
ED 100 347

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY

REPORT NO
PUB DATE
NOTE

?DRS PRICE
DESCPIPTORS

IDENTIFIERS

DOCUMENT RESUME

IR 001 445

Eastwood, Margaret A.; Eastwood, tester F., Jr.
A Software Implementation of a Satellite Interface
Message Processor.
Washington Univ., St. Louis, Mo. Center for
Development Technology.
National Aeronautics and Space Administration,
Washington, D.C.; National Science Foundation,
Washington, D.C.
VU-CDT-M-74/2
Dec 74
61p.

MF-$0.75 HC-$3.15 PLUS POSTAGE
*Communication Satellites; *Computer Programs;
*Computers; Computer Science; Information Processing;
Networks; Program Descriptions; *Telecommunication
ARPANFT; Computer Networks; Computer Software; Packet
Reservation Access Method; *Software

ABSTRACT
A design for network control software for a computer

network is described in which some nodes are linked by a
communications satellite channel. It is assumed that the network has
an ARPANET -like configuration; that is, that specialized processors
at each node are responsible for message switching and network
control. The purpose of the control software is to oversee network
operations--for example to keep track of message queues and switching
functions, to tag messages with addresses and insure that they arrive
error-free, and to avoid disruption of network functions where a node
or communications line is inoperative. The design presented is
intended to insure both efficient use of the network communication
resources and attractiveness to users. To achieve the goal of
efficiency, the packet reservation scheme for computer communication
by satellite is implemented. To gain the objective of attractiveness,
the control software has been designed to make network operations
essentially invisible to the user. (Author/DGC)



irWASHINGTON UNIVERSITY

BEST COPY MIME

CENTER FOR DEVELOPMENT TECHNOLOGY

MEMORANDUM No. 74/2 DECEMBER, 1974

A SOFTWARE IMPLEMENTATION OF A SATELLITE

INTERFACE MESSAGE PROCESSOR

MARGARET A. EASTWOOD

LESTER F. EASTWOOD, JR.

WASHINGTON UNIVERSITY / ST. LOUIS / MISSOURI 63130
0 2



Center for Development Technology

Communications Group

Washington University
Saint Louis, Missouri 63130

r.morandum No. 74/2 December, 1 c';74

US DEPARTMENT OF HEALTH.
EDUCATION WELFARE
NATIONAL INSTITUTE OF

EDUCATION
;E HE EN REPRO

r v her( E (ROM
rAF ,iter :)Fef,AF,,,ZLF ,ON OR ,4,14

Ar ,F4(, Fcolsi! ()F v IF 1. ()Fe ()PINIONS
,FATUO ty:A tiuT NEC F.!.%Ak PtoF
E ^.T C NAT 4)keell ,TuTt 01,

A SOFTWARE IMPLEMENTATION OF A SATELLITE

INTERFACE MESSAGE PROCESSOR

MARGARET A. EASTWOOD

LESTER F. EASTWOOD, JR.

BEST COPY AVAILABLE

This study was supported in part by the National Science Foundation under

Grant No. EC -38871 and by the National Aeronautics and Space Administration

under Grant No. Nf717_-26-008-054. The views expressed in this memorandum are

those of the authors and do not necessarily represent those of the Center

for Develcpment Technology, Washington University, or the sponsoring agency.



ii

TABU- OF CONTENTS

No. Page

Abstract
iil

1. Introduction
1

2. Current Computer Communication Networks 3

2.1 Introduction and History 3

t. The ARPA Network 4

2 . 1 The Aloha System 4

'.4 Satellite Computer Comnunications 5

3. Proposals for Computer Communications Via Satellite
7

4. Influence of User Characteristics on the Implementation

of the Packet Reservation Access Metnod 11

5. Implementation of Roberts' Packet Reservation Scheme 13

5.1 Data Formats 13

5.2 Hardware Functions 21

5.3 Message Transfer From a Host to its SIMP 24

5.4 Packet Receipt and Acknowledgment. 26

5.5 SIMP to SIMI) Transmissions Via the Satellite 31

5.6 Overall Control 49

6. References



111

AI RACT

This memorandum designs network control software for a computer

network in which some nodes are linked by a communications satellite

channol. We assune that the network has an ARPANET-like configuration;

that is. that specialized processors at each node are responsible

for message switching and network control. Therefore, the task we

undertake is to desinn the software for these yrocessors. The purpose

of the control software is to oversee network envrations -- for

exampl, to keep track of wssage queues and sw' 1,ing functions, to

tag messaoes with addresses and insure that they rive error-free,

and to avoid disruption of network functions wher- a node or communica-

tiols line is inoperative.

The objective of this work is to Produce a software desi,Tin which

both efficiently uses the network cummudication resources and is

attractive to users. To achieve the goal of efficiency, we implement

the packet reservation scheme for computer communication by satellite,

the most efficient of a number of methods for dynamically allocatcng

tine on a ':,aLellit.e channel. To gain the objective of attractiveness,

we design control software which makes network operations essentially

I nvisible to the user.



1. Introduction

Satellite communications among computer installations may find a

wealth of applications. It may be justified wherever computer instalia7

tions, spread widely in location, need to communicate. This need ma/

exist if the computer installations are operated by a multi-national firm,

or the computers must access a data base so large that it would be imprac-

tical to duplicate at each installation. Computer communications by

satellite or other means also allows a general-purpose, or a small ,

computer installation occasionally to tap the superior power of a special-

i2ed, or a large, computer.

To realize the potential benefits of satellite computer networking,

a number of design problems must be solved. The satellite communications

hardware design and the physical configuration of the network control

mechanisms and communications lines are examples, but careful design

cannot cease when these hardware configurations are specified. Control

software must also be designed, to oversee network switching functions,

to keep track of message queues, to tag messages with addresses, to insure

that messages arrive at their proper destinations in correct order and

without errors, and to keep a running tabulation of inoperative network

nodes or communication lines.

The software determines, to a great extent, both the cost effectiveness

of the. computer communications network and its attractiveness to users.

To make the network run at maximum efficiency - minimum cost - the control

software must make maximum use of its communications lines. It should

avoid inordinate delays in operation because of failure of a network node

or of a communication line. Moreover, the control operation should be

fast, without an unnecessary overhead of control signals among nodes.

This last point is especially important in satellite networks, in which

A "6



2

d node-to-no,.:e communication may spend a quarter of a second in transit -

a very long time in computer terms.

Attractiveness to users, as stated, is a second design criterion for

network control software. To be more specific, the network control mech-

anism which is ideal from the user's point of view should make the networks

"transparent" to the computers it serves. That is, programmers should

have to do no more work to use the network than they do in employing any

input-output device.

