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ABSTRACT

CONVERGENCE PROPERTIES OF A CLASS OF PROBARILISTIC
ADAPTIVE SCHEMES CALLED SEQUENTIAL REPRODUCTIVE PLANS

by
Nancy Martin

Chairman: John H, Holland

A reproductive plan is a mathematical model describing certain
aspects of the duplication and selection processes in natural genatic
adaptation. These models occur in artificial genetics, which is the
use of ideas from genetics to develop general problem solving techniques
for computers.

A reproductive plan is a sequential stochastic process involving
n-tuples which correspond to chromosomes i .enetics. The individual
elements of the n-tuples, which correspond t¢ ~enes, may be simple
numeric constants or may be such complex structures as computer algo-
rithms. The plan also involves a sequence of probability distributions
defined over the n-tuples.

At each step of the stochasti: process, one of the n-tuples is
selected using the current probability distribution. The "value" of
the selected n-tuple is then obtained from an external function or
subroutine. This value is then used to define a new probability distri-
bution for the next step of the process.

A particular reproductive plan is said to converge if the distri-
butions developed at each step converge to a distribution which selects
the most valuable n-tuple. We analyse the convergence properties of
several subclasses of reproductive plans. We show that in a suitably
restricted prohlem domain one suhbclass, SR plans, converges. We also

show that the convergence is not fast enough to achieve finite loss.



By relating reproductive plans to a class of models used in mathematical

psychology, linear additive models, we show that several subclasses of

reproductive plans do not converge.
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CIAPTER 1 LT 0oy ron AT

INTRODUCTION

The Logic of Computers Group at The University of Michigan has
heen studying methods of applying the techniques of natural genetic
adaptation to develop adaprive techniques for problem solving with
computers, We will use the term artificial genetios to refer to this
process. We give here a very brief description of the genetic approach
to problem solving in order to demonstrate the origins of the adaptive
provedures we have investigated, For a thorough introduction we
recommend Holland [to be published]. Chapter 1 of Hollsticn (1971)
relates the artificial genetic approach to adaptive control processcs.,
Chapter 1 of Cavicchio (1970) relates the artificial genetic approach

to pattern recognition and problems in artificial intelligence.

We sceparate the world of the adaptive process into two piarts:
the adaptive algerithm and the environment with which it must interact.
If an algorithm is tc be adaptive then something internal to the
structure of the aleorithm must change as time progresses. The first
problem is to find an adequate method of representing that which will
change. As in natural genetics, artificial genetics assumes that
there is a set, ;ﬁl, of '‘chromosomes'. Each chromosome or string
A gﬂz is an n-tuple, (ul,...,an) where the a, cun be simple constants
or quite complex structures such #s the instructions for a computer
subroutine, The a, are referred to as genes, lollstien (1971 has
investigated the use of Gray codes (dlso known as reflected codes)
and Hash codes to make the representation of information in the n-tuple

more efficient.,
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We man view the problem of adaptation as & transtormation paabem:

trom a set of strings.jﬁ? obtain a4 new set of Strings pﬁ4‘1

a4 8¢t of operators based on some evaluation of the strings hl;ﬁﬂ.

v oapplving

We assume that extemal to the adaptive process there is an cvaluation
function that evaluates the elements of gzi; and that the resnlts of
this evaluation are available to the genetic process. In an artificial
gsenetic adaptive scheme the operators are modeled after the natural
genetic operators: duplication, crossover, inversion, mutation and
dominance.

In the approach taken by lolland (to be published), the progese
is divided into two stages. The duplication operator is applied to
,ﬁﬁ; to provide a new sot.jkﬁt containing multiple copies of some of
the strings of’;ﬁ%i. The number of copies made of a particular string
depends on the evaluation of that string, So duplication is a copying
process that does not alter the individual strings. In the sccond
state of the process, the other opcrators are applied to the set eﬂf’t
to form a new set of strings, Then the evaluation process is used to
reduce the size of this set to form ‘X¢L+1'

The crossover operator is a function which takes two strings
as arguments and creates two new strings by interchanging genes of one
string with the corresponding genes of the other string. For example
if

A= (al,...,an) and

B

1)

(h1 seos J)n)
then the result of a simple crossover operator might be the strings

(:il,...,d.

l,hi*l’...’hn) ﬂnd

(bl,...’bi,ai’.‘l’.‘.,an)'



The result of u "double" crossover operator might be
: o oo psl. ‘- N Y K t 0 e g4 [y
Ly 'li'tx‘l’ bk’\*l 1n’ ind

! b Y.

el My

Ihe inversion operator is a function of a single string which reverses

(bl.....hi,ui.i.....ak,
the order of some segment of the string. For exanplc, the result

of applying an inversion operator to string A above might be the string
(al""’ni’ak’ak-l""’ai*l’akol""’an)' The mutation operator makes
random changes in the genes., The dominance operator is only applicable
when the chromosomes have a more specific structure. Essentially,

it chooses which copy of a gene will be effective if there is more than
one representation for the samc genc in the string.

The mutation, crossover and inversion operators can also be applied
at the gene level to change the structure of the individual ai's.

A review of some of the algebraic aspects of these operators is presented
in Foo and Bosworth (1972).

Experimental work with artificial genetic adaptation has been
carried out by Hollstien (1971), Cavicchio (1970), Bosworth, Foo and
ceigler (1972) and Dan Frantz (1972). Holland began the theorctical
investigation by analyzing the duplication phase of the process in
(1969) and (1970). The present work is limited to chis first phase
of the adaptive scheme.

In order to capture the notion of duplication theoretically, a
new algorithm called a Reproductive Plan was developed which did not
use the other operatois, It was intended that this algorithm could
act as a driver program for the total genetic scheme.

A Reproductive Plan is a scquential stochastic process. 17 we

view adaptation as a decision theory problem, then we must decide at
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cach time step which elements of < to choose. The problem is to find
4 suitable process to maximize the sum of all the outcomes or to find
a process that eventually only chooses the "best' element of cof,
according to some measure of '"best'. One method of making this Jdecision
is to have a probability vector over the spacecﬁﬁ!which changes with
experience,  There are many methods, both linear and nonlinear for
changing the values of the probability vector according to past perfor-
mances. Many of these methods have been erplored using different
terminology by mathematical psychologists in searching for a model of
behavior, While we are not interested in modeling any actual observed
behavior, we are interested in taking advantage of the analysis that
has been made and extending it to our particular Tequirements.

Shapiro and Narendra (1969) have compared the performance of
several mathematical psychology models in the problem of function
optimization with noise. Norman (1970) has done extensive work in
analvzing a model which we show is very close to the reproductive plans
of Holland.

Non-probabilistic methods of choosing among the elements of 4
have also been studied. A special problem of the type we are considering
is called the n-armed bandit protlem. This problem is generally stated
as follows: we are given n coins with unknown probabilities PyresesP,
of heads. At each time step we are to choose which coin to toss.
The objective is to find a sequential decision procedurce that maximizes
the 1imiting proportion of heads. Robbins (1952) was one of the first
stutisticians to examine the problem of sequential testing. He developed
a successful rule for the case n = 2 which used the sample mean of the
provious t tosses to choose the coin for the (t+1)st toss. The rule

included a provision that prevented a coin from only being tested a



finite number of times. Later Robbins (1956) restated the problem
allowing only a fixed number of previous tosses to be used in the
decision making process. This problem is referred to as the bandit
problem with finite memory. The exact interpretation of the term
finite memory has been discussed in the literature and related to
automata theory. For example see Cover (1969) and Hellman and Cover
(1970, 1971).

In the present work we develop the conditions for convergence
of reproductive plans and relate this t~ the models of mathematical

psychology and statistical decision theory.



CHAPTER 2

REPRODUCTIVE PLANS

In this chapter we define a class of algorithms for adaptation
similar to those developed by Holland (1970). This class of algorithms
treats adaptation as a decision theory problem. There is a s<t of
possible strategies and a probability vector over the strategies.

There is also an evaluation function which measures the "worth" of a
strategy at a particular time. A procedure sequentially chooses a
strategy according to the probability vector. The procedure does

not have direct access to the evaluation function but receives the
resulting value of the function applied to the strategy choosen.

