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ABSTRACT

CONVERGENCE PROPERTIES OF A CLASS OF PROBABILISTIC
ADAPTIVE SCHEMES CALLED SliQtfl REPRODUCTIVE PLANS

by

Nancy Martin

Chairman: John H. Holland

A reproductive plan is a mathematical model describing certain

aspects of the duplication and selection processes in natural genetic

adaptation. These models occur in artificial genetics, which is the

use of ideas from genetics to develop general problem solving techniques

for computers.

A reproductive plan is a sequential stochastic process involving

n-tuples which correspond to chromosomes i enetics. The individual

elements of the n-tuples, which correspond tv enes, may be simple

numeric constants or may be such complex strixtures as computer algo-

rithms. The plan also involves a sequence of probability distributions

defined over the n-tuples.

At each step of the stochastic process, one of the n-tuples is

selected using the current probability distribution. The "value" of

the selected n-tuple is then obtained from an external function or

subroutine. This value is then used to define a new probability distri-

bution for the next step of the process.

A particular reproductive plan is said to converge if the distri-

butions developed at each step converge to a distribution which selects

the most valuable n-tuple. We analyse the convergence properties of

several subclasses of reproductive plans. We show that in a suitably

restricted problem domain one subclass, SRI plans, converges. WC' also

show that the convergence is not fast enough to achieve finite loss.



by rviating reprodulive plans to a class of models used in matheolatical

psychology, linear additive models, we show that several suhclases of

reproductive plans do not converge.



VANOWLVDUMVNTS

I %ould like to express my deepest gratitude to John HollJnd for

introducing me to VII: area of genetic adaptation, for many helpful

and stimulating conversations on this work and for his encouragement,

support and patience.

Several times when I have been ready to leave academic ror,

Patrick Suppes not only encouraged me to continue but helped with finan-

cial assistance and exciting projects. lie has been a great source of

inspiration for many years and I will always be grateful.

I woulti like to thank Joyce Friedman for her careful reading of

this manuscript and her many useful suggestions. I am extremely grateful

for the support and encouragement she has given me.

I would also like to thank the other members of my reading committee,

Bernard Zeigler, Robert Bjork and James Greeno for their helpful comments

and suggestions.

There are many other people who have contributed to the completion

of this work. I would particularly like to thank Tom Cover, Mary Harris,

and Leslie Hefner. Jan McDougall and Monna Whipp have done an excellent

job typing the manuscript.

Cleve Maier has contributed to my education and to the "completion

of this manuscript more than any other individual. I am grateful for

the many happy hours we have spent studying and working together. His

many suggestions have helped to make this manuscript more readable.

To Cleve, Teresa, and Kathryn I am greatly indebted for their

patience, understanding and love.

lhi:; work was supported in part by National Science Foundation grant

No. G.J-443X to the Institute for Mathematical Studies in the Social

ii



Sciencvs, Stanford University, and by National Science Foundation Grant

No. CO-29989X to the Logic of Computers Gro,p, University of Mi,higan.



TABLE OF CONTENTS

CHAP1N I INTRODUCTION

ChAPTER 2 REPRODUCTIVE PLANS

031.:V

CHAPTER 3 DETERMINISTIC PROBLEM BASES 16

CHAPTER 4
29

SECTION 1. The search for an arena /9

SECTION 2. The linear additive model 36

SECTION 3. Linear models and pure problem bases 39

CHAPTER 5 CONCLUSIONS 46

APPENDIX A
48

REFERENCES
52

iv



CI APTLR I

INTRODUCTION

r77.
P'fik

Thv Logic of Computers Group at The University of Michigan has

been studying methods of applying the techniques of natural genetic

adaptation to develop adaptive techniques for problem solviiv with

computers. We will use the term artificial genetics to refer to this

process. We give here a very brief description of the genetic approach

to problem solving in order to demonstrate the origins of the adaptive

procedures we have investigated. For a thorough introduction we

recommend Holland [to he published]. Chapter 1 of Hollstien (1971)

relates the artificial genetic approach to adaptive control processes.

Chapter 1 of Cavicchio (197(1) relates the artificial genetic approach

to pattern recognition and problems in artificial intelligence.

We separate the world of the adaptive process into two parts:

the adaptive algorithm and the environment with which it must interact.

If an algorithm is tc be adaptive then something internal to the

structure of the algorithm must change as time progresses. The first

problem is to find an adequate method of representing that which will

change. As in natural genetics, artificial genetics assumes that

there is a set, 4, of "chromosomes". Each chromosome or string

A ci is an n-tuple, (al,...,an) where the ai can be simple constants

or quite complex structures such as the instructions for a computer

suhrotitine0 The a. are referred to as genes. Hollstien (1971) ha.;

investigated the use of Gray codes (also known as reflected codes)

and Hash codes to make the representation of information in the n-tuple

more fficieot.

1
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We, Ma% view the problem of adaptation as 4 transformation p.ob;cm:

from A set of stringsoilt obtain a new set of strings ad;., hv

a set of operators based on some evaluation of the strings ilia

We assume that external to the adaptive process there is an evalua`ion

function that evaluates the elements of ag ; and that the results of

this evaluation are available to the genetic process. In an artificial

genetic adaptive scheme the operators are modeled after the natural

genetic operators: duplication, crossover, inversion, mutation and

dominance.

In the approach taken by Holland (to be published), the procesr,

is divided into two stages. The duplication operator is applied to

,gor to provide a new set *SO
t

containing multiple copies of some of

the strings of L.Cet. The number of copies made of a particular string

depends on the evaluation of that string. So duplication is a copying

process that does not alter the individual strings. In the second

state of the process, the other operators are applied to the !;et aft
t

to form a new set of strings. Then the evaluation process is used to

reduce the size of this set to form a
t+1'

The crossover operator is a function which takes two strings

as arguments and creates two new strings by interchanging genes of one

string with the corresponding genes of the other string. For example

if

A (al,...,an) and

= (b1,...,bn)

then the result of a simple crossover operator might he the strings

(al, 4 ,11
141' n

) and

(b1,...,b1,a1+1,...,an).



