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A computer-simulated study, was made of the sampling

distribution of omega squared, a measure of strength of relationship
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AN EU =MAN OF THE STATISTICAL PROPERTIES OF A IRILTIVARIATE
MARE OF STROME OF RELATIONSHIP

1. INUMucTION

It is well known that statistical significance, by itself, offers

no guarantee that the difference, relationship, or effect found ;;.n an

experiment is of practical significance. If the sample size is extremely

largeas it is in most educational researchvirtually any miniscule

observed effect will be judged "significant" at conventional alpha

levels.

In recognition of this fact, the practice is becoming more and

sore widespread of computing such a statistic as flays' (1963) w2 after

finding a significant difference by a t-test or a significant effect in

an analysis of variance. This statistic offers an estimate of the pro-

portion of variability of the dependent variable that can be attributed

to the relevant independent variable, in the population. As such, it

is an extremely important and valuable adjunct to significance tests.

This is so especially in educational research, where the practical

implementation of a research finding is almost always an expensive

affair; one therefore wants to have reasonable assurance that the im-

provement due to an innovation will be of such a magnitude as to warrant

the cost, before embarking on a drastic, large-scale change in educa-

tional practices.

Another feature of educational research is that it usually involves

(or should involve) a multiplicity of dependent variables. Appropriate

significance testing procedures for multivariate experimental designs



have long been known, and are increasingly epilog to be used by educa-

tional researchers. On the other hand, measures of strength of rela-

tionship (as against pignificance of relationship) in multivariate

designs have been virtually unexplored. This is a great drawback for

educational research, in view of the crucial importance of having such

a measure for reasons mentioned above. As far as could be ascertained,

the only such measures advocated to date are those proposed by I. L.

Smith (1971) and Tatsuoka (1970). (The fact that both of these were

proposed in the context of educational and psychological research

attests the importance of a measure of strength of relationship for

multivariate analysis in c.d. vftioual research.) The first of these,

being based on stepdown procv,tres, "does not yield tresults] that are

invariant under alternate orlerings" (Smith, 1971) of the dependent

variables. This seems to be an undesirable property. The second,

;2
mule is a direct extension of Bays' ;2 to multivariate analysis of

variance. It was tentatively proposed on an intuitive basis for one-

way HASOVA by Tatsuoka (1970) and, independently, by Sacbdeva (1972).

The objective of this study was to examine in detail the statisti-

cal properties of ;2=110 with a view to supplying a theoretical justi-

fication for it--or, if it turned out to be theoretically unsound, to

develop an alternative statistic that is sound. The statistic in

question was defined (Tatsuoka, 1970, p. 48) as

IT' 1 'iI !VI
w2=it

IT! +

-2-



where T and W are the total and arlthin-group SSCP matrices, N is the

total sample else and K is the number of treatment groups.

It is recognised, of course, that for the particular sample at

hand, the quantity 1 - A, to which ;sa
mint converges as N tends to infinty

Where A is Wilke likellhoodi-ratio criterion), is a natural multivar-

late analogue of the correlation ratio, eta-squared, and hence would be

a measure of the proportion of gemerAtukiwalance of the dependent

variable vector that is accounted for by the independent variable(s).

But just as Bays found it desirable to define his ;12 as a %early un-

biased" estimate of what the corresponding proportion might be in the

population, it is desirable to have a %early unbiased" statistic in the

multivariate case. This was the motivation for this study.

2. HEURISTIC DERIVATION OF ESTIMATED w2

Given R p- variate normal populations 'gee Z) with common covariance

matrix E and possibly different centroids ek (k go 1, 29 too, K) the

proportion of generalized variance of the p variates attributable to

differences among centroide may be defined as

(2.1)
ICI

IE + kttimi

where u (mjk) ij l 1, 2, ..., p; k a 1, 2,

and
113

is the deviation of the k-th population mean from the general wean for

the j-th variate (or the effect parameter of the k-th group on the j-th

variate).



It is paired to get an estimate, as nearly unbiased as possible,

of w2mui
t based on independent random samples of n observations each

from the K ppuiations. Purely from analogy with Hays' (1963) estimated

m2 in the univariate case, namely

St lb `(g 1)b1Sw

bri ms
w

Tatsuoka (1970) prop sad the following quantity as a possible such

estimate:

(2.2)

where W and T are within-groups and total ems-of-squares-and-cross..

products (SSCP) matrices, and N (161) is the total sample size.

Here we present a mare rational justification for this statistic,

and consider other possible formulations which (as it turns out) are rejec-

ted as being less sultable than expression (2.2). For notational con-

venience, the subscript "mat" will henceforth be omitted from both
t02 H and 412 ei

malt mull "

Let us denote, in addition to the two SSCP matrices cited above,

the between-groups SSCP matrix by 11 01 s. VI. It can then be shown, in

exact parallel to the univariate case discussed by Hays, that

E(S) (IC .0 1)E + n(aa')

a n d 13(V) ON - IC)!

From these relations it follows that

(2.3) E(V/01 K))

and



(2.4) mit; + VION K)) + 091/1 .

Since the matrices on the right-hand side of equations (2.3) and (2.4)

are those whose determinants
appear in expression (2.1), it seem reason-

able to use some determinantal functions of the matrices under the

expecte&value operators on the left to replace these determinants in

getting an estimate of w2. Just whet determinantal functions are appro-

priate, ho. r, is not immediately obvious, because B(!) 9 does not
SP

implY 11(4PP - 191.

Several alternative ways of "slicing the matrix pie" to construct

determinants yield the following candidates as estimators of w2:

(2.5) 1

+ !UK * 101

(IC - 1)11/ 01 4" K I(2.6)

I + tigN - I

1TI Iyi - 1)11!1/01 10P(2.7)

III + "

III - ON - 1)1V1/(N X.)
(2.8)

iii + Iti1/01 -10

These four expressions were examined for their convergence proper-

ties as N co. A necessary condition for an admissible estimator is

that it converge to I - A, where

A -

is Wilke (1932) likelihood-ratio criterion. It can bi* shown that 1 - A

itself converges to w2 as N co, Also considered was the behavior of

each expression as p increases. The results of these investigations



were as follows

Expression (2.5) converges to 1 mi. A as N "e However, for fixed

N, it can become negative for large values of p. This expression is

therefore disqualified.

Expression (2.6) converges to II - T-37f1 instead of III - IT4VI

1 01 Al therefore it is disqualified.

Expression (2.7) converges to 1 - A as N 4 Ms but it also so con-

verges as p 4 for fixed N, which is ridiculous.

Expression (2.8) converges to 1 - A as N 4":41, and exhibits no

"ridiculous" behavior as p increases.

It therefore appears that expression (2.8) is the most plausible

candidata, among those listed above, as as estimator of w2. Thls expres-

sion is equivalent to that originally proposed by Tatsuaka (1970) and

given in equation (2.2) above. It was also proposed, independently, by

Sachdeva (1972) In a slightly different form. This statistic, denoted

;12 is the only one examined in detail hereunder. It should be noted

that, besides expressions (2.2) and (2.8), two other equivalent expres-

slow for w2 are:

(2.9)

and

(2.10)

(0°2
NA1
K) 4. A

012 .
K)A1 A2...Ap +1'

where the A are the eigenvalues of 1444T (p K + 1 of which will be

unity when p > K - 1). Expression (2.9) most directly Shows that

ra2 -0 1 - A as N we while (2.10) is probably the most convenient for

computational purposes.



3. GENERATING THE POPULATIONS

The proportion of generalized variance of the dependent varieties

accounted for by membership in the different populations was defined in

the previous section by

(3.1) 02 1E1

E (tice)/K1

where a mi (ask) fj 10 1, 2, p; k 1, 2, K]

is the p x K matrix of effect parameters, and E is the common covariance

matrix of the Kp-variate populations.

In order to make w2 take on a preassigned value, it is convenient

to diagonalize E and Came). Of course, in real life, it is inconceivable

that these two matrices will be simultaneously diagonalised by the same

transformation. Forcing them to do so, therefore, imposes some peculiar

constraint on the configuration of the K population cancroids. However,

the constraint is not such as to reduce the dimensionality of the mani-

fold in which the K @aneroid. lie (which is p or K - 11 whichever is

smaller). Nonce, the constraint should not result in an artifactual

loss of generality of the sampling distributions of centrolds of inde-

pendent random samples from the K populations.

Let the diagonalised forms of E and (a ')/K be

(3.2) E* vry

where the columns of 9 are the orthonormal eigenvectore of ft and

(3.3i 0.04101/7L = (r!)(!g9)1/K.

respectively. Denote the diagonal elements of E* by aitii (j 19 2,

P) and the non-zero diagonal elements of (100')/E: by ekk

Ik 1, 2, r = mln(p9K-1)j. The determinantal ratio In expression



(3.1) for 02 then reduces, successively, as follows:

(3.4)
111 Istri

IIIWENNWPRof

1E + (ace)/KI Iyq* + (tistet)imil
I E*1

+ Wirt') /g

P e*
e- JAIjl

(
a* + a*

el II (1 + a* )
-1

r

JJ

since a* 0 for j s r.

Thus, in order to assign a specific value, say P, to w2, it is

necessary only to let a*sj take values that satisfy the condition

r
E log(1 + a* /0* ) 'log(1 P)3.1

Since it does no violence to let the a* be proportional to a* we

may for simplicity let

log(1 + alkii/Oji) -floga Mir
OT

t

o*441(1 - P)-1/r - li for 3 ill 1, 2, ..., r
(3.5) a* 11. JJ

il 0 for j sa rig, ..., p (when K..1 4 p).