This value is used to update the probability vector for the next choice.
The object is to have the probability of the '"best" strategy in S
approach one as the number of trials increases. If a procedure is
such that the probability of choosing any particular strategy in S
goes to one with the number of trials, we say the procedure converges
to that strategy. We now give definitions to make these notions

precise,

Definition 2,1: <A,n,S> is a problem basis where
A is a set of possible or admissible structures,
s is a function that assigns to each structure in A a random
variable. We restrict the choice to the set of finite real

random variables whose moment generating functions cxist,

W

is a set of strategies for choosing structures from the space
A. A strategy in S is a method for determining a trajectory

or set of trajcctorics through the space A,



Example 2020 In g zero-sum, two person game, let the structures of A he
the pure strategies for player one, [Al = M,
M
Io= i(pl,...,pM)(O $Pp 1, Ipo=1}, let £:5 > 7T be 1-1, onto and
i=1]

for s ¢ S, s chooses structure a, of A with probability Py where P; is

the ith component of the probability vector f(s). Note that in this
example the word "strategy" is being used in two senses: first in its
usual game theoretic sense and second to refer to elements of S which are
"strategies for choosing strategies'". For a ¢ A, the random variable u(a)
would be the "pavoff" function of a., If we assume that player two always
uses the same mixed strategy, then u(a) is a simple random variable as

in Definition 2.1 and <A,u,S> is a problem basis. However, if player

two changes his strategy with time u(a) no longer satisfies Definition 2.1.

Definition 2.3: A problem basis <A,u,S> is determinietic if for each
a: A, u(a) is a finite constant (hence its variance is zero), and the

strategies s € S are not probabilistic.

Example 2,4: If the structures in the set A are vectors in n-space,

then any one of the standard function maximization algorithms of numerical
analysis would be a nonprobabilistic strategy for determining a new
structure of A given one or more "previous'" structures and their function
vitjues u(ai). A collection of such algorithms could be the set S in a

deterministic problem basis,

Definition 2,5: A strategy s ¢ S is a pure strategy if s always selects

the same element of A.

cefinition 2,60 A problem basis <A,u,$> is pure if S is a set of pure
strategies and the variances of the random variables u(a), a ¢ A, are

nonzero.,



The problem of maximizing a real valued function defined on a finite
set of points where there is random noise in the function evaluuation
can be considerrd a pure problem basis, Here A = {al,...,nn? is a sct
of n points on the real line, u(ai), i=1,...,n, is uniformly distributed
with mean 05 in the interval [01-2,01*2] and S is the set of pure strategies
such that there is one and only one strategy in S for each clement of
A. This problem was discussed by Shapiro and Narendra (1969).

The n-armed bandit problem is an example of a pure problem basis
with A the set of n arms,

1 with probability 3
M(ai) ) 0 with probability l—pi.

Again, S is the set of pure strategies such that there is one and only

one strategy in S for each element of A,

Definition 2.7: A eequential adaptive scheme, SAS, over the problem
basis <A,u,S> is an algorithm for choosing

1. An initial starting structure of A denoted AO
2. At each time step, t, a strategy from S to be used to

obtain a new structure.

Definition 2.8: A rrobabilistie sequential adaptive scheme, PSAS, is
an SAS with the strategy at time t chosen according to a probability

distribution over S.

Definition 2.9: A PSAS over a problem basis -A,i,5> is said to eonverge

to the set HCS if lim 2 P_ _ = 1 where P, o is the probability of

t oo seif 5ot
choosing strategy s at time t.

’t




We will use the following notation:

N(t)

w(s,t)

time variable,

the number of distinct strategies an SAS has selected prior to
time t,

the jth distinct strategy selected by an SAS.

the set of distinct strategies selected prior to time t.

S(t) = {51’52""’SN(t)}'

the time strategy si is first selected.

the structure that would result if strategy s were being
selected by an SAS for the kth time.

the probability of selecting strategy s at time t.

the probability of selecting a strategy from S-S(t) at time t.
the number of times strategy s has peen selected up to and
including time t.

an abbreviation for u(As(w(s,t))), the random variable resulting
from the choice of structure made by strategy s at time t.

the probability distribution by which a strategy may be selected
from S-S(t) at time t. P is an initial probability distribution
over S,

cardinality of tlic seL 3.

the mean of the distribution u(a) for a ¢ A,

is the 1lub vq Where the lub is over.the set {a] for some strategy

3 s, Aq(t) = a}o

»

w(q,t)
if strategy s is not selected but strategy q is selected at

is He g if strategy s is actually selected at time t and y
’

time t.
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In all of the above notation, if the strategy referred to is in
the set S(t), we often use only the subscript, For example we abbreviate

Asitk) to Aj(k)’ w(sj,t) to w(i,t), and usj ) to e
) ’

We now have enough notation to define a general sequential repro-
ductive plan. There are two calculations which are external to the
procedure. The first is the calculation which determines, given the
strategy selected by the plan, which structure in A is choosen. In a
pure problem basis this calculation always results in the same structure
for a given strategv. The second is the calculation of the "payoff"
of the structure. These calculations are represented by the functions
STRUCTURE and PAYOFF in step 2 of the procedure,

The exact method of selecting new strategies from S-S(t) is not
specified in the SRP procedure. We put the following restrictions on
the function FIND of step 2 of the procedure. The original probhability
distribution P@ over 8 must be modified to be a distribution pS(t) over
$-S(t). We will assume that for |S| finite, if Pg(s) > 0 for a particular
strategy s and if s £ S(t), then Ps(t)(s) 2 Pﬂ(s). For |S! infinite, if
PQ(W) > 0 for a particular subset WCS and if WNS(t) = @, then
Porey () 2 Py,

Our first procedure is a general form which will be altered in
subsequent definitions by changing the variables v and v* and by altering

the calculation in step 3.10,

Definition 2.10: SRP, a cequential reproductive plan, is a PSAS over
a problem basis <A,.,S- where:
1. The values assumed by the random variables arc in un interval

(rl,rz) where r,,r, are tinite real numbers.
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2. The procedure requires the following functions:
2.1 SELECT(S&(t),j) which assigns a value to j according to
the probability vector ;&(t)' That is, if
s&(t) = (po’pl""'PN(t)) then j is assigned the value
i with probability P;-
2.2 FIND(Pﬂ,S(t),sj) which chooses a new strategy from S-S(t)
according to the restrictions above and labels it sj.
2.3 STRUCTURE(sj,Aj(t),Ao) which applies strategy sj to
obtain a new structure Aj(t).
2.4 PAYOFF(Aj(t),v,v*) which uses Aj(t) to obtain values for
v and v*,
3. The operation of the procedure is as follows:
3.1 Choose 0 > 0, k1 > r1¢1, k2 >0, Pﬂ'
3.2 Choose at random an initial structure Ao.

3.3 Set N(1) =0, t =0, S(t) = @.
3.4 Set t = t+l.
3.5 Calculate PN(t) = (Po,t”"’PN(t),t) by
3.5.1
N #11"*) ig Neyer < |5
Po,t ©

0 otherwise
3.5.2 If N(t) > 0 for 1l s i ¢ N(t) calculate:
Prodi,t_1

0,t) N(O .
hil PrOdh,t-l

pi,t = (1-P

b

3.6 SELECT( N(t),j)
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3.7 1 i is 0 then Set N(t+]) = N(tYel, § = N(t+1),
: ' ' S S ‘- ' . \‘ - S S. o,
'lVDU”, U),,sj), ‘J,ti = ln,t S(t+1) (YW {\“
P . = §,
rOd,‘,t"l {.‘,t

otherwise set N(t+1) = N(t), S(t+l) = S(t).
3.8 STRUCTURE(sj,Ai(t),AO).
3.9 PAYOFF(Aj (t),v,v*),

3.10 Calculate: for 1 s i s N(t+l)

3.10.1 v fori=j
9. =
1 vt for i # j
3.10.2 ko
PrOdi,t = Prodi’t_l*(vi+k1) .

3.11 GOTO step 3.4.

Definition 2,11: An SRla is an SRP where the value returned by PAYOQFF

for v is “j,t and the value for v* is “;(j,t)' An SR1b is an SRP where
the value returned by PAYOFF for v is “j ¢ and the value for v* is

]
maxc“&(j,t)’“j,t)' An SR1 is an SRla or an SRib.

The definition of an SR1 differs in several respects from that of
Holland (1970). We have allowed the .(a) to be random variables. In the
original development u was a single valued function from A to a finite
subset of the reals (rl,rz). This restriction does not allow the appli-
cation of the algorithm to such problems as the n-armed bandit probiem.

In the Holland paper the notion of a set of envivonments & was included,
However, since all of the theoretical work was donec with respect to a
fixed element E d?, this aspect of the plan has been discarded. The
notion of environment could casily be incorporated in the functions u
since they are external to the algorithm, or in the structural description

of the elements of A, The calculation of the probabilities Pi ¢ in the

*
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SR1 algofithm can be expressed as:
P

t-1 k2
i,tit'gti(“i,t"kl)
0,t) N(E =1 K,

he Bty L WIASY

=,

This is similar to the calculation in the 1970 paper except for the upper

: i 27 19, - -
quation 2,12: Pi,t (1-pP

. limit of the products in the numerator and denominator. In the 1970
paper this limit is t, in equation 2.12 the limit is t-1. We cannot use
ﬁi,t until it'has been calculated and in our algorithm this calculation
comes in step 3.10 and the calculation of Pi,t in step 3.5.

