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AN EXA {INATION OF THE STATISTICAL PROPERTIES OF A NMULTIVARIATE
MEASURE OF STRENGTH OF RELATIONSHIP

1. INLRODUCTION

It is wall known that statistical significance, by itself, offers
RO guarantee that the difference, relationship, or effect found in an
experiment 4s of practical significance. If the sample size is extremely
large--as it 1is in most educational resesrch——virtually any miniscule
observed effect will be judged "significant" at conventional alpha
levels.,

In recognition of this fact, the practice 1s becoming more and
more widespread of computing such a statistic as Hays' (1963) o after
finding a significant difference by a t-test or a significant effect in
an analysis of variance. This statistic offers an estimate of the pro-
poxtion of variability of the dependent varisble that can be attridbuted
to the relevant independent variable, in the population. As such, 1t
is an extremely important and valuable adjunct to significance tests.
This 1s so especially in educational research, where the practical
implementation of & research finding is almost always an expensive
affair; one therefore wants to have resgonable assurance that the im-
provement due to an innovation will be of such a magnitude as to warrant
the cost, before embarking on a drastic, large~scale change in educa- |
tional practices.

Another feature of educational research is that it usually involves
(or should involve) a sultiplicity of dependent variables, Appropriate
significance testing procedures for multivariate experimental designs
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have long been known, and are increasingly coming to be used by educa-
tional researchers. On the other hand, measures of strength of rela-
tionship (as against significance of relationship) in mulitivariate
dasigns have bdeen virtually unexplored. This is a great drawback for
educational research, in view of the crueial importance of having such
amasure for reasons mentioned above., As far as could be asscertained,
the only such measures advocated to date are those pmpomd by I. L.
Smith (1971) and Tatsuoka (1970). (The fact that both of these were
propogsed in the context of educatiomal and psychologicsl research
attests the importance of a umeasure of strength of relationship for
- multivariate analysis in . cstional research.) The first of these,
being based on stepdowm proc:; wes, “does not yield [results] that are
invariant under alternate crierings” (Smith, 1971) of the dependent
variables., This seems to be an undesirable property. The second,
ézm:' 18 a direct extension of Hays' w? to mlcimiaﬁe analysis of
variance. It was tentatively proposed on an intuitive basis for one-
way MANOVA by Tatauoka (1970) and, independently, by Sachdeva (1972).
The objective of this study was to examine in detail che statisti-
cal properties of w? pule® With 8 view to supplying a theoretical justi-
fication for it--or, 1f it turned out to be theoreticaily unsound, to
develop an alternative statistic that is sound. The statistic in
question vas defined (Tatsuoka, 1970, p. 48) as

Izl - lwl - 55 1wl

mule 1 ’
1Tl + 55 1wl

ot




mﬁgmgmm:ommmhm-msscrmcum.mu the
total sample size and K {s the number of treatment groups.

It is recognized, of course, that for the particular sample at
hand, the gquantity 1 « A, to which @2 mule SoBvVerges as N tends to infinty
(where A 15 Wilks! 1ikelihood-ratio criterion), is a natural multivare
iate analogue of the correlation ratio, eta-squared, and hence would be
& measure of the proportion of generalized variance of the dependent
variable vector that 1s accounted for by the independeat varisble(e).
But just as Hays found it desirable to define his & as g "nearly wn-
blased" estimate of what the corresponding proportion might de in the
population, it 1s desiradble to have a ‘nearly wunbiased” statistic in the
multivariate case. This was the wotivation for this study.

2. HEURISTIC DERIVATION OF ESTIMATED o2

Given K pevariate normal populations N(Ek' L) with common covariance
matrix £ and possibly different centroids W (k=1,2, ..., K), the
proportica of generalized variance of the p variates attributable to
differencas among centroids may be defined as

H

IE + (aa')/K]

(2.1) sute * 1 -

where a= (ajk). [3=21,2, ..., p3 k= 1, 2, ..., K}
and “jk - “Jk - uj
is the deviation of the k-~th population mean from the general msan for

the j-th vaxiate (or the effect parameter of the k-th group on the j-th

variate).



It 1s desired to get an estimate, as nearly unbiased as possible,
of “2m1: based on independent random samples of n observations each
from the K pupulations. Purely from analogy with Hays' (1963) estimated

2 in the univariate case, namely

ssb (R-I)HS
SS +ns ’

Tatsuoka (1970) proposad the following quantity as a possible such
estimate:
Il - 1wl - KLy

Izl + 55

(2.2) wl it

H !wl

where W and T are within-groups and total sums~of~gquares~and=crosg~
products (SSCP) matrices, and N (=Kn) 1s the total sample size,

Here we present a more rational Justification for this statistic,
and consider other possible formulations which (as it turns out) are rejec-
ted as being less su‘table than expression (2.2)., For notational con-
venience, the subscript "mult" will henceforth be omitted from both
"“2m1:" and "szn.“

Let us denote, in addition to the two SSCP nmatrices cited above,
the between-groups SSCP matrix by B (»T ~ W). It can then be shown, in
exact parallel to the univariate case discussed by Hays, that

E(B) = (K - 1)f + n(aa’)

and E(W) = (¥ - K)E .
From these relations it follows that
(2.3) BIW/ O - R)) = g
and



(2.4) BIT/M + U/NQY -~ K)] = § + (aa")/K .

Since the matrices on the right-hand side of equations (2.3) and (2.4)
are those whose determinants appear in expression (2.1), it seess resson-
able to use gsome determinantal functions of the matrices under the
expected-value operators on the left to replace these detersdnants in
getting an estimate of w?. Just what determinantal functions aye appro~-
priate, ho. r, 1s not muafely obvious, because B(P) = Q does not
1mply EC|P]) = |ql.

Several alternative ways of “slicing the matrix pie” to construct
determinants yield the following candidates as estimators of wls

[/ v - )|
(2.5) -
IT+wa@ - x|
B~ ® - WO - x|
IT + W/ - R)|
IT] - |4l = & - Djw)/w - 0P
(2-7)
IT] + |wj7q8 - g)P
1Tl - @ - )|wl/v - x)
(2.8)

ITl + |wl/w - &)

These four expressions were examined for their convergence proper-
ties as N + @, A necessary condition for an admigsible estimator is
that it converge to 1 -~ A, where

A= |w|/|T|
is Wilks' (1932) likclihood-ratioc criterion. It can b shown that 1 - A
1tself converges to w? as N+ », Also considered was the behavior of
each expression as p increasses. The results of these investigations
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were as follows:

Expression (2.5) converges to 1 = Aas N + o, Bowever, for fixed
¥, it can become megative for large values of p. This expressica is
therefere disqualified,

Bapression (2.6) converges to |1 - 17| instead of |1} - |17
1 = Ap therefore it is disqualified.

Expression (2.7) converges to 1 - A gs N + @, but it also so con=-
Verges as p + « for fixed N, which is ridiculous.

Expression (2.8) converges to 1 - A ag X + », and exhibits no
"ridiculous" dehavior as p iacreases,

It therefore appears that expression (2.8) is the most plausible
candidate, among those listed above, as an estimator of w?. This expres-
sion is equivalent to that originally proposed by Tatsuoka (1970) aend
given in equation (2.2) above. It was also propesed, indspendently, by
Sachdeva (1972) in a slightly different form. This statistic, denoted
w?, s the only one exauined in detail hereunder. Ie should be noted
that, besides expressions (2.2) and (2.8), two other equivalent expres-

sions for w? are:

“ - - HA
and
- N
(2.10) e
W x)xlxz...AP +1°?

where the A, are the eigenvalues of W™IT (p ~ K + 1 of which will be
unity vhen p > K ~ 1), Expression (2.9) most directly shows that
02+ 1 =AasN+w, vhile (2.10) s probably the most convenient for

computational purposes.



3. GENERATING THE POPULATIONS

The proportion of generalized variance of the dependent variates
accounted for by membership im the diffevent populations was defined in
the previous section by

H
Iz + (aa®)/x|
where o= (ajk) 1=1,2, ...,p; k=1, 2, eeey K]

is the p x K matrix of effect parameters, and I is the common covariance
matrix of the K p-variate populations.