It is the purpose of this memorandum to propose a satellite computer

network control software design to satisfy these constraints. To insure

that the software is designed for a realistic network configuration, the

memorandum "Iriefly reviews existing computer networks, and it investigates

a series of proposals for satellite computer communications schemes. In

addition, it discusses example user characteristics which determine the

choice of one of these schemes, because user characteristics set the

criteria which the network must satisfy. We choose, after these prelimi-

nary considerations, to implement one such scheme, originally proposed

by Roberts [III. The body of the paper then presents a detailed proposal

for a control software finplementation of Robert's satellite computer

coimnunication



Current computer Communication Networks

2.1 Introduction and History

In the past few years, operating computer communication networks

have proliferated. Computer networks serve many purposes: 1) timesharing

systems and remote job entry; Tymnet and lnfonet (1) are two examples,

2) inquiry !ystems; the most common examoles are the airline reservation

systems, 31 database sharing and cents ed processing of data; this

function is often done by large corporations, and 4) resource sharing;

many nets which connect university computer facilities have this purpose.

Computer networks care projected to grow at an accelerating rate.

from 19/2 to 1973, U.S. data communication expenditures increased 27;;, to

a total of S1.45 billion. The projected expenditure by 1980 is $70 billion

(1). This fantastic market potential has encouraged continued research

in all the areas involved: software, hardware, and communication techniques.

The first computer networks relied upon dial-up or leased telephone

lines for communication. Voice lines' slow data rate, coupled with d high

error rate, led to the improvement of colmon carrier facilities. Higher

bandwidth lines and microwave links are now available from AT&T and several

competitors. More s4histicated hardware, such as moderns and data concen-

trators, improve the reliability and capacity of computer networks.

Sophistication in communication techniques specifically for computers

has kept pace with the improvement in hardware. For example, a significant

new communication technique for computer networks is packet-switching (2).

Replacing the telephone system's traditional line switching, packet-switching

is a network control technique suited to computers' short duration, high

data rate communications, rather than to the slow, long-lasting connections

made on the voice circuits.

8



The ARPA Network

Packet-switching way originally implemented in the ARPA network by

the Advanced Research Projects Agency of the Department of Defense. The

ARPANET currently (1974) connects 36 diverse computer centers, geographi-

cally spread from MIT to UCLA. The net include nineteen different models

of computer, so that the network has had to he designed to handle dis-

parate operating systems, word si7es, operating speeds, interface hardware,

etc.

The solution to the problem of users with nonuniform characteristics

has been to connect each host computer to a minicomputer, called the

Interface Message Processor (IMP). Host-dependent peculiarities only

affect the individual host-IMP interface. All network message routing

and protocol is handled uniformly between IMP's, independent of their

host computers.

The IMP's aro interconnected as a distributed network; i.e., every

IMP is not directly connected to every other IMP, nor are they all con-

nected to a central site as in a star network. Routing tables are

maintained within each IMP, which specify possible paths from IMP to IMP

to reach the desired destination. These tables are periodically updated

to reflect congestion at an IMP, out-of-service IMP's or hosts, etc.

After a host passes a message to its IMP, the IMP breaks the message

up into fixed-length packets, and sends the packets out into the net,

one by one. Each IMP along the route stores the packet until it receives

an acknowledgement from the next IMP in the path. The destination IMP

reassembles these packets as they arrive, and then passes the complete

message to its host (3).

?.3 The Aloha System

Another innovative method for'computer comumnication is the Aloha

System, developed by the University of Hawaii. Although the Aloha System

4



5

is not a laroo-scalo mject like the ARPANET, it has been the basis for

much of the {lesion thikino done for satellite computer comunications.

The Aloha ";ystem uses message packet!: like the ARBANET. Since there

are tow to lifkr. hetwefqi the Hawaiian Islands, however, the packets

are sent Icy a radio transmitter trem time%harinq user terminals to the

main University computer'.,

The user tenoinals are not synchronized, nor are they coordinated by

extensive "handsha:ing" as in the ARPANIT. Each terminal can transmit at

will. If several do transmit at the same time, the packets will overlap

at the receiver, and are said to be blocked. Blocking is detected with a

cyclic check sum scheme, and Hocked packets are not acknowledged. After

a random time delay, each user terminal will automatically retransmit any

unacknowledged packets. (4)

.4 Satellite Computer Communications

The logical extension of radio transvission of data was to consider

how cominication satellites might be used for computer communications.

The cost of satellite channels has been decreasing steadily, and their

use for television and telephone service has been well established. If

the estimate of 2.5 million terminals in the Unif.:ed States by 1980 is

correct, the load on the current telephone system will be severe (5).

Redundant lines erected across the country by private enterprises are

probably a costly and inefficient solution. Satellites might lessen the

load; satellite communication costs, unlike ground lines, are independent

of distance. Recognizing this fact, Western Union, American Satellite

:orp., RCA, Western Tele-Communications Inc., MCI Communications Corp.,

and Lockeed Aircraft Corp. all applied to the FCC to operate communication

satellite systems (6). Western Union, with an operating satellite, and

RCA, with a launch planned in 1976, are well on the way.



The Aloha ';y.;tem described earlier is currently connected to the

Oniversity ol Alw.ka via t,IASA'.. ATS-1 satellite, and to Ames Research

(enter in California via COMSAT'Intelsat IV on an experimental basis (7).

The AUNT] is also proposing to use satellite links to decrease

cost while inLreasing speed and capacity. rheir 50 kilobit/sec 1.!ased

lines kost S1,200,000 per year (January, 1973), with a capacity of 300

million packets per month. They estimate that the satellite links would

(ost between S1 and 53 million per year, with a capacity of 1500 million

;1,1(kets per month (8).

te



i. Proposals for Computer C9munications Via Satellite

Someone once said that a satellite should not be thought of as just

".1 big cable in the sky". (9) Although data could he sent over the existing

satellite telephone channels, much as if these lines were in fact cables

stretching from point to point, inherent properties of the satellite

communications channel might make a new approach desirable. Satellite

channels can be designed for a much greater capacity and higher transmis-

sion rate than existing common carrier lines. Secondly, the cost of

satellite transmission is independent of the distance between the sender

and receiver. Thirdly, satellite broadcasts jmultanenusly to all

oroundstations; transmission ic not point -to-point. This property allows

the transmission of common data to several computers simultaneously (10) .

However, there is d major problem in using satellite channels for

computer communications. Since communications satellite maintain a geo-

synchronous orbit 36,000 km. from the Earth's center, all messages arrive

at their destination approximately 1/4 second after they are sent (8).

This propagation delay up to the satellite and back down again is not

important for voice traffic. However, most modems and line protocols

are not designed to expect a delay of that, magnitude. The delay causes

other problems, too, such as incrcsing the amount of buffer space required

for messages, in case one of them has to he retransmitted.

