves, it may be found ex-
pedient to sketch the curve
Y = P(x) and from this ob-
tain the desired curve by
taking the square root or
the ordinates Y. Slopes at
the intercepts should be
checked as Indi.:ated In (4)

The example s.lown Is

Y = y2 = X(5 - x)(x - 2)2.

In projectin, the maximum
Y's and v's occur at the
same x's; negative Y's yield
no correspondim y's; the
slope at (2,0) is

Limit y Limit

x 2 (x-2)=x 4 2 l).(3-71

= + v.

11. EXAMPLES:

(a) Semi-Poi momials
y2 x2

y2 = x2(x 1)

y2 = X3(
X 1)

= xi( 1 - x2)

y2 = ( 1 - x`')3

y2 = x(1 X2)

= X2( 1 X3)

y- = x4(1 - X3)

poly-

"semi-parabolic"). In

Fig. 182

y2 = x2( 1 - x)

y2 = x3( 1 - x)

y2 x4( x3

X

y2 - x4( 1 x4) y2 = x5( x 1)4

y2 = x( x 1)( x - 2) y2 =
x2( x2 x2 4)3
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(b) Asymptotes:

Ft2 x2 112 (yr x2y + y2x = : [lc= 0, y= 0, x+ y= 0].

y3= x( Et2 x`) [x+ y =0]. x3 + y3= a3 [x + y m 0].

,x3- a(xy+ e)= 0 : [ x= o] . (2a -x)x2- y3=0 : [x+ y = -3
2a

J.

y2( x2 - y2) - 21,y3+ 213x =0 : [y = 0, x y = a, x+ y+ 0].

AY - x)2( Y + 2x) = 9913. (3' - b)(Y - c)x2 = a2y2.

x2y2 a
2y2 + b2 X2 0. ( x y) xy - a( x + y) = b3.

( x-y) 2( x-2y)( x-3y) - 2a( x3-y3) - 2a2( x+y)( x-2y) = 0 : [four

asymptotes].

.
x2( x+y)( x-y) 2 + ax

3,
x-y) - a

2y3 = 0 : [x = t a, x-y+a= 0,x-y=
2

,

x+y+
2
= 0],

(x2 y2)( y2
- 4X2 - 610 + 5x2y 3xy2

2y3
-
x2 _

x,y 1 = 0

has four asymptotes which cut the curve again in eight points

upon a circle.

4( x4 + y4) 17x2y2 4x( 4y2 - x2) + 2(x2 - 2) = 0 has asymptotes

that cut the curve again in points upon the Ellipse

x2
+

45,2 4,

(c) Singular Points:

a(y-x)2 x3 [Cusp].

( y-2)2 = x( x-1)2 [ Double

Point]

x4
-
2x2y xy2

+
y2

0 [Cusp

of second. kind at origin]

y2 = 2X2Y + X4Y 2x4 (Iso-

lated Pt ],

x
3
+ 2x

2
+ 2xy . y2 + 5x . 2y

= 0 [Cusp of first kind],

( 2y+x+1)2 = 4(1-x)5 [ Cusp ],

a3y2 2abx2y = x5 [ Osculin-

flexion]

y2 2x2y x4y_ x4 = 0 [Double

cusp of second. kind at origin],

y2 2x2y x4y x4 rx Doublt,

Cusp].

X4 - 2ax
2y

- axy
2

+ a2y2 e 0

[Cusp of second kind.],
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12, SOME CURVES AND THEIR NAMES:

Alysoid (Catenary if' e = e): aR . c2 + s2.

[

Jowditch Curves (Lissajous): x = Asin(nt + c)
y = b.sin t

(See Osgood's Mechanics for figures).

a2
2

Bullet Nose Curve: m - = 1.

Cartesian Oval: The locus of points whose distances,
rl, r2, to two fixed points satisfy the relation:
rl + mr2 = a. The central Conics will be recognized as
special cases.

Catenary of Uniform Strength: The form of a hanging
chain in which linear density is proportional to the

tension.

n u
Cochleold: r = a.(si8 --). This is a projection of a

cylindrical Helix.

Cochloid: Another ram-for the Conchoid of Nicomedes.

Cocked Hat: (x2 + lay - a2)2 =
y2(8.2 y2).

a 2 b
Cross Curve: m + m . 1.

Devil Curve: y4 + aye - y4 + by2 . O. This curve is
found useful in presenting the theory of Riemann surfaces
and Abelian integrals (see AMM, v 34, p 199).

Epi: r.cos 1(0 = a (an Inverse of the Roses; a Cotes'

Spiral).

Folium: The pedal of a Deltoid with respect to a

point on a cusp tangent.

Oerono's,Lemniscate: x4 = a2(x2 - y2).

Hippoptilt of Eudoxus: The curve of intersection of a

circular cylinder and a tangent sphere.

Horopter: The intersection of a cylinder and a Hyper-

bolic Paraboloid, a curve discovered by Helmholtz in his

studies of physical optics.

,11Hospital's Cubic: Identical with the Tschirnhausen

Cubic and the Trisectrix of Catalan.
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SOME CIMVES AND THT,R NAMES (Continued):

uc!exus: Et24 , b4(i ti:!ed by

Eudoxu:; the pc,

Kappa Curve: y2 x2 F si2) = a2x2, orr = t acot O.

Lamt: Curves: ()
n

+ ("') . 1. (See Fvolutes).

Pearlf: c:r Shwe: y" k(a - x)P.xn, where the expo-
nents are pe::ItIvc :nte,-ers.

b2y2 = x3(a - x). Pear shaped. See this
section 6(a).

Poinsot's rcosh kU = a.

REadvatrox of jipplas: r
2aU

.sin U = ---
n

Rh3duneae (Hose.) : r = a.-!os k U. Theve are Epitro-
chotdn.

Sem!-Tr:dent:

xy` = a3 : Palm Stems.

xy2 = Th2(1? - x) : Archer's Bow.

x(y2 + b') = aby : Twisted Bow.

x(:i2 - b2) = ahy : Pilaster.

x(y2 - h2) ab2 : Turinel.

xy2 = m(x2 + 2bx + 1.12 c`): Urn, Goblet.

b2xy2 . (a - x)3 : PyramId.

(.22yy2 ,.-, (a - - Y)2 : Festoon, Hillock, Hel-
met.

d2xy2 ( a)(x b)(x - c) : owe P(..t., Trophy,
Swir and Chair, Crane.