In order to make »? take on a preassigned value, it is convenient
to diagonalize L and (o0'). Of course, in real 1ife, it 13 fnconceivadle
that these two matrices will be simultancously diagonalized by the same
transformation. PForciag them o do so, therefore, imposes some peculiar
constraint on the configuration of the K populatiocn centroids. However,
the constraint is not such as to reduce the dimensiocnality of the mani~
fold in which the K centroids 1te (which s p or K = 1, whichever 4s
smaller). Hence, the comstraint should not result in an artifactual
loss of generality of the sampling distridutions of cemtroids of inde-
pendent random samples from the K populations,

let the diagonalized forms of £ and (0a’)/K be
(3.2) it - y'zy ,

~ o~

vhere the colums of V are the orthonormal eigenvectors of Z, and
(3.3 (g*a**)/R = (V'a)(V'a) /X,

respectively. Denote the diagonal elements of I+ by g*“ (3=1,2,
+eey P) and the non-zero diagonal elements of (g*g*')lx by eﬁkk

k=1,2, v, r = nin(p,K~1)]. The determinantal ratio in expression
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(3.1) for w? then reduces, successively, as follows:

izl [veay?|
(3.4) -
12+ | |y + @ty v
|z#|

[2* + (anae*)/x|
P o
" @R )y

¥ -1
ey (et fon )

since a*

13
Thus, in order to assign a specific value, say P, to w?, 1t 1s

take values that satisfy the condition

=0 for § > r.

nRecessary only to let a*”

r
T log(l + a*, _ /jon

= 33/%4) = -lesQ - D) .

stnee.itdoeenovioleneeeoxetthaa*

13 be proportional to a*”, ve

may for simplicity let
108(1 + a.JjIG*jj) - -‘108(1 - P)]Ir ]

or
o [(1 - P’-llr - 1’ fot 3 L] 1. 2. eeey ¥
(.5 av =g 3

0 for 3 = rtl, ..., p (when K-1 < p),
The elements aﬂ“ of I* are, of course, predetermined once we specify
. These, together with the assigned value P [= 0.1, (0.2), 0.9, say}
of w?, determine a*

33
tion of the K populations is complete., Varying L so that the average

in accordance with equation (3.5), and the genera~

intercorrelations among the variates will be low or moderate, we have a
means for simulating sets of populations of any type encountered {n

educational research.
*§=



4. SAMPLING PROCEDURES

Now that the populations have been generated so as to have various
preassigned values for w?, the nuxt step 1s to simulate sampling from
these populatiens. Since sample covariance mstrices and sample cen=
troids are independsntly distributed when sasples are drawn from multi-
variate normal populations, these two aspects of the sampling may be
done quite separately from each other,

For generating simulated sample covariance matrices, the Odell~
Feiveson (1966) procedure is well established. A computer progrsm
written by Montanelld (1971) was utiliged for this purpose. The only
wodification necassary in the present context is that we need to simulate
the sanpling of a covariance matrix from each of K populations with
ideatical covariance matrix L. However, sinze we ultimately need only
the pooled within~groups SSCP matrix W, we may, for expedience, simulate
the sample covariance matrix C for s single sample of nominal sige
NK+1 (wheren-nl-l-nz-b ...-l-nx), and then multiply this covar-
iance matrix by N - K to produce the desired matrix W:

(4.1) We (0 =-%C.

Simulating the sampling of centroids so as to get the desired
between~groups SSCP matrix was, as far as could be asce::a:lqed, a8 nevw
problen encountexed in this study that is not discussed in the literature.
It was accomplished as follows,

The diagonal matriz atar! yhose diagonal elements were generated
in accordance with equation (3.5) s, by definiticn, the cross product
of the effect-parameter matrix when the variates are expressed in
canonical form. Any p x K factor matrix F of a*a*' that 1s centered by

.9 -



rows (since kg a*jk = 0 by definition) should, therefore, qualify as

a matrix of eféect parameters, Assuming (as will usually be the case)
that p > K = 1, such a matrix F can be generated by takinug any px(K-1)
factor matrix G of a%o*' and postmultiplying it by a (K-1)xK matrix H

that is centered and orthonormal by rows. The simplest matrix to use

as G is
~ Jroe -~
o
/‘*22 ()
¢-| O -
(p,R-1) 8%g-1,8-1
okl k-1

that 12, the upper-left (K-1)x(K-l) segment of (g*g*')llz

augnented

below by a null matrix of order (p-K+l)x(K~1l). One matrix which satis~

fies the requirements for H is that whose rows consist of the coeffi.

cieats »f the set of Helmert contrasts, with the sot of coeffioiconts for each

<ontrast normalized to unity; that is,

EDey - e
(K‘z)c: -cz * o o "'cz

H = (R—3)¢3 -,
(&-1,K) O . .
k-1 %K1
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where the & (k=1,2, ..., K-1) are the row-wise normalizing multi-
pliers [(K - k)% + (K - k)]"1/2,

Thus, teking F = G as our effect~parameter matrix, we have an
eligible g* ﬁatrix of the form

@e*"éff} |

4.2) ak =~

gp-K-l-l oK

e -

wvhere (g*g*')é!_ i stands foi the upper-left (K-1)x(K-1) segment of

(g*g*')llz. [When p < K - 1, contrary to the assumption above, G will

be (g*g*')uz itself without the sugmenting null matrix, and will be of

order p 2 p. We then take as H the matrix consisting of the first p

rows of the H displayed above, and our o will be simply (g*g*')uzl}.]
By definition, the general element of e is

g " W " WYy
but we may let each u*j = 0 without loss of generality, since this
merely involves a translaticn of the axes so that the origin coincides
with the general centroid, Thus, we may take the (4,k)~element of a%

as defined by equation (4.2) as the mean u* K of the k-th population

b
on the j-th variate in canonical form. Consequently, we nay simulate
sampling the k~th sample wean on the j-th canonical variate (indepen~

dently over both k and j) by taking
T = 1/2
(4.3) x*jk “*jk + z(a*jj/nk) ’

where c*jj is the variaence of the j~th canonical variate (i.e., the

J=th eigenvalue of the common population covarisnce marrix £);

-u-



n, 1s the k~th sample size (sii/K 1in the preseant coatext)}
and 2z ~ N(O, 1).

Once ff*jk has been determined for each sample (k) for a given
canonical variate, the grand mean for that variate is obtained as

K

and the j-th row elements of the between-groups SSCP matrix are ob-
tained as

K :
(6.5) (?)JJ' - kflnk(x*Jk - x*j)(x*Jlk - x*j') (1' ~ 1. 2. te ey pl'

Repeating this for j = 1, 2, seey Py we get the between~groups SSCP
matrix B* in canonical form.
The matrix B* {s then "uncanonicalized" by the transformation
inverse to that displayed in equation (3.2); namely,
(4.6) B~y ,
and we get the SSCP matrix B in the original dependent-variate space,
For each set of K simulated samples under each combination of
sampling conditions described in the next section, the matrices W and T
needed for computing w? from equation (2.10) were determined by getting
W in accordance with 4.1), B in accordance with (4.6), and finding

T=W+ B, The complete computer program is shown in Appendix A.

5. SAMPLING CONDITIONS

The types of populations from which samples were to be drawn have
already been partially indicated in the preceding section., More spe-
cifically, it was planned to have two levels of average intercorrela-~

tion among the variates in the common covariance matrix: low
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(0.10 - 0.30) and moderste (0.40 - 0.60). The sets of populations
were also designed to have five levels of w? values: 0.1, 0.3, 0.5,
0.7, and 0.9. Additionally, three levels were used for the number of
variagtes: p = 3, 5, and 10. The number of populations in each set
was fixed at K = §,

From each of the 2 x 5 x 3 = 30 sets of five populations each,
samples of three sizes were to be drawn; namely, n = 15, 30, and 60
from each of the five populations in each set, yielding total sample
sizes of N = 75, 150, and 300 for each set. (Since this 1s not a study
of robustness of a statistical test under violations of assumptions,
it was not deemed necessary to vary the sample sizes across populations
in each set.)

Thus, there were a total of 90 sampling conditions. Under each of
these conditions, 1,000 independent, random samples were to be drawm. It
was anticipated that this number of samples would be more than suffi-
cient to achieve adequate approximation to the true sampling distribu-

tions of w2.

6. RESULTS

Although it was originally planned to use sets of populations
having two levels of average intercorrelation awong the variates, pre~
liminary investigations quickly showed that the magnitude of average
correlations had virtually no effect on the sampling distribution of
@2, The means for three pairs of sets of sampling distributions under
sampling conditions differing only in the average correlations in the
populations were as shown in Table 1., (In retrospect, this lack of
dependence of the sampling distributions on the average correlation
could have been anticipated: the sampling distribution of the squared

=] 3=



multiple correlation coefficiente=~of which 1 ~ A 1s a generalization
for K > 2-~does not depend on the particular covariance structure which
produces @ given population p? value.) It was therefore dectided to
confine further work to population sets with average correlation in

the medium=-low range of 0.20 - 0.30. The (common) correlation matrix
for each of the three sets of populations used are shown in Appendix B.

Table 1. Means of sampling distributions of w2 for three
pairs of sets of populations, the sets in each
pair differing only in the average correlation
(°) 4n the populations

w?