The values of the PO,t determine how often a new strategy is to be
tried. One of the weaknesses of this algorithm is that Po,t is not
dependent on the performance of the strategies that have already been
used. It would be preferable to have Po,t be relatively large if the
strategies used so far were not performing well, small if they were doing
well. However, this definition does insure that with probability 1,
when |[S| is finite all of the strategies will be tried by some Tg < =,
When |S| is infinite, there is no finite time after which no new plans
are tried.

We observe from equation 2,12 that for an SR1, if <A,u,S> is

deterministic, P cannot increase as a result of using strategy j,

jst
except of course, the first time it is used. Also, if the jth strategy

is used at time t, u.

it " u;(j £)’ and strategy j has been used before,
4 4

the probabilities P,

it do not change. The purpose of using such a method
’

to change the probability vector over S(t) is to allow the vector tc
be more responsive to the performance of the strategy over time. We
wish to avoid converging to false strategies due to their early behavior.

flowever, it is cxactly this property which makes it impossible for the
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algorithm te have all of the convergence properties claimed in Hollund
(1970,

Let us now consider a moditfied form of Egquation Q.12 tor an sSkla
procedure for finite S, We know that after some time Tf, cach ot the
strategies will have been used at least once. We also note that the

Pi ¢ and Ph ¢ in the numerator and denominator of Equation 2.12 are
! *“h

constant factors that do not influence the convergence properties of the

Pi g 35 T In fact, they reinforce the bias of the original distri-
RA

bution P¢ over S. If this distribution is not a good measure of the

value of the strategies, the Pj ¢ in the formula could slow down
E ]
b

convergence but never prevent it, If we neglect these factors, and let

L)

"3,

¢ = (5

n
J’t«-kl) we have:

Equation 2,13: for t Tl
t-1 _
ngtj(“j,n)

P, , = )
J,t N(t) t-1
z it

u
= = h,n
h=1 nth

k
Let i be the strategy actually used at time t and o= (W, +k.) 2,
t w(i,t) 1

Then Equation 2,13 can be expressed as:

Equation 2.14: for t > Tf01

ifi=j:
1
pjot " Pjot'l z* I*
t-1 t~-1
- + P, t-1 1 - T
IR S S j,te1
ifi#j: '
1
p = P

j,t j’t-l P U'i t"l 1
Lo P el -
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S Mgy,
Equation 2.13 has a familiar form, With different interpretations of

the &, this is the form of the Beta Model of mathemstical psychology.
This model has been studied extensively by Luce (1959), Lamperti and
Suppes (1900), Lamperti (1960), Norman (1970) and others. Although
their terminology and interpretations of the model differ from those of
Holland, the mathematical analysis applies to both, The Holland work
claims that under certain restrictions of the problem basis <A,u,S>
the model not only converges but converges in such a special way that
"bad" strategies are used only a finite number of times. However, the
studies by the mathematical psychologists show that the Beta model
(without Holland's restrictions) does not always converge.

We will show that under restrictions similar to Holland's the SR1
plan does converge, put not as strongly as he claimed. Then we will
examine convergence under other restrictions and relate our results

to those of Norman (1970).




CHAPTER 3

DETERMINISTIC PROBLEM BASES

This chapter examines the convergence properties of the SRl algorithm

over deterministic problem bases.

Definition 3.,1: A strategy in a detcrministic problem basis i5 optimal

iff 3T 2 u(Ag(t)) = u; fort > T,

Definition 3.2: A strategy s in a deterministic problem basis is

asymptotieally optimal iff §1[u; - u(Ag(t))] < =,
te

If s is optimal, s is asymptotically optimal,

Definition 3.3: An areng is a deterministic problem basis <A,u,S> such
that there exists a set H(CS, PO(H) > 0 and glg u(Ag(t)) 3z u: - Ay
st

where YA = NE < »,
t=]

It is not hard to show that <A,u,$> is an arena if and only if S

contains asymptotically optimal strategies with nonzero initial probability.

Definition 3.4: SE’ the arena set for the arena <A,n,S>, is the set of

all asymptotically optimal strategies.

To avoid trivial situations we henceforth assume SE is a proper
subset of S, At this point it would appear that if our problem basis
is an arena then the optimum algorithm in searching S would converge
to the arena sct. Becausc of the lack of limitation on the scquence
u;, this is not nccessarily the case. As presently defined, u; is the
best that any single strategy could do if used t times. It is not

necessarily the optimum value that any algorithm could achieve at time

16
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t. It is possible that a PSAS which selects an element of § according
to a fixed vector (pl,pz,....ps) with 1 # 0 for at least one i not in
the arena set could have a higher payoff than a similar PSAS with p; =0
for all strategies not in the arena set. We give an example where this

is the case,

Example 3,5: Let strategy 1 have payoff 100/k the kth time it is used,
strategy 2 have payoff 99/k the kth time it is used. Then u: is 100/t

and we have an arena set consisting of strategy 1. However, a PSAS that
uscs strategy 1 all of the time will not have as good a payoff as one that
uses an appropriate mix of the strategies 1 and 2. Let p be the probability
ot choosing strategy 1, 1-p the probability of choosing strategy 2, where

p is fixed for all t and 1 > p 2 1-p, Then if M is the number of choices

of strategy 1 in N trials and N > M > ,0IN, the payoff would be

M N-M " N
z Z .
KBy 1007k e 3997k > T 100/k

For p > 1-p, the expected payot, of the mixed strategy is greater
than the payoff of the arena set.

To have strategies in a deterministic problem basis have the payoffs
indicated, both the set A and the strategies would be quite unnatural.
However, such problem bases are not eliminated by the definition of an

arena. Consequently we introduce the following notion.

Definition 3.6: An arena <A,.,S- is a prestricted arena if there exists
a time T such that no PSAS over <A,u,S> can obtain a payoff at time

t - T higher than u;o

The rest of this section develops the results necessary to show

thit in fact the losses associated with an SR1 algorithm evern over a
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restricted arena cannot be finite.

Definition 3.7: The absolute loss of strategy s is

AL, tslut u(Ag(t)).

If a strategy s is in the arena set for <A,y,S> then ALg is finite,

othervise AL; is infinite,

Definition 3.8: The actual loss of the strategy s during any particular
use of an algorithm is
Dt = (“w(x t) " Ps,t)

where s; is the strategy selected at time t. The accwnulated actual loss

is Ds tiIDS ¢

According to Definition 3.8, a strategy s has zero loss at time
t if it is not selected at time t. Therefore when we speak of the actual
loss incurred by a particular strategy, we only mean the loss resulting

from the actual selection of that strategy by an algorithm,

Lemma 3,9: Let 5 be the arena set for an SR1 over a restricted arena
<A,u,S5>, If s ¢ SE’ then the accumilated actual loss DS is finite.

If s' ¢ S; and s' is, with probability 1, selected infinitely often,

then the accumulated actual loss, DS,, 1s infinite with probability 1,
Proof: The first part of the lemma follows directly fr, the definitions

of an arena sct and of asymptotically optimal strategies. For the sccond

part obscrve that:

T

Ds' = t: (ug w(x t) e' t) * (uw(s',nk) ,nk)

where 1nk} is the infinite set of indices wherc strategy s' is actually
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selected., But w(s',n ) = \ so ﬁs',nk 2 u(As,(w(s',nk))) = u(Age(k))

and

e
~
r

n e

(ui - u(As,(k))) = ALS, =~ for s' 8

e £

The definition of actual loss incorporates many of the ideas expressed
in Holland (1970). A strategy is to, be measured against how well other
strategies would have done if they had been used the same number of ti:es.
However, there is no guarantee that the actual loss directly represents

the loss of using a strategy under SR1 compared with some optimal scheme.

Definition 3,10: The loss incurred by an SRl algorithm over a finite

modified arena is
IS

= T Lt ed ).
e st T F,d)

Lemma 3.11: The loss of an SR1 algorithm over a finite restricted arena

is infinite if the total accumulated actual loss over all ctrategies is
|S]

infinite, That is D = « if ¢ Ds = oo,
s=1

Proof: There exists T » fort > T, s ¢ §, by Definition 3.6

* »*

Mt R (i, t) where s, is used at time t.