Seuentino: A projectior, or the firopter.

Per -us: Syet:on a turns by

plare:! taken varallel Its axls.

Svnta(!tr:x: ,r a pc:;:.nt '>r the lanr:ent to a

Tract: x a% a Crom thy. Q.,' tan-

g,!ncy.
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SOME CURVES AND THEIR NAMES (Continued):

Trident: xy = ax3 + bx2 + cx + d.

Trisectrix of Catalan: identical with the Tschirn-
hausen Cubic, and l'Hospital's Cubic.

Trisectrix of Maclaurin: :.(x2 +

205

y2) a(y2 3x2). A

curve resembling the Folium of Descartes which Maclaurin
used to trisect the angle.

Tschirnhausen's Cubic: a = r.cos3 , a Sinusoidal

Spiral.

Versieraf Identical with the Witch of Agnesi. This is
a projection of tbe Horopter.

Vivianl's Curve: The spherical curve x a.sin c cosy,

y = wcos2
Cf, z = a.sin y, projections of which include

the Hyperbola, Lemniscate, Strophoid, and Kappa Curve.

;ix = xy: See A.M.M.: 28 (3921) 141; 38 (1931) 444;

oat. (1933).

BIBLIOGRAPHY
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SPIRALS

HISTORY: The investigation of Spirals began at least
with the ancient Greeks. The famous Equiangular Spiral
was discovered by Descartes, its properties of self-
reproduction by James (Jacob) Bernoulli (1654-1705) who
requested that the curve be engraved upon his tomb with
the phrase "Eadem mutate resurgo" ("I shall arise the
same, though changed").*

1. EQUIANGULAR SPIRAL: 1r = a.ee'°"41. (Also called

Logarithmic from an equivalent form of its equation.)
Discovered by Descartes in 1638 in a study of dynamics.

r

rig, 183

(a) The curve cuts all radii vectores at a constant

angle 4. ("Ifr m tan a).

Lieumen, W.: Luetigee and Merkwurdigee von Zehlen and Porten,

p. 40, gives a picture or the tombstone.
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dr

(h) Curvature: Since p = v.sin a, R = r.csc a =CP
dp

(the polar normal). R = s.cot a.

dr (Sk)r.g.2% sin a,
(c) Arc Length: Toi

`1:10"ds
) = (r.cot

and thus s = r.sec a = PT, where s is measured from
the point where r = C. Thus, the arc length is equal
to the polar _tangent (Descartes),

(d) Its pedal and thus all successive pedals with
respect to the pole are equal Equiangular Spirals,

(e) Evolute: PC is tangent to the evolute at C and
angle PCO = a. OC is the radius vector of C. Thus the
first and all successive evolutes are equal Equi-
angular Spirals.

(f) Its inverse with respect to the pole is an Equi-
angular Spiral.

(g) It is, Fig. 184, the stereographic projection

(x = k tan
2

cos 0,

y = k tan i.sin 0)

of a Loxodrome
(the curve ;:utting
all meridians at a
constant angle: the
course of a ship
holding a fixed
direction on the
compass), from one
of its poles onto
the equator (Hal-
ley 1696).

(h) Its Catacaustic and Diacauatic with the light
source at the pole are Equiangular, ,Spirals.

(i) ;Aengths of radii drawn at equal angles to each

other f011m a geometric progression.

(j) Rout If the spiral be rolled along a line,
the path of the pole, or of the center of curvature
of the point of contactvls a straight line.
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go.

4 \

SPDXALS

(10 The septa of the Nautilus

are Equiangular Spirals. The

curve seems also to appear

in the arrangement of seeds

in the sunflower, the forma-

tion of pine cones, and other

growths.

Fig. 1B5

(1) The limit of a succession of Involutes of an
given curve is an Equiangular Spiral.
Let the given curve be a = f(e) and denote by 6n the
arc length of an nth involute. Then all first in-
volutes are given by

ci + Odo = co + r(o)do,

0

where c represents the distance measured along the
tangent to the given curve. Selecting a particular
value for c for all successive involutes

s2 = !tc + ce + f(0)dej dO

o

sn to tO +002/21+ 03/31+ .;.+ f f(e)dO]ntha

c
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where this nth iterated integral may be shown to ap-
proach zero. (See Byerly.) Accordingly,

02 03
ori

= Limit sr), = e(e 4.-27 +-57 ... ...)
n =

or Is = c(ef/ - p

an Equiangular Spiral.

(m) It is the development of a Conical Helix (See
Spiral of Archimedes.)

2. THE SPIRALS:

following:

r = a0 Include as special cases the

1r

Conan but studied particu-
larly by Archimedes in a
tract still extant. He prob-
ably used it to gquare the
circle).

(a) Its polar subnormal
is constant.

(b) Arc length from 0 to

9: e 14rF 3.034472-6

(Archimedes).

r3
(c) A = -6--a- (from 0 = 0

to 0 r/a).

(d) It is the Pedal of
the Involute of a Circle
with respect to its center. This suggests the descrip-
tion by a carpenter's square rolling without 04pping
upon a circle, Fig. 187(a). Here uT = AB = a. Let A
start at A', B at 0. Then AT = arc A'T = r w se. Thus
B describes the Spiral of Archimedes while A traces
an Involute of the Circle. Note that the center of
rotation is T. Thus TA and TB, respectively, are
normals to the paths of A and B.

Archimedean (due to

118. 1136
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Fig. 187

(e) Since r = a0 and ;. = /41, this spiral has found

wide use as a cam, Fig. 187(b) to produce uniform
linear motion. The cam is pivoted at the pole and
rotated with constant angular velocity. The piston,
kept in contact with a sprin device, has uniform
reciprocating motion.

(f) It is the Inverse of a Reciprocal Spiral with
respect to the Pole.

(g) "The casings of centrifugal pumps, such as the
German supercharger, folic this spiral to allow air

which Increases uniformly in volume with each degree
of rotation of the fan blades to be conducted to the
outlet without creating back-pressure." - P. S. Jones,
18th Yearbook, N.C.T.M. (1945) 219.



(ii) The crtho-

t. Ion

of a Conical Helix

on a plane per-

pendlcular tz: its

axis is a Spiral

or Archimedes. The

development or

this Helix, how-

ever, !s an

Equiana,,ular Spiral

188) .
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188

1 Reciprocal (Varignon 1704). (Some-

times called Hyperbolic because of its analogy to the

equation xy = a).

