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ARSTRACT

This memorandum designs network control software tor a computer
network in which some nodes are linked by a commumications satellite
chamnal.  We assume that the network has an ARPANET-1ike confiquration,
that is. that specialized processors at each node are responsible
for messaae switchina and network contvol. Therefore, the task we
undertake is to desinn the software for these yprocessors. The purpose
gt the control sottware is to oversee network onerations -- for
example, to heep track of message queues and sw ot ing functions, to
tag messaqes with addresses and insure that they o rive error-free,
and to avoid disruption of network functions wher= a node or communica-
tioas line 1s inoperative.

The objective of this work is to produce a software desian which
bhoth officiently uses the network cummurication resources and is
attractive to users. To achieve the qoal of efficiency, we implement 4
the packet reservation scheme for computer communication by satellite,
the most efficiont of a number of methods for dynamically allocating
Lime on a satellite chamnel. To qgain the objective of attractiveness,
we design control software which makes network operations essentially

invisible Lo the user.



1. Introduction

Satellite communications among computer installations may find a
wealth of applications. [t may be justified wherever computer instalia-
tions, spread widely in location, need to cowmunicate. This need may/
exist if the computer installations are operated by a multi-national firm,
or the computers must access a data base so large that it would be imprac-
tical to duplicate at each installation. Computer communications by
satellite or other means also allows a general-purpose, or o small,
computer installation occasionally to tap the superior power of a special-
ized, or a large, computer.

To realize the potential benefits of satellite computer networking,

a number of design problems must be solved. The sateilite communications
hardware design and the physical configuration of the network control
mechanisms and communications lines are examples, but careful design
cannot cease when these hardware configurations are specﬂfied. Controi
software must also be designed, to oversee network switching functions,

to keep track of message queues, to tag messages with addresses, to insure
that messages arrive at their proper destinations in correct order and
without errors, and to keep a running tabulation of inoperative network
nodes or communication lines.

The software determines, to a4 great extent, both the cost effectiveness
of the. computer communications network and its attractiveness to users.

To make the network run at maximum efficiency - minimum cost - the controi
software must make maximum use of its communications lines. It should
avoid inordinate delays in operation because of failure of a network node
or of a communication line. Moreover, the control operation should be
fast, without an unnecessary overhead of control signals among nodes.

This last point is especially important in satellite networks, in which



4 node-to-node communication may spend a quarter of a second in transit -
a very iony time in computer terms,

Attractiveness to users, as stated, is a second design criterion for
network control software. To be wmore specific, the network control mech-
anism which is ideal from the user's point of view should make the networks
"transparent” to the computers it serves. That is, programaers should
have to do no more work to use the network than they do in employing any
input-output device.

It is the purpose of this memorandum to propose a satellite computer
network control software desiqn to satisty these constraints. To insure
that the software is designed for a realistic network configuration, the
memorandum “wiefly reviews existing computer networks, and it investigates
1 series of proposals for satellite computer comnmunications schemes. In
addition, it discusses example user characteristics which determine the
choice of one of these schemes, because user characteristics set the
criteria which the network must satisfy. We chuose, after these prelimi-
nary considerations, to implement one such scheme, originally proposed
by Roberts [11].  The body of the paper then presents o detailed proposal
for a control software implementation of Robert's satellite computer

communication ccheme,



7. Current Lomputer Comunication Networks
2.0 Introduction and History
In the past few vears, operating computer communication networks
have proliferated. Computer networks serve many purposes: 1) timesharing
systems and remote job entry: Tymnet and Infonet f1) are two examples,
?) inguiry systems: the most common exemples are the airline reservation
systems, SN(Latunnu;shdring and centy ed processing of data; this
function is often done by large corporations, and 4) resource sharing;
many nets which connect university computer facilities have this purpose.
Computer networks are projected Lo grow at an daccelerating rate.
From 1972 to 1973, U.S. data communication expenditures increased 277, to
a total ot 51.45% billion. The projected expenditure by 1980 is $70 billion
(1). This fantastic market potential has encouraged continued research
in all the areas involved: softwdre. hardware, and communication techniques.
The first computer networks relied upon dial-up or leased telephone
lines for communication. Voice lines' slow data rate, coupled with a4 high
error rate, led to the improvement of common carrier facilities; Higher
bandwidth lines and wmicrowave links are now davailable from AT&T and several
competitors. More saophisticated hardware. such as modems and data concen-
trators. improve the reliability and capacity of computer networks.
Sophistication in communication techniques specifically for computers
has kept pgce with the improvenent in hardware. For example, a significant
new communication technique for computer networks is packet-switching (2).
Replacing the telephone system's traditional line switching, packet-switching
is a network control technique suited to computers' short duration, high
data rate communications, rather than to the slow, long-lasting connections

made on the voice circuits.



C.2 0 The ARPA Network

Packet-swi}chinq was originally implemented in the ARPA nctwork by
the Advanced Research Projects Agency of the Department of Defense. The
ARPANET currently [1974) connects 36 diverse computer centers, geographi-
cally spread trom MIT to UCLA.  The net includes nineteen different models
of computers, so that the network has had to be designed to handle dis-
pardte operating systems, word sizes, operating speeds, interface hardware,
ete.

The solution to the problem of users with nonuniform characteristics
has been to connect each host computer to a minicomputer, called the
Interface Message Processor (IMP).  Host-dependent peculiarities only
affect the individual host-IMP interface. All network message routing
and protocol is handled uniformly between IMP's, independeni of their
host computers.

The IMP'<s are interconnected as a distributed network; i.e., every
IMP is not directly connected to every other IMP, nor are they all con-
nocted to a central site as in o star network. Routing tables are
maintained within cach 1P, which specify possible pathe from IMP to IMP
to reach the desired destination.  These tables are periodically updated
to reflect congestion at an IMP, out-of-service IMP's or hosts, eto.

After a host passes a message to its IMP, the IMP breaks the nessage
up into fixed-length packets, and sends the packets out into the net,
one by one. Each IMP along the route stores the packet until it receives
an acknowledgement from the next IMP in the path. The destination IMP
reassembles these packets as they arrive, and then passes the complete
message to its host (3).