The elements o*jj of E* are, of course, predetermined once we specify

E. These, together with the assigned value P I. 0.1, (0.2), 0.9, say)

of w2, determine a*Ji in accordance with equation (3.3), and the genera-

tion of the IC populations is complete. Varying / so that the average

intercorrelations among the variates will be low or moderate, we have a

means for simulating sets of populations of any type encountered in

educational research.



4. SAMPLING PROCEDURES

Now that the populations have been generated so as to have various

preassigned values for w2, the mat step is to simulate sampling from

these populations. Since sample covariance matrices and sample can-

croids are independently distributed when samples are drawn from multi-
variate normal populations, these two aspects of the sampling *my be

done quite separately from each other.

For generating simulated sample covariance matrices, the Odell-

Feiveson (1966) procedure is well established. A computer program

written by Montanelli (1971) was utilised for this purpose. The only

modification necessary in the present context is that we need to simulate

the sampling of a covariance matrix from each of K populations with

identical covariance matrix £. However, since we ultimately need only

the pooled within-groups SSCP matrix I!, we may, for expedience, simulate

the sample covariance matrix C for a single sample of nominal else

N K + 1 (where N n2 + n2 + nit), and then multiply this covar-

iance matrix by N K to produce the desired matrix Vs

(4.1) V 01 -

Simulating the sampling of centroids so as to get the desired

between-groups SSCP matrix was, as far as could be ascertained, a new

problem encountered in this study that is not discussed in the literature.

It was accomplished as follows.

The diagonal matrix a*u *' whose diagonal elements were generated

in accordance with equation (3.5) is, by definition, the cross product

of the effect- parameter matrix when the variates are expressed in

canonical form. Any p x K factor matrix f of cealt that is centered by

-9-



K
rows (since

kol J

t o*
k

- 0 by definition) should, therefore, qualify as

a matrix of effect parameters. Assuming (as will usually be the case)

that p > K - 1, such a matrix ! can be generated by taking any px(K-1)

factor matrix G of Tye and postmultiplying it by a (K-1)2K matrix 11

that is centered and orthonormai by rows. The simplest matrix to use

as is

9
(NI-1)

that le, the upper-left (K-1)x(Kp-1) segment of (ces*')112 augmented

below by a null matrix of order (p-K4.1)x(K4). One matrix which satie-

Lies the requirements for H is that whose rows consist of the coeffi.

ciente ,f the set of Batmen contrasts, with the sot of coefficients for each

actrast normalised to unity; that is,

(K-1)c
1

-c
1

-ci . . . -c1

(K-2)c2 -c
2

. . . .c
2

H 01
(K-3) c3 -c

3

(KI,K) 0 .

.

.

-10-

cK-1 -CK-1



where the elk (116. al 1, 2, ..., K-1) are the row -wise normalising multi-

pliers
k)2 km-1/2.

Thus, taking F GB as our effect-parameter matrix, we have an

eligible g* matrix of the form

(4.2) a* fe

where (estelo)K/2 stands fog the upper-left CK-1)x(K-1) segment of

(a'" *')1/2. (When p c K - 1, contrary to the assumption above, G will

be (eale)1/2 itself without the Augmenting null matrix, and will be of

order p x p. We then take as # the matrix consisting of the first p

tows of the H displayed above, and our a will be simply (e*ed0)1/2g.)

By definition, the general element of e is

a* mit -jk jk j

but we may let each u* m 0 without loss of generality, since this

merely involves a translation of the axes so that the origin coincides

with the general centroid. Thus, we may take the (j ,k)- element of e*

as defined by equation (4.2) as the mean u* of the k-th population

on the j-th variate in canonical form. Consequently, we may simulate

sampling the k-th sample mean on the j-th canonical varlets (indepen-

dently over both k and j) by taking

(4.3)
jk

o*
jk

s(0* / nk)1/2
'

where a* is the variance of the j-th canonical variate (i.e., the

j-th eigenvalue of the common population covariance matrix 1) ;



nk is the k-th sample size (14R in the present context);

and z - N(0, 1).

Once rd,
jk has been determined for each sample (k) for a given

canonical varlets, the grand mean for that variate is obtained as

(4.4)
K

1484 u ( I netsk)/N
kal

and the j-th row elements of the between-groups SSCP matrix are oh-

tamed as

K
(4.5) (r)ji.

k!lak(Vik " °"'j)(X*Jek Ilt Ii' 1, 2, ..., 1111.

Repeating this for j a 1, 29 ..., p, we get the between-groups SSCP

matrix r in canonical form.

The matrix Bit is then "uncanonicalized" by the transformation

inverse to that displayed in equation (3.2); namely,

(4.6) B sw WY'

and we get the SSCP matrix 8 in the original dependent-variate space.

For each set of K simulated samples under each combination of

sampling conditions described in the next section, the matrices I! and T

needed for computing 1;2 from equation (2.10) were determined by getting

W
_
in accordance with (4.1), ! in accordance with (4.6) and finding

T is W + a. The complete computer program is shown in Appendix A.

5. SAMPLING CONDITIONS

The types of populations from which samples were to be drawn have

already been partially indicated in the preceding section. More spe-

cifically, it was planned to have two levels of average intercorrela-

tion among the variates in the common covariance matrix: low

-12-



(0.10 . 0.30) and moderate (0.40 - 0.60). The sets of populations

were also designed to have five levels of w2 values: 0.1, 0.3, 0.59

0.7, and 0.9. Additionally, three levels were used for the number of

variates: p = 3, 5, and 10. The number of populations in each set

was fixed at K as 5.

From each of the 2 x 5 x 3 s 30 sets of five populations each,

samples of three sizes were to be drawn; namely, n is 15, 30, and 60

from each of the five populations in each set, yielding total sample

sizes of N = 75, 150, and 300 for each set. (Since this is not a study

of robustness of a statistical test under violations of assumptions,

it was not deemed necessary to vary the sample sizes across populations

in each set.)

Thus, there were a total of 90 sampling conditions. Under each of

these conditions, 1,000 independent, random samples were to be drawn. It

was anticipated that this number of samples would be more than suffi-

cient to achieve adequate approximation to the true sampling distribu-

tions of ;2.

6. RESULTS

Although it was originally planned to use sets of populations

having two levels of average intercorrelation among the variates, pre-

liminary investigations quickly showed that the magnitude of average

correlations had virtually no effect on the sampling distribution of

IP. The means for three pairs of sets of sampling distributions under

sampling conditions differing only in the average correlations in the

populations were as shown in Table 1. (In retrospect, this lack of

dependence of the sampling distributions on the average correlation

could have been anticipated: the sampling distribution of the squared

-13-



multiple correlation coefficient--of which 1 - A is a generalization

for K > 2--does not depend on the particular covariance structure which

produces a given population p2 value.) It was therefore decided to

confine further work to population sets with average correlation in

the medium-low range of 0.20 - 0.30. The (common) correlation matrix

for each of the three sets of populations used are shown in Appendix B.

Table 1. Means of sampling distributions of ;2 for three
pairs of sets of populations, the sets in each
pair differing only in the average correlation
(;) in the populations

to2

0.9 0.7 0.5 0.3 0.1

p103,N=75

pos5 ,N=75

.16 .9113 .7296 .5482 .3696 .1970
; a .28 .9112 .7297 .5479 .3705 .1970

; .24 .9192 .7551 .5956 .4382 .2777
xm .56 .9187 .7596 .6040 .4482 .2857

pn5,N=1000
- .24 .9017 .7047 .5071 .3109 .1143
mi .56 .9000 .7041 .5067 .3140 .1141

It also became apparent as computations proceeded that til2 was ex-

tremely positively biased, especially for population sets with low w2

values, when the ratio N/p (of total sample size to number of variates)

was any lower than 40 or so. The original plan of using samples of

sizes 15, 30, and 60 from each population (i.e., total sample size

N m 75, 150, 300) was therefore abandoned in favor of one in which the

N/p ratio had values 50, 100, and 200. This change was deemed

-14-



appropriate since it appeared that, in order to get anything resembling

a realistic estimate of w2, the N/p ratio bad to be of these orders

of magnitude. In retrospect, however, the decision may not have been

a wise one, for reasons described below.

Due to the exorbitant cost of computations for the 10-variate

cases, the number of samples drawn was reduced from 1,000 to either

200, 300, or 500.

With the foregoing modifications of the original plans for sampling

conditions, the means of the generated empirical sampling distributions
of ;2 under the various conditions were as shown in Table 2.

Table 2. Means of sampling distributions of ,2 for various
numbers of variates (p) and sample sizes CO, for
five sets of populations with to' values as indica-
ted. (Each sat consists of X05 populations.)

N

402

0.9 0.7 0.5 0.3 0.1

3 75 .9112 .7297 .5479 .3705 .19703 150 .9059 .7129 .5262 .3398 .14613 300 .9030 .7073 .5115 .3181 .12493 600 .9016 .7038 .5058 .3101 .1127

5 75 .9192 .7551 .5956 .4382 .27775 250 .9056 .7159 .5287 .3425 .15395 500 .9033 .7077 .5156 .3214 .12835 1000 .9017 .7047 .5071 .3109 .1143

10 75 .9437 .8205 .7104 .6087 .471610 500 .9071 .7222 4331 .3452 .165010 1000 .9038 .7116 .5167 .3233 .131310 2000 .9016 .7052 .5088 .3124 .1164



Inspection of Table 2 dhows that, even for an Nip ratio as large

as 200, the positive bias of ;2 is considerable. At this point it was

suspected that, despite the reasoning in Section 3, the peculiar method

of constructing the populations with preassigned (02 values might have

led to anomalous sampling distributions of ;2. Therefore, an alterna-

tive (and more expensive) method, described in Appendix Co that did

not depend on the simultaneous diagonalization of E and se was employed

to generate a set of five populations with p 5 and w2 0.1. One

thousand samples of size 15 were drawn from each of the five popula-

tions thus generated, and the distribution of 4i2 was constructed and

compared with that under the comparable sampling condition based on the

simultaneous-diagonalization procedure. (See Appendix C.) The mean

of this sampling distribution was 0.2859, or 0.0082 larger than the

mean (0.2777) in the corresponding cell of Table 2. It was therefore

concluded that the positive bias of ;2 was not due to the nature of

the populations generated by the simultaneous diagonalization method.