(a) Its polar sub-

tar-went is con-

stant.

(h, Its asymptote

as a units rrom

the InItlal line.

Limit risinU=
U 0

Limit a.sin
0 a 0

= a. Fie, 189
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(c) Arc Lengths of all circles (centers at the pole)
measured from the curve to the axis are constant
(= a).

(d) The area wounded by the curve and two radii is
proportional to the difference of these radii.

(e) It is the inverse with respect to the pole of an
Archimec'ean Spiral.

(f) Roulette: As thr curve rolls upon a line, the
pole describes a Tractrix.

(g) It is a path of a Particle under a central force
which varies as the cube of the distance. (See
Lemniscate 4h and Spirals 31.)

rrT7.---)74 1r2 = a201 Parabolic (because of its

analogy to y2 = a2x) (Fermat 1636).

(a) It is the inverse with

respect to the pole of a

Lituus.

n = -1/2

Fig. 190

r2 a2 Li taus (Cotes, 1722,. (Similar

in form to an ancient Roman Gmpet.)

(a) The areas of all circular sector:; are constant
2

2 2 "



(b) It is the

inverse with re-

spect to thc. pole

of a Parabolic

Spiral.

(c) Its asymptote

is the initial line.

Limit rsin 0 =

. 0

Limit Nib sin0
o

- o.

SPIRALS
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Fig. 191

(d) The Ionic . _ 1

diioi

Volute: Together

with other spirals,

the Lituus is used

as a volute in

architectural de-

sign. In practice,

the Whorl is made

with the curve

emanating from a circle drawn about the pole.

Fig. 192

3. THE SINUSOIDAL SPIRALS: rn = ancos n0 or

rn = ansin nO. (n a rational number). Studied by Mac-
laurin in 1718.

(a) Pedal Equation: rn+1 = anp.

(b) Radius of

which affords
structing the

nCurvature: r
R =

a

(n + 1)rn-1 ITTTY5
a simple geometrical method of con-
center of curvature.

(c) Its Isoptic is another Sinusoidal Spiral.
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(d) It Is rectifiable if1 is an integer.

(e) All positive and er;ative Pedals are again
Sinusoidal Spirals.

(f) A body acted upon by a central force inversely
proportional to the (2n + 3) power of its distance
moves upon a Sinusoidal Spiral.

(g) Special Cases:

n Curve

-2 Rectangular Hyperbola

-1 Line

-1/2 Parabola

-1/3 Tschlrnhausen Cubic

1/3 Cayley's Sextic

1/2 Cardioid

1 Circle

2 Lemniscate

(In connection with this family see also Pedal Equa-
tions 6 and Pedal Curves 3).

(h) Tangent Construction: Since rfl-1 pl - ansin nO,

r'

= - cot nO = cot(n - nO) = tan y

and y = nO -
2

which affords an immediate construction of an arbi-
trary tangent.
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4. EULER'S SPIRAL: (Also called Clothoid or Cornu's
Spiral). Studied by
Euler in 1781 in connec-
tion with an investigation
of an elastic spring.

Definition:

[ati dx = sin t.dt

Va dy = acos t.dt,

or [R.s = a2

S
2 = 2a2 t

Asymptotic Points:

a
xo,Yo = 2

Fig. 193

(a) It is involved in certain problems in the diffrac-
tion of light.

(b) It has been advocated as a transition curve for
railways. (Since arc length is proportional to curva-
ture. See AMM.)

5. COTES' SPIRALS:
These are the paths
of a particle sub-
ject to a central
force proportional
to the cube of the
distance. The five
varieties are in-
cluded in the equa-
tion:

P

1
= + B.

They are:

Fig. 194
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1. B = 0: the Equiangular Spiral;

2. A = 1: the Reciprocal Spiral;

3.
1

= a.sinh n0;

4.
1
= acosh n0;

5.
i

= asin nO (the inverse of
the Roses).

The figure is that of the Spiral r.sin 40 = a and its
inverse Rose.

The Glissstte traced out by the focus of a Parabola
sliding between two perpendicular lines is the Cotes'
Spiral: r.sin 20 = a.
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STROPHOID

HISTORY: First conceived by Barrow (Newton's teacher)
about 1670.

1. DESCRIPTION: Given the
curve f(x,y) = 0 and the
fixed points 0 am A. Let
K be the intersection
with the curve of a vari-
able line through O. The
locus of the points PI
and P2 on OK such that
KP1 = KP2 = KA is the
general Strophoid.

Fig. 195

2. SPECIAL CASES: If the curve f = 0 be the line AB and
0 be taken on the perpendicular OA = a to AB, the curve
is the more familiar Right Strophoid shown in Fig. 196(a).

r'

k.) -

Fig. 196

This curve may also be generated an in Fig. 196(b). Here
a circle of fixed radius a rolls upon the line M (the
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asymptote) touching it at R. The line AR through the
fixed point A, distant a units from M, meets the circle
in P. The locus of P is the litht Strophold. For,

(oV)(VB) (VP)`

and thus BP is perpendicular to OP. Accordingly, angle
KPA = angle KAP, and oo

KP KA,

the situation of Fig. 196(a).

The special oblique Strophoid (Fig. 197(b)) is gen-
erated if CA is not perpendicular to AB.

Fig. 197 (b)

. This F:trophoid, formed when r = 0 is a line, can be
identified as a Cissoid of a line and a cIrcle. Thus, in
Fig. 197, draw the fixed circle through A with center at
O. Let E and D be the Intersections of AP extended with
the line L and the fixed circle. Then in Fig. 197(a):

ED . a.cos 2ye fiec y

and AP . 2a.tan 0.sin y = 2acot 2y,sin y.

Thus AP ED,

and the locus of P, then, is the Cissotd of the line L
and the fixed circle.
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EQUATIONS:

Fir. 196(a), 191(a):

r = a(sec u an u),(Pole at o); or
da - x

Fig. 196(b) :

r = a(sec u - 2cos U),(Pole at A); or y2 =
x2(a x)

a x

Ft 197(b):

r = a(sin a - sin u).csc(a U),(Pole at o).

4. METRICAL PROPERTIES:

A (loop, Fig. 196(a)) = a2(2 -

5. GENERAL ITEMS:

(a) It is the Pedal of a Parabola with respect to any
point of its Directrix.

(b) It is the inverse of a Rectangular Hyperbola with
respect to a vertex. (See Inversion).

