DOCUHENT RESURE

ED 100 370 IR 001 G869

AUTHOP® Claybrook, Billy G.

TITLE Learning as a Problem Solving Tool. Technical Freport
CsST4018=-%,

INSTITOTION Virginia Polytechnic Inst. and State Oniv,,
Blacksburg. Dept, of Computer Science,

REPCR™ NO TR-CS74018=-R

POE PATE Nov 74

NOTP 4do,

?DRS PRIC® MP-$0.75 HC-$1.85 PLUS POSTAGE

DESCRIPTORS ®*Artificial Intelligence; *Computer Programs;
Cybernetics; *Learning Theories; *Problem Solving

IDENTIFIERS Claybrooks First Order Predicate Calculus:

Heuristics; Watermans Production Rules: Winstons
Raprasentation

ASSTRACT

This paper explores the use of learning as a
practical tool in problea solving, The idea that learning should and
aventually will be a vital component of most Artificial Intelligence
programs is pursued. Current techniques in learning systemss are
compared., A detailed discussion of the problems of representing,
aodifying, and creating heuristics is given, Some of the questions
2ddressed in the paper are: (1) how does the choice of representation
affect the potential for learning? (2) what techniques have been used
*o date and hov do they compare? (3) exactly hov are heuristics
modified in ¢he existing systems and what do these techniques have in
comaon? A discussion of the credit assignment problem as it relates
*o learning ander the various schemes of representation is also
presented. (Author/DGC)




BEST COPY AVMLADLE

Computer Science Department

Virginia Polytechnic Institute
and State University
Blacksburg, Virginia 24061




Technical Report CS74018-R

LEARNING AS A PROBLEM
SOLVING TOOL

Billy G. Claybrook

November 1974

U DEPARTMENT OF HEALTH
EOUCATION A WELFARE
NATIOMAL (NSTITUTE OF

EQUCATION

™ TR N, Ak, ~F e,

« £ Foacr v a0 G4 ¢ ETH FRmap
"ME DR W R TELAN LT N TRy
AT M T B Nt g L A B VI T
VTSR [ wr)Y NFOF AR v 2E0Q¢
ENTONEL A NAT TMAL Nt v e g
Fr AT UNB T N g b -y

Department of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia
24061




BEST COPY AVAILABLE

LEARNING AS A PROBLEM SOLVING TOOL

Billv G. Clavbrook
Computer Science Departrment
Virzinia Polytechnic Institute & State University
3lacksburg, Virginia 2400l

{hi5 paner explores the use of learnins as a practical tool in problem
colving, The idea that learnine should and eventually will be a vital component
of most Artificial Intellirence programs is pursued.

-urrent techniques in learning svstems are compared. A detailed discussion
of the problems of representing, modifving, and creatine heuristics {s piven.
Some of tne Guestions asked (and answered) in the paper ares (1) how does the
cholce of reprecentation affect che potential for learnine?, (2) what techniques
have Zaen usad to date and how do they compare?, i.e. first-order predicate
calculus vs. production rules vs., Winston's representation, and (3) exactly how
are Reuristics noditfizd in the existing svstems and what do these techniques

have in cormon? A discussion of the credit assipgnment problem as it relates

to learnine under the various schemes »f representation is also presented.




1.0 INTRODUCTION

y BEST COPY AVAILABLE

This paper is concerned with encouraging the use of learning as a
problem solving tool in heuristic programs. We try to accomplish‘this:
(1Y by pointing cut what has been accomplishedy (2) by discussing what
the major problems are, and (3) by showing how the problems can be
appraached,

The utility of heuristic programs depends to a large extent on the
iequiac ar the heuristics emploved., We discuss three cuvs ant techniques
Ior representing heuristics that have been emploved in succc.isful, non-
trivitl program environments: (1) Waterman's production rules in playing
drve poker{21}, (2) Claybrook's first-order predicate calculus in factoring

multivariate oolvnomials {2), and (3) Winston's representation in scene

inclvsis 02

oo PART AND PRESENT ACCOMPLISHMENTS IN LEARNING

“Xeept tor a1 tew learning programs, most learning programs to date,

o, Mic

hie and Ross' GT 8], Slagle and Farrell's MULTIPLE[18), etc., have
bven asssciited with simple problem domains, Notable exceptions are Samuel's
checkr program{l7), Waterman's poker program[21), Clavbrook's multivariate
salvaominl factorization program, and Winston's scene analysis program{273.
Wo fool that further advances in learning techniques could have been developed
more readily had leirning been implemented in more complex domains, We are not
treing to reduce the importance of early research eff-~rts, for they have provided
ns witn v weilth nr infnrmation.

Mear learning programs have used some form of generalized learning (!“]

wwrsus rote lea-ning{10). The earlv learning programs 0).Q7),08]) implemented

genertiized loarning by optimizing weights associated with problem variables

[

«d



BEST COPY AVAILABLE

in linear evaluation functions, Samuel's program not only uses rote learning
ind generalized leorning, but it also uses book learning as part of a trainiag
sUfort,  Another tvpe of learning that has received considerable use is
concent learning rﬁ'):(_}(}).tjjl. Tm.'stvr[.'g()] provides several methods for
NrOMTAMMING concepf-tormation, Winston's program for learning structual
deserintions from children’s tovs can recognize concepts and learn concences to
P rocounised.

Weo have noe o tried to make an oxtensive survey of learning programs for they
vy W deseribed elscewhere [}],[14].[19]. ne tact that prevails throughout
e stuady of learning otfrforts is that few of these learning techniques have
Bevn sanioved o osalving sractical problems for which algorithmic solutions do
ant exost oar are very costlv,  Sammet E6) discusses several important problem
iTeds in ¢ omnurer science where heuristic techniques could and should be emploved.

i+ is interesting that Nilsson in his book{14) wanted to include a chapter
Piooae e ar L lamaegstoing methoads using machine-learring techniques,  but he

Coone el eRar the subiect was not vet well cnough developed to be ineluded in
! ) g

J.0 MAJOR PROBLEMS WITH LEARNING

ciace rhis vaner sncourages the use of learning in heuristic programs
“moe o=ty sbutd we describe some of the major problems associated with learning,
Byt ala: 3ome 7 tne reasons why penple have failed to use learning,

“here are several reasons why learning has not been utilized by problem

L. iar el is known about learniag by the human problem solver to

o)



-. The implementation of learning schemes, cven simple ones, appears
to be 1 formidable task; and in some instances it is.

v There is alwavs the possibilitv that the program will not learn or
improve with experience, and thus not improve the efticienecvy of
weration of the program.,

~. the human »roblem solver may want to solve his problem as quickly
1s possible and {s not i{nterested in learning or its benefits,

oo ihers s o4 cortain amount of overhead associated with learning,
coew the orocess of analvzing solution attempts and modifving
eUr1STiCS Tequires computer time.

Aetter purpese oL this raper is to help remove some of the above problems.

The o mator problems associated directly with the actual use and implementation

rraing technigues inelude:

i. o selection op o powerful representation of hcufistics (requirements of
renrcientation o are given in section 4,0),

lution ot the credit-assignment problem for modification and creation

11 heuristics,

3. Jeveloping 1 training sequence appropriate for starting the learning

DTl S5S,
oo Determination of features of the problem cnvironment on which to key
the learning prolcess,
.o cwieertion of the type of learniung scheme to be used.
~. Poaluarion of the learning effort (this is closely associated with the
= troedit-a1ssignment problem),

et se b lems Tisted above need a closr look, The selection of a

rerresentarien o hearistics and solution of the credit-assignment problem are

/,

drscussed onoderanl din Section 4,0, The training scquence for a learning

r~y
~'ERIC

LT A v Text Provided by ERIC



Page 4

program must be selected carefully for it influences the program's ability to
learn and the rate of learning. Winston {22 argues the importance of a good
training sequence and savs that the sequence should be prepared by good teachers,
His rframework tor learning suggests a unitv between learning from examples,
learning bv imitation, and learning bv g told. The training sequence can
include samples tfor each tvpe of learning. Winston also stresses the importance
or the near miss, A near miss is a sample in a training sequence quite like the
concent to he learned but which differs from that concept in only a few
sieniticant points at most. The near misses convey essential points much more
directly that repetitive exposure to ordinary examples. Concept learning
schemes normallv require a careful selection of samples for a training sequence.