?.3 The Aloha System
Another innovative method for computer communication is the Alohs

System, developed by the University of Hawaii. Although the Aloha System
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i5 not a large-scale project like the ARPANET, it has been the basis for
much ot the design thinking done for satellite computer comnunications.

The Aloha System uses meswage packets like the ARPANET. Since there
are fow telephone Tines between the Hawaitan Islands, however, the packets
are sent by a4 radio transwitter trom timesharing user terminals to the
main University computer's IMP,

The user terminals are not synchronized. nor are they coordinated by
extensive "handshd: ing" as in the ARPANLT. Cfach terminal can transmit at
will. If several do transmit at the same time, the packets will overlap
4t the recciver., and are said to be blocked. Blocking is detected with a
cvclic check sum scheme, and blocked packets are not acknowledged. After
4 random time delay, each user terminal will automatically retransmit any
unacknowledged packets, (4)

2.4 Satellite Computer Communications

The logical extension of radio transeission of data was to consider
how communicetion satellites might be used for computer communications.
The cost of satellite channels has been decreasing steadily, and their
use for television and telephone service has been well established. If
the estimate of 2.5 million terminals in the United States by 1980 is
correct, the load on the current telephonc system will be severe (5).
Redundant lines erected across the country by private enterprises are
probably a costly and inefficient solution. Satellites might lessen the
load: satellite communication costs, unlike ground lines, are independent
of distance. Recognizing this fact, Western Union, American Satellite
“orp., RCA, Western Tele-Communications Inc., MCI Communicatinns Corp.,
and Lockeed Aircraft Corp. all applied to the FCC to operate communication
satellite systems (6). Western Union, with an operating satellite, and

RCA, with a launch planned in 1976, are well on the way.

A



The Aloha System described earlier s currently connected to the
University of Alaska via NASA's ATS-1 satellite, and to Ames Research
Conter in Calitornia via COMSAT's Intelsat IV on an oxperimental basis (7).

The ARPANET 1w also proposing to use satellite links Lo decrease
cost while increasing speed and capacity.  Their 50 ki!obit/scc 1:a5ed
Tines cost $1,200,000 per year (Jénuary, 1973), with a capacity of 300
million pachets per month. They estimate that the satellite links would

cost hetween $1 and $2 million per year, with a capacity ot 1500 million

qackets per month (8).



3. Proposals tor Computer Commumications Via Satellite

Someone once said that o satellite <hould not be thought of as just
"a big cahle in the sky". (9)  Although data could be sent over the existing
satellite telephene channels, much as if these tines were in fact cables
stretching from point to point, inherent properties of the satellite
communications channel might make @ new approach desirable. Satellite
channels can be designed for a much greater capacity and higher transmis-
sion rate than existing common carrier lines. Sccondly, the cost of
satellite transmission ie independent of the distance between the sender
and receiver.  Thirdly, a satellite broadeasts imul taneously to all
qroundstations: transmission is not point-to-point. This property allows
the transmission of common data to several computers simultaneously (10).

However. there is a major problem in using satellite channels for
computer communications. Since communications satellite maintain a geo-
synchronous orbit 36,000 km. from the Larth's center, a]i messages arrive
at their destination approximately 1/4 second after they are sent (8).
This propagation delay up to the satellite and back down again is not
important for voice traffic. However, most modems and line protocols
are not designed to expect a delay of that magnitude. The delay causes
other problems, too, such as increasing the amount of buffer space required
for messaqes, in case one of them has to be retransmi tted.

Assuming that the benefits outweigh the disadvantages, the next step
is to determine a communication scheme which best utilizes the satellite
channel. Although SPADE and MAT-1 are sophisticated access systems for
telephone connections via satellite, they are not suited to data traffic,
which does not have the same statistics as voice traffic (11). Therefore,

new methods, tailored to computer requirements, have been sought.,

2t > h
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The first schomes suggested--and rejected--were Time Division Multiple

Access (TOMA) and Prequency Division Multiple Access (FOMA). For a

given channel bandwidth, THMA allows a high burst data rate, while FDMA
However., both schemes have the

gives a lower, but continuous rate (12).
(TOMA) or carrier frequencies (FOMA) must be

disadvantage that time slots
Such a fived allocation scheme

preassigned to specific around stations.
can result in wasted channel capacity; station A may have a large message

queue waiting to be transmitted, while station B's slots or preassigned

channels are empty.
The Aloha System's techninue for multiple access--any station can
rathes than fixed, allocation scheme.

transiit at any time--is a dynamic,
It does give all stations with tre (e an equal chance at the chainnel.

Unfortunately., blocking becomes a major problem if there are inany users
Time

(13).

Some improvenent is obtained with the "slotted Aloha" system.
slots are defined. but any station can attempt to use any slot. Even with

this mothod, only 377 of the channel capacity can be used before colli-

e ]

cions become excessive (13), and it has the disadvantage relative to
“pure” Aloha that synchronization of al1 transmitting stations is required.

Another modification sugyested by Bolt, Beranek, and Newnan, |
called the BBN Aloha system. In their scheme, once a station has success-

fully claimed a time slot, it can use that same slot, uncontested, in
when that station is done transmitting, the slot

every cycle thereafter.
The major problem with this method is that one

is again "up for grabs".
or two heavy users could claim almost all the slots, and other stations

would be forced to wait an unacceptable amount of time before gaining

access to the channel (14).

LR
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In June., 1973, Dr. Lawrence Roberts described another plan in a paper
presented at the National Computer Conference. Called "Dynamic Allocation
of Satellite Capacity Through Packet Reservation”, it seems to offer a
more satisfactory method of allocation for computer traffic than any of
the other techniques discussed (11). With this method, a ground station
can reserve contiguous time stots in which to trensmit a message. This
is accomplished by defining a time slot cycle, which consists of several
fong time slots, followed by a long slot subdivided into short slots. The
station first transmits a reservation during a short slot. The reserva-
tion gives the station's ID and the number of long slots to be reserved.
A1l other ground stations record and honor the reservation. The station
then transmits the message itself, using the long time slots set aside
for it.