. - o~ * - i/
W H Mw(i,t) T Vs,t

nv

w
€] « on . )
: .‘i. - 0 E : z u - T

t=T ses(u “S’t) = t=T Ses( w(i,t) " Ms,t

The left hand side is D-K, the right hand side is ZSDS-K' where
S¢

K and K' are finite constants., Therefore

D-K > D -K' = =
= s¢S§ S
and
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From Lemma 3.9 the accumulated actual loss is not finite it <ome
strategy s' not in SF is used infinitely often. We now caplore the

conditions under which this happens.,

Definition 3.12: H is a Iimiting set of a PSAS over the arena <A,u,S$>
if HCS and there is some time T such that for t > T, with probability
1, only strategies from the set H are selected for use.

If S is finite and there are no proper subsets, HCS, such that
His a limiting set and PQ(H) < 1, then each of the_strategies in S
with nonzero initial probability must be used infinitely often.

We want to develop conditions under which a limiting set does
not exist., Let Q be a PSAS over «<A,u,S>, HCS and {xii a sequence
of random variables defined by

1 if a strategy in H is selected by Q at time i
0 otherwise,.

We can now represent the choices of strategies of Q as an infinite
vector of the Xi. The space of all 0-1 valued infinite vectors is
then the underlying space representing all possible sequences of
choices by Q. The probability distribution over these vectors is
dependent on the vectors “;(t) = {Po,t’pl,t""’pN(t),t}' In order to

have a limiting set, we are interested in those vectors of the Xi

which from some point on have entries of 1 only. Let
B = {(xl,xz,...,xm,...)ixj = 1 for all j > m}
and

B = 1lim B .
m
Histatd

If the probability of the set B is 0, then H is not a limiting set for
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Q. Let

A ® Py = XX WX = 1)

i

- ¥ X \
PG = XX ).

Then APm is the increment in.the probability of choosing an element

of the set H given that an element in H was chosen at the previous

time step, and irrespective of the other past choices. Intuitively,

if APm is negative, one would not expect H to be a limiting set.

This is in fact the case.

Theorem 3.13: Let Q be a PSAS over <A,u,8>, HCS and Xi, Bm, and B
defined as above relative to H and Q. ~If there is a time T such that,
form:> T, APm s 0, and if P(Xm = 1) < 1 for all finite m then P{B) = 0
and H is not a limiting set for Q.

Proof: form > T,

P(BY = Um P(X; =1, m g i gnlX,..0,X )

oo m-1

= ;i: PO, = XX 10X = 1 X o= 1)
-P(Xn_l = lfxl,...,xm_l,xm = 1,9..,xn-2 = 1)

...P(Xm = llxlgcco’xm_l)
Since aAP_ < 0,
m

P(B ) )

nAa

Hm PO = 1X 00X

n-—+o,

=0

1

So, for arbitrary m > T, P(Bm) = 0,

But B = lim Bm and the Bm are a sequence of increasing events.
le:

Therefore, P(B) = 1lim P(Bm)[see [.3.1 Neveu (1965)] so P(B) = 0.
1) mattd
Since P(B) is 0, with probability 1 H is not a limiting set of Q.

Lemma 3.14: Let Q be an SRl algorithm over a restricted arena <A,u,S>

with finite S. Let H be the arena set of S, H#8S and Pﬂ (H) # 1. Then
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o

(a) p(xm = 1) «1 and (b) APm s 0 form -~ Tf.

Proof: {a) 183 P(Xt = 1} = | then, letting Pt(H\ denote the
probability of choosing an element of H at ¢, Pt(ﬂ) = 1, Therefore
Pt(S~H) = 0,
1. 1If one of the strategies in S$-H, say sj, has been used at
least once, Pt(S-H) > Pj,t' N(t)+1 # 1

since the :5 ¢ > 1. Since strategy s, has been used once
b4 o

prior to t, cN(t)#l # 1 by definition., Therefore Pt(S-H) # 0.

But pj,t #0if C

2, If none of the strategies in S-H have been used then

Pt(S-H) = pO,t' Ps(t)(S-H). But P (S-H) 2 Pﬂ(S-H) > 0.

5(t)
P@,t = 0 only when all strategies have been used. This would
imply that H = S and our assumption is that H # S.

Therefore Pt(S-H) # 0 and P(Xt = 1) <1,

(b) Let Tf be the time by which with probability 1 each strategy

in S has been used at least once. If strategy S; € H is used at time

m>Te+ 1 then for j # i from Equation 2,14 we have,

1
pj,m*l = Pj,m'él where 61 = -
i,m -1
I*Pi m\ o*
’ M m
= . 1
Pi,me1 = Py o8y Whore 8y = — -
u 4
L.+ p, 1 - -2
~ i,m a
Hi,m i,m
since 51 21, 0« 62 <1,
Pj,m*l z pj,m’ i,mel 2 Ti,m
~ - s P -P,
Let aP; Pi o1y om0 L
Then APj’ > 0, Apx,m <0




N,
B ﬁqN
¢ ) X b
$. .8 Apk,m = s?;u Mj,m*'xpi,m+ sLeS-HAPk,m = 0. .,
k j k a
it e

sgeu‘“’j,m ® S;ES-HAPk,m <0

Therefore, for arbitrary S, € H used at time m

With probability 1, Tf is finite and therefore, APm < 0 for all

m > Tf, Tf finite.

Coroilary 3.15: The arena set SE of a finite arena <A,u,S> cannot be

a limiting set for an SR1, In fact, no HCS such that PO(H) <1

can be a limiting set and each strategy in S with nonzero initial

probability Pg(s) will be used infinitely often by the SRi algorithm,
We now show that the loss incurred by an SR1 algorithm over a

finite restricted deterministic arena is infinite,

Theorem 3.16: With probability 1, the loss incurred by an SRl
algorithm over a finite restricted arena <A,u,S> is not finite. That
is with probability 1,
Is|
YD = o
§=1 S

and therefore

D=,

Proof: By Corollary 3,15, the arena set SE of <A,u,S> is not a limiting

set. ‘Therefore with probability 1, at least one strategy s' g S,

is used infinitely often. Therefore Lemma 3.9 shows that for s', with




probability 1,

D, , =®
t=] S ,t
. o (s A .
since Ds,t (“w(i,t) “s,t) >0 for all s,t,i
i?‘n ¥ ‘?l D ¥D '
= S, > ' = o
s=1°  tel s=1 T =1 500
E
By Lemma 3,11, £ D = o =x D = o ,
s=1

We have shown now that an SR1 over a restricted deterministic
arena will, with probability 1, not achieve finite losses., liowever,
the theorem in Holland (1970) is interpreted as showing that a repro-
ductive plan would, with probability 1, achieve finite losses. Let
us define the "expected" loss of the algorithm to be:

N(t)
3.17 EL, = u?* - v 7

kE1 ¥k, t’k,t ~ Po,t
where EE-S(t) is the expected payoff resulting from strategies in

S5~-S(t) and the P are defined as in 2.10, Now Holland's result

in our notation states:

Proposition 3.18: (Holland) An SR1 algorithm over a restricted arena

<A,u,S8> will, with probability 1, satisfy the following criteria:

T
(1) lim I EL_ <~ if |S;=is finite;
Too t=) U
T T T
(2) 1im ( £ u; - L ELt)/ pX u*t = ] othewwise.
Tro  t=] t=1 t=1

This proposition would appear to conflict with our results. However,
this expression for expected loss, ELt is less than the loss the

algorithm would actually receive at any time t. That is for |S|



firiite and ¢t > Tf

s,

= (% o .
“k.tpk,t (ut “j,t)Pj,t strategy sj used
at time ¢,

EL = p* o 0

v .
< Ht uj,t.

Therefore, showing that © ELt is finite in no way implies that any
actual use of the algori:;; will achieve finite losses, and BLt is
not an adequate expression for the expected loss of the algorithm.
We could change the definition of an SRl algorithm so that the
strategies in S were used in a more parallel fashion. That is, the

strategy chosen at time t actually would calculate the element of A

it would calculate if it were being used for the t th time. If we

define
’ u(Ak(t)) if Sy is used at time t
y = !
k,t
u; otherwise

yk,t represents the evaluation a strategy would receive if it had
actually been used t times, whether it had or not. This would be
possible if the strategies in S did not use the "feedback" evaluation,
n(As(t-l)), of the element of A selected at time t-1 to decide which

eiement of A to select at time t.

Definition 3,19: An SR2 is an SRP where the function PAYOFF returns
the vaiue “(Ai(t)) for v and u;.