Clavbrook ) provides several examples from his multivariate polynomial
tactorization program, POLYFACT, that illustrate how the training sequence of
polvaomials can aftfect the factorization time of subsequently factored polynomials,
Vithough rhe racturization times in POLYFACT are influenced by the training
sequence oI nolynomials, the selection of samples is not as critical as it can be
in other problem spaces and other learning programs. The reader should realize
that the relative importance of a good training sequence is determined not only
v the learning scheme used, but also by the representation of the heuristics
ind the characteristics of the problem environment,

Human beings tend to learn to solve a particular class of problems by
keving n osignificant features of the problem class, The features are used to
determine the anproach taken in solving the problem. Unfortunately, there is no
qutomatic way of extracting the significant features associated with a particular
proniem.  The game nf chess is a problem area where the features to key on for
MIK 1N A next move are extremely important. The human must almost always select

the features to use in the learning process. The learaning program can usually

indicate which teatures are impnrtant for learning and "bad" features can

~z,
.



FEA i Toxt Provided by ERIC

Page >

be removed from consideration. Sometimes the developers of learning programs
believe that a large number of features will give better learning resules;
however, experience has shown 17}, T18) that this is usually a misconception.
Proper gelection of a tew "good" featurvs will normallv lead to good learning
results. For cexample, only four features are used for term selection in
POLYFACT and onle seven or eight features are used for possibility selection.
Watvrman's state subvector for draw poker has only seven elements.

selection o the type of learning, ¢.g. rote learning, generalized learning,
or ¢oncept learniag, is determined by characteristics of the problem environment.
Rote learning has becen used by Samuel with great success., His checker program
stuores records orf buard positions and when a move is to be made the previous
board nositions are interrogated to determine the proper move to make.

An ob.ious Jisad antage of rote learning is that large amounts of memory may

S reguired to store the history, This is especially true if a large number
viodeciSons aqre cosyible, As an example consider the number of possible board
oasitions {n chess or checkers. Another problem with rote learning is that time
must be spent Ln retrieving and matching previous records with the current
$ituation, Samuel has a sophiscated scheme for retrieving board positions,

A concept is a classification rule. Concept learning schemes also use
Teatures tooclassite objects.  Concept learning schemes use past experience to
classitv an instance of an object as either positive or negative. This type of
learning can 3}34 require excessive amounts of memory to store the past historv.
Toncept learnming tochniques do ant alwavs satisfy the requirements for learning
In a particular problem area. For example, Claybrook (?] used concept learning
to try to detormine the best possihilitics (terms) to sclect during the creation
U ractor inoa polvaomial,  The results f this effort clearlv demonstrated
the shortcomings oy concept learning in this particular situation., The reason

For this s thart Upoand™ and "kad" possifilitics have manv features in common,

)



~ERiC

DR A Toxt Provided by ERIC

Tage 9

and it o1s Jdirficult o class:iiv s

BEST COPY AVAILABLE

PHice A8 nositive and oo hoer o as

nevative, wWhat was required and cventus] Ivoused was a peneraliced learning

technique that was able to Jdiscriminagtc

i .

RS

At rding to thelr aoparent Swrit
. ) ; . R v pe " 1y - *
Most learniiy prodramns use denora.s
18 wetually oy cormon vl ted

Srevious oxXperien e o ithout maiint i
tttemnts . arterman and Clavhroox use
MUl tiolr I s ticationd Lo hwur.sties

1asy -

1

oy the possibilitics and raok them

Cey
b

g 4 lacter ot polvnemial,

o learning schemes (concept learning

Dosinee thev normally miake use ot

1
.

vidual records ot previous solution

Jenerlooed Tearning in their programs,

seomuch more than moditving weights

e man. learning prograns [‘9],() are heyristic scarch programs, the

mezhods Cor ocvaluating learning are assocs ited with tree op graph measurcmoents,

-

e Theadanring the DUSLINGSs (peneiras

.

3

¢ A or the scaren tree or the path

ComartEoorr o R 3Tt made o Ehe oo ! Ao, These are gross measurements of

’ ; CAT LN ST ST g CAUACT, the Jearniny in cach area
e regrem ver Learnieg cenrs, o shoald S oevaluated individually with
Festect th tne sense o direction that guides improvement through learning.
Ctous ot “rluation o learniag that (s used to determine modifications to

'

IR SO T

.. ORI 3T R RESENTING, Dt i AND CREATING HUURISTICS

A S o lire ey e T .". ik ':‘vruhlt-ms S moditeing and ereating
B o8 108 udity DUTes TOpresint itoang satdrman’s production rules, Clavbrook's
cirst - order o crediore caloulus, stu's representation, First we diacuss
! v iy ronres ontass - ’ - soatential o tor dearnine. Then §oor
cach el i lual o represontation v doser {1y the representation techniaue,
(0 toow the hanristaes are creat d ot modoiied, and (3 the eredit-assienment
15



1
nrbhlom gy

+

compare the

their dower -1 repes
4 : 1
S A T A A !
Pral issed ‘ et
N NSRS Tl Fe 30
A o
L o_ ‘:‘ -
. Yy " S a
UYL e T o
AT G FU A B
o teirial s
Sooeal mr bl
.
: ' .
: S
: o
~ T N
. v nrese
cre e sy
] SRR G A
T T o
Tooroant
' - v iae e
! ' .
.
~ ' i [SEER

O

Pradl 1 et Provided by ERIC

reiare

vhroy

.

BEST COPY AVAILABLE

Solearaioe vt Uhe pepresentation, Finally, we

Loehnigques with rescecs o what they have in ¢ommeon and
Renial o,

PUS oawswocrayte o wi ot the three learning programs

T oW reter U reader to o cach author's dissertation

DTS Lty v

arioa o Tourasties is probabiv the kev to the success

Ty buis o ooroent s se cera ! considerations (or requirement §)

Rt I s v b representing complex actions in

0% SRR ST RN Coewecution ot heuristics should be

romrt : Toor osentation scheme is that it conserve
Pion omhonid ol ot least a partial solution of tle
[ et '

Perid e el r 0 e, the representation shouyld

astructs o oot henristics {rom distinguishable components,

Ponostooa b Tl Taaristics to be reterenced as
coasvninted sots o hedristics,

Siectis Dot beeamie mandipulation during program

pderar 0 crewibi ity op the representation, i.e.

i
b



Page 8

the asilicy to interchange the components that comprisc the heuristics
in the cvent that heuristics are changed by the designer.
The reader mav want to keep these congiderations in mind while reading the resy
'tothis section,
Some of the requirements require a brief explanation. The first consideration
18 motivated by the realirzation that manvy of the actions performed in complex

learning programs such as POLYFACT require a comprehensive analysis of the problem

asaure that al! »risr conditions are gatistied before performing an action. Also, the
rirst ¢omsiderazion sugeests that we have a general representation that can be
used an 1 ledrning svstem for solving various problems,

The seecnd consideration does not necessarily implv that the decisions
relited 0y the actual creation and modification of heuristics be simple; however,
nee these decisions are reached for particular heuristics, the procedures should

TerTamis e an o nature and relatively simple to execute,  The third and fifth
¢ nsiderations are complementary.,  If the heuristics are mndulnr, thev can be
renresented in oan cneoded form to conserve storage, This is especially important
in programs that use c¢lassification mechanisms for implementing localized learning,
Bv Iscrlired learning, we mean that each classification has a set of learned
heuristics 7ar solwing that particular class of problem,

Polution or the credit-assignment problem is included because of its
impertance to learning mechanisms., Resresentation of heuristics must enahle the
18signing f crodit for success or failure among the many heuristics of potential
usc in snlving a pnrgicular problem,

svnamic manipulation, e.g. creating and modifving heuristics during program

vAecntion, is an dhsalute minimum requirement for a representation.  The execut ion

process pertormed an the heuristics must ailow for dynamic changes in heuristics.

