
DOCUMENT RESUME

ED 100 370 IR 001 469

AUTHOR Claybrook, Billy G.
TITLE Learning as a Problem Solving Tool. Technical Report

CS74018-P.
INSTITUTION Virginia Polytechnic Inst. and State Univ.,

Blacksburg. Yept. of Computer Science.
REPOPT NO TR-CS74018-R
PUB CATS' Nov 74
NOT! 44p.

?DRS PRICE MF-S0.75 HC-$1.85 PLUS POSTAGE
IESCPIPTIRS *Artificial Intelligence; *Computer Programs;

Cybernetics; *Learning Theories; *Proble Solving
TnENTIFTEPS Claybrooks First Order Predicate Calculus;

Heuristics; Watermans Production Pules; Winstons
Pepresentation

ASSTRACT
This paper explores the use of learning as a

practical tool in problem solving. The idea that learning should and
eventually will be a vital component of most Artificial Intelligence
programs is pursued. Current techniques in learning systems are
compared. A detailed discussion of the problems of representing,
modifying, and creating heuristics is given. Some of the questions
addressed in the paper are: (1) how does the choice of representation
affect the potential for learning? (2) what techniques have been used
to date and how do they compare? (3) exactly how are heuristics
modified in the existing systems and what do these techniques have in
common? A discussion of the credit assignment problem as it relates
to learning under the various schemes of representation is also
presented. (Author/DGC)

BEST COPY AVAILAIILE

Computer Science Department

4
hI

Virginia Polytechnic. Institute
and State 1 nirersity

Blacksburg, Virginia 24061

Technical Report CS74018-R

LEARNING AS A PROBLEM
SOLVING TOOL

Billy G. Claybrook

November 1974

S DEARTMeftl'OF mELrM
FOUCATIO*4 I oiti.f ARS
NATIONAL. ,t4ST,IUTE OF

EDUCAT,0%
mF %* : . oa,

, F F +a' 4F,
7"1

w ')fic.,IN

014
.r .4,5 ,tt- ,")F

Department of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia
24061

BEST art AVAILABLE

LEARNING AS A PROBLEM SOLVING TOOL

Silly G. Claybrook
Computer Science Department

Virginia Polytechnic Institute E. State University
Slacksburg, Virginia 24001

varier exntores the use of learning as a practical tool in problem

nolvinr. The idea that learning should and eventually will he a vital component

of most Artificial Intelligence programs is pursued.

Current techniques in learning systems are compared. A detailed discussion

of the problems of representing, modifying, and creating heuristics is given.

Some of the nuestions asked (and answered) in the paper are: (I) how does the

choice of repreentation affect ne potential for learning?, (2) what techniques

have !77.0r1 ;r:7.1 to and how dr, they compare?, i.e. first-order predicate

calculus vs. production rules vs. Winstons representation, and (3) exactly how

are heuristics noditOd in the existing systems and what do these techniques

have in common? A discussion of the credit assignment problem as it relates

to learninr under the various schemes of representation is also presented.

1.0 INTRODUCTION

BEST COPY AVAILABLE

This paper is concerned with encouraging the use of learning as a

orblom solving tool in heuristic programs. We try to accomplish this:

(1) !-, pointing our what has been accomplished, (2) by discussing what

the maior problems are, and (3) by showing how the problems can he

1ppr:riched.

The utilit. of heuristic programs depends to a large extent on the

Idt,quIc,: .1r the heuristics employed. We discuss three et: !o_nt techniques

r repre!;enting heuristics that have been employed in succe.;sful, non-

pr,IgrAm environments: (1) Waterman's production rules in playing

poker(21I, (2) Claybrook's first-order predicate calculus in factoring

p.)1vnomials [1, and (3) Winston's representation in scene

1%. sis .

AN: PRESENT ACCOMPLISHMENTS IN LEARNING

t.)r tew learning programs, most learning programs to date,

ichle And R,ss' GT WI Slagle and Farrell's MULTIPLEC181, etc., have

lis.:cilted with simple problem domains. Notable exceptions are Samuel's

ch,ckyr 7-)r)71.1mtA, Waterman's poker program[21], Claybrook's multivariate

fictorization program, and Winston's scene analysis programC2n.

Wo feel *hat further advances in learning techniques could have been developed

7-idi!v had leirning been implemented in more complex domains. We are not

crying co reduce the importance of early research eff-T-ts, for they have provided

us ;1.:h wellth of information.

1,7irnip4 programs have used same form of generalized learning (10)

';t.F.!us r ,tr loa-ning[la]. The early learning programs E),(173,C18] implemented

4erlerl;i7ed leirning by optimizing weights associated with problem variables

4-)

BEST COPY AVAILABLE

Ln linear evaluati.,n functions. Samuel'A program not only uses rote learning

and goneralied le,rning, but it also use book learning as part of a training

)rt. Another type of learning that has received considerable use is

conce learning (21.) Towsterril provides several methods for

pr -amming coacepc-tormation. Winston's program for learning structual

d,scrIbtions tram children's toys can recognize concepts and learn conce7,Ls to

rucoLmi:::ed.

trid fl make an extensive' survey of learning programs for they

Ar, ,Il described elsewhere M,[14],[19) One tact that prevails throughout

udy luarnin4 utforts is that few of these learning techniques have

in so, ink; problems for which algorithmic solutions do

ex,st- -r ire very costly. Sammet Ifi) discusses several important problem

re in c,mpurer science where heuristic techniques could and should he employed.

interesting that Nilsson in his book[l4] wanted to include a chapter

7neth,)ds us in mJchine-learring techniques, but he

tat_ :Hu subject was not yet well enough developed to be included in

3.() 'LAJOR PROBLEMS WITH LEARNING

,ncourages the uses of learning in heuristic programs

describe some of the major problems associated with learning,

itit [Is 3 ,rr, the reasons why people have failed to use learning.

Ir.,: several reasons why learning has not been utilized by problem

s1.'ers

C

,!vg., is known Ah.)ut learning by the human problem solver to

2. The implementation of learning schemes, even simple ones, appears

to he A formidable task; and in some instances it is.

3. rhere is always the possibility that the program will not learn or

impr.,ve experience, and thus not improve the efticiencv of

,uerAtion the program.

he human problem solver may want to solve his problem as quickly

is 7:,ssiblo tnd is not interested in learning or its benefits.

t certain imount of overhead Associated with learning,

nrocess analyzing solution attempts and modifying

urstics requires computer time.

this naper is to help remove some of the above problems.

malor problems Associated directly with the actual use and implementation

;r1hg, :',chniues include:

,ct: n powerful representation of heuristics (requirements of

iti gi,ien in 4.0)

t the credit - assignment problem for modification and creation

hturistics.

3. Jt.-;e1,,ping A training sequence appropriate for starting the learning

pr.'ct

nItion of features of the problem environment on which to key

the learnitlg process,

the type of learning scheme to be used.

.11,111tAH,n ,f the learning effort (this is closely associated with the

credit-assignment problem).

