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FOREWORD

Some mathematical works of considerable vintage bave a timeless
quality about them. Like classics in any field, they still bring joy and
guidance to the reader. Books of this kind, if no longer readily available,
are being sought out by the National Council of Teachers of Mathematics,
which has begun to publish a series of such classics. The present title is
the fourth volume of the series.

A Handbook on Curues and Their Properties was first published in 1952
when the author was teaching at the United States Military Academy at
West Point. A photolithoprint reproduction was issued in 1959 by
Edwards Brothers, Inc., Lithoprinters, of Ann Arbor, Michigan. The
present reprint edition has been similarly produced, by photo-offset, from
a copy of the 1959 edition. Except for providing new front matter, includ-
ing a biographical sketch of the author and this Foreword by way of
explanation, no attempt has been made to modernize the book in any

~ way. To do so would surely detract from, rather than add to, its value.



ABOUT THE AUTHOR

Robert Carl Yates was born in_Falls Church, Virginia, on 10 March
1904. In 1924 he received a B.S. degree in civil engineering from Virginia
Military Institute. This degree was followed by an A.B. degree in psy-
chology and education from Washington and Lee University in 1926 and
by the M.A. and Ph.D. degrees in mathematics and applied mathematics
from Johns Hopkins University in 1928 and 1930.

While working on these later degrees Bob Yates was an instructor at
Virginia Military Institute, the University of Maryland, and Johns Hop-
kins University. After completing his Ph.D. degree, he accepted a posi-
tion as assistant professor, in 1931, at the University of Maryland, where
later he was promoted to associate professor. In 1939 he became associate
professor of mathematics at Louisiana State University,

As a captain in the Army Reserves, Professor Yates reported to the
United States Military Academy for uctive duty on 6 June 1942. Before
leaving the Academy he rose to the rank of colonel and the title of
associate professor of mathematics,

He left West Point in August 1954, when a reduction in the number
of colonels was authurized at USMA, and accepted a position as professor
of mathematics at Virginia Polytechnic Institute. In 1955 he became
professor of mathematics and chairman of the department at the College
of William and Mary. The last position he held was as one of the original
professots at the University of South Florida, beginning in 1960, He went
to this rew institution as chaitman of the Department of Mathematics,
resigning the chairmanship in 1962 in order to devote more time to teach-
ing, lecturing, and writing,

During his tour of duty at West Point, Dr. Yates spent many of his
summers as a visiting professor. Among the institutions he served were
Teachers College, Columbia University; Yeshiva University; and Johns
Hopkins University,

Robert Yates was a man of many talents, Although he was trained in
pure and applied mathematics, he became interested in the field of
mathematics education rather early in his professional career. In both

vii
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viii ABOUT THE AUTHOR

areas he built up a fine reputation as a lecturer and a writer. During his
lifetime he had sixty-odd papers published in various research and mathe-
matical-education journals, including the Mathematics Teacher, and in
NCTM yearbooks, He also wrote five books dealing with various aspects
of geometry, the caleulus, and differential equations. From 1937 until he
was called to active duty at West Point in 1942, he served on the editorial
hoard, and as editor of one department, of the National Mathematics
Magazine.

These were some of his professional achievements, His activities, how

. ever, were not limited to the world of mathematics. At VMI, where he

was a member of the track squad, dramatics and journalism claimed some
of his time. Music became a continuing resource. In later life his recrea-
tions included playing the piano as well as sailing, skating, and golf.

Dr. Yates. whose social fraternity was Kappa Alpha, was elected to two
scientific honor societies: Gamma Alpha and Sigma Xi, Holding member-
ship in the American Mathematical Society, the Mathematical Association
of America, and the National Council of Teachers of Mathematics, he
was at one period a governor of the MAA. He was also a member of the
MAA's original ad hoc Committee on the Undergraduate Program in
Muthematics (CUPM). In late 1961 he was selected by the Association
of Higher Education as one of twenty-five “outstanding college and uni-
versity educators in America today,” and on 4 February 1962 he was
featured on the ABC-TV program “Mect the Professor.”

Dr. Yates had been interested in mathematics education before 1939.
Hawaver, when he came to Louisiana State University, his work in this
field began to expand. Owing to his efforts, the Department of Mathe-
matics and the College of Education made some important changes in the
mathematical curriculum for the training of prospective secondary school
teachers. One of the most important additions was six semester houts in
geometry. Dr. Yates was given this course to teach, and for a text he
used his first book, Geometrical Tools. From this beginning his interest
and work in mathematics education increased, while he continued to
lecture and write in the areas of pure and applied mathematics,

The atmosphere at West Point was quite a change for Dr. Yates. How-
evet, even here he continued his activities in mathematics education. One
of his duties was to supervise and conduct courses in the techniques of
teaching mathematics. These were courses designed for the groups of
new instructors who joined the department staff annually: for most of the
faculty at the Academy, then as now, were active-duty officers who cime
on a first or second tour of three to four years” duration. In performing
this duty he was considered a superior instructor and also an excellent
teacher of teachers.
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ABOUT THE AUTHOR ix

After leaving the service Professor Yates continued his efforts to improve
mathematics education. During the summers he tanght in several different
mathematics institutes, and he was a guest lecturer in many summer and
academic-year institutes supported by the National Science Foundation.
In earlier years he both taught and lectured in the grandfather of all
institutes, the one developed by Professor W. W. Rankin at Duke Uni-
versity. In Virginia and later in Florida he served as a consultant to
teachers of mathematics in various school districts. During the academic
years 1961/62 and 196263 the University of South Florida was engaged
in an experimental television program. Professor Yates was the television
lecturer in the course materials developed through this program. As a
result of this program us well as the MAA lectureship program for high
schools, supported by the NSF, he traveled to all parts of Florida giving
lectures and consulting with high school teachers. :

Through afl these activities Dr. Yates greatly enhanced the field of
mathematics education. He built up a reputation as an outstanding lec-
turer with a pleasing, interest-provoking presentation and a rare ability
to talk while illustrating his subject. Those who have heard him will
long remember hip and his great ability, Others will find that his writ-
ings show, somewha'# vicariously, these same characteristics.

By his first wife, Naomi Sherman, who died in childbirth, he had three
children. Robert Jefferson, the eldest, is now in business in Colifornia.
Melinda Susan, the youngest, is now Mrs. Richard B. Shaw, the wife of a
Missouri surgeon. Mrs. Shaw majored in mathematics at Mount Holyoke
College and works as a computer programmer and systems analyst. The
second child is Daniel Sherman. He is following in his father’s footsteps
and has completed his doctorate in mathematics education at Florida
State University. He is a mathematics specialist at the Mathematics and
Science Center, a resource center serving the public schools in the city
of Richmond, Virginia, and in the counties of Chesterfield, Goochland,
Henrico, and Powhatan.

Dr. Yates passed away on 18 December 1963 and was interted in
Arlington National Cemetery.

Houston T. Kanrnes
Louisiana State Unicersity
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%x,¥ = Rectansular Coordinates,
osv = Polur Cocrdinate, (Radius Vector),
0 = Purameter or Polar Coordin:te,
4 = Inclinatlon of Tangent.
y = Angle between a Tangent and the Radius Vector to Point of
Tangency .,
s = Arc Length,
¢ = Arc of Evolute (or Standard Deviation).
p = Distince from Origin to Tangent,
L - Length; A = Areaj YV = Volume; o= Surfaée Arean,
Ux = Surfaco ol Revolution about the X-axlis,
V¢ = Volume of Revolutlion about the Xe-nxis,
M = Nommal Lengtli,
R = Radlus of Curvature,
K = Curvature,
v = Veloclty; a = Acceleration,
'=—d—-; °=i (t = Time or a Parameter),
dx dt
Fy = g , (or %) .
RVAY
2 = %+ 1y, o Complex Variable,
f(es,q) = O: The Whewell Intrinsic Equation,
f(R,8) = 0: The Cepdro Intrinsic Equation,
f(r,p) = 0: The Pedal Equation,

NOTATION
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PREFACE

This volume proposes tu supply to student and teacher
& qulck reference on propertles of plane curvea. Rather
than a systematic or comprehens!ve study of curve theory,
+t ls a collectior of informatlon which might be f'ound
usefu? in the classroom and In englneering practice. The
alphabetical arrangement !s glven to ald In the search
for this inf'ormation.

It seemed necessary to Incorporate sections on such
toplcs as Evolutes, Curve Sketching, and Intrirslic Equa-
ticrg to make the !tems and properties listed under var-
lous vurves readily understandable, If the boer: 18 used

83 & text, it would be deslrable to present the material
in the rollowing order:

I II

ANALYSIS and SYSTEMS CURVES
Caustics Astroid
Curvature Card {oid
Envelopes Cassinian Curves
Evolutes Catenary
Functions with Discontinuous Circle

Properties Ciaeold
Glisse*tes Conchoid
Instantanoous Centers Conics
Intrinsic Equations Cubic Parabola
Inveraion Cycloid
Involutes Deltoid
Isoptic Curves Epi- and Hypocycloid
Parallel Curves Exponential Curves
Padal Curves Folium of Descartes
Pedal Equations Hyperbolic Functions
Rad:al Curves Kieroid
Roulettes Lemniscate
Sketching Limacon
Trochotds Nephroid

Purguit Curves
Sem!{-cubic Parabola
Spirale

Strophoid

Tractrix

Trigonometric Functions
Witch

i




PREFACE

Since derivations of all properties would make the
volume cumbersome and somevwhat devold of general inter-
est, explanations are frequently omitted. It is thought
possible for the reader to supply many of them wlthout
difficulty.

Space is provided occasionally for the reader t¢ in-
sert notes, proofs, and references of his own and thus
fit the material to his particular interests.

It is with pleasure that the author acknowledges
valuable assistance in the composition of this work.
Mr. H. T. Cuard criticized the manuscript and offered
helpful suggestions; Mr. Charles Roth and Mr. William
Bobalke assisted in the preparation of the drawings;
Mr. Thomas Vecchio lent expert clerical ald. Apprecia-
tlon is also due Colonel Harris Jones who encouraged the
project.

Robert C. Yates
June 1947

For an informative account see "Historical Stages
in the Definition of Curves" by C. B. Boyer in National
Mathematics Magazine, XIX (1944-5) 204-310.




ASTROID

HISTORY: The Cycloldal curves, Including the Astrold,
were discovered by Roemer (1674) In his search for the

best form for gear teeth. Double generation was first
noticed by Danlel Bernoulli in 1725,

1. DESCRIPTION: The Astrold s a hypocyelold of four
cusps: The locus of a point P on a cipcle rolling upon
the inside of arother with radius four times as large,

/

//
1&(_/_” a ‘ Q
K’;}A
X,

N

%
"{"‘(“ & Q‘-"Q‘E .

(a) Fig. 1 (b)

Double Generation: It may also be described by & point
2

on a ¢ircle of radius ﬁ? rolling upon the inslde of a

fixed circle of radius a. (8ee Eplcycloids)
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2. EQUATIONS:

A%y

i,

ASTROID

5 o X = a cos’t = (3)(3 cos t + cos 3t)
§ . 5 % 4
7o+ = 4 ) £\
y =a st = (ﬂ)(j sin t - sin 3t)
2 2 .2
r® = a% - 3p 2
RE + hs? = 22—
-.a l}

METRICAL PRUPERTIES:

L = 6a A = (é)(naa)
52 . 1
Ve = (-_{ég)(naa) Sg = (“g')(naz)
p o=~ t R = (28).aln 2t = 3 Yaxy

GENERAL UTEMS:
(a) Its ovulute ls arother Astrold. [See Evolutes
u(h) l]

(b) Tt !s the envelope of a family of Elllpses, the
sum of whose axes ls constant. (Fig. 2b)




ASTROID 3

(¢) The length of Lits tangent {ntercepted between the
" cusp tangents is constant. Thus 1t is the envelope
of a Trammel of Archimedes. (Fig. 2a)

(d) Its orthoptic with respect to its center is the
curve

a&‘
p? = (7;)'c032 24,

(e) Tangent Construction: (Fig. 1) Through P draw the

circle with center on the &¢lrcle of radlus %? which

1s tangent to the fixed circle as at T (left-hand
f;gure). Since the instantaneous center of rotation
of P ts P, TP ls normal to the curve at P.

BIBLITOGRAPHY

Edvards, J.: Calculus, Macmillan (1892) 337.

Salmon, G.: Higher Plane Curves, Dublin (1879) 278.

Wioleitner, H.: Spezlelle ebene Kurven, Leipzig (1908).

Williamson, B.: Differential Calculus, Longmans, Green
(1895) 339.

Section on Epicycloids, herein.




CARDIOID

HISTORY: The Cardiold is a member of the familv of Cy-
cloidal Curves, first studied by Roemer (1674) in an in- -
vestigatlon for the best form of gear teeth,

1, DESCRIPTION: The Cardioid is an Eplieyclold of one
cusp: the locus of a point P of a circle rolling upon
the outslde of another of equal size. (Fig. 3a)

/ i it . . (\‘: \
s U . '\\ ~N
/ TN SN
/ - ) iag ‘:ﬁyggé\
' /i S P
, o : 7 T [/ . s \\\
P SR LR e TR . “'_.‘ ‘,"
'1 Coe e W2 ’\F}$
i - _\\} N
\ Py
\ L i / ; 3 "ﬁ /
\» ' } \, ‘ . /f
\ , 4 ‘,h‘__/’t
\\ // i ."\_ y ,.ll -
. y S L s
(a) Fig. 3 ()

Double Generation: (Fig. 3b). Let the curve be gene
erated Ly the polnt P on the rolling circle of radius 8.
Draw ET', OT'F, and PT' to T. Draw FP to D and the ¢lrecle
through T, P, D. Since angle DPT = g, this last ¢ircle
has DT as diameter. Now, PD is parallel to T'E and from
similar triangles, DE = 2a. Moreover, arc TT' = gy =
arc T'P = arc T'X. Accordingly,

arec TP'X = 280 = arc TP.




CARDIOID 5

Thus the curve may be described as an Epicycloid 1in twoe
ways: by a clrcle of radius a, or by one of radlus 2a,
rolling as shown upon a fixed circle of radius a.

2., EQUATIONS:

(x2 + y° & 2ax)? = 4a®(x* + y?)(origin at cusp) .

r = 2a(l + cos 8), r = 2a(1 + sin 0)(Origin at cusp).
o(r® - a®) = 8p®, (Origin at center of fixed circle).
x = a(2 cos t - cos 2t)
[y = a(2 sin t - sin 2t) * z =;a(2eit - &%),
r® = 4ap®. 8 = 83'cos(§).
9R? + s? = 6ua®.

3, METRICAL PROPERTIES:

L = 16a. A = 6na®
¢ = (D 2y = (9)(ne?)

R = #/2ar for r = a(l - cos 6).

4., GENERAL ITEMS:

(a) It is the inverse of a parabola with respect to
1ts focus.

(b) Its evolute is another cardloid.

(¢) It is the pedsl of & circle with respect to a
point on the circle.

(d) It is a specilal limacon: r = a + b cos 0 with

Bﬂ'.u

(e) It is vae caustic of a circle with radiant point
on the circ;e.

(f) The tangents at the three points whose sub-
tended angles, measured at the cusp, differ by

%% are parallel,

(g) The sum of the distances from the cusp to the four
{ntersections with an arbitrary line is constant.,



6 CARDIOID

(h) Cam. T the cardlold be pivoted at the cusp and
rotated with constant angular velocity, a pin, con-
‘traired to a r'ixed atralcht 1ire anrd tearing on the
vardloid, will move with simple harmonic motion, Thus

for
r = a(l + cos y),
P = -(a sir 9)0,
B = -(a cos 0)6% - (a ain v)0,

It ¢ = k, a constant;
P = -k%(a cos v) = -k3(p - a),
or

qeelr - a) = -k*(r - a),

the differential equation characterlzing the motion
of any puirt of the pln,

’/ \-
s N
4 \
i \
’
\
- ! \
N ; i
NN |
\‘> o ! ;
N
W - /
W - = 4 Vs
A . -7 4 %
‘\ i 3 Ve
" LA SN -
. - R ’,"
‘ . : o L x
——— N i . L
I . Lfﬁﬁf';rxﬁigé)f -
/S s Y
‘\ 7 A \ ‘(oy v
\ s N4
NS s ' 9
Fig, U Pig. %

(1) The curve 1s the locus of the point P of two
- simllar (Proportional) crossed parallelograms, Joined
¢ shown, with points 0 and A fixed.

ERIC

|




CARDIOID 7

AB = OD = b; AO ='BD = CP =a; BP =DC = c = Db + 28,

and . a? = be.

At all times, angle PCO = U = angle CUX. Any point
rigldly attached to CP describes a Limacon.

BIBLIOGRAPHY

Keown and Falres: Mechanism, McGraw Hill (1931).

Morley and Morley: Inverslve Geometry, Ginn (1933) 239,

Yates, R.C.: Geometrical Touols, Educatlonal Publishers,
St. Louls (1l949) 182,




CASSINIAN CURVES

HISTORY: Studied by Glovann! Domenlco Cassinl in 1680 in
connecticn with the relative motions of earth and sun.

1. DESCRIPTION: A Cassinlan Curve 1s the locus of a point

P the prcdut® of whose distances from two fixed polnts
Fi, F2 is constant (here = k?),

/ by \

Fig. 6
2. EQUATIONS:
[(x - a)® + y2) [(x + a)2 + yB] = k4,
4

r* + a* - 2r%a% cos 2¢ = k%,

F. = (-a,0) Fp = (a,0)]

5. METRICAL PROPERTIES:

(See Section on Lemniscate)

p
3
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CASSINIAN CURVES

4, GENERAL ITEMS:

(a) Let b - a be the inner
radius of a torus whose gen=-
erating circle has radius a. / ]
The section formed by a plane fi i
parallel to the axis of the / j
torus and distant a units from / ;
it is a Cassinian, If b = 2a ! -
this plane 1is an inner tangent !
to the surface and the section A “'I
is a lemniscate. & /
_— -

(b) The set of Cassinian Curves \ \\/ t
(x® + y%)% + A(y® - x7) (\ ‘~u~_,

+B=0,B#0, '7
.'___,...-o
inverts into 1ltself,.

(¢) If x = a, the Cassinian
is the Lemnlscate of
Bernoullil: re = Eé!-cos 20,
a curve that 1s the inverse Fig. 7
and pedal, with respect to

its center, of a Rectangular Hyperbola.

(d) The points P and P' of the linkage shown in
Fig. 8 describe the curve., Here AD = A0 = OB = a;

DC = CQ = EO = OC = g ; CP = PE = EP! = P'C = d.

---,
t
-

Fig. 8
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CASSINIAN CURVES
Let the cocrdinates o § ard P he (p,u) and (r,0),
resopeclively, Shiee o) D, ard © lie on a ¢irsle with
Senteoat ol e Ll Deoand o are always at right
angles,  Thus
(¢Q)? = (DR)* - (r)® op p2 = ¢¥ - 4a® einy,

The attached Peaucelller cell inverts the point Q to
P under the property

Thus, «llminatine p vetweer the last two relations:

b2 - 2ye 2 2.2 2
{a - o - YE o BB L gpRy ain Y,

or, u rectar.cular coordinates:

(x* + v®)% + ax® + By + ¢ = 0,
a -urve that may be ldentitied ag a Cassinian if

ot

(¢) The lczus of the flex potnts of a family of con-
focal Cassintan zurves s a Lemnliscate of Bernoulld
(P10

POINTWISE CONSTRUCTION:

Let the foci,
Figz. 9, be F,,
¥Fg3 the con-
stant product
k®. Lay off
FiC = k perpen-
dicular to Fifa.
Draw the clrcle
with center I,
and any radius
F1X. Draw CX
ard its perpen-
g, 9 dlcular CY.
Then

D¢

(le) .(FJY) = 1(2




CASSINIAN CURVES 11

and thus F,X and F,Y are focal radil (measured from ¥,
and Pz) of a point P on the curve. (From symmetry, four
points are constructible from these two radii.) M is the
midpoint of FiFp and A and B are extreme polnts of the
gurves,

BIBLIOGRAPHY

Salmon, G.: Higher Plane Curves, Dublin (1879) 44,126.

Willson, P. N.: Graphlcs, Graphics Press (1909) T4.

Williamson, B.: Calculus, Longmans, Green (1895) 233,333.

Yates, R.C.: Geometrical Tools, Educational Publishers,
St. Louls (1949) 186,




CATENARY

HISTORY: Gallleo was the first to Ilnvestigate the Cate-
nary which he mistook for a Parabola. James Bernoulll
in 1691 obtalned its true form and gave some of its
properties,

1. DESCRIPTION: The Catenary is the form assumed by a
perfectly flexible inextensible chain of uniform density
hanging from two supports not in the same vertical line,

2. EQUATIONS: If T 1s the tension at any point P,
T cos ¢ = ka

s = ay' =a tan ¢ ;aR = a® + ¢®
T sin ¢ = ks

x .2
: - | ‘
y = a.cosh(f) = (-g)(ea +e ) ; ¥ =a®+s®




CATENARY
3+ METRICAL PROPERTIES:

A = a's = 2(area triangle PCB) £, = nlys + ax)
2
) 8 a
R = % Vg = (-2')'2:;(
N = 'Ro

4. GENERAL ITEMS:

(a) The tangent at any point (x,y) is also tangent to
a circle of radius &, with center at (x,0).
2’82]

x
! -— -
[yt = sinh(a) + "

(b) Tangents drawn to the curves y=e , y=e ,

Six-
oI

y = 8 ccsh i at points having the same abscissa are
concurrent.

(¢) The path of B, an involute of the catenary, 1s
the Tractrix., (Slnce tan ¢ = i, PB = s).

(d) As a roulette, it is the locus of the fogus of a
parabola rolling along a line. (See Envelopes, 5¢).

(e) It is a plane section of the surface of least Area
(a soap film catenoid) spanning two circular disks,
Fig. §1a. (This is the only minimal surface of revelu-
tion.,

(a) g, 11 (b)




14 CATENARY

(f) It 1s a plane sectlion of a sall bounded by two
rods with the wind perpendicular to the plane of the
rods, such that the prescure cn any element orf the
sall is norpal to the element and proportional to the
square of the veloclty, Flg., 11b. (8ee Routh)
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CAUSTICS

HISTORY: Caustics were “lrst introduced and studied by
Tschirnhausen in 1682, Other contributors were Huygens,
Quetelet, Lagrange, and Cayley.
1, A caustic curve ls the
envelope ot lignht rays,
emltted from a r1adlant

point source 8, after re-
flection vr refraction by

a given curve f = 0. The
caustics hy reflection

and refraction are called

catacaustic and diacaus-

tic, respectively.

2. An orthotomic curve (or secondary caustic) is the
locus of the point B, the reflection of S in the tangent
at T, (See also Pedal Curves.)

3, The instantaneous center of motion of 8 is T. Thus

the caustic is the envelope of normals, TQ, to the ortho-
tomics L.e., the caustic is the evolute of the ortho-
tomiic.

4, The locus of P is the pedal of the reflecting curve
with respect to 8. Thus the orthotomic is a curve gimi-
lar to the pedal with double its linear dimenslons.
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5, The Catacaustic o a circle is the evolute of a lima-
con whose pole 1!s the radiant point, With usual x,y axes
(radius a, radiant polnt (c,0)], the equatlon of the
caustic is;:

[(bca . 52)(X2+ ya) - ?.aacx . &202]3‘ 273402y2(x2+ yE.C?.’)?:! = 0,

For various radiant points C, these exhibit the fol-
lowing forms:

’1,
1
|
1
]
g
i
}
i
]

|
i
!




way:

(a) Figa

With the source S at «,
the incident and reflected
reys make angles 6 with
the normal at T, Thus the
fixed e¢ircle O(A) of
radius a/2 has {ts arc AB
equal to the a~c AP of the
ciprcle through A, P, T of
radius a/4, The point P of
this latter c¢ircle gener-
ates the Nephrold and the
reflected ray TPQ 1s 1ts
tangent (AP is perpendicu-
1&2" to TP)-

CAUSTICS 17

6. In two particular cases, the caustics of a circle of
radius a wmay be determined In the following elementary

With the source S on the
circle, the incident and
reflected rays makes angles
9/2 with the normal at T.
Thus the fixed circle and
the equal rolling circle
have arcs AB and AP equal.,
The point P generates a
Cardioid and TPQ is its tan-
gent (AP is perpendicular
to TP)-

These are the bright curves seen on the surface of cof-
fee in & cup or upon the table inside of & napkin ring.
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7. The Caustics by Refractlon (Diacaustics) at & Line L.
SG o ineldent, QT refracted, and 8 Ls the reflection of
S in L. Produce TQ tu meeb the vartable clircle drawn
through 8, Q, and § In P, Let the angles of incldence
sin 8 be the Index
gln Oy
of refraction. Now SP and SP make equal angles with the
refracted ray PQT. Thus in passing from 4 dense to a
rare medium {0, < Uz) and vice versa (Y; > 02):

and ref'raction be 0U; and Uy and ¢ =

-

i
& -}
N




u_AS + A8 8§
“ T PS8 + P3PS + PSS’

Thus, since 85 is cunstart,
PS 4 PS = Sg/p.
a constant. The locus of P
is then an ell:pse with S,
S as foci, major axis S§/u,
eccentrlicity u, and with
PQT as tts normal. The
envelope of these rays PQT,
normal to the ellipse, is
its evolute, the caustic.
(Fig. 16)

8. SOME EXAMPLES:

CAUSTICS 19

, AS - AS __SS
“ps-PS p8§ - ps’

Thus, since S8 !s constant,
PS - PS = SS/u

a constant., The locus of P
is then an hyperhola with
S, S as foci, major axls
88/u, eccentricity 4, and
with PQT as its normal. 'The
envelope o! these rays PQT,
normal to the hyperbola ls
its evolute, the caustic.
(Flg. 17)

DENSE

(a) tf the radiant point is the focus of & parabola,
the caustic of the evolute of that parabola is the
evolute of another parabola.
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cissoid.,

CAUSTICS

(b) If the radiant point is at the vertex of a re-
flecting parabola, the caustic is the evolute of a

(¢) If the radlant point is the center of a circle,
the caustic of the involute of that circle is the
evolute of the spiral of Archimedes. '

(d) If the radiant point is the center of a conic, the
reflected rays are all normal to the quartic

r? = A cos 2¢ + B, having the radiant point as double
point.

(e) If the radiant point moves along a fixed diameter
of a reflecting circle of radius a, the two cusps of
the caustic which do not lie on that diameter moeve on

0
the curve r = a'cos(E).

(f) If the radiant point is the pole of the reflecting
spiral r = ae? °th @ | tne caustic is a similar spiral.

(g) If light rays parallel to the y-axis fall upon the
reflecting curve y = e*, the caustic is a catenary.

(h) The orthotomic of a parabola for rays perpendicu-
lar to its axis is the sinusoidal spiral

r = a-seca(g).
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THE CIRCLE

1. DESCRIPTION: A circle 1s a plane continuous curve all
of whose points are equidistant from a fixed coplanar
point.
2., EQUATIONS:
(x - h)2 + (y - k)2 = a® x =h +a cos 0
x2 + y¥2 + Ax + By +C =0 Yy=k+asing
x% + y® x v 1
= 0 s =4a¢
x12 + y1f x ¥i 1
2 2 R=a
x2° + y2 X2 Ya 1 2
2 2 pa = r
Xa® + Y3 X3 Ya 1
%. METRICAL PROPERTIES:
L = 2na $ = 4za® R=a
3
Aanaz V:ﬁBBL

GENERAL ITEMS:

(a) The Secant Property. Fig., 18(a). If lines are
drawn from a fixed point P intersecting a fixed
circle, the product of the segments in which the
circle divides each line is constant; i.e., PA‘PB

= PD'PC (since the arc subtended by { BCD plus that
subtended by ¢ BAD is the entire circumference, tri-
angles PAD and PBC are similar). To evaluate this
constant, p, draw the 1ine through P and the center O
of the circle. Then (PO - a)(PO + &) = p = (P0)2 - a2,

The quantity p is called the power of the point P with
respect to the circle, If p ¢, =, > 0, P lies re-
spectively inside, on, outside the circle.
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THE CIRCLE

(n) Fig. 18 (b)

The locus of all pelnts P which have equal power with
respect to two fixed circles ls a line called the
radical axis of the two circles., Il' the circles inter-
sect, the radical axis is thelr common chord.

Fig., 18(pn).

The three radical axes of three clircles intersect in
a point called the radical center, a poirt having
equal power with reapect to each of the circles and
equidistant from them.

Thus to construct the radical axis of two circles,
first draw a third arbltrary circle to intersect the
two, Common chords meet on the required axls.,

(b) Similitude. Any two coplanar clrcles have centers
of similitude; the Intersectlons I and E (collinear
with the centers) of lines Jolning extremities of
parallel diameters.

The six centers of similitude of three circles lle by
threes on four straight lines.

The excenter of similitude of the circumcircle and
nine-point circle of a triangle 15 1ts orthocenter.
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Fig., 19

(c) The Problem of
Apollonius is that of con-
structing & circle tangent
to three riven non-coaxal
circles (generally eight
solutions). The problem
1s reducible (see Inver-

sion) to that of drawing

a ¢lrele through three

specified points.,

Fig. 20

|
1
|
:
v
|
‘
i



THE CIRCLE \
(d) Trains. A series of clrcles each drawn tangent to
two siven non-intersecting circles and to another mem-.

ber of the series ls called a train, Tt is not to be

Fig., 21

expectad that such a serles genrerally will close upen
1tgelr, If such !{s the case, however, the serles is
called a Stelner chaln,

Ary Steiner chain can be lInverted .nto a Steiner
chaln tangent to two concentric circles.

Two concentric circles admit a Steiner chain of n
¢ircles, encircling the common center k times if the
angle subtended at the center by e&ch circle of the
train is commensurable with 360°, t.e., equal to

(%) (360°).

If twn circles admit a Steiner chaln, they admit an
infinitude of such chains.