~ERIC

Aruitoxt provided by Eic:

[ Lt
LY



-+

+
-
4

renroseatation tor heuristics, in a draw poker playing program.

]
S

e

.l

Page 9

For this reason the 2xecution proc>dures should execute the heuristics by using
an interpretive process (LISP 1.5 and SNOBOL IV processors are interpreters

ind are therefore convenient languages for writing learning programs),

+.- Waterman's Production-Rule Representation

waterman's main interest is in devising machine-learning techniques that can
he applied to the problem of learning heuristics.

He sees the problem of
imrliementing the machine-learning of heuristics as two subproblems:
I, evise 1 method of representing heuristics that facilitates dynamic

manipulation by the program using them,

'y
ey

evelop techniques by which a program can create, evaluate, and
mod Ty

its own heuristics.

atterman implemented his learning scheme, using a production rule

He chose draw
<or Megause Lt ois a nontrivial game in which nlayers do not have access to enough ot

<isting game intormation to perform effective minimaxiag.

Representation of Heuristics

~terman savs that a good representation should:

(1) permit geparation of the heuristics from the main body of the program,

(2) provide identification of individual heuristics and an indication of
how they are interrelated, and

(3) be compatible with generalized schemes,

Two definitimg are required for the following discussion:
Henristic Rule.

A heuristic that directly specifies an action to be taken,
Heurigtic Definition.

A heuristic that defines a term.

e yres]



As a program is executed, {t goes.through a succession of states as the
value of its program variables are changed. A state vector o is used to
, indicate the current values of the program variable.. When a block of code is
executed, the effect on the state vector & can bé described by &f'=f(o), where
o' is the resulting state vector and f represents a block of cbde. A heuristic
Is represented as a rule of the form S-# T where S is the current state vector
and T is the vector containing the mapped components. The rule can be thought
ol as 1 spccificatinn of how a state vector can lead to other state vectors,

An example* is

of = (A, B, C) —» (g (), g2 (), 83 (x)).

'

ine function 2, changes the value of A to g1 (&), B becomes go (%), and C becomes
£ (@), The items A, B, and C represen” sets of values and nbt individual values.
Thus, 1 single state vector such as (A, B, C) represents a number of states instcad
»t 1 single state, therebv reducing the total number of heuristics required.

A rale o the tvpe Sy 5{, where Sy is a situation defined by vector
variables and 50 is the definition of the resulting situation, Production rules

¢ this torm are called action rules. A heuristic definition can be represented

hbv a production rule of the type Z - Z2', where Z is a value of a state vector
variable and 7' is either:
l. 1 value of a state vector variable and an associated predicate
(called a backward form rule), or
2. a computational rule for combining variables of the state vector
(called a forward form rule).
An example of a backward form rule is D1 ~» D, D>»20, meaning that D is considered
a member ot the set Dl if the current value of D is greater than 20. An example
oroa torward form rule is X - K1 * A, meaning that X is defined by the

arithmetic expression K1 * A,

Q * The examples in this section are taken from Waterman le].

5 g o
. - '.‘



e

O

ERIC

B A i 7ox: Provided by ERIC

Fe YN

—
—

‘he state veetor has three tvpes of variables: (1) bookkeeping variables,

iehopeoevide 4 orecord of past experiences; (2) function variables, which

vooresent arithmetic oxpressions containg state vector variablesg and (3)

amie vardanies, which either directly influence the decisions ot the pProvranm

rochange in value as o direct result of these decisions. Mnly dyvnamic variables

™

saend ntne deseriptions which represent the left parts of action rules,

cwtocrhodinanie and tunction variables are used in the right parts of these rules.

booxeconine cariables are used in the definitions of the forward form rules.

211 1asisht into decision making through the use of Waterman's

proeiet o rales we consider the following example from nis paper, Let the

ST o G ho the foallowing:

B =(a, B, C) = (a, b, c).

"

Zomamie variables with the current values ol a, b, C, TFespeCtioveia,

e der the Tallowing simple heuristics:

is an Al, then add X to the value of B,

it A 18 an A2 and C is a Cl, then subtract Y from the value of C.
J. Ir B is a1 31, then add Y to the value of C,.

Y. A i3 an AL when A 2 025,

5. A iy oan A2 when A € 25,

n. % i a 31 when B > 1,

4 {g a 22! when B > 4,

2, € is a Cl when C = 5,

t. Y oancreases as D oincreases,

e, increases as odecreases,



The oorresvoading rroduction rules are:

L. (AL, ¥, *)am (%, X + b, *), action rule,

2o ALY K U)Kk, k) ¢ - V), acticon rule,

o0y B Yy (v Y Y + ), action rule,

. A\l A, A>3, backward torm rule,
Al -w N A <235, backward form rule,

=i, B>, | backward form rule.

", R T - hackward form rule.,

< L=, =5, backward rorm rule.

v, e N1t OD, forward form rule,
Vo ) - (K3 * E), forward form rule.

V. needod are the rollowing rules, one for each element of the subvector:
, s >, a € {set of allowable values for A}y backward form rule.
- s h, h ¢ i}et of allowable values for Q}, backward form rule,
> C, C ¢ {set of allowable values r1or (1}, backward form rule,
<evping variables, and X and Y are function variables, A star (*)
[l 0 an action rule indicates that the variable in question is
irrelvzant with regard to that particular situation description. A star (*) in
e rigts hand side of an action rule indicates that the value of the variable in
srucs s oo remas s ounchanged.,  Thus, the action rule
(Al, *, *)=Pp(* X + b, *) means, if variable A has the
smboaile salee Al fien increment value of B by X,
Ceoiaior max i by the program is done in twn steps:
T I, Fach e¢lement of the current program subvector is matched against all

rieht s:idos of the backward form (bf) rules. When a matceh occurs (the

sredicare {8 satisfied), the corresponding left side of that bf rule is
matzned anainst all right sides of bf rules, ctc. until no more matches
car he vound, The resulting set of gymbols defines a0 symbolic subvectar.,
5 ) [+ -
ERIC G

Aruitoxt provided by Eic:



The symbolic subvector derived in (1) is matched against all left sides
of the action rules, going top to bottom, and when the first match
is found the values of the program subvector are modified as described

by the right side of the matched rule.

To illustrate decision making consider the following example:

Let the subvector have the values a = 4, b = 5, ¢ = 6, the constants
have values K1 = 1, K2 = 20, K3 = 3, and let the bookkeeping variables
have the values D = 7 and E = 8. Then @ = (4,5,6).