Jlems listed above need 1 clo9Dr look, Thv selection of a

htnristics and s-lution th, credit-assignment problem arc

fisc!lq.=;ed dotlil in 4.0. The triining sequence for a learning

?Age 4

program must he selected carefully for it influences the program's ability to

learn and the rate of learning. Winston t223 argues the importance of a good

training sequence and says that the sequence should be prepared by good teachers.

His framework for learning suggests a unity between learning from examples,

learning by imitation, and learning by 4 told. The training sequence can

include samples for each type of learning. Winston also stresses the importance

of the near miss. A near miss is a sample in a training sequence quite like the

concept to be learned but which differs from that concept in only a few

significant points at most. The near misses convey essential points much more

directly that repetitive exposure to ordinary examples. Concept learning

schemes normally require a careful selection of samples for a training sequence.

Claybrook t73 provides several examples from his multivariate polynomial

tactorization program, POLYFACT, that illustrate how the training sequence of

eolynomiais can affect the factorization time of subsequently factored polynomials.

ict,.,ri7ation times in POLYFACT are influenced by the training

ceeeenct blynemials, the selection of samples is not as critical as it can be

in other problem spaces and other learning programs. The reader should realize

that the relative importance of a good training sequence is determined not only

^VT the learning scheme used, but also by the representation of the heuristics

and the characteristics of the problem environment.

Human beings tend to learn to solve a particular class of problems by

keying el significant features of the problem class. The features are used to

determine th ar)proach taken in solving the problem. Unfortunately, there is no

automatic way of extracting the significant features associated with a particular

prhlem. game (If chess is a problem area where the features to key on for

making a next mole are extremely imp,.rtant. The human must almost always select

the features to use in the learning process. The learning program can usually

indicate which features are important for learning and "had" features can

Page

be removed from consideration. Sometimes the developers of learning programs

believe that a large number of features will give better learning results;

however, experience has shown t1.7), tin that this is usually a misconception.

Proper selection oL a tew "good" features will normally lead to good learning

results. 'or example, only four features Are used for term selection in

PoLYFACT And onl- seven or eight features Are used for possibility selection.

Waterman's state suhvctor for draw poker has only seven elements.

the type of learning, e.g. rote learning, generalized learning,

or concept leArnin,, is determined by characteristics of the problem environment.

tt 1,:arninc has been used by Samuel with great success. His checker program

stores records of hoard positions and when a move is to be made the previous

hoard positions are interrogated to determine the proper move to make.

An ,q) ,:.)us disad;antage of rote learning is that large amounts of memory may

e required to stare the history. This is especially true if a large number

,re r,,ssihle. AS an example consider the number of possible hoard

p.Isiti)ns in chess or checkers. Another problem with rote learning is that time

must he spent in retrieving and matching previous records with the current

situation, Samuel has a sophiscated scheme for retrieving board positions.

A concept is a classification rule. Concept learning schemes also use

',-atures .)bjects. Concept learning schemes use past experience to

classify an instance of an object as either positive or negative. This type of

learning can also require excessive amounts of memory to store the past history.

fTonc-pt 1earnin4 tchniques do not alwars satisfy the requirements for learning

in a particular problem area. For example, Claybrook [2] used concept learning

to tr, to der7line the best possibilities (terms) to select during the creation

A: a !Actor a p:)1771-,mial. The results r this effort clearle deminstrated

the shnrtc,Inine.s concept learning in this particular situation. The reason

for t-'!is ",e,e(1" mod "had" nossilities have manv features in common.

BEST COPY AVAILABLE
And it is ditficult to clAssit,.. 1,7)net JS ,,sitive and Jo -Fhcr As

ne.zatiYe. What was required And itu.t:Iv used was a gencrali...ed learning

zt7,.chni.que t!lat '.,:is ihle the ;,ossibilities .0 rink them

t-heir a;TArent cl >ti J i.lc tor o t A po 1%.no!n LI 1 .

\!ost ;71 raMS Li Sr' .:er.tt" earning schemes (concept learning

is ictua:lv ra !ek.1 eAr:-.. $ i they norma I 1V uSk. o

ecords ot previous solution

Ittcn2ts. At7-..,rman ClAvhr ;..se !earning in thcir programs,

ir EL) ".vtlr'..StICS in'. ';::v much more than moditving Weights

1, t. :n :unct iois.

.n,c learnin progras t9,111 Are heuristic search programs, the

is k-aLuatini.; learning are ass,,c:4t.:.d with tree or graph measurements,

.4. the bushiness (pi.nctrAc, Li) 1t the search tree or the pith

r St +r' Thest arc gross measurements (,1

)r -, A (1, the Icarnin in each Area

evaluated individually with

tne sense .)t directi,n that erni'dcs improvement through learning.

rning that :s us,d to determine modifications to.s

i ;

:!()H AND CREATfNC HITRISTTCS

prblms modit'jng and crAting

:c,7 rrpr(.5,- ; 17; .% iLt:rm,in's nr,,duc t i)n i flits, Iiiyhrotd.cf s

7-3 r r d :'s representati,,n. First %.it` discuss

i I I t r rn

..Ttch ;11.1,1: n t La v '1 r (1., the reprt,:;encAtion technique,

H.ed, ind crl-dit-As3ivnmf,ht

!,
Page 7

BESTCOPeAVAILABLE

ts t representition. Finally, we

compare ;n,. "o t the have in common and

the:r

, 4,ort.,; :1.t.it

r

it

--,

t4.".1 tale three lotrning programs

r,Ader to each Author's dissertation

;:r s:c's is prohablv tile' kev to the success

.yri! considerations (or requirements)

;.resenting complex actions in

t heuristics should 1'

,,-:fit ItHn scheme is that it conserve

-r! pArt Lit solution of flee

i

shHi r , e, th representation should

-urcs from distinguishable components.

:ristICS I.) rterenced as

syts huritics.

manipulltion during program

4
-4 AVo

xihilitv t the r,'nrescntatinn, i.e.

?age 8

the aOility to interchange the components that comprise the heuristics

in the event that heuristics are changed by the designer.

The reader may want to keep these considerations in mini while reading the rest

if this section.

some the requirments require A brief explanation. The first consideration

is m,,:i,..ated by the real17ation that many of the actions performed in complex

learning programs such as POLYFACT require a comprehensive analysis of the problem

situatin, i.e. several criteria must he considered, often simultaneously, to

1SAUr. thAt ill pri.,r conditions are satisfied before performing an action. Also, the

!irs e,nsideritin suggests that we ha'.' a general representation that can be

used in 1 learning system for solving various problems.

"ht iec,nd consideration does not necessarily imply that the decisions

t, the Actual creation and modification of heuristics be simple; however,

decisins Arc reached for particular heuristics, the procedures should

1! .171,i relatively simple to execute. The third and fifth

c,nsH,rati,ns are c:mplomentarv. If the heuristics are modular, they can be

rtr-sented in an encoded form to conserve storage. This is especially important

in pr-,grams that use classification mechanisms for implementing localized learning.

llcili:7ed learning, we mean that each classification has a set of learned

heurlstics rrir s.)1',-ing that particular class of problem.

,lut.1-7, of the credit-assignment problem is included because of its

1,.arning mechanisms. Relresentation of heuristics must enable the

Issigning ,f credit for success failure' among the many heuristics of potential

use in s-)1ving A particular problem.