THE CIRCLE

(e) Arbelos. The
figure bounded by
the semiclrcular
arcs AXB, BYC, AZC
(A,B,C collinear)
is the arbelos or
shoemaker's knife.
Studied by Archi-
medes, some of 1its
properties are:

1. AXB + BYC = A<C.

2. Its area equals Flg. 22
the area of the circle on BZ as a diameter.

3. Circles inscribed in the three-sided f'igures ABZ,
AB)(BC
AC

4, (Pappus) Consider a train of circles co, C1, Ca,
... 8ll tangent to the circles on AC and AB (co 18
the circle BC). If rp is the radius of c,, and h, the
distance from its center to ABC,

CBZ are equal with diameter

hp = 2n'rp (Invert, using A as center.)

BIBLIOGRAPHY

Daus, P. H.: College Geometry, Prentice-Hall (1941).

Johnson, R. A.: Modern Qeometry, Houghton Mifflin (1929)
113,

Mackay, J. 8.: Proc. Ed. Math. Soc. ITI (1884) 2.

Shively, L. 8.: Modern Geometry, John Wiley (1939) 151,




CISSOID

HISTORY: Dlocles (between 250-100 BC) utilized the ordi-
nary Cissoid (a word from the Greek meaning "{vy") in
finding two mean proportionals between given lengths a,b
(1.e., finding x such that a, ax, axa, b form a geometric
progression, This 1s the cube:rcot problem since

%2 = E). Generalizations follow. As early as 1689,

J. C. Sturm, in his Mathesls Enucleata, gave & mechanical
device for the construction of the Cissoid of Diocles,

1. DESCRIPTION: Given two curves y = fa(x), y = ra(x)
and the fixed point 0, Let
Q and R be the intersections
of a variable line through 0
with the given curves. The
locus of P on this secant
R such that

Q oP = (OR) - (0Q) = QR

P is the Cissold of the two
0 curves with respect to O,
(*) If the two curves are &

line and a circle, the
Fig, 23 ordinary family of Cissoids
is generated. The discus-
sion following 1s restricted to this family.

Let the two glven curves be a fixed circle of radius
a, center at K and passing through O, and the line L
perpendicular to 0X at 2(a + b) distance from 0. The
ordinary Cissoid is the locus of P on the variable
secant through O such that OP = r = QR.

the generation may be effected by the intersection P
of the secant OR and the circle of radius g tangent to
L at R as this circle rolls upon L. (Fig., 24)
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The curve has a cusp
If b = 0 (the Cls-
gold or Dlocles); a

double point LI the

rolling circle
passes between 0 and

K. Its asymptote 1s
the line L.

Fig. 24

2. EQUATIONS:
2
r =2(a + b)sec 8 - 2a cos y. g2 = X (2b - x)

= [x-2(a+b)]
x = 2b ?1(2 :§?Jt21
y = 2'[bt(I -E-at;;t)b)tal
(If b = 0: r = 2a*sin © tan ¢; y° = T§§;§7 , the

C¢issold of Diocles).

3. METRICAL PROPERTIES:
Clasold of Dlocles: V(rev. about asymp.) = 2r2a2

%(area betw, curve and a:&symp.)ﬂ-%Q

A(area batw. curve and asymp.) =nras
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4. GENERAL ITEMS:

Fig, 25

CISsOoID

(a) A family of these

Clssolds may be generated

by the Peaucellier cell

nS———

arrangement shown. Since
(0Q)(QP) = k* = 1,

2c¢icos 6(2crcos 9+ 1r) al

or

1,
r = (Ea)sec 0 - 2¢c*cos 6, |

which, for ¢ ¢ = > -;—

has, respectively, no
loop, & cusp, & loop.

(b) The Iuverse of the family in (a) is, if r'p=1l,

(center of inversion at 0)

y% + x%(1 - 4c®) = 2¢x,

an Ellipse, a Parabola, an Hyperbola if ¢ ¢ = >'1

'5 ’

respectively. (See Conics, 17).

(¢) Cissoids may

1A be generated by
“ the carpenter's
A square with
kA p right angle at
E AYJ Q (Newton). The
N fixed point A

o of the square
\\ moves along CA
A

square passes
tht‘ough B’ a
fixed point on

N,
’

’ - “!‘/ —,(
’/f{' 7 /‘j‘ g
RS i
SEP wi. C‘\s
8 0

. while the other
ol edge of the

the line BC pér-
O pendicular to
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AC. The path of P, a fixed point cn AQ describes the
curve .,

Let AP = OB = b, and BC = AQ = 2a, with O the origin
of ccordirates., Then AB = 2a+sec § and

r = 2a*sec 0 - 2h+cos8 8,
The point Q describes a Strophold (See Strophoid 5e).

(a) Tangzent Construction: (See Fig., 26) A has the
direction of the line CA while the point of the square
at B moves in the direction BQ. Normals to AC and BQ
at A and B respectively meet in H the center of rota-
tion, HP is thus normal to the path of P,

3
. 2 X
(e) The Clssoid y® = -7

Parabola y2 = -llax with prespect to its vertex.

1s the pedal of the

(£) tt 1s a special Kleroid.

(g) The Clsso.d as a roulette: Ore of the curves 1ig
the locus of the vertex of a parabola which rolls upon
an equal fixed ore. The common tangent reflects the
fixed vertex intc the position of the moving vertex.,
The locus is thus a curve similar to the pedal with
respect to the vertex.

(h) The Clssoid of an algebralc curve and a line is
itself algebraic.




20 CIiSsOoID

(‘..) The Clesold ¢’ a line and a circle wlth precpect
F
t

o ite center ls the Corchold of Nlcomedes.

(J) The Stroptioid s the Cissold of a circle ard a

1 ne through its center with respect to a point of the
2?nle, The Cisscid of NDiocles is used In the design
of planirg hulls {See Lord).

(k) e Clssold of 2 concentric circles with respect
to theipr center 1s a clrcle. .

(1) "he Clssoid of a palr of parallel llnes ls a line.
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CONCHOID

HISTORY: Nicomedes (about 225 BC) utilized the Conchoid
(from the Greek meaning "shell-like") in finding two mean

proportionals between two given lengths (the cube-root
problem).

1, DESCRIPTION: Glven a curve
and a fixed polnt 0. Points
P1 and P, are taken on a
variable line through 0 at
distances + k from the inter-
section of the line and
curve, The locus of P, and P,
1s the Conchoid of the given
curve with respect to 0.

Fig. 27

The Conchold of Nicomedes 1s the Conchold of a Line,

Fig, 28

The Limacon of Pascal is a Conchold of & circle, with
the fixed point upon the circle.




e
2.

4,

CONCHOID

EQUATICNS;:
General: Let the given curve be r = £(0) and 0 be the
orlgin, The Conchoid is

r = £(6) + k.
The Conchoid of Nicomedes (for the figure above) is;:
r=awcsed +k, (x%F+y%)(y-a)®ax?y?,

which has a double point, a cusp, or an isolated
point if a < = > k, respectively.

METRICAL PROPERTIES:

GENERAL ITEMS:

(a) Tangent Construction. (See Fig. 28). The perpen-
dicular to AX at A meets the perpendicular to OA at O
in the point H, the center of rotation of any point

of OA, Accordingly, HP, and HPy are normals to the
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(b) The Trisection of &n Angle XOY by the marked ruler
involves the Conchold

of Nicomedes. Let P and
Q be the two markes on
the ruler 2k units
apart. Construct BC
parallel to OX such
that OB = k. Draw BA
perpendicular to BC.
Let P move along AB
whlle the edge of the
ruler passes through

0. The point Q traces
a Conchoid and when
this point falls on BC
the angle is trlsected.

Figa 29

(c) The Conchoid of Nicomedes is a special Kieroid.
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CONES

1. DESCRIPTION: A cone 1s a ruled surface all of whose
line elements pass through a fixed point called the
vertex.,

2. EQUATIONS: Given two surfaces f(x,y,z) = 0,
¢(x,y,2) = 0. The cone through their common curve with
vertex V at (a,b,c) ls found as follows.

Let Pi:(x1,y1,21) be on
the given curve and
P:(x,y,2) a point on the
cone which lies collinear
with Vv and Pi. Then

k3
y-b=k(y:-0b),

' »
- a = k(x1 - 8),

z - ¢ =k(za - ¢c),

for all values of k.

Thus the curve

Ax/ f(xl,yl,z.\) = 0

g(x1,¥1,z1) = 0
produces the cone:

ﬁ.(

r[(x'a»pa,i—y—"——b-z»fb,(z'c»fc]ao
k k k
sixstl y g, N L ELE

Since this condition must exist for a1l values k, the
elimination of k yields the rectangular equation of the

cone.,

#*
Thus any equation homogeneous in x,y,z is a cone with vertex at
the orisin,
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3, EXAMPLES: The cone with vertex at the origin contain-
ing the curve

2 +y2 2220 x® + 57 - 2%2 =0

18 or x* + y% - 225 <0,
Lz-l:O 2 -k=20

The cone with vertex at the origin containing the curve

2% 2x+ 3% uy=0 | xP-2kx+y% bky=0
is or 2x"’y - x2° 4 aya- ayz"’-o.
22 by 20 22 . bky = 0

The cone with vertex at (1,2,3) containing the curve

(P 220 [[(x1)%+(5-2)7]  [2(x-1)+b(y-2)] 2(2-3)
-4 + X - «l=0

K k
ie

(z - 3)
t-hlo k -180

or (x-1)%+(y-2)24+2Ax-1)(2-3) + 4(y -2)(z -3)- 3¢(2z -3)% = O,

\
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CONICS

HISTORY: The Conics seem to have been discovered by
Menaechmus (& Greek,c.375-325 BC), tutor to Alexander the
Great. They were apparently conceived in an attempt to
solve th2 three famous prcblems of trisecting the angle,
duplicating the cube, and squaring the circle. Instead
of cutting a single fixed cone with a variable plane,
Menaecl:mus took & fixed intersecting plane and coenes of
varying vertex angle, obtaining from those having angles
¢= > 90° the Ellipse, Parabola, and Hyperbola respec-
tively. Apollonius is credited with the definition of
the plane locus given first below. The ingenious Pascal
announced his remarkable theorem on inscribed hexagons
in 1639 before the age of 16,

1, DESCRIPTION: A Conic is the locus of & point which
moves so that the ratio of its distance from a fixed
point (the focus) divided by its distance from a fixed
line (the directrix) is a constant (the eccentricity e),
all motion in the plane of focus and directrix (Apol-
lonius). If e¢, =,> 1,the locus is an Ellipse, &
Parahola, an Hyperbola respectively.

Fig. 31

2 24,2 2 ek ) ok
1.6%)x"« 242 + k" =0, » , -, ) S
4 ) * r (L+e0ing T (140 co80) *
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2. SECTIONS OF A CONE: Consider the right cirnular cone
of angle g cut by & plane .

APFD which makes an angle

& with the base of the cone.
Let P be an arbitrarily
chosen point upon their
curve of intersection and
let a sphere be inscribed to
the cone touching the cut-
ting plane &t F. The element
through P truches the sphere
at B. Then

PF = PB.

Let ACBD be the nlane con-
taining the circie of inter-
section of cone and sphere.
Then if PC is perpendicular
to this plane,

PC = (PA)sina = (PB)sin # =

(PF)sin g,
or
PF) _ sin
'%‘P—} =oing = ® Fig. 32

a constant as P varies (o, constant). The curve of inter=
section 1s thus a conic according to the definition of
Apollonius. A focus and corresponding directrix are F
and AD, the intersection of the two planes.

NOTE: It is evident now that the three types of conics
may be had in either of two ways:

(A) By rixing the cone and varying the intersecting
plane (f constant and a arbitrary); or

(B) By fixing the plane and varying the right circular
cone (a constant and § arbitrary).

With either choice, the intersecting curve 1is

an Ellipse if a< §,
a Parabola if ¢ = § ,

an Hyperbola if &« > § .
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3. PARTICULAR TYPE DEMONSTRATIONS:

PFsPAsBC

PFio PA, PFys PP
PR =P s AB, a oonstant

Fig, 33
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It seems truly remarkable that these spheres, lnscribed
to the cone and its cutting plane, should touch this
plane at the focli of the conlc - and that the directrices
are the intersections of cutting plane and plane of the
intersection of cone and sphere,

4, THE DISCRIMINANT: Consider the general equation of
the Conlc:

Ax® + 2Bxy + Cy® + 2Dx + 2By + F = 0
and the family of lines y = mx.

This family meets the conic in points whose abscissas
are given by the form:

(A + 2Bm + Cm®)x® + 2(D + Em)x + F = 0.
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If there are lirnes of the family which cut the curve in
one and only one point,* then

-B &y B% - AC

A+2Bm+Cm® =0 or ma=
The Parabola is the conic for which oniy one line of the
family cuts the curve Just once. That is, for which:
B - AC = 0.

The Hyperbola is the conic for which two and only tioe
lines cut the curve Jjust once. That is, for which:

B% - AC > O.

The Ellipse 1s the conic for which no line of the family
cuts the curve Just once. That is, for which:

B - AC ¢ O,

5. OPTICAL PROPERTY: A simple demonstration of this out-
standing feature of the Conics 1s given here in the case
of the Ellipse. Similar treatments may be presented for
the Hyperbola and Parabola.

The locus of points P for

which FiP + FgP = 2a, & con-
stant, 18 an Ellipse, Let

the tangent to the curve be 1
drawn at P. Now P 18 the 3
only point of the tangent f
line for which FiP + FgP is ]
a minimum. For, consider any |
other point Q. Then |
FiQ + FaQ > FiR + FaR = 24 =

FaP + F'gpo

But if FiP + FgP 18 &

minimum, P must be col-

Fige 38 linear with Fi and Fg, the
¢ reflection of Fg in the

o—
A point of tangenocy here ig counted algebraically as two points,
the "point at =" 1g excluded,
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tangent. Accordingly, since g = 3, the tangent bisects
the angle formed by the focal radii.

o. PCLES AND POLARS: Consider the Conle:
Ax® + 2Bxy + Cy® + 2Dy + 2Ey + F = 0
and the poirt P:(h,k).

The line (whose equation ¥
has the form of a tangent
to the conic):

Ahx + B(hy + kx) + Cky
+ D(x + h) + E(y + k)
+ F = Ot-otttottttat(l)

1s the polar of P with
respect to the conic and

P 1s 1its pole. ©
\ N _‘/
Let tangents be drawn
from P to the curve, meet- Fig, 36

ing Lt in (x1,y1) and
(x2,y2). Thelr equations are satisfled by (h,k) thus:

Ahx: + B(hys +kx1) + Ckxa + D(x1+h) + E(ya+k) + F = 0
Ahxga + B(hyg+ kx:) + Ckxp + D(X2+k) + E(Ya +k) + F = 0,

Evidently, the polar given by (1) contains these poirts
of tangency since its equation reduces to these identi
ties on replacing x,y by elther xi,y1 or Xxa,ye. Thus,
if P is a point from which tangents may be drawn, its
polar is their chord of contact.

Let (a,b) be a point on the polar of P. Then
Aha + B(hb + .ka) + +vs + F = 0.

fhis expresses also the conditior. that the polar of
(a,b) passes through (h,k). Thus
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If P lles on the polar of Q, then Q lles on the polar
r P,

Ir. other words, if a polnt move on a f'lxed line, 1its
pclar passes through a f'lxed point, and conversely.

Note that the location of P relative to the conic does
nct affect the reality of its polar. Note also that if P
lies on the conic¢, its polar is the tangert at P,

7. HARMUNIC SECTION: Let the line through P, meet the
conle in Q1,Q2 and its polar
in Pi. These four points
form an harmonic set and

and Qp divide the segment
PiP2 internally anc extern-
ally in the same ratio, and
vice versa. In other words,
gliven the conic and a fixed
point P2: A variable line
through Pz meets the conlec
in Q1,Q2. The locus of P.
vwhich, with Pz, divides
Q1Qz harmonically is the
Fig. 37 polar of Pz,

The segments PzQi, PzPi, PaQz are in harmonic progres-
sion. That 1s:

e __1 ,__1
(P2P1) = (P2Qu) = (P2Qe)
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8, THE POLAR OF P PASSES THROUGH R AND 8, THE INTERSEC-
PIONS OF THE CROSS-JOINS OF SECANTS THROUGH P. (Fig. 38a)

(a) Fig, 38 {(b)

Let the two arbltrary secants be axes of reference (not
necessarily rectangular) and let the conic (Flg. 38b)

Ax? + 2Bxy + Cy® + 2Dx + 2Ey + F = 0
have intercepts ai,ag; bi,bz given as the roots of
Ax® + 2Dx +F =0 and Cy® + 2Ey + F = 0,

From these
1,1 _._20 DR A L
9,‘1"'9,2i= F or D= 2)(31*32)'
1,1, 2E LRl Ll
.1+b2 T or E={( 2)(b1*bz)'

New the polar of P(0,0) is Dx + Ey + F = 0

er

1 .1 Lo Ly L,
x(al + az) + y(bl + bg) 2 = 0,
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Thé cross-Jjoins are:

X
a,

The family of lines through their intersection R:

L. 2. S AN
+ b 1 and as + b = 1.

. S A VR A -
™ + ba 1+ (aa + - 1) = 0.

contains, for A = 1, the polar of P. Accordingly, the
polar of P passes through R, and by inference, through 8.

This affords a simple and classical construction: by the
straightedge alone of the tangents to a conic¢c from a
point P

Fig. 39

Draw arbitrary secants from P and, by the intersections
of their cross-Jjoins, establish the polar of P, This
polar meets the conic in the points of tangency.
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9. PASCAL'S THEOREM:

One of the most far reaching and productive theorems
in all of geometry is concerned with hexagons inscribed
to conles., Let the vertices of the hexagon be numbered
arbitrarily*

1, 2, 3, 1', 2', 3'. The intersections X, ¥, 2 of
the joins (1,2';1'2)
(1,3'31',3) (2,3';32',3) are
collinear, and conversely.

Apparently simple in character, 2

it nevertheless has over 400

corollaries important to the
st,ructure of synthetic
geometry. Several of these
follow.

’ﬁy renufibering, many such Pascal lines correspond to a single
inseribed hexagon.
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10. POINTWISE CONSTRUCTION OF A CONIC DETERMINED BY FIVE
GIVEN POINTS:

Let the r'ive points be numbered 1,2,3,1',2'., Draw an
' arbitrary line through 1
which would meet the conic
in the required point 3',
Establish the two points
Y,Z and the Pascal line.
This mgets 2'3 in X and
finally 2,X meets the

arbitrary line through 1

in 3'. Further points are

located in the same way.
Fig. 4l

11. CONSTRUCTION OF TANGENTS TO A CONIC GIVEN ONLY BY’
FIVE POINTS:

In labelling the points, consider 1 and 3' as having
) merged so that the line 1,3' is
the tangent, Polnts X, 2 are
determined and th. Pascal line
drawn to meet 1',3 in Y. The
line from Y to the point 1=3%'
is the required tangent. The
tangent at any other point,
determined as in (10), is con-

structed in like fashion,

i
]
i
!
1]
]
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12. INSCRIBED QUADRILATERALS: The pairs of tangents at
opposite vertices, to-
gether with the oppo-
slite sldes, of quadrli-
laterals inscribed to
a conic meet in four
collinear points,
This 1s recognlzed as
a special case of the
inscribed hexagon

theorem of Pascal.

13, INSCRIBED TRIANGLES: Further restriction on the
Pascal hexagon pro-
duces a theorem on
inscribed triangles.
For such triangles,
the tangents at the
vertices meet thelr
opposite sldes in
three collinear

points.
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14, AEROPLANE DESIGN: The construction of elliptical
sections at right
angles to the center
line of a fuselage is
essentially as follows,
Construct the conie
given three points P,,
P2, Pa and the tangents
at two of them. To ob-
tain other points Q on
the conic, draw an
arbitrary Pascal line
through X, the inter-
section of the given
tangents, meeting PiPp
in Y; PiPa in 2. Then
YP, and ZPz meet in Q.

15. DUALITY: The Principle of Duality, inherently funda-
mental in the theory of Pro-
Jective Geometry, affords a
corresponding theorem for

‘ each of the foregoing. j
Pascal's Theorem (1639) ]

dualizes into the theorem - i

of Brianchon (1806)t }

If a hexagon circumscribe |

a conic, the three Joins of |

the opposite vertices are

concurrent. (This is apparent ;

on polarizing the Pascal |

hexagon. ) ‘
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16, CONSTRUCTION AND GENERATION: (See also Sketching 2.)
The following are a few selected from many. Explanations
are given only where necessary.

o4
(a) String Methods:

Elltphn Pacabola Hypeibola «j‘

(b) Point-wise Construction:
Y Y v , !
%
] :
1
NS \ |
A LV
) <y Vix
|
;
b i
8 é
|
fts acoel EE N ;4% a seet 5
1y bunn (v-013p yts (ar )t ys btant ‘

Fig. 48 |
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(¢) Two Envelopes:

(1) A ray is drawn from the fixed point F to the
fixed circle or line. At this point of intersection a

Fig. 49

]
1ine 1s drawn perpendicular to the ray. The envelope
of this latter line is a conic* (See Pedals.)

(11) The fixed point F of a sheet of paper 1s
folded over upon the fixed circle or line. The crease

Fig. 50

so formed envelopes a conic. (8ee Envelopes.) (Use
wax paper.) (Note that i and ii are equivalene.)

Thie is a OQlissette: the envelope of ne side of a Carpenter's
square wvhose coyner moves along & circle while ite other leg passes
through a fixed point, See Cissoid 4, and Glissettes Ge.




Jective pencils, the
followins is due to
Newton, Two angles of
constant magnitudes
have vertices fixed
at A and B. A point
of intersection P o!
two of thelr sldes
moves along & fixed
1ine., The point of
intersection Q of
their other two
sides descrlibes a
conic through A and
B,

17. LINKAGE DESCRIPTION: The following 1s selected from

a variety of such
mechanisms (see TOOLS).

For the 3-bar linkage
shown, formlng a vari-
able trapezoid:

AB =CD =2a; AC =BD =2b;
a > b;

(AD)(BC) = 4(a® - b®).

A point P of CD is
selected and OP = p
drawn parallel to AD
and BC. 0P will remain

CONICS
(d) Newton's Method: Based upon the idea of two pro-

Fig. 51

para*lel to these lines and so 0 1s a .'ixed point.
Let OM = ¢, MT = 2z, where M is the midpoint of AB,

Then
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AD = 2(AT)cos 6 = 2(a + z)cos @,

530 = 2(BT)cos 8 = 2(a - =)cos 9.

Thelr product produces:
(a2 - z%)cos?y = g% - b?,
Conbining this with r = 2(c + z)cos g there results

r
(5 - crcos 6)2 = b2 - a%sin®y

as the polar equatlon of the path of P, In rectangular
coordinates these curves are degenerate sextics, each
composed of a circle and a curve resetbling the figurse w,

If now an inversor OEPFP' be attacred as shown in
Fig., 53 so that

r.p = 2k, where p = OP',

Fig. 53

the invepse of this set of curves (the locus of P') ist
(k - ceprcos 6)% = b - a%p?isiny,

or, in rectangular coordinates:
(a2 - b2)y? - (b% - c?)x® - 2c'kex+k® = 0

a conic. Since a > b, the type depends upon the relative
value of ¢c; that is, upon the position of the selected
point P:
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An Ellipse if e >vb,

A Parabola if ¢ = b,

An Hyperbola if ¢ < b,
(For an alternate linkage, see Cissold, 4.)

For any curve in rectangular coordinates,

2138/ 2
IRIa il—LyL—)——’ and Naay"’(1+y"").

Thus a
IRI = N! 0}
. yy

The conic y® = 2Ax + Bx®, B> =1, where A is the
semi-latus rectum, is an Ellipse if B < 0, a Parabola if
B = 0, an Hyperbola if B > 0, Here

]
i
|
]
|
|
18. RADIUS OF CURVATURE: ]
|
]

yy' = A +Bx, yy" +y'? =B, and yy" + y2y'? = By®, ‘

Thus ¥3y" = By® - (A + Bx)2 = -A%
N® i
and |R = |a2| ° ’

19, PROJECTION OF NURMAL LENGTH UPON A FOCAL RADIUS: |
Consider the conics

P1(1 - e cos 0) = A, (A = semi-latus rectum).

Fig. h
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Stnce the normal at P bisects the angle between the
focal radli, we have for the central conics:

FaQ g2

FiQ@ pa
or, adding 1 to each side of the equation for the El-
1ipse, subtracting 1 from eaca side for the Hyperbola:

_2c _z2a
FiQ p °
That 1s
FlQ = e.P.‘, .

Now if H be the foot of the perpendicular from Q
upon a focal ralius,

FiH = eparcos §

and
PH = p1 - epi*cos § = A = Necos a.

For the Parabola, the angles at P and Q@ are each
equal to a and F1Q = p1. Thus

PH = p1 ~ pa'cos 0 = A = Necos a.
Accordingly,

The projection of the Normal Length upon a focal .
radius is constant and equal to the semi-latus rectum.

20, CENTER OF CURVATURE:

Since coe a4 = % , from (19),
N2
and |R| = [gz|» from (18),

we have

.
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Thus to locate the center
of curvature, C, draw the
perpendicular to the
normal at Q meeting a
f'ocal radlus at K. Draw
tie perpendicular at K

to this focal radius
meeting the normal in C,
(For the Evolutes of the
Conics, see Evolutes, 4,)
(In connection see Keill.)
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CUBIC PARALOLA

HISTORY: Studied particularly by Newton and Lelbnitz
(1675) who sought a curve whose subnormal is inversely
proportional to its ordinate. Monge used the Parabela
y = x2 in 1815 to solve every cubic of the form

x2 4+ hx + k = 0,

1. DESCRIPTION: The curve is defined by the equation:
v = Ax® + BxZ + Cx + D = A(x - 8)(x® + bx + c).

7‘ : ﬁL[ * AL x 7

- 4C¢)0 - 4C s 0 - 4cco0 asb

Fig, 56

2. GENERAL ITEMS:

(a) The Cubic Parabola has max-min., points only if
B® - 3AC > 0. '

(b) Its flex point is at x = -;—E (a translation of

the y-axis by this amount removes the square term and
thus selects the mean of the roots as the origin),

(c) The curve is symmetrical with respect to its flex
point (see b.).

(d) It is a special case of the Pearls of Sluze.

|
|
i

(e) It is used extensively as a transition curve in
rallroad engineering.
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(f) It is continuous for all values of x, with no
asymptotes, cusps, or double points,

(¢) The Evolute of a?y = x® is

3afix® . 2@z 1282 o 9 14 32 243 4
7T - 155 y) *Ia_s‘s“'a"’)(f»;'é'“”’uoo")"°
4 4
oy e, o dat )
(h) For Za y = x, R 2atx

(1) Graphical and Mechanical Solutions;

1, Replace x® + hx + k = 0 by the system:
y = x°
Yy +hx +k =0, %Y
the absclssas of whose
intersections are roots
of the glven equation.

-0Only one Cublc Parabola

-

need be drawn for all

cubles, but for each

\
4

cublice there ls a particu-

7

lar line,

Flg. 57

2. Reduce the given cubic x32 + hxy + k = 0 by

means of the rational transformation xi = Tl: ¢+ x to the
form ) pe *
x2 +m(x +1) =0 1in whichmai-é.

*he dlscriminant (the equuce of the product of the differences of
the roots taken in palrs) of this cuble 1s:

A = -m%(27 + lm),

Thus the roots are real and unequal if m ¢ . i—7 3 two are complex
ifm> -%Z-; and two or mors are equal if m = Oorm = -?% .
7hese reglons of the plane (or ranges of m) are separated by the
line through (.1,0) tangent to tne curve as shown,
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This may be replaced
by the system
{yaxa, y+m(x+l)=0}. 8ince
the solution of each

cubic here requires only ‘
the determination of a
particular slope, a
straightedge may be at-
tached to the point (-1,0)
with the y-axis accom-

modating the quantity m.

(4) Trisection of the Angle:

Given the angle AOB = 30. If OA be the radius of
the unit circle, then the projection a 1s cos 36. It
18 proposed to find cos 6 and thus 6 itself.

Since

l)
P cos 30 = 4 cos®9 -3 cos 6

i
|
E
E
E
i
i
E
|
}
i
i
i

we have, in setting

x = cos 0: 4x%- 3x-a=0
or the equivalent systemt
y=42, y-3x-8=20.
Thus, for trisection of
39, draw the line through
(0,8) parallel to the
fixed line L of slope 3.
This meets the curve

y = 4x® at P, The line
from P perpendicular te
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OB meets the unit circle in T and determines the required
distance x, The trisecting line is OT,
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CURVATURE

1. DEFINITION: Curvature is a measure of the rate of
change of the angle of inclination of the tanrgent with
respect to the arc length, Preclsely,

K= de 1

dS. R*""ﬁc

At a maxlmum or minlmum polnt K = y" (or,w, 0); at a flex
if y" is continuous, K = 0O (or m); at a cusp, R = O,
(See Evolutes),

2. OSCULATING CIRCILE:

I The osculating circle of
a curve is the circle having
(x,y), y' and y" in common
with the curve. That 1s, the

relations:
(x - a)® + (y=-3)®=r?
(x = a) +(y=-ply' =0
(L+y'3) +(y-py" =0

must subsist for values of
x,¥,¥',y" belonging to the
curve, These conditions

Fig. 60 give:
r=R, a=x -~ R'sin ¢, § =¥ + R'cos g,

where ¢ 1s the tangential angle, This is also called the
Circle of Curvature.

g

3, CURVATURE AT THE ORIGIN (Newton): We consider only
rational algebraic curves having the x-axls as a tan-
gent at the origin., Let A be the center of a eircle
tangent to the curve at 0 and intersecting the curve
again at Pi1(x,y). As P approaches 0, the circle ap-
proaches the osculating c¢ircle. Now BP = x 18 ¢ mean
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proportional between 0B =
and BC = 2R - vy, where

2
2R-y=-’-‘y—,and

2
Ro = Limit R = Limit (g—).
P -0 x>0 <Y
y-0

Fig, 61

Examples: The Parabola 2y = x% has Ro = 1,

The Cubic y2 = or L =V/§-has Ro = 0.

The Quintic y® = x° or l‘ =‘§7= has Ro = =,

Generally, curvature at the origin is independent of all
coefficients except those of y and x°.