Step 1 is started by comparing a = 4 with each bf rule predicate, the
predicate being satisfied only if it contains the symbol a and is true
when a is set equal to 4. Thus a = 4 is found to match rule 11 and no
others. Next A = 4 is compared to the right hand side of all bf rule
predicates and is found to match only rule 5. Finally A2 = 4 {s
compared with all bf predicates and since it matches nohe of them the
search terminates leaving A2 as the final symbolic value, Elements b
and ¢ are processed in the same manner and the symbolic subvector that
results is ( (A2), (Bl, B2), (C) ). This subvector is a description of
all situations in which variable A has the symbolic value A2, the
variable B has either the symbolic value Bl or B2, and the variable

C has the symbolic value C.

Step 2 now consists in comparing the symbolic subvector ( (A2), (Bl, B2),
(C) ) with the left side of each action rule until a match is found,

In this case a match occurs at rule 3. The program subvector is then
set to the values specified in the right side of rule 3. Hence the new
B equals (4,5, (20 - (3 * 8)) + 6) or (4,5,2). The program makes one
external decision for each search cycle. Thys in a game-pla&lng task

the program would execute one search e¢ycle each time it made a "move".

.2



" Page 14

The subvector Waterman used for the game of draw poker is composed of the
dynamic variables of the state vector and has the form:

B = (VDHAND, POT, LASTBET, BLUFFO, POTBET, ORP, OSTYLE)
where VDHAND is the value.of the program's hand, POT is the amount of money in
the pot, LASTBET is the amount of money last bet, BLUFFO is a measuré of the
probability that the opponent can be bluffed, POTBET is the ratio of the money
in the pot to the anount last bet, ORP is the number of cards replaced by the

opponent, and OSTYLE is a measure of conservative style by the opponent.

4,2,2 Program Creation and Modification of Heuristics

To create heuristics (either by modifying existing ones or hypothesizing
new ones), Waterman uses three pieces of information:

1. a good decision for the situation,

2. the subvector variables relevant to making this decision, and

3. the reason the decision is being made,

This data is called the training information. Item (1) above is called the

acceptability information, {tem (2) is called the relevancy information, and

item (3) is called the justification information. The training information
{s either supplied by a trainer or obtained by the program during execution.
The training information provides data for the construction of a new action
rule. The acceptability information supplies the right part of the aciion
rule, and the relevancy and justification information supplies the left part.
When the existing action rules lead to a poor decision, thgy are corrected
by incorporating the training information into the production rules. Either an
existing action rule (target rule) is modified to catch the symbolic subvector, or

if a rule appropriate for modification does not exist, the training rule is

inserted in the action rule l1ist immediately above the error causing rule.



Page 15

BEST COPY AVAILABLE
An action rule is appropriate for modification i{f it has the same form as the
training rule. Two action rules have the same form only if (1) their right
parcs are identical, (2) their left parts have corresponding *'s, and (3)
their left parts have symbolic values which correspond to the degree that they
are both defined by the same logical operator.

An example (taken from Waterman [2{}) illustrates how an action rule can be
modified to catch the symbolic subvector. The training information is: (1) a
good decision to add 2 to the value of B, (2) the varizbles re;evant to this
decision are A and C, (3) the decision is bLeing made because the current value
of A is small and the current value of C is large. The program subvector is
(5, 3, 13). The training rule (action rule) created from the training
information, and the associated backward form rule are:

(Al, *, Cl )= ( *, b+ 2, * ),
Al = A, AKH
Cl-=-C, C»12
The oxisting production rules are:

1. (Al, *, C2)==® (*, b +2, *),

2, (Al, Bl, *) = (*, * a + 5)

3. (A2, *, C3)‘--b (*, b+ 2, %)

(Aly *, *) -5 (*9 *9 a+ 5)-

F il

W

Al —9 A, Ac6.

h, A2 —» A, A<S8,
7. Bl-%» B, B>8,
8. Cl-—+»C, C>12,
9, C2 =»C, C<5,
10. Cl}=»(C, C>13,

Rule 3 is the only action rule which has the same form as the training rule

(Al, * Cl)=w(* b + 2, *), The symbolic subvector obtained through parsing is

Ll

25



o
—-

Page 16

( (Al, A, (B), (Cl) ), which catches on rule 4, Rule 4 leads to an
unacceptable decision (the only acceptable decisions are those supplied by the
training information ). Rule 3 leads to an acceptable decision and has the
same form as the training rule; thus, it is used as the target rule. The left
hand_side of the training rule, (Al, *, Cl), matches the left side of rule 3
except for C3. If C3 in rule 3 is replaced by a symbolic value representing
a set large enough to include the current value of state vector variable C,
the symbolic subvector obtained through parsing will catch on rule 3.
Therefore C3 is replaced by Cl, changing rule 3 to(A2, *, Cl)—3 (*, b + 2, *),
Waterman gives the following training procedure outline:
l. Parse the program subvector to obtain the symbolic subvector. Then
drop this symbolic subvector through the action rules to obtain a
decision., If the trainer indicates that the decision is acceptable,
then stop; otherwise, go to step 2,

o

Obtain the training information from the trainer and use it to construct

(3]
.

the training rule. If this information changes the symbolic subveptor,
then go to step 3; otherwise, go to step 4,

3. Drop the new symbolic subvector through the action rules to obtain a
decision. If the decision is the one sought by the acceptability
information, then stop; otherwise, go to step 4,

4, Llocate the error-causing rule, the action rule responsible for the
unacceptable decision made in step 1 or step 3.

5. Search the action rules above the error-causing rule for a target rule,
a rule which has the same form as the training rule and is suitable for
modification to catch the symbolic subvector. 1If such a rule is found,
modify it to catch the symbolic subvector and go to step 3; otherwise

g0 to step 6.,

>
L



6. Search the action rules below the error-causing rule for a target
rule. If (1) such a rule is found, (2) the error-causing rule is
suitable for modification to pass the symbolic subvector, and (3)
the rules between the error-causing rule and the target rule either
pass the symbolic subvector or are suitable for modification to pass
it, then modify the target rule to catch the subvector, the error-
causing rule to pass the subvector, and the rules between these two to
pass the subvector, and go to step 3; otherwise go to step 7.

7. Place the training rule immediately above the error-causing rule in the

list of action rules and stop.

The learning in Watermapfs program is in two forms: (1) learning with
explicit training, or‘(2) lea;ﬁing without explicit training (implicit training).
When the program learns without explicit training, the program itself must
develop the training information during the course of game play. The accept-
abilitv information for implicit training can be obtained through logical
deduction. This process uses:

1. the rules of the game,

2. statements (or axioms) about the game, and

3. general statements about techniques used in game playing.
The result is a set of logical statements from which new statements can be deduced
using deductive inference rules. The reader 18 referred to Waterman's paper for
an example of an actual deduction.

The justification information for implieit training can be obtained from a
decision matrix that is game-dependent and is given to the program before learning
starts. Each row of the matrix stands for a game decision, and each column stands
for a subvector variable. Each entry Eij in the matrix is an ‘expression whose
value i3 an attribu 2 of the subvector variable j,

The relevancy information for implicit ttaining.ia obtained through the

generation and testing of hypothesis concerning the relevance of subvector
-

o
“L*--u



vy
| H

variables., Reasonable hypotheses are solved for in the following way:
l. Let the initial hypothesis for each rule be that all subvector
variables are relevant,

Hvpothesis testing then consists in noting whether or not a

[
.

particular training rule, placed in the set of action rules by
step 7 of the training procedure, catches the symbolic subvector
when the action advocated by the rule is determined to be the
correct decision,

3. If the rule does not catch the subvector, the relevancy hypothesis
tor that rule is changed., As many variables in the left part of the
rule are made irrelevant as is necessary to make the rule general

2nough to catch the subvector.