Assuming that the benefits outweigh the disadvantages, the next step

is to determine a communication scheme which best utilizes the satellite

channel. Although SPADE and MAT-1 are sophisticated access systems for

telephone connections via satellite, they are not suited to data traffic,

which does not have the same statistics as voice traffic (11). Therefore,

new methods, tailored to computer requirements, have been sought.



The first; schemes suggestedand roje(tedwere Time Division Multiple

Access (TDMA) and Frequency Division Multiple A(cess (FDMA) . For a

given channel bandwidth, TDMA allows a high burst cage rate, while FDMA

gives a lower, but continuous rate (1?). However, both schemes have the

disadvantage that time slots (TWA) or carrier frequencies (FDMA) must be

preassigned to specific ground stations. Such a fixed allocation scheme

can result in wasted channel capacity; station A may have a large message

queue waiting to be transmitted, while station B's slots or preassigned

channels are empty.

The Aloha System's technique for multiple accessAny station can

transmit at any tineis a dynamic, rather than fixed, allocation scheme.

It does give all stations with treffic dn equal chance at the channel.

Unfortunately, blocking becomes a major problem if there are many users

(13).

Some improvement is obtained with the "slotted Aloha" system. Time

slots are defined, but any station can attempt to use any slot. Even with

this method, only 37 of the channel capacity can be used before colli-

sions become excessive (13), and it has the disadvantage relative to

"pure" Aloha that synchronization of all transmitting stations is required.

Another modification suggested by Bolt, Deranek, and Newman , is

called the UR1' Aloha system. In their scheme, once a station has success-

fully claimed a time slot, it can use that same slot, uncontested, in

every cycle thereafter. When that station is done transmitting, the slot

is again "up for grabs". The major problem with this method is that one

or two heavy users could claim almost all the slots, and other stations

would be forced to wait an unacceptable amount of time before gaining

access to the channel (14).



In dune, 19/3, Dr. Lawrence Roberts described another plan in a paper

presented at the National Computer Conference. Called "Dynamic Allocation

of Satellite Capacity Through Packet Reservation", it seems to offer a

more satisfactory method of allocation for computer traffic than any of

the other techniques discussed (11) . With thi method, a ground station

can reserve contiguous time slots in which to triAismit a message. This

is accomplished by defining a time slot cycle, which consists of several

long time slots, followed by a long slot subdivided into short slots. The

station first transmits a reservation during a short slot. The reserva-

tion gives the station's ID and the number of long slots to be reserved.

Al: other ground stations record and honor the reservation. The station

then transmits the message itself, using the long time slots set aside

for it.

There are several advantages to this system. First, the short reser-

vation slots are accessed as in the Aloha system, so every station desiring

to transmit ha; an equal chance at the channel. Secondly, although

collisions will occur while making reservations, the entire message will

he transmitted without interruption. Thus the channel is unblocked most

of the time, so a much larger percentage of the channel capacity can be

used. However, a disadvantage which may be important is the increased

delay before sending the message. A schematic of the procedure is shown

in Figure 1.

9
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4. Influence of User Characteristics on the Implementation of the Packet

Reservation kce,.s Method

Refore a --mftware implementation of the packet reservation scheme can

be designed, some consideration must be given to identifying the poten-

tial users of the system, and examining their requirements.

As stated earlier, because satellite conuunication cost is independent

of distances, users most likely to find it cost effective are those with

widely scattered installations. There are many applications which have

a long distance computer communications requirement. For instance, large

world-wide corporations which gather data at their headquarters, banks

which transfer funds throughout the world, and offices of the travel

industry, which must process airline, tour, and hotel reservations, are

all potential customers.

Government agencies also transmit a vast amount of data great dis-

tances. For example, hundreds of millions of bits per day of raw data

from weather satellites, the Earth Resources Technology satellite, and

from manned space flights are now transmitted to ground stations in Canada,

Brazil, Australia, Spain, Alaska, Maryland, and Virginia. The data is

later collected and processed in Texas, California, or Maryland (15).

Universities are considering resource sharing on an international

hasir. A project is currently being studied to connect university com-

puters in Japan, Australia, Hawaii, and the mainland U.S. with those in

eastern Asia and the South Pacific (7).

These applications suggest several constraints on the software imple-

mentation of channel access. First of all, the software should be as

independent as possible of any specific computer hardware. This independence

can be achieved to some degree by using IMP'S (or SIMP's, for satellite

IMP).
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A second factor in the software design is whether each network will

lease an entire channel, or if each channel will be shared by a variety

of users as their needs die tote. A network with its own satellite channel

could pick its own packet format and nPel protocol. The shared channel

situation is more likely, however, !,ince few applications could keep the

channel busy with continuous computer transmissions. A shared channel

being used as a common carrier by many networks must have a much more

general protocol and format.

A third complication which should be considered in the software design

is whether or not all the nodes of a given network are ground stations.

rhey iliay not all be, for instance, if two existing ground networks are

connected via a satellite link. In that case , one localized ground network

might route all its long distance messages to a single ground station.

After traversing the satellite link, the messages would be distributed

from the receiving ground station to the other land network. This implies

that the packet format, etc., must work equally well for either ground or

satellite links of a network.

Two otkIr, objectives of the implementation--obvious, but important--

are system reliability, and high throughput for all users.

With these objectives in mind, the details of the implementation can

he tack led.
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5. Implementation of Roberts Packet Reservation Scheme

To implement. Roberts' pocket reservation system, this paper proposes

an ARPA-like philosophy in which SIMPs (satellite IMPS) are used as the

message handlers. In an operation whiA is transparent to the host com-

puter, a SIMP accepts messages from its hosts, breaks them into packets,

reserves slots for them on the channel, transmits the packets, and ascertains

that they were received correctly. At the other end, a SIMP receives the

packets, cowbines them back into a complete message, and passes the message

on to its host. Although the host-SIMP interfaces may vary, the satellite

accessing portion of all the SIMPs are identical.

Those aspects of Roberts' original paper which were developed speci-

fically to be used in conjunction with the existing ARPANET have been

ignored or changed, in some cases. The implementation presented here is

for use of the satellite channel as a common carrier, available to any

network.

5.1 Data Formats

The first item to be specified in this plan is the messace packet

format. Figure 2 shows a possible format. The packet consists of a header

portion, and a text portion, with cyclic checksums for each. The header

must contain an identification of the source and destination of the packet.