The expected loss defined analogous to 3,17,

N(t)

3.20 EL! = v* - I y P _ _
tt T o Tkttt - B ,tY 5-5(t)

is still less than the actual loss on any particular use of the

algorithm, However, we cannot guarantee that the loss would be
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infinite, Lven though each plan will be used infinitely of'ton, it is

possible that for some s' ¢ 8 (kn} the infinite set of times at which

I
s' is used,

Dot =y ) = (uf - uA,(k))) <,
n=1 kn s"kn n=1 kn s=on

If this happens for all strategies in S, then the loss will be finite.
We see immediately, however, that the loss is not finite if even one

strategy in S has an evaluation strictly bounded away from u;.

We finish this chapter by demonstrating that under the restric-
tions we have been impocing, an SRl algorithm will converge, with

probability 1, to a subset of the arena set of S.

Theorem 3,21: An SR1 over a finite, restricted deterministic arena
<A,u,8> converges with probability 1 to a set H&Sg, whev §: is the
arena set of S, That is, with probability 1,

lim L P. =1,
t j,t

t> s.eH
J
Proof: By Corollary 3,15, every strategy in S with a nonzero initial
probability must be used infinitely often by the SR1 algorithm.

Consider the products

. 3 +
t-1 g 2 i k)
f -1 7 nit ey y
1yt n= ‘ Un n—-tj W(Q,ﬂ)"'kl

if 1 # j, the numerator and the denominator arc equal, If

Mys» 4=1,...,M, arc the times at which 2 = j; that is, the times at



which strategy § is actually used, then w(j,mq) = (| and

Jat=1 " gsp T ek

M U(ﬂj(Q))'kl
Then lim €5 ¢ ° lim 1 3
tee 0 Mo q=1 HT 1

u(A-(q))+k1 L*-u(A, (q))
’ Ik 1 -£L1:r;§-—-—-
q 1 q 1
¢ P U;'U(Aj(q)) 0 [ - ( ( )))]
or s, « S o ¥ < I [ur-u(A (q < ®
j E ey “a*Ky =1 4 J
] /s " u;-u(Aj(q)) 1 = [ -u (A, (@) ]
or s X - 2 Ho=y q = ™,
VR e DA Vatky q=17 0 T

We now recall the following basic result [Theorem 7, page 96 of Knopp
(1956) ] 3
A product of the form §1(1~av), with 0 < a, £ 1, is convergent
Ve

(to a4 nonzero value) if, and only if, zlav converges.
vs

Applying this we find that

M u(Aj(q))*k1

(a) for s, « S. lim ¢, = lm 1 ~ =N , >0
J L tor i,t-1 Moo Q=1 “q‘kl €,)
M U(Aj(q))*kl
(h) fors. ¢/ S. lim .. = lim i ¥ =0
J r: t"'" _‘ ’t"] \fﬂh qsl uq¢k1
p E'j ;-;g--l * ¢
0 » t n;l 'N j ,t -1
Now lim P, | = lim J T
t'wn -’t 2, 1
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The denominator is always nonzero since we are in an arena and SE is not

empty.

from (b) if Sj / sn lim Pi.t = ()

t'&v . P N ;i 1
from (a) if s, ¢ S,. 1lim P, = n —
j E Jrt t
S 0,8y €% nmy [

With probability 1, the times t, are finite for those % ¢ HC:SE such

that P(L) > 0 and therefore lim Pj t £ 0.
»

Tt

Therefore, lim & P, ¢ ® 1.

Now we have shown that an SR1 algorithm converges to a set of good
strategies in a very restricted problem basis., However, the proof of
Theorem 3,20 does not generalize to a problem basis that is not an
arena, This is obvious because if <A,u,S> is not an arena, we cannot
guarantee the convergence for any of the Ej,t’
that u; > u(Aj(t)). This assumption is not always justified in a

The proof also assumes

nondeterministic problem basis.




CHAPTER 4

PURE PROBLEM BASES

Section I: The Search for an Arena

Let us now consider a pure problem basis, <A,u,S8>, where S is a
set of pure strategies and the variances of the random variables
w(a), @ £ A are non~zero. Wé.suppose there is a one~to-one, onto mapping
between A and S. We will use fg for e the mean of the function u(a).
We will denote u(a) by u_. We note that u* = 1ub o

seS
on the time variable since we are dealing with pure strategies in a

g is not dependent
nonvariable problem basis.

Let us propose some definitions for asymptotically optimal strategies
in this basis, If we can find such definitions we can then define an
arena and an arena set over a pure problem basis similar to Definitions
3.3 and 3.4 for a deterministic problem basis. If not, we must find
other ways to explore the convergence of SR type algorithms over pure
problem hases., The two most obvious candidates for such a definition
are:

A. A strategy s ¢ S in a pure problem basis <A u,8> is asymptotically

n
optimal if ?lim P (;;*-p ); < 40 4,8,
n-=s t= S’t :
B. A strategy s = S in a pure problem basis <A,u,5> is

n
asymptotically optimal if ilim o (.

L] i
-l t)l “ a.5,
n-’.p t:l

t""s,

where v¥ = max (u_ _,u").
If we accept cither of these definitions, there are no asymptotically
optimal strategies in a pure problem basis. We prove this

statement in the following theorems,
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Lemma 4,1: Let {Yt} be 4 sequence of independent identically distributed

real random variables, then

7

40 13 -0, % 0, N such that for all t

n
then lim ; Yt a.s, does not exist.
ne t=}

b. If3 .« <0, 6§ >0, N such that for all t

N, PO 2 ) s,

v

N, P(Yt 2 ¢c) > §,

n
then lim & Y_ a.s, does not exist.
nee t=1 0t
B P(Y, > ¢) = +», Since the Y_ are
t=1 t t
independent identically distributed real random variables (iidrrv), the

Proof: (a) from the hypothesis

Borel-Cantelli theorem tells us that with probability 1, Yt > ¢ infinitely
often. Therefore the terms of the sequence {Y,} do not go to zero and

n
the lim XlYt a.s. does not exist. The proof of part b is similar.
n*u t=

Theorem 4.2: There are no strategies in a pure problem basis which are
asymptotically optimal according to definition A,

Proof: Let YS ¢ " (u*-Us,t). Then E[Yt] = u'-ps 2 0, VAR[Yt] = VAR[us] > 0

’

and the Ys ¢ are iidrrv, Therefore, there is an ¢, § and an N satisfying

part 1 of Lemma 4.1 and the theorem follows immediately,

Theorem 4,3: There arc no strategies in a pure problem basis which are

asymptotically optimal according to definition B.

) . = *_. > 0,

Proof: Let Ys,t (vt “S,t)' s,t 2 0 Since
. s |

the Ys,t are iidrrv and VAR[as] =8 >0, VAR[Ys,t] = 8; > 0 and we

By definition of v:, Y

n
can again apply part (a) of the lemma to show that lim 7 Y a.s,

nee  t=l Sot
does not exist. In fact, since all of the terms in the sequence are
n
non-negative, lim LY = +r a.s,

N t=1 s,t
these results are intuitive and essentially just illustrate that the

g ¢ “re independent samples of the real random variable Mg
B
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Theorems 4,2 and 4,3 show that the concept of asymptotically optimal
strategies in a pure problem basis as defined by A and B is vacuous,

We now consider using the sample mean as the payvoff of a strategy
as suggested in Holland (1970). This may be done in two ways. We
can require that the algorithm perform the calculation of the sample
mean, The algorithm then has the additional task of storing tihe necessary
information to calculate the sample mean for each strategy. Alternatively
we could change to a variable problem basis where the calculation of
the sample mean is made outside the algorithm in the evaluation of the
function payoff. The algorithm would treat the sample mean as the
"payoff" for the strategy. The exact implementation is not critical
to the question under investigation: Are there asymptotically optimal

strategies under Dc . initions A or B when & is replaced by the sample

mean for strategy s? We will formulate a new version of the SR algorithm

which calculates the sample mean and uses this value to calculate the

probability vector over the strategy set.

Definition 4.4: An SR3A (SR3B) is an SRP with the following chunges:

PAYOFF returns the value bi oy for v, u* for v, In step 3.7 of the
»

definition of an SRP (Def. 2,¥),if j is N set }j 0* 0. Step 3.10
?

of definition 2.10 is replaced by:

3.10 Calculate:

ERTCROR B RS

L. Lot

]

ERT¢RS) Wij,t)

2, forl 2 i

15

N(t+])
"iwli,t) 1=

t - .
1, v" i #J
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We detine SR3B as above except step 3,10,2 is:

o = | EMGLD i
i,t

max(v*, A

jugg,ry) PP

The algorithms SR3A and SR3B suggest the following definitions for
asymptotically optimal strategies:
C. A strategy s € S, in a pure problem basis <A,u,S> is

n
asymptotically optimal if [lim £ (u"-)
t=1 s

t)l < +o ga,s,
N+

D. A strategy s € S in a pure problem basis <A,u,S> is

n
asymptctically optimal if [lim £ (v:-ks t){ < 4 a,s,
?

n->o =

where v; = max{s",\. _).