+.2.3 Program Evaluation of Heuristics

Program manipulation of heuristics requires facing two major problems:
l. evaluation of existing heuristics in terms of their usefulness to the
. program, and
2. creation of new heuristics, by both modifying old ones and hypothesizing
new ones,

I> make a decision via production rules for a problem (1), a symbolic
subvector representing the game gituation is compared to all left parts of the
list of action rules, going top to bottom until a match is found. The action
rule which defines the decision, that is, one whose left part matches the
symbolic subvector, is easily located. After the decision is evaluated, the
credit or hlame can be assigned to the action rule, and to those above it,

which detined the decision. Here blame is assigned to action rules leading to

b U F




Page 19

poor decisions, while action rules leading to good or acceptable decisions
are ignored. Assigning blame to an action rule consists in modifying the

rule enough to avoid a repetition of the mistake or poor decision just made.

4.3 Clavbrook's First-Order Predicate-Calculus Representation

Complete details of this representation can be found in Claybrook ca,
3. This representation is implemented in a learning program that performs
the non-trivial task of determining the symbolic factorization of multivariate
polvnomials with integral coefficients and an arbitrary number of variables and
terms. The author agrees with Waterman that the representation of heuristics
determines directly or indirectly how well a program can learn. The representation
in the learning program, POLYFACT, was chosen because of the expressive power of
the predicate c¢aleulus., We were primarily concerned with using learning to
improve the efticiency of operation of POLYFACT,

/ v

4.3.1 Representation of Heuristics

The notation is identical to that of first-order predicate calculus except
for a minor difference involving domain specification for the assignment of
vilues. In the implementation of the predicate ecalculus notation, a heuristic
can have one of two general forms:
(1) NAME (DOMAIN;) (DOMAINj)---(DOMAINL) ( (ANTECEDENT; C CONSEQUENT;)
D+-+0  (ANTECEDENT, C CONSEQUENTn)) $, or

(2) NAME ((ANTECEDENTX C CONSEQUENT;) O (ANTECEDENT, C CONSEQUENT;)
O+++0 (ANTECEDENT, C CONSEQUENT,))S

in either of the above forms, the same antecedent or consequent can occur

several times; but the same antecedent-consequent pair should occur but once.



Pagu 2

The tirst form has a non-nuli domain; whereas, the second has a null domain.
One of the functions of the non-null domain is to specify an ordered set from
which the values for the variable (indicated in the domain field) are taken.
Some ot the variables in tne antecedent-consequent pairs can be free, i.e.
their values are specified elsewhere. Each bound variable must appear as an
argument in at least one antecedent or consequent, i.e. each variable specified
in a domain must appear as an argument in at least one of a predicate,.a function,
ot a consequent., The domain as defined in this paper corresponds to the
quantifiers in predicate calculus notation; however, in predicate calculus
aotation the domain is not included as a part of the quantifier, The order of
domain precedence is identical to that of the quantifiers.

fach antecedent is a single predicate or a logical combination of predicates
connected by conjunction ('A' = AND) and/or disjunction ('O' = OR) operators.
£ach nredicate is a logical function and can be referenced with arguments that
iro coastants, variables, or functions, 'C' is the conditional operator, and
the consequent {8 alwavs the name of a routine (or procedure) that is executed
when the corresponding antecedent is satisfied,

To illustrate the representation of heuristics in the predicate calculus
nntation, we use an example taken from the term selection heuristics in POLYFACT:

LU (2T IN IPTRSO)  ((N HI(GlI(T), MINDEG) C FIX123)) S,

This heuristic consists of the components:

91t is the NAME of the heuristic,

(= 7 % [TPTRSM is the DOMAIN of the heuristic,

N is the negation operator,

1 is a predicate that is "TRUE' 1if GLlI(T)

equals MINDEG,

Gl is a function whose value is the degree
of term T,

T is a4 hound variable

r\
»
b, =



Page 21

MINDEG is a constant function, i.e¢. a function
whose value i3 constant during the exe-
cution of the heuristic,

C is the conditional operator, and

TINT2C is 1 CONSEQUENT.

[nternallyv, the oredicate calculus heuristics are represented as linked
tists ~ith each individual atom stored in a separate cell in the list.

The heuristies are executed by an interpreter. During oexecution, the
predicate calculus form is translated into reverse Polish notation., Then the
reverse Molish string is executed with reterences to predicates and consequences
causing the execution ot the corresponding procedures.

Uhe heuristics that contain non-null domains select elements from the sets
given in the domains. In the selection of elements from a set, a heuristic can
comsider 11l elements in the set. In this case, the domains have the form:

( E T IN IPTRSO),
~tvle Do ndicates that all elements (1) in the set [PTRSO are selected
during the execution of the particular heuristic. A heuristic with a non-null
domain can also consider elements from a set until an antecedent is satisfied.
The corresponding consequent is then executed and activation of this heuristic
1s terminated. This type of domain is represented as:

( EA T IN TPTKSN ),
where A indicares that some (possibly all) elements in the set IPTRSO are
selected, '3

A\ heuristic with multiple domains is executed by selecting elements from
the innermost domains first. This execution has the game effect as nested 1oops

in programming languages.,

)

-

e et |



.32 Program Modification and Creation

First we explain how the creation and modification process works, and then
we describe the-ttaining procedure for POLYFACT. The reader saw in Section 4.2.2
that during periods of implicit training in Waterman's preogram, his program
empiovs 1 decision matrix (created bv a human prior to implicit learning).
[he learning scheme in POLYFACT uses a set of tables to specify relationships
between predicates, consequents, and domains., The table: are pre-compiled by
hand and read from input cards and stored in the tables.

The consequent-predicate table gives the correspondence betw:en each consequent

and the prodicates that can be used to form an antecedent-consequent pair.

The consequent-domain tvpe table specifies the correspondence between each

¢ nseguent and the sets from which values for a variable are selected. Each
bound variable must be an argument in a predicate (within an antecedent) or

consequent,  The domain type-variable-set table defines the variable-set pair

assuciated with a domain type. The domain is determined by the variable and the
set from which the values of the variable are taken. The purpose of this table
is t- prevent heuristics with a given type of domain from using predicates and
consequents associated with another type of domain, 1In addition this table
could proven: ghe creation of heuristics which have a certain mixture of domains,
The reader should note that a domain is a set of values (represented in
POLYFACT a8 a linked list of values), a predicate is a logical function
(represented ian POLYFACT as a logical procedure), and a consequent is an action
to be taken (represented in POLYFACT as a procedure).
The heuristics in POLYFACT can be maintained either in first-order predicate
calculis notation nr in a combination of first-order predicate calculus notation

and an encoding of the predicate calculus notation. As we describe the learning



associated with term and possibility selection we will describe how the
predicate calculus is encoded,

The learning (through the modification of heuristics) associated with
term selection is as follows. After a successful factorization attempt is
completed, the number of possibilities (factors of a term) in each term of the
polynomial is determined. The features »f the term(s) with minimum number of
pogsibilities have their frequency count(s) increased. Each feature has a
predicate associated with it. The predicate is true if the term has the particular
feature and false if it does not have the feature (features used are degree of
term, number of variables in term, etc.). The frequency counts associated with
each tfeature are examined to determine whether or not the set of heuristics for
term selection need to be modified, The heuristics are ordered to impart the
importance of features for '"good" term selection. If two or more features
have identical frequency counts, then they are of equal importance in selecting
A term.  Thus, in predicate calculus notation this would result in an antecedent
having two predicates (corresponding to the two features) connected t. '"(R',

Since POLYFACT uses a classification technique to implement localized
learning for term selection,the term selection heuristics are not maintained in
predicate calculus notation (because of the amount of storage space required),
Instead, the term selection heuristic are encoded into a small ordered list of
words. fach feature is represented by a particular bit in the word. The presence
of a 'l' in that bit indicates the presence of the corresponding predicate in
the heuristic. In this way a single word describes the entire heuristic.