The result of a "double" crossover operator might be

,bk and

kb
'

1 a.

1.1
,t,k. 9 Obri)

rhe inversion operator is a function of a single string which reverses

the order of some segment of the string. For example, the result

of applying an inversion operator to string A above might be the string

(al,...,al,ak,a11,...,ai.pak.1,...,an). The mutation operator makes

random changes in the genes. The dominance operator is only applicable

when the chromosomes have a more specific structure. Essentially,

it chooses which copy of a gene will be effective if there is more than

one representation for the same gene in the string.

The mutation, crossover and inversion operators can also be applied

at the gene level to change the structure of the individual ai's.

A review of some of the algebraic aspects of these operators is presented

in Foo and Bosworth (1972).

Experimental work with artificial genetic adaptation has been

carried out by Hollstien (1971), Cavicchio (1970), Bosworth, Foo and

Zeigler (1972) and Dan Frantz (1972). Holland began the theoretical

investigation by analyzing the duplication phase of the process in

(1969) and (1970). The present work is limited to this first phase

of the adaptive scheme.

In order to capture the notion of duplication theoretically, a

new algorithm called a Reproductive Plan was developed which did not

use the other operators. It was intended that this algorithm could

act as a driver program for the total genetic scheme.

A Reproductive Plan is a sequential stochastic process. V' we

view adaptation as a decision theory problem, then we must decide at
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each time step which elements of eigto choose. The problem iA to find

a suitable process to maximize the sum of all the outcomes or to find

a process that eventually only chooses the "best" element of al

according to some measure of "best". One method of making this decision

is to have a probability vector over the space edwhich changes with

experience. There are many methods, both linear and nonlinear for

changing the values of the probability vector according to past perfor-

mances. Many of these methods have been explored using different

terminology by mathematical psychologists in searching for a model of

behavior. While we are not interested in modeling any actual observed

behavior, we are interested in taking advantage of the analysis that

has been made and extending it to our particular requirements.

Shapiro and Narendra (1969) have compared the performance of

several mathematical psychology models in the problem of function

optimization with noise. Norman (1970) has done extensive work in

analyzing a model which we show is very close to the reproductive plans

of Holland.

Non-probabilistic methods of choosing among the elements of cgt

have also been studied. A special problem of the type we are considering

is called the n-armed bandit problem. This problem is generally stated

as follows: we are given n coins with unknown probabilities pi
,...,pr

of heads. At each time step we are to choose which coin to toss.

The objective is to find a sequential decision procedure that maximizes

the limiting proportion of heads. Robbins (1952) was one of the first

statisticians to examine the problem of sequential testing. He developed

a successful rule for the case n . 2 which used the sample mean of the

previous t tosses to choose the coin for the (t +1)st toss. The rule

included a provision that prevented a coin from only being tested a



5

finite number of times. Later Robbins (1956) restated the problem

allowing only a fixed number of previous tosses to be used in the

decision making process. This problem is referred to us the bandit

problem with finite memory. The exact interpretation of the term

finite memory has been discussed in the literature an'; related to

automata theory. For example see Cover (1969) and Hellman and Cover

(1970, 1971).

In the present work we develop the conditions for convergence

of reproductive plans and relate this tr. the models of mathematical

psychology and statistical decision theory.



CilAPTER 2

REPRODUCTIVE PLANS

In this chapter we define a class of algorithms for adaptation

similar to those developed by Holland (1970). This class of algorithms

treats adaptation as a decision theory problem. There is a sct of

possible strategies and a probability vector over the strategies.

There is also an evaluation function which measures the "worth" of a

strategy at a particular time. A procedure sequentially chooses a

strategy according to the probability vector. The procedure does

not have direct access to the evaluation function but receives the

resulting value of the function applied to the strategy choosen.

This value is used to update the probability vector for the next choice.

The object is to have the probability of the "best" strategy in S

approach one as the number of trials increases. If a procedure is

such that the probability of choosing any particular strategy in S

goes to one with the number of trials, we say the procedure converges

to that strategy. We now give definitions to make these notions

precise.

Definition 2.1: <A,11,S> is a problem basis where

A is a set of possible or admissible structures,

is a function that assigns to each structure in A a random

variable. We restrict the choice to the set of finite real

random variables whose moment generating functions exist,

S is a set of strategies for choosing structures from the space

A. A strategy in S is a method for determining a trajectory

or set of trajectories through the space A.



I \ample 2.2: In a zero-sum, two person game, let the structures of A be

the pure strategies for player one, IA! = M,

M
I = i(pi,...,pm)I0 R pi < 1, .% p. = 11, let f:S T be 1-1, onto and

1=1 1

for s e S, s chooses structure
i

a.
1
of A with probability p.

1
where p1 is

the ith component of the probability vector f(s). Note that in this

example the word "strategy" is being used in two senses: first in its

usual game theoretic sense and second to refer to elements of S which are

"strategies for choosing strategies". For a e A, the random variable u(a)

would be the "payoff" function of a. If we assume that player two always

uses the same mixed strategy, then u(a) is a simple random variable as

in Definition 2.1 and <A,u,S> is a problem basis. However, if player

two changes his strategy with time u(a) no longer satisfies Definition 2.1.

Definition 2.3: A problem basis <A,u,S> is deterministic if for each

a A, u(a) is a finite constant (hence its variance is zero), and the

strategies s e S are not probabilistic.

Example 2.4: If the structures in the set A are vectors in n-space,

then any one of the standard function maximization algorithms of numerical

analysis would be a nonprobahilistic strategy for determining a new

structure of A given one or more "previous" structures and their function

values u(a.). A collection of such algorithms could be the set S in a

deterministic problem basis.