(c) It is a special
Kieroiu.

(d) It is a stero-

graphic projection of
Viviani's Curve.

A
(e) The Carpenter's
Square moves, as in the
generation of the Cis-
soid (see Cissoid 4c),
with one edm passing

/r
through the fLxed
point S (Fig. 198)
while its corner A
moves along the line

Fig. 198
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AC. If BC = AQ = a and C be taken as the pole of
coordinates, AB = assecO. Thus, the path of Q is the
Strophoid:

r = assec0 - 2a.cos0

BIBLIOGRAPHY
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TRACTRIX

HISTORY: Studied by Huygens in 1692 and later by Leibnitz,
Jean Bernoulli, Liouville, and Seltrami. Also called
Tractory and Equltangential Curve.

Fig. 199

1, DESCRIPTION: It is the path of a particle P pulled by
an inextensible string whose end A moves along a line.
The general Tractrix is produced if A moves along any
specified curve. This is the track of a toy wagon pulled
along by a child; the track of the back wheel of a
bicycle.

Let the particle P: (x,y) be pulled with the string
AP an a by moving A along the x-axis. Then, since the
direction of P is always toward A,

y

a2
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2. EQUATIONS:

[

x . a.ln(sec o + tan (i) - a.sin 0

TRACTPIX

x = a.arc soon Z a2 y2 .

a

y = aar-)50

s = a.ln see

3. METRICAL PROPERTIES:

(a) K = R = a.cotT

a2 + R2 = a2e2241

(b) A na2 [A 4 ftV a2-y2 dy (from par. 2, above
. area of the circle
shown)j.

2.L1A
2

(c) Vx (Vx = halfthe volume of the sphere of
3 radius a).

(d) Zx = kna2 (2x = area of the sphere of radius a).

4. GENERAL ITEMS:

(a) The Tractrix is an involute of the Catenary (see
Fig. 199).

(b) To construct the tangent, draw the circle with
radius a, center at P, cutting the asymptote at A.
The tangent is AP.

(a) Its Radial is a Kappa curve.

(d) Roulette: It 1.8 the locus of the pole of a
Reciprocal Spiral rolling upon a etraight line.

(e) Schiele's Pivot: The solution of the problem of
the proper form of a pivot revolving in a step where
the wear is to be evenly distributed over the face
of the bearing is an arc of the Tractrix. (See Miller
and Lilly.)
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Fig. 200

(f) The Tractrix is utilized in details of mapping.

(See Leslie, Craig.)

(g) The mean or Gauss curvature of the surface gen-
erated by revolving the curve about its asymptote
(the arithmetic mean of maximum and minimum curvature

at a point of the surface) is a negative constant
(-1/a). It is for this reason, together with items
(c) and (d) Par. 3, that the surface is called the
"pseudo-sphere". It Corms a useful model in the study

of geometry. (See Wolfe, Eisenhart, Graustein.)

(h) Prom the primary definition (see figure), it is
an orthogonal trajectory of a family of circles of

constant radius wit. centers on a line,
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TRIGONOMETRIC FUNCTIONS

HISTORY: Trigonometry seems to have been developed, with
certain traces of Indian influence, first by the Arabs
about 800 as an aid to the solution of astronomical prob-
lems. From them the knowledge probably passed to the
Greeks. Johann Willer (c.1464) wrote the first treatise:
De triangulis omnimodis; this was followed closely by
others.

1. DESCRIPTION:

y s.n x
y x:Se

Fig. 2C1

2. INTERRELATIONS:

(a) From the figure: (A + B + C = n)

a b c
= = 2R

sinA sinti = sinC

Lsin Aoll sin(B+0) = sinBcosC + cosBsinC
cos(B+C) at cosBcosC - sinBsinC
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Fig. 202

(b) The Euler form:

Z = e
Ix = cosx + isinx;

= e
-ix =cosx- isinx;

%

(con + i.sinx)
k

=

cos kx + i.sin kx

produces, on identify-

ing reals and

imaginaries:

sin 2x = 2sinxcox cos 2x = 2cos2x - 1

sin 3x = 3sinx - 4siex cos 3x = 4c0s3x - 3cosx

sin 4x = 4sin cosx - 8siexcosx cos 4x = 800s4x - 8cos2x + 1

etc.

(c) A Reduction Formula:

cos kx = 2cos(k-1)xcosx - cos(k-2)x

sin kx = 2sin(k-1)xcosx - sin(k-2)x

(d) Since zk = cos kx + isin kx; Tk = cos kx -i.sinkx,

k --k k k
z + z = 2icos kx and z - z = 2isin kx.

Thus to convert from a power of the sine or cosine
into multiple angles, write

,z+-2 %n k k
cosnx =k

2
---) , expand and replace z + z by 2'cos kx

z_

i
i

7%
,

n k k
sinnx= (--- expand and replace z - z by 21sin kx,

2

with iE = 1.
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For example:

sin2x =

sin3x =

sin4x

sinsx -

(1 - cos 2x)

2

(3nln x - sin 3x)

4

(cos 4x - 4cos 2x + 3)

8

(sin 5x-5sin 3x+10sin x)

16

COS
2
X -

(1 + cos 2x)

(cos3x + .5COS x)
COS

3
X -

4

(cos 4x + 4cos 2x + 3)
COS

4
X -

8

COS X =
(cos 5x+5cos 3x+10cos x)

16

(e)
E sin kx =

k=1

2; cos kx =
k=1

sin
2 2

n + nx1
x'sin

cos

sin
2

n

2

+ nx1
x.sln

2

in
2

(f) From the Euler form given in (b):

sin x = (ix),

sin (ix) = i'sinh x,

con x = cosh (ix)

cos (ix) = cosh x

3. SERIES:

02

(a) sin x ( -1) k

2k+1

(2k+1): )

x
2

<

0

2k

on x = 2( -1)k
x

(21) :
0

x2 <

c0

3
2 17 7 62 2

/tan x = x + +
15

x- +
315

x A
2

428 35

1 X X
3

2x
s

x
7

cot x = . + .6., x
2

< 12 pX 3 45 945 4725

=
1 2x

= + x2 0112
k=1
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x2 4 ,x 5x ol xe 277 _8 2 n2

7 + 24 720 + 8o64
x + ..., x < .4-+*.