Evidently, our attempt to develop a "quasi-unbiased" estimator of w2

was unsuccessful.

ametalmiAmLakatail

Various attempts to develop an alternative statistic that would

estimate w2 unbiasedly (or nearly so) were made but proved to be of

no avail. It was therefore decided to try to develop a formula for

correcting the bias in ;2.

Close scrutiny of Table 2 revealed that, within each raw (i.e.,

for fixed p and N), the amount of bias,

-16-
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a linear function of 1 - ;2. This impression was put to a test as

follows. For each row in Table 2, a straight line

(6.1) (12 . 02)1 012)

was fitted by the least squares method. (That the intercept in equation

(6.1) must be 0 follows from the fact that t712 can theoretically show

no bias when w2 m 1.) From this equation, "corrected" values of tal2

were computed as

(6.2)
ftwc (7a2 m(1 . ;2),

and these were correlated with the true w2 values within each row. The

results were as shown in Table 3.

Table 3. Means of sampling distributions of (712corr [corrected by
equation (6.2)], the proportionality constant m, and the

correlation baba= to and C.12
COTT0 for various p and N

102

N 0.9 0.7 0.5 0.3 0.1

3 75 .9010 .6985 .4958 .2979 .1044 .1153 1.00003 150 .9007 .6969 .4999 .3031 .0986 .0556 1.00003 300 .9004 .6994 .4983 .2997 .1013 .0270 1.00003 600 .9002 .6997 .4989 .3005 .1003 .0139 1.0000

5 75 .8995 .6955 .4972 .3015 .1020 .2433 .W.195 250 .8996 .6980 .4990 .3010 .1005 .0631 1.00V.5 500 .9002 .6984 .5002 .2998 .1006 .0318 1.00005 1000 .9001 .7000 .4993 .3000 .1003 .0158 1.0000

10 75 .9027 .6896 .4992 .3234 .0863 .7291 .998910 500 .9002 .7016 .4984 .2966 .1030 .0742 1.000010 1000 .9004 .7013 .4995 .2992 .1004 .0356 1.000010 2000 .8998 .6998 .4998 .2999 .1003 .0182 1.0000

A.PowliamomitmoomomemoM

-17-



It seemed indisputable, from the results exhibited in Table 3,

that a correction term linear in 1 - ;2 would suffice for each p and

N (fur fixed K) in order to get a nearly unbiased estimator of 412.

The problem was to determine the functional dependence of the propor-

tionality coefficient m on p and N, and on the hitherto unvaried K

(the number of populations).

At this point, the earlier decision to use different sample sizes

for different numbers of variates (in order to control the N/p ratio)

proved detrimental. We were left with insufficient data points ade-

quately to conjecture the relation of a with p for fixed No and that

of zi with N for fixed p. Nevertheless, there were enough grounds for

surmising that mums approximately inversely proportional to N and

roughly directly proportional to p, as a scanning of Table 3 shows.

The foregoing observations, coupled with knowledge that the quanti-

ties

- 1 (p + K) /2 a n d p(K - 1)

often appear in p-variate, K-sample problems, led to the tentative con-

jecture that the m in equations (6.1) and (6.2) might be expressible,

approximately, as

n (K, p, 141) -

where c is a proportionality constant to be determined.

In order to permit greater flexibility in the curve-fitting ven-

ture, however, it was decided to use a more general form as the con-

jectured relation between m and its three arguments:

(6.3) p, N) ss ce0)
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with

(6.4) M N

or some similar quantity dependent largely on N, and

(6.5) Q- p(K -1)
or some other quantity dependent symmetrically on p and K - 1. The

symmetry with respect to p and K - 1 was conjectured from the fact

that a p-variate, K-sample problem can be recast as a canonical-come.

Utica problem with p variates in one set and K-1 in the other.

Combining equations (6.1) and (6.3), we arrive at the least-squares

problem

(6.6) (,:12 02)t cmale(1 :12)

where the constants c, a, and b are to be determined on a least-squares

basis, and M sue Q are as conjectured in equations (6.4) and (6.5) or

similar expressions in N, p, and K. Taking logarithm) of both sides

of equation (6.6), the quantity to be minimized is

(6.7) E Moss + alogN + ?log() + leg(1 ) /a2 w2)12

where the summation is taken over all data points.

The normal equation for determining the optimal values of c, a,

and b is

[ ND

(6.8) EloSM

ElogQ

ElogM

E a01002

E(logQ)(logM)

.1111

ElogQ

r(logt) (logQ)

Z (logQ) 2
oft*

WOW

logs

a

b
lemma

US

11000 PRIO

- E(logM) (logW)

-E(104)(logW)

where N
D is the nuaber of data points, and Wu (1 - ;2)/(w2 w2).

Equation (6.8) enables us to solve for least-squares optimal

values of a, b, and c under various plausible conjectures for Al and Q



besides those stated in equations (6.4) and (6.5). We would then

favor choices of 141 and Q that lead to tI smallest value of R as de-

fined in equation (6.7)--subject, of course, to review upon cross-

validating on data points generated by sampling conditions not inclu-

ded in the optimizing process.

To carry out the calculations, it was now necessary to vary K

instead of fixing it at 5 as was done up to this point. It was deci-

ded this time to fix p at 4 and use X = 3, 7, and 10 in combination

with N 75 and 500. To keep down computer costs, the number of samples

drawn was reduced to 200 for these runs. The means of the resulting

sampling distributions were as shown in Table 4.

Table 4. Means of sampling 1stributions of ;2 for two sarple
sizes (N) for sets of populations with w2 values asindicated. The sets consist of varr:lig nu hers (K)
of populations. The number of variates is p = 4
throughout.

612

N K 0.9 0.7 0.5 0.3 0.1

75 3 .9071 .7189 .5304 .3513 .170475 7 .9234 .7720 .6058 .4666 .305475 10 .9344 .7976 .6543 .5293 .3922

500 3 .9008 .7004 .5046 .3062 .1087500 7 .9034 .7086 .5135 .3274 .1315500 10 .9051 .7152 .5235 .3343 .1499

The data in the 12 rows of Table 2 and those in the six rows of

Table 4 (90 data points in all) were fed into equation (6.8) for
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determining the least-square estimates of the parameters in equation

(6.6) , with M and Q as initially conjectured in equations (6.4) and

(6.5). Solution of equation (6.8) with these inputs yielded

logs in -0.4341 (or c ..3680), a as -1.0677, b a 1.3631.

Thus, the correction formula for 17,12 based on the data of Tables 2 and

4 and the conjectures of equations (6.4) and (6.5) is as follows:

06774"41143631(142).(6,9) ;2corr t7112 368[41* 14-1-(040/2).4

The 90 corrected lAo2 values resulting from use of this formula were as

shown in Table S. The root mean squared error for these data points

was 0.0108, and the correlation between c712 and 0 was 0.9993.

Table 5. Means of sampling distributions of (7)2 for 22 cow
binations of p (number of variables), K (number of
populations) and N (total sample size), corrected
in accordance with equation (6.9).

K N

U2

0.9 0.7 0.5 0.3 0.1

3 5 75 .9008 .6982 .4952 .2971 .10333 5 150 .9009 .6975 .5008 .3044 .10033 5 300 .9006 .7000 .4992 .3010 .1029
3 5 600 .9004 .7003 .4999 .3019 .10225 5 75 .9000 .6969 .4995 .3047 .10605 5 250 .8998 .6984 .4996 .3019 .10175 5 500 .9005 .6992 .5015 .3017 .10305 5 1000 .9003 .7006 .5003 .3014 .102110 5 75 .9079 .7064 .5262 .3599 .135610 5 500 .9001 .7013 .4980 .2960 .102310 5 1000 .9004 .7014 .4995 .2993 .104410 5 2000 .8999 .7002 .5005 .3008 .10154 3 75 .9009 .7002 .4991 .3081 .11514 3 500 .9000 .6979 .5005 .3004 .10134 7 75 .8999 .7020 .4847 .3028 .09214 7 500 .8998 .6977 .4954 .3023 .09914 10 75 .8986 .6870 .4654 .2721 .06014 10 500 .8989 .6967 .4925 .2910 .0946
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Various other conjectures for M and Q, such as 1.1 N-(p+) , M m N,

Q PW-1, Q 0 p24(11-1)2 were tried out, each combination giving rise

to a table essentially similar to Table 5. These are not included here

because there is little point in presenting a lengthy series of similar

tables. The three most promising combinations besides that consisting

of the expressions given in equations (6.4) and (6.5) led to the fol-

lowing estimated values for the parameters c, a, and br

14 N-1-(p4-0/2, Q p2.4(K-1)2: c .2801, a -1.0692, b 113 1.1343

Ma N. Q p(K-1): c .4358, a us -1.10480 b a 1.3899.

14 N, Q a 104.(K-1)2: c .3041, a es -1.1066, b 1.1579

In order to test the effectiveness of the corrections using these

combinations of parameter values on a new set of data, the means of

sampling distributions of ;2 for four new combinations of p, K, and N

were computed. The resulting 20 data points were as shown in block

(i) of Table 6.