To decrease the probability of a lost or duplicate packet, it is also

desirable to include a message and packet number in the header. R limiting

the number of ground stations using a given channel to 255, add the maxi-

mum number of packets per message to 16, the packet header site can be

32 bits:

8 bits destination
8 bits source
4 bits packet type code

8 bits message number

4 bits packet number



COP1 MIME

Text

CI!ock^iim

Figure 2. Possible Message Picket Format

14
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The packet type code will be described later. Message and packet numbers

are assigned sequentially by the SIMP sending the message.

The source and destination number; normally specify the host computer

from which the parket was sent, or for which it i s intended. When the

host is in a dround net, however, 1 "gateway" computer into the net should

be specified instead. This removes the burdens of local (a: opposed to

satellite) protocol from the IMP. Three possible network configurations

are shown in Figure 3. Notice also that, because the SIMP removes the

packet's satellite header, network headers must be placed in the text

portion of the packet, as shown in Figure 4. By giving a destination

number of 255 (all ones), a packet can be directed to all SIMPs simultaneously.

A universal set of control characters for use between SIMPs must be

agreed upon for such things as "start of satellite header", "end of trans-

mission", and the like. Currently, there is no standard; EOT in EBCDIC

is 00011011, whereas in AS it is 00000100 (16).

The text portion of the packet can contain anything. Its contents

are not examined by the SIMPs.

Since the packet reservation method uses both large and small channel

slots, a small slot packet format must also be designed. Roberts uses

small packets of 24 bits for reservations and acknowledgements. The

implementation presented here has found it useful to use 32 bits, and to

define four new types of small packets: request for status, response for

status, request for queue length, and response for queue length.

The request for status packet will be sent by one SIMP to another,

if it has been waiting an excessive amount of time for either an acknow-

ledgement or more packets within a given message from that SIMP. If the

second SIMP is still operating, it should reply with a response to status

packet. Obviously, if it is not operating, it will not send a response.

::11 Ark
It. %J
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A. Ail Nodes Are Ground Stations
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C. SIMP Handles Multiple Hosts And/Or Ground Nets

Figure 3. Possible Satellite Computer Network Configurations
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The response to status packets can also be used without a prior

request. By specifying a destination number of 255, a SIMP can send a

response to status packet to all the other SIMPs, to inform that a host

is down (for maintenance, etc), or that one formerly down is now back up.

The request for queue length packets may be needed when a SIMP first

tries to gain access to the satellite channel. If several SIMPs are already

transmitting on the channel, the newcomer has no way of knowing how many

slots they have already reserved. Since all operating SIMPs keep a running

account of the reserved queue length, any of them could answer with a

response to queue length packet. For this implementation however, we

assume that a particular SIMP has been assigned to transmit the answer.

The formats of the small packets are shown in Figure 5. They have

only a header, no text. The packet type codes (bits 17-20) which identify

them are given in Figure 6.

Each packet, whether large or small, is preceeded by an 80 bit

synchronization pattern. This is a standard way to prepare the hardware

to recognize the data. It is used, for example, in IBM's bisynchronous

communication (BSC). The sync pattern also serves as a buffer zone, in

case the packet is not transmitted at exactly the nominal time. This is

important because the ground stations are not all equidistant from the

satellite, and transmission times vary.

Based on the design outlined, the total size of a large packet is

1350 bits: 80 for synchronization, 24 for each of the checksums, 32 for

the header, and 1190 for text and control characters. The small packets

are 248 bits. Although the header and checksum lengths add up to only

56 bits, the information in the small packets is important enough to

successful operation of the system that three copies of them are sent

to cube the probability of error (8). The additional 80 bits is for the
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PacketCode

0000 Large Message Packet

0001 Reservation

0010 PositivP Ac%nowledgrnent

0011 tli Acknowldgment

num Request For !Itatun

0101 7?esponse To ritatus

0110 Runup For On Tpri6th

0111 Resclowle To Queue Length

Figure 6. Packet Type Codes

20
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sync pattern. Using these packet lengths, one large time slot can be

divided into five small slots. The resulting chlnnel access patter is

five long slots, followed by five short slots, as shown in Figure 7.

Assuming a 50,000 bit/sec rate, a long slot is .027 seconds, and one

pattern is .162 seconds.

The format of the data passed between a SIMP and its host must also

be defined. Very few conventions are needed. Uniform control characters

are not required, since the I/O routine bet seen the SIMP and host is host-

dependent, and will recognize those used by the host. Synchronization

patterns are not necessary, either. Transmission can be done in start-

stop mode, character by character. Using start-stop mode with the host

allow; the SIMP to respond more quickly to an interrupt from the satellite,

withowc. losing data. Finally, the host does not have to worry about word

size. The SIMP will pack and unpack characters if necessary. The only

restriction on data between a SIMP and host is the message length. The

satellite header format already chosen limits the length of a message to

16 packets. Therefore, the host must create messages < 19,000 bits long.

The first 8 bits must be the destination number, so that the SIMP can

create the appropriate header.

5.2 Hardware Functions

With the Ast-SIMP and SIMP -satellite data formats defined, the next

step is to determine how the data will be manipulated. Most of the pro-

cessing will be done by software, but several functions can be simplified

or completely accomplished by hardware. For this implementation, we have

designated hardware to do the following:

1) Insert and remove checksums
2) Transfer data from the SIMP's memory to the transmitter

3) Transfer data from the receiver into memory
4) Identify packets to be processed by this SIMP
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Olecksum hardware, item (1), is very common. In this ka.,c :t must

be designed to insert a checksum after every ESH and LOT control character.

On the receiving end, it has to recompute the checksum. Unlike some ground

networks, the checksum hardware cannot send back the ACK or NAY itself

Instead, all acknowledgements must be formatted into small packets, and

only transmitted during short time slots. Therefore, it is mc,sumed in

this implementation that the checksum hardware appends a flag to the end

of the header and text portions, indicating whether or not an error Was

detected. The SIMP will check the flag before using the data.

Items (2) and (3) in the list above were necessary since the SIMP

may be sending and receiving packets simultaneously. At the time a SIMP

makes a reservation, it does not know if another SIMP will be sending it

packets during its transmit time. By having direct memory access (DMA) in the

SIMP, nearly automatic transfers of data to the transmitter and in from the

receiver can he realized. This will be discussed further in Section 5.5.

Item (4) becomes more of a necessity if bit rates across the satel-

lite link are high. Recall that the satellite broadcasts every packet to

SIMP. At a 50K bit/sec rate, with a full channel, a packet will arrive

at each SIMP every .027 seconds. Although a SIMP may be able to handle

all packet processing fast enough, it is a waste of computer power for

a SIMP to receive, examine, and then discard packets not intended for

it. IAtead, the receiver hardware could be designed to pass on to

the SIMP only those packets destined for one of its hosts, as shown by

the destination field in the header.