If the curve be given in polar coordinates, through the
pole and tangent to the polar axis, there 1s in 1like
fashion (see Fig., 61):

. - —_r
| 2R'sin 6 = r or R = > sin v}
1y
| Ro = Limit‘. ) Limit ( r )
60 2 s1n ] 0 »0 ‘20

Examples: The Clrcle

: r _a(sin 6) 8
r = a8'sin ¢ or 50 50 has Ro = 5

The Cardioid

| (1 - cos 6)
| r =1~ cos ¢ or L = 1 cos © has Ro = 0,

20 2
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4, CURVATURE IN VARIOUS COORDINATE SYSTEMS:

e S T i S S s S

N I A N R = da/d® .,
R = S_y.‘-é—d-— ' /
o R = r(ﬂ.’.‘)
Px2 L2 T dp
K s (52)° + (5207
ds da® dg
<2 R = p-v;;ﬁ.
Ro = Limit (-2-;) .
x>0 R - (® + r'?)° (polar
y-» 0 “(r? +2r'2 . rp")?  coords.)
. . 2 2,3
R S R (fe * &) .
(xy - ¥§)? (fxxfy® = 2fyyfxfy * T N
% [where the curve is [where the curve is f£(x,y) = 0],
; x = x(t), ¥y =y(t) and a
; 4 R - N, where
é [ s dt]‘ ya.y"
: e ¥ = y3(1 + y'®)
g R = — , where v, a are
: fn (See Conics, 1i8).
5 magnitudes of velocity and
{ normal acceleration of a
f moving point.

5., CURVATURE AT A SINGULAR POINT: At a singular point of
a curve £(x,y) = 0, fx = fy = 0. The character of the
point is disclosed by the forms:

F = fxye - fxxfyy.

That s, Lf F < O there is an isolated point, if F = 0,
a cusp, if I" >0, & node. The curvature at such a point
(excluding the case F < 0) is determined by the usual

"
= .___L-E-—m ] n - .
K = T+ 3y after y' and y" have been evaluated
The slopes y' may be determined (except when y' does not
exist) from the indeterminate form-:%L by the appropriate
y

process involving differentiation,
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6. CURVATURE FOR VARTIOUS CURVES:
TIRVEA FUATION R
Rect, 2 - __!_‘3
Hyperbola ©osta 2y = 2 2%2 |
2
] . SE-DO- L ean2,, (See con-
Catenary =T+ 8 S = ¢ sec™¢ struction
under Catee
nary)
Cycloid g« Bay lsa/ 2 (See construc-
2a  tion under
Cycloid)
x = a(t - sin t)
Y= a(l - nos t) -ha,8in (=)
Tractrix 8 = ¢c'ln g8z ¢ c'tan ¢
Equiangular ~ o oI
Spiral s = a(e 1) ma‘e
2
3 2 4~ (SBee construction under
Lemniscate r’ = ap v Lemniscate)
2 2 2, 2
b ab
Elllpsse R T 2 —
P p? P
Sinusoidai D - alos oy all R
Spirals ) (n+ 1)r"=t  (n+ 1)p
Astrotd x% . y% ) a% 3 axy)?/3
Epi- and 2 2
= ¢ b - i ;= - .
Hypo-cyelolds p = a sin by a(1-b%)sin bg = (1-b°)+p

7. GENERAL ITEMS:

() OUsculating clrcles at two corresponding polnts of

inverse curves are Inverse to each other,

(b) If R and R' be radii of curvature of a curve and
its pedal at corresponding polnts:

R'(2r? - psR) =

r3,
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CURVATURE

(¢c) The curve y = x™ is useful in discussing curva-
ture. Consider at the origin the cases for n rational,
when n < =3 2. (See Evolutes,)

(d) For a parabola, R is twice the length of the
normal intercepted by the curve and its directrix,
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CYCLOID

HISTORY: Apparently first concelved by Mersenne and
Gallleo Galilel in 1599 and studied by Roberval, Des-
cartes, Pascal, Wallls, the Bernoullis and others, It

enters naturally into a varietv of sltuations and is
Justly celebrated. (See 4b and be,)

1., DESCRIPTION: The Cycloid is the path of a point of a
clrcle rolling upon a fixed line (a roulette). The
Prolate and Curtate Cyclolds are formed if P 1s not on
the circle but rlgidly attached to it. For a polnt-wise

Fig. 62

construction, divide the interv
semicircle NH into an equa.
etc, lay off 1p,

a8l O (= ra) and the
number of parts: 1, 2, 3,
= Hl, 2?2 = H‘e’ etc.' as ShO\\'no

2+ EQUATIONS: .

{x = a(t - sin t)

y =a(l - cos t) = 28'817\2(‘5).
8 = ba,sin g R® + 5% = 16a%,
(measured from top
of arch),
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%, METRICAL PROPERTIES:
(n - t)
(a) ¢ = 5 .

]

]

!

|

1

|

(b) L{one arch) = 88 (since Ro = 0, Ry = 4a) (8ir Chris- |
topher Wren, 1658). !
t i

(e) y' = cot(;) (since H is instantaneous center of ]
4

ki

]

rotation of P, Thus the tangent at P passes through
N) (Descartes).

(d) R = ba+cos £ = 4a-sin(§) = 2 (PH) = 2(Normal).
(e) s = ua~cos(§) = 2(NP).

(£) A(cne arcy) = 3ma® (Roberval 1634, Galileo approxi-
mated thls result in 1599 by carefully weighing
pleces of papar cut into the shapes of a cycloidal
arch and the generating circle).

4, GENERAL ITEMS:
(a) Its evolute is an equal

Cycloid. (Huygens 1673.)
(since s = 4a'sin &,

0 = 4a+cosf = ba.sinp)
R = PP' (the reflected

circle rolls along the hori-

zontal through 0'. P' de-
scribes the evolute cycloid.
One curve is thus an in-
volute (or the evolute) of

the other. (See Evolutes, 7.)
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t ds : t S
S..l . — e 2 - LI = .
(b) Since = 48 cos(e), t 2a %in(a) / 2ay

(¢) A Tautochrone: The problem of the Tautochrone is
the determination of the type of curve along which a
particle moves, subject to a specifled l'orce, to ar-
rive at a given point in the same time Interval no
matter from what init'al point it starts. The follow-
ing was first demonstrated by Huygens in 167%, then
by Newton in 1687, and later discussed by Jean

Bernoulli, Euler, and lagrange.

A particle P is conflhed in a vertlcal plane to a
curve s = £(¢) under the influence of gravity: '

ms = -mg-sin @.

Fig. 6h

If the particle is to produce harmonic motion:
ms = -k%s, then

8 = (%5)9171 P

that is, the curve of restraint must be a cyclolid,
generated by a circle of radlus %ﬁg. The period of
this motion is 2n, a perlod which 1s independent of
the amplltude. Thus two balls (particles) of the same
magss, falling on a cycloldal arc from different
helghts, will reach the lowest point at the same
instant.
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68 CYCLOID

Since the evolute (or an involute) of a cycloid

1s an equal cycloid,
a hob B may be sup-
ported at 0 to de-
scribe cycloidal
motion, The period
of vibration of the
pendulum (under no

resistance) would

. - < OO O Y SO
P O S SV TP P OO S SRR N

be constant for all

' | . amplitudes and thus '
Fig. 65

the swings would
cour.t equal tiwe irtervals., Clocks designed upon this ]
principle were short lived, f

i (d) A Brachistochrone. First proposed by Jean

} Bernoulll in 1696, the problem of the Brachistochrone
| is the determinatic. of the path along which a parti-
' cle moves from one point in a plane to another, sub-

Ject to a specificd

force, in the short-
est time. Tne fol-
lowing discussion
ls essentially the
solutlion given by

Jacques Bernoulli.

Solutions were also

, Mg, 66 presented by Leibnits,
|
; : Newtun, ard 1'H.opltal,

For a body tallins under gravity along any curve
y=%—~ort=\/gl

| of restaint: ﬁ =p, ¥ = g 2
At any instant, the veloclty of fall is

"N} .
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CYCLOID
y =g/ %f =V 28y .

Let the medlum through whlch the partlcle falls have
uniform density. At any depth y, v =y 2gy . Let
theoretical layers of the medium be of infinitesimal
depth and assume that the velocity of the particle
changes at the surface of each layer., If it is to
pass from Po to P1 to Pz +.. 1In shortest time, then
according to the law of ref'raction:

sin @3 _ sin ag 8in ag

\/ng'n ) \/Tlgh f:’)gh

Thus the curve of descent, (the limit of the polygon
as h approaches zero and the number of layers increases
accordingly), 1s such that (Fig. 67):

sin 2 = k"/y  or cos?e = k%y,

- e

an equation that may be 1den- ﬁ

tifled as that of a Cyclold.

(e) The parallel projection

of & cylindrical hellx onto a y

plane perpendicular to its %

axis is a Cyclold, prolate, )

curtate, or ordinary. (Mon-
tucla, 1799; Gulllery, 1847.)

(f) The Catacaustic of a cyclolidal arch for a get of
parallel rays perpendicular to lte base is composed of
two Cyclo!dal arches. (Jean Bernoulll 1692.)

F‘ig. 6'{

(g) The isoptic curve of a Cyclold is a Curtate or
prolate Cyclold (de La Hire 17C4).

(n) Its radial curve is a Circle.

(1) 1t !s frequently found deslirable to design the
face and flank of teeth In rack gears as Cyclolds.
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DELTOID

HISTORY: Concelved by Euler ‘r 1745 in connectlon with a
gtudy of caustlc curves, :

1. DESCRIPTION: The Deltoid is a 3-cusped Hypocyclotid.
The rollling clrcle may be either one-thlrd (a = 5b) or
two-thirds (2& = %b) as larpe as the flxed clrile,

For the couble generation, consider the ripht-hand

figure. Here CE = OT =&, AD = AT = gg’ where 0 1s the f

3
senter oY the fixed circle and A that of the rolling
clrcle which carrles the traclng polnt P, Draw TP to m,
T'E, PD and T'0 meeting In F. Draw the ¢ircumeircle of
¥, P, and T' with center at A', This =ircle is tangent

i
to the {'ixed clrele at T' since angle FPT' = é, and its

diameter FT' extended passen through 0.

friangles TET', TDP, and T'FP are a’l similar and
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\l
E%% = % . Thus the radlus of this smallest clrcle is =

3 L)
Furthermnore, arc TP + arc T'P = aprec T, Accordlingly, If
P were to start at X, either clrcle would generate the
same Deltold - the circles rolling in opposlte directlon,
(Notice that PD Is the tangent at P,)

2. EQUATIONS: (where a = 3b),

Xx=b(2 cop {+com 2t) . o
(x%+y®)2+80x> - 2hbxy® + 2667 x%4y?) = 270
Yy =b(2 sin ¢t - 8in 2t),

T (_‘:?) cos 3¢.  R¥ + 95% = 64bE,  r? u gn® - gp?,
p = besin 3¢, v o= b(lelt 4 e-ait)

3. METRICAL PROPERTIES:

t dsa
Lglbbt ¢=n-2. R-«-d(':—'epa
A=2nb® = double that of the luscribed . ipoic.,

4b = length of tangent (BC) intercepted ry tio curve,

4. GENERAT. ITEMS:

(a) It ls the envelope of the Simson linc of a [ired
triangle (the line formed by the feet of' the perpen-
dlculars dropped onto the sides from a variable point
on the clircumclircle). The center of the curve is at
the center of the triangle's nine-point-circle,

(b) Its evolute 18 another Deltoid.

(¢c) Kakeya (1) conjectured that it encloses & region
of least area within which a straight rod, taking all
possible orlentations in its motlon, can be reversed,
However, Bes!covitch showed that there is no least
arca (2).

(d) Its inverse 1ls a Cotes!' Spiral,

(e) Its pedal with respect to (c¢,0) is the family of
folla

[(x = ¢)2 4+ y®)(y? + (x - ¢)x] = Wb(x - ¢)y?



DELTOID (¥
(reducible to:
r o= b cos u 810 - ¢rcoa V)

(with respect tc a cusp, vertex, or center: a simple,
double, tri-follum, Pespe )

(£) Tangent Construction: Since T is the lnstantaneous
center of rotation of P, TP is normal to the path.

The tangent thus passes through N, the extremity of
the diameter through T.

(g) The tanpent lenpth intercepted by the curve is
E constant.,

(h) The tangent BC la blsected (at N) by the inscribed

e “
CHrCLe,

(1) Fue catacausti: for a set of parallel rays is an
Astl‘oid.

(J) Its urthoptlc curve ls a Clrcle. (the inscribed
clrele).

(k) Its radtal curve is a trlifollum,

(1) It is the envelope of the tangent flxed at the
vertex of a arabola which touches > riven llnes (a
Roulette). It is also the envelope of this Parabola.

(m) The tarients at the extremities B, C meet at right
angles on the inscribed circle.

(n) The roruals to the curve at B, C, and P all meet
at T, a point of the clrcumcircle, '

(o) If the tanpent BC be held fixed (as a tangent)
and the Deltold allowed to mo+e, the locus of the
cusps ls a Nephrold. (For an elementary geometrical
proof of this elepant property, see Nat. Math, Mag.,
XIX (1945) p. 330,
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ENVELOPES

HISTORY: Lelbnitz (1694) and Taylor (1715) were the first
to encounter singular solutions of differential equa-
tions. Their geometrical significance was first Indicated
by Lagrange in 1774, Partlicular studies werc made by
Cayley in 1872 and Hill in 1888 and 1918.

1. DEFINITION: A differential equa-
tion of the nth degree

{] — _.dJ *
£(x,y,p) = 0, P =73 "
defines n p's (real or imaginary) A
for every point (x,y) in the plane. e
Its solution +
#

F(x,y,c) = 0, - -

of the nth degree in c, defines &
n c's for each (x,y). Thus at- ]
tached to each point in the plane
there are n integral curves with
n correspondirg slopes. Throughout Fig. 70

the plane some of these curves

together with their slopes may be real, some imaginary,
some coincident. The locus of those points where there
are two or more equal values of p, or, which 18 the same
thing, two or more equal values of c, 13 the envelope of
the famlly of 1ts integral curves. In other words, this
envelope 18 a curve which touches at each of its points
a curve of the family. The equation of the envelope
satisfles the differential equation but is usually not &
member of the family.t

s & o 4

v
h
p >

p 18 used hers for the derivative to conform with the general
sustom throughout the literature. IL should nu be confused with
the distance from origin to tangent as used elvewhere in this
book.

+The line y O is & part of the envelope and & member of the fam-
11y y: ¢ (c-bx)?
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Since a dcuble root of an equatlon must also be a
root of its derlvative (and conversely), th: envelops is

obtalned f'ron eithet of the sets {tiv dlrep minant rela-
tion)*
£(x,y,p) = 0 Fix,y,c) = 0
fp(x,y,p) = 0 Fo (x,y,e) =0

Each of these sets constitutes the parametric ~quatlions
of the envelope. '

2. EXAMPLES:

r u
a f 2y «px -— =20
(a) y-bp b
4
f‘ i - X + = Ot
[P P
~ . 4
Fsy-cx - e = 0
Fc e ¥ -(;1"2 = 0,

yielding: |y® = 16x| as the envelope.

() | £ y-px--L= =0
A R
p - T (p-1)¢ T
F oo oxvscc® 4 yeese®y - 1 =0

Fo - 2x'sec® tan u

e S - 2y*ese®y cot v = O .

yleldine the parabola | /% + /¥y = +1

Fige 12 as the envelope of lineg, the sum of
vhose Intercepts is & posltlve constant,

*Such questions as tac locuw, ~uapidal nnd nedal loei, otcs, whose
cquationy appear as factors in one or both diseriminants, are dis-
cunaed in B115 (1918), Fer exarples, see Cohen, Marray, Glaisher,




ENVELOPES T

NGIE: The two preceed!n: examples are dlfferential equa-
tionge of the Clalraut Corm:

o= opr o+ oo(p)
The meth d o sclution Is that of difrerentlating

with I-t.y_pp'ﬂ o X:

s o (SRy o (dey ey,

L dx dp’ ‘dx’

shs 3
Hence, (i{)-[x + (%ﬁ)] = 0, and the general solu-
tion i obtained from the first factor: %E = 0, or

p = ¢, That is, y = cx + ple),

The =econd tactors » + %g = 0 ls recognized as

fp = 0, a requlrement for an envelope.

5, TECHNIQUE: A famlly of curves may be glven in terms
o' two parameters, a, b, which, themselves, are con-
nected by a certain relatiorn, The following method ls
pruper and {s particularly adaptable to forms which are
homegeneous in the parameters, Thus

piven  J(x,v,a,t) = 0 and gla,b) = 0.
Their partial d!iTferentisals are

fada + t'ydbh = O and gada + pydb = 0

and thus {5 = APfg, % = APby

where A 1= a factor of proportionality to be determined.
The quantities a, b may be ellmirated amons¢ the equations
to rlve the envelope., For example!

(a) Conslcder the envelope of a
line of cungtant length mevin:
with 1ts ends upon the coordl-
nate axer (a Trammel of Archl-
Ly % = 1 where

medes )t ~
a {v

a? + ¥ = 1, Their dif'ferentlals
stve (%)da + (<3)dy = 0 a'd
a b

a*da + hedb = 0.

% Y
Thue B o= N, T A

b
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78 ENVELOPES
Multliplying the first by a, the second by b, and add-

]
N

ine: i +F sl x(az + pEY - A, Dy virtue of the

glven functlons, Thus, »ince A = 1 and a + b® = 1,
vV o= bs, or x§ + ;/-g =-f1 an Astroid,

(b) Consider concentric ard coaxial ellipses of con-
2 yR
/

X
stant area: a? + ;y = 1, where

3
X = a%,

2

2
Vie have (gs)da + (%g)db =0,

b.da + a.-db = 0, t'rom whicecn
X2 .2
%5 = Ab, %3 -+ A2, Multiplying the
f'irst by a, tne second by Q: and
adding:

1 = 2hab 2 k and thus A\ = 1

2k’
a2 K .
Tyt o= T e a pa.r of

ab = k,

il

Thus

_A yp r‘“"‘:".

J W foT T ' e . N
Sl ST BT AN ohralo g v o ormdin Weooo paper,

et C e the 2ocles oA Clred clre e o8 cetiur roand P
a Uixed polnn o it plare, Fold Poover mpot. the circle
Yo P'oand creave, Ar P! oprover upol. the cirele, the

creases envelope a ce:tral cont with P oand C as foci:

\\s\ .
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an EXllpse I P be Inslde the clrcle, an Hyperoola ir
outsite. (Draw CP' cutting the crease in Q. Then PQ =

g P'Q = u, QC = v. For the EllIipsc, u + v = v tor the
Hyperbola u - v = r. The creaces are tamcents since they
bisect the anples formed by the focal radli.)

For the Parabcl+, a {'lxed point P is folded over to
P! upon a fixed line L{a circle of infinite radlus).
P'Q is drawn perpendicular tc L and, since PQ = P'Q, the
locus of Q '8 the Parabola wlith P as tocus, L as direc-
trix, and the crease ag a tanprent. (The simplicity of
this demonstratlion should be compared to an analytical
method) (See Conies 16.)

i
‘,
f
i
E
e

5. GENERAL TTEMS:
(a) The Evolute of a ziven curve !s the envelope of

l1ts normals.

(b) The Catacaustic of' a piven curve 1s the envelope
of its reflected llpnt rays; the Diacaustic 1s the
envelcpe of refracted rays.

(¢) Curves parallel to a glven curve may be considered
as.:

the envelope of clrcles of {ixed radius wlth cen-
ters on t'e gplven curve; or as

the onvelope of circles of flxed radlus tangen®
to the glven curve; or as

the envelope of lines parallel to the tangent to
the given curve and at a constant distance from the
tangent.

(d) The first positive Pedal of a given curve ls the
envelope of clircles through the pedal polint w!th the
radius vector from the pedal polnt as Qlameter.

(e) The ripst reestlve Pedal ls the envelope of the
lite throuph a pulnt of the curve perpendlcular to
the radius vector from tie pedal potnt,

(r) Ir L, M, N are linear functions of' x,y, the
envelupe of the family Lec™ + 2M-c + N = 0 1s the

conlic
[we =t )
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where L = 0, N = O are two of its tan-
gents and M = 0 their hord of contact.
(Fig., 76).

(g) The envelope of a line (or curve)
carried by a curve rolling upon a fixed
curve 1s a KHoulette., For example:

the envelope of a diametevr of a
circle rolling upon a line 1s a Cycloid;

Fig. 76 the envelope of the directrix of a

Parabola rolling vpon a line is a Cate-
nary.

(h) An important envelope arises in the following

calculus of variationr problem (Fig. 77): Given the
carve I' = 0, Lhe point A, both
in a plane, and a constant

A force. Let ¥y = ¢ be the line
Feo of zero veloclty. The shortest
tire path from A to F « O is
£:0 a the Cycloid normal to I = 0

generated by a circle rolling
upen ¢ = ¢, However, let the
family of Cycloids normal to
F = 0 generated by all circles
rollins upon y = ¢ envelope the
curve E = 0, 'f this envelope
Flg. 77 passes between A and F = 0,
there 1s no unique solution of
the problem.
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EPI- and HYPO-CYCLOIDS

HISTORY: Cycleldal curves were f'irst concelved by Roemer
la Dane) in loT74 while studying the best form for pear
teetn., Gallleo and Mersenne had slready (1599) dis-
covered the ordinary Cyclold. The beautlful double genera-
tlor: theorem of there curves was first notlced by Daniel
Bernoull: in 1725, Astronomers f'lnd forms of the cycloidal
curves in various coronas (see Proctor). They also occur
as Caustics. Rectlficatlon was wiven by Newton in his
Principia. '

1. DESCRIPTION:

The Eplicyclo'd !s gen- The Hypocyclold is gen-
erated = a point of a erated by a polnt of a
clrcle ro.lang extorrally circle rolling lnternally
upon a fl+ed clircle, upon a fixed circle,

ey - i
e T

Fig., 78

2. DOUBLE GENERATION:
Let the flxed clrcle have center O and radius 0T =
OE = a, ard the rolllng circle center A' and radlus
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A'PY = A'R = b, the latter carryine the tvacingtpoint P.
(8ee T, 79.) Draw ET', oT'PF, ana PP' to T. Let D be the
interge-tion ot TO and FP and drav the cirele on 1, P,

Cand D, Thin cirele is taiwent to the Ulred circle since
angle DPT fs a rleht anvle, Now ainze PD ls parallel to
T'E, triangzles QET' and OFD are isosceles and thus

DE = 2Db.
Furthermore, are TP = auv  and arce T'P = bu =
arc T'X.
Accordinuly, arc TX = (a + b)u = arc TP, for the
Epicyelold,
or = (a - b)Yy = arc TP, for the

Hypocycloid.
Thus, each ot these cycloidal curves may be generated in
two ways: by two rolling circles the sum, or difference,
of whoge radii ls the radius of the fixed clircle.

Figo 79

The thecrem Lo also evident from the analytic viewpoint.
Consider the case of the Hypocyclold: (Fuler, 1784)

t
« = (@ - hlcoa t + b~cos(a - b)g

b
y = (a - b)ain t - hesin(a - u)% ’
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a 4+ o a + c)t .
and let b = i"—;”“* , U= lar o)ty . Tha equations

[

\

breome: (drog . luy suvseript)

rk = [ﬁﬂéil]'cos (a+i)t + (a:ng 0o (a-clt

R at:)L ate et
TCEE PN EY DTSSR

-y «
[ C?

Notice that a charwe in sivn of ¢ doem not alter these -

S a + ¢
equations, Accordingly, rollins alreles of radil ( “~l
a - ¢ . N .
or ( p ) generate the same curve upon a fixed ceircle of
[

radius a. That is, the difference of the radii of fired
cirele and rolling eircle gives the radlug of a third
clrele whleh will penerate the same Hypooyeloid,

constructed without giffliculty.
3. EQUATIONS:

BEPICYCLOID HYPOCYCLOID
t 1
X = {a+d)ces & - b‘uua(u+b)g X = {a-b)eos t + h‘cos(a~b)g
. b L b
¥ = (asb)slu & - b'o;a(a+n)g . g = (a=d)8in t - b‘sLn(n-b)g .
(x=uxie throush o cusp) ( x=nxlis through a cusp)
L . L
X = (asb)ion t o+ broos(u+n)= % = (a-blcog t = n‘coe(u-b)g
9]
% l
v = (usblsin & + b'sin(a+b)g v = (asb)sin bt + b'uln(a—b); .

(x«axis bisocting arc bebween 2 successive cusps)

4h{a + b) a 4b(» -~ a) a é
2 i, ) mm———— R g ain iy i

® b vin a + 2b 1 a a - 2b \E
or 1

|5 = A sin BY ],
where B <1 Epleyelold,
B

it

1 Ordlrary Cyecloid,

B> 1 | Hypocyceloid.
*ale equation, of conrse, may lust as well Livolve the coslne,
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R? + B®s® = A%B®

r® = a® + - dmp? or p¥ = C%(r? - &%)
(m + 1)* po=5
2 _ la s+ 20)2
where C 4ola + b)
or = (a - 2b)%
4b(b - a) ’
4
where m = Lﬁ_;_ﬂl for the Eplcycloid
b -a
m =" for the Hypocyclolid,

b

a+*sin 5&]

4, METRICAL PROPERTIES:

2 . !
L (Of one apch) = §E;K where i = (a ; Ql op (b b”a) .

Bp

A {of sepment formed by one arcl. and the center)

a2
= k(k + 1)'TE%%75 where k Lcs the values above,

R = AB'cos B¢ = T§£%237! with the foregoing values of
k. (¢ may be obtainnd in terms of t from the given
fipures) .,

[ See Am. Math, Monthly (1944) p. 487 for an elementary
demonstration of these properties.]

5., SPECIAL CASES:

Epleyclolds: If b = a...Cardlold
gb = B .Nephl"oid.
Hypocyclolds: If 2b = a...Line Segment (See Procholids)
%b = a...Deltoid
= 8B, oAStroiao

B |

e e e s meiarn s Lot
. I s maiarin s et .



EPl- and HYPO-CYCLOIDS 85
6. GENERAL ITEMS:

(a) The Evolute of any Cycloidal Curve is another of
the same specles. (For, since all such curves are of
the form: s = A sin B¢, thelr evolutes are %ﬁ = 0 =
AB sin Bg. These evoluces are thus Cycloldal Curves
similar to thelr Involutes with llnear dlmenslons al-
tered by the factor B, Evolutes of Epicyclolds are

smaller, those of Hypocyclolds larger, than the curves

themselves),

(b) The envelope of the family of llnes:
x cos y + vy sin ¢ = c+sin(nv) (with parameter u) Is
an Epl- or Hypocycloid.

(c) Pedals with respect to the center are the Rose
Curves: r = c¢+sin(nv), (See Trochoids).

{4} The lsoptic of an Eplcyclold is an Epitrochold
(Chasles 1837).

(¢) The Eplcycloids are Tautocnrones (see Ohrtmann).

(£) Tangent Construction: Since T (see figures) is
the instantaneocus center of rotation of P, TP is
normal to the path of P. The perpendicular to TP 1s
thus the tangent at P. The tangent is accordlngly the
chord of the rolline circle passing through N, the
point dlametrically opposite T, the point of contact
of the clrcles,
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EVOLUTES

H1STCRY: The tdea of evolules reputedly orlisinated with

Huyrens

Howeveor,

Scet forn,

1. CEFINLITION:
4

N

fnoley s In o connectiur with hig studies on light,

tie cotcept may be tre cd to Apollonlus {about
200 BC) where 1t oappears in tio fIifth book ut' his Conic

. The Evolute of a curve i3 the locus of
ts certers of curvature. If (a,p) is this center,

2., IMPURTANT RELATIONS:

Fig. 80

glven curve,

But

Thus

Henre

[+3

B

where R is the radius of
curvature, ¢ the tangential
angle, and (x,y) a polnt of
the glven curve. The quan-
tities »,y,R,sin ¢, cos8 ¢
may be expressed In terms
of a single variable which
acts as & parameter in the
equations (in a,g) of the
evolute,

i

x - R'sin ¢,

y + Rrcos ¢,

It s is the arc length of the

- R cos ¢(de/ds) - sin ¢(%%),

—% - R sin ¢(lde/ds) + cos ¢(%§).

dx ds

cos ¢ ===, R =2,

ds de
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Acovedingly, £il tarvents Lo the evarlute ar- rormals to
the slven cud e Inocther words, the evelute is the
envelepe £ 1 oprale fo Lo prlven curve,

From the ' t-eoine:

do = + dR  where de¢® = da® + dp

Thus 0 = R} - Kp,

That is, the s ierglh ob the
evolute (IF R is ncrolone) 1s the
dil'ference of tie radl. o curva-
ture of the ¢ivenr curve measured
from the end jointe ol the are g
Furthermors, ‘1o clvern curve is
an .nvelute o0 Dl evelute.

Fig. &1

%, GENERAL ITEMS: Many c¢f these may be estahlished most
simply by usinp the Whewell equation of the curve. See

3¢ -, 7 t'i'.]

Ka\ The ewo e LD on Yatfioag e a Cem.- bl prarn.

Luela.

o) The evulute of & zentral conte !. the Lamé curve:

X N
('A‘) + (‘!) = 1,

1
ey

(z) The evolute of an equlangular spiral ls an equal
equiangular sylral,

(d) The evolute or a Tractrix ts a Catenary.

(e) Evolutes of the Epi- and Hypocycloide are curves
of the same specles., [See Intrinalc Eqnas. and 4(b)
followirg. )

f) The evolute of a Cayley sextir 1g a Nephroid.

(++) The Caturaust’e of a gfven curve ls the evolute of
Ste orthwt nic surve, (See Caustlica.)

(n) G nerally, to a fley pulnt o a curve curresponds
symptute to (12 evulute, [For excepblon ace
[ . .
«7, (¢ tollowing. |
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4, EVOLUTES OF SOME CURVES:

(a) The Conles:

Flg. 82

The Evolute of

2

i
o
/2]
~—
!
Nt
+
~—
ke
N
Ol
[
-

2
The Ellipse: (}’;(,) + (%)

An = Bb = a% - b%,

B
H
’-‘.
w
-

e

St

]

——

ke

Nuaa”

]
(=)
-

2 2
The Hyperbola: (ﬁ) - (%)

Ha = Kb = a® + v2,

%

The Parabola: x° = 2ky 1is % (y - x)° .