0.9 0.7 0.5 0.3 0.1

5= .16 .9113 .7296 .5482 .3696 .1670
PANRTS B e 28 o112 L7297 3479 3708 -1970
P = .24 9192 7551 .5956 .4382 .2777
PIMNRTS 5 e 56 L0187 7596 6040  uiSs .2857
o5 Nel000 B 7 026 9017 L7047  .5071  .3109  .1143
. -
2]

= .56 .9000 .7041 5067 3140 .1141

It also became apparent as computations proceeded that w? was ex-
tremely positively biased, especially for population sets with low 2
values, when the ratio N/p (of total sample size to number of variates)
was any lower than 40 or so. The original plan of using samples of
sizes 15, 30, and 60 from each population ({.e., total sample size
N = 75, 150, 300) was therefore abandoned in favor of one in which the
N/p ratio had values 50, 100, and 200. This change was deemed



appropriate since it appeared that, in order to get anything resembling
a realistic estimate of w?, the N/p ratio hed to be of these orders
of magnitude, In retrospect, however, the decision may not have been
a wise one, for reasons described below,

Due to the exorbitant cost of computations for the 10-variate
cases, the numbder of samples drawn was reduced from 1 »000 to either
200, 300, or 500,

With the foregoing modifications of the original plans for sampling
conditions, the means of the generated empirical sampling distributions
of &2 under the various conditions were as shown in Table 2.

Table 2. Means of sampling distributions of o2 for various
numbers of variates (p) and sagle sizes (N), for
five sets of populations with w values as indica-
ted. (Each set consists of Ke5 populations,)

0l
P N 0.9 0.7 0.5 0.3 0.1
3 75 .9112 e 7297 « 3479 .3705 .1970
3 150 9059 «7129 «5262 .3398 «1461
3 300 .9030 .7073 5115 .3181 «1249
3 600 .9016 .7038 3058 3101 1127
5 75 «9192 «7551 «5956 4382 02777
5 250 «9056 « 7159 5287 «3425 «1539
5 500 .9033 «7077 3156 <3214 .1283
L 1000 .98017 « 7047 5071 3109 1143
10 75 «9437 .8205 <7104 .6087 4716
10 500 9071 . 7222 3331 « 3452 1650

10 1000 .9038 «7116 «5167 «3233 .1313
10 2000 9016 «7052 3088 03124 «1164




™ e

Inspection of Table 2 shows that, even for an N/p ratio as large
as 200, the positive bias of w? is considerable. At this point it was
Suspected that, despite the reagoning in Section 3, the peculiar method
of constructing the populations with preassigned w? values might have
led to anomalous sampling distributions of w?, Therefore, an alterna-
tive (and more expensive) method, described in Appendix C, that did
not depend on the simultaneous diagonslization of L and aa' was employed
to generate a set of five populations with P=5 and w2 = 0.1, One
thousand samples of size 15 were drawn from each of the five popula-
tions thus generated, and the distribution of &? was constructed and
compared with that under the comparable sampling condition based on the
simultaneous-diagonalization procedure. (See Appendix C.) The mean
of this sampling distribution was 0.2859, or 0.0082 larger than the
mean (0.2777) ia the corresponding cell of Table 2. It was therefore
concluded that the positive bias of w? was not due to the nature of
the populations generated by the simultaneous diagonalization method.
Evidently, our attempt to develop a "quasi-unbiased" estimator of 2

was unsuccessful.,

Corvecting the Bias in w?

Various attempts to develop an altemative statistic that would
estimate w? unbiasedly (or nearly so) were made but proved to be of
no avail., It was therefore decided to txy to develop a formula for
correcting the bias in w2,

Close scrutiny of Table 2 revealed that, within each row (1.e.,

for fixed p and N), the amount of bias, 4?2 - w?, seemed very nearly

16~



a linear function of 1 ~ w?., This impression was put to a test as

follows. For each row in Table 2, a straight line

(6.1) @2 = w2)! = n(l - ©2)

was fitted by the least~squares method. (That the intercept in equation
(6.1) must be 0 follows from the fact that &? can theoretically show

Do bias when w? = 1,) From this equation, "corrected” values of o2
were computed as

6.2) azmn_ » 02 = m(l - w2),

and these were correlated with the true w? values within each row. The
results were as shown in Table 3.

Table 3., Means of sampling distributions of azcorr [corrected by
equation (6.2)), the proportionality comstant m, and the
correlation between w? and w2 ., for varfous p and N

w?

p N 0.9 0.7 0.5 0.3 0.1 m x

75 9010  .6985 .4958 .2979  .1044 1153 1
150 «9007  .6969 .4999 ,3031 ,0986 .0556 1.0000
9004  .6994 ,4983 2997 ,1013 0270 1
600 9002  .6997 .4989 .3005 .1003 .0139 1,0000

L VLR )

75 8995  .6955 ,4972 ,3015 .1020 «2433 L8G9
250 8996  .6980 .4990 .3010 ,1005 0631 1,000n
9002  ,6984 ,5002 .2998 .1006 0318 11,0000
1000 9001  .7000 .4993 .3000 .1003 0158 1.0000

10 75 9027  .6896 .4992 3234 .0863 .7291 .9989
10 300 9002  ,7016 .4984 .2966 1030 0742 )
10 1000 9004 7013  ,4995 .2992 .1004 0356 1,0000
10 2000 8998  .6998 .4998 ,2999 ,1003 0182 1

(V. RV NV NV
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1t seemed indisputable, from the results exhibited in Table 3,
that a correction term linear in 1 - o? would suffice for each p and
N (for fixed K) in order to get a nearly unbiased estimator of 2.

The problem was to determine the functional dependence of the propor~
tionality coefficient m on p and N, and on the hitherto unvaried K
(the number of populations).

At this point, the earlier decision to use different sample sizes
for different numbers of variates (in oxder to control the N/p ratio)
proved detrimental. We were left with insufficient data points ade-
quately to conjecture the relation of m with p for fixad N, and that
of m with N for fixed p. Nevertheless, there were enough grounds for
surmising that m was approximately inversely proportional to N and
roughly directly proporticnal to p, as a scamming of Table 3 shows.

The foregoing observations, coupled with knowledge that the quanti-
ties

N-l~(p+K)/2 and p(R~1)
often appear in p~variate, K-sample problems, led to the temtative con-
jecture that the m in equations (6.1) and (6.2) might be expressible,

approximately, as

(R ~1)
‘“‘x""“)'cu-g-(p-ﬁx)/z

where ¢ is a proportionality constant to be determined.
In order to permit greater flexibility in the curve~fitting ven~
ture, however, it was decided to use a more general form as the con-

Jectured relation between m and its three arguments:
(6.3) a(k, p, ¥) = M ,
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with

(6.4) M=N-1- (p+K)/2

or some similar quantity dependent largely on N, and

(6.5) Q=p(K ~-1)

or some other quantity dependent symmetrically on p and K « 1. The

Symmetry with respect to p and K - 1 was conjectured from the fact

that a p~variate, K-sample problem can bde recast as a canonical~corre~

lation problem with p variates in one set and K-l in the other,
Combining equations (6.1) and (6.3), we arrive at the least~-squares

problem

(6.6) (2 - w?)' = a2 - @?) ,

wheve the constants €, a, and b are to be determined on g least=-squaies
basis, and M an¢ Q are gs conjectured in cquations (6.4) and (6.5) or
similar expressions in N, p, and K. Taking logarithms of both sides

of equation (6.6), the quantity to be minimized is

(6.7) E = Iflogg + aloght + blogQ + log(l ~ &2)/(&2 - w?))? ,

where the summation 1s teken over all data points.
The normal equation for determining the optimal values of c, 8,

and b 1s
B N ZlogM flogQ log; B ~LlogW ]
(6.8) | IlogM I(logM)? L(log) (logQ){| a | = |~Z(logM)(logh)
1logQ I(logQ)(logt)  E£(logQ)2 b ~Z(1ogQ) (logW)
- I I O -

where Ny 1s the number of data points, and W= (1 = w?)/(s2 ~ w?),
Equation (6.8) enables us to solve for least~squares optimal

values of a, b, and ¢ under various plausible conjectures for M and Q
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besides those stated in equations (6.4) and (6.5). We would then
favor choices of M and Q that lead to tho smallest value of E as de-
fined in equation (6.7)-subject, of course, to review upen cross~
validating on data points generated by sampling conditioms not inclu~
ded in the optimizing process.

instead of fixing it at 5 gs was done up to this poiat. It was deci-
ded this time tofixpatémdmeK-S, 7, and 10 {n combination
with N = 75 and 500. To keep down computer costs, the number of samples
drawn was reduced to 200 for these runs. The means of the resulting
sampling distributions were ag shown in Table 4,

Table 4, Meansg of sampling distributions of w? for two sarrle
sizes (N) for sets of populations with w2 values as
indicated. The sets consist of vary.ng numhars (K)
of populations. The number of variates is p = 4

throughout.,
we
N K 0.9 0.7 0.5 0.3 0.1
75 3 +9071 . 7189 +3304 «3513 .1704
75 7 9234 7720 .6058 +4666 +3054
75 10 «9344 7976 6543 .5293 +3922
300 3 .9008 . 7004 +5046 .3062 .1087
500 7 9034 . 7086 5135 « 3274 1315
500 10 9051 .7152 03235 «3343 «1499