Blocks (ii) - (v) of Table 6 show the corrected ;12 values using

the four combinations of M and Q with the values for the parameters

c, a, and b as cited above. Also shown, at the bottom of each of

these blocks, is the root-mean-square error (RMSE) for that set of

corrected 012 values. Examination of these ANSE values and a scanning

of the table indicate that the corrections seem quite adequate. All

the t7,2
cot r

values are correct at least to one digit, and about two-

thirds are correct to two or more digits.

In terms of the RMSE values, the two combinations using Q p(K-1)

yield somewhat better corrections than do those using Q p2-#-(8-1)2.

-22-



Table 6. Means of sampling distributions of 4;2 for four combinations
of p (number of variables), K (number of populations), and
N (total sample size): (1) as observed; and (ii) (v)
corrected for bias by subtracting out the following correc-
tion terms:

(ii) .36801N-1-(00/2)-1.0677ip(K.1))1.3631(I ;2)

(iii) .2801 111.1.(10g)/21-1.06921p4(K.1)2)1.1343(1 .2)

^
(iv) .4358 8-1.1°48iP(-I) 1

1.3899
to
2

)
N-1.1066/04(K .2)211.1579(1

ift42)

Also shown are the root mean squared error, MSS, for each
set of corrected EP values.

K N

632

0.9 0.7 0.5 0.3 0.1

(i)

4 6 150
4 3 300
7 4 300
7 8 400

4 6 150
4 5 300
7 4 300
7 8 400

(iv)

(v)

6 150
5 300
4 300
8 400

4 6 150
4 5 300
7 4 300
7 8 400

4 6 150
4 5 300
7 4 300
7 8 400

.9118 .7288 .5489 .3628 .1909

.9048 .7128 .5164 .3245 .1355

.9030 .7194 .5291 .3403 .1522

.9092 .7309 .5502 .3673 .1900

.9022 .6994 .5003 .2938 .1032

.9013 .7021 .4984 .2993 .1033

.8999 .7042 .5036 .3046 .1063

.8977 .6969 .4934 .2874 .0877

(RNSE .00518)

.9036 .7035 .5069 .3b35 .1156

.9017 .7034 .5006 .3024 .1072

.8989 .7013 .4987 .2978 .0976

.9014 .7077 .5116 .3130 .1204

(RMSE si .00774)

.9021 .6988 .4990 .2924 .1015

.9012 .7020 .4982 .2990 .1029

.8998 .7040 .5032 .3040 .1056

.8974 .6959 .4917 .2851 .0847

(EMSE .00594)

.9034 .7031 .5062 .3024 .1143

.9017 .7033 .5004 .3022 .1070

.8988 .7010 .4982 .2969 .0965

.9012 .7073 .5107 .3118 .1189

(RMSE .00718
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In particular, the M and Q originally conjectured and stated in equa-

tions (6.4) and (6.5) give the smallest RNSE. Pitted against this

advantage, however, is the fact that the values of b for the two com-

binations involving Q a p24-(Kp-1)2 are closer to unity than they are

for the other two. (Note that all four values of a are quite close

to -1.) Observing further that the value of c for the last combina-

tion is close to 1/3, we are led to an alternative, simpler formula

that should be sufficient for providing a rough, "rule-of-thumb" correc-

tion; namely

(6.10)
22 + .4I12

es
%corr

rr

2).

Using this ruleof-thumb correction for the 22 (p, K, N)-combina-

tions (110 data points in all) that were considered in the foregoing,

the corrected ro2 values showed the following distribution of number of

significant digits in agreement with the true w2 values:

20 agreed to 3 digits,
55 agreed to 2 digits,
33 agreed to 1 digit,

and 2 agreed to 0 digit.

(The two showing 0-digit accuracy were larger by 0.1 than the true

W2 values, when rounded to one decimal place.)

It therefore seems safe to conclude that, at least within the

limits of the p (number of variates), K (muel'ar of populations) and

N (total sample size) values that were examined, the simple correction

formula presented in equation (6.10) will suffice to reduce the bias

in ;2 to less than 0.05. The constraints are that p(K-1) < 49 and

75 < N < 2000. It remains to be seen bow the correction formula will

work outside these limits.
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Confidence Intervals for w

Another approach to estimating the population w2 from even a

badly biased statistic is to construct charts for getting confidence

intervals. For this purpose it is unnecessary first to eliminate (or

even reduce) the bias in ;2provided we are willing to adopt confi-

dence intervals that will often not even include the observed statis-

tic value, especially when p and/or K is large.

Arbitrarily deciding to construct symmetric 902 confidence inter-

vals (symmetric in the sense that 52 is excluded at each tail end, but

not symmetric about the observed ;2), the 5th and 95th centile points

of the sampling distributions for selected combinations of p and N,

with K fixed at 5, were computed. The selection was based essentially

on those combinations represented in Table 2, excluding the larlest

N for each p. (Inspection of the sampling distributions for the

largest-N cases showed that the confidence intervals would reduce

practically to point egailMtee within the accuracy of graphing for

these cases.) Sampling distributions represented in Tables 4 and 6

were not considered because they were based on only 200 samples, which

would make the C
5

and C
95

values unreliable. Additionally, the sampling

distributions for N 0 150 with p mg 5 were computed anew, since the

jump from N a 75 to N 250 seemed large in this case.

The 5th and 95th centiles, C5 and C95, of the selected sampling

distributions were as shown in Table 7. The values for the null dis-

tributions (with w2 a 0) were computed backwards from Rao's (1952)

approximate equation relating A to an F distribution under the null

hypothesis. This relation states that
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Table 7. 5th and 95th centiles of sampling distributions of L2 for
3, 5, and 10 variables, each with three selected sample
sizes and six true w2 values.

672

P 3

No75 N 150

0 .0198 .2082 .0092 .1068.1 .0725 .3333 .0675 .2425.3 .2275 .5256 .2380 .4505
.5 .4083 .6796 .4288 .6225
.7 .6208 .8268 .6411 .7854
.9 .8728 .9466 .8767 .9348

N 300

.0043 .0550

.0713 .1828

.2418 .3945

.4410 .5828

.6560 .7568

.8804 .9225

N o 75 N on 150 No250

0 .0981 .3189 .0478 .1681 .0282 .1042.1 .1513 .4125 .1131 .2925 .0934 .2225
.3 .2915 .5808 .2645 .4850 .2621 .4280
.5 .4650 .7164 .4575 .6425 .4550 .6041
.7 .6569 .8411 .6615 .8025 .6586 .7708
.9 .8798 .9547 .8808 .9406 .8838 .9299

pas 10

w2

N075 500 N o 1000

C95 C C
95 C9

0 .2963 .5305 .0451 .0989 .0225 .0506
.3. .3475 .6075 .1245 .2163 .1011 .1669
.3 .4550 .7009 .2925 .3975 .2875 .3650
.5 .5958 .8083 .4850 .5900 .4818 .5583
.7 .7425 .8963 .6775 .7669 .6852 .7420
.9 .9100 .9694 .8939 .9260 .8940 .9188
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1 A
lis

K -1 2 +(6.11)
V vA v1, v2

'

where

and

v1 p(K -1), v2 me - P(K-1)/2 + 1

m N - 1 - (p+10/2

LF2a.2)2 . 4

11)2 + (K4)2 5

From relation (6.11), it follows that

-1/8
A - 1 . hP

where h
ms - p(K-1)/2 1

Consequently, the 1004 point of the distribution of A when w2 a 0

may be calculated as

Am antilogf-slog(l+h
v2; 1-a)1*

Upon substituting this value in equation (2.9), namely

*2
99 . NA

(IN-* # A

we get the 100(1-02 point of the null distribution of ;2. Using

a .95 and .05, therefore, gives us the C5 and C95 values, respectively,

of the sampling distribution of ;2 when ma 0.

Figure 1 shows the graphs of the upper and lower limits of the

symmetric 90% confidence interval for N 75, 150, and 300 in the three-

variate case. Similar graphs may be constructed for p 5 And p 10

from the data givlan in Table 7.
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Figure 1. 90% confidence limits for w2 for three sample sizes,
with three variates and five populations.
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SUMMARY AND CONCLUDING REMARKS

The sampling distribution of a measure of strength of relationship

in multivariate analysis of variance MEOW, proposed by Tatsuoka

(1970) 9 was examined by a computer simulation technique developed espe-

cially for this purpose. The measure, denoted ;2 and defined in equa-

tion (2.10) as

;2 0 1
tK-K)A1X2 Ap + 1

where the AI are the eigenvalues of el (fit being the within-groups, and

T the total SSC' matrix) was found to be highly positively biased--

especially when the population value w2 is small.

Although the amount of bias steadily decreases with increasing N

(indicating that ;2 is a consistent estimator of w2), it does not become

negligible until the Nip ratio exceeds 50 for w2 > .50, and exceeds 100

for w2 < .30. This means that a study involving p 10 variables must

use at least 1,000 subjects before any realistic estimate of the popu-

lation w2 can be obtained.

Since such large samples are not ordinarily used in typical studies

(with the exception of large-scale statewide or nationwide studies), it

becomes important to have a means for eliminating, or at least reducing

the bias in ;42.

Various attempts to develop, theoretically, an alternative statistic

with little or no bias proved futile. An empirical approach was there-

fore adopted. Careful study of graphical plots of the amount of bias

revealed that a linear correction of the form

co m1;2 - m(1 - 1:12);32rr
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would suffice for any fixed number of variables (p), number of popula-

tions or levels in the MANOU factor (K), and total sample size (N).

Furthermore, the proportionality constant m appeared to be approximately

inversely proportional to N and (very roughly) directly proportional to

p for fixed K.