There are several advantages to this system. First, the short reser-
vation slots are accessed as in the Aloha system, so every station desiring
to transmit has an equal chance at the channel. Secondly, although
collisions will occur while making reservations, the entire message will
be transmitted without inierruptiﬂn. Thus the channel is unblocked most
ot the time, so a much larger percentage of the channel capacity can be
used. However, a disadvantaqge which may be important is the increased
delay before sending the message. A schematic of the procedure is shown

in Figure 1.
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Reservation Access Method

Before a4 software implementation of the packel reservation scheme can
be designed, some consideration must be qiven to identifying the puten-
tial users of the system, and ukdmininq their requirements.

As stated earlier, because satellite comunication cost is independent
of distances, users most likely to find it cost effective are those with
widely scattered installations. There are many applications which have
a lonq distance computer communications requirement. For instance, large
world-wide corporations which gather data at their headquarters, banks
which transfer funds throughout the world, and offices of the travel
industry, which must process airline, tour, and hotel reservations, are
all potential customers.

Government agencies also transmit a vast amount of data great dis-
tances. For example, hundreds of millions of bits per day of raw data
from weather satellites, the Earth Resources Technology satellite, and
from marned space flights are now transmitted to ground stations in Canada,
Brazil, Australia, Spain, Alaska, Maryland, and Virginia. The data is |
later collected and processed in Texas, California, or Maryland (15).

Universities are considering resource sharing on an international
basic. A project is currently being studied to connect university com-
puters in Japan, Australia, Hawaii, and the mainland U.S. with those in
eastern Asia and the South Pacific (7).

These applications sugyest several constraints on the software imple-
mentation of channel access. First of all, the software should te as
independent as possible of any specific computer hardware. This independence
can be achieved to some degree by using IMP's (or SIMP's, for satellite

IMP).
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A second factor in the software design is whether each network will
fedse an entire channel, or if cach channel will be shared by a variety
of users as their needs dictate. A network with its own satellite channel
could pick its own packet format and channel protocol.  The shared channel
situation is wore likely, however, wince few applications could keep the
channel busy with continuous computer transmissions. A shared channe!
being used as a common carrier by many networks mwust have a much moce
gqeneral protocol and format.

A third complication which should be considered in the software design
i< whether or not all the nodes of a given network are ground stations.
Thev aay not all be, for instance, 1f two existing ground networks are
connected via a satellite link. In that case, one localized ground network
might route all its Tong distance messages to d s5ingle ground station.
After traversing the satellite link, the messages would be distributed
from the receiving ground station to the other land network. This implies
that the packet format, etc., must work equally well for either ground or
satellite links of a network.

Two otlear objectives of the implementation--obvious, but important--
are system reliability, and high throughput for all users.

With these objectives in mind, the details of the implementation can

bhe tackled.

lu.h!
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5. Implementation of Roberts’ Packet Reservation Scheme

To implement Roberts' packet reservation system, this paper proposes
an ARPA-Tike philosophy in which SIMPs (satellite IMPs) are used as the
message handlers.  In an operation whi:h is transparent to the host com-
puter, a SIMP accepts messages from its hosts, breaks them into packets,
reserves slots for them on the channel, transmits the packets, and ascertains
that tney were recrived correctly. At the other end, a SIMP receives the
packets. cowbines them back into a complete message, and passes the message
on to its host. Although the host-SIMP interfaces may vary, the satellite
accessing portion of all the SIMPs are identical.

Those aspects of Roberts' original paper which were developed speci-
fically to be used in conjunction with the existing ARPANET have been
ignored or changed, in Some cases. The implementation presented here is
for use of the satellite channel as a common carrier, available to any
network.

5.1 Data Formats

The first item to be specified in this plan is the messace packet
format. Fiqure 2 shows a possible format. The packet consists of a header
portion, and a text portion, with cyclic checksums for gach. The header
must contain an identification of the source and destination of the packet.
To decrease the probability of a lost or duplicate packet, it is also
desirable to include a message and packet number in the header. B, limiting
the number of ground stations using a given channel to 255, and the maxi-
mum number of packets per message to 16, the packet header size can be
32 bits:

& bits destination
8 bits source
4 bits packet type code

8 bits messagc number
4 bits packet number
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Figure 2.

Possible Message Packet Format



The packet type code will be described Tater. Message and packet numbers
are assigned sequentially by the SIMP sending the message.

The source and destination numbers normally specify the host computer
from which the packet was sent, or for which it is intended. When the
host 15 in a aground net, however, o ”qntew&y" computer into the net should
be specitiod instead.  This rvemoves the burdens of Tocal (a4 opposed to
satellite) protocol trom the SIMP. Three possible network configurations
are shown in Pigure 3. Notice also that, because the SIMP removes the
packet's satellite header, network headers must be placed in the text
portion of the packet, as shown in Figure 4. By giving a destination
number of 255 (all ones), a packet can be directed to all SIMPs simultaneously.

A universal set of control characters for use between SIMPs must be
agreed upon for such things as “"start of satellite header", "end of trans-
mission". and the like. Currently, there is no standard; EOT in EBCDIC
is 00011011, whereas in ASCIL it is 00000100 (16).

The text portion of the packet can contain anything. Its contents

are not examined by the SIMPs.

Since the packet reservation method uses boih large and small channel
slots, a small slot packet format must also be designed. Roberts uses
small packets of 24 bits for reservations and acknowledgements. The
implementation presented here has found it useful to use 32 bits, and to
define four new types of small packets: request for status, response for
status, request for queue length, and response for queue length.

The request for status packet will be sent by one SIMP to another,

T

if it has been waiting an excessive amount of time for either an acknow-
ledgement or nore packets within a given message from that SIMP, If the
second SIMP is still operating, it should reply with a response to status

packet. Obviously, if it is not operating, it will not send a response.

[
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The response to status packets can also be used without a prior
request. By specifying a destination number of 255, a SIMP can send a
response to status packet to all the other SIMPs, to inform that a host
is down {for maintenance, etc), or that one formeirly down is now back up.

The request for queue length packets may be reeded when a SIMP first
tries to gain access to the satellite channel. If several SIMPs are already
transmitting on the channel, the newcomer has no way of knowing how many
slots they have already reserved. Since ail operating SIMPs keep a running
account of the reserved queue length, any of them could answer with a
response to queue length packetl. For this implementation however, wve
assume that a particular SIMP has been assigned to transmit the answer.