Definition 2.5: A strategy s e S is a pure strategy if s always selects

the same element of A.

.ft!finition 2.6: A problem basis ,-A,u,S> is pure if S is a set of pure

strategies and the variances of the random variables u(a), a E A, are

nonzero.



The problem of maximizing a real valued function defined on a finite

set of points where there is random noise in the function evaluation

can he considerPd a pure problem basis. Here A = {a ...,a
n

is a set

of n points on the real line, ii(ai), i = is uniformly distributed

with mean f3i in the interval [pi- 2,p1 +2] and S is the set of pure strategies

such that there is one and only one strategy in S for each element of

A. This problem was discussed by Shapiro and Narendra (1969).

The n-armed bandit problem is an example of a pure problem basis

with A the set of n arms,

1 with probability p.
4(a.) =

0 with probability

Again, S is the set of pure strategies such that there is one and only

one strategy in S for each element of A.

Definition 2.7: A sequential adaptive scheme, SAS, over the problem

basis <A,,S> is an algorithm for choosing

1. An initial starting structure of A denoted AO

2. At each time step, t, a strategy from S to be used to

obtain a new structure.

Definition 2.8: A probabilistic sequential adaptive scheme, PSAS, is

an SAS with the strategy at time t chosen according to a probability

distribution over S.

Definition 2.9: A PSAS over a problem basis -A,iA,S> is said to convarge

to the set UCS if lim P = 1 where P is the probability of
sEll

s,t stt

choosing strategy s at time t.



We will use the following notation:

t time variable.

Nit) the number of distinct strategies an SAS has selected prior to

time t.

s. the jth distinct strategy selected by an SAS.

S(t) the set of distinct strategies selected prior to time t.

t
3

.

S(t) fs
--It-s2"'"N(t)).

the time strategy si is first selected.

A
s
(k) the structure that would result if strategy s were being

selected by an SAS for the kth time.

the probability of selecting strategy s at time t.s,t

0,t the probability of selecting a strategy from S-S(t) at time t.

w(s,t) the number of times strategy s has peen selected up to and

including time t.

s,t an abbreviation for 11(A 5(w(s,t))), the random variable resulting

from the choice of structure made by strategy s at time t.

P
S(t) the probability distribution by which a strategy may he selected

from S-S(t) at time t. P is an initial probability distribution

over S.

;SI cardinalit!, of the set. 3.

a the mean of the distribution w(a) for a c A.

t
is the lub c)

a where the lub is over the set fai for some strategy

3 t S, As(t) . a).

is st if strategy s is actually selected at time t and p*
w(g,t)

if strategy s is not selected but strategy q is selected at

time t.
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In all of the above notation, if the strategy referred to is in

the set S(t), we often use only the subscript. For example we abbreviate

A
%

00 to A.Ck), w(s.,t) to w(j,t), and to
.

-J sj,t

We now have enough notation to define a general sequential repro-

ductive plan. There are two calculations which are external to the

procedure. The first is the calculation which determines, given the

strategy selected by the plan, which structure in A is choosen. In a

pure problem basis this calculation always results in the same structure

for a given strategy. The second is the calculation of the "payoff"

of the structure. These calculations are represented by the functions

STRUCTURE and PAYOFF in step 2 of the procedure.

The exact method of selecting new strategies from S-S(t) is not

specified in the SRP procedure. We put the following restrictions on

the function FIND of step 2 of the procedure. The original probability

distribution P
0

over S must be modified to be a distribution P
S(t)

over

S-S(t). We will assume that for IS! finite, if P
0
(s) > 0 for a particular

strategy s and if s S(t), then Ps(t)(s) 130(s). For IS; infinite, if

P
0
(W) > 0 for a particular subset WCS and if W(1S(t) = 0, then

PS(t) (W)
PO(W).

Our first procedure is a general form which will be altered in

subsequent definitions by changing the variables v and v* and by altering

the calculation in step 3.10.

Definition 2.10: SRP, a requential reproductive plan, is a PSAS over

a problem basis where:

1. The values assumed by the random variables are in an interval

(r
l'

r
2
) where r r

2
are finite real numbers.
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2. The procedure requires the following functions:

2.1 SELECT(T
N(t)'j) which assigns a value to j according to

the probability vector PN(t). That is, if

iN(t) (11104312 "PN(0) then j is assigned the value

i with probability pi.

2.2 FIND(P0,S(t),sj) which chooses a new strategy from S-S(t)

according to the restriction.; above and labels it sj.

2.3 STRUCTURE(sj,Aj(t),A0) which applies strategy sj to

obtain a new structure A3(t).

2.4 AiPAYOFF( .A) (t),v,v*) which uses A3(t) to obtain values for
3

v and v*.

3. The operation of the procedure is as follows:

3.1 Choose 0 > 0, k1 > ri+1, k2 > 0, Po.

3.2 Choose at random an initial structure A0.

3.3 Set N(1) = 0, t = 0, S(t) = 0.

3.4 Set t = t+1.

3.5 Calculate (P
N(t) 0,t"'"PN(t),t) by

3.5.1

Vi(04.1]-(14.e) if N(t)+1 s ISI
A
0,t

0 otherwise

3.5.2 If N(t) > 0 for lsisN(t) calculate:

Prod.
= (1-P

0,t
)

N(t)Piot

2: Prod-
h=1

3.6 SELECT(Y'N(t) ,j)
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i.7 If j 0 then Set N(t.1) - N(0.1, j NO4-11,

FIND(1'0 ,S(t),s.l,
j,t

= Pn,t . S(t4.1) is .

P rod . P.

1

otherwise set N(t+1) = N(t), S(t+1) = S(t).

3.8 STRUCTURE(si,A1(t),A0).

3.9 PAYOFF(A.(t),v,v*).

3.10 Calculate: for 1 sisN(t+1)

3.10.1
for i = j

V. =
1

v* for i j

3.10.2 k2
Pro d *(V.= Prod.