:.mamic -nini;m1ItL4n, e.g. creating and modifying heuristics during program

y,c.1+71 , iq i fhsdut- minimum requirt,ment for a representation. The execution

pr,css brf,rmed an the heuristics must alLPAI for dynamic changes in heuristics.

Page 9

For this reason the execution proc.?dures should execute the heuristics by using

An interpretive process (LISP 1.5 and SNOBOL IV processors are interpreters

And ire therefore convenient languages for writing learning programs).

Waterw's itoduction-Rule Represent4ign

'eatermanIS main interest is in devising machine-learning techniques that can

he applied t,4 the problem of learning heuristics. He sees the problem of

im7tmenting the machine-learning of heuristics as two subproblems:

1. Dvise 4 method of representing heuristics that facilitates dynamic

mani,,ulation by the program using them.

:)e e1op techniques by which a program can create, evaluate, and

modify its own heuristics.

'Aiterman implemented his learning scheme, using a production rule

r

n tor heuristics, in a draw poker playing program. He chose draw

tus,, it is 1 nontrivial game in which olayers do not have access to enough ot

thk ,'i,Iting game information to perform effective minimaxiag.

4.2.1- Representation of Heuristics

,trman sirs that a good representation should:

(1) permit separation of the heuristics from the main body of the program,

() provide identification of individual heuristics and an indication of

how they aro interrelated, and

(3) he compatible with generalized schemes.

Two ch are required for the following discussion:

Heurisic Rule. A heuristic that directly specifies an action to he taken.

Heuristic Definition. A heuristic that defines a term.

Page 10

As a program is executed, it goes...through a succession of states as the

value of its program variables are changed. A state vector 4 is used to

indicate the current values of the program variable,... When a block of code is

executed, the effect on the state vector a(can be described by oe.f(*(), where

cle is the resulting state vector and f represents a block of code. A heuristic

is represented as a rule of the form S-irT where S is the current state vector

And T is the vector containing the mapped components. The rule can be thought

oi as 1 specification of how a state vector can lead to other state vectors.

An example* is

04 = (A, b, (g1 (00, g2 (ac), g3 (a()).

function g, changes the value of A to gl (cC, B becomes g2 (a(), and C becomes

(.0. The items A, B, and C represent sets of values and not individual values.

Thus, A single state vector such as (A, B, C) represents a number of states instead

,r a single state, thereby reducing the total number of heuristics required.

A rule the type Sb--t. S where St, is a situation defined by vector

variables and is is the definition of the resulting situation. Production rules

,t this form are called action rules. A heuristic definition can be represented

by a production rule of the type Z -111 Z', where Z is a value of a state vector

variable and Z' is either:

I value of a state vector variable and an associated predicate

(called a backward form rule), or

a computational rule for combining variables of the state vector

(called a forward form rule).

An example of a backward form rule is D1-40 D, D1020, meaning that D is considered

a member ')t the set Dl if the current value of D is greater than 20. An example

form rule is X i KI * A, meaning that X is defined bY the

Arithmetic expression KI * A.

The examples in this section are taken from Waterman f21).

:).1,4y 11

the state vector has three types of variables: (1) bookkeeping variables,

-,,r,.:Lje A record of past experiences; (2) function variables, which

'res.nt arit:/metic express ions containg state vector variables, and (3)

ales, which either directly influence the decisions of the proo.am

r in value as A direct result of these decisions. Only dynamic variables

dseripti,Ins which represent the left parts of action rules,

d'IA:71iC and function variables are used in the right parts of these rules.

,ariables are used in the definitions of the forward orm rules.

,,ain insight into decision making through the use of Waterman's

rules we consider the following example from 'ois paper. Let the

t3

(A, B, C) (a, b, c).

',-ariables with the current values of a, h, c, rt,specti,

simple heuristics:

A is an Al, then add X to the value of B.

f A is an A2 and C is a Cl, then subtract Y from the value of C.

Z. is a 31, then add Y to the value of C.

in when A 25.

Arl A2 when A 4.25.

iS A 1 when B 7 1.

is 1 -Awn B 4.

A. c is a Cl when C= 5.

71c.rases As f) increases.

Ylcr-15#.=1 As [dcreases,

12

11:e corrsoL,ndin4 :.r-odu...:tion rules are:

1. (Al, t, X + b, *).

L'1)>(*, *, c

V 4-

action rule,

action rule.

action rule.

backward form rule,

backward form rule...

backward form rule .

backwSrd form rule .

backward form rule .

forward form rule.

forward form rule.

ir, 'ollowing rules, one for each element of the subvector:

!:. A-, a, a f (Set of allowable values- for A3, backward form rule.

h * iset of allowable values for 83, backward form rule.

C, c (set of allowable values for C.33 backward form rule,

.17:A !r- ''kkee-oing variables, and X and Y are function variables. A star (*)

e an action rule indicates that the variable in question is

irr,ieiln ,4ith regard to that particular situation description. A star (*) in

ti rz and of an action rule indicates that the value of the variable in

.)fl rerna:s unchanged. Thus, the action rule

(Al. *, *)(*, X + h, *) means, if variable A has the

A A', ren increment value of B by X.

1),/ the program is done in two st(ps:

1. Foch element of the current program subvector is matched against all

the backward form (bf) rules. When a match occurs (the

sAtisfied), the corresponding 101 t sid,- of that hf rule is

7atc'led .lainst all right sides of bf rules, etc., until no more matches

ca7 hr, =upd. The resulting set of symbols defines ,1 symbolic subvector.

13

2. The symbolic subvector derived in (1) is matched against all left sides

of the action rules, going top to bottom, and when the first match

is found the values of the program subvector are modified as described

by the right side of the matched rule.

To illustrate decision making consider the following example:

Let the subvector have the values a = 4, b = 5, c = 6, the constants

have values K1 = 1, K2 = 20, K3 = 3, and let the bookkeeping variables

have the values D . 7 and E - 8. Then cl= (4,5,6).

Step 1 is started by comparing a = 4 with each bf rule predicate, the

predicate being satisfied only if it contains the symbol a and is true

when a is set equal to 4. Thus a = 4 is found to match rule 11 and no

others. Next A = 4 is compared to the right hand side of all bf rule

predicates and is found to match only rule 5. Finally A2 0 4 is

compared with all bf predicates and since it matches none of them the

search terminates leaving A2 as the final symbolic value. Elements b

and c are processed in the same manner and the symbolic subvector that

results is ((A2), (B1, 82), (C)). This subvector is a description of

all situations in which variable A has the symbolic value A2, the

variable B has either the symbolic value Bl or 82, and the variable

C has the symbolic value C.

Step 2 now consists in comparing the symbolic subvector ((A2), (BI, B2),

(C)) with the left side of each action rule until a match is found.

In this case a match occurs at rule 3. The program subvector is then

set to the values specified in the right side of rule 3. Hence the new

B equals (4,5, (20 - (3 * 8)) + 6) or (4,5,2). The program makes one

external decision for each search cycle. Thus in a game-playing task

the program would execute one search cycle each time it made a "move".