Not only does this encoding save considerable storage space, but it is much
easier to modify heuristics using a numeric representation than the symbolic
representation of predicate calculus, Prior to execution the selected heuristics

are expanded into predicate calculus notation for interpretation,

~_imy
[ SR



b Page 24

The possibilities (terms) that can be selected as terms in a factor of a
polvnomial are ranked according to their probable merit. During a factorization
attempt, the highest ranked possibilities are sclected. After a polynomial has
been factored, each term in the factors is examined to determine its set of
characteristic features. A binary vector is created with nonzero entries
fadicating the features present, Then a heuristic is created (unless one already
ex1i8ts) using as predicates those that correspond to the features present,

To tacilitate the construction of this set of heuristics, a matrix is

maintained orhciding a history of the features of terms that have appeared

ol
-
L 2

actars ot previcus polvnomials, After the vector of features has been

-

created for a term, it is compared with each row in the matrix to determine if
the vector i3 alrceady present, [f so, the frequency count for the matching row

is incremented (the tfrequency count is kept as an augmented colurmn in the matrix).

[

the vector is not in the matrix, it is added and the correspcnding heuristic

rot

is created,

When thege houristics are used to rark terms, the satisfied antecedent's
{17 there i3 g satisfied antecedent) frecuency count becomes the rank of the
rerm,  These heuristics are maintained in predicate calculus notation and also in
the encoded matreix torm, The matrix form is convenient for determining the
need Yor moditications, All classes of polynomials use the same possibility
selectinn heuristics. Modifications range from adding a predicate to an
existing antecedent to adding an entire antecedent-consequent pair,

deuristics can be created and modified during the training period or later
when no explicit information is given POLYFACT. During the training period,
palvynomials are input to POLYFACT along with information giving the number of
terms 1n each ob the two factors, In this training period the polynomials are
classitied ind heuristics are created for term selection and possibility selection,
Palynomials in the rraining sequence dn influence the factorization times of

e 27

— T



m'?age 25

subsequently factored polynomials, but similiar looking polynomials have so
varied characterisrics that it is difficult to select a good training sequence.
However, atter the training period is over, if the polynomials have many
characteristics in commom then the program adjusts the heuristics to reflect
this. During the non-training period no helpful information is given to

POLYFACT,  Also learning can be turned off completely at any time.

4.3.,3 Program Fvaluation of Heuristics

Assigning credit or blame to a heuristic in POLYFACT is a much simpler
task than in Waterman's program, and the capability to reference heuristics
individually by name provides the ability to do this.

Credit is given a heuristic by increasing the frequency count associated
with the heuristic, Blame is not so easy to interpret. Blame can be interprete
when the torm selection heuristics do noﬁ select the '"best" term to initiate
the tictorization process, and when the possibility selection heuristics do not
rank the possibilities so that only the highest ranked ones appear in the factors
ot a successtully factored polynomial.

Fvaluation of heuristics can result in re-ordering heuristics, adding
predicates to antecedents, etc. Term selection heuristics can be modified on
either successful or unsuccessful factorization attempts, but possibility

selection heuristics can only be altered after successful attempts.

/ .
4.% Winston's Representation

Before we discuss Winston's learning system (or more properly his language
mnd notation for describing scenes), we describe, in general terms, what his

system does. Winston's program analyzes scenes consisting of the simple objects



round ia g child's tov box. The.descripcion of a scene is in terms of the
shiects that make up the scene.,
weneration of a scene description begins with a drawing of the three-
dimensional scene, The drawing is communicated to the machine using a
PYodram together with a special pen whose position on a tablet can be read by
Cheomachine durectly, Then a program classifies and labels the vertexes.
cheoprogram then creates names for all of the regions in the scere.
mscriptions of scenes are stored so that they can be casily retrieved.
ich bliect in 3 scene is naturally thought of in terms of relationships to other
viets ovd o desceriptive concepts like small, square, ete. Thus, Winston uses
“oba rRs to ostore the scene description, The network resides in the data base
cvothe rorm oot list structures, For example, in Fig. ? the nodes represent
“reets and the pointers represent relations between objects,
(he descriptions permit one to compare and contrast scenes through programs
moare anvd eontrast descriptions by retrieving the descriptions from the
sorwers, The descriptions should be similar or dissimilar to the same degree
Tttt seanes thev represent seem similar to dissimilar to human intuition,
viier two scenes are described and corresponding parts related by a matching
orowram, dirferences in the descriptions must be found, categorized, and them-
s0 Loes ddescribed, Later sections describe how the matching of scenes is used to
modore "he models of gcenes.

fdentification of scenes iscarried out as follows: compare the description

some geene to by identified with a repertoire of models or stored concepts.
— Thure is g method of evaluating the comparisons between the unknown and the models
50 that some match can he defined. The identification process in Winston's
cTowaram s v maior problem area. It is comparable to dvtvrm}ninu whether sr not

T rraphs are isomorphic.

e




Po L N 1

BEST COPY AVAILABLE

1

pcae;t.‘i near wine Ywear n oL

vyear il NWeay v 5

€a 1 Apedestal tramng STguevc s

P

part s

é svppsrtechby

. haz-postwe

‘\d-

152
@
24 . A pedestal dezcription,




BEST COPY AVAILABLE

SRS \ pavt -3
Part 1y, !
'\\ ,M\l;t-““'._ 051.‘4
- | ’ \ mull-have. Perture

2Ny

‘rauz_.bg_& . /
/. .
i A
/

\'¢J igsnc,

s -_
TERI ¥

' ‘ _ [ P




Page 29

The next two sections provide more details for the construction of

acdels (or concepts) and the language used to describe the models.

w.=. 1 Representation of Models

ft is Jifricult to talk about Winston's learning system with respect to
his representation of heuristics, He stores learned information in a network
imude 1Y described by a4 language expressing relations between objects in a scene.
it model represcents (or is) the concept. During the building of a model of a
seene such as that in Fig, 3, Winston's program is creating a concept to
LSS 1 SCenke,

there is 4 slight difference between a description of a particular scene
aad vomedet o 2 concept, A model is like an ordinary description in that it
cirries iaformation about variqus parts of a configuration., But a model also
exhibits and indicates those relations and properties that must and must not be
coswadence dnoanv example of the concept involved,

in arder to develop the representation of models, we use the pedestal

fraiaing sequence in Fig. 1. Then we describe a pedestal description and a

model in Fig. 2 oand Fig. 3, respectively (these examples are taken from
sinst a’7p).  The first ctep is to show the machine a sample of the concept to
boeodearaed,  The rest of the samples are near misses (a near miss is a sample in

1 training sequence like the concept to be learned but differs from that concept
in onlv a tew significant points). The near misses simply refine the description
ot rhe pedestal to the point where it is a model of the pedestal.

The second sample in Fig., 1 is a near miss due to the absence of the
suppnorted-hy relation (a description of how the relations in a scene are
determined is given in the next section). The other samples strength the other

rotations in the description and finally turn the pedestal description in Fig. 2

int the model in Fig. 3. The training sequence in Fig. | i8 revisited in the

3%

v



cetuon o ereation and modification of models.