1 x 7
CSC x =

3
+

x
31 5- + "" X

2 < n2

X
+

-6
+

X360 1120
=

. 1
+ 2 ( -1)k

2x-
x

k=1
x2 - 2

1 x3 1,3 x5 135 x7
(b) ESTO Sir= = X + 0 4-. + --.. -- + 2 1,

2 3 2.4 5 2.4.6 7 + " " 3c <

arc coex =
2

- arc sin x.

X
3

X
S

arc to :-1 x + ..., X2 <

n 1 1 1 1

2 x 37 37 4' 57 $$"

arc cotx =
2
- - arc tan x.

arc secx =
2

- arc CSC X.

x 1.

arc °SOX -1 +
1 1 13 1 135 1--

x 2 3x- 24 -57g 246 73c7 + x2 > 1.

i. DIFFERENTIALS AND INTEGRALS:

d(sin x) = cos x dx

d( cos x) = -sin x dx

d( tan x) = sec2x dx

(tract x) = -csc2x dx

d(sec x) = sec x tan x dx

d( csc x) -csc x cot x dx.

dxd( arc sin x) = -d( arc cos x)1 - x

d( arc tan x) =
1 +

dx
x2 d'arc cot x)

dx
d( arc sec x) - -d( arc csc x).

xRr-T.

ftan x dx = In I sec xl

fcot x dx = In lain x I

fsec x dx = In leec x + tan x

f cac x dx = In Icac x - cot x I ln I tan -
2
x
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5. GENERAL ITEMS:

(a) Periodicity: All trigonometric functions are

periodic. For example:

229

y = Asin Bx has period:
2n

and amplitude: A.

y = Atan Bx has period: B

(b) Harmonic Motion is defined by the differential

equation:

+ B2.s =.(] .

Its solution is y = locos (Bt + in which the

arbitrary constants are

A: the amplitude of the vibration,

T: the phase-lag.

(c) The Sine (or Cosine) curve is the orthogonal 2s2-

jection of a cylindrical HeliL, Fig. 203(a), (a curve

cutting all elements of the cylinder at the same

angle) onto a plane parallel to the axis of the

cylinder (See Cycloid 5e.)

(a) Fig. 203 ( b)

(d) The Sine (or Cosine) curve is the Aevelopment of

an Elliptical section of a right circular cylinder,

Pig 203(b). Let the intersecting plane be
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2 k
1

and the cylinder: (z-1)2 x2 = 1

which rolls upon the XY plane carrying the point
P :(x,y,z) into P1:(x=0,y). From the planes

y k(1 - f).

But z = 1 - cos 0 1 - cos x.

Thus y (2)(1 + cosx)

A worthwhile model of this may be fashioned from a
roll of paper. When slicing through the roll, do not
flatten it.

(e) A ma2 of a Great Circle Route:* If an airplane
travelt on a great cir-
cle around the earth,
the plane of the great
circle cuts an arbitrary
cylinder circumscribing
the earth in an Ellipse.
If the cylinder be cut
and laid flat ai in (d)
above, the .'round -the-

world' course is one
period of a sine curve.

(f) Wave Theory: Trigo-
nometric functions are
fundamental in the de-
velopment of wave theory.
Harmonic analysis seeks
to decompose a resultant
form of vibration into
the simple fundamental
motions characterized by
the Sine or Cosine curve.
This is exhibited in
Pig. 205.

Fig. 204

*This in nondoonformal (i.e.) angles are not preserved).
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sinxi.stn2x

Composition of Sounds. A tuning fork with octave overtone would resemble the
heavy curve.

JJ I

Four Tuning Forks in UnisonDoMiSolDo in ratios 4 : 5 t 6 t S.

Violin.

French Horn.

Pig. 205

(From Harkin's Fundamental Mathematics. Courtesy of Prentice-Hall.)
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Fourier Development.of a given function i. the com-
position of fundamental Sine waves of increasing fre-
quency to form successive approximations to the
vibration, For example, the "step" function

y = 0,

Y = n,

is expressed as

for -n <x < 0 ,

for 0 <x <n,

sin 3x sin 5x sin 7x
y =

2 3 5 7
+ 2(sin x + + + +

Pig. 206

the first four approximations of which are shown in
Fig. 206.

BIBLIOGRAPHY

Byerly, W. E.: Fourier Series, Ginn (1893).
Dwight, H. B.: Tables, Macmillan (1934).



TROCHOIDS

HISTORY: Special Trochoids were first conceived by DUrer

in 1525 and by Roemer in 1674, the latter in connection

with his study of the best form for gear teeth,

1. DESCRIPTION: Trochoids are Roulettes - the locus of a

point rigidly attached to
a curve that rolls upon a

fixed curve. The name,
however, is almost uni-
versally applied to Epi-

AP. k

and Hypotrochoids (the

path of a point rigidly //".

attached to a circle
rolling upon a fixed
circle) to which the dis-

cussion here is re-

stricted. (\

Fig, 207

2. EQUATIONS:

Epitrochoids Hypotrochoids

[

x m mcos t - kcos(mt/b) x = ncos t + kcos(nt/b)

y 0 msin t - lsin(mt/b) y m nsin t - ksin(nt/b)

where m = a + b. where n m a - b,

(these include the Epi- and Hypocycloids if k - b).
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3. GENERAL ITEMS:

(a) The Limacon is the Epitrochoid where a = b.

(b) The Prolate and Curtate Cycloids are Trochoids of
a Circle on a line (Fig. 208):

Fig. 208

(c) The Ellipse is the Hypotrochoid where a = 2b,
Consider generation by the point P [Fig. 209(a)) .

Draw OP to X. Then, since arc TP equals arc TX, P was
originally at X and P thus lies always on the line OX.
Likewise, the diametrically opposite point Q lies al-
ways on OY, the line perpendicular to OX. Every point
of the rolling circle accordingly describes a diameter
of the fixed circle. The action here then is equiva-
lent to that of a rod sliding With its ends upon two
perpendicular lines - that is, a Trammel of Archi-
medes. Any point F of the rod describe:, an Ellipse
whose axes are OX and OY. Furthermore, any point G,
rigidly connected with the rolling circle, describes
an Ellipse with the lines traced by the extremities
of the diameter through 0 as axes (Nasir, about 1290).

Note that the diameter IS envelopes an Astroid
with OX and OY as axes. This Astroid is also the
envelope of the Ellipses formed 117 various fixed
points F of Eg. (See Envelopes.)
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(a) Fig. 209 (h)

(d) The Double Generation Theorem (see Epicycloids)
applies here. If the smaller circle be fixed [Fig.