Page 14

The subvector Waterman used for the game of draw poker is composed of the

dynamic variables of the state vector and has the form:

(VDHAND, POT, LASTBET, BLUFFO, POIRET, ORP, OSTYLE),

where VDHAND is the value of the program's hand, POT is the amount of money in

the pot, LASTBET is the amount of money last bet, BLUFFO is a measure of the

probability that the opponent can be bluffed, POTEET is the ratio of the money

in the pot to the alount last bet, CRP is the number of cards mplaced by the

opponent, and OSTYLE is a measure of conservative style by the opponent.

4.2.2 Program Creation and Modification of Heuristics

To create heuristics (either by modifying existing ones or hypothesizing

new ones), Waterman uses three pieces of information:

1. a good decision for the situation,

2. the subvector variables relevant to making this decision, and

3. the reason the decision is being made.

This data is called the training information. Item (1) above is called the

acceptability information, item (2) is called the relevancy information, and

item (3) is called the justification information. The training information

is either supplied by a trainer or obtained by the program during execution.

The training information provides data for the construction of a new action

rule. The acceptability information supplies the right part of the action

rule, and the relevancy and justification information supplies the left part.

When the existing action rules lead to a poor decision, they are corrected

by incorporating the training information into the production rules. Either an

existing action rule (target rule) is modified to catch the symbolic subvector, or

if a rule appropriate for modification does not exist, the training rule is

inserted in the action rule list immediately above the error causing rule.

Page 15

BEST COPY AVAILABLE

An action rule is appropriate for modification if it has the same form as the

training rule. Two action rules have the same form only if (1) their right

parts are identical, (2) their left parts have corresponding *'s, and (3)

the:r left parts have symbolic values which correspond to the degree that they

are bath defined by the same logical operator.

An example (taken from Waterman (' a) illustrates how an action rule can be

modified to catch the symbolic subvector. The training information is : (1) a

good decision to add 2 to the value of B, (2) the variables relevant to this

decision are A and C, (3) the decision is being made because the current value

of A is small and the current value of C is large. The program subvector is

(5, 3, 13). The training rule (action rule) created from the training

information, and the associated backward form rule are:

(Al, *, Cl *, b + 2, *),
Al -P. A, A <6
CI C, 0712

The txisting production rules are:

1. (Al, *, C2) 4-0 (*, b +2, *).

2. (Al, B1, (*, *, a + 5).

3. (A2, *, C3)--111. (*, b + 2, *).

4. (Al, *. *) -110 (*, *, a + 5).

5. Al --40. A, A46.

5. A2 --91. A, A48.

7. 31,08.

B. CI. C, C >12.

9. C2 -4C, C(5.

10. C3 -"lib C, C >13.

Rule 3 is the only action rule which has the same form as the training rule

(Al, *, 4 (*, b + 2, *). The symbolic subvector obtained through parsing is

.4;

Page 16

((Al, A2), (8), (C1)), which catches on rule 4. Rule 4 leads to an

unacceptable decision (the only acceptable decisions are those supplied by the

training information). Rule 3 leads to an acceptable decision and has the

same form as the training rule; thus, it is used as the target rule. The left

hand side of the training rule, (Al, *, C1),matches the left side of rule 3

except for C3. If C3 in rule 3 is replaced by a symbolic value representing

a set large enough to include the current value of state vector variable C,

the symbolic subvector obtained through parsing will catch on rule 3.

Therefore C3 is replaced by Cl, changing rule 3 to(A2, *, CO* (*, b 2, *).

Waterman gives the following training procedure outline:

1. Parse the program subvector to obtain the symbolic subvector. Then

drop this symbolic subvector through the action rules to obtain a

decision. If the trainer imdicates that the decision is acceptable,

then stop; otherwise, go to step 2.

2. Obtain the training information from the trainer and use it to construct

the training rule. If this information changes the symbolic subvector,

then go to step 3; otherwise, go to step 4.

3. Drop the new symbolic subvector through the action rules to obtain a

decision. If the decision is the one sought by the acceptability

information, then stop; otherwise, go to step 4.

e, Locate the error-causing rule, the action rule responsible for the

unacceptable decision made in step 1 or step 3.

5. Search the action rules above the error-causing rule for a target rule,

a rule which has the same form as the training rule and is suitable for

modification to catch the symbolic subvector. If such a rule is found,

modify it to catch the symbolic subvector and go to step 3; otherwise

go to step 6.

Page 17

6. Search the action rules below the error-causing rule for a target

rule. If (1) such a rule is found, (2) the error-causing rule is

suitable for modification to pass the symbolic subvector, and (3)

the rules between the error-causing rule and the target rule either

pass the symbolic subvector or are suitable for modification to pass

it, then modify the target rule to catch the subvector, the error-

causing rule to pass the subvector, and the rules between these two to

pass the subvector, and go to step 3; otherwise go to step 7.

7. Place the training rule immediately above the error-causing rule in the

list of action rules and stop.

The learning in Waterman's program is in two forms: (1) learning with
ti

explicit training, or (2) learning without explicit training (implicit training).

When the program learns without explicit training, the program itself must

develop the training information during the course of game play. The accept-

ability information fnr implicit training can be obtained through logical

deduction. This process uses:

the rules of the game,

2. statements (or axioms) about the game, and

3. general statements about techniques used in game playing.

The result is a set of logical statements from which new statements can be deduced

using deductive inference rules. The reader is referred to Waterman's paper for

an example of an actual deduction.

The justification information for implicit training can be obtained from a

decision matrix that is game-dependent and is given to the program before learning

starts. Each row of the matrix stands for a game decision, and each column stands

for a suhvector variable. Each entry Fii in the matrix is an expression whose

value is an attribuc.,! of the subvector variable j.

The relevancy information for implicit training is obtained through the

generation and testing of hypothesis concerning the relevance of subvector

-7

Page 18

variables. Reasonable hypotheses are solved for in the following way:

1. Let the initial hypothesis for each rule be that all subvector

variables are relevant.

2. ffnothesis testing then consists in noting whether or not a

particular training rule, placed in the set of action rules by

step 7 of the training procedure, catches the symbolic subvector

when the action advocated by the rule is determined to be the

correct dec is ion.

3. If the rule does not catch the subvector, the relevancy hypothesis

for that rule is changed. As many variables in the left part of the

rule are made irrelevant as is necessary to make the rule general

naugh to catch the subvector.

?rogram Evaluation of Heuristics

Program manipulation of heuristics requires facing two major problems:

1. evaluation of existing heuristics in terms of their usefulness to the

program, and

2. creation of new heuristics, by both modifying old ones and hypothesizing

new ones.

T.) make a decision via production rules for a problem (1), a symbolic

subvector representing the game situation is compared to all left parts of the

list ,:)f acti,-)n rules, going top to bottom until a match is found. The action

rule which defines the decision, that is, one whose left part matches the

symbolic subvector, is easily located. After the decision is evaluated, the

credit 7 blame can be assigned to the action rule, and to those above it,

which defined the decision. Here blame is assigned to action rules leading to

Page 19

poor decisions, while action rules leading to good or acceptable decisions

are ignored. Assigning blame to an action rule consists in modifying the

rule enough to avoid a repetition of the mistake or poor decision just made.