The formats of the small packets are shown in Figure 5. They have
only a header, no text. The packet type codes (bits 17-20) which identify
them are given in Figure 6.

Each packet, whether large or small, is preceeded by an 80 bit
synchronization pattern. This is a standard way to prepare the hardware
to recognize the data. Tt is used, for example, in IBM's bisynchronous
conmunication (BSC). The sync battern also serves as a buffer zone, in
case the packet is not transmitted at exactly the nominal time. This is
important because the ground stations are not all equidistant from the
satellite, and transmission times vary.

Based on the design outlined, the total size of a large pacﬁet is

" 1350 bits: 80 for. synchronization, 24 for each of the checksums, 32 for

the header, and 1190 for text and control characters. The small packets
are 248 bits. Although the header and checksum lengths add up to only
56 bits, the information in the small packets is important enough to
successful operation of the system that three copies of them are sent

to cube the probability of error (8). The additional 80 bits is for the
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0000
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N0l
0100
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REST COPY RVAILABLE

Packet. Type

Large Message Packet
Reservation

Positive Acknowledgment,
Negative Acknowledgment
Request For Statun
Response To Htatus

Request For Queun Tength

Response To Quene length

Figure 6. Packet Type Codes
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sync pattern. Using these packet lenyths, one large time slot can be
divided into five small slbtw. The resulting chinnel access pattera is
five long slots, followed by tive short slots, as shown in Figure 7.
Assuming a 50,000 bit/sec rate, o long slot is 027 seconds, and one
pattern is .162 seconds.

The format of the data passed between a SIMP and its host must also
be defined. Very few conventions are needed. Uniform control characters
are not required, sincelthe 1/0 routine between the SIMP and hos! is host-
dependent, and will recognize those used by the host. Synchronization
patterns are not necessary, either. Transmission can be done in start-
stop mode, character by character. Using start-stop mode with the host
allows the SIMP to respond more qﬂickly to an interrupt from the satellite,
withou: losing data. Finally, the host does not have to worry about word
size. The SIMP will pack andrunpdck characters if necessary. The only
restriction on date between a SIMP and host is the message length, The
satellite header format already chosen limits the length of a message to
16 packets. Therefore, the host must create messwges < 19,000 bits long.
The first 8 bits must be the destination number, so that the SIMP can
create the appropriate header.

5.2 Hardware Functions

With the '0st-SIMP and SIMP-satellite data formats defined, the next
step is to determine how the data will be manipulated. Most of the pro-
cessing will be done by software, but several functions can be simplified
or completely accomplished by hardware. For this implementation, we have
designated hardware to do the following:

1) Insert and remove checksums

2) Transfer data from the SIMP's memory to the transmitter

3) Transfer data from the receiver into memory
4) ldentify packets to be processed by this SIMP
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checksun hardware, item (1), is very common. In this casc it nust
be designed to insert a checksum after every ESH and EOT control character.
On the receiving end, it has to recompute the checksum. Unlike some ground
networks. the checksum hardware cannot send back the ACK or NAY ijtself.
Instead, all acknowledgements must be furmatted into small packets, and
only transmitted during short time slots. Therefore, it is assumed in
this implementation that the checksum hardware appends a flag to the end
of the header and text portions, indicating whether or not an error was
detected. The SIMP will check the flag before using the data.
Items (2) and (3) in the 1ist above were necessary since the SIMP
may be sending and receiving packets simultaneously. At the time a SIMP
makes a reservation, it does not know if another SIMP will be sending it
packets during its transmit time. By having di~ect memory access {DMA) in the
SIMP, nearly automatic transfers of data to the transmitter and in from the
receiver can he realized. This will be discussed further in Section 5.5.
Item (4) becomes more of a necessity if bit rates across the satel-
lTite link are high. Recall that the satellite broadcasts every packet to
SIMP. At a 50K bit/sec rate, with a full channel, a packet will arrive
al each SIMP every .027 seconds. Although a SIMP may be able to handle
all packet processing fast enough, it is a waste of computer power for
a SIMP to receive, examine, and then discard packets not intended for
it. In3tead, the receiver hardware could be designed to pass on to
the SIMP only those packets destined for one of its hosts, as shown by
the destination field in the header.
This approach works well for the long packets, but is not appropriate
for the short packets. Every SIMP must listen to the reservations made
by others, and to responses to status packets. In addition, a SIMP has

to listen to the echo back from the satellite of every short packet it
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sent, to check for blocking. These packets have the SIMP's ID in the
source field of the header, rather that in the destination field.

To handle this problem, it is very convenient to have the satellite
itself send out a timing signal every .162 seconds, to signify thé béginning
of the group of short time slots. This timing signal will keep everyone
synchronized, reset the receiver to non-selective mode, and will cause
an interrupt in the software. The software can later put the receiver
back inio selective mode.

5.3 Message Transfer From a Host to its SIMP

With the data formats and special hardware defined, the design of
the software itself can begin. The first function a SIMP has to perform
is to accept messages from its hosts and format them into packets. The
SIMP polls each host in turn, to see if any of them have data to be
transmitted. If one of them does, the SIMP stops polling, and prepares
to read in the data from the host.

Figure 8 shows the data structure which 1s used as messages from
the host are beiny assembled into packets. The assembly header celis
are always present, with one for each host. The blocks of core used to
store the packets are obtained one at a time, as needed, from an availa-
ble space list (ASL). Since the data is transferred character by character,
a field is maintained listing the number of bits stored so far in the
last packet.

Before the SIMP reads in any characters from the host, it‘must deter-
mine if the data will begin a new message (indicated by a null forward
pointer for the host's assembly header cell), or if it is more of a
partially assembled message. If it begins a new message, the STMP must
get a block of core from the ASL, assign the next sequential message
number, and format the satellite header. This will be packet number zero

of tne message. Then data can be moved into the text portion. As a
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packet is filled, anolher block of core nmust be added to the list. This
backet will get the same header, except for tﬁe packet number field,
which increases by one.

The SIMP will continue to read in data from this host until 1) the
CIMP has read in the entire message (recall that there is a maximum allow-
able length) or ) an intervupl occurs (usually from the satellite).