S,t
We now show that definition C cannot be satisfied by any strategy in a

pure problem basis.

Lemma 4.5: Let <A,u,S> be a pure problem basis. For those strategies

n
s ¢ S such that o_ # %, lim & (u"-2_ ) a.s. does not exist.
s =1 s,t

n-»c

Proof: E[u"-A_ ) = u*-0_ > 0. Choose = so that v*-p_> ¢ > 0,
S,t $ s

then P((u*-As t) >¢g) 28 for § > 0 and Lemma 4.1 a, shows that
2

. n
lim 7 (u*-~A

. ) a.s. does not exist.
n v t=

s,t

Lemma 4.5 shows that strategies which do not obtain the maximum mean
cannot be asymptotically optimal, The next lemma shows that even if
strategies do obtain the maximal mean they cannot by asymptotically

optimal by definition C.

Lemma 4.6: Let Hyshgseeestypooe be independent identically distributed

recal random variables with nonzero variance.
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Let ﬁ[ut] = v, N\, @ - Then it is not the case that

P 22

1 .
Ilim ¥ Gi7=\)p + o with probability 1,
nee t=1

Proof: Let Yn be the nth partial sum. Then rearranging terms

n
Yo = (=) iil 1/ + .., ¢+ (u*-u ) 1/n.

n
Let X, = (u*-ul) izl 1/1 2n = Yn - Xn.

X and Z_ are independent random variables since the u

n n are independent.

t

Since ,21 1/i does not converge and the variance of My is nonzero, for
1=

any M there is an Nl’ and 61, such that for n > N1
P(Xn > 2M) » 61

P(Xn < -2M) > 61 where 261 < 1.

suppose that the lin Ym = N < ~ with probability 1., Then for ¢ = 1/361,
i dattd

there is an Nz such that for n > N2

PUIY 0 > M) < e =(1/3) §)

Let N = max(Nl,Nz). There are two mutually exclusive events (not
exhaustive) that give Ile > M namely, {X > 2M and Z > -M} and
{Xm < -2M and Z < M},
Therefore we know that

P(X_ > 2M, 2, > -M) <(1/3)61

P2, > -M) <(1/3)8/P(X > 2M) < 1/3

P(Zm < =M) > 2/3
Similarly:

P(z, 2 +M) » 2/3
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Since {Zm < -M} and 44m 2 +M} are exclusive events, this is impossible.
. n
Therefore the assumption about the convergence of 1lim tz (u*~\t) is
. ) E
tfiulse and the theorem results.,

Theorem 4.7: There are no strategies in a pure problem basis which are

asymptotically optimal according to definition C.
Proof: The proof follows immediately from Lemma 4.5 and 4.6.

We would like an even stronc ¢ result than Theorem 4.7. We would
like to be able to say that the l.ait in definition C is nonconvergent
with probability 1 even for strategies with optimal mean. Similarly,
we would like to be able to say that the 1limit in definition D is
nonconvergent with probability 1. The following two theorems are the
result of collaboration with B. Koopmann, C, Qualls, P. Pathok. The proofs

are contained in Appendix A,

Theorem 4.8: Let {ut} be a sequence of independent identically distributed

random variables with nonzero variance and finite second moments, let

n
°f . = o * 1 L ®
L[Nt} uw*, then lim tzlcvt At) - a.s. where

N w
t u

xt = i, v: = max(u*,kt).
i=1 7%

Theorem 4,9: Let {ut} be a sequence of independent identically distributed
random variahles with nor:ero variance and let E[ut] = u*, then one of

the following three conditions hold:

S sn
i) L'-"ll -+ 4 a.8§, ii) 2: —— P - d.5, or
n n
Sn —— Sn
1ii)  lim T 5T v .8, iim ¥ ot ™ 3.8, In all three cases
Sn n
. ~— diverges a.s. where S_= [ u,.
4
n n t:l t
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We can now obtain the theorem we need concerning definition b:

Theorem 4,10:  There are no strategies in a pure problem basis which

are asymptotically optimal according to definition N,

Proof: Theorem 4.8 shows that strategies having optimal means (cs = %)
cannot be asymptotically optimal according to definition D. Llet s be

a strategy with Pg < u*, then

>0 = A for all t,

GR a )
‘t s t s,t

,t

where v; = max(u*,\_ ), §, = max(ps.k ).

n ”~
t) 2 lim I (o - ) > 4= a,s.

n
Therefore 1lim & (v*-)
CH n t=1" t 's,t

neo  t=1 S,
Thus no strategies can be asymptotically optimal according to D.

We have shown that using knowledge of the true means of the distri-
bution of the M3 does not provide a definition for asymptotic optimality.
However, we could use an estimate of the means as a value for u*.

Let f be a function of the sample means, we want to know if f can be

defined so that for strategies tj with Ps = u*

it t1p

t 1[£(A1;t’...’xls"t) - Aj’t} < w a.s.

and for strategies t; with o, < u"

)

i’t] = o AeSoe

t=1 I’ttonog)-fsi’t) -

We have been exploring this problem but have as yet not developed a
function satisfving these conditions.

In order to cxamine the convergence of SRP algorithms over pure
problem bases, we conclude that we must employ other means than we
used for deterministic bases. The next section introduces the notion
of Linear Additive Models, and in Section III of this chapter we show that

in most cases the SRP procedures do 1:0t converge in a pure problem hases.




Section II: The Linear Additive Model
In this section we will summarize the development of the Linear
Additive Model, a generalization of the Beta Model, given by Norman
[1970). It should be noted that Norman's results are only for the case
IS| = 2, This may appear to be a very limited analysis. However, all of
the major problems of convergence can be found in this "two dimensional
case. In the psychological interpretation of the model, one is usually
interested in the two choice situation. Lamperti [1960) has obtained some
results for the Beta Model for the general case. Several of the results
presented in this section will be used later on, In Section III we
relate Norman's assumptions to the SRP plans we have defined.
Assumptions (Norman):
4,11 Qi’ i=1,2, is a probability distribution over the Borel
subsets of R, such that Mi(;) = er ecdei(x) exists for
; in some open interval J containi;: o.
4,12 p is a measurable mapping of R into I = [0,1], such that
p{L) ~1as L+, p(L) » 0 as L » -», and p is bounded
away from 0 and 1 on any finite interval, Let q = l~p.
4,13 Tt = (Lt,xt), t 21, is a bivariate stochastic process in

R x {1,2}, such that

b

P(xt = ltLt’Tt-'l”“’Tl) = Pt (Pt = 'P(Lt))o

P(xt = ZtLt’Tt_I,"'QTl) i qt (qt = cht))'

i

and for any B

P(aL, ¢ BiTt,Tt_l,...,Tl) = th(B) almost surely.

The means of the conditional distributions of L, are very important.
In fact, their values determine the convergence or divergence of the

sequence Lt’ Let m, = J; dei(x), then m, = M{(O), for i = 1,2.
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In order for the sequence p, to converge, Lt must be absorbed at cither
++v or -, Lemmas 4.14 and 4,15 state conditions for absorption and
reflection if the m, are nonzero and arce constant, Lemma 4.16 removes
the possibility for convergence of Lt to some finite lim.t, with nonzero

. .
1

Lemma 4.14: (Norman) a, If m, <0, lim inf L, < = a.s. For any
§ + 0 such that Ml(s) < 1, there is a constant B(8) such that

lim sup EL[vgl s B(3).

b, If My > 0, lim sup Ln > «» a,8, Fof any § < 0, such that Mz(é) <1,

there is a constant B(8) such that lim sup EL[vij < B(8).

Lemma 4,15¢ (Norman) a, If m > 0, then lim sup Lt = o implies
lim Lt = w9 a,%,, and go(L) = PL(lim Ln % «®) > 0 as L +» =,
b. If m, < 0, then lim inf L= - implies lim L, = -~ a.s.

and g, (1) = P (lim L =) ~0 as L > -=,

Lemma 4.16: (Norman) a, If m1 >0 or m, > 0, P(lim sup Lt £ R) = 0.

b, If m, < 0 or m, < 0, P(lim inf Lt ¢ R) = 0,

With these lemmas, four possibilities for the asyuwptotic behavior
of p, can be distinguished provided that the m; are nonzero and that
the Qi are not dependent upon t. Either p, converges to 1 a.s., converges
to 0 a.s., does not converge to any limit, or has a probability r of

converging to 0 and a probability 1-v of converging to 1.