'I‘hedataintheumofrablezmdthoseinthesixrmof
Table 4 (90 data points in all) were fed into equation (6.8) for
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determining the least-square estimates of the parameters in equation
(6.6), with M and Q as initially conjectured in equations (6.4) and
(6.5). Solution of equation (6.8) with these inputs yielded

loge = ~0,4341 (or c = .3680), a = -1.0677; b= 12,3631,
Thus, the correction formula for w? based on the data of Tables 2 and
4 and the conjectures of equations (6.4) and (6.5) is as follows:

6:9) & oy = & = .368[N-1-(p+K)/2)72 0677 [ gy 103631 (5 G,

The 90 corrected w? values resulting from use of this formuls were as
gshown in Table 5., The root mean squared error for these data points
was 0.0108, and the correlation between w? and w? was 0.9993,

Table 5. Means of sampling distributions of w? for 22 com-
binations of p (number of variables), K (number of
populatfons) and N (total sample size), corrected
in accordsuce with equation (6.9).

w
p K N 0.9 0.7 0.5 0.3 0.1
3 5 75 .9008 .6982 «4952 2971 1033
3 5 150 9009 6975 3008 « 3044 .1003
3 5 3060 .9006 7000 «4992 3010 1029
3 5 600 9004 7003 «4999 3019 -1022
5 5 75 3000 6969 4995 «3047 1060
5 5 250 8998 . 6984 4996 3019 .1017
5 5 500 .9005 .6992 «3015 .3017 1030
5 5 1000 .9003 . 7006 5003 «3014 .1021
10 3 75 9079 . 7064 3262 «3599 .1356
10 3 500 9001 .7013 4980 .2960 .1023
10 5 1000 .9004 . 7014 4995 +2993 1044
10 5 2000 8999 + 7002 «2005 «3008 .1015
) 3 75 9009 7002 4991 .3081 «1151
4 3 300 «9000 6979 5005 « 3004 .1013
4 7 75 8999 7020 847 .3028 .0921
4 7 300 .8998 .6977 4954 «3023 .0991
4 10 75 .8986 .6870 4654 2721 0601
4 10 300 8989 6967 4925 2910 « 0946




Various other conjectuxes for M and Q, such as M = N-(p+k), M = N,
Q = p#k~1, Q = p+(K-1)? were tried out, each combination giving rise
to a table essentially similar to Table 5. These are not included here
because there is little point in presenting a lengthy series of similar
tables, The three most promising combinations besidee that consisting
of the expressions given in equations (6.4) and (6.5) led to the fol~

lowing estimated values for the parameters ¢, a, and b:

M = N-l-(p+R)/2, Q = p>+(K~-1)2: ¢ = ,2801, a = =1,0692, b = 1.1343
MeN, Q= p2+(R-1)2: c= ,3041, a = ~1.1066, b = 1,1579

In order to test the effectiveness of the corrections using these
combinations of parameter values on a new set of data, the means of
sampling distributions of w? for four new combinations of p, K, and N
were computed. The resulting 20 data points were as shown in block
(1) of Tadble 6.

Blocks (i1) - (v) of Table 6 show the corrected w? values using
the four combinations of M and Q with the values for the parameters
€, a4, and b as cited above. Also shown, at the bottom of each of
these blocks, is the root-mesn-square error (RMSE) for that set of
corrected @? values. Examination of these RMSE values and a scanning
of the table indicate that the corrections seem quite adequate., All
the gzeo:: values are correct at least to one digit, and about two-
thirds are correct to two or more digits.

In terms of the RMSE values, the two combinations using Q = p(K~1)
yield somevhat better corrections than do those using Q » p2+(K-1)2.



Table 6. Moans of sampling distributions of w? for four combinaticns
of p (number of variadles), K (numdber of populations), and
N (total sample size): (1) as observed; and (1) ~ (v)
corrected for bias dy subtracting out the following corrcec~
tion terms:

(13)  .3680[N=1-(p+) /2] 206771, (g1y)2 3631y . 22
(144) .2801(N-1-(pHK)/2) "1+ 06922, (g g)2)3. 1303y _ 22
(1v)  .4358 §~1-1048p, o 1))1:3899, _ o)

(v) L3081 §71-1066p.0, p 1)2)2.1579 ) _ o2y

Also showm are the root mean squared erxor, MSE, for each
set of corrected @? values.

w?
P K N 0.9 0.7 0.5 0.3 0.1
4 3 150 .9118 .7288 . 5489 3628 .1909
1) & 5 300 9048 .7128 «5164 «3245 1355
7 4 300 9050 7194 .5291 .3403 1522
7 8 400 .9092 7309 5502 .3673 .1900
. 4 6 150 .9022 .6994 .5003 .2938 1032
* (11) 4 5 300 .9013 . 7021 4984 .2993 .1033
7 4 300 .8999 . 7042 .5036 .3046 .1063
7 8 400 .8977 .6969 4934 .2874 .0877
(RMSE = .00518)
4 6 150 .9036 .7035 5069 3035 1156
(111) 4 5 300 .9017 7034 .5006 .3024 1072
? 4 300 .8989 .7013 4987 .2978 .0976
7 8 400 «9014 7077 .5116 3130 .1204
(RMSE = ,00774)
4 6 150 .9021 .6988 .4990 .2924 .1015
(4v) 4 5 300 .9012 7020 4982 «2990 .1029
7 4 300 .8998 « 7040 .5032 .3040 .1056
7 8 400 8974 .6959 4917 .2851 0847
(RMSE = ,00594)
4 6 150 .9034 .7031 5062 .3024 1143
() 4 5 300 .9017 .7033 .5004 .3022 .1070
7 4 300 .8988 .7010 .4982 .2969 .0965
7 8 400 .9012 .7073 .5107 .3118 .1189
(RMSE = ,00718




In particular, the M and Q originally conjectured and stated in equa-
tions (6.4) and (6.5) give the smallest RMSE. Pitted against this
advantage, however, is the fact that the values of b for the two com-
binations involving Q = p2+(K-1)? are closer to unity than they are
for the other two. (Note that all four values of a are quite close
to -1.) Observing further that the value of ¢ for the last combina-
tion is close to 1/3, we are led to an alternative, simpler formula

that should be sufficient for proviaing a rough, "rule-of~thumb” correc-

tion; namely .
"~ ~ 2 - 2 ~
(6.10) W2y =62 - LT g2y

Using this rule-of-chumb correction for the 22 (p, K, N)~combina-
tions (110 data points in all) that were considered in the foregoing,
the corrected w? values showed the following distribution of oumber of
significant digits in agreement with the true w? values:

20 agreed to 3 digits,
55 agreed to 2 digits,
33 agreed to 1 digic,
and 2 agreed to 0 digit.
(The two showing O-digit accuracy were larger by 0.1 than the true
w? values, when rounded to one decimal place.)

It therefore seems safe to conclude that, at least within the
limits of the p (number of variates), K (numier of populations) and
N (total sample size) values that were examined, the simple correction
formula presented in equation (6.10) will suffice to reduce the bias
1o w? to less than 0.05. The constraints are that p(K-1) < 49 and
75 < N £ 2000, It remains to be seen how the correction formula will

work outside these limits.
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Confidence Intervals for w?

Anothexr approach to estimating the population w?® from even a
badly biased statistic 1s to construct charts for getting confidence
intervals. For this purpose it is unnecessary first to eliminate (or
even reduce) the blas in w?-—provided we are willing to adopt confi-
dence intervals that will often not even include the observed statis~
tic value, especially when p and/or K is laxge.

Arbitrarily deciding to construct symretric 902 confidence inter~
vals (symmetric in the sense that 5% is excluded at each tail end, but
mot symmetric about the observed w?), the Sth and 95th centile poiats
of the sampling distributions for selected combinations of p and N,
with K fixed at 5, were computed. The selection was based essentially
on those combinations represented in Table 2, excluding the laraest
N for each p. (Inspection of the sampling distributions for the
largest-N cases showed that the confidence intervals would reduce
practically to point estimates within the accuracy of graphing for
these cases.) Sampling distributions represented in Tables 4 and 6
were not considered because they wexe based on only 200 samples, which
would make the cs and 095 values unreliable, Additionally, the sampling
distributions for N = 150 with p = 5 were computed anew, since the
jump from N = 75 to N = 250 geemed large in this case,

The 5th and 95th centiles, C; and c95' of the selected sampling
distributions were as shown in Table 7. The values for the aull dis~
tributions (with w? = 0) were computed backwords from Rao's (1952)
approximate equation relating A to an F distribution under the null

hypothesis. This relation states that
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Table 7. 5th and 95th centiles of sampling distributions of &2 for
3, 5, and 10 variables, each with three selected sample
sizes and six true w? values.