When the SIMP again resumes servicing the hosts, it does not begin where

it left off, even if it was in the middle of a message. Instead, it polls
again, starting at the next entry in the polling list, following the one

it serviced the last time. In this way, each host should get approximatoly
equal service. If one host requires priority service, its address can
appear several times in the polling list, so its turn occurs more frequently.

When an entire message has been converted to a string of packets,
the last packet header is marked by setting the leftmost bit of its
message number field to a one. The packets are then ready to be transmitted
over the satellite channel. Transmission is described in Section 5.5.

5.4 Packet Receipt and Acknowledgment

Ignoring for the moment how the packets are sent over the satellite
channel, this section discusses what happens to the packets once they
arrive at the other end. Basically, the receiving SIMP will read in the
packets, strip off the satellite headers, assemble the text back intn a
message, and pass the message to the desti&%tiod host.

As each packet arrives, the first thing the SIMP must do is examine
the checksum flag to see if the packet arrived without error. In the
original ARPANET, every packet is acknowledged with either an ACK or NAK,
This is impossible with the satellite channel as we have designed it.

For instance, if all five large slots contained packets, then all five

small slots would be required for their acknowledgments. There would |
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be no small slots available for making reservations, etc. Instead, it
seems more efficient for the receiving SIMP to send only a single positive
ackrowiedgment after the entire message, to show that it was received
correctly.

A KAk, howuvér, can be sent as soon as an error condition is detected
in one of the packets. There is no reason to wait until the last packet
has been received. There are several conditions which result in a NAK:

1) a checksum error, or 2) an out-of-sequence message or packet number,
or 3) a long time interval since the last packet of an incomplete message
ar-ived. This third condition is not necessarily an error, if the channel
is very busy. However, it could also indicate a breakdown at the sending
SIMP, or a checksum error in the satellite header such that the receiver
hardware, in seiective mode, did not recognize the destination field.

Due to the long time delay when returning acknowledgments, other
packets of the same message may arrive after the bad one. Consider
Figure 9. Assume a SIMv begins transmitting an 8-packet message at time
A. The receiving SIMP sees it at time £, and detects an érror in the
third packet at time C. Since acknowledgments require small slots, the
NAK cannot be sent until time D. 0y the time it is finally received,
at E, the rest of the message has already been sent.

A decision has to be made as to what to do with the later packets,
numbers 3 through 7. The SIMP could add them to the string of packets,
with a flag set to show that the message is waiting for a packet to be
retransmitted., That retransﬁission could take a long time, though, and
the later packets will be tying up core until it arrives. Also, the
processing becomes more cumbersome if several packets are missing, say
3, 4, and 7. Each time a retransmitted packet does arrive, the whole

string must be checked to see if the error flag can be removed yet, or
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if there are still some missing. For these reasons, and because frequent
large packet transmission errors are unlikely, (for a typical bit error
rate of 10'7; orrors will occur every 10,000 packets or so), this imple-
mentation chooses instead to have the receiving SIMP save the correct
packets received before the erroneous one, but throw away any packets (of
the same message) which arrive after it. when the sending SIMP receives
the NAK, it will retransmit all the packets with numbers greater than or
equal to the packet number given in the NAK (see Figure 5 for the NAK
packet format).

Figure 10 shows the data structure used to reassemble packets into
messages. There is a permanent header cell for each host. Since a given
host might be receiving messages from several different sources, secondary
header cells, one per source, are al1so included. These secondary headers
are not permanent; they only exist while packets are being collected.

The message number and source fields are self-explanatory. The packet
number field contains the last number received. The status field can
have two values; a zero means everything is 0K. A one means a NAK has
been sent for the packet number given in the number field, and no later
packets are to be added to the string., When the retransmitted copy of
that packet is received, the status hit will be changed back to a zero.
The time field is used to detect an excessive delay since the last packet
arrived. The timer field initially has a value of zero. Periodically,
a utility program adds one to it. The.count will continue to accumulate
until another packet is received, at which time it is again reset to
sero. 1f the count ever reaches a maximum value, the status bit is set
to one, a NAK is sent out, and a request for status packet is also

transmitted to the sending SIMP.
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When all packets comprising a message have been received, they are
moved to the "sent to host" Tist. shown in Tiqure 11. The secondary
header cell is returned to the ASL. Transmission to the host is done
character by character, so a field indicating the next character to be
sent is maintained. The satellite header portion is not sent to the host.
It could have been discarded earlier, but then two sizes of core blocks
would be needed on available space lists, and the extra 32 bits is not
really significant.

5.5 SIMP to SIMP Transmissions via the Satellite

The SIMP-host and host-SIMP interfaces have been described in the
preceeding sections. We will now address the SIMP-to-SIMP transmission
via the satellite.

Consider again the sending SIMP. It has read in a message froﬁ a
host, and formatted it as a string of packets. This completed string is
ready for transmission. It is desirable that the packets be sent right
away. However, under some circumstances to be discussed later, there
may be a delay.

When the packets can be sent right away, they are delinked from the
host's assembly header cell, and linked to the end of the "ready to be
transmitted” list, shown in Figure 12. It is from the front of this list
that the SIMP gets packets to transmit. After the SIMP sends a packet,
the packet is moved from the "ready to be transmitted" list to the "waiting
for an acknowledgment" list. The acknowledgment header cells, shown in
Figure 13, are not fixed. The destination fields are filled in as needed.

when the packets cannot be sent right away, it could be for either
of two reasons: 1) the previous message has not been acknowledged, or

2) the destination host or SIMP is down.
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Recall that in Section 5.4 we decided to throw away any packets in
a message which followed an erroneous packet. Unfortunately, this deci-
sion also implies that if message 1 had an error, and if a second message
from the same source and for the same destination was sent before the NAK
was received, the second message would also have to be thrown away. Other-
wise, the destination host would get the messages in the wrong order.
This reordering would cause a serious problem, because the messages could
be portions of;a sequential file or computer program. Since the packet
satellite heaé%rs containing the sequence numbers are stripped off by
the SIMP, the host would never know of the inversion. It is conceivable
that the receiving 3IMP cou'd save message 2 until message 1 has been
retransmitted, but as Figure 14 shows, the problem can soon' snowball.