Theorem 1,17,  (Norman)
a, If my 0 and m, 0, lim Py ® 1 a.s.
b, If myo< 0 and m, - 0, tim Py = 0 a,s,

¢ 1fm ~0andm, - 0, g (L) + g,(L) = 1, where g, (L) = ¥{lim p_ = 1),
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gz(L) = PL(lim Py = ¢)Y. In addition gl(L) > 0,

gz(L) ~ 0, gI(L) +1as L » + « and gz(L) +~1 as L -,

-

d, I my < 0 and m, ~ 0, lim sup Pe = 1 and lim inf P, = 0 a5,

These results are independent of the initial value of L,.
Variations of this theorem for the Beta Model can be found in

Lamperti and Suppes [1960],

Two relations are developed by Norman which will prove useful

later: Let Ve = eLt, then

Equation 4,18:

E[(vy,,1v,) v, = M, ()p, + M, (V)

Equation 4.19:

Blvy,, fv,] = vA[M, 00p + M (Mg )
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Section [11: Linear Models and Pure Problem Bases

Now we relate Norman's assumptions to the SR1 algorithm where
S| = 2. Let Tf be the time at which the second strategy is selected.

This time is finite with probability one.

Let
f 1
= In(u, ,+k,)
LTf S B
{1
) 1,e-1%%
Lt = *ln-——-—-—k- fort>Tf °

2 t-1
Then from 2,12 and 2.13 we obtain:
Equation 4,20

for t s T. P. = 1.3-(1*8)

£ 1,t
= o-(1+9)
Pre = 2

for t > T, 210 Koty

P
1,¢t 2(108)ek2 t +

= plLy)
P, ¢ = 1-p(Ly) = a(L) .

For t ~ Tf, assumption 4.12 of Norman is certainly satisfied dy

t+1
If strategy i is used at time t we use the notation

equation 4.20, Let ALt = L - Lt and Qi ¢ be the probability
2
distribution of u, _.
i,t
ﬂLi.t‘ Let

Equation 4,21. L) \{ Li,t 4 46y ) i= 1,2,

Since Bt + k1 2 1 and by the assumption that the moment generating
functions of the u(a) exist (definitior 2,.1) Mi’t(c) exists for ¢

in some open interval J containing 0, Therefore, assumption 4.1l is
satisfied if we replace Qi,t with Qi’ If the set S of strategies is a

set of pure strategies then we can remove the dependence on the time

variable and satisfy assumption 4.11, Assumption 4.13 follows from the
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definitions of Pi ¢ Lt and Qi in a straight forward manner.
]

Unfortunately, SRP plans do not fall simply into the categories
for convergence outlined by Norman. Therefore, we must first extend

his results to include the cases where the m, might be 0.

Lemma 4.22, 1If m = 0, o 2 0, or'nb =0, g, > 0, then

(a) P(lim sup Lte R) = 0, (b) P(lim inf Lte R) = O,

Proof: Norman's proof of Lemma 4,16 relies on the observation that if
m. > 0, then Qi([ 2¢,)) > 0 for some ¢ > 0 and Qi([Ze,-w)) > 0 for
some ¢ < 0., This same observation holds if m, = 0 and we know that

s, > 0. Once we have made this observation, Norman's proof applies to

1

the present lemma.

Lemma 4,23, a) if m, = 0, 9y # 0 then lim Lt # #o,

b) if m, = 0, Sy # 0 then lim Lt $ -,

Proof':
a) Luppose lim Lt = +=3,8, Since m, = 0, we can chose a A < 0 and an
¢ » 0 such that Ml(k) > 1+e. Then

li-m A Lt ® ~-® ?

o

LA
lim e ¢ = O ,

t -+
and

lim (M () p, + M,(1) 9. = M, ()

tm
Given ¢ we can find No such that for all t » No
M) Py + M0 gy > M () -
by Equation 4.19
E[v'Pte1] (Mlcx)-a)t"”t’"?(minmlu) M, (1) )N

lim E{eALt*l} > K lim (M, (3) -ﬁ)t-N°-1 where k > 0.
ton toro



41

But lim EIQXLt*l] = 0 so Kelim (M, (3) -c)t“No'1 s 0

By our choice of \ and ¢, Ml(\) - is a constant greater than 1.
Stiiee Kois positive, the limit cannot be less than or equal to 0,
Therefore we have a contradiction and our original assumption that

L

¢ = is incorrect. The proof of b) is similar,

H]

Theorem 4.24

a) If my = 0, m, > 0, oy > 0 then lim sup pk = 1 and 1im in€ Py = 0.
b) If my < 0, m, =0, oy > 0 then lim sup Py = 1 and lim inf Py = 0.
c) If m, =0, m, = 0, o; > 0 then lim sup p, =1 and 1lim inf P, = 0.
4y If m = 0, m, <0, o5 > 0 then lim pt = 0 a.s,

e) If my >0, m, =0, o5 > 0 then lim Py = 1 a.s.

Proof:
a) From lemma 4,14b, lim sup Lt > -=38.5,, lemma 4,22a shows that
p(lim sup Lth) = 0, Therefore lim sup Lt = +xa.5, and by 4,12,
lim sup Py = 1.
From Lemma 4.22b P(lim inf LteR) = 0, If lim inf Lt - +x3,S,,
then since lim sup L, = +xa.s., lim Lt = ++3.5, But since oy # 0
this contradicts Lemma 2,23a. Therefore lim inf Lt = -og8,$8, and by 4.12
lim inf P, = 0.
b)  precof is similar to a.
¢) By lemma 4,22, P(lim sup Lth) =0, P(lim inf LteR) = 0, By lemma 4.23
lim Lt # +~ and lim Lt # -~». Therefore, lim sup Lt # lim inf Lt and
lim sup Lt = +@,8,, lim inf Lt = -0a,5, and the theorem follows.
d) By lemma 4,22, lim inf Ltf R a.s. and lim sup Ltt Ra,s. If
lim inf Lt = +: then lim sup L, = ¢« and lim L, = +«, But this contradicts
lemma 4.23a, Therefore lim inf Lt = -~ and by lemma 4,15b, and m, < 0,

1im Lt = --3d,%,, and by assumption 4,12 1lim Py = 0 a.s.
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e) By lomma 34,22, lim inf Lt ¢ R a.s, and lim sup Lt f R a.x,
If lim sup Lt = -+ then lim inf Lt = -~ gnd lim Lt = -, RBut this
contradicts lemma 4,23b, Thercfore lim sup Lt = +» and by lemma 4.15a

and m > 0, lim Lt = ¢ a,8, and by assumption 4.12, lim Py = 1 a.s.

The intuitive character of the distinction between conditions d
and ¢ of the theorem and the other three conditions should be clear.
If m, > 0 then probability one of selection of strategy 1 is sn absorbing
barrier. 1If m; £ 0 then probability one of selection of strategy 1 is
a reflecting barrier. Similarly if my < 0 then probability zero of
selecgion of strategy 1 is an absorbing barrier. If m, 2> 0 then probability

zero of selection of strategy 1 is a reflecting barrier.

Definition 4,25: A function f(x) is strietly concave if the tangent

to £(x) at any x lies above the graph of £, That is, f" <0,

Lemma 4.26: If f is a real, continuous and strictly concave function
defined on an interval (a,b) of the real line, X a real random variable
defined on (a,b), then
E[£(X)] s £(E[X]).
Proof:
Since f is concave:
f(x) s £(E[X]) + £'(E[X]) (x-E[X])
§ e < QCEEN « 0 Em) e
a a

E[f(X)] < f(E[X])).

Corollary 4.27: The natural logarithm is a concave function and therefore

E{in(X)] € In(E[X]).
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Mow we consider the convergence of SRl a and b plans, Let
(ST - 2 ard suppose that strategy 1 is such that " F #* (the case
*ois osvmmetric), Then we first need to caleulate the values of

m, and m, for an SRia,
SR
m, = E[ALl,t] = E[lnsgfr;-- ]

= E[InCuy +k))] - In(om-k))

applying 4,27,

m g 0.
ov+ky
my = E[3L, .1 = E[ln;;——:g" )

ln(o*¢kl) - Etlncuz,t'kl)]
applving 4,27,
In(o*ek,) - In(e,+k,)

and since o* > a
m, > 0o .