1
+k

1
)

3.11 GOTO step 3.4.

Definition 2.11: An SR1a is an SRP where the value returned by PAYOFF

for v is Lii,t and the value for v* is An SRlb is an SRP where

the value returned by PAYOFF for v is pj,t and the value for v* is

max((j,t),,,Jj,t) An SRI is an SRla or an SRIb.

The definition of an SRI differs in several respects from that of

Holland (1970). We have allowed the u(a) to be random variables. In the

original development 11 was a single valued function from A to a finite

subset of the reals (ri,r2). This restriction does not allow the appli-

cation of the algorithm to such problems as the n-armed bandit problem.

In the Holland paper the notion of a set of envi-.-onments & was includmd.

However, since all of the theoretical work was done with respect to a

fixed element E E. 6, this aspect of the plan has been discarded. The

notion of environment could easily be incorporated in the functions I:

since they are external to the algorithm, or in the structural description

of the elements of A. The calculation of the probabilities Pi,t in the
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SR1 algorithm can be expressed as:
t-1

l

k,
.

ptitl=
11

ti
0

itte 1
) 4

Equation 2.12: Pitt = (1-Pott)
t-1 k

EP ) 2,
t. n tt44(1h=1 ut-n vath s

This is similar to the calculation in the 1970 paper except for the upper

limit of the products in the numerator and denominator. In the 1970

paper this limit is t, in equation 2.12 the limit is t-1. We cannot use

1,t until it has been calculated and in our algorithm this calculation

comes in step 3.10 and the calculation of Pitt in step 3.5.

The values of the P
0,t determine how often a new strategy is to be

tried. One of the weaknesses of this algorithm is that Pott is not

dependent on the performance of the strategies that have already been

used. It would he preferable to have Pott be relatively large if the

strategies used so far were not performing well, small if they were doing

well. However, this definition does insure that with probability 1,

when IS' is finite all of the strategies will be tried by some Tf < Go.

When IS1 is infinite, there is no finite time after which no new plans

are tried.

We observe from equation 2.12 that for an SRI, if <A,u,S, is

deterministic, P. cannot increase as a result of using strategy j,3,t

except of course, the first time it is used. Also, if the jth strategy

is used at time t, witt = ti:,(itt), and strategy j has been used before,

the probabilities Pitt do not change. The purpose of using such a method

to change the probability vector over S(t) is to allow the vector to

he more responsive to the performance of the strategy over time. We

wish to avoid converging to false strategies due to their early behavior.

However, it is exactly this property which makes it impossible for the
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algorithm to have all of the convergence properties claimed in Holland

(19-01.

Lel us now consider a modified form of Fquat ion 2.12 for an .;111a

procedure for finite S. We know that after some time T
f'

eacn of the

strategies will have been used at least once. We also note tiat the

Pit. and
Ph

in the numerator and denominator of Equation 2.12 are
t1 "PM

constant factors that do not influence the convergence properties of the

P.
as t In fact, they reinforce the bias of the original distri-

i ,t

bution P
0

over S. If this distribution is not a good measure of the

value of the strategies, the P. in the formula could slow down
3,t

j

convergence but never prevent it. If we neglect these factors, and let

u
j,t

= (1;
j,t

+k
1
)

2 we have:

Equation 2.13: for t Tel

Pj =
,t

t-1
(P.

3
)n=t. ,n

Nit
n

h=1 n =th h
'
n

k,
Let i be the strategy actually used at time t and = (Li* +k ) 4

W(1. ) 1 9

Then Equation 2.13 can be expressed as:

Equation 2.14: for t > Tf4.1

if i = j:

1

pj,t pj,t-1

J't-1 7j

1
t-1

,t-1

if i j:

P.
)

= P.
j,t-1

1
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Equation 2.13 has a familiar form. With different interpretations of

the 7, this is the form of the Beta Model of mathematical psychology.

This model has been studied extensively by Luce (1959), Lamperti and

Suppes (1960), Lampert' (1960), Norman (1970) and others. Although

their terminology and interpretations of the model differ from those of

Holland, the mathematical analysis applies to both. The Holland work

claims that under certain restrictions of the problem basis <A,u,S,

tho model not only converges but converges in such a special way that

"bad" strategies are used only a finite number of times. However, the

studies by the mathematical psychologists show that the Beta model

(without Holland's restrictions) does not always converge.

We will show that under restrictions similar to Holland's the SRI

plan does converge, out not as strongly as he claimed. Then we will

examine convergence under other restrictions and relate our results

to those of Norman (1970).



CHAPTER 3

DETERMINISTIC PROBLEM BASES

This chapter examines the convergence properties of the SRi algorithm

over deterministic problem bases.

Definition 3.1: A strategy in a deterministic problem basis is .Ttimal

iff .F.IT a u(As(t)) = u; for t > T.

Definition 3.2: A strategy s in a deterministic problem basis is

CO

ao?mptoticalki optimal iff
t 1 `

[p: u(As(t))] 4 '33*

=

If s is optimal, s is asymptotically optimal.

Definition 3.3: An arena is a deterministic problem basis <A,u,S such

that there exists a set HCS, PO(H) > 0 and gib u(As(t)) g at

scH
4.173

where
t=

Y.

1

xt = NE <

It is not hard to show that <A,u,S> is an arena if and only if S

contains asymptotically optimal strategies with nonzero initial probability.

Definition 3.4: SE, the arena set for the arena <A,u,S), is the set of

all asymptotically optimal strategies.