p=3

N w75 N = 150 N = 300
c
o s o5 ¢ Cos Cs  Cos
0 0198  .2082 0092  .1068 0043  .0550
1 0725  .3333 0675  .2425 .0713  .1828
.3 2275  .5256 .2380  .4505 2418 .3945
Cs 04083 06796 062“ .6225 0“10 05828
.7 6208  .8268 6411  .7854 6560  .7568
.9 8728  .9466 8767  .9348 8804  .9225
P=5
N« 75 N = 150 N = 250
2 C c c
‘ s G s G 5 T,
0 0981  .3189 0478  .1681 0282  .1042
1 J513 4125 J131 ,2925 0934 2225
.3 2915  .5808 .2645  .4850 2621  .4280
.5 4650  .7164 4575 L6425 4550 .6041
.7 6569  .8411 6615  .8025 .6586  .7708
.9 8798  .9547 .8808  .9406 8838  .9209
p=10
Na75 N = 500 N = 1000
w? Cs Cos Cs Cos Cs Cos
0 2963  .5305 0451  .0989 0225  .0506
1 3475  .6075 1245 L2163 1011 .1669
.3 4550  .7009 2925  .3975 2875  .3650
.5 5958  .8083 4850  ,5900 4818  .5583
.7 7425 8963 6775 .7669 6852  .7420
.9 9100  .969% 8939  .9260 8940  .0188




1l/s
1 -A ms - p(E=-1)/2 + 1 .
where
vy " p(R-1), vy, * ms - p(K=1)/2 + 1,

and

AeN~1« (pi)/2
s » [R2(E-1)2 - 4

P2 + (R-1)2 -5 °

From relation (6.11), it follows that
A-lls -1.nr,

- p(K=1)
vhere b e e TPRD/IFT

Consequently, the 1000% point of the distribution of A when w2 = 0
may be calculated as

Upon substituting this value in equation (2.9), namely
NA

LTS P T FT
we get the 100(1-0)2 point of the null distridbution of &2. Using
« = .95 and .05, therefore, gives us the c5 and cgs values, respectively,
of the sampling distribution of @* when w? = 0,

Figure 1 shows the graphs of the upper and lower limits of the
sysmetric 90X confidence interval for N = 75, 150, and 300 in the three-
variate case. Similar graphs mey be constructed for pe5adps=10
from the data given in Tadle 7.
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Figure 1. 90%Z confidence limits for w2 for three sample sizes,
with three variates and five populations.
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7. SUMMARY AND CONCLUDING REMARKS

The sémpnng distridution of a measure of strength of relationship
in multivariate analysis of variance (MANOVA), proposed by Tatsuoka
(1970), was examined by a computer simulation technique developed espe~
cially for this purpose. The measure, denoted w? and defined in equa~
tion (2,10) as

wf o1~ '(ii-'iﬁla:... I
vhere the A, are the eigenvalues of 4T (W being the within~groups, and
T the total SSCP matrix) was found to be highly positively biased~-
especially when the population value w? is small.

Although the amount of bias steadily decreases with increasing W
(indicating that w? is a consistent estimator of w?), it does not become
negligible until the N/p ratio exceeds 50 for w? > .50, and exceeds 100
for w? < .30. This means that a study involving p = 10 variables must
ugse at least 1,000 subjects before any realistic estimate of the popu-
lation w? can be obtained.

Since such large samples are not ordinarily used in typical studies
(with the exception of large-scale statewide or nationwide studies), it
becomes important to have a means for elimnating, or at least reducing
the bias in w2,

Various attempts to develop, theoretically, an altgma::lve statistic
with little or no bias proved futile. An empirical approach was there~
fore adopted. Careful study of graphical plots of the amount of bias
revealed that a linear correction of the form

uzcon.-mz-n(l-@z)
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would suffice for any fixed number of variables (p) , number of popula-
tions or levels in the MANOVA factor (K), and total sample size (N).
Furthermore, the proportionality constant m appeared to be approximately
inversely proportional to N and (very roughly) directly proportional to
p for fized K.

The above observations, combined with knowledge that p and K-1 should
affect the amownt of bias in the same wvay, led to the conjecture that a

correction of the form

0 =a2-afa -2
should be adequate. Here M is an expression largely dependent on N,
Q an expression symmetrical in p and K~1, and ¢ (> 0), a (< 0), and
b (> 0) are parameters to be estimated.

Several different expressions for M and Q were tried out, and the
parameters ¢, a, and b were estimated by the least-squares method, based
on 18 different combinations of p, K, and N, with five w? values (0.1,
0.3, 0.5, 0.7, and 0.9), for a total of 90 data points.

Cross~-validation on 20 data points not used in the process of
selecting optimal expressiocns for M and Q and estimating ¢, a, and b

led to the choice of the following correction formula:

a.am - a2 - 3041 §~1e2066 2 k-1)2)33579; _ 52y

This was simplified to a rule-~of-thumb correction formula

o . 2 132 .
“zeorr - o2 -Li‘#_l)_(l - w?),

The simplified formula, when tested against all 110 data points
(90 derivation points snd 20 cross-validation points), yielded very
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satisfactory results: agreement with w? to at least one significant
digit in all but two cases, and agreement to two or three significant
digits in slightly less than two-thirds of the cases. This formula
was therefore deemed to be adequate at least when p(K-1) < 49 and

75 < N < 2000,

At this point, the question naturally arises, 1f a further correc-
tion 1s neaded on w? vhich was designed to be a correction of sorts for
1 ~ A (vhexe A is Wilks' likelihood-ratio criterion), why should one
bother with a statistic more complicated them 1 - A? The answer is,
obviously, that one need not bother. This conclusion was fioplicit 4n
Huberty's (1972, p. 525) atatemnt. that "It is clear that numerically
the difference between n?,, n?,, and w? . 1s practically nil," made
in.a study comparing four multivariate indices of strength of associg-
tion, including 1 - A (n?, 1n his notaticn) and &2, However, the further
conclusion that anyone of these "may be employed as indices of discrime
inatory power of a set of variables" has aow been shown to miss the
mark. To put it bluntly the present study, in combination with Huberty's
findings that they all yield nearly equal numerical values, shows that
they are all equally poor instead of equally good.

The natural thing to de would seem to be to develop a correction
formula to be applied to either of the purely sample~descriptive indices
"2w (1.e., 1 = A) or "28 (which is based on the trace of g'lg). In
view, again, of Huberty's findings, it is likely that the rule-of-thumb
correction formula given in equation (6.10) and cited sbove will suffice
for all practical purposes. In particular, the correction for 1 - A
would be




2
Q-n_ _=@-n-E S T

It may seem odd that virtually nothing is known about the noncentral
distribution of so widely used and long established a statistic as
Wilks’ A, but this appears to be the case. Gupta (1971) derived the
distribution in the special case when aa' is of unit rank, and asgerted
that, for the general case, the distribution "has not been eamme:d
in a numerically feasible foxm" (p. 1259). As far as could be ascer—
tained, nothing has appeared in the literature since 1971 to negate
this assertion.

Besides the correction~formula method, another means was presented
for estimating w? from w?; nemely the use of confidence intervals,
Charts were given in Pigure 1 for p = 3 with N = 75, 105, and 300, and
data for constructing similar charts for P * 5 and 10 were presented
in Table 7,
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BEST COPY AVAILABLE
APPENDIX A: Computer Program and Sample OQutput

IMPLICIT REAL®S({A«Mol=s)
COVMON KFRQ{ZOOOS)QPWEAN(S’QQMEAN(ﬁloEMhAN(E)QNMTKS
1o JCOUNT oOMETR(30030) 0AVDA(3C) o TEMPE( Y00 oiCI5910040)
Lo INOXeRIVeSOP{301elSKIP
LOCICAL IPAR(8)
INTEGER®G IDUMI3Ce2)6IDET
INTEGER FMT(20) oBLANK{2D) /720! ERHIPHE
DIMENSION SIGMA(30930)9T(30030)9505(30)012(5)
EQUIVALENCE (NROAo IP)
Crenns INPUT PARAMETERS
ID 1 CARD OF [IDENTIFICATICONGFIRST & COLUMNS APPEAR [N
PUNIHED QUTPUT
FIT INPUT FORMAT FOR PUPULATIUN CORRELATIONS o
IPAR LOGITAL FLAGS FOR CONTROLLING PRINTED OUTRUT
ISKIP FLAG FOR CONTKOLLING PRINTED STPUT IN SUBRWWIT ING
KGR AUMBER OF GROUPS
IX INTEGER STARTING POINT FUR RANDOM N TEER QEIVERATOR
N¥TXS NUYHER OF SAMVPLE CORRELATION YATRICES Tu bE GLNERATED
N SAMPALE SI2E
AOW MUVBER OF ROWS N INPUT ~ATRIX
READ(591001) IDsFMToIPARIIXINATXSoNo MROWOIKORY 100 ISK]P
READ(S¢FMT) (SDP(1)els]9NROW)
ISKIP=]SKIPe])
NINT=200
WRITE(69100«) [DslA
DO 777 =145
PMEAN( 1 )=,
OMEAN( 1) =aQ,
EVEAN(])1=Q,
DO 778 JUmlyNINT
KFRA(Je11=0
778 CONT INVE
177 CONT INVE
WRITE(691032) NROWIKGRONINMTXS
CALL RNIINZ(IX)
C READ IN SIGYA CALCULATL OMEGA TRANSPOSL s VPPE K TxJANOULAR
Na!=KGR+]
DC @733 I=)yNROW
“«739 READ(SoFMTI(SIGMAL I od) s J2lenNKUa)
SsQ,
DO 250 =1 9NRCw
DO 250 Jsl}
250 SaS+SIGMA( ] od)
X2 {NROviw=1)#NROW/ 2,
S=S5«NROw
S$=s8/X
WRITE(6+2001) §
{s]ll=2%y
WRITE1601033) (Jod=195)stded=loed)elJed=le5)
DO 2000 sl oNROW
DO 1500 u=!+"ROwW
1500 SIGMA({leJ)=SIGYAIJR])
2000 SIGMA(leliel,
IF{IPAR(1)) GO TO 911