LS sectin was intended to give a brief view of the representation of «

aoo mentisned earlier that the model is represented internally as a

10 "u

dd Lty L lsT o shructures,

Crear iy i Moditieation of Models

nae aireadv discussed the difference between a scene description and
1 This section we describe in detail how a model is created and
during 1 training sequence. We use the pedestal training sequence in
Gotore e hecome specific on the development of the model in Fig. 3,
soouid consider a more general description of model development,
“iel tyilding program starts with a description of some example of the
toarned. This deseription is the first model of the concept.
Plinstrates the development of a model sequence where there is only one
o Teeen the current model and the description of a new sample.
cmrde Deads to a new model, Winston's program compares the description

-
simele o the current model to determine any difference(s). We did

First Model

Second Model

Fs
i
4
2
—
4]
)

Third Model
Fourth Model

+ Model Development with Only One Differences

ntothis ontoin Section 4.4, but during the development of the description

w0, rdach scene {8 analyzed to determine the relations that objects in the

boteoosenarate program exists for detecting each relation, i.e. a heuristic

“ists srocifically for detecting the existence of the SUPPORTED-BY

Phe TLERIONT-OF relation, etc,



Page 31

several dirferences may occur between the current model and a new sample,
Then several branches may occur and we have a tree of nodes as given in Fig. 5,
The alternative branches come about by :ﬁe program selecting one branch at each

First Model
Second Models
Third Models
Fourth Models
Tig. 5 Model Development with Several Diifercnczcs,

point ror further development., The path leading from the top of the tree down to
the current model is called the main line. The main line changes course when a
particular sequence of branch selections leads to untenable situations.

The nrogram has to deal with alternatives to the main line of model
Jdevelopment,  Main line assumptions may lead to contradictions which in turn cause
the model building program to retreat up the tree and attempt model development

]

time orher Sranches,

R

.f the differences have multiple interpretations or more than two differences
ecur, the number of possibilities can explode. The machine must decide which
interpretation of which differences are most likely to cause the near miss.

The machine tirst forms two lists: a primary list and a secondary list. Each
interpretition eventually ends up in one list or the other, Some interpretations
can never make the primary list because they are umable to explain why a given
sample i3 4 near miss. All of these interpretations go immediately to the
secondary list,

The next way to sort differences is by level, This assumes only that the
differences nearer the origin of the comparision description are the mnre
imporrtant. The program determines the depth of the remaining nodes which are
nearest the origin of the comparison description. All those candidates found at

greater depth are placed on the secondary list.



Page 32

The primary ditference list allows the program to torm a theory of why
the near miss misses and what to do. This theory (or hvpothesis) specifics
one dirference as the single cause of the miss and specifies which interpretation
of that difference is assumed. The differences at the same level are ranked
according to type. Then the one with the highest rank is chosen as the cause
of the near miss, Winston{2% provides a table specitving,a priori, differences
and their possible interpretations.

Now we return to our discussion of the pedestal training sequence and model
in Fig. 1 and Fig. 3. Reviewing very briefly, the model building program begins
with a description of the concept to be learned (in Fig. 1). The second sample
in Fig. 1 is a near miss because the supported-by relation is missing. Thus, the
machine can only conclude that the supported-by relation is necessary and a new
model i8 developed with a must-be-supported-by relation. We see there is only a
single difference between the second sample and the current model., Samples three
through five streagthen the fact that the support is standing and the supported
object is8 a lving board. In particular, sample tour strengths the relation that
the supported object is a board and sample fiv. strengthens the fact that the
hoard must be lying. In samples four and five there is only a single difference,

The strengthening of the relations in Fig. 2 by the training sequence in
Fig. 1 results in the pedestal model in Fig. 3.

The reader should be able to detect a note of importance to the development
of a training sequence for model building. Winston gtresses the importance of
a good teacher both in human learning and machine learning., He says that in the

past history of machine learning the use of a teacher was considered cheating,

and machines were expected to self organize themselves. Winston's training
sequence sample selection is praobably more critical than the training sequence
selection in Waterman's program, and it certainly is more critical than in

Claybrook's POLYFACT.



ERIC

Aruitoxt provided by Eic:

Page 13

The subsection on program evaluation of heuristics for Winston's svstem
is cmitted since this material 18 duscussed above in the development of modoels,
This omission brings up un interesting point - some learning svstems can be

subdivided {nto verv clear cut subdivisions, while others cannot,

.0 common . haracteristics of the Three Techniques oo

Represcating Heuristics

ime characteristic common to all three techniques is that a powerful
Lamvaage isused for cach representation., This is an especiallv important point
recause the varlv learning programs lacked powerful languages tor heuristic
representation, and it is the author's contention that this is the reason for
the Lick of signitficant advances in learning during the 1960°'s, Aﬁnther point,
PBistoerical in nature, is that all three techniques were developed in the carly
1970%s (i.e. all three dissertations were completed during this period).

Another common characteristic is that all three techniques were emploved
i complex problem spaces versus simple game problem spaces.

Fach representation language is separated from the program code, i.e, the
henristies in each program are separated from the program code, thus allowing
them to be manipulated dynamically, AlsS the represcntations are modular in
nature allowing the heuristics to be easily created and manipulated. Although
thw approach in each case ditfers, each technique uscs a form of generalized
leirning. Credit assignment occurs in each technique and is discussed in.the
next section,

All three techniques for representing heuristics have most or all of the
requirements of heuristics listed in Section 4.1. The reader may want to scan
this liar again and consider each representation as he does so.

Another thing common to all three techniques (and also common to all other
previ-msly implemented learning systems) is that a change in problem environment

Ty
LWy




ERI

Aruitoxt provided by Eic:

,‘_-\

Page }

Foquites some elfort on the part of the user to determine possible houristics
tor solving the new problems (or at least determine tfealures tor keving on
during learniag) and in some cases providing the learning svstem, a priori,
with rules or other information about the problem arca. 1o Watermin's pokoer
rrogram, rules of the game are supplied and also a precompiled decision matrix is
supplied, Clavhrook supplies tables for controlling the CﬂﬂS[Tthiun 01
beuristics, and Winston provides tables listing one or more interpretations
tor each Jdifference in scene deseriptions., At the present time, it is nearlv,
fronot completely, impossible to develop a learning svstem that can operate on
‘arious problem areas without some information being supplicd to the svstem by
the user,  In Section 3.0 we discuss how to organize a learning system so as to
veduce the effort in moving from vne problem domain to another.

he last comparison of the three representation techniques is with respect
fo o thedr power of representation. The predicate calculus and production rule
Crorcse it ion anguages appear to be the more powertul languages tor
renresenting eomplex actions,  The nctwork mode! approach is a natural approach
"o renresentation but it requires efficient retriceval and matching procedures to
seooractical. Winston acknowledges these two problems in his disscrtation and has
o Meood"™ selution to them., Barrow {1} has made progress in structure matching,

vhe production rule system of Waterman appears to be the most complete
svstem for machine learning of heuristics. Claybrook's svystem needs more
development in the area of automatic generation of heuristics, Witerman's
system also has ﬁhv advantage that it is probably better documented in the

literature than the other twn systems,

4.8 redit Assignment

The author feels that credit assiynment in Waterman's representation is the
most sophiscated and advanced; however, the reader should remember that this was

SN
wis



Page 35

one ot the main thrusts of his research, while Claybrook and Winston
were more interested in studying a particular problem area.