To avoid trivial situations we henceforth assume S
E

is a proper

subset of S. At this point it would appear that if our problem basis

is an arena then the optimum algorithm in searching S would converge

to the arena set. Because of the lack of limitation on the sequence

tai, this is not necessarily the case. As presently defined, II; is the

best that any single strategy could do if used t times. It is not

necessarily the optimum value that any algorithm could achieve at time
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t. It is possible that a PSAS which selects an element of S according

to a fixed vector (pl,p...,ps) with pi 0 0 for at least one i not in

the arena set could have a higher payoff than a similar PSAS with pi = 0

for all strategies not in the arena set. We give an example where this

is the case.

example 3.5: Let strategy 1 have payoff 100/k the kth time it is used,

strategy 2 have payoff 99/k the kth time it is used. Then al is 100/t

and we have an arena set consisting of strategy 1. However, a PSAS that

uses strategy 1 all of the time will not have as good a payoff as one that

uses an appropriate mix of the strategies 1 and 2. Let p be the probability

of choosing strategy 1, 1-p the probability of choosing strategy 2, where

p is fixed for all t and 1 > p 1-p. Then if M is the number of choices

of strategy 1 in N trials and N > M > .01N, the payoff would be

Al N-M

k
100/k

k1 k
99/k > Z

1

100/k.
=1 ==

For p > 1-p, the expected payotx of the mixed strategy is greater

than the payoff of the arena set.

To have strategies in a deterministic problem basis have the payoffs

indicated, both the set A and the strategies would be quite unnatural.

However, such problem bases are not eliminated by the definition of an

arena. Consequently we introduce the following notion.

Definition 3.,: An arena <A,w,S is a restricted arena if there exists

a time 1 such that no PSAS over e.A,u,S> can obtain a payoff at time

t T higher than

The rest of this section develops the results necessary to show

that in fact the losses associated with an SRI algorithm ever over a
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restricted arena cannot be finite.

Definition 3.7: The lboo7ute loss of strategy s is

ti
AL

s
- - p(As(t)).

t=1

If a strategy s is in the arena set for <A0A,S> then ALs is finite,

otherwise ALs is infinite.

Definition 3.8: The actual loss of the strategy s during any particular

use of an algorithm is

ps,t = (1';:(1,t) C's,t)

where si is the strategy selected at time t. The accumulated actual loss
cs)

is D
s

= ,.
t=1 so.

According to Definition 3.8, a strategy s has zero loss at time

t if it is not selected at time t. Therefore when we speak of the actual

loss incurred by a particular strategy, we only mean the loss resulting

from the actual selection of that strategy by an algorithm.

Lemma 3.9: Let S
E
be the arena set for an Ski over a restricted arena

<A,ti,S,. If s c SE, then the accumulated actual loss Ds is finite.

If s' p SE and s' is, with probability 1, selected infinitely often,

then the accumulated actual loss, Ds1, is infinite with probability 1.

Proof: The first part of the lemma follows directly fr.), the definitions

of an arena set and of asymptotically optimal strategies. For the second

part observe that:

D = u*
Dc

t1
(

w(i,t) k=1 w(s',n
k

) n )

where in
k

) is the infinite set of indices where strategy s' is actually
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selected. But w(s',nk) = k so 171s1,nk = u(As1(w(st,nk))) = u(Asf(k))

and

D., - 11(A 1(k))) =
s

= m for s' I S
K =1 E'

The definition of actual loss incorporates many of the ideas expressed

in Holland (1970). A strategy is to,be measured against how well other

strategies would have done if they had been used the same number of ti:Aes.

However, there is no guarantee that the actual loss directly represents

the loss of using a strategy under SRI compared with some optimal scheme.

Definition 3.10: The loss incurred by an SR1 algorithm over a finite

modified arena is
m 'SI

= E E (11# ).
s,tt=1 s=. t

a

Lemma 3.11: The loss of an SR1 algorithm over a finite restricted arena

is infinite if the total accumulated actual loss over all strategies is
1S1

infinite. That is D = if D = m.
s=1

Proof: There exists T for t > T, s e S, by Definition 3.6

*
't /4w(i,t)

where si is used at time t.

*
'01 - -
t

us,t
= w(i,t) s,t

(w
t stt ) ss (1J:(i,t) - 5s,t )ttT sES

The left hand side is D-K, the right hand side is E where
sES

K and K' are finite constants. Therefore

and

0 -K D -Kt . m
= scS s

D



20

From Lemma 3.9 the accumulated actual loss is not finite if some

strategy s' not in Si: is used infinitely often. We now explore the

conditions under which this happens.

Definition 3.12: H is a limiting set of a PSAS over the arena <A,p,S>

if HCS and there is some time T such that for t > T, with probability

1, only strategies from the set H are selected for use.

If S is finite and there are no proper subsets, HCS, such that

H is a limiting set and Fel) < 1, then each of the strategies in S

with nonzero initial probability must be used infinitely often.

We want to develop conditions under which a limiting set does

not exist. Let Q be a PSAS over <A,p,S>, HCS and {Xi} a sequence

of random variables defined by

1 if a strategy in H is selected by Q at time i
X. =

0 otherwise.

We can now represent the choices of strategies of Q as an infinite

vectoroftheX..The space of all 0-1 valued infinite vectors is

then the underlying space representing all possible sequences of

choices by Q. The probability distribution over these vectors is

dependent on the vectors ,PN(t),t). In order toN(t) 1130,t'Pl,t'm

have a limiting set, we are interested in those vectors of the Xi

which from some point on have entries of I only. Let

hm = {(X1,X2,...,Xm,...)1X5 = 1 for all j > m)
=

and

B = lim B
mms.

If the probability of the set B is 0, then H is not a limiting set for
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APit = P(Xm+, = 11X1,...,Xm_1,Xm . 1)

- P(Xm = 11X1,...:Xm_1)

Then AP
m is the increment in the probability of choosing an element

of the set H given that an element in H was chosen at the previous

time step, and irrespective of the other past choices. Intuitively,

if AP
m

is negative, one would not expect H to be a limiting set.

This is in fact the case.

Theorem 3.13: Let Q be a PSAS over <A,u,S>, HCS and Xi, Bm, and B

defined as above relative to H and Q. If there is a time T such that,

for m T, APm S 0, and if P(Xm = 1) < 1 for all finite m then P(B) = 0

and H is not a limiting set for Q.