This approach works well for the long packets, but is not appropriate

for the short packets. Every SIMP must listen to the reservations made

by others, and to responses to status packets. In addition, a SIMP has

to listen to the echo back from the satellite of every short packet it
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sent, to check for blocking. These packets have the SIMP's ID in the

source field of the header, rather that in the destination field.

To handle this problem, it is very convenient to have the satellite

itself send out a timing signal every .162 seconds, to signify the beginning

of the group of short time slots. This timing signal will keep everyone

synchronized, reset the receiver to non-selective mode, and will cause

an interrupt in the software. The software can later put the receiver

back into selective mode.

5.3 Message Transfer From a Host to its SIMP

With the data formats and special hardware defined, the design of

the software itself can begin. The first function a SIMP has to perform

is to accept messages from its hosts and format them into packets. The

SIMP polls each host in turn, to see if any of them have data to be

transmitted. If one of them does, the SIMP stops polling, and prepares

to read in the data from the host.

Figure 8 shows the data structure whkh is used as messages from

the host are being assembled into packets. The assembly header cells

are always present, with one for each host. The blocks of core used to

store the packets are obtained one at a time, as needed, from an availa-

ble space list (ASL). Since the data is transferred character by character,

a field is alaintained listing the number of bits stored so far in the

last packet.

Before the SIMP reads in any characters from the host, it must deter-

mine if the data will begin a new message (indicated by a null forward

pointer for the host's assembly header cell), or if it is more of a

partially assembled message. If it begins a new message, the SIMP must

get a block of core from the ASL, assign the next sequential message

number, and format the satellite header. This will be packet number zero

of the message. Then data can be moved into the text portion. As a

29
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packet is filled, another block of core must be added to the list. This

packet will get the same header, except for the packet number field,

which increases by one.

The SIMP will continue to read in data from this host until 1) the

(AMP ha; read in the entire message (recall that there is a maximum allow-

able length) or 1 an interrupt o(cus (usually from the satellite).

When the SIMP again resumes servicing the hosts, it does not begin where

it left off, even if it was in the middle of a message. Instead, it polls

again, starting at the next entry in the polling list, following the one

it serviced the last time. In this way, each host should get approximately

equal service. If one host requires priority service, its address can

appear several times in the polling list, so its turn occurs more frequently.

When an entire message has been converted to a string of packets,

the last packet header is marked by setting the leftmost bit of its

message number field to a one. The packets are then ready to be transmitted

over the satellite channel. Transmission is described in Section 5.5.

5.4 Packet Receipt and Acknowledgment

Ignoring for the moment how the packets are sent over the satellite

channel, this section discusses what happens to the packets once they

arrive at the other end. Basically, the receiving SIMP will read in the

packets, strip off the satellite headers, assemble the text back into a

message, and pass the message to the destination host.

As each packet arrives, the first thing the SIMP must do is examine

the checksum flag to see if the packet arrived without error. In the

original ARPANET, every packet is acknowledged with either an ACK or NAK.

This is impossible with the satellite channel as we have designed it.

For instance, if all five large slots contained packets, then all five

small slots would be required for their acknowledgments. There would

rI4



be no small slots available for making reservations, etc. Instead, it

seems more efficient for the receiving SIMP to send only a single positive

acknowledgment after the entire message, to show that it was received

correctly.

A PAK, however, can be sent as soon as an error condition is detected

in one of the packets. There is no reason to wait until the last packet

has been received. There are several conditions which result in a NAK:

1) a checksum error, or 2) an out-of-sequence message or packet number,

or 3) a long time interval since the last packet of an incomplete message

ar-ived. This third condition is not necessarily an error, if the channel

is very busy. However, it could also indicate a breakdown at the sending

SIMP, or a checksum error in the satellite header such that the receiver

hardware, in selective mode, did not recognize the destination field.

Due to the long time delay when returning acknowledgments, other

packets of the same message may arrive after the bad one. Consider

Figure 9. Assume a SIMI' begins transmitting an 8-packet message at time

A. The receiving SIMP sees it at time B, and detects an error in the

third packet at time C. Since acknowledgments require small slots, the

NAK cannot be sent until time D. By the time it is finally received,

at E, the rest of the message has already been sent.

A decision has to he made as to what to do with the later packets,

numbers 3 through 7. The SIMP could add them to the string of packets,

with a flag set to show that the message is waiting for a packet to be

retransmitted. That retransmission could take a long time, though, and

the later packets will be tying up core until it arrives. Also, the

processing becomes more cumbersome if several packets are missing, say

3, 4, and 7. Each time a retransmitted packet does arrive, the whole

string must be checked to see if the error flag can be removed yet, or

27
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if there are still some missing. For these reasons, and because frequent

large packet xansmission errors are unlikely, (for a typical bit error

rate of 10
-7

, errors will occur every 10,000 packets or so), this imple-

mentation chooses instead to have the receiving SIMP save the correct

packets received before the erroneous one, but throw away any packets (of

the same message) which arrive after it. When the sending SIMP receives

the NAK, it will retransmit all the packets with numbers greater than or

equal to the packet number given in the NAK (see Figure 5 for the NAK

packet format).

Figure 10 shows the data structure used to reassemble packets into

messages. There is a permanent header cell for each host. Since a given

host might be receiving messages from several different sources, secondary

header cells, one per source, are also included. These secondary headers

are not permanent; they only exist while packets are being collected.

The message number and source fields are self-explanatory. The packet

number field contains the last number received. The status field can

have two values; a zero means everything is OK. A one means a NAK has

been sent for the packet number given in the number field, and no later

packets are to be added to the string. When the retransmitted copy of

that packet is received, the status bit will be changed back to a zero.

The time field is used to detect an excessive delay since the last packet

arrived. The timer field initially has a value of zero. Periodically,

a utility program adds one to it. The count will continue to accumulate

until another packet is received, at which time it is again reset to

zero. If the count ever reaches a maximum value, the status bit is set

to one, a NAK is sent out, and a request for status packet is also

transmitted to the sending SIMP.

1
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When all packets comprisinq a message have been received, they are

moved to the "sent to ho t" list, shown in Figure 11. The secondary

header cell is returned to the ASL. Transmission to the host is done

character by character, so a field indicating the next character to be

sent is maintained. The satellite header portion is not sent to the host.

It could have been discarded earlier, but then two sizes of core blocks

would be needed on available space lists, and the extra 32 bits is not

really significant.

5.5 SIMP to SIMP Transmissions via the Satellite

The SIMP-host and host-SIMP interfaces have been described in the

preceeding sections. We will now address the SIMP-to-SIMP transmission

via the satellite.

Consider again the sending SIMP. It has read in a message from a

host, and formatted it as a string of packets. This completed string is

ready for transmission. It is desirable that the packets be sent right

away. However, under some circumstances to be discussed later, there

may be a delay.