209(b)) and the larger one roll upon it, any diamete:,
RX passes always through a fixed point P on the

smaller circle. Consider any selected point S of this

diameter. Since SO is a constant length and SO ex-
tended passes through a fixed point P, the locus of S

is a Limacon (see Limacon for a mechanism based upon

this). Accordingly, any point rigidly attached to the
rolling circle describes a Limacon. If R be taken on

the rolling circle, its path is a Cardioid with cusp

at P.

Envelope Roulette: Any line rigidly attached to
the rolling circle envelopes a Circle. (See Limacon

3k; Roulettes 4; Glissettes 5.)

(e) The Rose Curves: r = a cos ne and r = a sin nO

are Hypotrochoids generated by a circle of radius

- 1)a rolling within a fixed circle of radius

---
na the generating point of the rolling circle

(n + 1) '

being ! units distant from its center. (First noticed

by Suardi in 1752 and then by Ridolphi in 1844. See

Loris.)
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Fig. 210 ( b)

As shown in Fig. 230(b): OB = a, AB = b, OA = AP

act 121 bp, P . 2(a + u) m or 4
a

2b
- 2b

u,

Thus in polar coordinates with the initial line
through the center of the fixed circle and a maximum
point of the curve, the path of P is

r = 2(a - b) cos(m + 0) = 2(a - b) cos
a -

a

2b U.

BIBLIOGRAPHY

Atwood and Pengelly: Theoretical Naval Architecture (for
connection with study of ocean waves).

Edwards, J.: Calculus, Macmillan (1892) 343 ff.
Loria, G.: Apezielle algebraische and Transzendente

ebene Kurven, Leipsig (1902) II 109.
Salmon, G.: Higher Plane Curves, Dublin (1879) VII.
Williamson, B.: Calculus, Longmans, Green (1895) 348 ff.



WITCH OF AGNES!

HISTORY: In 1748, studied and named* by Maria Gaetana
Agnesi (a versatile woman - distinguished as a linguist,
philosopher, and somnambulist), appointed professor of
Mathematics at Bologna by Pope Benedict XIV. Treated
earlier (before 1666) by Fermat and in 1703 by Grandi.
Also called the Versiera.

Fig. 211

1. DESCRIPTION: A secant OA through a selected point 0
on the fixed circle cuts the circle in Q. QP is drawn
perpendicular 1,c, the diameter OK, AP parallel to it.

The path of P is the Witch.

* Apparent4 the result of a misinterpretation. It seamy Agnesi.00n-

fused the old Italian word "versorion (the name given the curve by

Grandi) which means 'free to move in any direction' with 'versiera'

vnioh means 'goblin', bugaboo', 'Devil's wife', etc. [See Scripts

Mathematics, VI (1939) 2116 VIII (1941) 135 and School Science and

Mathematics SINI (1940 57.]
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2. EQUATIONS:

[x = 2a.tan u y(x2 + 4a2) = 8a3.

Y = 2a.cos2U

3. METRICAL PROPERTIES:

(a) Area between the Witch and its asymptote is four
times the area of the given fixed circle (4na2).

(b) Centroid of this area lies at (0,11).

(e) Vi = 4n2a2.

(d) Flex points occur at U = f .

4. GENERAL ITEMS: A curve called the Pseudo-Witch is
produced by doubling the ordinates of the Witch. This
curve was studied by J. Gregory in 1658 and used by
Leibnitz in 1674 in deriving the famous expression:

1 1 1
4 = 1 - + - + .

BIBLIOGRAPHY

Edwards, J.: Calculus, Macmillan (1892) 355.
Encyclopaedia Britannica: 14th Ed., under "Curves,

Special."
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Addition of ordinates: 188

Aeroplane design: 48

Agnesi, Marta Gaetana: 237

Alexander the Great: 36

Alysold: 203

Apollonius: 23,36,86,127,133

Arbelos: 25

Archer's Bow: 204

Archimedes Spiral: (see

SpIrals, Archlmedean)

Archimedes Trammel: 3,77,108,

120,234

Astroid: 1-3;63,73,78,84,109,

111,126,140,156,157,163,169,

174,234

Asymptotes: 27,87,129,193,194,

195,202,211,213

Auxiliary Curves: 190

Barrow: 217

Bellavitis: 127

Beltrami: 221

Bernoulli: 1,12,65,67,68,69,

81,93,143,152,175,206,221

Besant: 108,175

Besicovitch: 72

Boltzmann: 106

Bouguer: 170

Bowditch Curves: 203

Brachistochrone: 68

Brianchon: 48

Brocard: 171

Balbus: 186

Bullet Nose Curve: 203

Calculus of Variations: 80

Calyx: 186

Cams: 6,137,210

Cardioid: 4-7;17,61,84,91,124,

125,126,140,149,151,152,153,

16,163,164,168,17:3,179,182,

214,235

Carpenter's Square: 28,50,209,

219

Cartesian Oval: 149,203

Cassinian Curves: 8-11;143,144

Catacaustic: (see Caustics)

Catalan's Trisectrix: 203,205

Catenary: 12-14;20,63,80,87,117,

124,126,174,177,182,183,203,

222

Catenary, Elliptic: 179,182,184

Catenary, Hn.rbolic: 182,184

Catenary of Uniform Strength:

174,203

Caustics: 15- 20;5,69.71,73,79,

E,1,87,149,152,153,160,163,

207

Cayley: 751 Sextic: 87,153,163,

214

Central force: 8,145,212,214,

215

Centrifugal pumps: 210

Centrode: 119

Cesttro: 123,125,126

Chasles: 85,119,138

Circle: 21-25;1)5,16,17,20,30)

31,61,69,79,91,126,127,128,

135,138,139,140,149,162,165,

168,171,172,174,180,182,183,

214,r03,233,'35

Cissoid: 26.30;20,126,129,141)

142,143,161,163,183,218,219

Clairaut: 77

Clothoid: (see Spirals) Euler)

Coohleoid: 203
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Cochloid: 203

Cocked Hat: 203

Compasv Constructicn: 1°8

Conchoid: 31-33;30,108,109,1'0,

121,141,142,148,203

Cones: 34-35;37,36,39

Conics: 36-55;20,78,79,87,88,

112,130,131,138,140,149,156,

163,173,188,189,195,203

Convolvulus: 186

Coronas: 81

Cornu's Spiral: (see Spirals,

Euler)

Cotes: 212; Spiral (see Spirals,

Cotes')

Crane: 204

Critical Points: 196

Crone Curve: 203

Crossed Parallelogram: 6,131,

158,183

Cube root problem: 26,31,36,:04

Cubic, l'ilospitalls: 203,P0')

Cubic Parabola: 56-59:89,186,19.'