Proof: for m ! T,

P(Bm) = lim P(Xi = 1, m < i < nIX ... X )= 1 m-1

= lim P(Xn = 11X1,...,Xm.1,Xm = 1,...,Xn.1 = 1)

iP(Xn-1 11X1'.

...P(Xm = 11X1,.

..,Xm-1'X
m

=

' X
m-1

)

Since AP
m

0,

P(B) < lim fP(X n-m-1= 11Xi,...,Xm.1)]

= 0

1,""Xn-2 = 1)

So, for arbitrary m T, P(Bm) = 0.

But R = lim B
m

and the B
m are a sequence of increasing events.

Therefore, P(B) = lim P(Bm)[see 1.3.1 Neveu (196S)] so P(B) = 0.

Since P(B) is 0, with probability 1 H is not a limiting set of Q.

Lemma 3.14: Let Q be an SR1 algorithm over a restricted arena <A,p,S>

with finite S. Let 11 be the arena set of S, Pt # S and PO (H) 1. Then
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(a) P(Xm = 1) , 1 and (b) APm 0 for m Tf.

Proof: La) If P(Xt = 1) = I then, letting Pt(I1) denote the

probability of choosing an element of H at t, Pt(H) = 1. Therefore

Pt
(S-H) = 0.

L If one of the strategies in S -i {, say been used at
Si'

least once, P
t
(S-H) > P.

3,t. 3

But P.
,t
, # 0 if C

N(t)+1
1

sincetheu3,t >1.Sincestrategys.has been used once

prior to t, C
N(t)+1

1 by definition. Therefore P
t
(S-H) 0.

2. If none of the strategies in S-H have been used then

Pt(S-H) = P0,t. Ps(t)(S-H). But Ps(t)(S-H) > Po(S-H) > 0.

Pit . 0 only when all strategies have been used. This would

imply that H S and our assumption is that H 0 S.

Therefore P
t
(S-H) 0 0 and P(X

t
. 1) < 1.

(b) Let
f
be: the time by which with probability 1 each strategy

in S has been used at least once. If strategy si E H is used at time

m > T
f
+ 1 then for j 0 i from Equation 2.14 we have,

1

Pipm'A 3,171 I 1
, = P. .6, where 6

Pi
m +1 1 ,m

6 where 6= P. =
2

since 6
1 '

1 0 < 6
2

< 1,

P. < P.
- joie

Let APB = P. -P.
,m .1,m+1 3,m

Then AP.
,m

0,
,m =

,m 1.1

..---- - 1
)(1+P1. -..*

1

4*

.

,M

1,M
P1

P*
M m

i,m

P. > P.
11114-1 - 1,m

AP. . P. -P.
11,m 1,m+i ,m

LP. < 0
,m =



23

AP. = F . LP. +AP. + E _AP. = 0.S
k
LS KtIll sc.11 3,m 1 m S

k
ESft x,m

301

AP.
3

= E AP < 0.s.cH ,m sicES-H kom =

Therefore, for arbitrary si H used at time m

AP = E AP,
in s .0 3,m < 0

With probability 1, Tf is finite and therefore, APm g 0 for all

m > Tf, T
f

finite.

Corollary 3.1S: The arena set SE of a finite arena <A,u,S> cannot be

a limiting set for an SR1. In fact, no HCS such that Po(H) < 1

can be a limiting set and each strategy in S with nonzero initial

probability P0(s) will be used infinitely often by the SRI algorithm.

We now show that the loss incurred by an SR1 algorithm over a

finite restricted deterministic arena is infinite.

Theorem 3.16: With probability 1, the loss incurred by an SRI

algorithm over a finite restricted arena <A,u,S> is not finite. That

is with probability 1,

and therefore

!SI

D =

s=1 s

D = co.

Proof: By Corollary 3.15, the arena set SE of <A,u,S> is not a limiting

set. Therefore with probability 1, at least one strategy s' T SE

is used infinitely often. Therefore Lemma 3.9 shows that for s', with
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D

t=1
sf,t

since Ds,t = (11;(i,t) - s,t) 0 for all s,t,i

IS1 IS1

s
= E E D

Sot
> ? D

s=1 t=1 s=1 t=1
s'

'
t

1St

By Lemma 3.11, E D
s

= m => D = m .
s=1

= c

We have shown now that an SRi over a restricted deterministic

arena will, with probability 1, not achieve finite losses. However,

the theorem in Holland (1970) is interpreted as showing that a repro-

ductive plan would, with probability 1, achieve finite losses. Let

us define the "expected" loss of the algorithm to be:

3.17 EL
t

= u*
t

-
N(t)p

P P 5;
k=1 k,t k,t 0,t S-S(t)

where c-S(t) is the expected payoff resulting from strategies in

S-S(t) and the Pk are defined as in 2.10. Now Holland's result

in our notation states:

Proposition 3.18: (Holland) An SR1 algorithm over a restricted arena

cA,p,S> will, with probability 1, satisfy the following criteria:

T
(1) lim E EL

t
< m if ]Si=is finite;

t=1

(2) aim ( E p: E EL )/ E = 1 otherwise.
t=1 t=1

t t

This proposition would appear to conflict with our results. However,

this expression for expected loss, ELt is less than the loss the

algorithm would actually receive at any time t. That is for 1St
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IS11
EL

t
= " uk tPk tk=1

' '
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(u L. )P
Cut 3,t j,t strategy s.

3
used

at time t.

< 1.1* - U.
t 3,t

Therefore, showing that ! ELt is finite in no way implies that any
t=1

actual use of the algorithm will achieve finite losses, and ELt is

not an adequate expression for the expected loss of the algorithm.