4.3 Clavbrook's First-Order Predicate-Calculus Representation

Complete details of this representation can be found in Claybrook cl

CIL This representation is implemented in a learning program that performs

the non-trivial task of determining the symbolic factorization of multivariate

polynomials with integral coefficients and an arbitrary number of variables and

terms. The author agrees with Waterman that the representation of heuristics

determines directly or indirectly how well a program can learn. The representation

in the learning program4POLYFACT, was chosen because of the expressive power of

the predicate calculus. We were primarily concerned with using learning to

improve the efficiency of operation of POLYFACT.

4.3.1 Representation of Heuristics

The notation is identical to that of first-order predicate calculus except

a minor difference involving domain specification for the assignment of

values. Tn the implementation of the predicate calculus notation, a heuristic

can have one of two general forms:

(1) NAME (DOMAIN') (DOMAIN2).(DOMAINk) ((ANTECEDENT' C CONSEQUENT°

0...0 (ANTECEDENTn C CONSEQUENTn)) $, or

(2) NAME ((ANTECEDENT' C CONSEQUENT') 0 (ANTECEDENT2 C CONSEQUENT2)

0...0 (ANTECEDENTn C CONSEQUENTn))$

In either of the above forms, the same antecedent or consequent can occur

several times; but the same antecedent-consequent pair should occur but once.

11%.:}1

The rirst form has a non -null domain; whereas, the second has a null domain.

One of the functions of the non-null domain is to specify an ordered set from

which the values for the variable (indicated in the domain field) are taken.

the variables in tne antecedent - consequent pairs can be free, i.e.

their values are specified elsewhere. Each bound variable must appear as an

argument in at least one antecedent or consequent, i.e. each variable specified

in a domain must appear as an argument in at least one of a predicate,a function,

Jr a consequent. The domain as defined in this paper corresponds to the

quantifiers in predicate calculus notation; however, in predicate calculus

notation the domain is not included as a part of the quantifier. The order of

domain precedence is identical to that of the quantifiers.

Each antecedent is a single predicate or a logical combination of predicates

cmnected by conjunction ('A' = AND) and/or disjunction ('O' = OR) operators.

Each nredicate is a logical function and can be referenced with arguments that

ar, ,:-Istans, variables, or functions. 'C' is the conditional operator, and

the c.Inseriuent is always the name of a routine (or procedure) that is executed

when the corresponding antecedent is satisfied.

Ta illustrate the representation of heuristics in the predicate calculus

natation, we use in example taken from the term selection heuristics in POLYFACT:

(F I TN IPTRSO) ((N HI(CII(T), MINDEG) C FTX123))

This he'lristic cnsists of the components:

fF 7PTR';0)

is the NAME of the heuristic,

is the DOMAIN of the heuristic,

is the negation operator,

is a predicate that is 'TRUE' if GMT)
equals MINDEG,

is a function whose value is the degree
of term T,

is 4 hound variable

Page 21

MINDEG

C

is a constant functidn, i.e. a function
whose value Li constant during the exe-
cution of the heuristic,

is the conditional operator, and

7IX12 is A CONSEQUENT.

Internally, the predicate calculus heuristics are represented as linked

Lists 4ith each individual atom stored in a separate cell in the list.

The heuristics are executed by an interpreter. During execution, the

predicate calculus is translated into reverse Polish notation. Then the

reverse string is executed with reterences to predicates and consequences

cans ink t : execuciJn ot the corresponding procedures.

l'he heuristics that contain non-null domains select elements from the sets

.'en in :he domains. In the selection of elements from a set, a heuristic can

consider ill elements in the set. In this case, the domains have the form:

(E T IN IPTRSO),

7-1.iicites that elements (T) in the set IPTRSO are selected

during the execution of the particular heuristic. A heuristic with a non-null

domain can also consider elements from a set until an antecedent is satisfied.

The corresponding consequent is then executed and activation of this heuristic

is terminated. This type of domain is represented as:

(EA T iN TPTRS0),

where .7:A indicar(:s that some (possibly all) elements in the set IPTRSO are

selected.

A heuristic with multiple domains is executed by selecting elements from

the innermost domains first. This execution has the same effect as nested loops

in prIgrmming languages.

4.3.2 Program Modification and Creation

First we explain how tha creation and modification process works, and then

we describe the training procedure for POLYFACT. The reader saw in Section 4.2.2

that during periods of implicit training in Waterman's program, his program

omploes 1 decision matrix (created by a human prior to implicit learning).

The learning scheme in POLYFACT uses a set of tables to specify relationships

between predicates, consequents, and domains. The table:: are pre-compiled by

hand and read from input cards and stored in the tables.

The consequent-Eredicate table gives the correspondence between each consequent

and the predicates that can be used to form an antecedent-consequent pair.

The c.,nsequent-domain type table specifies the correspondence between each

c,nse;tient and the sets from which values for a variable are selected. Each

bound variable must be an argument in a predicate (within an antecedent) or

consequent. The domain type-variable-set table defines the variable-set pair

ass,)ciated with a domain type. The domain is determined by the variable and the

set from which the values of the variable are taken. The purpose of this table

is prevent heuristics with a given type of domain from using predicates and

consequents associated with another type of domain. In addition this table

could prev 7.. the creation of heuristics which have a certain mixture of domains.

The reader should note that a domain is a set of values (represented in

POLYFACT as a linked list of values), a predicate is a logical function

(represented in POLYFACT as a logical procedure), and a consequent is an action

to he taken (represented in POLYFACT as a procedure).

The heuristics in POLYFACT can be maintained either in first:order predicate

calculus notation or in a combination of first-order predicate calculus notation

and an encoding of the predicate calculus notation. As we describe the learning

Page 23

associated with term and possibility selection we will describe how the

predicate calculus is encoded.

The learning (through the modification of heuristics) associated with

term selection is as follows. After a successful factorization attempt is

completed, the number of possibilities (factors of a term) in each term of the

polynomial is determined. The features of the term(s) with minimum number of

possibilities have their frequency count(s) increased. Each feature has a

predicate associated with it. The predicate is true if the term has the particular

feature and false if it does not have the feature (features used are degree of

term, number of variables in term, etc.). The frequency counts associated with

each feature are examined to determine whether or not the set of heuristics for

term selection need to be modified. The heuristics are ordered to impart the

importance of features for "good" term selection. If two or more features

have identical frequency counts, then they are of equal importance in selecting

1 tom. Thus, in predicate calculus notation this would result in an antecedent

tw:.) predicates (corresponding to the two features) connected h,'OR'.

Since POINFACT uses a classification technique to implement localized

learning for term selection,the term selection heuristics are not maintained in

predicate calculus notation (because of the amount of storage space required).

Instead, the term selection heuristic are encoded into a small ordered list of

words. Each feature is represented by a particular bit in the word. The presence

of a '1' in that bit indicates the presence of the corresponding predicate in

the heuristic. in this way a single word describes the entire heuristic.

Not only does this encoding save considerable storage space, but it is much

easier to modify heuristics using a numeric representation than the symbolic

representation of predicate calculus. Prior to execution the selected heuristics

are expanded into predicate calculus notation for interpretation.