We now have the conditions necessary to apply theorems 4.17d, 4.24a and

b and obtain:

Theorem 4,28: An SRla plan over a pure problem basis <A,u,S> with
{S! = 2 will not converge to the strategy with higher mean. In fact,

lim sup Pl,t = 1 and lim inf Pl,t = 0,

Let Ot = max(g*,uj t) where j is the strategy used at time t.
]

Then for the SR1b plan we have

3
]

. , 1
2 = B0y o1 = Ellng——ee ]

ElIn(z ook )] = EllnGuy (+k0)]

by 40 27

W

E[ln($t¢k1)] - ln(oz+k1)
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since ¢, - Fy ln(ctokl) ” ln(pzokl) and E[ln(otokl)] > ln(pz+kl)

t
therefore,
my, >0,
“1,0%)
m, = E[Inet—=u]
1 §t¢k1

E[ln(ul’t¢kl)] - E[In(v +k,)]

"

ln(p'#kl) - E[ln(ﬁt*kl)]

since Ve » 0%, In(® *kl) In(p*+k ). and B[ln(vt¢kl)] > In(p*+k )
therefore,

méO.

1
Again applying theorem 4.17d, 4,24a and b we obtain:
Theorem 4,29: An SR1b plan over a pure problem basis <A,u,S> with
iS! = 2 will not converge to the strategy with the higher mean. In fact
lim sup Pl,t = 1 and lim inf Pl,t = 0,

We now investigate the convergence properties of SR3 A and B
plans with [S] = 2, Again we assume that oy = o* (the case Py = o*
is symmetric)., First, we calculate the values of the mo. for SR3A:

?

1 t’ 1

e T E{ALl,t] = E[1n37:r~—- ]

E[In(y (+k))] - E[In(o*+k,)]

In(E[A, (+k;]) = In(oek))

o~

by 4.27 0.,

we .

. p"*%y
¢ 7 Eloly o) = EII"EETEVE} ]

= E{In(e**k)] = E[In(Xy (+k))]
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mZ.t 5 1n(c'0kl) - ln(pz*kl)

m
2t

>0.
By similar calculations for the SR3B plans with Gt = max(c*,xj t)
]
where j is the strategy used at time t, we find that the same relations

hold and ml,t < 0 while mz’t 3 0.

Lemma 4.30: 1If ml,t 0, m?’t 2 0 for all t, °y¢ 0 and 93¢ > 0
then lim sup p, = 1, and iim inf P, = 0.

vroof: the proof is similar to that for theorem 4,24 and relies on
4.24 part c,

Now we have shown the following:

Theorem 4.31: SR3A and SR3B plans over a pure problem basis <A,u,S>
with {S| = 2 will not converge to the strategy with the higher mean.

In fact 1im sup P
1,t

= 1 and lim inf Pl,t = 0.




CHAPTER 5

CONCLUS IONS

In this work we have examined the convergence properties of
a class of probabilistic sequential adaptive schemes called sequen-
tial reproductive plans, type I (SRP). Theorem 3.21 shows that a
subclass, the SR1 plan over a finite restricted deterministic arena,
converges with probability 1 to a set of "good" strategies. However
Theorem 3.16 shows that these plans do not converge fast enough to
athieve the finite loss claimed in Holland [1970].

#c have shown in Chapter 4 (Theorems 4.2, 4.3, 4.7, and 4.10)
that there is not an intuitive analogue in pure problem bases for
the notions of optimal strategy and arena which were defined for
deterministic bases. In fact, by extending results in mathematical
psychology, we have shown that several large subclasses of SRP plans
do not converge in pure problem bases. (Theorems 4,28, 4.29, 4,31)

Because of the convergence problems of SRP type I plans, we
suggesi that they are not adequate models of the duplication process
in genetic adaptation, Two further plans have been studied as a
result of these findings. A plan which we call SRP Type 11, has
been developed by Holland and Moler [unpublished] which uses the
concept of an arena as a foundation for a non probabilistic, block
structured sampling scheme., This plan does overcome many of the
difficulties of SRP Type I plans. However, since it relies on the
concept of an arena, there are convergence problems in  non-determin-
istic bases. iolland [1973] has examined the convergence of a much
simpler implementation of the duplication process.

Lxtensions of this work may be made in several directions. The
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results we have obtained on Lincar Additive models could be extended

to n dimensions. Further models of the duplication operator can be
studied and incorporated in a detailed theoretical study of the other
genetic operators in the artificial adaptive framework., We are
presently working on a theoretical comparison of artificial genetic
techniques with numerical analysis techniques in n dimensional functicn

maximization,



APPENDIX A*

Theorem: Let xl, Xz,... be a sequence of independent identically

distributed real random variables, not identically zero. Then

Sn .
n diverges a.s.
n=

and a certain trichotomy holds,

B

Proof: 1, Suppose first that P(X1 >0) >0 and P(X1 <0) >0,

m S m
Writing ngl ﬁﬂ-= x1 igl (1/4) + Ym’ we note that

m

m
[ imY < =, xl t’z"'l (1/1) ~» "°°] < [ngl (sﬂ/n) -+ "°°]

m

m m
[Lm Yy > =, X oLy (V)= e=] € [[1) (5 /n) » =]

m m
[llg,Ym = ~», fim Ym 2 4o, xl igl (1/i) » -=] € [ 1lim n§1 (Sn/n) » -]
n M
[Lim Y, = -0, 1imY = eo, X, (5 (1/i) = +=] € [ lin 5, (S, /n) + +=]

2. By the Hewitt-Savage 0-1 law, the four events on the right hand

side of the above implications have 0 or 1 probahilities. Now

m m
P{Xl j5 (/i) » ~+) > 0 and P(X1 1&; (/1) » +=) > 0 and at least
one of the following is true: P(TTE'Ym <®) >0, P(UmY_ < -=) >0

or P(lim Ym = -n, lim Ym = +x) > 0,

Consequently we have the following trichotomy:

. m Sn :

Dy g s
m “

1) 5 G T

* See Koopmans et al. [to be published].
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S Sn
11i) lim Y o~ v« oand tim e ey, s,

S " S ¥
Writing :ﬁ" =\ et Y o s We see that in case i) -'-‘-'1 = w
S+ S~ Se

in case ii) © -’-‘13- » v and in case iii) 1 ;\-’l = » gnd 5 -!-‘-'3- = o,

S S-

3. If P(X, 5 0) = 1, then case i) with I ;‘2 = - z!-‘-’-‘- = -=a.$. and

S Se

if P()(1 0) = 1, then case ii) with 2;‘-'-‘--: T 52-= =a.s, and

S
In all three cases, ZT\P' is divergent a.s,

Theorem:
2
Let XI,XZ,... be i,i.d. with E[XIJ =0, and 0 <0 < =,

Let Sn = x1+...+xn, S;‘- = max (O,Sn) and Sﬁ = max (0,-5“).

™ S;" «© Sﬁ
Then § «=— = +»a.s, and § — = ~xg,s,
L 1 B

Proof: From the previous theorem it follows that either

[ S+
X RS a,.s.,
1
or ®
L »
» e o Sﬁ
Suppose that = ;‘-’1 = wa,s, and ! - does not diverge,
1 1
o Sn
Then z . = 4 g,8,
1
S
P ¢ .’.‘.’l» +0) = 1
NS, N 1
LetT=X--—-=X2 /i"ooo*X'/N
Nogp b ieg N
N
= isl Con X



where Gy s 1R TRLYY
Consider TN N o § y
X UL W R
- C2 k=1
kep %o¥
It is easy to see that
di,N % dz,N 2 eee 2 dN,N
and limd, ., =0
o 1N
and |, {Yk N 1s ks N, Nz 1} are uniformly small random
.
variables,
Let Fk \ be the distribution function of Yk N Then by the Lindeberg-Feller
9 9
criterion:
TN
N
\ Ckzv is asymptotically normal with zero mean and
k=1 »
unit variance,
if N 5
lim ydF, =0 .
N—-w» k=1 ' l\"\
ly|2€ |
But z
‘ 2
B .dek,N Xk dFk s where Fk is the d.f. of Xk
k=l Ty x| s s
O ,NTK
N N
=5 & .‘,_S.xzdpk(xk) = © 4 sz dF, (%)
k=1 " k k=l %
i . P
,dk’vxk} w L !dk,NX 1 = &
Y& 5 2dF (X y szd!‘ (X)
‘0 Gy 2o : 1

fd, X' - ¢ !dl,Nx‘ » €
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* 0 as N+ since lim d1 N ® 0.
N »e ’

50 the central limit theorem holds and hence

T
lim P[ —%  >0] =12,

N-veo \rr'Ek,Nz

i.e. 1lim P[TN > 0] = 1/2

N-#<o

but this contradicts what we had before, namely;

© §
A n
Inm T, = L === ¢+« a,s,
New N D
S
Therefore, the assumption that : - does not diverge is false.
Hence both
S~ Se

s H& and I ;ﬂ- diverge a.s.
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