We could change the definition of an SR1 algorithm so that the

strategies in S were used in a more parallel fashion. That is, the

strategy chosen at time t actually would calculate the element of A

it would calculate if it were being used for the t th time. If we

define

Yk,t

1

1A(Ak(t)) if s
k

is used at time t

u* otherwise

k,t represents the evaluation a strategy would receive if it had

actually been used t times, whether it had or not. This would be

possible if the strategies in S did not use the "feedback" evaluation,

I,(As(t-1)), of the element of A selected at time t-1 to decide which

element of A to select at time t.

Definition 3.19: An SR2 is an SRP where the function PAYOFF returns

the value 1.1(Aj(t)) for v and tit.

The expected loss defined analogous to 3.17,

N(t)
3.20 ELt w*

t t k:1 Yk,tPkot P0,:X
t S-S(t)

is still less than the actual loss on any particular use of the

algorithm. However, we cannot guarantee that the loss would be
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infinite. liven though each plan will he used infinitely often, it is

possible that for some s' I Si,, thethe infinite set of times at which

s' is used,

E (pt -

nml "n
Yslk) =11:10.1 u(Ast(kn))) <

If this happens for all strategies in S, then the loss will be finite.

We see immediately, however, that the loss is not finite if even one

strategy in S has an evaluation strictly bounded away from pt.

We finish this chapter by demonstrating that under the restric-

tions we have been imposing, an SR1 algorithm will converge, with

probability 1, to a subset of the arena set of S.

Theorem 3.21: An Ski over a finite, restricted deterministic arena

<A,p,S> converges with probability 1 to a set HOE, where Si! is the

arena set of S. That is, with probability 1,

lim Z P.
3,t

= 1.

s . EH

Proof: By Corollary 3.1S, every strategy in S with a nonzero initial

probability must be used infinitely often by the Sill algorithm.

Consider the products

t7I

j,t-I
1

r
t-1 k4/J

n I

n=tj ww(z,n) q

if Z # j, the numerator and the denominator are equal. If

mg, q=1,...,M, are the times at which 2. = j; that is, the times at
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which strategy i is actually used, then w(j,m4) = q and

M p(y(1)).1(1

(i1

Then 1imlim
t -I

=

M-1-= Ci=

R

1

p(A (q))+k
j ' 1

p*q +k
1

.;(A.(q))+k, 1.:*-1.1(A.(0)
Now, = 1

-'7*44(q 1 q 1

w*-t.I(A(q))
for s. L S

+k
(1,1*-14A4(0))]E (1;1 p

1 q=1 q

p:-p(A.(q)) 1 co
for s. S (14-u(A4(0)] =

q=1 1.,(1+

2 1 4 =1

We now recall the following basic result (Theorem 7, page 96 of Knopp

(1956)]:

A product of the form 7 (1-av), with 0 s av s 1, is convergent
v=1

(to a nonzero value) if, and only if, L av converges.
v=1

Applying this we find that

M u(A. (0)411

cop'v*k
(a) for s, t SE urn ei,t-1

!1,1! q:1 q 1

M u(A.(0)+ki
(h) for s. / S, lira .. = = 0

) q=1 Pq+'1

t*
i 1 .

L
PO

, T n;.: 1 , j ,t -I
Now no, rj,t ,-- um *-------2-------- '---L---------

txt--t-- Is I
1

PA 1 =- E
,=1 '',.t n=1 wn i,t-1
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The denominator is always nonzero since we are in an arena and SE is not

empty.

from (11) if s / S lim P. = 0

E t*..* ''t

from (a) if s S
E

lim P.
),t

t
P N . n. ----
o,ti co wo,

At

7
PO,tt

N n
e, n=1

kt

zcSE

With probability 1, the times tt are finite for those i c HC:SE such

that P(z) > 0 and therefore

Therefore, lim 7. P. = 1.

jeSE

Piet

Lim P
j,t

0 O.

Now we have shown that an SR1 algorithm converges to a set of good

strategies in a very restricted problem basis. However, the proof of

Theorem 3.20 does not generalize to a problem basis that is not an

arena. This is obvious because if <A,u,S> is not an arena, we cannot

guarantee the convergence for any of the cj,t. The proof also assumes

that t.t. > L4(A.3 (t)). This assumption is not always justified in a

nondeterministic problem basis.



CHAPTER 4

PURE PROBLEM BASES

Section I: The Search for an Arena

Let us now consider a pure problem basis, <A,p,S>, where S is a

set of pure strategies and the variances of the random variables

vA(a), a e A are non-zero. We suppose there is a one-to-one, onto mapping

between A and S. We will use P
s

for 0
a

the mean of the function P(a).

We will denote 1.,(a) by .4. We note that 14* = lub Pc is not dependent
seS

on the time variable since we are dealing with pure strategies in a

nonvariable problem basis.

Let us propose some definitions for asymptotically optimal strategies

in this basis. If we can find such definitions we can then define an

arena and an arena set over a pure problem basis similar to Definitions

3.3 and 3.4 for a deterministic problem basis. If not, we must find

other ways to explore the convergence of SR type algorithms over pure

problem bases. The two most obvious candidates for such a definition

are:

A. A strategy s c S in a pure problem basis <A,u,S, is asymptotically

n
optimal if ;1im (,0*-p

s,t
): < a.s.

t=1

B. A strategy S F. S in a pure problem basis <A,11,S is

asymptotically optimal if !Jim ( a.s.
t s,t ),

where v* = max (u ,u ").

scS

If we accept either of these definitions, there are no asymptotically

optimal strategies in a pure problem basis. We prove this

statement in the following theorems.
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Lemma 4.1: Let iY
t

be a sequence of independent identically distributed

real random variables, then

a. if 3 t O, 0, N such that for all t w N, I'(Yt ti
r.l -

rt
then lim . Y. a.s. does not exist.

t.1

b. If 3 t , 0, 6 > 0, N such that for all t N, P(Yt c) > 6

then lim Y. a.s. does not'exist.
n4,,, "1

kr,/

Proof: (a) from the hypothesis 7 P(Y.. > e) = 4-m. Since the Y
t

are
t.1

independent identically distributed real random variables (iidrrv), the

Borel-Cantelli theorem tells us that with probability 1, Yt c infinitely

often. Therefore the terms of the sequence {Yt) do not go to zero and

the lim Y. a.s. does not exist. The proof of part b is similar.
t=1

Theorem 4.2: There are no strategies in a pure problem basis which are

asymptotically optimal according to definition A.