NNONDMNOONNN
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BEST COPY AvAlLABLE

WRITE(691005)
2C 901 L=leNROw

901 WRITE(601011) Lo(SIGMA(LI™) oVE 1o NKON)
911 CONTINUE
DO 10 I=21eNROw
10 OMETRM 1o 1)=SI0GMAC LN )
20 200 [=29NROW
JLESS1=z]=]
[PLUSL=I+]
SUMY=0,60
DO 110 J=1,1LESS]
110 SUMSSUMSOVETRIJo I I*OMETRIJo 1)
OMETR(I o1 )®DSQRT(SIGMA( ] 0] ) =SUM)
IF(IeEQeNROW) GO TV 200
TEMP=],0/70METRE e ])
00 132 U=l3LUSLeNRun
SuM=0,40
0O 120 X=1yILESS]
122 SUMBSUMeOVETRIK oI I ®OMETRIKo U}
130 OMETR(IoJISTEMPR(SIGMAL 9 J)=SUM])
220 CONTINUE
IF(IPAR(2})) GO TO 912
WRITE(601006)
DC 902 L=1oNROW
902 WRITE(601011) Lo(Q-ETR{MobL)pM3]oL)
912 CONTINUE
DO 2002 I=1enNROW
20 2002 J=loNROUW

2002 TUIoJ)I=SIGMA(L o JI®SDP (]IS ( J)
Kivs]
CALL SBETWITeNINKCHNIIXoKGRoI WP}
KimM=2

C

C LCOP FOR ALL SAMPLE CCRRELATIUN MATRICES

C

205 NCCDE=N/100
DO 900 ICOUNT=1oNVTXS
C CALCULATE ToLOWER TRIANMGULAR

DO 300 [=14NROW

NDFsN=]

DFaNDF

CALL NORMAL(X])

X2nX#X

X3mX#X2
H60=-3080441£-03*X3—.15895535*03*x2--924:1IZE-QB*X

1441885979F=03

N 2{60,0/DF 160

TEMPR(2,0/(95#0F))
T(Io])mDF#(1e0=TE“P+{X=H)#DSORTITE P ))%#3
TCIol)2DSARTITII0]))

IF{1eEQel) GO TO 30C2

[LESSI=]=]

DO 210 J=1elLESS]

CALL NORMALIX)
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210 T(led)mX
300 CONTINUE
IF(IPAR(3)) GO TO 913
WRITE(601007)
DO 903 L=)yNROW
903 WRITE(601011) LolT(LoM)pMl,oL)
913 CONTINUE
C CALCULATE OMEGA#ToAND STORE [N SIGMALAS A LOwk < TRIANGULAK
DO 350 I=],NROW
00 350 J=1,1!
SIGVA(Le4)=0,0
DO 350 K=Jol!
350 SIGMA(I o )=SIGMA(T o) +OMETRIKe JI#T(K o)
IF(IPAR(4)) GO TO 914
wRITE(601C08)
OC 904 L=1,NROW
9C4 WRITE(601011) LolSIGMAIL oM) eM= 1ot )
914 CONTINUE
FORM A MATRIXeIN T(LOWER TRIANGLE»ONLY)
DO 370 I=]eNROW
DO 370 us},l
T(Ied)nl,e0
DO 370 KslyJ
37C T(IOJ)STIIQJ)¢SIGMA(IOKI'SIG“A!J’K)
IF{IPAR(S5)) GO TO 915
WRITE(601009)
DO 905 L=1eNROW
9C5 WRITE(S91011) LolT(LeM)eMaloL)
915 CONTINUE
DO 600 J=1eNROwW
DO 600 =] o NROw
6CC T(IQJ’“T(IOJ”SDP‘x"SDP(J’
CALL SBETW(ToNINROWIIXoKGRIQ[P)
IF(IPAR(8)) GO TD 900
C GET STANDARD DEVIATIONSs STORE IN FAToAND CALCULATE Kol T
DO 380 [=1,NROW
SOS(I)=DSQRTIT(Is1))
DO 380 U=l
TUIod2nT (o) /7 (SDS(1)#528(J))
38C T(Jel)aT (o)
IF(IPARIG)) GO TO 916
WRITE(6+1010) N

N

C DO 906 L=1yNROW
C PRINT FIRST ROa OF EACH CORRELATION MATRIX
L=1
906 WRITE(601711) Lol TiLonrl) oM=L aNROW)

916 CONTINVE

IF(IPAR(T)) GO TO v17

DO 907 L=]NROW

Mlel

OC 907 K=le4

M2zM1+0

WRITE¢701020)XD(I)OLOICOUNTONCODE|(0(T(L0H3|V=41!M<)
907 Ml=M2e}
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WRITE(T791021) HLANK
917 CONTINUE
900 CONTINUE
95C CALL RNAIND2(IX)
WRITE(601999) IX
CALL EXIT
1001 FORMAT(20A4/20A4/8L102X9110043]5)
10Ce FORMAT('"]1t920A4s ' 9 INTEGER STARTING VALUE= "y ]110)
1005 FORVAT('QINPUT CORKELATION MATRIX'/)
1005 FORMAT('1SQUARE KIUT FACTURS OF CORRELATI UnNK /)
10C7 FORMATI'1IT MATRIX'/) '
1008 FORM“AT('10VMEGA=T /)
1C09 FCORVAT(!' A MATRIX?/)
C1010 FORVAT('1SAMBLE CONRELATION MATRIX's16/)
1310 FORMAT('=SAVYPLE CORRELATION MATRIX'y16/)
1C11 FORMAT(I3910F13,6/(3X910F13e6))
1020 FORMAT (A4 92120211 010F7.5)
1021 FORYMAT(20A4)
1032 FORMATI(! NO¢ CF DEPENDENT VARJABLES = '9l&/

1 NOe OF GROUPS g Veld/
2' SAMPLE S§12E = tylay/
3  NQe OF SAMPLES = 'y]a4)
1033 FORMAT(/19Xe' 1~LAYBDA VALUES' 21X
leo ' OVEGASQUARE VALUES' ¢23Xe! ERKURS'//6X016
291618
2C01 FORMAT(' AVFRAGE CORRELATION t "yF5,4)
1999 FORMAT('CINTEGER STOPPING POINT='4110)
END

SUBROUTINE SBETWIToNINROwWs IXeKolWe]P)
IMPLICIT RFAL®8(A=H90=2)
COMMON KFRQ(20€O§)QP“EAN(5’00MEAN(5!|EMtAht5)QNMTXS
10!CQUNTO0METR(3003Q)OAMDA(BO)oTEMPE(iQO)oEMC(blloolﬁ)
1o INDXeKIMySOP(30)e1SKIP
INTEGER®4 JOUMI3002) o INDICIL10)oIDET
DIMENSION SIGAAL3003019T(30030)90YEGALI30630) oDUMLI4ED )
101D(23)0FMT(20)08ET!3C030)OXQ!5’QPRT‘5)OEKthﬁ)QSRT(5¥
2oVECIOOC) owVALI3CY o TVAL (30
NINT=200
C CONVERT CORRFLATION MATKIX TO COVARJANCE MATKIXsSTORE
C IN SIGMA
PO 10 L=1yNROW
DO 10 Jsly\NROW
iC TiLoJ)sT(Usl)
00 11 L=19NROW
DO 11 Uus)yNROW

i1 SIGMA(L eI =T (L oJ)

NsN+Ke]

SMESQs0,

C
C CALCULATE EIGENVALUES AND VECTORS OF POPULATIOUN
C COVARIANCE MATRIX» CNLY O FIRST PASSe UTHEKWISE SKI¥
C 70 771
C

GO TS (7700771 )eK]A




C

Caxux INPUT PARAMETERS

C K NUMBER OF GROUPS

C IP NUMBER OG VARIABLES

C NROw ORDER OF COVARJANCE MATRIX

C N SAMPLE SIZE

C 1Q=10#THE GIVEN VALUE OF OMEGA $Q

C SIGMA CONTA NS VARIANCE=COVARIANCE MATRIX

C
770 CALL EIGENZ(ToTEMPE9AMDA ¢DUMY sNROW93060)
JPAT=30=NROW
DO 1785 [I=191PAT
INPT2NRIOWe ]
AMDA(INPT) =0,
1785 CONT INUE
C