A more reasonable solution is not to let the sending SIMP transmit
the second message until it has received a positive acknowledgment for
the first one. This can be done by linking ‘the packets of the second
message to the acknowledgment header on whose completion they are waiting
(shown in Figure 13), instead of attaching them to the "ready to be trans-
mitted" list. They will stay there until the previous message has been
positively acknowledged. Then the waiting string of packets will be
transferred to the "ready to be transmitted" list. (The acknowledged
packets are returned to the ASL).

If too many messages are waiting at the sending SIMP, the SIMP can
temporarily discontinue poiling its hosts for new messages until the
backleg is cleared out. (Note that this wait is only required if several
messages are from the same source to the same destination. There i1s no
delay for packets to a different destination.)

+ The second condition under which packets would not be sent right

away is if the destination host (or SIMP) is down. This condition could

)
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be recognized by keeping a Host Status Table (HST), Figure 15. This table
would have two bits for every possibie destination. A value of zero means
the host is up and operating properly. A value of one means the host is
down. A value of two means the status of the host is unknown.

Before moving a string of packets to the "ready to te transmitted"
list, the SIMP would examine the HST entry for the destination host. If
it is zero, the SIMP moves the packets. If it is one, the SIMP releases
the packets to the ASL, and sends an indicator to the source host. If
the HST entry is two, the packets are temporarily linked to the "waiting
for an acknowledgment" list, as in the previous example. In addition,

a request for status packet is created and sent out. If and when a
response to status is received, the packet string is handled as described
above. If no answer is received within a specified amount of time, the
HST entry is set to one, and the packets are returned to the ASL.

Refore packets on the “"ready to be transmitted" list can be sent
to their destination via the satellite, the SIMP must make a reservation
for them. Recall that reservations are made by transmitting a reservation
packet during a short time slot. Also recall that no more than eight
large slots can be reserved by :ny given reservation packet. If two SIMPs
both try to use the same small 3lot for their reservation packets, both
reservations are blocked and must be retransmitted.

Under worst-case conditions, blocking can cause a very long time
delay between the initial attempt and final success in reserving large
slots, and it can be a source of confusion in reservation handling design
;?Tfm““l"" for the SIMP. Consider the example given in Figure 16, At time A, a

string of six packets (message 1) is moved to the "ready to be transmitfed"
list. At timc B, the SIMP sends out a reservation for six large slots.

At time C, four more packets (message 2) are also moved to the "ready to
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be transmitted" list, so at time D the SIMP sends out another reservation,
this one for four slots, At time E, the SIMP finds that the first reser-
vation was blocked and must be retransmitted. This it does at time F.

No slots are reserved as yet. At time G, however, the SIMP determines
that the second reservation was transmitted without interference, so four
slots are now reserved for this SIMP. Although the second reservation
was originally intended for message 2, messages cannot be sent out of
order. So beginning at time H, the first four packets of message 1 will
be transmitted. If no more blocking has occurred, the other six slots
are reserved at time 1. The last two packets of message 1 and all four
packets of message 2 will be transmitted starting at time J.

To keep this sequence of events unscrambled in the software implemen-
tation, two linked lists containing reservations are required. The first
is the "small packets to be transmitted" list. Réservation packets on
this list are waiting to be transmitted. The second list is the "pending
small packet" list. Small packets on this list, including reservations,
have been transmitted. but the SIMP does not yet know if they will be
blocked. The order of the packets in the list is the same as the order
in which they were sent. Therefore, as each echo is received from the
satellite, the corresponding pending packet is either released to the ASL
(in the case of reservations, the reservation was successful), or it is
moved back onto the "small packets to be transmitted" list (if the small
packet/reservation was blocked and must be retransmitted). Figure 17
shows the two lists.

In some cases, the small slots can be used more economically if a
single reservation packet reserves large slots for several of the SIMPs
messages. For example, if three messages are ready to be transmitted,

three separate reservation packets (each requiring a small slot) will be

kD)
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sent out. However, if the messages are only two packets long, a single
reservation for six packets would suffice.

This reservation consolidation can be done edach time a reservation
packet is about to be added to the "small packets to be transmitted" Tist.
If the last reservation already on the list (if any) is requesting less
than eight slots, the new quantity being requested can be added to it. If
the sum is greater than eight, the first reservation should reserve eight
slots, and the second reservation should reserve the remaining slots. The
new reservation is now the last on the list, and can participate in the
next consolidation.

It is not enough simply to know that slots have been reserved; the
SIMP must also know when its slots occur. It derives this information
by maintaining a queue count, which tells how many 1arge slots are cur-
rently reserved. The queﬁe count is modified each time new reservations
are made, that is, as the eéhoes of the small slots arrive at the SIMP.
Srall slot echoes fortunately arrive immediately after the satellite's
synchronization signal, mentioned in Section 5.2. Therefore,‘the interrupt
caused by this signal will be used by the software to initiate queue
updating.

Once the SIMP knows when its slots are, it must compute the correct
packet send times, so that the packets will arrive at the satellite during
those slots. Figure 18 illustrates the relationship of slot time to send
tire. Satellite interrupts will occur at times A, B, and C. If a reser-
vation is received after time A, and the queue count is zero, the SIMP's
slot will be at time E. The SIMP must send the packet at time D for it
to arrive at the satellite at time E.

The time it takes a packet to travel from the SIMP to the satellite

is a constant for a given SIMP. It varies between S$IMPs, however, depending
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on the geographical location of the SIMP with respect to the satellite.
The Send Time Constant Table, shown in Figure 19,.contains times based
on the propagation time. The Send Time ConstantrTable will be used ton
work backwards from the slot time to compute the send time.

Accuracy considerations require that a modular timekeeping procedure
be used by SIMPs. Representing the send times in the software as milli-
seconds past midﬁight, or hours, minutes, and seconds, would require a
very accurate 24 hour clock within the SIMP. Such a clock is not neces-
sary if a modular form for time is used instead.

SIMPs will count time in modules called "sets". A set is a group
of five contiguous large slots, as shown in Figure 18. Send times and
slot times can be specified in terms of the number of complete sets, and
the time within a partial set. For example, in Figure 18 the slot at
time E is one set plus .54 seconds (a partial set) from A. The clock
used for send time comparisons will only have to run from one synchroni-
zation signal to the next.