. S

27k
(An elegant construction for the center of Gurvature of
a conlc Lr given in Conics 20.)
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(b) The Cycloids (thelr evolutes are of the same
specles):

“Buacos ¢
,,.-. A [ Sa 4in

s d0 g
v (
-\ {
cd ot

fi‘
e

(c) The Family y = x™.

If the x-axis 1s tangent at the origin:

x2 xa-n
Ro = Limit (55) = Limit (—75—). [See Curvature.]
Thus: Ro = 0 if n € 23 Rp = @ {if n > 2;
1
Ro = - iIf n=2,
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Flg. 8

5. GENERAL NOTE: Where there ls symmetry in the given
surve wlth respect to a line (except for points of
osculation or double flex) there will correspond a cusp
in the cvolute (apprcaching the point of symmetry on
elther sid., the normal forms a double tangent to the
evoltte). This is not sufficlent, however.

[f & curve has a cnsp of the first kind, its evolute in
gercral passes through the cusp,

It n enrve has a cusp oF the second kind, there corre-
spords a lex In the evolute.
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6. NORMALS TO A GIVEN CURVE: The Evolute of a curve
separates the plane into reglons contalining poeints from
which normals may be drawn tu the curve. For example,
constider the larabola ye = 2x and the point (k,k). The
normals rrom {h,x) ave determined from

v* +2(1 - n)y - 2k = 0, .
where y represernts the ordinates of the feet of the nor-
mals at the curve., There are thus, In general, three
" horimdls ahd at thelr feet:

yi + ya + ys3 = 0.

If we ask that twe of the three normals be colnclident,
the foreroir: cuble must have a double root. Thus between
this cubie are 'ts derivative; jye +2(1 - h) =0, are
the conditions un h and ki

1\,2
hom ] o4

2 ,k="ysa

The locus of (h,k) Lg tiws recopnizable as the Evolute
of the glver Parabola: tne envelope of lts normals. This
evolute divides the plane into two reglons from which
one or three normals may be drawn to the Parabola. From
points on the evolute, two normals may be esttLlished.

An elegant theorem ls a consequence of the preceding.
‘the circle x° + y° + ax + by + ¢ = 0 meets the Parabola

=
&

¥y = % in points such that
Y1 +y2 + ya+t Ya =0,

If three of these points are fcet of concurrent normals
to the Parabola, then y; = O and the clrcl: must neces-
sarily pass through the vertex.

A theorem Involving the Cardiold can be obtained here
by inversion.
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7. INTRINSIC EQUATICN CF THE EVOLUTE:
Let the glven curve ne & = £(¢)
wlth the points 0' and P' of
its evolute corresponding to

0 and P of the given curve.

Then, if o is the arc length

. ds .
L o _ / °=Rp'Ro=E.-}'Ro=f'(¢)-Ro'

P

' ,mi”/)‘\' s In terms of the tangential
O =l

of the evolute: o o “%
]

%

i

angle §, (since B = ¢ + g): :
b

Flg. 85 o= (g -3) - Ry

[Example: The (yclold: s = 4a'sin ¢; o = barcos ¢ =
ha.cos(B - g) = haealn 3], (See Cycloid 4,a),
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EXPONENTIAL CURVES

HISTORY: The number "e" can be traced back to Napier and
the year 1614 where 1t entered his system of logarithms.
Strangely enough, Napler concelved his idea of logarithms
before anything was known of exponents. The notion of a
normally distributed variable originated with DeMoivre
in 1733 who made known his ideas in a letter to an
acquaintance. Thls was at a time when DeMolivre, banished
to Englard from France, eked out a livelihood by suppiy-
ing information on games of chance to gamblers. The
Bernoulll appreach through the binomial expansion was
published poathumously in 1713,

1. DESCRIPTION: "e". Fundamental deflnitions of this
lmportant natural constant are:

= ' X 2y
e = limi (.. +_l) = limit (1 + X)x

x &, Ty 2 »0
.1

= I <= & 2,718281 .
0 k!

..........
......
ort

........
.....

Fip., 86
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o4 EXPONENTIAL CURVES
2., GENERAL TTEMS:

{8) Lne dollar st 1004 Interest compounded k Limes a
year produces at the end off the year:

o lew P - BPRA)
(1+‘1‘)k=1*l-v xlklg.‘_l?_;+n§klv“x 2)
I3 21 K Wy

. l* ‘_l
‘Sk_ .F oo.';(’_ﬁ

dellars.,

It the !nterest be compounded continuously, the total
at the end of the year Is

Limire Lim

[y
M) 1+
K + w « wo»r (

(o) Trhe Euler torm:
ix
e = 08 ¥ 4 Lesin »x

produces the numerical relations;
S i=
e’ "+1=0, e°=i.

From the latter

0.208.

(/I - (66F) = o2

3. The Law of Growth (or Decay) ls the product of exper-
ience. In an ldec. state (one in which there 1s no
disease, pestllel. », war, famine, or the like) many
ratural populatlcn~ ‘ncrease at a rate proportional to
the number present. Tnat ls, ! x vepr-rents the nunber
of individuals, and t "he time,

dx '
—_— K or kt
dt X % o= Ce

This occurs in controlled bacteria cultures, decomposi-
tion and conversion o!f chemical substances ( sueh as
radium and sugar), the scoumulatlon of interest bearing
money, certain types of electrlcal circuits, and in the
history of colonies such as frult flies and people.

A further hypothcorir rupps s o the governing law ag
dx 1 )
o Revelnioox, X o= TR N
dt ( (¢ + e-NKt)

é
1
]

e
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EXPONENTIAL CURVES 95

where n 1s the maximwn possible number of inhabltants -
& number regulated, for instance, by the food supply. A
more general f'orm devised to it observations involves
the function t'(t) (which may be perledic, for example)

d« . . . _ en i
T f(t)ex:(n-x) or x= T . (Fig, 87a)
(¢ + e )

At moderate veloclties, the resistance offered by water
to a ship (or alir to an automoblle or to a parachute) is
approximately propertional to the velocity, That }

5,

7]

2.
8=8=17=-k%, or =<-¥f)(1-e“).

Flax s

. -

n -~ /_-

B “
~
t X
O - » £y e
3 "'L"'-'l ® -xl/?-
$ - ue . Yy e
(a) Flg. 87 (v)

4. THE PROBABILITY (OR NORMAL, OR GAUSSTAN) CURVE:

)
y = e X/2 | (rig, 870).

(a) Bince y' -~ -xy and 7" = v(x® - 1), the rley

points are (+1, e 1/2). (A 'teartbed pestan~"- w'ih
one side on the x-axis has area = xy = -7', Th

largest ohe ts glven by ¥" = 0 and thun twe corners
are at the flex polnts.)
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95 EXPONENTIAL CURVES
" (b) Area. By definition [' (n) =fz“"e"‘dz. In this,
¢

] 2 g 2
let I' (n) =// X2 2 g% ,0x dx = 2 // xB0" "% .qx,
o o
1
putting n =%,

x2

-]
2
F(%) = 9// e"* dx = /E'= Area between y = e
0

its asymptote,

The Normal Curve is, more specifically:

n

y = c/2n ©
For thls population, n is the size, W the meah, and ¢
the standard deviation, Rewrlting for simplielitys

2 a
g = Ko x© /20 ,

t
the flex points are (+ o, k'e =) = (+ o,yo). It isevi-
dent that the flex tangents:
y - yo =+ (L) (x + o)

+
have x-intercepts which apre completely independent of the
selected y-unit.

A stream of shot

7 entering the "slot
' machine" shown 1is

separated by nail ob-
structions into bins.
fhe collection will
form into a histogram
approximating the
normal curve; the nuie«
ber of shot in the
bins proportional to
the coefficlents ln a
binomial expansion.

|
|
|
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FOLIUM OF DESCARTES

HISTORY: First discussed by Descartes lIn 1638.

1. BQUATIUNS:

=

4at
=T

(vaiues of t) 15T

-© lowor -} pper Locy
< OWEX 1ppe ‘& ocy +w= ) "Bata
Y =11+ t9) |
A _3a.sin U cos® !
T = (sin®¢ + cos® o }
]
|
¥
< >
i
Fig. 89 ;

" 5. METRICAL PRUPERTTES:

wn?
{a) Area o loop: = *’%—' = area between curve and

agymptote.
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5. GENERAL:
(a) Tts asymptote 1s x + ¥y < & = 0,

(b) Its Hesslan is another Follum of Descartes.

BIBLTOGRAPHY

Encyclopaedia Britannica, lith Ed. under "Curves,
Special.”




FUNCTIONS WITH DISCONTINUOUS PROPERTIES

This collection is composed of 1llustrations which
may be useful at various times as counter examples to
the more frequent functions having all the regular
propertles.

1, FUNCTIONS WITH REMOVABLE DISCONTINUITIES:

(a) y = {———:L—% , undefined for
Ly -

///g// x = 2, 1s represented by the line
; y = x + 2 except for the point

e T ety ram ety

D\YQM

vhere x = 2. Since Limit y = &4,
i / x-’2
Y
9Ty this 1s a removable discontinuity.

3‘
(b) y = %%——:—%% , undefined for

x = 1, ls represented by the Para-

bola y = xZ 4+ % + 1 except for the

poirt where x = 1, Since Limit y = 3,
x »1

this 1s a removable dlscontinuity.




FUNCTIONS WITH DISCONTINUOUS PROPERTIES 10l

(¢) The impor-
tant function
- sin x

, un-
def'lned for
X = 0 has

Limit y = 1
x »0

and thus has a
removable dls-
continuity. The
hyperbolas

Xy = + 1 form a
bound to the
curve.,

Fig. 92

(a@) The function
y = xosin(%) 18 not

def'ined for x = 0,
However, Limit y = O
x » 0
and the function has
a removable discontls

nuity at x = 0. The T~ o L
lines y = + x form a N Ve : o

bound to the curve
near x = 0.

AR
L]

Fig. 93
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102 FUNCTIONS WITH DISCONTINUOUS PROPERTIES
2. FUNCTTONS WITH NON-REMOVABLE DISCONTINUITIES:

1
(aV y = arc tan S » undefined

Y
for x = O,
i -1t
% Limit y = %; Limlt y = 7;
L x> 0+ X =+ 0-
‘ X
oz The lef't and ripnt limits are
2
| both finite but difterent.
|
Fig, 9b

(b) y = sin(%) 18 not

def'ined for x = 0, In .
every nelghborhood of
x = 0, y takes all

values between +1 and

-1+, The x-axls is an

asymptote,

Limlt sin(%) does not
¥ > 0 '

erist,

Flg. 95
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(¢) v = Limie {1 + sin a) bt
S R

I

+x =0, 1, 2, 5, ees

e e e

out has valueg 41 ¢r -1 alge-

where. A?M- o

|

i

|

E ia discortituvus Yor the et
|

E

‘;

i

L

i

Fig. 96

‘a

focd

[
e

1
(d) y = 2% 13 undefined for
: x = 0. Limit y = 0;

" x » 0- Y=1

B s T R

im{t y = Left and right \
x - O+ . d

limits different,

|
| s
H ‘0‘
i o
' .
i 0
I h
;
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104  FUNCTIONS WITH DISCONTINUOUS PROPERTIES

e o et s mar ot o

1l
(e) y = 04—
2% 4+ 1

{83 undefined for x = 0.

Since Limit y = 1, and
X » 0-

Limit y = 0, left and
x » 0+

o right limits at x = 0

i , . 1
j,:\r/ X a.e both flnite but
iR different,
Fig. 98

3. OTHER TYPES OF DISCONTINUITIES:

¥

Flg. 99

(a) ¥y = x* 1s undefined for

% = 0, but Limit y = 1.
x -» 0+

The function is everywhere dis-

continuous for x ¢ 0.
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-

(b) y = x* is undefined for x = 0, but Limit y = O.
x » 0+
The function is everywhere discontinuous for x ¢ ¢.

e e e e e e e e - -

A¢a .
AR T

."‘...00:1.9.,._.
.

- ms e e s et e e hee e A s e e e

.
ae?®

Fig, 100
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1c6 FUNCTIONS WITH DISCONTINUOUS PROPERTIES

{¢) By halving the sides
o AC and CB of the
iowseeles trilangle ABC,
and continulng this
/\\\ ! process as shown, the
<; . <:§; "saw tooth" path between
A and B ig produced.
§/<;/A\V/<:>R\/) N g This path is continuous
wlth constant length,
The nth successive
curve of this procession
has no unique slope at the set of polnts whose co-
ordinates, measured Urom A, are of the form

K A% , K=1, ..., n,

Fig. 101

-,

(d) The "snowflake" (Von Koch curve) is the limit of
the procession shown.® (Each side of the original

Fig. 102

equllateral triangle is trisected, the middle segment
discarded and an external equilateral triangle built

there). The limiting curve has finite area, infinite

lergtn, and no derivative anywhere.

The determination of length and area are good
exerclses in numerical series.

* Thie procession 18 ths one devised by Boltzmann to visualize cer-
tain theorems in the theory of gases., See Math. Annalen, 50(1898),

j
1
|
jj
i
1
1
]
|
B
|
1
|
!
]
i
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(e) The Sterpinskl "epace-t11ling” surve s the limitb
fothie proceesaton wihown, 70 has finite area, infinite

e T e = ST TY T T B ST ey e =9

: “ -~ g
i \ . o
{0 ,
Lo * :
| v-l S »
b ‘ ¥
P« i o
! ~ A

i

' lenwth, ne derivative anywhere, and passes through

every polnt within the original square.

@

i . n

; (f) The Weleprstrase functicn y = g b «cos(a™x),

i 2

i where a ie an cdd positive Iinteger, b a positive

i ~onstant iesas than nnity, althoaeh continuous has no

‘ derivative amwiors 17

BIBLIOCGRAPHY

Edwards, J.: Calculus, Macmillan (1892) 235.

Hardy, G. H.: pure Mathematics, Macmlllan (1933) 162 f.

Kasner and Newman: Mathematics and Imagination, Simon
and Schuster (1940).

Osguod, W. F.: Real Varlables, Stechert (1938) Chap. IIT.

olerpont, J.: Real Voriables, Ginn and Co. (1912) Chap.
XIvV.

Strinkaus, H.: Matrematlical Snapsiuts, Stechert (1938)
oU,




T T T S S e T e Tow T A e Rt T e

GLISSETTES

HISTORY: The idea of Glissettes in somewhat elementary
form was known to the anclent Greeks. (For example, the
Trammel of Archimedes, the Conchold of Nicomedes.) A
systematlc study, however, was not made until 1869 when
Be-sant published a short tract on the matter.

1, DEFINITION: A Glissette 1s the locus of a point - or
the ervelope of a curve - carried by & curve whlch slides
between given curves.

An interesting and related Glicsette ls that generated
by a curve always tangent at a fixed point of a given
curve. (See 6b and 6¢c below.)

2. SOME EXAMPLES:

(a) The Gllssette of the vertex P of a rigid angle
whose sides slide upon two fixed points A and B is an
arc of a circle. Furthermore, since P travels on a
¢lrcle, any polnt Q of AP describes a Limacon.

(See 4),

Fig, 10k

(b) Trammel of Archimedes.

A rod AB of fixed length slides with its ends
upon two fixed perpendicular lines.
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1. The Glisselle of any point P of the rod (or
any point rigidly attached) 1s an Ellipse.

2. The envelope Glissette of the rod itself 18 the
Astroild. (See Envelopes, 3a.)

3

(¢) If a point A of a rod, which passes always through

a fixed point 0, moves along a

glven curve r = f(v), the Glis- 1
i
]
|
i
1
i

sette of a point P of the rod k —
units distant from A 1is the \\\ /g
Conchoid ﬁx”f’
ro=£(8) +k o

.'1.//
of the given curve. (See A \\\\\
Moritz, R. E., U. of Wash, Pub.
1923, for plctures of many Fig., 105

varieties of this family, ;

where the base curve is r = cos(%f)].

3. THE POINT GLISSETTE OF A CURVE SLIDING BETWEEN TWO
LINES AT RIGHT ANGLES (THE x,y AXES):

Y

If the curve be glven by
p = £(¢) referred to the car-
ried point P, then

e+ e e

uf{i«“}_""“wQP

!
|

i oy
|

#*
‘;’.v

y=p=f(¢) andx=f‘(cp+g‘)
|

are parametric equations of .«% o
the Glissette traced by P. Fig. 106 1
For example, the Astroid :
p = sin 2¢, referred to its center, has the Glissette

x = sin 2¢, y = - sin 2¢

(a segment of x + y = 0) as=the locus of its center as
it slides between the x and y axes,




Srantobe o sl e Sooeor N WO g ~iyen Lpd-
arccle ABC, two o wnese clden touch flxed clecleon with
coenter: X, Y, As thisg
telancle moves, lines
XA' ard YA!' drawn
parallel to the slides
are lines flixed to the
trlangle, Let the circle
degeribed by A' meet the
parallel to BC through
A' ir D, Then angle
DA'X = angle A'B'C =
angle AEC, all con-
stant, and thug D is a
{1xed point of the
clircle, The perpendicu-
Fie, 107 lar DP from D to BC is
the altitude of the ln-
variable triangle A'B'C' and thus BC touches the circle
with that altlitude ag radius and center D,*

|

F 110 GLISSETTES
% N, A TRTANGLE TUUCHING ©Wo FIXED OTROLES:
| B

I

g .

|

1

|

E

E

3

E

i

I

|

?

-

The polnt Glissettes (for avample, any point F of
. \ a . . .
Are') ef the trtangle are Limacons. {See Troenoids 3d.)

5. GENERAL THEOREM: Any motlon of a confipuration i: its
plane can be rcprnfented Lg the rolllng ef & certain
dntnrmlxate curve on another determinate curve., This

reduces the problem of Glia~
setter to that of Roulettes,

A simple 1llustratlon 1ls the
trammel AB sliding upon two
perpendicnlar lines. I, the
Ingstantaneous center of prota=-
tion of AB, lies aliways on

the flxed circle wlith center

0 and radiug AB, This point
alzo lies on the clrcle having
AB as diameter - a circle car-
Fres 103 ried with AB., The actlion then

sLas the alles of eniT poalyron anvelope nlrclen 1 two sldes
sourn elraley or pass throuwt two fixzxed pointe., [his enters the
leglgn of a roter, a convex curve whlech remaine tnnwent to all
oldee of a fixed polygon while the curve lp rotated, Ses
soldbere, Mui AWM, vED, 535eh00,
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{s as If this smaller circle were rolllng internally
upon a fixed circle twlce as large. Hence, any point
of AB deseribes an Nllilpse and the envelope o AB is
the Astrold,

6. GENTRAL ITEM3:

(a) A Parebola sltdes on the x,y axes, The locus ol
the vertex Lls:

x2yE(x¥ + y® + 36%) = 8%
the focus ls:

+ y9).

(b) The path of the center of an Ellipse touching a
stralght line always at the same polnt 1is

QR

x2y® = (a® - ¥y (YR - »F),

(¢) A Parabola slides on a straight llne touching it
at a fixed point of the llne, The locus of the focus
is an Hyperbola.

(d) The bar APB, with PA = a, PB = b, moves with 1ts
ands on a simple closed

zurve, The dilfference

between the area of the 8

curve and the area of the

locus described by P ls ()

nab.,

Fig, 109
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(e) The vertex of a carpenter's square moves upon &
ecivrcle while one arm passes through a
fixed polnt F, The envelope of the
other arm 13 a conic with F as focus,
(Hyperbola if ¥ ls outside the circle.
Ellipse 1f inside, Parabola if the
circle be replaced by a line,)

(See Conics 16,)

Fig. 110
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HYPERBOLIC FUNCTIONS

HISTORY: Of disputed origln: elther by Mayer or by
Riccati In the 18th century; elaborated upon by Lambert
(who proved the irraticnallty of n). Further Investigated
by Gudermann (1798-1851), a teacher of Welerstrass, He

complied 7-place tables for logarlthms of the hyperbolic
functions in 1832,

1. DESCRIPTION: Theese functlons are defined as follows:

X _ geX b3 - —
slnh x = e = o7 y cosh X = Qi.%%ﬁ__l = /(1 + sinh®%),

einh x 1

tanh X = cot, X = ew——
cosh x ' h tanh x ’

sech x = 08ch X & smmme———
cosh x ' °%° inh x °

Al

|
!\

- i e

e e s
a 9‘5 x
i
]
i
i
I
|
i

L v S X Y5 COSh § e ~a ys tahh g =

\‘ ¥y C6CoIx - yt SeChx -+~ \ y* coth gww-

Fig, 111




T T e e e Ty

(&) [l':'»,“‘[:?.i },_f_,'

HYPERBOLIC FUNCTIONS
INTERRELATIONS:

avrc sinh

arce cosh

arc tanh

arc coth

arc sech

arc cach

(b) Identities:
cosh®yr - ginh®x
coth®x - 1;

y)

LY 4

2
cach®x

ginh(x +
cosh(x +
sinh

cosh

X

X

X

J

2x
2x
tanh
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X

atisne:s

In(x +vx% + 1), % ¢ a

In(x +/x% - 1), x¥ 1

sinh x+cosh ¥y
cosh x*cosh y
23ink z+cosh x;
cosh?x + sin®x;

+ tanh y

tan(x +y)

ginh x + sinh ¥y

cosh x + cosh y

sinh 3x

ceosh 3x

it

=1 + tanh x tanh y

f/cosh x + 1
2

2sinh x4y cosh

cosh =« =

i

3
4sinh®x

Yeosh®x - 3¢cosh x;

¥
(¢tnh x + cosh %)
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1; sech®x = 1 - tanh®x;

]

cosh x+*sinh y;
sinh x'sinh y;

x %+ feosh x =1
sinh§= --—‘~2-——-—';

-e

2cosh zgx cosh Zél

-e

+ 3sinh x;

sinh kx 4 cosh




HYPERBOLIC FUNCTIONS 115
(c) Differentials and Integrals:
d(einh x) = cosh x«dx; [tanh x dx = ln cosh X3
d( cosh x) = einh X dx; [cothxdx: in |einh x| :
d( tanh x) = sech®x dx; ‘sech x dx = arc tan(sinh xl =
ad x
d(coth x) = -asch®x dx; ‘ cach x dx = lnltanh(g)lz

d(sech x) = -gech xe¢tanh x dx;

d(cech x) = -cech xecoth x dx;

d(arc elnhx)=¢ 3 d(arc cosh x) = + dx 3
c 8 b 4 =. = —
x° ¢ 1 = ,/xa -1

dx

d(arc tanh x) = ——w»— = d(arc coth x), (in different inter-
(1 - x%)
vals)

d(arc sech x) = + —dx—-'; d(arc cech x) = —tdx__

Xyl -~ x2 xJ/I+ 2

L]

(called the "gudermannian") x =[y gec y Ay = lnjsec y + tan y|
Jo

l
|

3, ATTACHMENT TO THE RECTANGULAR HYPERBOLA: A comparison
with the trigonometric (eircular) functions Ls &s fol-
lows.

Fig. 112




T,

L
i
i
i
t
\

T T e T st 7T

T AT = ——

116 HYPERBOLIC FUNCTIONS

For the shaded sectors (A):

necog t X = aecosh t

———
< %
H u

assin t , Yy = aesinh t , ?
dA = (%)psz,

U = arc tan ‘% = t, ¢ =arc tan %:arc tan{ tanh t),
dt
d0 = dt U =
0 G v (cosh™t + sinh®t)
But
pZ = a®( cos®t + s1n®t) = 43, p? = a®(cosh®t + sinh®t),
L and thus t
1l 2 a°t 1 2 a’t
A= (= dt = — = (= = —
! (2)/a s A (2)/adt >
° 0
In elther case:
L o 2A
v e 9.2 '
or
. gecon 2A - p 2A
X = ascos = x = uecosh =
2A 2A
y:aosinzz—. y=a°sinha—2 .

Thus the Hyperbolic functions are attached to the
Rectangular Hyperhola in the same manner that the
trigonumetr: : funcileons are attached to the clrele,

4, ANALYLICAL PELATONS WITH THE TRIGONOMETRIC FUNCTIONS:

The Fuler rmmng

@t 1« v+ tegin x3 =X = cos(ix) + 1esin(ix);

¢“'% . ~0p x - fesin x; X = cos(ix) - i*sin(ix);
produce:

cosh %} - 0B X} cosh x = cos( 1%)}

ginh (“x} . { 8in x3 sinh x = <iesin(ix);

from which ~.her relaticns ay be derived,
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HYPERBOLIC FUNCTIONS 117

5. SERIES REPRESENTATIONS:

sinh x = 2
1
-9
cosh x = &
0
tanh x = x
coth x = -]-'
X
sech x = 1
1l
csch X = =
X
arc sinh x
arc cosh x
arc tanh x
84 x = arc

xek-l a
(2k1); X
2k
X
T <
x> 2x° 17x7 2 7©
- =+ —— + eeey XK ==
3 15 315 I
3 5 7
S W S 2 2,
+ 3 - l&5+ 91&5 - l&725+ seey X £ U 3
l » 5 61 1385 ;
-ax +Ex4--67xe+—8-:—xa-...,x2<-n-i
x 7% 31x° 2

X T AN Tt T e XL,
) 11 15 1 1:35 1
TN S S ek bt T oG B8t X213
] 11 131 135 1
AN X - S SE Bk hxt T2k e T e X2 L
= ;
l2k--1

1 53 1 g 61 =
tem(sinhx)-x-6x +op X -5ou0x + eeee

6., APPLICATIONS:

(a) v

= a'cosh-:; , the Catenary, is the form of a

flexible chain hanging {rom two supports.

(b) These functlions play a dominant role in electrical

communication circuits. For example, the engineer
prefers the convenient hyperbvolic form over the ex-
ponentlal form of the solutions of certain types of

problems in transmission. The voltage V (or current I)

satisfles the differential equation

i i bt o P e e S Eik Yt n i ot S 21




118 HYPERBOLIC FUNCTIONS

a3y - 2yeV
'&2 yev,

admittance, and z the series impedance. The solution:

V = Vpecosh x Vyz + Ir‘v/§'51"h xvyz ,

I S e iy

glves the voltage in terms of voltage and current at
the recelving end,

(¢) Mapping: In the general problem of conformal
world maps, hyperbolic functions enter significantly.
For instance, in Mercator's (1512-1594) projection
of the sphere onto its tangent cylinder with the N-S

1
!
]
:
i
i
]
4
]
vhere x 1s distance along the line, y the unit shunt j
g
i
1
j
i
line as axis, |

x=06, 9=gdy,

where (x,y) 18 the projection of the point on the
sphere whose latitude and longitude are ¢ and 6, re-
spectively. Along a rhumb line,

P = gd(@*tan a + b)'

where & is the inclination of a straight course (line)
on the map.
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INSTANTANEOUS CENTER OF ROTATION and
THE CONSTRUCTION OF SOME TANGENTS

1, DEFINITION: A rigid body moving in any manner whatso-

ever in a plane has an Instanta-
neous center of rotation. This
center may be located if the
direction of motion of any two
points A, B of the body are known.
Let thelr respective velocltles be
Vi and Vz. Draw the perpendiculars
to Vi and V2 at A and B, The cen-
ter of rotation !s thelr point of
Intersection H. For, no point of
HA can move toward A or H (slince
the body is rigid) and thus all
points must move parallel to Vi,
Similarly, all points of HB move

parallel to Vp., But the point H cannot move parallel to

both Vi1 and Vz; and so must be at rest,

2. CENTRODE: If two points of a rigid body move on known

curves, the Instantaneous center
of rotation of any point P of the
body is H, the intersection of
the normals to the two curves,
The locus of the point H is
called the Centrode., (Chasles)

Fig. 11b
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3., EXAMPLES:

»—/

» ]

Fig, 116

{a) The Elllpse is
produced by the
Trammel of Archi-
medes, The extremi-
ties A, B of & rod
move along two per-
pendicular lines,
The path of* any
point P of the rod
is an Ellipse.* AH
and BH are normals
to the directions
of A and B and thus
H is vhe center of
rotation of any
point of the rod.
HP is normal to the
path of P and its
perpendicular PT 1is
the tangent. (See
Trochoids, 3%.)

(b) The Conchoid *
is the path of Pa
and P where A, the
midpoint of the con-
stant distance P1Pa,
moves along the fixed
line and P1Pp (ex-
tended) passes
through the fixed
point 0. The point
of PiPz passing
through 0 has the
direction of PiPa.
Thus the perpen-
diculars O and AH
locate H the center
of rotation., The
perpendiculars to

* The path of P is an Ellipse if A and B move along any two intere

gecting llnes.

 (Por a move general definition, see Conohodd, 1,)
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PiH and PzH at P; and Pj respectively, are tangents
to the cupve,

(¢) For the Limacori, B mover alung the circle while
OBP rotates about 0, At any
Instant B moves normal to

_ T P ey
e o, o ™

i
k the radius BA while the \/\‘1
E point on CP at O moves In ”/,?fk\
§ the dlrectlon OP. The ,:'-\{% o
| center of rotation is P //f}>*5('
; thus H (a polnt of the /’ VAN
E circle) and the tangent o s LS
E to the Llmacon described Priete Ayéfy’
‘ by P ls perpendicular to LM 1%%,
PH. W / !
i \ N //// /
i " ;/ /
| Nyon e
| bl e
1
: Mg, 117

(d) The Isoptic of & curve s the locus of the inter-
section of two tanpents which meet at g constant
angle. It these tangents meet the curve in A and B,
Liw rovmals there to the siven curve meet In H. This
ls the eenter of rotation of any point of the rigid
body formed hy the constant angle, Thus HP is normal
to the path of P, For example,
see (Gllssettes, 4) the locus

of the vertex cf a triangle,
two of whose sldes touch

I'ixed rinrcles, is a Limacon,

Normals to these tanments

pass through the centers of

the circles and make a con-

atant ancle with each other,

They meet at H, the center

of' rotation, and the locus

of H is accordingly & circle

throussh the centers of the

two given clreles,




122 . INSTANTANEQUS CENTER OF ROTATION
(e) The point Glissette of a curve is the locus of P,
a point rigidly attached to the

curve, as that curve slldes on
given fixed curves. If the points
of tangency are A and B, the nor-
mals to the fired curves there
meet in H, the center of rotatlon.
Thus HP 18 normal to the path of
P.