Page 24

the popsibilities (terms) that can be selected as terms in a factor of a

polynomial are ranked according to their probable merit. During a factorization

attempt, the highest ranked possibilities are selected. After a polynomial has

been factored, each term in the factors is examined to determine its set of

characteristic features. A binary vector is created with nonzero entries

iadicating the features present. Then a heuristic is created (unless one already

exists1 using As predicates those that correspond to the features present.

To facilitate the construction of this set of heuristics, a matrix is

maintained :±r icing a history of the features of terms that have appeared

in factors of orevious polynomials. After the vector of features has been

created for a term, it is compared with each row in the matrix to determine if

the vect.lr is already present. If so, the frequency count for the matching row

is incremented (the frequency count is kept as an augmented column in the matrix).

f the vector is not in the matrix, it is added and the correspending heuristic

is created.

'Theo theSt' heuristics are used to rark terms, the satisfied antecedent's

here is A satisfied antecedent) frequency count becomes the rank of the

term. These heuristics are maintained in predicate calculus notation and also in

the encAed matrix form. The matrix form is convenient for determining the

heed 'or modifications. All classes of polynomials use the same possibility

selection heuristics. Modifications range from adding a predicate to an

existing antecedent to adding an entire antecedent-consequent pair.

curistics can he created and modified during the training period or later

when no explicit information is given POLYFACT. During the training period,

polonomials arc input to PULYFACT along with information giving the number of

terms to each):- the two factors. Tn this training period the polynomials are

classified and heoristics are created for term selection and possibility selection.

polynomials in the training sequence do influence the factori7ation times of

subsequently factored polynomials, but similiar looking polynomials have so

varied characteristics that it is difficult to select a good training sequence.

However, after the training period is aver, if the polynomials have many

characteristics in commom then the program adjusts the heuristics to reflect

this. During the non-training period no helpful information is given to

POINFACT. Also learning can be turned off completely at any time.

Program Evaluation of Heuristics

Assigning credit or blame to a heuristic in POLYFACT is a much simpler

task than in Waterman's program, and the capability to reference heuristics

individually by name provides the ability to do this.

Credit is given a heuristic by increasing the frequency count associated

with the heuristic. Blame is not so easy to interpret. Blame can be interpreter'

when the ts?rm selection heuristics do not select the "best" term to initiate

the ictorizaLion process, and when the possibility selection heuristics do not

rank the possibilities so that only the highest ranked ones appear in the factors

of a successfully factored polynomial.

Evaluation of heuristics can result in re-ordering heuristics, adding

predicates t;; antecedents, etc. Term selection heuristics can be modified on

either successful or unsuccessful factorization attempts, but possibility

selection heuristics can only be altered after successful attempts.

-4.4 Winston's Representation

Before we discuss Winston's learning system (or more properly his language

-end nntltion for descrthinj scenes), we describe, in general terms, what his

system does. Winston's program analyzes scenes consisting of the simple objects

Page lb

in j ch ld's toy box. The description of a scene is in terms of the

ohects that make up the scene.

:jeneration of a scene description begins with a drawing of the three-

dimensional scene. The drawing is communicated to the machine using a

:)r,,-ram together with a special pen whose position on a tablet can be read by

71.1ce JIr eetiv. Men a program classifies and labels thc ./ertexes.

,r.,grAm then creates names for all of the regions in the scev.e.

'scriptions of scenes are stored so that they can be easily retrieved.

,h,.ct in 1 scene is naturally thought of in terms of relationships to other

's ind to descriptive concepts like small, square, etc. Thus, Winston uses

,re the scene description. The network resides in the data base

rk- r frm f tist structures. For example, in Fig. 2 the nodes represent

tnd the p)inters represent relations between objects.

The descriptions permit one to compare and contrast scenes through programs

Iry Arll c ntrast descriptions by retrieving the descriptions from the

The descriptions should be similar or dissimilar to the same degree

set7It'S thtV represent seem similar to dissimilar to human intuition.

scenes are described and corresponding parts related by a matching

grim, di:-.ftrences in the descriptions must be found, categorized, and them-

.ic5Icrihd. Later sections describe how the matching of scenes is used to

!7h, models of scenes.

:dent fication of scenes iscarried out as follows: compare the description

t
he, identified with a repertoire of models or stored concepts.

Thre is a method of evaluating the comparisons between the unknown and the models

some match can he defined. The identification process in Winston's

.-lm r problem area. It is comparable to determininv, whether 'r not

,,,rtphs isomorphic.

,JI11

part.' s

eta,' CA

NIA tf a peit'A

BEST COPY AVAILABLE

611,,

rA 0,,,S Z. bt
'

A p 2 .ht dr.}

")-*_)
c-4

Page 29

Tne next two sections provide more details for the construction of

:.lodels or concepts) and the language used to describe the models.

-s ,tepresentation of

It is difficult to talk about Winston's learning system with respect to

h representation of heuristics. He stores learned information in a network

(modvl) described by a language expressing relations between objects in a scene.

mrdel represents (or is) the concept. During the building of a model of a

,;e;:e such as that in Fig. 3, Winston's program is creating a concept to

c: i scene.

Thcre is A slight difference between a description of a particular scene

nd nedk.I): i concept. A model is like an ordinary description in that it

carries infrmation about various parts of a configuration. But a model also

eKhibits ind indicates those relations and properties that must and must not be

t in Inv example of the concept involved.

:n ,rder ta develop the representation of models, we use the pedestal

!raining sequence in Fig. 1. Then we describe a pedestal description and a

mode! in F ig. 2 and Fig. 3, respectively (these examples are taken from

Aiinst,n[21). The first step is to show the machine a sample of the concept to

The rest of the samples are near misses (a near miss is a sample in

triining sequence like the concept to be learned but differs from that concept

in ,n17 a few significant points). The near misses simply refine the description

p,At-stal to the point where it is a model of the pedestal.

The second sample in Fig. I is a near miss due to the absence of the

rolatlon (a description of how the relations in a scene are

determined is given in the next section). The other samples strength the other

rH,Itions in the description and finally turn the pedestal description in Fig. 2

int , the mock! in Fig. 3. The training sequence in Fig. I is revisited in the

:reati.:)n and modification of models.

...fas intended to give a brief view of the representation of .t

!nenti.,ned earlier that the model is represented internally as a'

structures.

,!Aitication of Models

Hi,. Already discussed the difference between a scene description and

71S ScCtiOn we describe in detail how a model is created and

i training sequence. We use the pedestal training sequence in

hoc,)me specific on the development of the model in Fig. 3,

c,rnsider a more general description of model development.

',uilding program starts with a description of some example of the

!.trned. This description is the first model of the concept.

. ''.r it the development of a model sequence where there is only one

.71 the current model and the description of a new sample.

to a new model. Winston's program compares the description

!-7.2!y te current model to determine any difference(s). We did

,Ample

4ple 2

171p le .3

First Model

Second Model

Third Model

Fourth Model

!-Iodel Development with Only One Difference.

in Section 4.4, but during the development of the description

rach scene is analyzed to determine the relations that objects in the

71:1riti' program exists for detecting each relation, i.e. a heuristic

-;F:ficllly for detecting the existence of the SUPPORTED-BY

7';..')';T-nr relation, etc.