The above observations, combined with knowledge that p and K-1 should

affect the amount of bias in the same way, led to the conjecture that a

correction of the form

12 02 . dee°. ;2)
corr

should be adequate. Here N is an expression largely dependent on N,

Q an expression symmetrical in p and K-1, and c (> 0), a (< 0), and

b (> 0) are parameters to be estimated.

Several different expressions for M and Q were tried out, and the

parameters cip a, and b were estimated by the least-squares method, based

on 18 different combinations of p, K, and N, with five w2 values (0.1,

0.3, 0.5, 0.7, and 0.9), for a total of 90 data points.

Cross-validation on 20 data points not used in the process of

selecting optimal expressions for M and Q and estimating c, a, and b

led to the choice of the following correction formula:

12corr
12 3041 Nm1a°66ip 2 CK-1)2111579(1 i1;).

This was simplified to a rule-of-thumb correction formula

"2
corr

w 1 - ;2).

The simplified formula, when tested against all 110 data points

(90 derivation points and 20 cross-validation points), yielded very
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satisfactory results: agreement with to2 to at least one significant

digit in all but two cases, and agreement to two or three significant

digits in slightly less than two-thirds of the cases. This formula

was therefore deemed to be adequate at least when p(KC -l) < 49 and

75 < < 2000.

At this point, the question naturally arises, if a further correc-

tion is needed on ;2 Which was designed to be a correction of sorts for

1 - A (where A is Mks' likelihood-ratio criterion), why should one

bother with a statistic more complicated than 1 - A? The answer is,

obviously, that one need not bother. This conclusion was impliclt in

Ruberty's (1972, p. 525) statement that "it is clear that numerically

the difference between n2
le

n2
111

and ;2mul
t

is practically nil," made

in.a study comparing four multivariate indices of strength of associa-

tion, including 1 - A (n2w in his notation) and 1;2. However, the further

conclusion that anyone of these Imay be employed as indices of discrim-

inatory power of a set of variables" has now been shown to miss the

mark. To put it bluntly the present study, in combination with Huberty's

findings that they all yield nearly equal numerical values, shows that

they are all equally poor instead of equally good.

The natural thing to do would seem to be to develop a correction

formula to be applied to either of the purely sample-descriptive indices

n2w (1.e., 1 - A) or n211 (Which is based on the trace of 111?). In

view, again, of Hubertyle findings, it is likely that the rule-of-thumb

correction formula given in equation (6.10) and cited above will suffice

for all practical purposes. In particular, the correction for 1 - A

would be
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(1 - A)corr 0 (1 .- A) '2 +1412 A .

It may seem odd that virtually nothing is known about the noncentral

distribution of so widely used and long established a statistic as

Willis' A, but this appears to be the case. Gupta (1971) derived the

distribution in the special case when re is of unit rank, and assorted

that, for the general case, the distribution shoo not been expressed

in a numerically feasible fore (p. 1259). As far as could be ascer-

tained, nothing has appeared in the literature since 1971 to negate

this assertion.

Besides the correction- formula method, another means was presented

for estimating w2 from ;32; namely the use of confidence intervals.

Charts were given in Figure 1 for p 3 with N 75, 105, and 300, and

data for constructing similar charts for p S and 10 were presented

in Table 7.
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BEST COPY AVAILABLE

APPENDIX A: Computer Program and Sample Output

IMPLICIT REAL*8(AN.H93 -L)
COmMON KFRO(200,5)9PMEAN(5)9UmEAN(5),EmEAN(5)9NMIxS

191COLATIOMETRI309309AmDA(30),TEMPE(V00),EAC(591001(A
19INDX9KIY,SDP(30)9ISKIP
LOCICAL IPAR(8)
INTEGER*4 IDUM(3C92)9IDET

INTEGER FMT(20),BLANK(20)/20*' 0/910120)
DIMENSION SIGMA(30930)9T(30930)9SOS(30)IJ(5)
EQUIVALENCE(NROw9IP)

C1**** INPUT PARAMETERS
C ID 1 CARD OF IDENTIFICATION*FIRST 4 COLk"NS APPEAR IN
C PuNCmED OUTPUT
C FmT INPUT FORMAT FUR PUPULATIoN COkHELATIONS9
C IPAR LOGICAL FLAGS FOR CONTROLLINJ PRINTED OUTPUT
C IS(IP FLAG FOR CONTkOLLING PRINTED uUTPuT IN buBk.AJTINc.
C KGR NUMBER OF GkOUPS
C Ix INTEGER STARTING POINT FUR kAND07,01 4ENERATOR
C NivTXS Wi1dER OF SAmPLE CORRELATION mATRICES Ti.) aE ;JE.NEkATtO
C N SAMPLE SIZE
C NlOw NuMBER OF ROWS IN INPUT

READ(591001) ID,FmT9IPAR91X9N4TxS9N9AlkOw9CA9I091SKIP
REA0(5,FmT) (SDP(1)9121NROw)
ISKIP2ISKIP+I
NINTs200
wRITE(5,1004) ID91A
DO 777 I*195
PMEAN(I)110.
OmEAN(11s0,
EmEAN(I)830.
DO 778 J=1.NINT

KFR0(.191)=0
778 CONTINUE
777 CONTINuE

wRITE(691032) NkO*9KGR9N9NMIXS
CALL RN3IN2(1X)

C READ I% SIGmA.CALCuLATE OMEGA TkANSPOSL9UPPEK TkIANGuLAA
N=':-KGR4.1

DO 4739 I=1,NROw
4739 READ159FmT)(SIGMAII9J). J=11N:i..)^)

S= 0.

DO 250 Ial,NROw
DO 250 J=191

250 S=S+SIGmA(19J)
)02(NR04-1)*NROw/241
S=S-NRON
SmS/X
wRITE(6.2001) S

I811-2*.)
wRITE(691033) (4J9J2195),(J9.12195)9(.1,J=195)
DO 2000 Im19NR06
DO 1500 .219%ROw

1500 SIGMA(19J)=SI:JmA(J9I)
2000 SIG0A(191)111

IF(IPAR(1)) GO TO 911
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WRITE(691005)
DO 901 Ls1o%1404

901 WRITE16,1011) Lii(SIGMA(LOAovslNetOn)
911 CONITINIUE

DO 10 IsltNHOw
1C OmETRt1eIlsSImAt101)

DO 200 Is2 iROW
ILESS110..1
IPLUS1s1.01
SU4200
DO 110 J=1,ILESS1

110 SUMsSUm+OYETR(JoI)*JMETR(JoI)
OMETR(ItI)sDSORT(SIGMA(1.1)..SUM)
IFtIEO.NROW) GO TO 200
TtmP=1410/0mITRt1,1)
DO 130 J=IPLuslNliwn
Sum=0,0
DO 120 K=1oILESS1

120 SUMsSUM+OYETR(Kol)*OMETR(K,J)
130 OMETR(IoJ)sTEMP*(SIGmAtioJ)m-SUM}
200 CONTI\UE

IF(IPAR(2)) GO TO 912
wRITE(6,10061
DC 902 LsloNROw

902 WRITE(61011) Lo(0.,ITRIY,LisMsloL)
912 CONTINUE

DO 2002 I=1,NROw
DO 2CO2 JulNRUw

2002 T(I,J)=SIGmA(/,..1)*SDP(I)*SJP(J)
KIms1
CALL SBETW(TeNoNkOWIIIXoKGRoI:J,IP)
KIM2

C

C LOOP FOR ALL SAMPLE CekkELATIJN MATRICES
C

205 NCODEINN/100
DO 900 ICOUNT214INYTxS

C CALCULATE TLOwER TRIA%GuLAR
DO 300 IsleNROW
NDFshI
DFsNDF
CALL NORMAL(X)
X2aX *X
X3sX*X2

m601,3080441E-03*x31589b53E-03*x2.924A112EJ3*x
14..1885979E-03

x(600/DF)*160
TEMP0(2.0/(9.3*0F))
T(ItI)EDF*(10TEmP+Ix-11)*DSORTITEP))**3
Tt10112DSO2T(T11,1))
IFIIEO1) GO TO 300
ILESS1=I1
DO 210 J=1ILES51
CALL NORmAL(x)
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21n T(I,J)=X
300 CONTINUE

IF(IPAR(3)1 GO TO 913
WRITE(6.1007)
DO 903 LeleNROW

903 WRITE1601011) LotT(L,M),MmlilL)
913 CONTINUE

C CALCULATE OMEGA*ToAND STORE IN SIGMAtAS A LOwt.t TliIANGULAK
DO 350 ImileNROW
DO 350 J=1,I
SIGMA(I,J)s0.0
DO 350 Km.itI

350 SIGMAtIeJ)=SIGMAII,J)+0*AETR(K.1)4111K,J)
IF(IPAR(4)) GO TO 914
WRITE(6.1008)
DC 904 01111NROW

904 WRITE(6,1011) L(SIGMA(L,M),M=1,0
914 CONTINUE

C FO' A MATRIX,IN TCLOwER TRIANGLE.ONLY)
DO 370 12,110NROW
DO 370 Jule!
T(I,J)20,0
DO 370 KuleJ

370 T(I,J)=TtI,J)+SIGMA(I,K)*SIGMAtJeK)
IFCIPAR(5)) GO TO 915
WRITEC6.1009)
DO 905 LultNROW

9C5 WRITE(601011) LOT(LeM),MaliLl
915 CONTINUE

DO 600 laltNROw
DO 600 Jal,NRO*

600 T(leJ)=T(I,J)*SDP(I)*SDP(J)
CALL SBETw(TeNoNROW,IX,KGRoI0,1P)
IF(IPARt8)) GO TO 900

C GET STANDARD DEVIATIONS, STORE IN FMT,AND CALCULATE k.1; T
DO 380 12104ROW
SDS(I)=DSORT(T(1,1))