Fig. 119

(f) Trocholdal curves are generated by a point P
rigidly attached to a curve that

////’;; rolls upon a fixed curve. The
; ! point of tangency H is the center-
// | A/// of rotation and HP is normal to
the path of P. This is particu-
\\\ larly useful in the trocholds of

a circles the Epi- and Hypo-
cycloids and the ordinary Cycloid.
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INTRINSIC EQUATIONS

INTRODUCTION:+ The cholce of reference system for & par-
ticular curve may be dictated by lts physical character-
istics or by the particular type of Inf'ormation desired
from lts properties. Thus, a system of rectangular
coordinates will bhe selected for curves in which slope
i3 of primary lmportance., Curves which exhibit a central
property - physlcal or geometrical - with respect to a
point wlll be expressed in a polar system with the cen=-
tral point as pole. This is well i{llustrated in situa-
tions involving action under & central force: the path
of the earth about the sun f'or example, Again, if an
outstanding feature is the distance from a fixed point
upon the tangent to & curve = &8 in the general problem
of Caustics - a system of pedal coordinates will be
selected,

The equations of curves in each of these systems,
however, are for the most part "local" in character and
are altered by certaln transformations. Let a transforma-
tion (within a particular system or from system to
system) be such that the measures of length and angle
are preserved. Then area, arc length, curvature, humber
of singular points, etc., will be invariants., If & curve
can be properly defined in terms of these invariants 1its
equation would be intrinsic in character and would ex-
press qualities of the curve which would not change from
system to system.

Two such characterizations are given here. One, re-
lating arc length and tangential angle, was introduced
by Whewell; the other, connecting arc length and curva-
ture, by Ceséro.
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124 INTRINSIC EQUATIONS
1, THE WHEWELL EQUATION: The Whewell equation is that

connecting arc length 8 and tangen-

tial angle ¢, where ¢ 1ls measured

from the tangent to the curve at the
initlal point of the arc, It will be
convenient here to take this tangent

as the x-axls or, in polar coordi-

|
|
|
?
E

nates, the initial line. Examples
Figu 121 follow.

(a) Constder the Catenary: y = a-cosh(-z).

Here y' = sinh(i) tan ¢; ds® = [1 + sinhe(ﬁ)]dxa.

Thus s =f cosh(-:)dx = a~sinh(§), and
[+

(™is relation 1s, of course, a direct consequence of
the physical definltion of the curve.)

' (b) Consider the Cardioid: r = 2a(l - cos @).

- cos @
Here tan y = Q.T:’]C’oi.l = tan(%) and thus y =% )

)2
2

The arc length: ds® = 8a2(1 - cos 0)dd?

However, ¢ =y + 8, and thus ¢ =

8 = -Ga'cos(%) - -83°cos(-§) :
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The equatlon of an involute of a glven curve is

obtained directly from the Whewell equatlon by Inte-
pration, For ervample,

the clrcle: 0= a¢
2
. 8
has {'or an {nvolute: g = —g— ’

the constant of i{nterration determined convenlently,

NOTE: The !nclinatlion ¢ depends of course upon the
tangent to the curve at the selected point f'rom
which 8 ls measured., If this point were selected

| where the tanrent !s perpendicular to the oripglnal

: cholce, the Whewell equatlon would involve the co-
function of ¢. Thuas, for example, the Cardiold may be

% elven by elthepr 'of' the equationsi s = k~cos(%) or

b g = k'cln g .
| . (3)

.

2. THE CESARO EQUATION: The Cesdro equation relates arc
length and radius of curvature, Such equations are
definitive and fcllow directly from the Whewell equations,

For example, consider the peneral family of Cycloidal
curves!

= a'8ln by

8
Here R = %é = 8ap.Cos b ¢,

3]

Accordingly, R? + b2.s? = ap?,
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INTRINSIC EQUATIONS
3, INTRINSIC EQUATIONS OF SOME CURVES:

Whewsll Equation

' Curve
Astrold

Cestro Equation
ba® + B? = ba®

8 = ascos 2¢
Cardioid 8 = ar*cosl %‘) 8% + 9R® = a®
Catenary 8 = astan ¢ 82 + 8% = aR
Circle 8= a' R=a ‘
? Clagold 6 = a(sec’p - 1) | T29(s +a)® = a{ 9(8 +a)® + B?)°
» Cyclold 8 =a'sin ¢ 62 + K% = a®
, 8b 2  n2 2
? Deltold B = 5 coB 3¢ 98 + R® = 6Ub
r pi- and 8 = assin by * R+ b2 ¢ 2 = a%b®
; Hypo-cycloids
Equiangular )
i VSpiral G:&(B -1) m(a+a)-R
Involute of a'f . 2
Circle #="2 2ats = R
| Nephroid p = 6bein g LR® + o2 = 360%
Tractrix 8 = as’ln sec ¢ a® + R® = aaoe“/a
*
b< 1 Epi,
b = 1 Ordinary,
b > 1 BHypo.
BIBLIOGRAPHY
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INVERSION

HISTORY: Geometrical inversion seems to be due to
Stelner ("the greatest geometer since Apollonius") who
indicated a knowledge of the subject in 1824, He was
closely followed by Quetelet (1825) who gave some ex-
amples. Apparently independently discovered by Bellavitis
in 1836, by Stubbs and Ingram in 1842-3, and by Lord
Kelvin in 1845, The latter employed the idea with con-
spicuous success in his electrical researches,

1. DEFINITION: Corsider the circle with center 0 and
radius k., Two poiits A and A, collinear with 0, are
mutually inverse with respect to

this circle if !

(OA)(OT:") = k2,

In polar coordgﬁates with 0 as
pole, this relation is

rop = k% 3
in rectangular coordinates:

Figo 122
X o TRe——— kax =3 1—1—! kg
PR xF Ty oy =Ty y= !

(If this product 1is negative, the points are negatively
inverse and lle on opposite sides of 0.)

Two curves are mutually inverse if every point of each
has an inverse belonging to the other.
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128 INVERSION
2. CONSTRUCTION OF INVERSE POINTS:

or

Fig, 123

For the point A& inverse to
A, draw the tangent AP,
then from P the perpendicu-
lar to OA., From similar
right triangles

Ok _k

. =or °F (oA)(OR) = k%,

3, PROPERTIES:

Compass Construction: Draw
the circle through 0 with
center at A, meeting the
cirecle of inversion in P, Q.
Circles with centers P and Q
through O meet in A, (For
proof, consider the similar
isosceles triangles OAP and
PUK.)

(a) As A approaches 0 the distance OR increases in-

def'initely.

(b) Points of the circle of inversion are invariant.

(¢) Circles orthogonal to the circle of inversion are

invariant.

(a) Angles between two curves are preserved in magni-
tude but reversed in direction,

(e) Circles:

r2 4 Asricosd + Beresing + C = 0 = x2+y®+ Ax +By +C

invert (by rp = 1) into the circlest
1+Aprcost +Bipeaing + Cp® = C(x® +y®)+ Ax+By+1=0
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unless C = 0 (a circle through the origin) in which
, case the circle inverts into the Line:
|

1 4+ Acgrcoad + Bepesing = 1 4+ Ax + By = 0.
(f) Lines through the origin:
Ax + By = 0 = A+cosf + B*'sing

are unaltered.,

t

3

] (g) Asymptotes of a curve invert into tangents to the
1 lnverse curve at the origin,
f

E

4

SOME INVERSIONS: (k = 1)
(a) With center of inversion
at lts vertex, a Parabola in-

; verts into the Cissoid of
Dlocles.,

2 _ i o
% = e iy - b

2 - hxa
or Y (l - hx) .

(b) With center of inversion

at a vertex, the Rectangular
Hyperbola !-verts into the
ordinary Strophoid.

x2 - y% + 2ax = Oedpx? - y2 4

2ax(x? + y®) = 9,

1 + 2ax
S N g

Fig. 125




130 INVERSION
(¢) With center of inversion at its center, the
Rectangular Hyperpola inverts

into a Lemniscate.
rfcos2d = lo——bp"’ = cOoS 20.

(d) With center of inversion at a focus, the Conics

invert into Limacons.

1
- H = . N
P=Ta + b-cos 0) p =8+ bwcosd

1‘180 127
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(e) With center of inversion at their center, con-
focal Central Conics invert

into a family of ovals and

"pipures elpht."

2 2
X
(aZ + N) tTE AN 1
2 2

X + N
(a2 + A)  (b® +A)

(x® + y®)&,

Iy T e

5. MECHANICAL INVERSQRS:

Fige 129

The Peaucellier Cell (1864),| The Hart Crossed Parallel-
the first mechanical ogram carries four collinear
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inversor, ls formed of two
rhombuses as shown. Tts
appearance ended a long
search for a machine to
convert clrcular motlon
Into llnear motion, a
problem that was almost
unanimously agreed insol-
lble. For the inversive
property, draw the clrcle
through P with center A.
Then, by the secant prop-
erty of clircles,

(oP)(0Q) = (op)(oC)

= (a-b)(a+b) = a? - bZ,
Moreover,

(P0)(PR) =-(0P)(0Q) =b”-a?

1t directions be assigned.

points 0, P, Q, R taken on
a line parallel to the
bases AD and BC.* Draw the
elrele throush D, A, P,
and Q meeting AB in F. By
the secant property of
clrcles,

(BF)(BA) = (BP)(BD),

Here, the distances BA, BP,
and BD are constant and
thus BF ls constant. Ac-
cordlngly, as the mechanism
la ueformed, F 1s a fixed
point of AB. Agaln,

(oP)(0Q) = (OF)(0A) = con-
stant

by virtue of the foregoing.
Thus the Hart Cell of four
bars 1s equivalent to the
Peaucellier arrangement of
eight bars,

For line motlon, an extra bar is added to each mechan-
lsm to describe a circle through the fixed point (the
center of inversion) as shown in Fig. 130,

. e
// L
12 . . e
fr s
A . L t T
l(;\-)‘ v (‘)/Y AN
% ‘;Xy. e
’ s s -
L /// //
[
A '

*These remin collinear as the linkage is deformed.
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In each mechanism, the line generated is perpendicular
to the line of flxeu polnts.

6. Since the inverse & cf A lles »n the polar of A, the
subject of inversion 's that of
poles and polars, with respect
to the glven circle. The

points 0, P, A, and K form an
harmonic set - that is, A and
X divide the dlstance OP in
"extreme and mean ratio". A
generalization of Inversion
leads to the theory of pvlars
with respect to curves other
than the ecircle, viz,, conies.
(See Conlics, 6 {f.) Fig. 131

h)
i

7. The process of inversior: forms an expeditlous method
of solving a variety of problems, For example, the cele-
brated problem of Apollonius (see Circles) is to con-
struct a circle tangent to
three given circles. If
the given circles do not
intersect, each radius is
Inc.,eased by a length a

so that two are tangent.
This point of tangency 1is
taken as center of inver-
slon so that the inverted
configuration 1s composed
of two parallel llnes and
a circle. The circle tan-
gent to these three
elements is easily ob-
tained by stralghtedge
and compass. The inverse
(with respect to the same
circle of inversion) of
this circle followed by an alteration of ‘ts radius by
the length a is the required circle.

Fig. 132
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8. Inversion 1s a helpful means of generatihg theorems
or geometrical properties which are otherwise not readily
obtainable, For example, con-
slder the elementary theorem:
» "If two opposite angles of a
o~ quadrilateral OABC are supplemen-
; _ tary 1t is cyclic." Let this con-
; figuration be inverted with re-

} A . spect to O, sending A, B, C into
. _ _ """ K, B, T and their circumcircle
— B into the 1ine AC. Obviously, B

lies on this line, If B be al-

| . A lowed to move upon the circle, B
: : U moves upon a line, Thus

"The locus of the intersection
Fig. 133 of circles on the fixed points
0,A and 0,C meeting at a con-
stant angle (here n - 6) is the
line AC."
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INVOLUTES

HISTORY: The Involute of a Circle was discussed and
utilized by Huygens in 1693 in connectlon with his study
of clocks without pendulums for service on ships of the
sea,

1. DESCRIPTION: An involute of a curve 1s the ruvulette of
a selected point on a line that rolls (as a tangent

upon the curve, Or, it is the path of a point of a

string tautly unwound from the curve. Two facts are evi-
dent at once: since the line 1s at any point normal to
the involute, all involutes of & gilven curve are parallel
to each other, Fig, 134(a); further, the evclute of a
curve 1s the envelope of its normals.

USRI

Fig. 134 (v)

The details that follow pertain only to the Involute of
a Circle, Fig., 134(b), a curve interesting for 1ts appli-
cations,
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136 INVOLUTES
2. EQUATIONS: (

x = a{cost + t'sint)

y = a{sint - t'cost) .

p°ar® . g? (with respect to 0), »/rz - 2% = 80 + asarc cos 6;)

28 = ag® - at? R® = 2as (= a%t?),

5« MEYRICAL PROPERTIES:

3
A= ‘E; (bounded by OA, OP, AP).

i, GENERAL ITEMS:
(a) Its normal is tangent to the circle.

(b) It is the locus of the pole of an Equiangular
spirai rolling on a circle concentric with the base :
circle (Maxwell, 1849), ﬁ

(c) Its pedal with respect to the center of its base
circle 13 a spiral of Archimedes.

(d) It 1s the locus of the intersection of tangents
drawn at the points where any ordinate to OA meets the
circle and the corresponding cycloid having its vertex
at Ac

(e) The 1imit of a succession of involutes of any
given curve is an Equiangular spiral, (See Spirals,
Equiangular.)

(f) In 1891, the dome of the Royal Observatory at
Greenwich was constructed in the form of the surface
of revolutimm generated by an arc of an involute of a
circle. (Mo, Notices Roy. Astr. Soc., v 51, p. 436.)

(g) It is & special case of the Euler Spirals.

(h) The roulette of the center of the attached base
circle, as the involute rolls on a line, is a para~
bOla .
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(1) Tts inverse with respect to the base circle 1ls a
spiral tractrix (a curve which in polar coordinates
has constant tanpent length),

(3) It is used frequently In the design of cams.

(k) Concerning its use in the construction of gear
teeth, consider its generation by rolling a circle
together with its plane along a line, Fig. 135, The
path of a selected point P
of the line on the moving
plane is the involute of a
ciréle. At any instant the
center of rotation of P 1is
the point C of the circle.
Thus two circles with
fixed centers could have
thelir invelutes tangent at
P with this point of tan-
gency always on the common
internal tangent (the line
of action) of .he two
clrcles., Accordingly, a
constant velocity ratio is transmitted and the funda-
mental law of gearing is satisfled, Advantages over
the older form of cycloidal gear teeth include:

1. velocity ratio unaffected by changing distance
between centers,

2, corstant pressure on the ares,

3, silnle curvawure teeth (tius casler cut),

4, more uniform wear on the teeth,
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ISOPTIC CURVES

HISTORY: The origin of the notion of isoptic curves is
obscure. Among contributors to the subject will be found
the names of Chasles on isoptics of Conics and Epi-
trochoids (1837) and la Hire on those of Cycloids (1704).

1. DESCRIPTION: The locus of the intersection of tangents

to a curve (or curves) meeting at a constant angle a is
the Isoptic of the given curve (or curves). If the con-
stant angle be n/2, the isoptic is called the Orthoptic.
Isoptic curves are in fact Glissettes.

A specisl case of Orthoptics is the Pedal of a curve
with respect to a point. (A carpenter's square moves with
one edge through the fixed point while the other edge
forms a tangent to the curve).

2. ILLUSTRATION: It is well known that the Orthoptic of
the Parabola is its directrix while those of the Central
Conics are a pair of concentric Circles. These are im-
mediate upon eliminating the parameter m between the
equations in the sets of perpendicular tangents that fol-
low:

Fig. 136
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¥y - mx +/8%°m% £+ b% = 0
my + x +/a% ¢ v¥n® = 0,

Yy - mx + pm® = 0 (The Orthoptic of the
Hyperbola i1g the circle
through the f'oci of the
corresponding Ellipse and
vice versa.)

m3y + mx + p = 0.

3. GENERAL I1EMS:

(a) The Orthoptic i{s the envelope of' the circle on PQ
as a diameter., (Fig. 137)

(b) The locus of the intersection
of two perpendicular normals to a
curve 18 the Orthoptic of 1its
Evolute.

(c¢) Tangent Construction: Fig. 137.
Let the normals to the glven curve
at P and Q meet in H, This is ths
instantaneous center of rotatlon

of the rigid body formed by the
constant angle at R. Thus HR 1s Fige 137
normal to the Isoptic generated

by the point R,

4, EXAMPLES:
I Given Curve Isoptic Curve l
Cycloiad Curtate or Prolate Cyclold
Epicyclold Epltrochoid
I81nusoidal Spiral Sinusoidal Spiral
Two Circles Limacons (see Glissettes, 4)
F==£Parabola Hyperbola (same focus and directrix)
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ISOPTIC CURVES

Glven Curve

Orthoptic Curve

Two Confocal Conlca
Hypocycloid

Deltoid
Cardioid
2 2

2
Astrold: x + yg = 8

Sinusoidal Spiral:

b - al coer)
y2 =x3
(x+y) =2

x2y2 . ha(x® + y3) +

18e°yy - 2yat = 0
Equiangulsr Spirsl

Conceantrlic Clrcle

a
(a~2b)

Ite Inscrived Circle

r = (a-2b)+sinf

ug - 0)

A Circle and a Limacon
L a2
Quadrifoilum; rf = (-5)0005220

Sinusoldal Spiral: r - a‘cosk(g) vhere

k=(rwl)

729y° = 180x . 16
81y (x%+y°) = 36(x® - 2xy + 55°) +128:0

X+y+2a=0
A Congruent Spiral*

NOTE: The a-Isoptic of the Parabola y® = 4ax is the
Hyperbola tan®a:(a + x'? = y® - hax and those of the
Ellipse and Hyperbola: (top and bottom signs resp.):

tan® as (x® + y°®

- a® 3+ b%)% = 4(a®y® + b°x® + a®p?),

(these include the © - a Isoptics),
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KIEROID

HISTORY: This curve was devised by P. J. Klernan in 1945
to establish a ramily relationship among the Conchold,
the Cissold, and the Stropholid.

1., DESCRIPTION: The center B of the circle of radius a
moves along the line BA, O ls a fixed polnt, ¢ units
dlstant from AB. A secant is drawn through O and D, the
midpoint of the chord cut from the line DE which is
parallel to AB and b units distant. The locus of Pi and
Pz, polnts of Intersection of OD and the circle, is the
Kieroid.

The curve has a double point if ¢ < a or a cusp if ¢ = a.
There are two asymptotes as shown,
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2. SPECIAL CASES:

It b = 0, the
curve is a Con-

cnold of
Nicomedes,
e
N\
t/,/ \
/A‘
[{,’
L
./

‘l,‘ — e P S

KIEROID

Three speclal cases

If b = a, the
curve ls a Cla~-
sold (plus an
asymptote),

Fig. 139

are of importance:

If b =8a=-¢
(polnts 0 and A
coincide), the
curve is a Stroph-
old (plus an
asymptote).

It is but an exercise to form the equations of these
curves after sultable cholice of reference axes.




‘ LEMNISCATE OF BERNOULLI

f HISTORY: Discovered and discussed by Jacques Bernoulll

f ir 1694, Also studled by C, Maclaurin, James Watt (1784)

| of" steam englne fame ls responsible for the crcssed

E parallelosram mechanism plven at the end of this sec-

: tior., He used the devlice for approrimate llne motion -

5 thereby reducing the neipht of his engine house by nine
feet,

% 1, DESCRIPTION:

The Lemniscate ls a speclal It ia the Cilssold of the
Cassinian Curve, That lis, eircle of radius a/2 with
i1t is the locus of a polnt respect to a point 0 dis-
P the product of whose dis- | tant & /2/2 unite from
tances from two fixed its center.

points Fy, Fz (the £ 1) 2a
units apart is constant and
equal to a®,

- e

&
e i e easme k"’));';' .

Fig. 140

(F20)(FoP) = a% r =0P = OB - OA = AB,

A Point-wise Construction: a1 sin & sin ©
Let OX = & /2. Then, by the N e & !
secant property of the cir- 5

cle on F1F; as diameter: 7YY
. r=a+cos a=a /(1-2sin%g),
(XA)(XB) = 8 , 2 2

r° = a“.cos 20,
Thus, take F1P = XB,
Fap = XA, etCt
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LEMNISCATE OF BERNOULLI

rY o= a'cos 24, ar o7 = a¥rhng, et

+ ',2).1 = a“)(\“’ _ ,.2) (}"‘ + 2yE 2&2."_‘.’.
1 - aa.p..
METRICAL PROPERTIES:
A = a",
1 1.3 1.%.59

= l —— s s o y .

L = 4a(l + 5 Y 5 + SETS + ) (elliptic)

V (of p®=a® cos 20 revolved about the polar axis)

= 27{&2(2 - /;:_)n

L _ &
R-;)X"‘.r.p. 41-29*'2.

GENERAL ITEMS:

(a) It is the Pedal of a Rectanpular Hyperbola with
respect to lts center.

(b) It is the Inverse of a Rectangular Hyperbola with
respect to lte center., (The asymptotes of the Hyper-
bola invert into ta.rents to the Lemniscate at the
origin,)

(¢) It !s the Sinusoidal Spiral: r" = afcos n® for
n=2.

(d) It s the locus of flex points of a family of
corfocal Cassinlan Curves.

(e) Tt ts ‘he ~nveiope of clrclcs with centers on a
Rectangular Hvoerbola which pass throu~h its center,

z
]
|
!
1
]
%
|
!
{
|
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(£) Tangent Corstruct'ons

S.t.ozy o= b+ s Lhe

n it

normal maces ar atele 2¢

withh the pradiue vector

and 3V with the polar

ai.g, The tan~ent is

thus eas!ly construe 4,

(=) Radlus of Curvature Fig. 142

n

(Fles 181) R = . The

sl

projectiot off R on the radius vector lis

aa
Ricos 20 = (= )eros 20 = £ |
S

Thue the pe pendicular to the radius vector at lts
trisection point farthest from O meets the normal in
C, the center of curvature,

(n) It is the path of a body acted upon by a central
force varylng Llnversely as the* seventh power of the
distance, (See Splirals £~ and 3f,

5 4l




146 LEMNISCATE OF BERNOULLI
() Generation by Linkages:

Fig.lba

OA=AB=a; Bc-cpaoc=§2-. AB = CD = a /2 .
n AD = BC = a,
Since angle BOP = 7 always, | p 24 0 ape midpoints of

DC and AB, resp.

r? = (BP)2 - (oB)2 =
r? = a®cos 29,

2a® - 4a®sin®e,

2

or r = 282008 29‘ (See T0018¢)
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LIMACON OF PASCAL

HISTORY: D!scovered by Etlenne (rather of Blalse) Pascal
and d:scussed by Ruoberval in 1650,

1. DESCRTFTION:

: It ts the Epitrochold

i penerated oy a poivt

T ripidly attacted tu 8
¢ircle rolltine upon ar.

equal trixed clrele.

It 1s the Conchold o' a
¢irzle where the flyed
poirt is on the clrcle,

Fig. 143

’ Cusp if 2a = k; Double Point: 2a < k; Indentation:

28 > K.

2. EQUATIONS:
4a.cost - k.cos2t
ha+sint - k:sinet

X

Y

r = 28:+c086 + k.

(x2 + y® - 28x)% = k®(x® + ¥?),

{origin at singular point).
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GENERAL ITEMS:

(a) Tt is the Pedal of a circle with respect to any
point. (If the point is on the circle, the pedal is

the Cardioid.,) (For a mechanical description, see
Tools, p. 188.)

(b) Its Evolute is the Catacaustic of a circle for
any point source of light,

(c) It is the Glissette of a selected point of an

inveriable triangle which slides between two fixed
points.,

(d) The locus of any point rigidly attached to a con-
stant angle whose sides touch two fixed circles is a
pair of Limecons (see Glissettes 2a and 4),

(e) It is the Inverse of a conic with respect to a
focus. (The inverse of r = 2a:.cos0 + k s
r(2a+cos8 + k) = 0, an Ellipse, Parabola, or Hyper-
bola according as 2a < k, 2a =k, 2a > k). (See
Inversion 4d.)

(f) It is a special Cartesian Qval.

(g) It is part of the Orthoptic of a Cardioid.

(h) It is the Trisectrix if k = a. The angle formed
by the axis and the line Joining (a,o) with any point
(r,0) of the curve is 3¢, (Not to be confused with
the Trisectrix of Maclaurin which resembles the
Folium of Descartes.)




150 LIMACON OF PASCAL
(1) Tangent Construction:

The point A of the bar has Since T 1is the center of
direction perpendicular to rotatlort of any point

0A while the point of the rigidly attached to the
bar at B has the direction rolling circle, TP is

of the bar itself. The nor- normal to the path of P
mals to these directlons and its perpendicular at
meet in H, & poinu of the P 1s a tangent.

circle. Accordingly, HP 1s
normal to the path of P and
its perpendicular there is
a tangent to the curve.

1 -
. ’
IR ey Al I S

(a) Fig. 14 ()

(J) Radius of Curvature: o (28 + kge
= .
ba 4 k

The center of curvature is at C, Fig. 144(a).
Draw HQ perpendicular to HP until it meets AB in Q.
C is the intersection of QO and HP.

(k) Doutle GCeneration: (See Epicycloids.) It may also
be generaicd by & point attached to a circle rolling
internally (centers on the same side of the common

tangent) to & fixed circle half the size of the roll-

ing circle.

1




(1) The Limacon may be gener

linkage: CDKF and CQED

- LIMACON OF PASCAL
ated by the follow{pg/
' A

151

are two sim:lsr (pro-
porticnal) crossed
parallelograns with
peints C and F fixed
to the plane., CHJD 1s
a parallelogram and P
13 a point on the ex-
tension of JD. The
action here 1s that
produced by a circle

. with center D roll- Vo
) Ing upon an equal

fixed circle whose

center 1is

locus of P (or any

point rigidly at-
tached to JD) ls a
Limacon, (See an

equivalent mechanism

under Cardioid.)
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N PHROID

HISTORY: Studied by Huyeens and Tschirnhausen about 1679
In connection with the theory of caustics, Jacques
Bernoulli in 1692 showed that the Nephrecid ls the cata-
caustic of a cardlold for a lumlhous cusp. Double genera=-
tion was f'lrst discovered by Danifel Bernoulll in 1725,

1. DESCRIPTION: The Nephroid i{s a 2-cusped Eplcyclolid,
The rolllng clre’z may be one-half (a = 2b) or three-
halves (3a = 2b) the radlus of the f'ilred clrcle.

Fige 146

For thls double generation, let the fixed circle have
center 0 and radius 0T = OE = a, and the rolling circle
center A!' and radius A'T' = A'F = a/2, the latter carry-
ing the traclng polnt P. Draw g, 0T'#, and PT' to T

Let D be the intersectlion of TO and FP and drav the
circle on T, P, and D, This circle is tangent to the
rixed clrecle since angle DPT = n/2. Now since PD is
parallel to T'E, triangles OET! and OFD are isosceles and

thus
TD = 330
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Furthermore, arc T = 2av and arc T'P = a0 = arc 1'X,

Thus are T = %av = arce TP,
Accordingly, if P were atiached to elther rolllinye circle
the one of radlus a/2 or the one of radlus 3a/2 - the
same Nephrold would be generated, i

2. EQUATIONS: (a = 2b) .
x = b(3cont - cosst)

y = b(2siut - stn3t) *

g = 6b'sln(-§). WRE 4 ¥ = 3602,
] -]

p = 4brsin(L), v? - 4p® +zﬁ—.
§ 0 0

(r/e)g = éﬁ . [sini(g) + coéé(a)].

Xt+cos¢y + y«s8lng = ubcsin(g). '

3., METRICAL PROPERTIES: (a = 2b),
L = 24b., A = lonb?, R ==L

4, GENERAL ITEMS:

(a) It is the catacaustic of
cusp.,

8 Cardiold for a luminous

(b) It .8 the catacaustic of a Circle for a set of
parallel rays.

(¢) Its evolute is another Nephiold,

(d) It 1c the gvolute of a Cayleay Sextic (a curve
parallel to the Nephroid).

(e¢) It is the enveinpe of a dlameter of the circle
that generates a Cardinid,

(f) Tangent Construction: Since T' (or T) is the
Instantaneous center of rotation of P, the normal is
T'P and the tangent therefore PF (or PD). (Fig. 151.)
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PARALLEL CURVES

HISTORY: Leibnitz was the first to consider Parallel
Curves in 1692-4, prompted no doubt by the Involutes of
Huygens (1673).

1, DEFINITION: Let P be a variable point on a given
curve, The locus of Q and Q', + k

units distant from P measured along

the normal, is a curve parallel to \\ Q
the given curve. There are two "
branches, g -t *\

For some values of k, a Parallel \
curve may not be unlike the given

curvé in appearance, but for other

values of k it may be tutally dis-

similar, Notice the paths of a pair
of wheels with the axle perpendicu-
lar to their planes.

2. GENERAL ITEMS:

(a) Since Parallel Curves have common normals, they
have a common Evolute.

(b) The tangent to the given curve at P is parallel
to the tangent at Q. A pParallel Curve then is the
envelope of lines:

ax + by + ¢ = + kv/ a% + b% ,

distant + k units from the tangent: ax + by + ¢ = 0
to the given curte, )

(c) A Parallel Curve is the envelope of circles of
radius k whose centers lie on the given curve. This
affords & rather effective means of sketching various
parallel curves,
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(d) All Involutes of a zlven
curve are parallel to each

. N other (Fiz. 148).

Flg., 18

(e) The differernce in lengths of two branches of a
Parallel Curve 1is 4zk.

%, SOME EXAMPLES: Illustrations selected from familiar
curves follow.

(a) Curves parallel to the Parabola are of the 6th
degree; those parallel to the Central Conics are of
the 8th depree. (See Salmon's Conics).

£, 5 _%

(b) The Astroid x° + y° = a” has parallel curves:
[3(x2+y%-a%) - hk2]°'+[27axy “9k( 7+ y°) « 18a%k+ 8k3]a = 0,




PARALLEL CURVES

LEMNIGCATE

AYTROID

157 i




158 PARALLEL CURVES
4, A LINKAGE FOR CURVES PARALLEL TO THE ELLIPSE:

RO
- Fe
rd !
4

YN RO
)Y s ,,,,x,)l '
S /

AN . A
\ \\\\\5’,"// ///',.'\ !