C TEVPE CONTAINS EIGEN=VECTORS IN DESCENDING ORDER uT KOOTS
C AMDA(30) HAVE EIGENVALUES IN DESCENDING ORDER
C
C T HMAS EIGENVALUES IN THE DJAGONAL POSITION
C

IFLISKIP=2) 75197505751
750 WRITEF(641022)

DO 601 Le]losNROW

IPAT=1+¢ NROWH({L=1)

IR2 NROwelL
601 WRITE(621011) LoAMDA(L) o (TEMPE( ) 9yM= ] PAT o IK)

Ls0

WRITE(601011) Lo(SOP(I)el=1oNROW)

C GENERATE MATRIX ALPHA=STARWSTORE IN T
751 DO1l16l4 INPT=1,45
DO 914 IPAT=1,30
DO 914 1ST=1,30
T(IPATIST =0,
914 CONT INVE
Q=IQ(INPT)
Q=Q/10,
IF(IP=K+l) 189291891y 1891
1891 Sake~}
GO T0 1914
1892 §sIP
1914 Qe=DLOGIQ}/S
Q=DEXP(Q) =1,
Q=DSQRT(Q)
[sKe}
DO 604 L=l
ATo (Kl +1)# (Kol )
TILoL)SDSQRT( AMDA(L)/AT) *{K=L)%Q
M=)
DO 604 JslL M
hisJe+]
TiLoLL12=1#DSORT( AMDAI(L)/AT)
TCLoLL)wT( Lol L)®Q



604 T(LLeL)m0,

S=K
DO 516 L=lylP
D0 516 JeleK
516 EMC(INPToLoJ)ﬂTtLoJ)*DSQRT(S)
GO TC (160101600)s ISKIP
16909 WRITE(6+1615) INPT
C 1616 I=1loNROW

1616 ARITE(601C11101 (EMCUINPT ol ad)vual oK)
1601 CONT INUE

<

C RESTORE ALPHA=STAR TC ORIGINAL VARIATE=SPACE ALPMA
C

DO 630 L=l yNROW
20 631 J=1,K
X=0,

D0 632 M=1ARDwW
[PAT=L+\NROWS {M=])

632 XeTEMPE(IPAT)®T(Meu)+X
BET(JolL) =X

631 OMEGA{LeJ) =X

630 CONT INUE

C

C GET ALPHA®ALPHA=PRIME

<

DO 633 LslsNROW
00 634 JmloNROwW

X=2Q,
DO 635 M=K
&35 XsX+OMEGA(LoMI®BET (Mo u)
6§34 DUMLI(J) =X
DO 636 J=1,NROW
636 TiLoJd)=DUML I J)
633 CONT INUE

DO 609 L=1yNKOwW

DO 609 M=z]1 9 NROw
C
C B8ET ®AS ALPHARALPHA=PRIME sORDER IS NROw 3Y NKOw
C T HAS ALPHAs ORCER IS NROW By K

C
BET(LWMIST(LoM)
TILeM)3OMEGA(L e M)
609 CONT IANVE
C
C COMPUTE LAMBDA
C
DO 612 L=1oNROW
DO 612 U=l oNROw
OMEGA(L 2 J)=BET(LsJ) +SIGMA (L)
612 OVEGA(L2JI=OMEGA( L)
CALL EIGENZ(OMEGAOVECQTVALQDU%IoNRU«o3390)
S=1,
DO 23C L=14NROw
230 SSS*AVDA(L)/TVALIL)
~40-




wILKS=S
WRITE(691031) INPTIWILKS

1614 CONT INUE
HERCT &3
C
C RETURN TO “AIN TO GET SAMPLE CORRELATION MATRIX
C

RETURN
C
C LCOP FC . A SAVMPLE BETWEEN GROUP MATRIX
C
771 SA =N
SAvSAM/K

C
C GET THE ODETELRMINANT OF W AND STORE IN SIDG
C

[Go=]

YaDABS(SIGMA(101))
730 INDX=2
723 IF(Y=10®#INDX) 72457244725
725 INDX=INDX+]

GO TO 723
724 INDX=INDX=]
731 20 727 L=l ¢eNROW

OC 727 Js1NROW
727 SIGMA(LsJI=SIGMA(Lsd) 710#% INDX

C
C COVPUTE EIGENVALUES OF WITHIN GROUPS SSCP MATRIX w
C

CALL EIGENZ(SIGMASVEC» WVAL sDUMLINROWS3040)

GO TO (2000201)918KIP

271 DO 202 L=]eNROW
IPAT=1+NROWS (L=])
IR=NROwW*L
2352 WRITE(601011) LORVALIL) o (VECIM) o MeIPAT o IR)
200 CONT INUE
C

ConnaGENERATE BETWEEN GRUUPS SSCP MATRIX B8
C

20 6l4 INPTm]5

DO 701 1sl.lP

DO 700 J=lek

CALL NORMAL (X}

S=DSQRT(AMDA () /SAM)
STAX=X#S+EMCIINPT o] 4J)
T(leJ)=STAX

709 CONT INUE
701 CONT INUE
GO TO (203+204)9I5KIP
204 00 205 L=]1¢NROW
205 WRITE(G601012) Lol{TiLoJd) sds])eK)
203 CONT INUE
C

C SET VECTOR OF GRAND MEANSs STORE IN OMEGA

-41~



DO 703 [=1+1P geey COPY AVAILABLE
S$=2,

DO 704 J=1eK

T §35+T(1ed)

D3 705 J=1leK

05 OMEGA(lsJ)=S/K
773 CONT INUE
C ‘
C MAKE THE BETWEEN GROUP MATRIX
C
DO 706 1IslolP
GO TO (207+206)01SKIP
206 WRITE(601011) lt(QMEGA(IoNlQM=1QK)
207 CONT INUE
C
C GET DEVIATICAS OF GROUP VEANS FROM GRAND MEAN
C
DO 707 J=1lek
707 T(lod)=T(19Jd)=OMEGA(0yg)
726 CONT INUE
20 709 IslyIP
GO TC (2089209)915K]IP
2C9 ARITE(601011) To(T(IoM)oMu1eK)
2C8 CONT INUE
DT 70% J=leK
709 OVEGA(JeII=T(10d)
DO 711 Is1le1P
DY 713 M=l,eiP
$=0,
. DO 712 J=1leX
712 SaS+T 1o J)ROVMEGA(J M)
DUMYl (M) =s§eSAM
713 CONT INUE
DO 515 M=z=]1yNROW
515 BET(IeM)aDUML (M)
GO TO (711+211)918K]P
211 WRITE(601011: Jo(BET(]oM) gM21yNROW}
711 CONT INVE
C .
C RESTORE B=STAR TO ORIGINAL VARTATE=SPACE BeSTORE IN BET
C
1GO=}
740 20 736 L=1eNROW
0O 737 JE1 o NRUW
X=Qq
D0 738 el ¢ \NR0Ow
[PAT=L+NROw® (Ma])
7138 XeTEMPE(IPAT)I#BET(Med ) +X
737 OVMEGA(LoJ =X
GO TO (73602131 015K]P
213 ARITE(601011) Lo (OMEGAIL IM) 921 9 NROW)
736 CONT INUE

1G0=150+)

~42=




[F(1G0=-2) ’62.7“20741
742 DO 739 Lslo\ROW

DO 739 J=1sNROW Iisrcapr
739 BET(JoL I 2OMEGA(L s3] Mngg,g
50 TO 740 -
741 DC 720 L=1sNROa
DO 720 JsleNKOW
BET(LoJ)SOMEGA(L 92 ) /1 0## INDX
OWEGA(LQJ)BEET(LOJ)¢SIu“A(LoJl
720 CONT INUE
c
C CALCULATE WILKS LAMBDA
C HET = BETAEEN GROUP “ATRIX
C OMEGA MAS TOTAL
C GET THE DETERMINANT CF weB AND STUsE IT [N X
c

CALL ETGENZ(OVEGAIVECHI TVAL DU 19 vilWe3000)
S=1,
GC TU (214902151 918KIP

215 L=0
WRAITE(601011) Loe(TVALIL)sLs]e]¥)

214 DO 216 L=1,1P

215 SsS#TVALILY/Z&4VALIL)

Ewltk=le/8
S=S* (NeK )41,
Y=
Szle~Y/S
, OVESQ=S

IF(ISK]IP=2) 75&07559756

755 DO 756 L=19R0W

756 WRITL (691011 Lo {STGYA(Lou) ed=10.«ROW)
DO 757 L=leR0a

757 aRITE(O21211) Lo (OVEGA(LeJ) sd=] 9 wROn)
DI 758 L=lehiWw

758 GRITELSoI011) LolbTiLod) 0d=l o NkOW)
WRITE(601532) INDAY VROwWoK o vo INPT
ARITE(Se3%) DFSQ
WRITE(6099) EallX

754 CUNT L
PYEALIWPTI=P. = A AINPTI®la=Fn LK
PRT(INPT)=1.-E:IL<

CAEGA SQUARE

aNaYa!