DO 380 J=1,1
TII,J)nT(11J7/1SDS11)*SDS(J))

380 T(J,I)mT(1,J)
IF(IPAR(6)) GO TO 916
WRITE(6,1010) N

C DO 906 Lal,NROW
C PRINT FIRST RO* OF LACH CORRELATION mAT.4Ix

L

906 wRITL:(6,1011) L9( TiL,01),MultNRO*)
916 CONTINUE

IF(IPAR(7), GO TO 917
00 907 LuleROW
M1 =1
DC 907 Kx1,4
m2=m1+9

wRITE(71020,ID(1)0.,ICOUNT,NCODE,K#(TCLII:41019md)
907 4.11=m24.1
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BEST COPY NAURU

WRITE(7,1021) HLANK
917 CONTINUE
900 CONTINUE
950 CALL RN3NDZCIX)

WRITE(6,1999) IX
CALL EXIT

1001 F0RMAT(20A4/20A4/8L112X1110.1315)
1004 FORMAT('11.20A40,INTEGER STARTING VALUE=1.110)
1005 FORYATtiOINPUT CORRELATION mATRIX'/)
1006 FORMATII1SQUARE ROoT FACTORS OF CORRdLATIONKti)
1007 FORMATts1T VATRIXtf)

FOR4AT(110vEGA*T 1/)
1009 FORYATG' A NOTRIX./)

C1010 FORvAT('1SAMPLE CORRELATION MATRIX1.16/)
1310 FORMAT(1..SAAPLE CORRELATION MATRIXt.I64)
1011 F0RmAT(13.10F13.6/t3X.10F13.61)
1020 FORMAT(A4.2I2.211.10F7.5)
1021 FORAT(20A4)

1032 FORXAT(' NO. OF DcPENDENT VARIABLES
slt '914/

1' NO. OF GROUPS = 1914/
2' SAMPLt SIZE '.14/
3' NO. OF SAMPLES

s

1033 FORMAT(/19X0 1 LAMBDA VALUES' : 14)2/;
1. OvEGASOUARE VALUES'e23X0 LRRORS'//6X.I6
2.1418)

2001 FORmATte AVFRAGE CORRELATION = 'oF5.4)
1999 FOR,0AT('OINTECIER STOPPING POINT=1.I10

END
SUBROUTINE SBET4(TIN.N)20611IX.K.IQ.IP)
IMPLICIT RFAOISIA...H.O...Z)

COMMON KFRO(20C05),PMEAN(5),OMEAN(5),EMLAN(5)+NMIXS
101COUNT.OVETR(30.30) AMDA(30).TEMPLA900).EMC(5,10.10)
1'INDX.KIM.SDP(30),ISKIP

INTEGER*4 IDUM(30.2),INOIC(10).10kT
DIMENSION SIGAA130030/eT(30.30)00YEGAt30,30).DUM1(465)
10IDt20).FmT(20).BET130.30),I0t5).PRT(5).EROk151,SRT(5)
2.VEC(9003.,VAL(3010TVAL(30)

NINT=200
C CONVERT CORRELATION MATRIX TO COVARIANCE MATkIX,STORE
C IN SIGMA

DO 10 L=1.NROw
DO 10 Ju1.NR04

10 T(L.J) IsT(JeL)
DO 11 L=1.NROW
DO 11 JultNROW

11 SIGMAtL,J)mT(L.J/
N2IN4.0.1

SMES0.0.
C

C CALCULATE EIGENVAI.UES AND VECTORS OF POPULATION
C COVARIANCE MATRIX. ONLY 3 FIRST PASS. OTHER*ISE SKIP
C TO 771
C

GO TO (770.771),KI:A
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C
C**** INPUT PARAMETERS
C K NUMBER OF GROUPS
C IP NUMBER OG VARIABLES
C NROW ORDER OF COVARIANCE MATRIX
C N SAMPLE SIZE
C 10=10*THE GIVEN VALUE OF OMEGA SO,
C SIGMA CONTAINS VARIANCECOVARIANCE MATRIX
C
770 CALL EIGENZ(TeTLMPEIIAMDA,DUM1,NROW+30,0)

1PAT=30NROW
DO 1785 I =1,IPAT
INPTaNROW+1
AMDA(INPT)=0,

1785 CONTINUE
C
C TEYPE CONTAINS EIGENVECTORS IN DESCENDING ORDER .JT ROOTS
C AMDA(30) HAVE EIGENVALUES IN DESCENDING ORDER
C

C I HAS EIGENVALUES IN THE DIAGONAL POSITION
C

IF(ISKIP2) 751,750,751
750 WRITF(6,1022)

DO 601 011,NROW
IPAT=1+ NROW *(L -1)
IR= NROW*L

6:11 WRITE(6,1011) LeAMDA(L),(TEMPL(:4),M=IPAT,IK)
L=0
WRITE(6,1011) Lt(SDP(1),I=1,NROW)

C
C GENERATE MATRIX ALPHASTARoSTORE IN I
751 D01614 INPT2105

DO 914 IPATE100
DO 914 151'431,30
T(IPATtIST)=0,

914 CONTINUE
0=10(INPT)
0260/10.

IF(1PK+1) 1892.1891e 1891
1891 S=101

CO TO 1914
1892 S=IP
1914 OuDLOG(0)/S

OmDEXP(0)18
0=DSORTIO)
IsK1

DO 604 L=1,'
ATe(KL+1)*(KL)
T(L,L)wDSORT( AMDA(L)/AT) *(KL)*0
misst1

00 604 JuL,M
LOBJ+1

T(LIILL1 21*DSORT( AMDA(L)/AT)
T(LIILL)=T(LIILL)*0
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604 T(LL,L) a0.
SDK
DO 516 L=1,IP
DO 516 JalaK

516 EmC( INPTeLt.PuTtLeJ)*DSORT(S)
GO TO 11601,1600). ISKIP

1603 WRITE(6,1615) INPT
DO 1616 111,101ROw

1616 ARITE(6.1C11)111 (EMC(INPTtI1J).)21,K)
1601 CONTINUE
C

C RESTORE ALPHASTAR TO OkIGINAL vAkIATESPACE ALPHA
C

DO 630 0111,NROw
DO 631 J21.K
x=041

DO 632 m=1,NR3h
IPAT2L+NIROw*(54-1)

632 XTEMPE(IPAT)*T(MtJ)+X
RET(J,L)=X

631 OYEGAtL,J)=X
630 CONTINUE
C
C GET ALPMA*ALPHPRIME
C

DO 633 01:19NROw
DO 634 JaleNROw
xl$0.

DO 635 M=10(
635 XcX+OMEGAiL,M)*BETtv.,J)
634 DUM1(J)aX

DO 636 Jal#NROw
636 T(LJ)=DUMliJ)
633 CONTINUE

DO 609 L=1,NROW
DO 609 MscltNROft

C

C BET MAS ALPHA*ALPHAPRIME,ORDER IS NKO* 3Y NIKUvi
C I HAS ALPHA* ORDER I5 NROw BY K
C

BET(LM)=TtLem)
TILtm):10MEGA(L0M)

609 CONTINUE
C

C COmPuTE LANIBOA
C

DO 612 L=1,NROW
DO 612 J21,NR04

OmtGA(L,J)=BET(L,J) +SIGMA(L,J)
612 OYEGA(LJ)*OMEGA(LtJ)

CALL EIGENZ(04EGA#VEC,TVALOUM1IINRL;63311j)
5=1.
DO 23C L=leNROw

230 S=S*AYDA(L)/TvALILJ
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wILKS=S
wRITE(6,1031) INPT.WILKS

1614 CONTINUE
N=NK+1

C

C RETURN TO MAIN TO GET SAMPLE CORRELATION MATRIX
C

RETURN
C

C LOOP Fr. A SAMPLE BETWEEN GROUP MATRIX
C
771 SA ,-.N1

SAx.SAM/K
C
C GET THE DETERMINANT OF W AND STORE IN SIDG
C

IG021
Y=DABS(SIGmA(1,1))

730 INDX02
723 IFIY-10**INDX) 724,724.725
725 INDX=INDX+1

GO TO 723
724 INDX=INDx-1
731 DO 727 021NROW

D) 727 J=1NROw
727 SIGNIA(L,J)=SIGMA(L,J)/10**7NDx
C

C CO"PUTE EIGENvALUES OF WITHIN GROUPS SSCP MATRIX w
C

CALL EIGENZ(SIGMA.VEC.WVAL.DUM1.NROw,30.0)
GO TO (200,201),ISKIP

2"1 DJ 202 LosliNROw
IPAT=1 +NROw*(L-1)
IReNROwilL

232 wRITE(6,1011) LowvAL(L).(VEC(M),MIPAT.IR)
200 CONTINUS
C

C****3ENERATL 8ETwEEN GROUPS SSCP MATRIX 8
C

DO 614 INPT1.5
DO 701 I=1.IP
DO 700 J11110(
CALL NORMAL(X)
S=DSORT(Am0A(I)/SAM)

STAxxx*S+EMC(INPT.I.J)
Ttl...1)2STAx

700 CONTINUE
701 CONTINUE

GO TO (203,204),ISKIP
204 DO 205 Lisl.NROw
205 wRITE(6.1011) L.(T(LJ).J=1.K)
203 CONTINUL
C

C (JET VECTOR OF GRAND MEANS. STORE IN OMEGA
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C