,' o A N
\ ROGACT > N> o8
\ .\TC /r”JL_Q . g a‘\ \‘ ../r//
\\ [P ERETRN . “4/‘ L yd (;6}/
NS e N
Oy ,i, /'/;‘/
- e "-)"‘"\,—('/
aCL
<
Fig. 130

A straight line mechanism is built from two propor-
tional crossed parallelograms 00'EDO and 00'FAO. The
rhombus on OA and OH is completed to B. Since 00' (here
the plane on which the motion takes place) always bi-
sects angle AOH, the point B travels along the line 00',
(Se¢ Tools, p. 96.) Any point P then describes an El-
lipse with semi-axes equal in length to OA + AP and PB.

Since A moves on a circle with center 0, and B moves
along the line 00', the instantaneous center of rota-
tion of P is the intersection C of OA produced and the
perpendicular to 00' at B, This point C then lies on a
circle with center 0 and radius twice OA.

The "kite" CAPG is completed with AP = PG and
CA = CG, Two additional crossed parallelograms APMJA
and PMNRP are attached in order to have PM bisect angle
APG and to insure that PM be always directed toward C.
Thus PM is normal to the path of P and any point such as
Q describes a curve parallel to the Bllipse.
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PEDAL CURVES

HISTORY: The idea of positive and negative pedal curves
occurred first to Colin Maclaurin in 1718; the name
1Pedal' is due to Terquem. The theory of Caustic Curves
includes Pedals in an important role: the orthotomic 1s
an enlargement of the pedal of the reflecting curve with
respect to the point source of light (Quetelet, 1822).
(See Caustics.) The notion m: s be enlarged upon to in-
clude loci formed by dropping perpendiculars upon & line
making a constant angle with the tangent - viz,, pedals
formed upon the normals to a curve.

1. DESCRIPTION: The locus Ci, Fig. i5l{a), of the foot
of the perpendicular from a fixed point P (the Pedal
Point) upon the tangent to & given curve C is the First
Positive Pedal of C with respect to the fixed point.
The glven curve C is the First Negative Pedal of Ci.

TANGENT

(a) Fig. 151 (v)

It 1s shown elsewhere (see Pecal Equations, 5) that
the angle y between the tangent to a given curve and the
radius vector r from the pedal point, Fig. 151(b),
equals the corresponding angle for the Pedal Curve. 'Thus
the tangent to the Pedal is also tangent to the circle
on r as a dismeter. Accordingly, the envelope of these
circles is the first positive pedal.
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Conversely, the first negative Pedal 1is then the

envelope of the line through a variable point of the
curve perpendicular to the radius vector from the Pedal

point.

2. RECTANGULAR EQUATIONS: If the given curve be

£(x,y) = 0, the equation of the Pedal with respect to
the origin is the result of eliminating m between the
line: ' :

y=mx + k

and its perpendicular from the origin: my + x = 0, where
Xk 1s determined so that the line is tangent to the curve.
For example:

The Pedal of the Parabola y® = 2x with respect to 1ts
vertex (0,0) is

y = mx + L
= — a
am or y2 = - X7 , &8 Cissoid.
2X+l ———————
my + x =0

3. POLAR EQUATIONS: If (ro,90) are the coordinates of
the foot of the perpendicular from
the pole:

0
tan y = r(g;), ro = resin y \\\\
™

and ¢+(9-9°)=§.

2 2 | . .
P l dP i ‘Nﬁ N
Thus —"EPO = ) + (;“g ¢ ae’ ° ‘J;_‘._-vw e
Among these relat'ons, r,9 and y Flg. 152

may be eliminated to give the
polar equation of the pedal curve with respect to the

origin.
For example, consider the Sinusoidal Spirals

1
rd = alicos nu.* Differentiating: n(S?) = ~n+tan no

T
= nscot y; thus y = E + no.

®
Rectifiable when i is an integer,
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n 0
But 9-Bo+2-\vaeo-neandthusea-(n—+°ﬂ.

#

Now ro = r+sin ¢ = re«cos né = a*cos” nb-.cos nob,
vcos(B+1)/0 vcos(n+3) Ay 08

or ro = a°cos nd = a*cos [Tn:g-sl.

Thus, dropping subscripts, the first pedal with respect

to the pole 1is:

r e a'lcos n18 where ny =T
P = The) !

another. Sinusoidal Spiral. The iteration is clear. The
kth positive pedal is thus

n
r k . a¥cos ngb vhere nx = -(—kn—'h-s

Many of the results given in the table that follows can
be read directly from this last equation. (Seec also
Spirals 3, Pedal Equations 6.)

4, PEDAL EQUATIONS OF PEDALS: Let the given curve be
r = £{p) and let pi denote the per-
pendicular from the origin upon the

tangent to the pedal. Then (See
\q__-o;&\ Pedal Equations)t
| \\\\ pz - r‘pl. = f(p)opl.

Thus, replacing p and py by their
\y/,/". AN respective analogs r and p, the
pedal equation of the pedal 1iss

ns. 153 Lrﬂ = f(r).pJ

Thus coy_&gr the circle r® = ap, Here £(p) = /&P and
£(r) = J/(ar), Hence, the pedal equation of itis Pedal

ol ————

with respect to a point on the circle 1is
r® = /(ar):p] or |r® =ap?|,

a Cardioid. (See Pedal Equations, 6.)

Equations of successive pedals are formed in similar
fashion.
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5. SOME CURVES AND THEIR PEDALS:
Given Curve Pedal Point First Positive Pedal
Circle Any Point Limacon
Circle Point on Circle Cardioid
Parabola Vertex Cigeoid
Parabola Foous Tengent at
Vertex Ses
Auxiliary Conice,
Central Conic Focus Circle J 16.
Central Conic Center r? = A + Beoos20
Restangular Hyperbola Center lemnigcate
Equiangular Spiral Pole Equianguwlar Spiral
]
Cardioid (pza e 1) Pole (Cusp) Cayley °.s°"“§
(r® = ap”)
Lemniscate (pag = ) Pole r> ap°
Catacaugtic of a
Parabola for rays
perpendicular to itse Pole Parabola
axie
recos( 9-) =a
3
Sinusoidal Spiral
( A a“p) Pole Sinusoidal Spiral
g 5’ i’ 2r = 4+ a*8in20 (Quadri.
Aetroid: x™ + ¥y = & Center folium)
Parabola Foot of Directrix| Right Strophoid
i Arb, Point of
Parabola Directrix Strophoid
Reflection of |
Trisectrix of
Parabola Foous in Direca Maclaurin
trix
Cipsoid Ordinary Focus Cardioid
Epi. and Hypocycloids [ Center Roses
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(Table Contlinued)

Given Curve Pedal Point Firot Poaitive Pedal
Deltoiad * Cusp Simpleu Folium
Deltoid Vertex Double Folium
Deltoid Center Trifolium

Involute of a Circle | Center of Cirele | Archimedian Spiral

3 3

X2+ yP=a Origin (x4 f)g ) ag( 2. yg)
A4

x"y“ = amn Origin m+n
am’"-fﬁ—ﬁl «cos™aino

I n/(ne1) , nf(nes)

(a) * (b) =1 Origin (ax) +$17{31_1) i

(Lame Curve) (= + 7%

(which for n = 2 1g an Ellipse; for n = 1/2 a Parabola),

= |

'Ita pedal with “espect to (b,0) has the equation:
[(x - b)Y + ¥®)¢[y® + x(x-b)] = ba(x - b)y?,
where x% + y% = 9a% 1 the circumcircle of the Deltold,
6. MISCELLANEOUS ITEMS:

(a) The 4th negative pedal of the Cardioiu with re-
spect to its cusp is a Parabola,

(b) The 4th posit've pedal of éscos(%)e = ds with
respect to the pole is a Rectangular Hyperbola.

(¢) R'(2r® - pR) = r® vhere R, R' are radii of curva-
ture of a curve and its Pedal at corresponding points,
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PEDAL EQUATIONS

1, DEFINITION: Certain curves have simple equations
when expressed in terms of a radius vector r from a
selected fixed point and the perpendicular distance P
upon the variable tangent to the curve, Such relations
are called Pedal Equations,

2. FROM RECTANGULAR TO PEDAL EQUATION: If the given
curve be in rectangular coordinates,
the pedal equaticn may be established

W ‘ among the equations of the curve, its

SRR tangent, and the perpendicular from

;)- the selected point. That is, with

f(xo0,¥0) = 0,
. \ (f'y)o(Y‘Yo)‘*'(f'x)o(X-Xo) = 0,

i ‘ 2 Xo({fx)o + ¥olfy)oi® o 2 2
e [Pt o= rf=xo%+
& : T T T oo}

where the pedal point is taken as the
Fig., 154 origin,

%. FROM POLAR TO PEDAL EQUATION:
Among the relations: r = f(0), p = resiny,
tany = ;P-,-, vhere the selected polnt is the origin of

coordinates, 6§ and y may be eliminated to produce the
pedal equation. (For example, see 6.)
‘e
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4, CURVATURE IN PEDAL COORDINATES: The expression for
g radius of curvature is strikingly simple:

g ¥EN N,

JorveE ey
“\V\ \‘ ilan
<\ CGRVE
! s de
Lp el

Flg, 155
Since ds? = dr® + r2de% and tany = _r_‘r'_' =r %—g),

Q . -g—r-‘ e 2
t = r(ds) = p (de)/r and thus d6/ds = p/r
Now p = r-sin y and dp = (sin y)dr + r(cos ¥)dy,

dp _ (Rydr dy
or 5 = (F)(G) * tgs)

av  1y8py |
Thus ds t’(r')(dr') % .

. g o 4% _dy @40 3ydp
Accordingly, 'K = as = + = (r)(dr) or
ary |

R=I‘(dp.

5, PEDAL EQUATIONS OF PEDAL CURVES: Let the pedal equa-

tion of & given curve be r = f(p). If p1 be the perpen=-

dicular upon the tangent to the first positive pedal of
; the glven curve, then, since p makes an angle of

n
6 - 5 with the axls of coordinates,

tan g = p(gg (see Fig. 155),
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1
Now tan ‘p(%%) = pre'sin w.(;)(ﬁ)

and thus tan ¢ = sin w-bgg) = tan v.,

Accordlngly, ¢ =y and p% = r.pi.

In thls last relation, p and p: play the same roles as do
r and p respectively for the glven curve, Thus the pedal
equation of the first positive pedal of r = f(p) is

r? = p.f(r) |,

Equations of successive Pedal curves are obtained in the
same fashion,

——
6. EXAMPLES: The Sinusoidal Spirals are r;‘ = a%sin ng
Here, ‘

fT = tan ne = tan y.

Thus y = n0, a relation giving the construction of tan-
gents to varlous curves of the family.

pii+l
p=r.siny =sr.sin n = A s
or aP'p = pht! , the p:dal eyuation of the given

curve, Speclal members of this famlily are included in
the following table:

{Sec also Spirals, 3 and Pedal Curves, 3.)

PRI .).._“__A__“.AM.M._..___.&_...‘MJ

n n Pedal aht re
i el Z:;ne ourve | mquation | N n+1):_f‘71=(.!!*&_.]g:
-2 | r®s1n + a%= 0 | Rect,Hypervola| rp = o -r?/e®
sl |rewinf+ a=0 Line p=a ©
«1/2| r= —a Parabola pa = ap 2y r/a
l-cos ¢
+1/2 r=(§)(1-coe t)| Cardlotd pa = r° (-:‘-),/ ar
2 a
+1 ¢ = a*'sin O Cirele pa = v >
;o2 2 _a at
+2 r° = a®sin 20 lomnincate pa” = r” | 3;
b
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Other curves and corresponding pedal equations are glven:
[

PEDAL
DAL EQUAT
CURVE POINT PEOAL EQUATION
Parabola (IR = ka) Vertex | 8%(r2-p?)?=p%(r+ha®)(p%+ha®)
L. g
Fllipse Focus 25 = 2a -1
. P r
2,2
Ellipse Center ap: + 1% = 8% 4 1?
b2 2a
Hyperbol F —_— -
¥y a ocus 2 " +1
. a%p?
Hyperbola Center o2 - 12 = -8 4 bF
: 2 > e
Epl. and Hypocyclolds Center p° = Ar° + B
Astrold Center r? + 3p2 = a®
Equiangular (a) Spiral Pole p = resin «
Deltoid Center 8p2 + 9r? = a°
N
Cotes' Spiral Pol i A B
pirale ole -l +
= *
™ = a®9  (Sacchi 2, 2 om . om 2 _om+z
2854) Pole po(m®¢r=" + &) = mer
*m = 1:Archimedenn Spiralj m = 2:Fermat's Spiralj
m = «1:Hyperbolic Spiral; m = « 2tLituus,
* (a+ lez 2
*Io(as by’ D7 A
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PURSUIT CURVE

HISTORY: Credited by some to Leonardv da Vinci, it was
probably flrst conceived and solved by Bouguer in 1732,

1. DESCRIPTION: One particle travels along a specified
curve while another pursues it,
its motion being always di-
VY L :, rected toward the first particle
- ! with related velocities,

‘ If the pursuing particle is
: assighed coordinates (x,y) and

h;//' 5 there 13 a function g relating
i i the two velocities &3 & 49

/a" “ by EE ’ E-t. !
B ’ then the thr~e conditions

Fig, 156 £(g, n) = 0; %g—f—f% ay';

d A
8(?%! g‘g) = 0,

among which €, n (coordinates of the pursued papbicle)
may be eliminated, are sufficlent te preduce the dif-
fereistial equation of the eurve of pursult,

2. SPECIAL CASE: Let the particle pursued travel froff
rest at the x-exis along the 3ins x = a, Fig. 156, The
pursuer starts a. the sams tie from the origin with
veloelity k times the former, Then

E=a, - sy opF =7+ (aex)y

& - )
48 = K+ or dax® + dy® = k®.an®
Thepe followss dx® + dy® = k%, [dy - y'dx + (& - x)dy'} ®
= k¥(a - x)%(ay')®
or r;D;T;:Eﬁzrﬁﬁ(a - x)2y"E]

(a differential equation solvéble by first setting
y' = p). Its solutions are
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ka'/*(a . x)(kd)/k ke (a - x)(k“)/k

eka
& 1.k * 1+k 1.

itk#1;

a =X
a

tka,ya(a-x)z-Zazln -a?, 1f k=1,

The special case when k = 2 1s the cubic with a loop:
a(3y - 28)2 = (a - x)(x + 28)%,

3. GENERAL ITEMS:

(a) A much more diff'icult problem than the special
case given above is that where the pursued particle
travels on a circle., It seems not to have been solved
until 1921 (F, V. Morley and A. S. Hathaway).

(b) Tuere ls an interesting case in which three dogs
at the vertices of a triangle begin simultaneously to
chase one another with equal velocities, The path of
each dog ls an Equiangular Spiral. (E. Lucas and

H., Brocard, 1877).

(¢) Since the velocities of the two particles are
glven, the curves defined by the differential equa-
tion in (2) are all rectifiable. It is an interesting
exercise to establish this from the differential
equation,
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RADIAL CURVES

HISTORY: The ldea of Radial Curves apparently osccurred
first 5o Tucker in 1864,

1., DEFINITION: Llnes are drawn from a selected point 0
equal and parallel to the radil of curvature of a given
curve, The locus of the end points of these lines is the
Radial of the given curve.

2. ILLUSTRATIONS:

(a) The radius of curvature of the Cycloid (Fig.

157(a) (see Cycloid) ls (R has inclination = - é =0):

R = 2(pH) = l&a'sin(-;), 1

Thus, If the f'ixed point be taken at a cusp, the
radial curve 1irn polar coordinates is;

r o= ua'sin(g) = ba*sin 6

8 circle of radlus 2a.

() Fig, 157
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(b) The Equiangular Spiral s = a(e™ - 1) Fig. 157(b)
has R = m-a+¢™¥%, Thus, if 6 be the inclination of the

i
redius of curvature, ¢ = 5 + ¢, and

n(v - =/2)

I = f*a-e

i1s the polar equation of the Radial: another Equi-
angular Spiral,

3, RADIAL CURVES OF THE CONICS:

Fig, 158

XG - i' k.(x'e + y2) (82X2+b23'2)5=8‘b4(?.2+ya)a
(Ellipse : b® > 0;
Hyperbola: b% ¢ 0],

4, GENERAL ITEMS:

(a) T™e degree of the Radlal of an algebralc curve 1is
the same as that of the curve's Evolute,
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5, EXAMPLES: , ‘
Curve Radial
Ordinary Catenary Kampyle of Eudoxus
Catenary of Un,3tr, Straight Line
Tractrix Kappa Curve
Cycloid Circle
Epilcyclold Roses %
Deltold Trifolium 3
Astroid Quadrifolium
BIBLIOGRAPHY 3
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ROULETTES

HISTORY: Besant In 1869 seems to have been the first to
glve any sort of systematlc discussion of Roulettes al-
though pr-viously, Diirer (1525), D. Bernoulll, la Hire,
Desargues, Lelbnltz, Newton, Maxwell and others had
made contributlons In one form or another, particularly
on the Cycloidal Curves,

1, GENERAL DISCUSSION: A Roulette is the path of a
point - or the envelope of & lline - attached to the
plane of a curve which rolls upon a fixed curve (with
cbvlious continulty conditlons),

y+d,

Fig. 159

Consider the Roulette of the point 0 attached to a curve
which rolls upon a fixed curve referred to its tangent
and normal at O, as arxes, Let O be originally at 01 and
let T:(xi,y:) be the polnt of contact. Also let (u,v) be
coordinates of T referred to the tangent and normal at
0; ¢ and 91 Le the angles of the normals as indicated.
Thien

x = v'sin(¢ + ¢1) - urcos(¢ + 1) - %2

y = -vicos(p + ¢1) - u-sinle +¢1) + y1 ,
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where all the guantitlies appeariiy in the pleht member
may be exp-oacced L terms of T, the are lerth s, These
then are parametets eoguatt. o0 0 e 1orys o0 00 TC in

not Alfflcult to cenerailze for any cerrlod polnt,

Fam!liar examples o Rouletles o' a polnt ave the
Cyolotds, the Treeholds, and Involutes,

2. ROULETTES UPON A LINE:

(a) Polar Equaticn: lonsider the Roulet*e renareted
by the poirt Q attesched to the curve = - £{v), re-
terred te Q ags pole (with QOy as inltial line), as it
rolls upon the x-axis, Let P be the polnt of tan-
sency and the polnt ¢1 o the curve be oripinally at
0. The inster ta.<ous centar of rotation ot Q ls P and
thua t'or the locus of Qi

ER
dy. cot ¥
dy
But tan ¢ = x(dr) and
dx
Ve v o= prealny = r(ds).
t Thu ', nmony the relatlons:
]
' Q
- . dr dx
M I(O), d:'l—r'(dr‘), y-—r'(ds)
.ﬂr the gquantities r, v may ﬁe

el iated to Oohtuin the

~ V., - .
Nq\wgli-///ﬁ rectansular equatlon of the

r ' .
Fiz, 160 path of Q

For example, cornstder, Fi~, 161, the locus of the
focus of the Parabola rclling upon a linet oripinally

the tanpgent at Ita vertex:

n 2a dr 1 - sin® B P“gﬁ
1 -ginuv? dy~ cos U ! yo= e
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Fiz, 151

From theee, r and ¢ are ellninated to sive

X
a*ds = v dxora‘s = f vode = A

) )

a daf'inltlve property of the Catenary (See Catenary,

‘.;).

(v) P=dal Equation: It the rollins curve s In the

“orm p = t£(r) (with respect to Q), then p = QN = ¥y

= r(%ﬁ) and the rectanrular equation of the roulette

ra oiver. by:

ds
= ()

For example, consider the Roulette of the pedal polnt
(here the center of the flved clrele) of the Cyeloidal
fami%ﬁ:

sz = Aa(r2 - az) where A = a + 2b, and

B = 4bla + b), as the curve rolls upon the x-axls
(orlginuily a cusp tangent).
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The Roulette 1s given by

2
By® = Aa[yafgf - a%] = A%y®(1 + y'®) - a®A",
From this
2adx - 2ydy
A V’Aa - ya
and

%”‘W:

the constant of integraticn being discarded by choos-
Ing the fixed tangent. Thus the Roulette is

. [Xéya + afy® = At] ’

an Ellipse. As a particular case, Fig., 1lb2, the
Cardloid has a = b, and the Roulette of its pedal
polnt is

%2 + 9y? = 81a2,

Fig, 162
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The Card old rolls on "top" of the line until the
cusp toiches, then upon the "bottom" in the reverse
direction,

(¢) Elegart theorems duc to Steilner connect the areas
and lengths of Roulettes and Fedal Curves:

I, Let ¢ point rigldly attached to a closed curve
rolling upon & line generate & Roulette through one
ravolutlion of the curve. The area between Roulette and
line !s double the area of the Pedal of the rolling
curve vith respect to the generating point. For
example

The area under one arch of the Ordinary Cycloid
generated by a circle of radius a is 3ma®; the
area of the Cardioid formed as the Pedal of this
clircle with respect to a point on the circle is
3ra®

e
The Pedal of an Ellipse w.th respect to a focus
s the clecle on the major axis (2a) as dlameter.
Thus the 8+-.& under the Roulette (an Elliptic
Catenary. ‘e 8) of a focus &s the Ellipse rolls
upon & 1linz is 2na®,

.

11, If any curve roll upon & line, the 8rc length
of the Roulette described by & point 1s equal to the
corresponding arc length of the Pedal with respect to
the generating point. For example

The length, 8a, of one arch of the ordinary
Cyclold 1s the same as that of the Cardiold.

The length of one arch of the Elliptic Catenary
is 2na, the circumference of the circle on t'e
major axis of the Ellipse.

3, THE LOCUS OF THE CENTER OF CURVATURE OF A CURVE,
MEASURED AT THE POINT OF CONTACT, AS THE CURVE ROLLS
UPON A LINE:

Let the rollirg curve be given by its Whewell
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intrinsic equation: s = £(¢).
’ Then, if x,y are coordinates of
byt ’ the center of curvature,
s x=82z=rt(¢), y=Ra=f'(g)

: , are parametric equations of the
o, locus. For example, for the
: vy R Cycloldal family,

\

s : s = A*sin B ¢

0 . AN e X = A'sin Be, y = AB'cos B¢
« and the locus 1s

BZx® + y2 = A®B? |, an Ellipse,

Fig, 163

4, THE ENVELOPE OF A LINE CARRIED BY A CURVE ROLLING UPON
A FIXED LINE:

Draw PQ perpendlicular to the
carrled line, Then Q 1ls the
' . point of tangency of the car-
//f“ ried llne with its envelope.
E/‘?“-\ for, Q has, at the instant -
plctured, the dilrectlion of

/,_/ Lo
d the carrled line and every
/, \ point of that line has cen-

,f'i& \\ﬁ>\¢ﬁ ter ot rotatlion at P, The
g ; RS envelope ls thus the locns of
points Q.
Flg. léh

Let the curve roll to &
neighboring point Pi carry-
ing Q to Qi through the anpgle d¢. Then 1f'¢ repregents
the arc length of the envelope,

do = QT + TQ: = sing+ds + 2:d¢,

or . :
dg
g ~
a relatlon conneztine radil of curvature of rolling surve
and envelope., Intrinsic equations of the envelope &are
frequently cac!ly obtained. For example, cons sider the
envelope or a diameter of a clrele of radlius 4. Here

1n¢(d8) + 2
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2 = a'sing

and ds
de

Thus do
de

|9 = -2a.cost |, an

intrinsic equation of an

= 8,

= 2a'siny and

ordinary Cycloid,

5. THE ENVELOPE OF A LINE CARRIED BY A GURVE ROLLING
UPON A FIXED CURVE:

If one curve rolls upon
another, the envelope of a carried

line ts glven by

—cxg = O . RlR.g_..__.
a9 z + (cos a) Ry + R2) °

where the normals to line and

curves meet at the angle a«, and

the R's are radii of curvature of

the curves at their point of J

contact.
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6. A CURVE ROLLING UPON AN EQUAL CURVE:

Flge 167

7. SOME ROULETTES:

As one curve rolls upon an
equal f'ixed curve with corre
sponc.ing points in contact, tue
whole configuration is a reflecs
tior. in the common tangent
(Maclaurin 1720). Thus the
Roulette of any carried point 0
is a curve similar to the pedal
with respect to 0y (the reflec-
tion of 0) with double its
linear dimensions. A slmple
{llustration is the Cardioid.
(See Cauctics.)

Rolling Curve ' Fixod Curvo | Carried Elewont — Roulette I
Circle Line Point of Clrcle | Cycloid
Parabola Line Focusp Catenary (ordi-
nary )*
: Elliptic Cate=
Ellipee Line Focus
naxry*
rbolu Li Hyperbolio Catea
gype 7 o ne Focus Ay
Reciprocal
Spiral Lino Polo Tractrix
lute of ,
Involute o Line Center of Circle | Parabola
- Circle
Cyclolidal
Famlly Line Centex Ellipse
Lino Any Curve Point of Line Involute of the
Curve
Any Cuave Squal Curve Any Point Curva VBimilar to
Pedal
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SOME ROULETTES (Continued):

Rolline Curve | Fixed Cume | Carried Element Roulette
. Equal
Parabola Paxabola Veoxtex Ordinary Cissoid
i
Circle Circle Any Point Cycloidal Family i
Parabola Line Directrix Catenaxry ;
o Involute of
Circle Circle Any Line | Epicyoloid g
] ] Involute of a
Catenasy Line Any Line Parabola
#The surfacos of revolubion of these cwrves all have constant mean
cwrvature, They appear in minimal problems (soap £ilms ).

8. The mechanical arrangement of four bars shown has an
action equivalent to Roulettes. The bars, taken equal in
palrs, form a crossed parallelogram. If a smaller side
AB be fixed to the plane, Fig, 168(a), the longer bars
intersect on an Ellipse with A and B as foci. The points
C and D are focl of an equal Ellipse tangent to the
fixed one at P, and the action is that of rolling
Ellipses, (The crossed parallelogram is used as a "quick

return" mechanism in machinery.}

e

Fig, 168 [y
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On the other hand, if a long bar BC be rlxed to the
plane, Flp, 168(b), the short bars (extended) meet on an
Hyperbola with B and C as tocl. Upon this Hyperbola
rolls an equal one with tocl A ani D, thelr point of
contact at P,

I P (the Intersectlon of the long bars) be moved
along & line and toothed wheels placed on the bars BC
and AD as shown, Fim. 169(a), the Roulette of C (or D)

i \\‘
\r '}' P '
o\ :.-‘.4\' » IR PR ’
LA '
. B i ‘
y { -
e A ad N
o
Y G
Fig, 169

is an Elliptic Catenary, a planc section of the Unduloid
whoce mean curvatyre 1s constant. The wheels require the
motion of C and D to be at right angles to the bars in
order that P be the center of rotation of any point of
CD. The action is that of an Elllpse rolling upon the
line.

If the intersectlon of the shorter bars extended,
i, 169(b), with whecls attached, move along the line,
the Roulette of D (or A) is the Hyperbolle Catenary.
Here A and D are foci of the Hyperbola which touches the
line at V.
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SEMI-CUBIC PARABOLA

{ISTORY: ay® = x® was the first algebraic curve rectlfled
(Nell 1659). Leibnitz in 1687 proposed the problem of
, finding the curve down which a particle may descend under
: the force of gravity, falling equal vertical distances
In equal time intervals with initial velocity different
from zero. Huypens announced the solution as a Semi-Cublc
parabola with a vertical cusp tangent.

DESCRIPTION: The curve is defined by the equationt
y? = Ax® + Bx® + Cx + D = A(x - a)(x% + bx +¢) ,

which, from a fancled resemblance to botanical items, is
sometimes called a Calyx and includes forms known as
Tulip, Hyaclinth, Convolvulus, Plnk, Fucia, Bulbus, etc.,
according to relative values of the constants, (See
Loria.)

In sketching the curve, it will be found convenient
to draw as & vertical extension the Cublc Parabola.(See
Sketching, 10.)

y1 = y%.

Values for which yi1 is negative correspond to imaginary
values of y. There is symmetry with respect to the x-
axis., For example: .
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yi= 3 = (5-1)(x-2) (r-2) v1 = y® = (x-1)(x-2)7

X,
\
Fles 170
Slope a8t ¥ = 1 (ete,): Slope at x = 2 (etc.):
Limit NG Limit 3 -
% - 1[(x-1)] = X - 2[(x-25] b

Limit [(x-2)(x-3) - . Limit + V¥ = I = + 1,
x -+ 1 x=-1 )

(NOTE: Scales on X and Y-ayes different).

2. GENERAL ITEMS:

(a) The Semi-Cublic Parabola 27ay® = 4(x - 2a)® is the
Evolute of the Parabola y% = 4ay,

(L) The Evolute of ay® = x® is

a'a - 18x)°% = [Shax + (%259)5’2 + a%)®

BIBLIOGRAPHY

Lorla, G.: Spezielle Algebralsche und Transzendte ebene
Kurven, Lelpsig (1902) 21.




SKETCHING
ALGEBRAIC CURVES: f(x,y) = 0.