The required send times, in this modular form, can be stored in the
Send Time Table shown in Figure 20. This table is a circular list with
an IN pointer (which tells where to put the next entry), and an OUT pointer
(which shows the next entry to be compared against the clock). As slot
reservations are made, the SIMP calculates the send times neejed to use
those slots. Then one entry is made in the table for each slot. (One
entry per large slot reserved eliminates the problem of knowing when to

skip over the small slots. That problem would arise if only the start

time and reservation quantity were stored.)
The alyorithm for calculating the required send times and updating
the queue count is given below. In it, the next available slot (which

is also reachable at this time) is computed first, in terms of complete
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sets and a slot number within a partial set. The slot number within a
partial set is used as an index into the Send Time Constant Table. The
set increment from the Constant Table is applied to the first available
slot's complete set count, to give the number of complete sets until the
send time. The time within a partial set from the Constant Table can be
used directly; it is the partial set send time.

If more than one slot was reserved, the complet calculation is only
needed for the first slot. After that, the send times for the others
are generated by simply indexing through the Send Time Constant Table.
The large slot send time calculation algorithm is:

1. Set N = number of slots reserved by this reservation.

2. Set COUNT =‘0.

Set QCNT = éurrent queue count.

If QCNT<5, set QCNT = 6.

g B W

Set WORKQ = QCNT + 1 (gives the next available large slot
reachable at this time).

6. Calculate the number of complete sets until the next available
large slot:

S = [WOquzs]quotient

7. Calculate the slot number within a partial set:
[ = [WORKQ]yegiainder!
8. Get the 1th entry from the Send Time Constant Table, namely
the set increment (I), and the time within a set(I).
9. Compute S' = S + set increment(I).

10. Store S' in the number of sets column of the Send Time Table,
at entry IN.

11. Store the time within a set(l) in the Send Time Table, also at
entry IN.

12. Set IN = IN+ 1. If IN points past the end of the Send Time
Table, set IN = 1.

13. SetI=1+1.
14. Set COUNT = COUNT + 1.
15. If COUNT = N, go to step 16. Otherwise go to step 8.

o0



16. QCNT = QCNT + N. Stop.
A SIMP only needs to compute and save the send times of its own slots.
Its queue count, however, must include everyone's slots. The algorithm
for updating the current queue count, QCNT, after someone else makes a
reservation is:
1. Set N = number of slots reserved by the reservation.
2. 1f QCNT<5, set QCNT = 5.
3. Compute the new queue count as
QCNT = QCNT + N.
4. Stop.
To reflect elapsed time, four things occur when the satellite's
synchronization signal interrupts the SIMP:
1) The clock in the SIMP is reset to zero.
2) One is subtracted from two special registers (described below).
3) Five is subtracted from the current queue count to account for
packets that were sent during the last cycle. If the result is

less than zero, it is set to zero.

4) One is subtracted from every non-zero set count in the Send Time
Table.

After these four things have been done, any new reservations arriving
in the small slots are added to the Send Time Table and/or the queue count.
The procedure to transmit a large packet can now be outlined. The
description assumes that there is a special register whose contents are
o automatically compared against the clock. When the register value equals
the clock value, an interrupt is generated.

The SIMP loads the specfal register with the Send Time Table entry

point to by the OUT pointer. If the set count is not equal to zero, it
will not match the clock, which, because it is reset with every synchro-

nization signal (step 1 above), counts time within a set. As each set
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goes by, the set coupt in the special register will be decremented by

one (step 2 above). When the clock and the special register are equal,
the SIMP will process the resulting interrupt by initiating the DMA to
send out the first packet on the "ready to be transmitted" list. It will
then increment the OUT pointer and reload the special register. The SIMP
is then free to return to its previous function until the DMA transfer is
complete. At that time the SIMP must move the packet to the "waiting

for an acknowledgment" list. When it is time to send out the next packet,
another interrupt will occur.

Throughout this discussion we have only indicated how the send times
for large slots are calculated. The send time for small slots must be
computed, also. For three reasons, it is not convenient to put the small
slot send times in the same Send Time Table as those for large slots.
First of all, a flag wou'd be needed to tell which kind of packet to send.
Secondly, putting them both in the same table complicates the algorithm
for generating large slot send times, while still keepiny the table in
order of increasing time. Thirdly, the send time for small packets does
not vary from set to set. To be included in the regular Send Time Table
would result in many redundant entries.

This implementation proposes using a second special register, like
the first, which is also compared against the clock. (Note tnat the two
special registers will never contain the same value.) For small slot
send time determination, the SIMP can use a Mini Send Time Table which
always has set counts of zero, and fixed send times. Only the OUT pointer
needs to be moved. (There is no IN pointer, since it is a constant table.)
See Figure 21.

A procedure similar to that for large slots is used for small packet

timing. The SIMP loads the second special register with a value from the
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Mini Table. When the interrupt occurs, the SIMP checks the "small packets
to be transmitted” list. If there is nothing on it, the SIMP reloads the
special register with the same value, without changing the OUT pointer.
That will cause it not to interrupt until the next set. Similarly, if
there is only one small packet waiting, the SIMP will initiate the DMA
to send it, but will reload the register without changing the pointer.
[f more than one packet is waiting, however, the SIMP will increment the
OUT pointer, and will load a different value into the register after each
packet. This causes multiple interrupts during the set. Although there
are five small slots, so that five small packets could be sent out, block-
ing would be very probable if every SIMP were doing the same thing. It
seems better to limit each SIMP to two small slots, say, and also to
arrange their Mini Tables in a variety of orders, so the choices do not
always overlap.
5.6 Overall Control

Many types of processing have been described in the previous sections
Still necessary is a controlling superstructure to insure that all the
functions get performed at the proper times.

The major functions discussed so far can be divided into two groups,
those which are initiated by an interrupt, and those which are not:

Interrupt-Driven Functions Source of Interrupt

1. Prepare for small siots Satellite synchronization signal

2. Begin receiving a small packet Receiver gets data

3. Begin sending a small packet Clock matches special register

4. Begin receiving a large packet Receiver recognizes header destina-
tion field

5. Begin sending a large packet Clock matches special register

6. All data transferred in; DMA complete

process the packet

(N
N
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7. A1l data transferred out; move DMA complete
the packet to another list

Non-Interrupt Functions

8. Poll hosts and read in data

9. Process a completed string of
formatted packets from a host

10. Send data to a host belonging
to the SIMP

11. Execute the utility routine
which identifies abnormal delays

NU§9gjlane6us Non-Irnterrupt Function

12. Cold start procedure to initialize
header cells, the ASL, etc.

e now introduce the two programs which impledient the controlling

superstructure, a Master Schedule: and an Express Scheduler. The Master .