Page 31

:Several differences may occur between the current model and a new sample.

Then several branches may occur and we have a tree of nodes as given in Fig. 5.

The alternative branches come about by the program selecting one branch at each

First Model

11)1k

.Second Models

Third Models

Fourth Models

, lodel Development with Several Differenccs,

DoLnt t't- further development. The path leading from the top of the tree down to

the current model is called the main Line. The main line changes course when a

pArtictil:Ar sequence of branch selections leads to untenable situations.

The or-1gram has to deal with alternatives to the main line of model

deyl.7nment. tain line assumptions may lead to contrad:_ctions which in turn cause

rht model building program to retreat up the tree and attempt model development

r

the differences have multiple interpretations or more than two differences

)ccur, the number of possibilities can explode. The machine must decide which

interpretati ,n of which differences are most likely to cause the near miss.

The machine first forms two lists: a primary list and a secondary list. Each

interpretition eventually ends up in one list or the other. Some interpretations

can never make the primary list because they are unable to explain why a given

sample is a near miss. All of these interpretations go immediately to the

secondary list.

The next way to sort differences is by level. This assumes only that the

differpnces nearer the origin of the comparision description are the more

impflrtant. The program determines the depth of the remaining nodes which are

nearest the origin of the comparison description. All those candidates found at

Areater depth are placed on the secondary list.

Page 32

The primary ditference list allows the program to tom a theory of why

the near miss misses and what to do. This theory (or hypothesis) specifies

one difference as the single cause of the miss and specifies which interpretation

of that difference is Assumed. The differences at the same level are ranked

according to type. Then the one with the highest rank is chosen' as the cause

of the near miss. Winston provides a table specitving,a priori, differences

and their possible interpretations.

Now we return to our discussion of the pedestal training sequence and model

in rig. I and Fig. 3. Reviewing very briefly, the model building program begins

with a description of the concept to be learned (in Fig. 1). The second sample

in ri g. 1 is a near miss because the supported-by relation is missing. Thus, the

machine can only conclude that the supported-by relation is necessary and a new

model is developed with a must-be-supported-by relation. We see there is only a

single difference between the second sample and the current model. Samples three

t'-lt71114) five strengt:Ien the fact that the support is standing and the supported

object is a lying board. In particular, sample tour strengths the relation that

the supported object is a hoard and sample fit, strengthens the fact that the

hoard must he lying. In samples four and five there is only a single difference:

The strengthening of the relations in Fig. 2 by the training sequence in

Fig. 1 results in the pedestal model in Fig. 3.

The reader should be able to detect a note of importance to the development

of a training sequence for model building. Winston stresses the importance of

a good teacher both in human learning and machine learning. He says that in the

past history of machine learning the use of a teacher was considered cheating,

and machines were expected to self organize themselves. Winston's training

sequence sample selection is probably more critical than the training sequence

selection in Waterman's program, and it certainly is more critical than in

Claybrook's POLYFACT.

440

Page 33

The subsection on program evaluation of heuristics for Winston's system

is ::omitted since this material is discussed above in the development of models.

This omission brings up an interesting point - some learning systems Can he

subdivided into very clear cut subdivisions, while others cannot,

Lomon :liaracteristics of the Throe Techniques
-er)ros,itin- Heuristics

One characteristic common to all three techniques is that a powerful

1an,ta4e is used for each representat ion. This is an especially important point

,.CAU:+t* the early learning programs lacked powerful languages for heuristic

representation, and it is the author's contention that this is the reason for

-,ht tick of significant advances in learning during the 19b0's. Another point,

ist,rical in nature, is that all three techniques were developed in the early

1970's (i.e. 111 three dissertations were completed during this period).

Another common characteristic is that all three techniques were employed

e'mplex pr)hlem spaces versus simple game problem spaces.

Each representation language is separated from the program code, i.e. the

hesiristics in each program are separated from the program code, thus allowinp

t'Aem to he manipulated dynamically. Also the representations are modular in

nature allowing the heuristics to he easily created and manipulated. Although

t.h approach in each case differs, each technique uses a form of generalized

learning. Credit assignment occurs in each technique and is discussed in the

next section.

All three techniques for representing heuristics have most or all of the

requirements of heuristics listed in Section 4.1. The reader may want to scan

this list again And consider each representat ton as he does so.

Another thing common to all three techniques (and also common to all other

pr')isusly implemented learning systems) is that a change in problem environment

Page

rctlirvS e tort on the i+lrt Jr. th user to detormine possible heuristics

for solving the new problems or at least determine tea Lures for keying on

during learning) and in some cases providing the learning system, a priori,

with rules or other information about the problem area. In Waterman's poker

,rogram, rules o!.: the game are supplied and also a precompiled decision matrix is

supplied, Claybrook supplies tables for controlling the constructi...n oi

heuristics, and Winston provides tables listing one or more interpretations

etch di:lerence in scene descriptions. At the present time, it is nearly,

complet,Av, impossible to develop a learning system that can operate on

:ari,us problem areas without some in:ormation being supplied to the system by

user. In Section 5.0 we discuss how to organize a learning system So as to

reduce the eff.)rt in moving from utte problem domain to another.

last e.Imparison of the three representation techniques is with respect

t) the' it powr of representation. The predicate calculus and production rule

iln4uAges ,Ipp(Ar t,) he the more powertul languages lor

r,7,rosenting cImplex actions. The network model approach is natural approach

r,7,r,,,sentition but it requires efficient retrieval and matching procedures to

nrac,:ical. Winston acknowledges these two problems in his dissertation and has

"4,)d" 3,1uti:m to them. Barrow Cl) has made progress in structure matching.

The production rule system of Waterman appears to be the most complete

for machine learning of heuristics. Clavbrook's system needs more

deve!,,pment in the area of automatic generation of heuristics. Witrman's

system also has the advantage that it is probably better documented in the

literature than the other two systems,

4.41 ;red It Assignment

The author feels that credit assignment in Waterman's repres(Titatin is the

most sophiscated and advanced; however, the reader should remember that this was

Page 35

one of the main thrusts of his research, while Claybrook and Winston

were more interested in studying a particular problem area.

It is not easy to discuss credit assignment with respect to Winston's

language so we will begin by discussing credit assignment as it relates to

learning under Claybrook's representation, followed by Waterman's representation,

and finally Winston's representation.

The program POLYFACT has an analysis procedure that analyzes each

factorization attempt and collects information on which features of polynomials

appear to be the most important with respect to the chosen heuristic that directs

the learning. One thing that every learning program must have to handle the

credit assignment problem is some sense of direction for directing learning.

Either the user provides this sense of direction, as in POLYFACT, or the program

can possibly learn it. In POLYFACT assigning credit to a feature that minimizes

the search space for a factor of the polynomial actually guides and produces the

learning. Credit is also given to "good" heuristics by ordering them according

to their importance (importance with respect to the sense of direction).