When the packets can be sent right away, they are delinked from the

host's assembly header cell, and linked to the end of the "ready to be

transmitted" list, shown in Figure 12. It is from the front of this list

that the SIMP gets packets to transmit. After the SIMP sends a packet,

the packet is moved from the "ready to be transmitted" list to the "waiting

for an acknowledgment" list. The acknowledgment header cells, shown in

Figure 13, are not fixed. The destination fields are filled in as needed.

When the packets cannot be sent right away, it could be for either

of two reasons: 1) the previous message has not been acknowledged, or

2) the destination host or SIMP is down.

4 s
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Recall that in Section 5.4 we decided to throw away any packets in

a message which followed an erroneous packet. Unfortunately, this deci-

sion also implies that if message 1 had an error, and if a second message

from the same source and for the same destination was sent before the NAK

was received, the second message would also have to be thrown away. Other-

wise, the destination host would yet the messages in the wrong order.

This reordering would cause a serious problem, because the messages could

be portions of sequential file or computer program. Since the packet

satellite headers containing the sequence numbers are stripped off by

the SIMP, the host would never know of the inversion. It is conceivable

that the receiving SIMP cou7d save message 2 until message 1 has been

retransmitted, but as Figure 14 shows, the problem can soon'snowball.

A more reasonable solution is not to let the sending SIMP transmit

the second message until it has received a positive acknowledgment for

the first one. This can be done by linking the packets of the second

message to the acknowledgment header on whose completion they are waiting

(shown in Figure 13), instead of attaching them to the "ready to be trans-

mitted" list. They will stay there until the previous message has been

positively acknowledged. Then the waiting string of packets will be

transferred to the "ready to be transmitted" list. (The acknowledged

packets are returned to the ASL).

If too many messages are waiting at the sending SIMP, the SIMP can

temporarily discontinue polling its hosts for new messages until the

backlog is cleared out. (Note that this wait is only required if several

messages are from the same source to the same destination. There is no

delay for packets to a different destination.)

$ The second condition under which packets would not be sent right

away is if the destination host (or SIMP) is down. This condition could

413
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be recognized by keeping a Host Status Table (HST), Figure 15. This table

would have two bits for every possible destination. A value of zero means

the host is up and operating properly. A value of one means the host is

down. A value of two means the status of the host is unknown.

Before moving a string of packets to the "ready to be transmitted"

list, the SIMP would examine the HST entry for the destination host. If

it is zero, the SIMP moves the packets. If it is one, the SIMP releases

the packets to the ASL, and sends an indicator to the source host. If

the HST entry is two, the packets are temporarily linked to the "waiting

for an acknowledgment" list, as in the previous example. In addition,

a request for status packet is created and sent out. If and when a

response to status is received, the packet string is handled as described

above. If no answer is received within a specified amount of time, the

HST entry is set to one, and the packets are returned to, the ASL.

Before packets on the "ready to be transmitted" list can be sent

to their destination via the satellite, the SIMP must make a reservation

for them. Recall that reservations are made by transmitting a reservation

packet during a short time slot. Also recall that no more than eight

large slots can be reserved by Iny given reservation packet. If two SIMPs

both try to use the same small ;lot for their reservation packets, both

reservations are blocked and must be retransmitted.

Under worst-case conditions, blocking can cause a very long time

delay between the initial attempt and final success in reserving large

slots, and it can be a source of confusion in reservation handling design

for the SIMP. Consider the example given in Figure 16. At time A, a

string of six packets (message 1) is moved to the "ready to be transmitted"

list. At timc 5, the SIMP sends out a reservation for six large slots.

At time C, four more packets (message 2) are also moved to the "ready to
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be transmitted" list, so at time D the SIMP sends out another reservation,

this one for four slots= .At time E, the SIMP finds that the first reser-

vation was blocked and must be retransmitted. This it does at time F.

No slots are reserved as yet. At time G, however, the. SIMP determines

that the second reservation was transmitted without interference, so four

slots are now reserved for this SIMP. Although the second reservation

was originally intended for message 2, messages cannot be sent out of

order. So beginning at time H, the first four packets of message 1 will

be transmitted. If no more blocking has occurred, the other six slots

are reserved at time I. The last two packets of message 1 and all four

packets of message 2 will be transmitted starting at time J.

To keep this sequence of events unscrambled in the software implemen-

tation, two linked lists containing reservations are required. The first

is the "small packets to be transmitted" list. Reservation packets on

this list are waiting to be transmitted. The second list is the "pending

small packet" list. Small packets on this list, including reservations,

have been transmitted. but the SIMP does not yet know if they will be

blocked. The order of the packets in the list is the same as the order

in which they were sent. Therefore, as each echo is received from the

satellite, the corresponding pending packet is either released to the ASL

(in the case of reservations, the reservation was successful), or it is

moved back onto the "small packets to be transmitted" list (if the small

packet/reserOtion was blocked and must be retransmitted). Figure 17

shows the two lists.

In some cases, the small slots can be used more economically if a

single reservation packet reserves large slots for several of the SIMPs

messages. For example, if three messages are ready to be transmitted,

three separate reservation packets (each requiring a small slot) will be

4.
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sent out. However, if the messages are only two packets long, a single

reservation for six packets would suffice.

This reservation consolidation can be done each time a reservation

packet is about to be added to the "small packets to be transmitted" list.

If the last reservation already on the list (if any) is requesting less

than eight slots, the new quantity being requested can be added to it. If

the sum is greater than eight, the first reservation should reserve eight

slots, and the second reservation should reserve the remaining slots. The

new reservation is now the last on the list, and can participate in the

next consolidation.

It is not enough simply to know that slots have been reserved; the

SIMP must also know when its slots occur. It derives this information

by maintaining a queue count, which tells how many large slots are cur-

rently reserved. The queue count is modified each time new reservations

are made, that is, as the echoes of the small slots arrive at the SIMP.

Small slot echoes fortunately arrive immediately after the satellite's

synchronization signal, mentioned in Section 5.2. Therefore, the interrupt

caused by this signal will be used by the software to initiate queue

updating.

Once the SIMP knows when its slots are, it must compute the correct

packet send times, so that the packets will arrive at the satellite during

those slots. Figure 18 illustrates the relationship of slot time to send

time. Satellite interrupts will occur at times A, 8, and C. If a reser-

vation is received after time A, and the queue count is zero, the SIMP's

slot will be at time E. The SIMP must send the packet at time 0 for it

to arrive at the satellite at time E.

The time it takes a packet to travel from the SIMP to the satellite

is a constant for a given SIMP. It varies between SIMPs, however, depending
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on the geographical location of the SIMP with respect to the satellite.