Cubic, Tschirnhausen:

214

Curtate Cycloid: 65,69 (see

Trochoids)

Curvature: 60.64;53,36,167,172,

180,181,184,197,207,213,215,

223

Curvature, Constructif,n of Cen-

ter of: 54,55,145,150,213

(Mop: 20,27,90,192,197,199,200,

202

Cylinder: 229,230

Cycloid: 65-70;1,4,63,80,89,92,

122,125,126,136,137,138,139,

172,174,176,177,179,180,181,

182,183, (see also Epicycloids)

Damping factor: 190

da Vinci, Leonardo: 170

Deltoid: 71.44; 84,126,140,164,

169,174,203

Pe Mo!vre:

Decargues: 17'

!)0f.-tr'es: 6506,205,206,207

Devi c.ion, standard: 96

Devil Curve: 203

Diacaustio (see Caustics)

Diffraction of light: 215

Differential equation: 75,77

Diocles: 26,129

Directional Curves: 190

Discontinuous Curves: 100-107

Discriminant: 39,57,76,189

Double generation: 81

Duality: 48

DUrer: 175,233

"e": 93,94

Elastic spring: 215

Ellipse: 36-55;2,19,27,63,78,79,

88,1u9,111,112,120,139,140,

149,157,158,164,169,173,178,

179,180,182,183,184,189,195,

'02,299,230,234

vlliptic Catenary: 179,182,184

rnvelopes: 75-80;2,3,15,50,72,

1'3,:k5,87,91,108,109,110,111,

112,135,139,144,153,155,160,

161,175,180,181,234,235

Fpi: 203

Epicycloid: 81.85;4,5,63,87,122,

126,139,152,163,169,174,177,

180,182,183

Epitrochoids: (see Trochoids)

Equati'n of second degree: 39,

188

Equiangular Spiral (see Spirals,

Equiangular)

Equitangential Curve: (see

Tractrix)

Eudoxus, Hippopede of: 203

Eampyle of: 174,204

Euler: 67,71,82

Euler form: 94,116,226

Euler Spiral (see Spirals, Eu1er)
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Evolutes: 86- 92;2,5,15,16,19,20,

57,66,68,72,79,85,135,139,149,

152,153,155,173,187,197,204,

207

Exponential Curves: 93-97;20

Fermat: 237

Fermat's Spiral: (Bee Spirals,

Parabolic)

Festoon: 204

Flex point: 10,56,87,90,196,198

Flower Pot: 204

Folium of Descartes: 98-99;193,

205

Foil= 72; (Simple, Double,

Tri., tuadri.: 73,140,163,164,

174,203)

Fourier Development: 232

Fucia: 186

Functions with Discontinuous

Properties: 100-107

Galileo: 12,65,66,81

Gaussian Curve: 95

Gears: 1,69,81,137,233

Gerono's Lamniscate: 203

Glissettes: 108.112;50,121,122,

138,139,149,216

Goblet: 204

Grandi: 237

Graphical solution of oubics:

57,58

Great circle route! 230

Gregory: 238

Growth, Law of: 94

Gudermann: 113

Gudermannian: 115

Guillery: 69

Halley: 207

Harmonic Analysis: 230

Harmonic Motion: 6,67,229

Harmonic Section: 42

Hart: 131

Hathaway: 171

Helix: 69,203,209,211,229

Helmet: 204

Helmholtz: 203

Hessian: 99

Hillock: 204

Hippias, Quadratrix of: 204

Hippopede of Eudoxus: 203

Hire: 138,175

Horopter: 203,20.205

l'Hospital: 68; c.aic: 203,205

Huygens: 15,66,67,86,135,152,

155,186,221

Hyacinth: 186

Hyperbola: 36-55;19,27,63,78,

79,88,101,112,115,116,129,130,

139,140,144,149,157,163,164,

168,169,173,182,184,189,195,

205,214,219

Hyperbolic Catenary: 182,184

Hyperbolic Functions: 113-118

Hyperbolic Spiral: (see Spirals,

Reciprocal)

Hypocycloid: 81-85;1,63,71,87,

122,126,140,163,169,177,180,

182

Hypotrochoids: (see Trochoids)

Ionic Volute: 213

Ingram: 127

Instantaneous Center of Rota-

tion: 119-122;3,15,29,32,66,

73,85,153,158,176,209

Intrinsic Equations: 123-126;

92,180
Inversion: 127-134; 63

Involutes: 135.137;13,20,66,68,

85,87,125,126,155,156,164,

176,182,183,208,209,222

Isolated point: 192,197,200,

202

Isoptic Curves: 138-140;69,85,

121,213
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Jones: 210

Kakeya: 72

Kampyle of Eudoxus: 174,204

Kappa Curve: 174,204,205,222

Kelvin: 127,141,142

Kieroid: 141.142;29,33,219

Kite: 158

Lagrange: 15,67,75

Lambert: 113

Lame Curve: 87,164,204

Law of Growth (or Decay): 94

Law of Sines: 225

Least area: 72

Leibnitz: 56,68,155,175,186,

221,238

Lemniscate, Bernoulli's: 143-

147;9,10,63,130,157,163,168,

205,214

Lemniscate, Gerono's: 203

Light rays: 15,86

Limacon of Pascal: 148.151;5,7,

16,31,108,110,121,130,139,140,

163,234,235

Line motion: 84,132,158,210,234

Linkages: 6,9,28,51,132,146,151,

158,183

Liouville: 221

LissajousCurves(see Bowditch
Curves)

Lituus: 169,212,213

Logarithmic Spiral: (see Spirals,

Equiangular)

Loria: 186

Lucas: 171

Maclaurin: 143,160,163,182,205,

213

Mapping: 118,223,230

Maxwell: 136,175

Mayer: 113

Mechanical Inversors: 131

Mechanical solution of cubic: 57

Mechanisms, quick return: 183

Menaechm,1: 36

Mercator: 118,250

Mersenne: 65,81

Minimal Surfacer,: 13,183

Monge: 56

Montucla: 69

Morley: 171

Motion, harmonic: 6,229

Motion, line: 84,132,158,210,

234

MUller: 225

Multiple point: 20,192,197,199,

200,202

Napier: 93

Napkin ring: 17

Nasir: 234

Nautilus, septa of: 208

Neil: 186

Nephroid: 152.154;17,73,84,87,

126

Newton: 28,51,56,60,67,68,81,

175

Nicomedes, Chonchoid of: 31-33;