YaK=]
Y==K
SRY(INFT)=OMESS
OVEASI IHPTI=2OviEAILL ] PTY+eUvESQ
ERORIINPTI=0OVESQeIQIINPT)I/130 =14
EVEANIIAPT I =t R 2T )+ S ANE JWPT
Sa0MESW+D 4202
1S=]1C#n3ng
LIv=NINT#S
IFLIS=LIvY) TaNeg 7499749

43
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749 I1S8=NINT
SUTS 3780
748 I1S=]5/5+1
3730 &FRQ(IS-INPT)=<FR4(I501NPT)+1
6lé CONT INUE
WRITE(69103)) [COUNT o PRT +SRTIER IR
IF(ICOUNT=NMTXS) Tube 7450745
745 DO 7« J=1l45
PMEAN{U ) =PMEAN 1) /WY T XS
OMEAN(J)NOMFAN(Jlfw‘TXS
746 EMEAN{JI = VEANI D) /7 NMT AS
[ell=2%y
WRITE(601034) (Jod=1loo) ol edRle5)0(l0d=1s5)
WRITE(601031) I TAS o PVEAN9OMEANOEVEAY,
PO 250 I=1,5
250 TGl =10=101(1
WRITE(601033) I3
D2 747 Js1eNINT

747 WRITE(691032) JOIKFRI(JoM) oM=143)
744 NsNegK+l
RETURN
96 FORMAT(2XsF15e4)
1211 FORMAT(13010F13.6/(3KQICF13c6} )
1c22 FORVAT(' EIGE~ VALUES AND EIGEN VECTORS'/)
1031 FORMATI(2X 914 s15F8 ek}
1032 FORMAT( 6110}
1032 FORMAT(//8x%x9! DISTRIBUTION OF OMEGA SGJARE' /10K
1 51107

1034 FORVAT(/ 19Xe 'MEAN OF 1=LAMSBDA' 21k,
1 'MEAN OF UMEGA SQUARE ' 923Xy '"MEAN UF ERRORS'/7/6X4 16
2 +14]18)
1615 FORVMATIBX '] ALPHA=STAR MATRIX FCX% FCPew[LKSs'y15)
END

SUBROUTINE NORMALI{/Y/)
INTEGER K/1/
REAL#*#8 wA w8
[F(KeEQe2) GO TO 3
wA=RAN32(0)
wB=RAN3Z2(0}
WASDSORT (=24 #DL0G(~A) )
WB=wB#*6,2831853]
Y=wA#DCOS( w8}
Ks2
RETURN

3 YSWA#DSIN{ WD)
K=]
RETURN
END

=bb~
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Thus, for example, the last non-empty interval for w® = 0,9,
with m = 194, 1s [.9650, .9699+],

~46~




APPENDIX B
The Population Correlatfon Matxices

For the 10-variste cases, the correlation matrix ccammon to the
sets of five populations was as shown below, younded to four decimal
places,

For the five- and t“ree~variate cases, the upper left-hand S x §
and 3 x 3 segnents, res, actively, of this matrix was used.

In each case, the correlation matrix was pre~ and post-multiplied
by an arbitrary diagonal matrix to generate the common covariance
matrix,

2 3 4 3 6 7 8 9 10
1.0000
.1875 1.0000

.0833 .2000 1.0000

2500 .2500 ,1667 1.0000

1875 ,3125 ,5000 3000 1.0000

«2917 .0833 .3333 ,1667 .4167 1.0000

4250 ,5000 .3333 ,6000 .6125 .3333 1.0000

2250 1250 .2917 .2250 .4000 ,.6000 .2000 1.0000

3750 .2250 ,2500 .2000 ,3000 .4000 ,3000 .1250 1.0000
1000 .4000 .2667 .1200 .5000 .2667 .0900 ,2000 1000 1.0000
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APPENDIX C
“"Orthodox™ Sampling Procedure

In view of the unexpectedly high positive bias in w?, it was deemed
advisable to make suye that this was not a result of the method, des-
cridbed in Section 3, that was used for generating the sets of popula~
tions S0 as to have preassigned w? values, That method involved simule
taneous diagonalization of the common covariance matrix L and the cross
product aa’ of the effect-paraveter matrix.

Accordingly, the sampling distribdution of &2 when w? = 0.1 was
mstmtadforthememmp-xnsmnn 75, with the populations
generated by an alternative method morxe true to real 1ife.

A conveniently available data deck containing, among other things,
scores on five standardized achievement tests for some 260 ninth~grade
students was used as one of the five populations; this is referred to
as Pye (Since sampling was to be done with replacement, this modest
population size was desmed sufficient.) Each of the remaining foux
populations, Pis eeey Py, was conceptually (but not physically) genera-
ted as follows, Every student's score on any given test was increased
by a small constent amownt, the amount varying from test to test (as
well as from population to population). This was to insure that the
five population covariance matrices would be exactly equal.,

The additive constants were determined in the following manner:
For the j-~th fictitious population Pj (=1, 2, 3, 4), the amounts by
which everyone's scores on xl. xz, cany xs were to be incremented were
set at “11' ccjz, teey “15’ respectively, where (611, 632, ceey 615)
is a separaze random persutation of (.1, .2, ..., .5) for each j, and

8



¢ is a constant to be deternined so that w? = 0,1,

Poreaeh&znlu:obeemuted. a random sazmple 8,4 should be
dravn fmemhmuhumrj 3=0,1, 2, 3, 4), and the within~ and
between-groups matrices W and B computed. In actvality, howaver, five
semples Soos So3s ves So4 My be drawm from P,, and subsequent compu~
tational adjustments made where necaessary. For computing W, no adjust-
ments are needed; for B the required adjustments are as descrided

below,
Let tha centroids of the five samples sq be
X X cosy §oj$" (J=0,1, ..., &)

- oj cjl, oj2,

Then the centroids eita:ﬂmddhmbanobeerwdﬁthammsﬁ

(1 =0,1, ..., 4) had been drawn are: ?‘N (cbserved) for § = 0, and

g'” - i‘oj + c(aﬂ. ‘_,z, ceep 5351 for §=1,2,3,4.

The vector of grand moans for the total sample comprising Sco, S11,

I... s“ 13
X' -‘g‘; + ‘“1, cz' cees &3
wvhere
r-1] 3 fn
X! - (jfo X 4015
and
&
§ = (T 6.)/5 (p>1,2,...,5)
P 41 Ir

Thus, the deviations of the group centroids from the grand centroid arc
g'jj "g’ - (g,oj -g;) - -F 612 ? ssey 6’5 -?s]
vhere the 'f;’ ~ X! are found from the ssuples sctually drawe (all from Po)s

49~
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and the adjustment term is computable once the 6. and ¢ are determined.

I
Now c(é ip " Fp) is precisely the (j, p) element of the transpose
a' of the effect-paramoter matrix. Thus, the population w? defined in

equation (2,1) is here expressible as

Iz}

|z + c2(aa'y/s|

where L is the covariance matrix of Po (and, equivalently of Pls eeey

- —
-61 -62. teey "65
6y = ?1, 845 - 3‘2, cars 815 = &
A' = . B

841 = 810 840 = 850 veey 85 = &

o -~

since A' is determined once we select the four random permutations
(611. 532’ cees 615) of (.1, .2, ...,..5), and I 1s given by the original
data, o? 15 a function solely of c. (It is clearly a monotonely de-
creasing function of |c|.) By a trial-and-error process, the value
of c making w? = 0.1 to four decimal places was determined.

The sampling distribution of 1,000 values of w* computed in the
foregoing mamner, grouped in class intervals of size 0.03 each, was as
shown in the row ladelled fA below:

£, 98 88 44 30 19 8 2 1

f2 19 14 28 79 82 121 245 123 127 101 82 51 19 11 7 1 o

3 16 23 62 74 120 140 141 13
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(The class intervals are, from left to right, .0600-.0899, .0900~.1199,
ceey +3400-.5699.) In row £, above is shown the sampling distribution
of 1,000 w? values generated by the sampling procedure of Section 3.

A visual comparison of the two distributions shows that they are
quite similar. A chi-square test for the significance of the difference
between the two distributions (with the last three class intervals
collapsed into one) yielded x2 = 13.31, df = 14 (p =~ .50). -

Thus, it may safely be concluded that the two distributions differ
only by sampling error. The apprehension that the high positive bias
of w?, especially for w? = 0.1 with large p and small N, might have
resulted from the peculiar manner in which the populations were genera~

<

ted in this study may therefore be cast aside.
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