7.1.4

705
7^,3

C
C MAKE THE BETWEEN GROUP MATRIX

D° '33 1=1"P BenrOWINARAMilS20*
DO 73'. J210(

SmS+T(I.J)
DO 705 J=1*K

OMEGA(I0.1)2S/K
CONTINUE

C

00 706 I21*IP
GO TO (207,206),ISKIP

206 wR/TE(6,1011/ it(OMEGA(/01) 0M=10K)
207 CONTINUE
C

C (;ET DEVIATIONS OF GROUP MEANS FROM GRAND MEAN
C

DO 707 J=111K
707

CONTINUE
DU 709 12110IP
GO TO (208209)*ISKIP

209 oiR/TEt6r1011) I(T(IIIM),M21,K)
208 CONTINUE

DO 709 J21111(
709 OmEGAtUrI)2TIIIJ)

DO 711 I219IP
DO 713 M21,IP
S20*
DO 712 J=1,K

712 S2S+T(/*J)*OMEGAW,M)
DUM1(M)2S*SAM

713 CONTINUE
DO 515 M=1*NROw

515 BET(1*M)sOUYltivi)
GO TO 1711t0211)*ISKIP

211 RITE(6.1011: 1*(8ET(I,M),M21*NROW)
711 CONTINUE
C

C RESTORE B...STAR TO ORIGINAL VARIATE.-SPACE BtSTORE IN bET
C

IG021
740 DO 736 L21,N4OW

DO 737 J=10NRJW
X20*
DO 738 Mo1 eiR0*
IPAT2L+NROw*(M..1)

738 X2TEMPE(IPAT)*BET(M*J)+X
737 OvEGAtL,J)2X

Ci0 t7360213),ISKIP
213 bRITE(6,1011) Lt(OMEGA(LoM),MmleNROw)
736 CONTINUE

I:i0=IfJ0+1



IF(IGO.-2/ 742,742.741
742 DO 739 L=1,\ROw

DO 739 J=1,NROw ittrepritrvatt739 BET(J,LI=OMEGAIL,J)
GO TO 740

741 DC 720 L=1,NROA
DO 720 J=1,NRO*
BET(L,J)=OMEGAIL,J1/10**INDx

OMEGAIL,J)=BETILip.4)+SI:imAILII,J)
720 CONTINUE
C
C CALCULATE WILKS LAMd0A
C HET = BETALEN GROUP iipaRlx
C OMEGA HAS TOTAL
C GET THE ;)ETERMINANT CF w+B AND STUAE IT IN x
C

CALL EIGEW(OYEGAIIVEC,TVAL,DV,11,:4,4)*413J,J)
S=1,
GC 1%; (21410215),ISKIP

215 L=0
WU1E(6.1011) Lt(TVALtL),L=1,IP)

214 DO 216 L=1,1P
216 5 0S*TVAL(L)f4VAL(L)

E'4ILK=1,/5
sms*(NK)+1.

Y=N
S=1...Y/S
OMESO=S
IFtISKIP...2) 754055,754

755 DO 756 021,4ROw
756 wiITti6,11011) Lt(510YAIL,J),J=1..t1R06)

DU 757 L =1. 'R06
757 *RITEt6,1;11) LitUYE:344:.,J),J=1,4R0w)

03 759 L=1,%-40A
758 ITEC6.1.,11) Lt(OET(L,J),J=1,NA06)

oiRITH(6,1%-;32) IN)x 7vi20a4,4,'41pINPT
wRITL(6,13:;) OvESO
wlITE(6,992 E4ILK

754 Cu%TrvuE
PEA:4LI\PT)=P::.:7.A.LINPT)+1,-514.1L
PRT(INPT)=1e..EAILA

C
C L!AEGA SOLJARE
C

YV=NK
SRTLI\PT)=OmES.;

OvEA,,A;4)T)=3%4EAir,:pTy.,)vt-sj
ERUR(I\PT)=OvE5U+MINt)T)/1
EMEANII:OpT)=.4(1',jT)+EALA\LIPT1
S=OMLSQ4.0:::';5
I S=10**3*6

LP=NIN,T*5
IFCISLIv) 74e#749,749
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749 IS=NINT
GJT:,") 3750

745 ISmIS/54.1

BEST COPY MAILABLE

3751 KFROCIS,INPT)=,(FA4t1S,INPT)+1
614 CONTME

WRITE(6,1331) ICOUNTORT,SRTER:JA
IF(ICOUNT..-NMIXS) 744045,745

745 DO 746 J=1,5
PmEAN(j)=PmEANtJ)/TXS
OMEAN(J)=0Y.FAN(J)/TxS

746 E",1EAN(J)=4.:T.AN(J)/NmTAS
1011.°2*J

wRITE(6,1034) (J,J=ItD),(J.J121:5),(3,J=195)
wRITE(691031, %,ATAS,PW.EAN,OMEA!#EvEA%
00 250 1=1,5

250 IL/W=10-1QU)
wRITE(6,1033) 10

DO 747 Jz1IININT
747 wRITE(691032) Jil(KFR2(J,M),M=19,)744 N=N-0(.1.1

RETURN
99 FORMAT(.2X$F154)
1011 F3RMAT(13,10F136/(3X910F13116) )
1C22 FORMAT(' EIGEfv VALUES AND LI",EN vtCTORS1/)
1031 FORMAT(2X,I415F84)
1032 FORMAT( 6110)
1033 FORMAT(//5X0 DISTRIBUTION OF OMEGA S.;JAkEs/10X,

1 5110/)
1034 FORMAT(/ 19WYEAN OF 1LAMdDA$421x9

1 'MEAN OF jMEGA SQUARE' .23X. 'MEAN OF ERRORS'//6X11162 .1418)
1615 FORmAT(5X01 ALPHASTAR MATRIX FQ*.i P;;PwILKS=1,15)

END
SUBROUTINE NORMAL(/Y/)
INTEGER K/1/
REAL*8 wA,INB
IF(cEQ2) GO TO 3
WA=RAN3Z(0)
WB=RAN3Z(0)
WA2DSORT(i..2.*DLOG(6A))
WB=6B*628319531
Y=WA*DCOS(WB)
012
RETURN

3 YuWA*OSIN(4B)
K=1
RETURN
END
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.170f6E STARTING VAL061112204578NO, OF 06ft*0ENT VARIABLES S
NO. OF GROUPS 5
SAMPLE 8126 75
NO, OF SAMPLES 40
AVERAGE CORRELATION .1569

1LAN80A VALUES

2 3 4 5 1

ONE68500ARE VALUES

2 3 4 5 1 a

ERRORS

3 41 0.9468 00436 0,6830 0.5354 0,2261 0,9424 0,7265 0,6619 0,5055 0.1799 0,0424 0,02e5 242629 041035 QOM2 0,8671 0,7432 0.6637 0,4090 0.1796 0.0792 0,7200 0,6414 0,3721 0,1311 0.0200 0,0256 0,1414 0,0721 0,03113 0,9530 0,7177 0,6114 0,4102 0,1391 0,9306 0.6988 0,5859 0.3733 0.0889 0.0500 40012 0s13459 00713 401134 0,9314 0.7385 U,3911 0.4327 0.3015 0.9205 0,7209 0.3533 0,3971 0.2591 4,4165 0.0209 -0,2467 0,0971 0,1592S 0,9032 0,7446 0,6682 0,3298 0,2935 0,0964 00295 0,6674 0,2867 0,1457 0.0036 0,0295 0,1674 0,0113 0,04576 0,9029 0.6459 0,4322 0,5622 0,2428 00961 0,6225 0,3965 0,5338 0.1974 0.0054 0,0775 0,1035 0,2338 0,09747 0,4140 0,7164 00074 00794 0,2232 0.91u1 0,6974 24064 0.4468 0.1788 0,0101 .440026 0,2504 0,2460 0.07008 0,9267 0,144? 0,6066 0,4434 0,1479 12.9216 QOM 0,5808 0.4319 0,0981 0.0216 0.0291 0.0808 0.1319 0.00199 0,9207 0,8319 0,5723 0.5571 0,2444 0,9237 0,6203 0,5445 0,5284 0,1991 u,0837 0,1203 0,0445 0,228 0.099110 0.9025 C 6833 0.4921 0.2871 0,1502 0,8957 0.6022 22,4393 0,2438 0.1004 0,0043 0,0378 40,4402 0,0562 0,004411 0,9046 0,7934 0.6608 0,5901 0.1586 0,8980 0,7795 0,6383 0.5634 0,1093 001080 0.0793 6.1383 0.4634 0.009512 0,9713 0.7148 0.4773 0,4221 0,107e 0,9693 0,6957 0,44*1 0,3753 0.1605 0.0693 0,0043 0.0559 0,0753 0.060513 0,909? 00342 0,5591 0.33311 0,1885 0,9029 0,6154 0,5306 0,2913 0,140 0.0089 40.0846 0.0306 0.0077 0,090514 0,9224 0,7224 0,5922 0,3679 u,6273 0,9170 0.7029 0,3634 0,3244 0.8891 0.0170 069029 0.4636 1401234 0,186115 0,8618 0,7464 0,5629 4,2551 0,2093 0,0735 0,7293 0,5346 0,2204 0.1143 0.0265 0,0293 0,0346 0,0896 0,062316 0,8769 0,7404 0,5690 0,3390 0,2193 0,0603 0,7229 0,5410 0,2984 0.1728 0,0317 0,0129 0.0410 01.0016 0.072617 0,9067 0.6830 0,5638 0,4650 0,3061 0,9002 0.6619 0.5353 089312 0.2638 0.0008 00.0381 0.0355 0.1312 0,263438 0,9386 0,6425 0,3673 0,2913 0,1464 0,4341 0,6169 0,3282 0,248? 0.0964 0,0343 .0,0821 0.1718 0.0918 0,003619 00161 0,7430 0,6060 0,5242 0.8595 0,9102 0, 1057 0.3442 4.4931 0,2149 U.0102 0.0257 0.0002 0.1937 0.114920 0.9475 0,6923 0,5136 0,42e9 0.3011 0,9430 00020 0,4824 0,3910 0,2586 0.0438 0.0262 0,0170 04910 0,1586 CC2
1. 21 0,9274 0,7616 0,5400 0,4088 0.1457 0,9226 0,7454 oesSall 0.3719 0.0958 0e224 0.0454 0,0527 0,0719 0,0042T are 0,9362 005ee 0,7521 0,4321 00160 0,9317 0,7422 00353 0,3964 0.1693 0,0317 0,042a 0,2353 0.0964 0,069323 0,9205 0,8028 0,6872 0,3436 0,1830 0.9150 0,7894 0,6664 0,3033 0,1348 0,0150 0.0694 0,1664 12,221133 0,034824 0,9096 0,7475 0,6225 0,3762 0,2182 0,9033 0,7305 0,5977 0,3375 0,1821 0,0033 0,0305 0,0977 0.0375 0,082123 00354 0,7741 0,5624 0,3566 eaele 00220 0.7548 0,5346 0,3144 04835 u,0287 0,0588 0,0346 0.0101 0,065526 0,9202 00404 0,48e7 0,5066 0,1439 0,9146 0,8476 0,4562 0,4750 0,0939 0.0146 0,0384 0.0438 u.1750 .0,0061V