108,142

Node: 192,197,199,200

Normal Curve: 95,96

Nonnals: 91

Optics: 40,203

Orthocenter: 22

Orthogonal trajectory: 2',:3

Orthoptic: 3,73,138,139,149

Orthotomic: 15,20,87,160

Osculating circle: 60,63

Osculinflexion: 198,199,200,202

Ovals: 131,149,203

Palm Stems: 204

Paper Folding: 50,78,

Pappus: 25

Parabola: 36-551,12,13,19,20,

27,29,61,64,73,76,79,80,87,88,
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91,111,112,129,136,138,139,

140,149,156,157,161,163,164,

16+1,169,173,176,1, 2,183,14,7,

189,214,216,219

Parabola, Cubic: (see Cubic

Parabola)

Parabola, Semi - cubic: (see Semi.

cubic Parabola)

Parallel Curves: 155 - 159;79

Parallelogram, Crossed: 6,131,

158,183

Pascal: 36,65,148; Theorem of:

45 ff.

Pearls of Sluze: 56,204

Peaucellier cell: 10,28,52,131

Pedal Curves: 160-165:5,905,29,

65,72,79,85,136,138,144,149,

167,179,182,203,207,209,214,

219

Pedal Equations: 166-169;162,

177,213

Pendulum, Cycloidal: 68

Pilaster: 204

Pink: 186

Piriform; 204

Pivot, Schiele's: 222

Poinsot's Spiral: 204

Pointe, Singular: 192,199,200,

202

Polars: 41,42,43,44,133

Polynomial Curves: 64,89,194,198

Polynomial Curves, Semi-: 61,87,

201

Power of a point: 21

Probability Curve: 95

Projection, Mercator's: 118;

Orthogonal: 229;

Orthographic: 211;

Stereographic: 207,

219

Prolate Cycloid: 65,69 (see

Trochoids)

Pseudo - sphere: 223

Pseudo- witch: 238

Pursuit Curve: 170-171

Pyramid: 204

Quadratrix of Hippies: 204

',uadrifolium: 140,163

Quetelet: 15,127,160

Quick return mechanism: 183

243

Radial Curves: 172-174;69,73,

222

Radical Axle: 22

Radical Center: 22

Reciprocal Spiral: (see Spirals,

Reciprocal)

Reflection: (see Caustics)

Refraction: 69, (see Caustics)

RhodcLeae: (see Roses)

Rhumb line: 118

Riccati: 113

Ridolphi: 235

Roberval: 65,66,148

Roemer: 1,81,233

Roses: 85,163,174,216,235 (also

see Trochoids)

Roulettes: 175-185;13,29,65,73,

79,110,135,136,207,212,222,

233,235 (see Trochoide)

Sacchi: 169

Sail, section of: 14

Schiele's pivot: 222

Secant property: 21

Semi-cubic Parabola: 186-187;61,

87,157,192,201

Semi-polynomials: 61,87,201

Semi - trident: 204

Septa of the Nautilus: '08

Series: 117,227,228,232,238

Serpentine: 204

Shoemaker's knife: 25

Sierpinski: 107

Similitude: 22

Simeon line: 72

the Curve: 225,229,230,231,232

Sines, Law of: 225



244 INDEX

Singular points: 62,192,197,

199,200,202

Singular solutions: 75

Sinusoidal Spirals: (see

Spirals, Sinusoidal)

Sketching: 18e-205;155

Slope: 191

Slot machirm: 96

Sluze, Pearls of: 204

Snowflake Curve: 106

Soap films: 13,183

Spirals: 206-216

Spirals,

Archimedean: 20,136,164,169,

209,210,211,212

Cornu's: (see Spirals, Euler)

Cotes'; 72,169,215,216

Equiangular: 20,63,87,126,

136,163,169,171,175,206,

207,208,209,211,216

Euler: 136,215

Fermat's: (see Spirals, Para-

bolic)

Hyperbolic: (see Spirals,

Reciprocal)

Parabolic: 169,212,213

Poinsot's: 204

Reciprocal: )92,210,211,

212,216,222

Sinusoidal: 20,63,139,140,

144,161,162,163,168,205,

213,214

Spiral Tractrix: 137

Spiric Lines of Perseus: 204

Spring, elastic: 215

Squaring the circle: 36,209

Standard deviation: 96

Steiner: 24,127,179

Step function: 232

Stereographic projection: 207,

219

Strophoid: 217-220129,129,141,

142,163,205

Stubbs: 127

Sturm: 26

Suardi: 235

Supercharger: 210

Swing and Chair: 204

Syntractrix: 204

Tangent Construction: 3,13,29,

32,41,44,46,66,75,85.119,139,

145,150,155,168,214,222

Tangents at origin: 191,192

Tautochrone: 67,85

Taylor: '75

Terquems 160

Torus: 9,204

Tractory: (see Tractrix)

Tractrix: 221-224;13,63,87,126,

137,174,182,204,212

Trains: 24

Trajectory, orthogonal: 223

Trammel of Archimedes: 3,77)108)

120,234

Transition curve: 56,215

Trident: 205

Trifolium: (see Folium)

Trigonometric functions: 225-232

Trieection: 33,36,58,205

Trisectrlx: 149,163,205,205

Trochoids: 253-236;120,122,138,

159,148,176,204

Trophy: 204

Tschirnhausen: 15,152,203,205,

214

Tucker: 172

Tulip: 186

Tunnel: 204

Twisted Bow: 204

Unduloid: 184

Urn: 204

Varignon: 211

Versiera: (see Witch of Agnesi)

Versorio: (see Witch of Agnesi)

Vibration: 68,230,231,232



Viviani's Curve: 205,219

Volute: 213

Von Koch Curve: 106

Wallis: 65

Watt: 143

Wave theory: 230

INDEX 245

Weierstraes: 113

Weierstraos function: 107

Whewell: 87,123,124,125,126,180

Witch of Agnes': 237-238; 205

Wren, Sir Christopher: 66

x y
y u x : 205