Scheduler (MS) will be in control during long time slots. By referencing
a table of program starting addresses, the MS can initiate execution of
any of the non-interrupt functicii programs. When one of these function
programs begins execution, the first thing that program does is put its
identifier on a function stack. When the routine is finished, it takes
its identifier off the stack and returns control to the MS. The MS then
decides which program should execute next and starts it. Execution
continues in this manner until anAinterrupt occurs.

When an interrupt occurs, standard interrupt processing will begin
automatically. It is convenient to specify that the SIMPs have interrupt

hardware which puts PSW's on a stack. Therefore, the current PSW will

be stored on the PSW stack, a new PSW, containing the starting address -
of an interrupt handler routine, will be loaded, and the interrupt hand]er

routine will begin execution. In the case of interrupts 2 through 7 in

the preceeding list, the interrupt handler routine will be the program
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which performs the function listed. Like the non-interrupt routines,
these also add and remove their identifiers from the function stack men-
tioned above.

The E:press Scheduler (ES), the second of the programs which form
the controlling superstructure, is the interrupt handler routine for the
satellite synchronization signal. Like any interrupt handler, it puts
ics identifier on the function stack when it starts, and will return control
to the MS when it is done. The ES retains control while short p&ckets
are arrivino at a SIMP. Since 511 five small slots may not have been
used, the ES will have to set a timer to know when the end of the short
slots is. It cannot just count five packets and then return control to
the MS.

The ES has several housekeeping chores. It is the routine which
puts the receiver hardware in non-selective mode and which decrements
all non-zero set counts in the “.ad Time Table. An additional task is
to add one to a utility count, whose purpose will be described below.

After the housekeeping is done, the ES sits in a wait state until a
small packet arrives. This wait could be considered a waste of computer
time if nothing arrives right away. However, the small slots are only
.0054 seconds long. When a small packet does arrive, as much time as
possible should be available to process it before the next packet arrives.
If a packet arrives before the housekeeping is done, it will interrupt
the ES. The housekeeping will be finished after the packet has been

processed.

‘When-a- small packet arrives, it interrupts the ES, causing it to -
fall out of the wait state or temporarily suspend housekeeping. The ES
instead begins processing the packet, which includes the following deci-

sion process: Is this packet either from or for this SIMP? If no, the

N
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ES just discards it, and resumes its previous processing until the next
packet arrives. If yes, the ES checks if the packet was blocked. For
blocked packets from this SIMP, the ES gives control to the retransmit
routine. For non-blocked packets for this SIMP, the ES checks the packet
type code, and transfers to the appfopriate routine.

The processing for most small packet types is minimal, and should
be completed before the next packet arrives. Peservation packets, however,
might take more time. The routine which handles them can save all the
pertinent data, and finish the processing later after the last small slot.
A1l the small packet handling routines return control to the ES. After
the small-slot interval is ended and all the packets are processed, the
£S removes its identifier from the function stack and gives control back
to the MS.

The purpose of the function stack, mentioned throu:hout this discus-
sion, will now be described. In most computer systems, when an interrupt
occurs, the old PSW is <tored and an interrupt handler routine begins
execution. When the interrupt routine is dore, the old PSW is reloaded,
and the original program continues its processing. However, ia this
implementation we do not always want automatically to restart the original
program. In an attempt to equalize the service to all of a SIMP's hosts,
the two routines which read data from a host or send data to a host are
not restarted. They aiways start at the beginning, communicating with
the next host in line in the polling list.

To intercept automatic restarts after an interrupt, all interrupt

handTer Foutines (including the ES) branch to the MS when they are done,
instead of doing a normal return. Then the MS looks at the identifier

on the top of the function stack, since it corresponds to the program
which was interrupted. If the identifier indicates a routine which should
be resumed, the MS reloads the old PSW from the PSW stack, and the program

3
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" rupt system disabled for the few instructions which actually start the

will continue from wﬁere it was when interrupted. Otherwise, if the top
identifier specifies one of the programs which is not to be restarted,
the MS throws away the top entries from both the PSW and the function
stacks. The MS then checks the new top entry on the function stack, if
any.

If the function stack is empty, the MS will start a non-interrupt
function program. Normally the MS will alternate]& start the "send to
host" or "read from host" program. Whenever the utility count (incremented
by the ES) reaches a specified number, however, the MS will start the
utility program instead. The utility count will be set back to zero.

One non-interrupt function program is not started by the MS. That
program decid  «hether or not a string of completed packets can go on
the "to be nsmitted" list and creates reservation or request for
status packets (function #9 in the list at the beginning of this section).
The MS does not have enough information to decide when this program is
needed. Only routine #8, which reads data in from a host, knows wher an
entire meésage has been formatted, so it calls routine #9. Routine #9
puts its own identifier on the function stack. If it is interrupted,
it will resume processing after the interrupt is serviced in the usual
manner.

Figure 22 gives an example of sequencing and interrupt handling.

At A, the SIMP is reading data in from a host. At B, an interrupt has
occurred, indicating that it is time to send a large packet. The transmit

routine has begun executing. The transmit routine will leave the inter-

outbound DMA. While the interrupts are disabled for the transmission,
the inbound DMA, which moves data from the receiver into memory, may

complete a transfer. As soon as the interrupt system is enabled, the DMA
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complete interrupt will cause activation of the input routine. The result-

ing stack contents are shown in C.

When the input routine has completed its processing, it removes its
identifier from the stack, and branches to the MS. The MS checks the top
entry, and reloads the old PSW, as shown in D of Fig. 22. When the trans-
mit routine is done, however, the "read from host" identifier will be
on the top of the function stack (E). The MS will discard it and the
corresponding PSW value. Since the stack is now empty, the MS will

initiate the "send to host" routine (F).
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