18
29

0.9445
0,9167
0.8840

0,7247
0,7359
0,4833

0,6443
0,6135
0,6710

0.4558
0.3108
0,5377

0.1979
0,3429
0,8404

0,9406
0.9130
00401

0.7062
0,7181
0,6622

0.6808
0,5882
0.6492

0.4213
0.8668
0,5000

0.1498
0.3025
0,2032

0.0406
0.0130

"001148

0,004?
0.0101

11,0378

0,1108
0.0802
061492

0,1215
0,0318
0.2000

0,0498
Gans
0.103?

MIPtiCa30 0,9235 0,7887 0,6398 0.4292 0,3339 0,9161 0,7743 0,6160 0,3933 0.3140 0.0181 0,0743 0.1160 0.0933 0,214051 0,9170 0,6703 0.6305 0,4546 4.2543 0.4112 0.6464 0,6062 0.9223 0.2197 0.01/2 0,0516 0,1062 0.1223 0,114732 0,9099 0,7776 0,5955 0,3002 0,2413 0,9036 0,7623 0,5691 0,2577 0,1332 0,4036 0,060 0,0691 0,0423 0,033233 0,9304 0,7494 0,6157 0,5220 0.2613 0,9259 0,728a 0.5905 0.9913 0.2168 4.0253 0.0282 0.4405 0.1413 0.116234 0,9109 00173 0,5805 0,5137 0,2674 0,9047 4,6983 aesISSa 0,4826 0,2232 0.0047 .0,0017 0.0532 242426 0,103135 0,4175 0,7490 0,4179 0,5746 0,2095 0.9331 0,7320 0,3814 0,3359 0,1625 4.0331 0,0320 -0,2244 0.039 0,068536 0,9319 0.8039 0.6311 0,3704 0,3730 0,9271 0,7905 0,6080 0,3398 00341 00271 0,0905 0.1180 04398 0,234137 4,9412 0,7454 0,5607 0,4447 0,3110 0,93? 0,72e2 0,5323 0.4134 0.2690 u,0372 0.0282 0.0323 0,1139 0.169038 0.9112 0,7434 0,5544 4,14032 0.2801 0,9050 0.7260 0.5298 0,3681 092365 0,0050 0,0260 0.0290 0.0841 0,136539 9.8547 0,6467 0,5269 0,4368 0,2424 0,8446 0,6234 0,4965 0.4014 0,1970 -240SG .0470 4,035 0,2014 0,097040 0,9143 005124 0.6094 0,4254 0,2305 0,9045 0,7484 0.5838 0,3812 0.1845 0,0044 0.0424 0.0888 0,0227e 0.0845
NE402 4, 2-24141104 4E44 OF OMEGA SQUARE ow. 01 144043

1 2 3 4 5 1 a 3 4 5 1 2 3 440 0,9189 0,7313 0,5625 uotaaS u,2320 0.9132 0.7133 0,3554 0,3862 0,1862 0.0132 0.0153 0.0554 0.0868 0.0862
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APPENDIX 8

The Population Correlation Matrices

For the 10-wartime cases, the correlation matrix common to the

sets of five populations was as shown below, rounded to four decimal

places.

For the five- and tkree-variate cases, the upper left-hand 5 x

and 3 x 3 segments, reksctively, of this matrix was used.

In each case, the correlation matrix was pre.. and post-multiplied

by an arbitrary diagonal matrix to generate the common covariance

matrix.

1 2 3 4 S 6 7 8 9 10

1.0000
.1875 1.0000
.0833 .2000 1.0000
.2500 .2500 .1667 1.0000
.1875 .3125 .5000 .3000 1.0000
.2917 .0833 .3333 .1667 .4167 1.0000
.4250 .5000 .3333 .6000 .6125 .3333 1.0000
.2250 .1250 .2917 .2250 .4000 .6000 .2000 1.0000
.3750 .2250 .2500 .2000 .3000 .4000 .3000 .1250 1.0000
.1000 .4000 .2667 .1200 .5000 .2667 .0900 .2000 .1000 1.0000

.47.



APPENDIX C

"Orthodox" Sampling Procedure

In view of the unexpectedly high positive bias in ;29 it was deemed

advisable to make sure that this was not a result of the method, des-

cribed in Section 3, that was used for generating the sets of popula..

tions so as to have preassigned w2 values. That method involved simul-

taneous diagonalization of the common covariance matrix E and the cross

product acre' of the effect-parameter matrix.

Accordingly, the sampling distribution of ;2 when 42 0 0.1 was

constructed for the case when p a X, wis 5 and E n 75, with the populations

generated by an alternative method more true to real life.

A conveniently available data deck containing, among other things,

scores on five standardized achievement tests for some 260 ninth-grade

students was used as one of the five populations; this is referred to

as Pot (Since sampling was to be done with replacement, this modest

population size was deemed sufficient.) Each of the remaining four

populations, P1, ..., 11, was conceptually (but not physically) genera-

ted as follows. Every student's score on any given teat was increased

by a small constant amount, the amount varying from test to test (as

well as from population to population). This was to insure that the

five population covariance matrices would be exactly equal.

The additive constants were determined in the following manner:

For the j-th fictitious population Pj (3 0 1, 2, 3, 4), the amounts by

which everyone's scores on Iv X2, ...9 Sg were to be incremented were

set at c6
ji°

c632, g do, respectively, where (6 6
jl° j2' ""

is a separate random permutation of (.1, .2, ..., .5) for each 3 , and

)



C is a constant to be determined so that w2 0.1,

For each ;12 value to be computed, a random sample should be

drawn from each population P. (j 0, 1, 2, 3, 4), and the within* and

between-groups matrices V and I computed. In actuality, however, five

samples 8009 S01, ...9 So4 say be drama from Pop and subsequent compu-

tational adjuatments mode where necessary, For computing V, no adjust-

ments are needed; for B the required adjustments are as described

below.

Let the centroids of the five samples 80 be

roj (101, 142, "" !WI. (3 Is 0, 1, "" 4)

Then the centroids that would have been observed if the samples 811

(j 0, 1, 4) had been drawn are: !'co (observed) for j 09 and

In ai *SA, 632, seop 60) for 111 1, 2, 3, 4 0

The vector of grand means for the total sample comprising Soo, $11,

see, 844 is

la TS; + Ciait 62,

where

4
( t )/50 oj

and

6
5
)

4
ir (E 6

JP
)15 1p 1, 2, 51P

Thus, the deviations of the group centroide from the grand centroid are

TP irp - 31 - T1, 6
j2

- 3'2, j5
Ts] ,

where the 1*j o
TO are found from the samples actually draw (all from Po)o

-49-



and the adjustment term is computable once the 6.11, and c are determined.

Now c(6
JP

F) is precisely the (J, p) element of the transpose

a' of the effect-parameter matrix. Thus, the population w2 defined in

equation (2.1) is here expressible as

1E1

E c2(W)/51

where E is the covariance matrix of Po (and, equivalently of Pi, ..,
F4) and

A'

*2*

6 -r 6

T
a11 1* 12 2* "" 15

41 ..., 645

since e is determined once we select the four random permutations

(6j1 6j2, 6j5) of (.1, .2, ...,..5), and E is given by the original

data, w2 is a function solely of c. (It is clearly a monotonely de-

creasing function of 10.) By a trial-end-error process, the value

of c making w2 0.1 to four decimal places was determined.

The sampling distribution of 1,000 values of L12 computed in the

foregoing manner, grouped in class intervals of size 0.03 each, was as

shown in the row labelled f46 below:

fA 3 16 23 62 74 120 140 141 131 98 88 44 30 19 8 2 1

f
B

9 14 28 79 82 121 145 123 127 101 82 51 19 11 7 1 0



(The class intervals are, from left to right, .0600-.0899, .0900-.1199,

..., .5400-.5699.) In row fa above is shown the sampling distribution

of 1,000 (72 values generated by the sampling procedure of Section 3.

A visual comparison of the two distributions show that they are

quite similar. A chi-square test for the significance of the difference

between the two distributions (with the last three class intervals

collapsed into one) yielded X2 a 13.31, df 0 14 (I) : .50). -

Thus, it may safely be concluded that the two distributions differ

only by sampling error. The apprehension that the high positive bias

of ;2, especially for 02 0 0.1 with large p and small N, might have

resulted from the peculiar manner in which the populations were genera-

ted in this study may therefore be cast aside.