Waterman's technique for generating heuristics places more emphasis on

credit assignment than the other representation techniques. His work deals more

directly with machine learning of heuristics and determining which heuristic is

responsible for a "bad" play in poker. We hasten to point out here another

cannon characteristic not discussed in the previous section -- the heuristics

in each of these three learning systems are placed into some order by the

learning mechanism; thus, providing another reason for having heuristics that

can be referenced individually. Credit assignment in Waterman's program can

cause a production rule to be modified or cause inclusion of a new rule into the

set of ordered heuristics. Section 4.2.3 provides a discussion of how his program

assigns credit to heuristics.

Page 36

Credit assignment in Winston's learning system occurs during model

building. Relations can be reinforced by attaching must to a relation.

The near misses in the training sequence are used to indicate those relations

and properties that must and must not be in any example of the concept. Thus

credit is assigned by reinforcing those relations that classify the examples

either as positive or negative instances of the concept.

5.0 APPROACHING THE PROBLEMS IN LEARNING SYSTEMS

Since the major thrust of this paper is to encourage learning as a problem

solving tool, we need to describe how some of the problems mentioned above can

be approached. What the author proposes is the development of a learning system

composed of components, in program form, that can be reused over and over in

different problem spaces with little or no changes to the components. Some of

the problems such as supplying particular information, in the form of rules, etc.,

for each problem domain still remain since current technology has not been

developed to the point that a program can extract this information without help.

We are not going to repeat our discussion on the importance of heuristic

representation because we feel this has been adequately covered in Section 4.0.

That discu_ ion should provide the reader with enough information to select a

representation of heuristics. Section 3.0 introduces the reader to problems

in learning and how to handle some of them.

Most of the components of the learning system outlined below are in all

three learning programs discussed in this paper. We believe a reusable learning

system should be composed of the following components or have the following

characteristics:

1. A classification mechanism capable of classifying objects into

classes so that heuristics appropriate to each class can be applied.

Page 37

2. Localized learning associated with each class of objects in the

classification mechanism so that global learning is not used.

3. A method for representing powerful heuristics that can be created,

modified, and executed dynamically.

4. A technique for encoding heuristics to conserve storage.

5. A simple procedure for referencing an individual heuristic (or

a set of heuristics) and executing it (or them).

6. At least one type of learning mechanism, e.g. generalized learning

and/or concept learning (preferably both types).

7. A procedure for allowing the learning mechanism(s) to direct the

creation and modification of heuristics.

8. A procedure(s) capable of analyzing the results of a problem solution

attempt to determine if any heuristics should be modified.

Of the components listed above probably only (8) would need to be modified

from one application to the next.

6.0 SUNMARY

This paper outlines some of the proCems associated with implementing

learning programs. We have stressed the importance of the choice of representation

of heuristics for this choice affects the learning capabilities of any learning

system. Three representations for heuristics were discussed in detail. A brief

comparison of these techniques show that they have most of the important

requirements of heuristics in cannon. Of considerable interest is the

departure from the simple linear evaluation function approach in the early 1960's

to the more powerful languages approach in the early 1970's.

Section 5.0 provides an outline of a learning system of reusable components.

Learning programs, in general, are large and time consuming to develop. Thus,

a possible approach to using learning is to reuse components without modifying

Page 38

them when moving to different application areas. Of course some programming

effort, dependent on the application, is still required, but the main

components of the learning system remain unchanged.

Page 39

REFERENCES

BEST AVAMUNBLE

1. Barrow, H. G., Ambler, A. P., and Burstall, R. M. "Some Techniques
for Recognising Structures in Pictures", Frontiers of Pattern
Recognition, Watanabe, Satosi, (ed.), Academic Press, 1972, pp. 1-29.

2. Claybrook, B. G. POLYFACT: A Learning Program that Factors
Mdltivariable Polynomials, Dissertation, Computer Science/Operations
Research Center, Southern Methodist University, 1972, 194 pp.

3. Claybrook, B. G. and Nance, R. E. "The Dynamic Creation and
Modification of Heuristics in a Learning Program", In Preparation.

4. Feigenbaum, Edward, and Feldman, J. (eds). Computers and Thought,
McGraw-Hill Book Company, 1963, 535 pp.

5. Hormann, A. M. "GAKU: An Artificial Student", Behavorial Icience,
Vol. 10, pp. 88-107.

6. Hunt, Earl B., Marin, Janet, and Stone, Philip J. Experiments in
Induction, Academic Press, New York, 1966, 247 pp.

7. Mendelson, Elliott. Introduction to Mathematical Logic, Van Nostrand
Reinhold, New York, 1964, 300 pp.

8. Michie, D. "Strategy - Building with the Graph Traverser", Machine
Intelligence 1, 1967, pp. 135-152.

9. Michie, Donald and Roso, Robert. "Experiments with the Adaptive Graph
Traverser", Machine Intelligence 5, Meltzer, Bernard and Michie,
Donald (eds4, American Elsevier, 1970, pp. 301-320.

10. Minsky, M. L. "Steps Toward Artificial Intelligence", Proceedings of
IRE 49, 1961, pp. 8-30.

11. Newell, Allen, Shaw, J. C. and Simon, H. A. "A Variety of Intelligent
Learning in a General Problem Solver ", Self-Organizing Systems,
Yovits, Marshall and Cameron, Scott (eds.), Pergamon Press, 1960,
pp. 153-189.

12. Newell, Allen and Simon, H. A. "GPS, A Program That Simulates Human
Thought", Computers and Thought, Feigenbaum, E. and Feldman, J.
(eds.) McGraw-Hill, 1963, pp. 279-293.

13. Nilsson, Nils J. Learning Mchines, McGraw - Hill, 1965, 132 pp.

14. Nilsson, Nils J. Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill Book Company, 1971, 255 pp.

43

Page 40

15. Polya, G. Induction and Analogy in Mathematics, Princeton .University
Press, Princeton, 1954, 180 pp.

16. San et, J. E. "Challenge to Artificial Intelligence: Programming
Problems to be Solved", Proceedings of Second International Joint
Conference on Artificial Intelligence, September 1971, pp. 59-65.

17. Samuel, A. L. "Some Studies in Machine Learning Using the Game of
Checkers", Computers and Thoujht, Feigenbaum, E. and Feldman, J.
(eds.), McGraw-Hill, 1963, pp. 71-105.

18. Slagle, J. R. and Farrell, C. D. "Experiments in Automatic Learning
for a Multipurpose Heuristic Program", CMM, Vol. 14, No. 2, pp. 91-99.

19. Slagle, J. R. Artificial Intelligence: The Heuristic Programming
Approach, McGraw-Hill Book Company, 1971, 196 pp.

20. Towster, Edwin. "Several Methods of Concept-Formation by Computer",
Dissertation, University of Wisconsin, 1970.

21. Waterman, D. A. "Generalization Learning Techniques for Automating the
Learning of Heuristics", Artificial Intelligence 1, 1970, pp. 121-170.

22. Winston, P. "Learning Structural Descriptions from Examples", A. I.

Technical Report 231, Artificial Intelligence Laboratory, Cambridge,
Massachusetts, M. I. T.

23. Winston, P. "The MIT Robot", Machine Intelligence 7, Meltzer, B. and
Michie, D. (eds.), Edinburgh University Press, 1972, pp. 431-463.