The Send Time Constant Table, shown in Figure 19contains times based

on the propagation time. The Send Time Constant Table will be used to

work backwards from the slot time to compute the send time.

Accuracy considerations require that a modular timekeeping procedure

be used by SIMPs. Representing the send times in the software as milli-

seconds past midnight, or hours, minutes, and seconds, would require a

very accurate 24 hour clock within the SIMP. Such a clock is not neces-

sary if a modular form for time is used instead.

SIMPs will count time in modules called "sets". A set is a group

of five contiguous large slots, as shown in Figure 18. Send times and

slot times can be specified in terms of the number of complete sets, and

the time within a partial set. For example, in Figure 18 the slot at

time E is one set plus .54 seconds (a partial set) from A. The clock

used for send time comparisons will only have to run from one synchroni-

zation signal to the next.

The required send times, in this modular form, can be stored in the

Send Time Table shown in Figure 20. This table is a circular list with

an IN pointer (which tells where to put the next entry), and an OUT pointer

(which shows the next entry to be compared against the clock). As slot

reservations are made, the SIMP calculates the send times needed to use

those slots. Then one entry is made in the table for each slot. (One

entry per large slot reserved eliminates the problem of knowing when to

skip over the small slots. That problem would arise if only the start

time and reservation quantity were stored.)

The algorithm for calculating the required send times and updating

the queue count is given below. In it, the next available slot (which

is also reachable at this time) is computed first, in terms of complete

-10
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sets and a slot number within a partial set. The slot number within

partial set is used as an index into the Send Time Constant Table. The

set increment from the Constant Table is applied to the first available

slot's complete set count, to give the number of complete sets until the

send time. The time within a partial set from the Constant Table can be

used directly; it is the partial set send time.

If more than one slot was reserved, the complet calculation is only

needed for the first slot. After that, the send times for the others

are generated by simply indexing through the Send Time Constant Table.

The large slot send time calculation algorithm is:

1. Set N = number of slots reserved by this reservation.

2. Set COUNT = 0.

3. Set QCNT = current queue count.

4. If QCNT<5, set QCNT = 5.

5. Set WORKQ = QCNT + 1 (gives the next available large slot
reachable at this time).

6. Calculate the number of complete sets until the next available

large slot:

S = [WORKQ
1

51
-quotient

7. Calculate the slot number within a partial set:

I = [WORM
rerd ainderll

3. Get the Ith entry from the Send Time Constant Table, namely
the set increment (I), and the time within a set(I).

9. Compute S' = S + set increment(I).

10. Store S' in the number of sets column of the Send Time Table,
at entry IN.

11. Store the time within a set(I) in the Send Time Table, also at
entry IN.

12. Set IN = IN + 1. If IN points past the end of the Send Time
Table, set IN = 1.

13. Set I m I + 1.

14. Set COUNT = COUNT + 1.

15. If COUNT = N, go to step 16. Otherwise go to step 8.
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16. QCNT = QCNT + N. Stop.

A SIMP only needs to compute and save the send times of its own slots.

Its queue count, however, must include everyone's slots. The algorithm

for updating the current queue count, QCNT, after someone else makes a

reservation is:

1. Set N = number of slots reserved by the reservation.

2. If QCNT <S, set QCNT = 5.

3. Compute the new queue count as

QCNT = QCNT + N.

4. Stop.

To reflect elapsed time, four things occur when the satellite's

synchronization signal interrupts the SIMP:

1) The clock in the SIMP is reset to zero.

2) One is subtracted from two special registers (described below).

3) Five is subtracted from the current queue count to account for

packets that were sent during the last cycle. If the result is

less than zero, it is set to zero.

4) One is subtracted from every non-zero set count in the Send Time

Table.

After these four things have been done, any new reservations arriving

in the small slots are added to the Send Time Table and/or the queue count.

The procedure to transmit a large packet can now be outlined. The

description assumes that there is a special register whose contents are

automatically compared against the clock. When the register value equals

the clock value, an interrupt is generated.

The SIMP loads the special register with the Send Time Table entry

point to by the OUT pointer. If the set count is not equal to zero, it

will not match the clock, which, because it is reset with every synchro

nization signal (step 1 above), counts time within a set. As each set
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goes by, the set count in the special register will be decremented by

one (step 2 above). When the clock and the special register are equal,

the SIMP will process the resulting interrupt by initiating the DMA to

send out the first packet on the "ready to be transmitted" list. It will

then increment the OUT pointer and reload the special register. The SIMP

is then free to return to its previous function until the DMA transfer is

complete. At that time the SIMP must move the packet to the "waiting

for an acknowledgment" list. When it is time to send out the next packet,

another interrupt will occur.

Throughout this discussion we have only indicated how the send times

for large slots are calculated. The send time for small slots must be

computed, also. For three reasons, it is not convenient to put the small

slot send times in the same Send Time Table as those for large slots.

First of all, a flag wou'z be needed to tell which kind of packet to send.

Secondly, putting them both in the same table complicates the algorithm

for generating large slot send times, while still keeping the table in

order of increasing time. Thirdly, the send time for small packets does

not vary from set to set. To be included in the regular Send Time Table

would result in many redundant entries.

This implementation proposes using a second special register, like

the first, which is also compared against the clock. (Note tnat the two

special registers will never contain the same value.) For small slot

send time determination, the SIMP can use a Mini Send Time Table which

always has set counts of zero, and fixed send times. Only the OUT pointer

needs to be moved. (There is no IN pointer, since it is a constant table.)

See Figure 21.

A procedure similar to that for large slots is used for small packet

timing. The SIMP loads the second special register with a value from the

Ar.r11113,
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OUT

Complete
Sets

BEST COPY AVAILABLE

Time Wi thin
A Set

o .05911.

o .0702, ,

o .064.'1 , ',

0 0756 , ,

Figure 21. Mini Send Time Table
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Mini Table. When the interrupt occurs, the SIMP checks the "small packets

to be transmitted" list. If there is nothing on it, the SIMP reloads the

special register with the same value, without changing the OUT pointer.

That will cause it not to interrupt until the next set. Similarly, if

there is only one small packet waiting, the SIMP will initiate the DMA

to send it, but will reload the register without changing the pointer.

If more than one packet is waiting, however, the SIMP will increment the

OUT pointer, and will load a different value into the register after each

packet. This causes multiple interrupts during the set. Although there

are five small slots, so that five small packets could be sent out, block-

ing would be very probable if every SIMP wcre doing the same thing. It

seems better to limit each SIMP to two small slots, say, and also to

arrange their Mini Tables in a variety of orders, so the choices do not

always overlap.

5.6 Overall Control

Many types of processing have been described in the previous sections.