1., INTERCEPTS - SYMMETRY - EXTENT are ltems to be
noticed at once,

2. ADDITION OF ORDINATES:

The point-wlse construction of some functions, y(x},

is often facilitated by the additlion of component parts.
For example (see also Fig, 181):

¢ 3 o Qlsu)etah 2

R4, 7w Cy e e

Flg. 171

The general equation of second degree:

AxZ + 2Bxy + Cy® + 2Dx + 2Ey + F = Ouvuraaaa(1)
may be discussed to advantage in the same manner,
Rewriting (1) as

Cy = - Bx-E +/(B%- AC)x2+ 2(BE - CD)x +E=- CF, C £ 0,
we let Cy = ya + Ya,
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{ where y1=‘BX‘E, "o'o'o'”"o'o"”'”o'ooo'o'o‘a)
and  yz = /(B® - AC)x® + 2(BE - CD)z + E? - CF. ..(3)

Here y2° - (B®-AC)x®- 2(BE-CD)x-E®+CF = 0,

in which it is evident that the conic in (3) or (1) is j
an Ellipse if B® - AC < 0, an Hyperbola if B® - AC > O, j
a Parabola if B®-AC =0, The construction is erfected j
by combining ordinates in (2) and (3): }

X

-~

\
.ﬁ\i‘- _

///'.
3

/
\

N

,,,,,, JNWR_.* X 4
[ /,/ \\
/Z/’ \\\

Fig. 172

Some facts are evident:

(a) The center cf the conie (1) is at

CD - BE . _AE - BD
¥ =BEAC ! < =BE _AC

(b) Since yy = -Bx - E bisects all ciiords x = k, this
line is conjupate Lo the diameter x = %%—f—%% . In
the case ¢i' the Papravnola, 1 = =Br - E s parallel to
the axis ol s;mmetry. This arlis of simetry is thus
inclired at Arc tan(:%) to the ry~arlis, The point of
tarsency of the tanpent with slope % {g the verter of
the Parabola.
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(¢) Tan-ents at the polnts of {ntersection of the
lire yi1 =-Bx - E and the curve (1) are vertical,

In vornection, see Conles
1 ’

el
y =2 %

Fig, 173

Ir the neighborhcod of the

or;gln, é% dominates and the

given curve follows the
. 1
lyperbola y = - 3 Ag

% » «, the term x¥ domi-
nates and the curve follows
the Parabola y = x%,

),

v AND DIRECTIONAL CURVES: The equations of
into forms where simpler and more

familiar curves appear as helpful guldes in certaln re-
e#lons of the plane. For example:

-X
y = e — cosx

The quantity e"* here con-
tro.g the maximum and
mirimum values of y and 1s
called the damping factor,
The curve thus oscillates
petween y = e°* and

y = -e"¥ since cosx varies
only between -1 and +1.

(See also Flg., 92.)

I |
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4, SLOPES AT THE INTERCEPT POINTS AND TANGENTS AT THE
ORIGIN: Let th~ wzlven curve pass throuph (a,0), A 1ine

through this reint and a nelghboring point (x,y) has
slope

-x—v « Then Limit r—&L~
(x-a) x »a'(x-a)
(

=m is
the slope of the curve at .

a,0)

7
Flg. 174
For example:
¥y = 2x(x - 2)(x -~ 1) y¥ = 2x(x - 2)(x - 1)
Limit _y _Limit __ y
has m = x » 2 (7e5) has m = % 2 (5)
Limit Limtt  [fox(x=1)
= X +2 2)((.‘(-1) = 4 = X » D + (x-g)
for its slope at (2,0), =4 o«
for 1ts slope at (2,0).

If a curve passes through the origin, its equation
has no constant term and appears:

0

ax + by + cx? + dxy + eya + £x2 4 vy

or 0

a +b(¥) + cx + dy + ey(*;z) + x4 ...,

Taking the limit here ag both x and y approach zero, the

quantity (‘:f) approaches m, the slope of the tangent at
(0;0):

0 =4a+ bm or m= « % whence [Ek + by = 6].

Thus the collection of terms of first degree set equal
to zero, is the equation of the tangent at the origin.
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1f, however, there are no linear terms, the equation
of the curve may be written:

&

0 =c + d(%) + e(f) + X + oao

and 0=c + dn + em®
gives the slopes m at the origin., The tangents are,

getting m = % ¢

0 =c + d(i) + e(;\{)2 or 0 = cx? + dxy + ey’ | .

It 1s now apparent that the collection of terms of
lowest degree set equal to zero 1s the equation of the
tangents at the origln. Three cases arire (See Section 7
on Singular Polnts):

if this equation has no real factors, the curve has
no real tangents and the orlgin ls an isolated point
of the curve;

if there are dlstinct linear factors, the curve has
dlstinct tangents and the origin is a node, or mul-
tiple point, of the curve;

if there are equal linear factors, the orlgin is gen-
erally a cusp point of the curve. (8ee Illustrations,
9, for an lsolated point where a cusp s indicated.)

For exanmple:

y2 = xZ(x-1) y2 = x2(1-x) y? = %3

PO : TV G §
N

nas (0,0) as an has (0,0) a3 a has (0,0) as &
fsolated polnt node cusp
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5. ASYMPTOTES: For purposes of curve sketching, an
asyiiptote s def'lned as "a tancent to the curve at In-
flutey"s Thus ‘U s asked that the Lne y = mx + k meet
the curve, generally, In two Infintte points, obtalned

in th~ fashion of a targent., That 18, the simultaneous
solution of :

fM{x,y) =0 and y = mx +k

: n =21 Tie
or anx + a8, X +an T F e L aax + g = 0..(1)

where the a's are functions of m and k, must contain two
roots x = «, Now if' an equation

n

) ney
8oz + 8,2

+ I El.n_lz + E&l = O........(Q)

has two roots z = 0, then a, = &,.; = 0, But if z = %

’

thig equat!ion reduces to the precedins, Accordingly, an
equatlon such as (1) has two infinite roots if

an = an_l = Ol

To determine asvmptotes, then, set these coeff'icients
equal to zcero and solve for simultaneous values of m and
k. For example, consider the Folium:

2 4+ y3 - By = 0.

If'' y = me + ki
(14m®)x® + 3m(mk-1)x?2
+ 2k{mk-1)x + k® = 0,

For an asymptote:

¥

1+md®=0 or m = =1

and “m{mk-1) = 0 or k = -1,
N

Thus x + y + 1 = 0 Is the
asymptote.,

Fig., 176

]
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OBSERVATIONS: Let % , Qn be polynomial functions of x,¥
of the nth degree, each of which intersects a line in n
points, real or lmaginary. Suppose a glven polynomial
function can be put into the form:

(y - mx - a)'Pn-x + Qn'l = 0, .ooo-ooococ<3)

, Now any line y = mx +k cuts this curve once at infinity
: since its simultaneous solution with the curve results

; in an equation of degree (n-1). This family of parallel
1ines will thus contaln the asymptote., In the case of
the Folium Just glven:

(y + x)(xZ = xy + ¥%) - 2xy = 0,

the anticipated asymptote has the form: y + X - k=20
and the value of k is readily determined.*

Suppose the given curve of the nth degrez can be
written as:

(5 - mx - KBy, Guug = Ov woerersesea(H)

Here any line y - mx - & = 0 cuts the curve once at
infinity; the line y - mx - kX = 0 in particular cuts
twice. Thus, generally, this latter line is an asymptote,
For example:

* Phus: 51
¥=-x+§-§-—ﬁ—+—5=-x+ X z
- Xy + ¥ 1 .l.,(!)
x X
As X,y > « L 5.1 and the last term here » s— =) a =1,
o x 1T (1) +1

Thus ¥ = =x « 1 16 the Asymptote.
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-x3+x=0 | (ey+x)y-x)-1=0

Fig, 1717

has y = x for an asymptote, has asymptotes 2y + x = 0,
Yy - x a 0%

The line y = mx + k meets this curve (4) again in
points which 1lie on Qu_, = 0, a curve of degree (n-2),
Thus

the three possible asymptotes of a cubic meet the
curve again in three finite points upon a line;

the four asymptotes of a quartic meet the curve in
eight further points upon a conic; etc.

Thus equations of curves may be fabricated with specified
asymptotes which will intersect the curve again in points
upon specified curves. For example, & quartic with
asymptotes

X=20,y=0,y-x=20,y+x=0

meeting the curve again in eight points on the Ellivse
x2 + 2y = 1, 18

xy (x2 - y3) - (%% + 2y% - 1) = 0,

* 1n fact, any conic whose equation can be written as
(yeax)(yabx)+c=0 has asymptotes and is ascordingly a Hyperbola,
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6. CRITICAL POINTS:

(a) Max!{mum-minimum values of y occur at points (a,b)
t'or which

dy
dx

=O’@

with a change In sign of this derivative as x passes
through a.

Max Imum-minimum values of x occur at those polnts
(a,b) for which

a
dy

with a change in slgn of this derlivative as Y passes
through b, For example:

¥¥ = 31 - x) ¥ o= (x - 1)3%(x + 1)°

Figs 178

(b) A Flex occurs at the point (a,b) for which (if y"
is continuous)

y' =0, ©

with a change ln sign of this derivative as x passes
through a. For example, each of the curves:
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Fig. 179

has a flex point at the origin, Such points mark a
change in sign of the curvature (that is, the center
of curvature moves from one side of the curve to an
opposite side). (See Evolutes.)

Note: Every cuble y = ax® + bx® 4+ cx + d is

symmetrical with respect to its flex.

7. SINGULAR POINTS: The nature of these points, when
located at the origin, have already been discussed to
some extent under (4). Care must Le taken, however,
against immature judgment based upon indications only.
Properly defined, such points are those which satisfy
the conditlons:

£lx,y) =0, fx =0, fy =0/,

assuming f(x,y) a polynomial, continuous and differentl=
able, Their character is determined by the quantity:

. 2
P = (fw) - f‘xx'fyy 0

That is, for
F < 0, an isolated (hermit) point,

et
it

0, & cusp,
F 5 0, a node (double point, triple point, ete.) .
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f
Thus, at such a point, the slope: ay . (Fi) has the
y

dx

indeterminate form g .

Variations in character are exhiblited in the examples
which follow (higher singularities, such as a Double

Cusp, Osculinflexion, etc., are compounded from these
simpler ones).

8. POLYNOMIALS: y = P(x) where P(x) is a polynomial
(such curves are called "parabolic"). These have the
following properties:

(a) continuous for all values of x;
(b) any 1line x = k cuts the curve in but one point;
(¢) extends to infinity in two directions;

(d) there are no asymptotes or singularities;
(e) slope at (a,0) is Limit[{#?%] as x - aj
(r) 1f (x-a)* 1s a factor of P(x), the point (a,0) 1s

ordinary if k = 1; max-min. if k 1is even; a flex if
k 1s odd ( #1).




9. ILLUSTRATIONS:

Fig., 180
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ILLUSTRATIONS (Continued):

Fig, 181
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10, SEMI-POLYNOMINALS: y” = P(») where P(x) ls a poly-
nomial (such curves ave called "semi-parabolic"). In
sketchlny semi-parabolic

curves, it may be r'ound ex-

pedlent to sketch the curve

Y = P(x) and t'rom this ob- rl \\

tain the desired curve by \\

taking the square root of N

the ordlnates Y. Slopces at

the intercepts should be -

checked as tndi:ated in (4).

The erample saown is

Y= y% = x(35 - x)(x - 2)%,
Ir projecting, the maximum
Y's and v's occur at the
same x's; negative YV's yleld
no correspordine y's; the
slope at (2,0) s

Limit __y _ Limit —
%2 (2-2) x »2 + V3 (5-7)

= /2.

>

11. EXAMPLES:

(a) Semi-Polynomials

2= xx® - 1) | ¥® = 1 - 5®) ¥ o3l
¥2 s Blx - 1) | 7= 21 - %) ¥ = x(1 - x)

2. x3(x-1) | ¥ =xM1 - ) ¥2 = xM® -1

22 xW1 -] v - xML - x*) ¥ = x°(x - 1)*

72 (-] 5% = xlx - 1)(x - 2 ¥ = (B 1)(5F 1)
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(v) Asymptotes:
y(a® + x®) = n?x [y=0], Py yPx e [x= 0, y=0, x+ y=0].
V= x(a®- %) [x+y=0], x3+y3=aa:[x+y=0].

x%- a(xy+a®)=0 ; [x=0], (28-%)x®-y%=0: [x+y = %3 P

Yo y®) - ony® 2% 20 1 [y 20, x -y = a, x+y+a=0],

Hy -0y 2x) =91, (y - D)y - o) = uyP,

x%y® < a%y% +v%2 = 0, (x - 9) xy - alx +y) = >,

(x-3)(x-25)(x-3y) - 2a(x*-y%) - 20%(xey)(x-2y) = 0 : [four
asymptotes] .

$*(xey)(x-9)7 + ax%(x-y) - 6%y = 0 1 [x =ta, x-yeas o,x-y=§ !

X+y+ g = 0],

(2« )92 - be®) - 6% + 5%y + 302 - 2y® - x® 4 3y =120
has four asymptotes which cut the curve again in eight points
upon a circle,

Bx* ¢ y*) < 1765 - bx(by? < x®) + 2(x® - 2) = O has asymptotes
that cut the curve again in points upon the Ellipse
x2 4+ by? 2 b,

(¢) Singular Pointe:

a(y-x)% = x> [Cusp]. (2y+x+1)? = 4(1.x)° [ Cusp ],
(y-2)2 = x(x-1)2 [ Double a%y® - 2abx®y = x° [ Osculine
Point] flexion],
ooy axy® ey a0 fousp [y% - 2By 4 xty e xt =0 [ Doudble
of second kind at origin] cusp of second kind at origin],
¥2 = 2x% + x%y - 2x* [ Iso- ¥2 = 2x% + x% + x* [ Double
lated Pt]. Cusp ],
22 ox® v oy o y¥eox ooy | x* -2y .oaxy® a%yP = 0
= 0 [Cusp of first kind], [ Cuep of second kind],
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12, SOME CURVES AND THEIR NAMES:

Alysold (Catenary 11" e = c): aR = o + &%,
x = a-sin(nt + ¢)
y = beain t
(See Osgzood!s Mechanles for flpures) .
a® %

Bullet Nose Curve: 2 ;z = 1,

Cartesian Oval: The locus of polnts whose dilstances,
ri, rs, to two fixed points sat!sfy the relation:
ry + m.r> = &, The central Conlcs will be recognlzed as
special cases.

Bowditeh Curves (Lissajous):

Catenary ot Uniform Strength: The form of & hanging
chalin In which linear density 1s proportional to the
tenslon, ’

Cochlevld: rr = a~(§iﬂii). This 1s a projection of a

0
cylindrical Hellw,
Cochloid: Another rame for the Conchoild of Nicomedes.,

Cocked Hat: (%2 + 2ay - a®)2 = y#(a? - ¥%),

2 b2
Cross Curve: ;5 + ;ﬁ =1,

Devil Curve: y* + ay® - »* + br® = 0. This curve 1s
found uset'ul in presenting the theory of Riemann surfaces
and Abelian integrals (see AMM, v 34, p 199).

’
Epi: recos k¢ = a (an inverse of the Roses; a Cotes!

Spiral).

Follum: The pedal of a Deltoid with respect to a
point on a cusp tangent.

Gerono's. Lemniscate: x* = af(x® - y2)~

Hippopede of Eudoxus: The curve of intersectlion of a
circular cylinder and a tangent sphere,

Horopter: The intersection of a cylinder and a Hyper-
bolic Paraboloid, a curve discovered by Helmholtz in his
studles of physical optics.,

1'Hospital's Cubic: Identical with the Tschirnhausen
Cubic and the Trisectrix of Catalan,
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SOME CURVES AND THF R NAMES (Contlnued):
-

- Fed o .
Karpyl o of dudesus: &%t = 0367w F)

Bedosus Lo zolve Lhe cube ool pto 1o,

: uired by ,

Kappa Curve: y2/x2 + y?) = a®x®, orr= % a-cot 0.

. x ., N n
Lamé Curves: (f) + (%) = 1. (Ses Evolutes).

Prarls o Sluze; y* = k(a - x)Pix™, where the erpo-
nents are pocitive inte:rers.

Pivicerm: b%y® = x%(a - ), Pear shaped. See thls

section ¢(a).

Poinsol's Spiral: recosh ki = a.

- ay
Quadratri« of lipplas: r.sin 0==g%; .

Rhodoneas (Rosen): r = a*ros kU. These are Epltro-
choids.

Semi-Trident:

3

xyL = 8 Palm Stems.

xw¥ = upEla o ow) Archer's Bow.

F(Je + b¥) = aby ¢ Twisted Bow,
w(v% - v®) = aby : Pllaster.
x(y? - 0n®) - an” ¢ Turnel,

xy? = w(x® + 2b2 + b% + ¢®): Urn, Goblet.
%y = (a - ¥)? : Pyram'd.

Festoon, Hillock, Hel-
met.

e®yy® = (a - 2 ) (b - ¥)F

(v =a)(x=b)(x=-2) 1 Wlower Pct, Trophy,
Swiny and Chalr, Crane.,

4%y y?

Seepentine: A projection of' the Horopter,

Spirie Lines oF Pevoous: Scetions off a torng by
plares taken parallel Lo Qs aris,

4
Surtractriry:s Moo Jooun of a point on thie tanpent to o a

Tractr'y at o corctar b dletarce from the polnt o tan-

fency .

ERIC

Aruitoxt provided by Eic:
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SOME CURVES AND THETR NAMES (Continued):
2

n
(@)
(o]

3

Trident: xy = ax™ + bx® + cx + d,

Trigsectrix of Catalan: Identical with the Tschirn-
hausen Cuble, and l'Hospital's Cublc.

Trisectrix of Maclaurin: «(x% + y®) = a(y® - 3x®). A
curve resembling the Folium of Descartes which Maclaurin
used to trisect the angle.

l®

3

Tschirnhausen's Cublc: a = r.cos™ - , a Sinusoldal

>~

A\

Spiral.

Verslerars Identical with the Witch of Agnesi. This 1s
a projection of the Horopter. :

viviani's Curve: The spherical curve » = a.slh ¢ cosfq,
y = a'cosz¢, z = a.sin ¢, projections of which include
the Hyperbola, Lemniscate, Strophold, and Kappa Curve.

v = x¥: see A.M.M.: 28 (1921) 141; 38 (1931) 4kk;
oct, (19332).
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SPIRALS

HISTORY: The lnvestigation of Spirals began at least
with the anclent Greeks., The famous Equiangular Spiral
was dlscovered by Descartes, lts properties of self-
reproduction by James (Jacob) Bernoulli (1654-1705) who
requested that the curve be engraved upon his tomb with
the phrase "Eadem mutata resurgo" ("I shall arise the
same, though changed").*

1. EQUIANGULAR SPIRAL! [g_g_ 8.9t %1, (4150 called

Logarithmic from an equlvalent form of its equation.)
Discovered by Descartes in 1638 in a study of dynamics.

Fig, 183

(a) The curve cuts all radil vectores at a constant
anﬁle [ 1% (';.r-." = tan a)n

— _ .
Lietzmen, W.: Luetiges und Merkwurdiges von Zahlen und Formen,
p. 40, gives a plcture of the tombetone.
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(v) Curvature: Since p=r'sin ap R = r.%i::r'csca aCP

(the polar normal), R = s.cot a.

= (r+cot a)(éi%_&)

(¢) Arc_Length: %; = ( =cosa,

and thus s = r.gec a = PT, whcre 8 1s measured from
the point where r = C., Thus, the arc length ls equal
to the polar tangent (Descartes),.

(d) Its pedal and thus all successive pedals with
respect to the pole are equal Equlangular Spirals.

(e) Evolute: PC ls tangent to the evolute at C and
angle PCO = a., OC 1s the radius vector of C., Thus the
first and all successlve evolutes are equal Equi-
angular Spirals,

(£) Its inverse with respect to the pole is an Equi-
angular Sgira )
(g) 1t s, Flg. 184, the stereographic projection

(x = k tan % cos 9,

y = k tan £.51n o) L

of a Loxodrome _#;.uw"’*w :

(the curve cuttling

all merldians at a v d
constant angle: the // (:::j”~ 4
course of a snhlp / o ”:)
holding a flixed /’ *wﬂmﬁ*m;;y
directlion on the L . ‘ - !
compass), from one S L
of' 1ts poles onto - o
the equator (Hal- Nt

ley 1696).

Flg. 184

(h) Its Catacaustic and Diacaustic with the light
gsource &t the pole are Equiannular Spirals.

(1) Lengths of radii drawn at equal angles to each
otiler fofm & geometric progression.

(4) Roulette: If the spiral be rolled along & line,
the path of the pole, or of the center of curvature
of the point of contact, ls a gstraight line.




(h) The septa of the Nautilus
are Equiangular Spirals, The

curve seems also to appear

in the arrangement of seeds
in the sunflower, the forma-
tion of pine cones, and other

growths.

Fig. 185

(1) The 1imit of a succession of Involutes of any
given curve is an Equiangular Spiral.

Let the given zurve be ¢ = f(6) and denote by s the
arc length of an nth involute, Then all first ine
volutes are given by

81 = f(c + £)de = co + ff(e)de,
o o

vhere c represents the distance measured along the
tangent to the given curve. Selecting a particular
value for ¢ for all successive involutest

)
Sp = /[c + cO 4+ ff(e)de] do
[+] Q

8y = cO+c8%/21+c0%/30 4,0, +[ff(0)d9]hth,
"]
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where this nth iterated integral may be shown to ap-
proach zero. (See Byerly.) Accordingly,

2 3 n
s = Limit 8n=C(9 +-0—'+"Q"'+occ ‘*"QT'" oco)
n -+« 3 ns
or Is =cle® - 1)|,

an Equiangular Spiral.

(m) It i1s the development of a Conical Helix (See
Spiral of Archimedes.)

2. THE SPIRALS: re= aon include as special cases the
following: [n =1 : [r = ag Archimedean (due to

Conan but studied particu-
larly by Archimedes in a
tract still extant. He prob-
ably used It to aquare the
circle).

(a) Its polar subnormal
is constant,

(b) Are length from O to
8 e ,_;.[9./1,92 + 1n(g+V1g™))

(Archimedes).

( 2
c) A = G (from ©® = 0 |
to 8 = r/a), Fig. 186

(d4) Tt is the Pedal of

the Involute of a Circle

with respect %o its center. This suggests the descrip-
tion hy & carpenter's square rolling without sltpping
upon a circle, Fig, 187(a). Here vl = AB = &, Let A
stert at A', B at 0, Then AT = arc A'T = r = ad, Thus
B describes the Spirsal of Archimedes while A traces
an Involute of the Circle., Note that the center of
rotation is T. Thus TA and TB, respectively, are
normals to the paths of A and B.




SPIRALS

P Fig, 187 N

(e) Since r = a@ and » = af, this spiral has found
wide use as a cam, Flg, 187(b) to produce uniform
linear motion, The cam 1s plvoted at the pole and
rotated with constant angular velocity. The plston,
kept !n contact wlth a sprin: device, has uniform
reciprocating motion,

(r) 1t is the Inverse of & Reciprocal Spiral with
respect to the Pole.

(g) "The caslngs of centrlfugal pumps, such as the
German supercharger, follc - thls spiral to allow air
which Increases uniformly in vo.ume with each degree
of rotation of the fan blades to be conducted to the
outlet without creating back-pressure." - P, S, Jones,
18th Yearbook, N.C.T.M. (1945) 219.

e R
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(h) The c¢rtho-
f ;caphie projeation yﬂ
; ~of a Conlcal Hellx f

o1 a plane pers- x
pendicular tc its

arxis La a Spiral ﬁ

! of Archimedes, The i
development ot L
this Hellx, how- L
ever, is an
Equiangular Spiral
(Fip., 188),

|u = -ﬂ : [:;;:::ﬂ Reciprocal (Varignon 1704). (Some-
times called Hypcrbollic because of its analogy to the

equation zy = a). ‘
(a) I'ts polar sub- !

tangent Is con-

I
3
1
i
i

*

stant,

(b, Its asymptote
+8 8 units t'rom

the initial line,

imit resing= !
0 >0

Limit assin v
0 -0 1]

= 8, Flc. 189
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(c¢) Arc Lengths of all circles (centers at the pole)
meas?red from the curve to the axis are constant
(=a~

(d) The area tounded by the curve and two radii is
proportional to the difference of these radil.

i (e) It is the inverse with respect to the pole of an
Archimecdean Spiral.

(£) Roulette: As thr curve rolls upon a line, the
pole describes a Tractrix.,

(g) It 1s a path of a Partlcle under a central force
which varies as the cube of the distance. (See
Lemniscate 4h and Spirals 3f.)

n=1/2 : |r® = a%®u| Parabolic (because of its

analogy to y° = a%x) (Fermat 1636).

(a) It is the inverse with
respect to the pole of a

Lituus,
ne=-1/2 :+ Irfe =a®| Lituus (Cotes, 1722). (Similar

in form to an ancient Romar coumpet.)

(a) The areas of all circular sectors (:P< are constant
r29 @l

( =__)o
! 2 2




(b) It is the

inverse with re- s
spect to the pole

of a Parabolic
Spiral.

(c¢) Its asymptote

is the initial line.
Limit r«sing =

& >0 Fig, 191
Limit a/ff sine
6+o T=0'

(d) The Ionic

Volute: Together
with other spirals,
the Lituus is used
as a volute in

architectural de-

sign. In practice,
the Whorl 1s made

with the curve

emanating from a circle drawn about the pole.

3. THE SINUSOIDAL SPIRALS: r® = acos no or

r® = aPsin no¢, (n a rational number), Studied by Mac-
laurin in 1718.

(a) Pedal Equation: r** = &"p.
(b) Radius of Curvature: . _ a" ___r#
“(n+1)rP"2 T (n + 1)p

which affords a simple geometrical method of con-
structing the center of curvaturea.

(e) Its Isoptic is another Sinusoidal Spiral.
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(d) It is rectifiable if % is an integer.

(e¢) All positive and nepative pedals are again
Sinusoldal Spirals.

(£) A vody acted upon by a central force invarsely
proportional to the (2n + 3) power of 1ts distance
moves upor a Sinusoidal Spiral,

(g) Special Cases:

n Curve 1;1
-2 Rectangular Hyperbola
-1 Line

-1/2 Parabola

-1/3 Tschirnhausen Cubic
1/3 Cayley's Sextic
1/2 Cardloid
1 Circle
2 Lemniscate

(In connectlion with this family see also Pedal Equa-
tions 6 and Pedal Curves 3).

(h) Tangent Construction: Since r™? p! = - alsin no,

-ﬁ% = - cot n6 = cot{n - nd) = tany
d o - =
an y=n 5

which affords an immedisate construction of an arbi-
trary tangent,
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4, EULER'S SPIRAL: (Also called Clothoid or Cornu's
Spiral). Studied by

Euler in 1781 In connec-
tion with an investigation
of an elastlic spring.

Definition:
V2t +dx = a*sin t.dt
V2t +«dy = a+cos t.dt,
or R's = a?| ,

Asymptotic Polnts:

aVvrm
Xo’yo = ;" 2 ¢

Fig, 193

(a) It is involved in certain problems in the diffrac-
tion of 1light,

(v) It has been advocated as a transition curve for
railways. (Since arc length is proportional to curva-
ture. See AMM.)

5. COTES' SPIRALS:
These are the paths
of a particle sube
Ject to a central
f'orce proportional
to the cube of the
distance. The five
varieties are in~
cluded in the equa-
tion:

1 A
?=?+Bo

They are:?
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1. B = 0: the Equiangular Spiral;
2, A = 1; the Reciprocal Spiral;
., 1
%, = = a.s8inh nb;

r

1
4, = = a.cosh nb;

r
5, % = a+8in n® (the inverse of

the Roses).

The figure 1is that of the Spiral r.sin 40 = a and its
inverse Rose.

The Glissette traced out by the focus of a Parabola
sliding between two perpendicular lines is the Cotes'
Spiral: r.sln 20 = a.
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STROPHOID

HISTORY: First concelved by Barrow {Newton's teacher)
about 1670 .

1, DESCRIPTIUON: Given the
curve f(xz,y) = O and the

f'ixed points O ana A. Let
K be the intersectlon /
with the curve of a vari- [ <
able line through 0. The F:X S
locus of the nolnts P, -

0 N
and Pz on OK such that o - -
KPy = KP2 = KA 18 the
general Strophold.

Fig. 195

2. SPECIAL CASES: If the curve f = 0 be the line AB and
0 be taken on the perpendicular OA = 8 to AB, the curve
1s the more famlllar Right Strophoid shown in Fig. 196(a).

Fig, 196 it

This curve may &8lso be generated as in Fig. 196(b). Here
a clircle of fixed radius a rolls upon the line M (the
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asymptote) touching it at R, The line AR through the
fixed polint A, distant a units from M, meets the clrcle
in P, The locus of P ig the Right Strophetd, For,

(ovi(va) = (vP)®

and thus BP 1s pergendicular to OP, Accordingly, angle
KPA = angle KAP, and =o

the situation of Fig, 196(a).

The special Obligue Strophoid (Fig. 197(b)) is gen-
erated If CA ls not perpendicular to AB.

{a) Flg, 197 (b)

. This fStrophold, formed when { = C is a line, can be
identiried as a Cissoid of a line and a circle, Thus, in
Fig, 197, draw the tixed circle through A with center at
0, Let E and D be the intersections of AP extended with
the llne I, and the flxed clrcle. Then in Fig, 197(a):

ED

it

a:rcos 2 * sec ¢
and AP = 2astan O.sln ¢ = 2a'cot 2¢*sin ¢.
Thus AP = ED,

and the locus of P, then, is the Cisscid of the line L
and the fixed circle.

it
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5. EQUATIONS:

Fir. 196(a), 197(a):

e ox{x - a)?
r = a(sec u + tan v),(Pole at 0); vr y¥ = ~%"-—~l~

;
Fig. 195(b):
r = a(sec U - 2:cos u),(Pole at A); or y% =
Fle, 197(b):

r = a(sin a - =in v)rcac(a - 9),(Pole at 0),

4, METRICAL PROPERTIES:

A (lcop, Fig. 196(a)) = a2(2 - %).
5., GENERAL ITEMS:

(a) It is the Pedal of a Parabola wlth respect to any
point of its Directrix.

(b) It Le the inverse of a Rectangular Hyperbola with
respect to a vertex. (See Inversioﬁ).

(c) It is a speclal
Kieroiu,

(a) It is a stero-
graphic projection of
Viviani's Curve,

(e) The Carpenter's
Square moves, as In the
peneration of the Clse
gold (see Cissold ke),
wilth one edre passing
through the f'ixed

point B (Fig., 198)
while {ts corner A
moves along the line

Fig, 193
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AC, If BC = AQ = a and C be taken as the pole of
coordinates, AB = a+secV, Thus, the path of Q is the

Strophoid:

220

r = a.gecd - 2arcosb ,

BIBLIOGRAPHY
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TRACTRIX

HISTORY: Studied by Huygens in 1lp92 and later by Lelbnitz,
Jean Bernoulill, Liouville, and Beltrami. Also called

Tractory ard Equitangentlial Curve,

rig. 199

1, DESCRIPTION: It is the path of a particle P pulled by
an inextensible string whose end A moves along a line.
The general Tractrix is produced if A moves along any
specif'ied curve., This is the track of a toy wagon pulled
along by a child; the track of the back wheel of a
bicyele,

Let the particle P: (x,y) be pulled with the string
AP = & by moving A along the x-axis, Then, since the
direction of P 1ls always toward A,




2e

2.