It is not easy to discuss credit assignment with respect to Winston's
language 80 we will begin by discussing credit assignment as it relates to
learning under Claybrook's representation, followed by Waterman's representation,
and finally Winston's representation,

The program POLYFACT has an analysis procedure that analyzes each
factorization attempt and collects information on which features of polynomials
appear to be the most important with respect to the chosen heuristic that directs
the learning. One thing that every learning program must have to handle the
credit assignment problem is some sense of direction for directing learning.
Either theuser provides this sense of direction, as in POLYFACT, or the program
can possibly learn it. In POLYFACT assigning credit to a feature that minimizes
the search space for a factor of the polynomial actually guides and produces the
learning. Credit is also given to "good" heuristics by ordering them according
to their importance (importance with respect to the sense of direction),

Waterman's technique for generating heuristics places mo:e emphasis on
credit assignment than the other representation techniques. His work deals more
directly with machine learning of heuristics and determining which heuristic is
responsible for a '"bad" play in poker. We hasten to point out here another
common characteristic not discussed in the previous section -- the heuristics
in each of these three learning systems are placed into some order by the
learning mechanism; thus, providing another reason for having heuristics that
can be referenced individually, Credit assignment in Waterman's program can
cause a production rule to be modified or cause inclusion of a‘new rule into the
set of ordered heuristics, Section 4,2.3 provides a discussion of how his program

assigns credit to heuristics.



Page 36

Credit assignment in Winston's learning system occurs during model
building. Relations can be reinforced by attaching must to a relation,
The near misses in the training sequence are used to indicate those relations
and properties that must and must not be in any example of the concept. Thus
credit is assigned by reinforcing those relations that classify the examples

either as positive or negative instances of the concept.

5.0 APPROACHING THE PROBLEMS IN LEARNING SYSTEMS

Since the major thrust of this paper is to encourage learning as a problem
solving tool, we need to describe how some of the problems mentioned above can
be approached. What the author proposes is the development of a learning system
composed of components, in program form, that can be reused over and over in
different problem spaces with little or no changes to the components. Some of
the problems such as supplying particular information, in the form of rules, etc.,
for each problem domain still remain since current technology has not been
developed to the point that a program can extract this information without help.
We are not going to repeat our discussion on the importance of heuristic
representation because we feel this has been adequately covered in Section 4.0.
That discu. {on should provide the reader with enough information to select a
representation of heuristics., Section 3.0 introduces the reader to problens
in learning and how to handle some of them,

Most of the components of the learning system outlined below are in all
three learning programs discussed in this paper. We believe a reusable learning
system should be composed of the following components or have the following -
characteristics:

1. A classification mechanism capable of classifying objects into

classes so that heuristics appropriate to each class can be applied.

10



2. localized learning associated with each class of objects in the
classification mechanism so that global learning is not used.

3. A method for representing powerful heuristics that can be created,
modified, and executed dynamically.

4, A technique for encoding heuristics to conserve storage.

5. A simple procedure for referencing an individual heuristic (or
a set of heuristics) and executing it (or them).

6. At least one type of learning mechanism, e.g. generalized learning
and/or concept learning (preferably both types).

7. A procedure for allowing the learning mechanism(s) to direct the
creation and modification of heuristics,

8. A procedure(s) capable of analyzing the results of a problem solution
attempt to determine if any heuristics should be modified.

Of the components listed above probably only (8) would need to be modified

from one application to the next,

6.0 SUMURY

This paper outlines some of the pro. "ems associated with implementing
learning programs. We have stressed the importance of the choice of representation
of heuristics for this choice affects the learning capabilities of any learning
system. Three representafionl for heuristics were discussed in detail. A brief
comparison of these techniques show that they have most of the important
requirements of heuristics in common. Of considerable interest {s the
departure from the simple linear evaluation function approach in the early 1960's
to the more powerful languages approach in the early 1970's.

Section 5.0 provides an outline of a learning system of reusable components.
Learning programs, 1q general, are large and time corsuming to develop. Thus,

a possible approdch to using learning is to reuse components without modifying

a2



Page 38

them when moving to different application areas. Of course some programming
effort, dependent on the application, is still required, but the main

components of the learning system remain unchanged.




Page 39

P A3

10.

11.

12.

REFERENCES

BEST COPY AVAILABLE

Barrow, H. G., Ambler, A. P., and Burstall, R. M. "Some Techniques
for Recognising Structures in Pictures', Frontiers of Pattern
Recognition, Watanabe, Satosi, (ed.), Academic Press, 1972, pp. 1-29.

Claybrook, B. G. POLYFACT: A Learning Program that Factors
Multivariable Polynomials, Dissertation, Computer Science/Operations
Research Center, Southern Methodist University, 1972, 194 pp.

Claybrook, B. G. and Nance, R, E, "The Dynamic Creation and
Modification of Heuristics in a Learning Program', In Preparation.

Feigenbaum, Edward, and Feldman, J. (eds). Computers and Thought,
McGraw-Hill Book Company, 1963, 535 pp.

Hormann, A. M. '"GAKU: An Artificial Student', Behavorial 5cience,
Vol, 10, pp. 88-107.

Hunt, Earl B., Marin, Janet, ind Stone, Philip J. Experiments in
Induction, Academic Press, New York, 1966, 247 pp.

Mendelson, Elliott. Introduction to Mathematical Logic, Van Nostrand
Reinhold, New York, 1964, 300 pp.

Michie, D, "Strategy - Building with the Graph Traverser", Machine
Intelligence 1, 1967, pp. 135-152.

Michie, Donald and Ros:*, Robert. '"Experiments with the Adaptive Graph
Traverser', Machine Intelligence 5, Meltzer, Bernard and Michie,
Donald (eds), American Elsevier, 1970, pp. 301-320.

Minsky, M. L. "Steps Toward Artificial Intelligence", Proceedings of
IRE 49, 1961, pp. 8-30.

Newell, Allen, Shaw, J. C. and Simon, H, A, "A Variety of Intelligent
Learning in a General Problem Solver", Self-Organizing Systems,
Yovits, Marshall and Cameron, Scott (eds.), Pergamon Press, 1960,
pp. 153-189.

Newell, Allen and Simon, H. A. "GPS, A Program That Simulates Human
Thought", Computers and Thought, Feigenbaum, E. and Feldman, J.
(eds.) MeGraw-Hill, 1963, pp. 279-293,

13. Nilsson, Nils J. .Lcarnin. Machines, McGraw-Hill, 1965, 132 pp.

14.

Nilsson, Nils J. Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill Book Company, 1971, 255 pp.

43



M o e e

—
i

Page 40

15.

16.

17.

18.

19.

23.

Polya, G. Induction and Analogy in Mathematics, Princeton Jniversity . .
Press, Princeton, 1954, 180 pp.

Sammet, J. E, "Challenge to Artificial Intelligence: Programming

Problems to be Solved", Proceedings of Second Intermational Joint
- Conference on Artificial Intelligence, September 1971, pp. 59-65.

Samuel, A. L. "Some Studies in Machine Learning Using the Game of
Checkers', Computers and Thought, Feigenbaum, E. and Feldman, J.
(eds.), McGraw-Hill, 1963, pp. 71-105.

Slagle, J. R. and Farrell, C. D. '"Experiments in Automatic lLearning
for a Multipurpose Heuristic Program", CACM, Vol. 14, No. 2, pp. 91-99,

Slagle, J. R. Artificial Intelligence: The Heuristic Programming
Approach, MeGraw-Hill Book Company, 1971, 196 pp.

Towster, Edwin. '"Several Methods of Concept-Formation by Computer",
Dissertation, University of Wisconsin, 1970.

Waterman, D, A. '"Generalization Learning Techniques for Automating the
Learning of Heuristics", Artificial Intelligence 1, 1970, pp. 121-170.

Winston, P. '"Learning Structural Descriptions from Examples'", A, I.

e —

Technical Report 231, Artificial Intelligence Laboratory, Cambridge,
Massachusetts, M, 1, T,

Winston, P. '"The MIT Robot", Machine Intelligence 7, Meltzer, B. and
Michie, D, (eds.), Edinburgh University Press, 1972, pp. 431-463,