Still necessary is a controlling superstructure to insure that all thc

functions get performed at the proper times.

The major functions discussed so far can be divided into two groups,

those which are initiated by an interrupt, and those which are not:

Interrupt:Drivenjunctions Source of Interrupt

1. Prepare for small slots Satellite synchronization signal

2. Begin receiving a small packet Receiver gets data

3. Begin sending a small packet Clock matches special register

4. Begin receiving a large packet Receiver recognizes header destina-
tion field

5. Begin sending a large packet Clock matcheF special register

6. All data transferred in;
process the packet

DMA complete



7. All data transferred out; move DMA complete

the packet to another list

Non-Interrupt Functions

S. Poll hosts and read in data

9. Process a completed string of
formatted packets from a host

10. Send data to a host belonging
to the SIMP

11. Execute the utility routine
which identifies abnormal delays

Miscellaneous Non-Interrupt Function

12. Cold start procedure to initialize
header cells, the ASL, etc.

We now introduce the two programs which implethent the controlling

superstructure, a Master Schedules and an Express Scheduler. The Master

Scheduler (MS) will be in control duri:Ig long time slots. By referencing

a table of program starting addresses, the MS can initiate execution of

any of the non-interrupt function programs. When one of these function

programs begins execution, the first thing that program does is put its

identifier on a function stack. When the routine is finished, it takes

its identifier off the stack and returns control to the MS. The MS then

decides which program should execute next and starts it. Execution

continues in this manner until an interrupt occurs.

When an interrupt occurs, standard interrupt processing will begin

automatically. It is convenient to specify that the SIMPs have interrupt

hardware which puts PSW's on a stack. Therefore, the current PSW will

be stored on the PSW stack, a new PSW, containing the starting address

of an interrupt handler routine, will be loaded, and the interrupt handler

routine will begin execution. In the case of interrupts 2 through 7 in

the preceeding list, the interrupt handler routine will be the program
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which performs the function listed. Like the non-interrupt routines,

these also add and remove their identifiers from the function stack men-

tioned above.

The ETress Scheduler (ES), the second of the programs which form

the controlling superstructure, is the interrupt handler routine for the

satellite synchronization signal. Like any interrupt handler, it puts

ics identifier on the function stack when it starts, and will return control

to the MS when it is done. The ES retains control while short packets

are arriving at a SIMP. Since all five small slots may not have been

used, the ES will have to set a timer to know when the end of the short

slots is. It cannot just count five packets and then return control to

the MS.

The ES has several housekeeping chores. It is the routine which

puts the receiver hardware in non-selective mode and which decrements

all non-zero set counts in the '..yid Time Table. An additional task is

to add one to a utility count, whose purpose will be described below.

After the housekeeping is done, the ES sits in a wait state until a

small packet arrives. This wait could be considered a waste of computer

time if nothing arrives right away. However, the small slots are only

.0054 seconds long. When a small packet does arrive, as much time as

possible should be available to process it before the next packet arrives.

If a packet arrives before the housekeeping is done, it will interrupt

the ES. The housekeeping will be finished after the packet has been

processed.

When a small packet arrives, it interrupts the ES, causing it to

fall out of the wait state or temporarily suspend housekeeping. The ES

instead begins processing the packet, which includes the following deci-

sion process: Is this packet either from or for this SNP? If no, the
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ES just discards it, and resumes its previous processing until the next

packet arrives. If yes, the ES checks if the packet was blocked. For

blocked packets from this SIMP, the ES gives control to the retransmit

routine. For non-blocked packets for this SIMP, the ES checks the packet

type code, and transfers to the appropriate routine.

The processing for most small packet types is minimal, and should

be completed before the next packet arrives. Peservation packets, however,

might take more time. The routine which handles them can save all the

pertinent data, and finish the processing later after the last small slot.

All the small packet handling routines return control to the ES. After

the small-slot interval is ended and all the packets are processed, the

ES removes its identifier from the function stack and gives control back

to the MS.

The purpose of the function stack, mentioned throu:hout this discus-

sion, will now be described. In most computer systems, when an interrupt

occurs, the old PSW is stored and an interrupt handler routine begins

execution. When the interrupt routine is done, the old PSW is reloaded,

and the original program continues its processing. However, iii this

implementation we do not always want automatically to restart the original

program. In an attempt to equalize the service to all of a SIMP's hosts,

the two routines which read data from a host or send data to a host are

not restarted. They always start at the beginning, communicating with

the next host in line in the polling list.

To intercept automatic restarts after an interrupt, all interrupt

handier routines (including the ES} branch to the MS when they are done,

instead of doing a normal return. Then the MS looks at the identifier

on the top of the function stack, since it corresponds to the program

which was interrupted. If the identifier indicates a routine which should

be resumed, the MS reloads the old PSW from the PSW stack, and the program

'n44
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will continue from where it was when interrupted. Otherwise, if the top

identifier specifies one of the programs which is not to be restarted,

the MS throws away the top entries from both the PSW and the function

stacks. The MS then checks the new top entry on the function stack, if

any.

If the function stack is empty, the MS will start a non-interrupt

function program. Normally the MS will alternately start the "send to

host" or "read from host" program. Whenever the utility count (incremented

by the ES) reaches a specified number, however, the MS will start the

utility program instead. The utility count will be set back to zero.

One non-interrupt function program is not started by the MS. That

program decid ghether or not a string of completed packets can go on

the "to be ,nsmitted" list and creates reservation or request for

status packets (function #9 in the list at the beginning of this section).

The MS does not have enough information to decide when this program is

needed. Only routine #8, which reads data in from a host, knows when an

entire message has been formatted, so it calls routine #9. Routine #9

puts its own identifier on the function stack. If it is interrupted,

it will resume processing after the interrupt is serviced in the usual

manner.

Figure 22 gives an example of sequencing and interrupt handling.

At A, the SIMP is reading data in from a host. At B, an interrupt has

occurred, indicating that it is time to send a large packet. The transmit

routine has begun executing. The transmit routine will leave the inter-

rupt system disabled for the few instructions which actually start the

outbound DMA. While the interrupts are disabled for the transmission,

the inbound DMA, which moves data from the receiver into memory, may

complete a transfer. As soon as the interrupt system is enabled, the DMA
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complete interrupt will cause activation of the input routine. The result-

ing stack contents are shown in C.

When the input routine has completed its processing, it removes its

identifier from the stack, and branches to the MS. The MS checks the top

entry, and reloads the old PSW, as shown in D of Fig. 22. When the trans-

mit routine is done, however, the "read from host" identifier will be

on the top of the function stack (E). The MS will discard it and the

corresponding PSW value. Since the stack is now empty, the MS will

initiate the "send to host" routine (F).
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