3

4,

2 TRACTPIX
EQUATIONS:

X = a+arc sech g -V af - y®

x = a+ln(sec 0 + tan ¢) - a*sin 0

¥y = a8y
s = a'ln sec ¢ a2 + R® = aeeae/h
METRICAL PROPERTIES:
t
(a) K = }lg R = a.cotg
a
—_——
(b) A =na?® [A =14 IV a®-y® dy (from par, 2, above
)

= area of the circle
shown) ],

(c) vy = (Vg = half the volume of the sphere of
radius a),

(d) £, = 4na® (2, = area of the sphere of radius a),

GENERAL ITEMS:

(a) The Tractrix is an involute of the Catenary (see
Fig. 199).

(b) To construct the tangent, draw the circle with
radlus a, center at P, cutting the asymptote at A.
The tangent is AP,

(¢) Its Radial is a Kappa curve.

(d) Roulette: It is the locus of the pole of a
Reciprocal Spiral rolling upon a straight line,

(e) Schlele's Pivot: The solution of the problem of
the proper form of a pivot revolving in a step where
the wear is to be evenly distributed over the face

of the bearing 1s an arc of the Tractrix. (See Miller
and Lilly.)
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(f) The Tractrix is utilized in details of mapping,
(See Leslie, Craig.)

(g) The mean or Gauss curvature of the surface gen-
erated by revolving the curve about its asymptote
(the arithmetic mean of maximum and minimum curvature
at a point of the surface) is a negative constant
(-1/a). It is for this reascn, together with ltems
(¢) and (d) Par. 3, that the surface ls called the
"ngendo-sphere", It forms a useful model in the study
of geometry. (See Wolfe, Elsenhart, Graustein.)

(h) From the primary definition (see figure), it 1s
an orthogonal trajJectory of a family of circles of
constant radius witi. centers on a line.
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TRIGONOMETRIC FUNCTIONS

HISTORY: Trigonometry seems to have been developed, with
certain traces of Indian influence, first by the Arabs
about 800 as an aid to the solution of astronomical prob-
lems. From them the knowledge probably passed to the
Greeks. Johann Miller (c.1464) wrote the first treatise:
De triangulis omnimodis; this was followed closely by
others.,

1. DESCRIPTION:

Fig. 201

2., INTERRELATIONS:

(a) From the figure: (A + 8 + C = n)

a - b ¢ -
sinA = sinB ~ sinC

2R s

sin A,= sin(B+C) = sinBcosC + cosBsinC
cos(B+C) = cosBcosC - sinBsinC
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(b) The Euler form:

z =€ = cosx + l.sinx;

zZ = e~ =cosx~- 1'sinx;

(cosx + tesinx)¥ =

. cos kx + 1°+sin kx

Py

#7 2A N
~8 produces, on identify-

B~ ___<RsinB cosC
0 2RsinA

¢ 1ing reals and

imaginaries;
Rig, 202
sin 2x = 2sinxecox cos 2x = 2cos°x - 1
sin 3x = 3sinx - bein®x cos 3x = beos®x - 3coex
sin Ux = bpinxecosx - 8sin®xcomx cos bx = Bcos*x - 8cos®x + 1
etc.

(c¢) A Reduction Formula:

cos kx = 2cos{k-1)x+cosx - cos(k-2)x
sin kx = 2sin(k-1)x+cosx - sin(k-2)x

(d) 8ince 2X = cos kx + 1.sin kx; 2K = cos kx - {+s8inkx,

zk -0-'z'k = 2*'cos kx and zk - ‘Ek = 21+8in kx.

Thus to convert from a power of the sine or cosine
into multiple angles, write

=n
2% 2y"  oxpand and replace 2K

cosfx = ( +2% by 2+cos kx

2
- z n -—

gin®x = (g_é_i_z_ , expand and replace zk- A by 21+sin kx,

With Z‘E L 14
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For example:

227

- 2 .
inx = (1 Zos 2x) con®x = 1+ ios 2x)
6inx = (30ln x ; ain 3x) cos’x = (cosa3x z 3cos x)
ointy - (cos bx - gcos 2x + 3) costx = (cos bx + gcos 2x + 3)
o1nSx = (sin px-5sig65x+1051n x)’ cos5x = (cos 5x+5co;65x+10cos x)
(e) n sin & ; L sin !;—x
L s8in kx = "
k=1 sin =
2
n cos n; lx.slnﬂﬁ
2 cos kKx = "
k=1 sin =
2

(f) From the Euler

form given in (b):

sin x = -l.sina (ix),

sin (ix) = i'sinh x,

cos x = cosh (1x)

cos (ix) = cosh x

3. SERIES:
[--]
) kx2k+l 2
(a)sinx_g(-l) m, X< ™
« 2k
k x
= 2(a 2
cos x o(l)(a‘k)l’ X o
tanx-x+£+£5+—-l77 62 .o 2 ¢ k.
XTI Ty X g X e X ST
1 x ¥ 2 x’ 2 2
COtx=x.5.E 9u5-'!q_2;+.00,x <,
@«
1 ex
=;+ zxz. 5
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. 4 2
_ X 9% 61 g 277 ﬂ_'
pec X =1 + 2.4-——21‘<|»-----,_{20x 806hx +...,X< pEk
1l ox 7 s _31 s 2, n2
chx—x+6+560x 15120 X +...,X<n
T K 2
X
= = ¢ 2 (_1) __2‘
X © « k%R
1 2 13 x> 1305 % 2
(b) aro sinx = x + 5 Tt 5 5t g 7+...,x<1.
n
arc cosx:-a--a.rc ain x,
3
X X
a.rct@:'=x-'g"+"§'+ooo,x251,
I N S N NN T
T2 x T3 "5 o T )
n
arc cotx:-a--arc tan x,
T
arc eecxa-a--arc CBC X,
1 1 1 13 1 163545
- -y p— (XX} 1‘
arc cacx=x 5 -;53 +2' —g5x ‘201&06 7)‘74- ,x>

4, DIFFERENTIALS AND INTEGRALS:

dx

d(sin x) = cos x dx d(arc sin x) =f-1-= -d( arc cos x)
l =« X
d(cos x) = -gin x dx
d(tan x) = sec®x dx d(arc tan X) = 1 fxxa = «d'arc cot X)
dfcot x) = -cac®z dx
dx

= «dlarc cse x)

d(sec x) = sec x tan x dx d(arc sec X)

XV -1

d(csc x) = «cac x cot x dx,

tan x dx = 1n |sec x|

113

cot x dx

in |sln X |

|
J
Iac dx = 1n |sec x + tan x |
I

csc X dx

lnlcsct-cotx':ln'tang'l .
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5. GENERAL ITEMS:

(a) Periodicity: All trigonometric functions are
periodic. For example:

n)

y = A*sin Bx has period: -E¥ and amplitude: A,
L

y = A*tan Bx has period: B*
(b) Harmonic Motion is defined by the differential
equation:

8 + B%s = 0] . ’

Its solution is ¥ = A*cos (Bt + ¢), in which the
arbltrary constants are

A: the amplitude of the vibration,
¢: the phase-lag.

(¢) The Sine (or Cosine) curve is the orthogonal pro-
Jection of a cylindrical Heli:, Flig. 203(a), (a curve
cutting all elements of the cylinder at the same
angle) onto & plane parallel to the axis of the
cylinder (See Cycloid 5e.)

(&) Fig. 203 (v)

(d) The Sine (or Cosine) curve is the development of
an Elliptical section of a right circular cylinder,
Fig 203(b). Let the intersecting plane be
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z X
2+k=1

and the cylinder: (2-1)2 + x% a1

which rolls upon the XY plane carrying the point
Pi(x,y,2) into Pi:(x=0,y). From the plane:

y-k(l-’az').

But Z2=le-cos80 =1 - cos Xx.

Thus y = (g)(l + cosx)| .

A worthwhile model of this may be fashioned from a
roll of paper. When slicing through the roll, do not
flatten it.

(e) A Map of a Great Circle Route:* If an airplane
travels on a great cir-
cle around the earth,
the plane of the great
circle cuts an arbitrary
oylinder circumsoribing
the earth in an Ellipse.
If the oylinder be cut
and laid flat ad in (d)
above, the .'round-the-
world! course is one
period of a sine curve.
(f) Wave Theory: Trigo-
nometric functions are
fundamental in the de-
velopment of wave theory.
Harmonic analysis seeks
to decompose a resultant
form of vibration into
the simple fundamental
motions characterized by
the Sine or Cosine curve.
Fig. 204 This is exhibited in
Fig. 205.

*This is noneconiformal (1.,e., angles ars not preserved ),
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Sin X+ $in 2x

$:n X sin 2%

Compotition of Sounds. A tuning ferk with octave overtone would resemble the
heavy curve.

Four Tuning Forks in Unison—Do-Mi.Sol-Do inratios 41 5: 6: 8.

AP

Vielin.

/[\\%\J’\V%A\}I\Vf\ % ]\/VV bf\v,\j\f\ A

French Horn.

{ From Harkin's Fundamental Mathematics, Courtesy of Prentice-Hall.)
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Fourler Development of a given function 1. the com-
position of fundamental Sine waves of increasing fre-
quency to form successive approximations to the
vibration, For example, the "step" function

Yy=0, for-n ¢x<¢0,
y=1mun, for 0<x <,

is expressed as

y=%+2(81nx+'9i§ﬁ35 +81_;"ix‘ +—S%Y—x'+ .cc)'

£

Fig. 206
the first four approximations of which are shown in
Fig. 206.
BIBLIOGRAPHY
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TROCHOIDS

HISTORY: Special Trocholds were first conceived by Dilrer
in 1525 and by Roemer ir 1674, the latter in connection
with his study of the best form for gear teeth.

1. DESCRIPTION: Trochoids are Roulettes - the locus of &
point rigidly attached to
a curve that rolls upon &
fixed curve. The name,
however, is almost uni-
versally applied to Epi-
and Hypotrochoids (the
path of a point rigidly
attached to a circle
rolling upon & fixed
circle) to which the dis-
cussion here L8 re-
stricted.

2, EQUATIONS:
Epitrochoids Hypotrochoids
x = mcos t - kecos(mt/b) x = ne«cos t + kecos(nt/b)
¢ = mesin t - kesin(mt/b) |y = n'sin t - k+8in(nt/b)

where m = a + b, vhere n = a8 = b,

(these include the Epi- and Hypocyclolids if k = b).
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3, OENERAL ITEMS:
(a) The Limacon is the Epitrochoid where a = b,

(b) The Prolate and Curtate Cycloids are Trocholids of
a %ircle on a line (Fig. 208):

Fig. 208

(¢) The Ellipse is the Hypotrochoid where & = 2b,
Consider generation by the point P [Fig. 209(3)].
Draw OP to X. Then, sirce arc TP equals arc TX, P was
originally at X and P thus lies always on the line 0X.
Likewise, the diametrically oppostte point Q lies al-
ways on 0Y, the line perpendicular to 0X. Every point
of the rolling circle accordingly describes a diameter
of the fixed circle, The action here then is equiva-
lent to that of & rod sliding with its ends upon two
perpendicular lines - that is, a Trammel of Archi.
medes. Any point F of the rod deséribes an Ellipse
whose axes are 0X and 0Y. Furthermore, any point G,
rigldly connected with the rolling circle, describes
an Ellipse with the lines traced by the extremities
of the diameter through G as axes (Nasir, about 1250).

Note that the diameter PQ envelopes an Astroid

At maidnies St fo—_—

envelope of the Ellipses formed by various fixed
points F of PQ. (See Envelopes.)
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(&) Fig., 209 (b)

(d) The Double Generation Theorem (see Epicycloids)
applies here. If the smaller circle be fixed [Fig.
209(b)] and the larger one roll upon it, any dlamets>
RX passes always through a fixed point P on the
smaller circle. Consider any selected point 8 of this
diameter. Since S0 is a constant length and 80 ex-
tended passes through a fixed point P, the locus of 8
is a Limacon (see Limacon for a mechanism based upon
this). Accordingly, any point rigidly attached to the
rolling circle describes a Limacon. If R be taken on
the rolling circle, its path is a Cardioid with cusp
at P.

Envelope Roulette: Any line rigidly attached to
the rolling clrcle envelopes a Circle. (See Limacon
3k; Roulettes 4; Glissettes 5.)

(e) The Rose Curves: r = a cos ng and r =& sin n@
are Hypotrochoids generated by a cirele of radlus

é"n'+11“ rolling within a fixed circle of radlus
T+ 28'1) , the generating point of the rolling circle

being g units distant from its center. (First noticed

by Suardi in 1752 and then by Ridolphi in 1844, See
Loria.)




TROCHOIDS

n) Fig. 210 (b)

As shown in Fig, 210(b): OB = a, AB = b, OA = AP
a 2b
Msbﬂ,p=2(a+u)=ga or Q:a-gbo.
Thus in polar coordinates with the initial 1line
through the center of the firxed circle and a maximum
point of the curve, the path of P 1is:

a
r=2(a->b) cos(a +0) =2(a - v) cos TR
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WITCH OF AGNESI

HISTORY: In 1748, studied and named* by Maria Gaetana
Agnesi (a versatile woman - distinguished as a linguist,
philosopher, and somnambulist), appointed professor of
Mathematics at Bologna by Pope Benedict XIV. Treated
earlier (before 1666) by Fermat and in 1703 by Grandi.
Also called the Versiera.

1. DESCRIPTION: A secant OA through a selected point 0
on the fixed circle cuts the circle in Q. QP is drawn
perpendicular 1C the diameter OK, AP parallel to it.
The path of P is the Witch.

* Apparently the result of a misinterpretation. It sesms Agnesi.cone
fused the old Italian word "versorio" (the name given the cwrve by
Grandi ) which means 'free to move in any direction' with 'versiora'
which means 'goblin', 'bugaboo', 'Devil's wife', etc. [ See Soripta
Mathematica, VI (1939) 211; VIII (1941) 135 and School Science and
Mathematiocs XINI (1946) 57.)




228 WITCH OF AGNESI
2. EQUATIONS:

X = 2a+tan v y(x® + 4a®) = 8a°.
y = 2a+cos?V
3. METRICAL PROPERTIES:

(a) Area between the Witch and its asymptote is four
times the area of the given fixed cirele (4za®).

(b) Centroid of this area lies at (0,3),
(c) vx = hnaaa.

(d) Flex points occur at 0 = + % .

4, GENERAL ITEMS: A curve called the Pseudo-Witch is
produced by doubling the ordinates of the Witch. This
curve was studled by J. Gregory in 1658 and used by
Leibnitz In 1674 in deriving the famous expression:

n 1 1 1

-"-'-'1-— bl Bk T

4 375 T
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( Numbers refer to pages)

Addition of ordinates: 188

Aeroplane denign: u8

Agnesi, Maria Gaetana: 237

Alexander the Great: 36

Alysoid: 203

Apollonius: 23,3%6,86,127,1%3

Arvelos: 29

Archer's Bow: 20h

Archimedes Spiral: (see
Splrale, Archimedean)

Archimedes ''vammel: 3%,77,108,
120,234

Astroid: 1.3;63,7%,78,84,109,
111,126,140,1%6,157,163,169,
174,2%4

Asymptotes: 27,87,129,193,194,
19%,202,211,213

Auxiliary Curves: 190

Barrow: 217

Bellavitis: 127

Beltrami: 221

Bernoulli: 1,12,6%,67,68,69,
81,93,143,1%2, 175,206,221

Besant: 108,175

Besicoviteh: 72

Boltzmann: 106

Bouguer: 170

Bowditch Curves: 203

Brachistochrone: 68

Brianchon: 48

Brocard: 171

Bulbug: 18A

Bullet Nose Curve: 203

Calculus of Variations: 80
Calyx: 186
Cams: 6,137,210

Cardioid: 4.7;17,61,84,91,12),
125,126,140,149,151,152,153,
162,163,161,168,172,179,182,
D1h, 235

Carpenter's Square: 8,50,209,
219

Cartesian Oval: 149,203

Cassinian Curves: 8-11;143,144

Catacaustic: (see Caustics)

Catalan's Trisectrix: 20%,205

Catenary: 12.14;20,63,80,87,117,
124,126,174,177,182,18%,203,
222

Catenary, Klltptic: 179,182,184

Catenary, Hy, .rbolic: 182,184

Catenary of Uniform Strength:
174,20%

Cauastics: 15-2035,69,71,73,79,
81,87,149,152,15%,160,163,
207

Cayley: 753 Sextic: 87,153,163,
214

Central force: 8,145,212,214,
21%

Centrifugal punps: 210

Centrode: 119

Ceséro: 123,125,126

Chasles: 85,119,138

Cirele: 21.2%;1,%,16,17,20,30,
31,61,69,79,91,126,127,128,
133,138,139,140,149,162,163,
168,171,172,174,180,182,183,
oL, /0%, 032,038

Cissoid: 26430;20,126,129,1h1,
142,143%,161,163,183,218,219

Clairaut: 77

Clothoid: (see Spirals, Euler)

Coshleoid: 203



240

Cochloid: 203

Cocked Hat: 203

Compas: Constructicn: 128

Conchoid: 31-3%;30,108,109,1:0,
121,141,142,148,203

Cones: 34.35;37,30,39

Conics: 36-95;20,78,79,87,88,
112,13%0,131,158,140,149,156,
163,173,188,189,195,203

Convolvulus: 186

Coronas: 81

Cornu's Spiral: (see Spirals,
Euler)

Cotes: 212; Spiral (see Spirals,
Coten')

Crane: 204

Critical Points: 196

Crose Curve: 203

Crossed Parallelogram: 6,131,
158,183

Cube root problem: 26,31,36,.04

Cubic, 1'Hospital's: 203,709

Cubic Parabola: 56-59;89,186,197

Cubic, Tschirnhausen: 203,709,
214

Curtate Cycloid: 65,69 (see
Trochoids)

Curvature: 60.64;53%,36,167,172,
180,181,184,197,207,213,215,
223

Curvature, Constructten of Cen.
ter of: 5h4,5%,145,150,213

Cwep: 20,27,90,192,197,199,2C0,
202

Cylinder: 229,230

Cycloid: 6%5.70;1,4,6%,80,89,92,
122,125,126,136,137,158,139,
172,174,176,177,179,180,181,
182,183, (see also Epicycloids)

Danmping factor: 190

da Vinci, Leonardo: 170

Deltoid: T1-74; 84,126,140,164,
169,174,203

INDEX

Te Molivres 04

Desargues: 17

Deacartess 69,93,20%,006,207

Devition, standard: 96

Devil Curve: 203

Dincaustic (see Caustice)

Diffraction of light: 21%

Differential equation: 75,77

Diocles: 26,129

Directional Curves: 190

Discontinuous Curves: 100-107

Discriminant: 3%9,57,76,189

Double generation: 81

Duality: 48

Direr: 175,233

"e": 93,94

Flastic spring: 215

1lipse: 56-5532’19’27’63:78’79:
88, 1v3,111,112,120,139,140,
149,157,158,164,169,173,178,
119,1%0,182,18%,184,189,195,
202,099,230,234

¥1liptic Catenary: 179,182,184

¥nvelopes: 75-80;2,3%,15,50,72,
“3,35,87,91,108,109,110,111,
112,135,139,144,153,155, 160,

, 161,175,180,181,234,235

Fpi: 203

Fpicycloid: 81.85;4,5;63,87,122,
126,139,152,163,169,174,177,
180,182,183

Epitrochoids: (see Trochoids)

Equati+n of second degree: 39,
188

Bquianguwlar Spiral (see Spirals,
Equiangular)

Equitangential Curve: (see
Tractrix)

Eudoxus, Hippopede of: 203

Kampyle oft 17h,204

Euler: 67,71,82

Fuler form: 94,116,226

Euler Spiral (see Spirals, Euler)
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Evolutes: 86-92;2,5,15,16,19,20,

57)66)68)7?)79)85)155)159)1k9) L

152,153,195,115,167,197,20k,
207
Exponential Curves: 93-97;20

Fermat: 237

Fermat's Spiral: (see Spiralse,
Parabolic)

Festoon: 204

Flex point: 10,%6,87,90,196,198

Flower Pot: 204

Folium of Descartes: 98.99;193,
205

Folium: 72; (Simple, Doubdle,
Tri., ‘uadri-: 73,140,163,164,
174,203)

Fourier Development: 232

Fucla: 186

Functions with Discontinuous
Properties: 100.107

Galileo: 12,65,66,81

Gaussian Curve: 95

Gears: 1,69,81,137,233

Gerono's Lemniscate: 203

Glissettes: 108-112:50,121,122,
138,139,149,216

Gobdblet: 204

Grandi: 237

Graphical solution of cubics:
57,58

Creat circle route! 230

Gregory: 238

Growth, Law of: 9h

Gudermann: 113

Gudermannian: 115

Guillery: 69

Halley: 207

Harmonic Analysis: 230
Barmonic Motion: 6,67,229
Harmonic Section: U2
Harts 131

Hathaway: 171

Helix: 69,203,209,211,229

Helmet: 20h

Helmholtz: 203

Hessian: 99

Hillock: 204

Hipplas, Quadratrix of: 20u

Hippopede of Eudoxus: 207

Hire: 138,175

Horopter: 203,20 .205

1'Hoepital: 68; c.oic: 203,205

Huygens: 15,66,67,86,135,152,
155)186,221

Hyacinth: 186

Hyperbola: 36-55;19,27,63,78,
79,88,101,112,115,116,129,130,
139,140,1k44,149,157,163,16b,
168,169,173,182,184,189,195,
205,214,219

Hyperholic Catenary: 182,184

Hype. volic Functions: 113-118

Hyperbolic Spiral: (see Spirals,
Reciprocal)

Hypocycloid: 81-85;1,63,71,87,
122,126,140,163,169,177, 180,
182

Hypotrochoide: (eee Trochoids)

Ionic Volute: 213

Ingram: 127

Instantaneous Center of Rota-
tion: 119.12233,15,29,32,66,
73,85,153,158,176,209

Intrinsic Equations: 123.126;
92,180

Inversion: 127.134; 63

Involutes: 135.137;13,20,66,68,
85,87,125,126,155,156, 16k,
176,182,183,208,209,222

Isolated point: 192,197,200,
202

Isoptic Curves: 138-140;69,85,
121,213
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Jones: 210

Kakoya: 712

Kampyle of Eudoxus: 17h,20h
Kappa Curve: 17h,20h4,205,222
Kelvin: 127,141,142

Kieroid: 141.142;29,33,219
Kite: 158

Lagrange: 15,67,79

Lembert: 113

Lamé Curve: 87,164,204

Law of Growth (or Decay): 94

Law of Sines: 225

Least area: T2

Leibnitz: %6,68,155,175,186,
221,238

Lemniscate, Bernoullifa: 143.
147;9,10,63,130,157,163,168,
205,214

Lemniscate, Gerono's: 203

Light rays: 15,86

ILimacon of Pascal: 1h8.151;5,7,
16,31,108,110,121,130, 139,140,
163,234,235

Line motion: 84,132,158,210,234

Linkages: 6,9,28,51,132,146,151,
158,183

Liouville: 221

Lissajous Curves (see Bowditch

Curves)
Lituus: 169,212,213

Logarithmic Spiral: (see Spirals,

Equiangular)
Loria: 186
Lucas: 171

Maclaurin: 143,160,163%,182,205,
213

Mapping: 118,223,230

Maxwell: 136,175

Mayer: 113

Mechanical Inversors: 131

Mechanical solution of cublct: 57

Mechanism, quick return: 183

Menaechm ..;: 36

Mercator: 118,2%0

Mersenne; 65,81

Minimal Surfaces: 13,183

Monge: 56

Montucla: 69

Moriey: 171

Motion, harmonic: 6,229

Moticn, line: 84,132,158,210,
234

Milller: 225

Multiple point: 20,192,197,199,
200,202

Napler: 93

Napkin ring: 17

Nasir: 234

Nautilus, septa of: 208

Neil: 186

Nephroid: 152-1%54;17,73,84,87,
126

Newton: 28,51,%6,60,67,68,81,
175

Nicomedes, Chonchoid of: 31-33;
108,142

Node: 192,197,199,200

Normal Curve: 95,96

Normals: 91

Optics: 40,203

Orthocenter: 22

Orthogonal trajectory: 273
Orthoptic: 3,73,138,139,149
Orthotomic: 15,20,87,160
Osculating circle: 60,63
Osculinflexion: 198,199,200,202
Ovals: 131,149,203

Palm Stems: 204

Paper Folding: 50,78,

Pappus: 25

Parabola: 36.553%,12,1%,19,20,
27}2956156“)75)76)79)80587’88’
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91,111,112,129,136,13%,139,
140,149,1%6,157,161,165,164,
16#,169,173,176,1.2,183,137,
189,214,216,219
Parabola, Cublic: (see Cubic
Parabola)
Parabola, Sem!.cublc: (see Semia
cublic Parabola)
Parallel Curves: 15%5.1%9;79
Parellelogram, Crossed: 6,131,
158,183
Pascal: 36,65,148; Theorem of':
L5 pf,
Poarls of Sluze: 56,20k
Peaucelller. cell: 10,28,52,131
Pedal Curves: 160.165;5,9,15,29,
63,72,79,85,136,138,14k,149,
167,179,182,203,207,209,21k,
219
Pedal Equations: 166-169;162,
177,213
Pendulum, Cycloidal: 68
Pilaster: 204
Pink: 186
Piriform: 204
Pivot, Schiele's: 222
Poinsot's Spiral: 204
Points, Singular: 192,199,200,
202
Polars: h41,42,43,44,133
Polynomial Curves: 64,89,194,198
Polynomial Curves, Semi~: 61,87,
201
Power of a point: 21
Probability Curve: 95
Projection, Mercator's: 118;
Orthogonal: "29;
Orthographic: 211;
Stereographic: 207,
219
Prolate Cycloid: 65,69 (see
Trochoids)
Pgeudo-gpheret 223
Pseudoawitchs: 238

Pursuit Curve: 170-171
Pyramid: 204

Quadratrix of Hipplas: 204
tuadrifolium: 140,163
Quetelet: 15,127,160
Quick return mechanism: 183

Radial Curves: 172-174;69,73,

falele]

Fiyagid

Radical Axlg: 22

Radical Center: 22

Reciprocal Spiral: (see Spirals,
Reciprocal)

Reflection: (see Caustics)

Refraction: 69, (see Caustics)

Rhodcreae: (see Roses)

Rhumb line: 118

Riccati: 113

Ridolphi: 23%5

Roberval: 65,66,148

Roemer: 1,81,23%3

Roses: 8%,16%,174,216,235 (also
see Trochoids)

Rowlettes: 175.185;13%,29,65,73,
79,110,135,13%6,207,212,222,
233,035 ( gee Trocholds)

Sacchi: 169

Sail, section of: 1k

Schiele's pivot: 222

Secant property: 21

Semi.cublc Parabola: 186187361,
87,157,192,201

Semi-polynomials: 61,87,201

Semi.trident: 204

Septa of the Nautilus: 708

Series: 117,227,228,2%2,238

Serpentine: 204

Shoemaker's knife: 25

Sierpinski: 107

Similitude: 22

Simson line: 72

Sine Curve: 225,229,230,231,23%2

Sines, Law of'¢ 225
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Singulur points: 62,192,197,
199,200,202
Singular goluticne: 75
Sinusoidal Spirals: (see
Spirals, Sinusoidal)
Sketching: 186-20%5;155
Slope: 191
Slot machime: 96
Sluze, Pearls of': 204
Snowf'lake Curve: 106
Soap t'ilme: 13,183
Spirale: 206-216
Spirals,
Archimedean: 20,136,164,169,
209,210,211,212
Cornu's: (see Spirals, Euler)
Cotes'; 72,169,215,216
Equiangular: 20,63,87,126,
136,163,169,171,173,206,
207,208,209,211,216
Fuler: 136,215
Fermat's: (see Spirals, Para-
bolic)
Hyperbolic: (see Spirals,
Reciprocal)
Parabolics: 169,212,213
Poinsot'ss 204
Reciprocal: 192,210,211,
212,216,202
Sinusoidal: 20,63,139,140,
144,161,162,16%,168,205,
213,214
Spiral Tractrix: 137
Spiric Lines of Perseus: 204
Spring, elastic: 215
Squaring the circle: 36,209
Standard deviation: 96
Steiner: 24,127,179
Step function: 232
Stereographic projJection: 207,
219
Strophold: 217.220329,129,141,
142,163,205
Stubbs: 127

Sturm: 26 ‘
Suardi: 235
Supercharger: 210
Swing and Chair: 204
Syntractrix: 204

Tangent Construction: 3,13,29,
32,41,44,46,66,73%,85,119,139,
145,150,153,168,%1h ,202

Tangente at origin: 191,192

Tautochrone: 67,85

Tayloxr: '15

Terquem: 160

Torus: 9,204

Tractory: (see Tractrix)

Tractrix: 221.224;13,63,87,126,
137,174,182,204,212

Traine: 24

Trajectory, orthogonal: 223

Trammel of Archimedes: 3,77,108,
120,234

Transition curve: 56,215

Trident: 205

Trifolium: (eee Folium)

Trigonometric functions: 225232

Trisection: 33,36,53,205

Trisectrix: 149,163,203%,205

Trochoide: 233-2363120,122,138,
139,148,176,204

Trophy: 204

Tsechirnhausen: 15,152,203,209,
214

Tucker: 172

Tulip: 186

Tunnel: 204

Twisted Bow: 204

Unduloid: 184
Urn: 204

Varignon: 211

Versiera: (see Witch of Agnesi)
Versorio: (see Witch of Agnesi)
Vibration: 68) 250) 231,252




Viviant's Curve: 205,219
Voluta: 213
Yon Koch Curve: 106

Wallis: 65
Watts 143
Wave theory: 230

INDEX 245

Welerstrass: 113

Welerstrass function: 107
whewell: 87,123,124,12%,126,180
Witch of Agnesl: 237-238; 205
Wren, Sir Christopher: 66
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