Proof: Let Yst st). Then E[Y
t
] = u" -p5 > 0, VAR[Y

t
] = VAR[us] 0

and the Y
s,t

are iidrrv. Therefore, there is an c, S and an N satisfying

part 1 of Lemma 4.1 and the theorem follows immediately.

Theorem 4.3: There arc no strategies in a pure problem basis which are

asymptotically optimal according to definition B.

Proof: Let Y
s t

(v;-.Js ,t). By definition of v;, Ys 2 0. Since

the Y
stt

are iidrry and VAR[,J ] = 6 5 0, VAR[Ys,t] = e > 0 and we
1

can again apply part (a) of the lemma to show that lim Z Y a.s.

does not exist. In fact, since all of the terms in the
t =l

sequence are
n

non-negative, lim
t=1

Y = a.s.

These results are intuitive and essentially just illustrate that the

st are independent samples of the real random variable 4
s



31

Theorems 4.2 and 4.3 show that the concept of asymptotically optimal

strategies in a pure problem basis as defined by A and B is vacuous.

We now consider using the sample mean as the payoff of a strategy

as suggested in Holland (1970). This may be done in two ways. We

can require that the algorithm perform the calculation of the sample

mean. The algorithm then has the additional task of storing the necessary

information to calculate the sample mean for each strategy. Alternatively

we could change to a variable problem basis where the calculation of

the sample mean is made outside the algorithm in the evaluation of the

function payoff. The algorithm would treat the sample mean as the

"payoff" for the strategy. The exact implementation is not critical

to the question under investigation: Are there asymptotically optimal

strategies under Dt-initions A or B when us,t is replaced by the sample

mean for strategy s? We will formulate a new version of the SR algorithm

which calculates the sample mean and uses this value to calculate the

probability vector over the strategy set.

Definition 4.4: An SR3A (SR3B) is an SRP with the following changes:

PAYOFF returns the value ;4. for v, ;4* for v*. In step 3.7 of the
3,t

definition of an SRI' (Def. 2,10),if j is 0 set
3 0

= O. Step 3.10
,

of definition 2.10 is replaced by:

3.10 Calculate:

1. j,w(j,t)

A

5,w(j,t)...1.(w0,0-1)+,1

2. for 1 i N(t +l)

w(j,t)

),w(j,t) =
V

,t
=

1
j
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We define SR3B as above except step 3.10.2 is:

,t

.

v.
1

,w(),t) j

max(v* A.
' 394090)

i 0

The algorithms SR3A and SR3B suggest the following definitions for

asymptotically optimal strategies:

C. A strategy s c S, in a pure problem basis <A,u,S> is

asymptotically optimal if !lim
t=E 1

(11*-X
sot

)1 < 4.00 a.s.

D. A strategy s c S in a pure problem basis <A,u,S> is

asymptotically optimal if Ilim
n

(v--X )j < +9. a.s.
t=1 t stt

where v* = max(p*,Xst ).
,

We now show that definition C cannot be satisfied by any strategy in a

pure problem basis.

Lemma 4.5:

s S such

Proof: EL.;

then P((p*-

n
lim ;". 61*

t=1

Let eA,p,S> be a pure problem basis. For those strategies

that p
s

p*, lim E
sot

) a.s. does not exist.
n-*m t=1

-Ns t) =
1,4*-o

s
O. Choose e so that p*-p

s
> c > 0,

o

as t) '
E) S for d > 0 and Lemma 4.1 a. shows that

-A
sst

) a.s. does not exist.

Lemma 4.5 shows that strategies which do not obtain the maximum mean

cannot be asymptotically optimal. The next lemma shows that even if

strategies do obtain the maximal mean they cianot by asymptotically

optimal by definition C.

Lemma 4.6: Let pl,p2,...,ut,... be independent identically distributed

real random variables with nonzero variance.
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t

Let 414
t

] = 1.4*, \
t

. Then it is not the ease that

Ilim Y. (0*-N 1 = - with probability 1.
t=1

Proof: Let Y
n
be the nth partial sum. Then rearranging term;

n
y
n

= (p*-11,) E 1/i + + (.1*-1.1
n
) 1/n.

1=1
n

Let Xn = (P*-141)
1=
E ;

1

1/i Z
n

= Y
n

- Xn.

X
n

and Z
n are independent random variables since the u

t
are independent.

CO

Since E 1/i does not converge and the variance of p
t

is nonzero, for
1=1

any M there is an N1, and 61, such that for n > N1

P(Xn 2M) > 61

P(Xn < -2M) > 61 where 26
1

< 1.

auppose that the lira Ym = N < with probability 1. Then for e = 1/361,

there is an N
2
such that for n > N

2

P(lYn; > M) < c =(1/3)61

Let N = max(N1,N2). There are two mutually exclusive events (not

exhaustive) that give 1YmI > M namely, 1Xm > 2M and Zm > -M) and

{X
m

< -2M and Zm < ?I} .

Therefore we know that

P(X
m

> 2M, Z
m

> -M) <(1/3)5
1

P(Zm > -M) <(1/3)61 /P(Xm > 2M) < 1/3

P(Zm < -M) > 2/3

Similarly:

P(Zm > 2/3



Since

Therefore

false and

34

-M) and ih
m

4 411} are exclusive events, this is impossible.

n
the assumption about the convergence of lim E (.1*-k) is

n4.00 "1
the theorem results.

Theorem 4.7: There are no strategies in a pure problem basis which are

asymptotically optimal according to definition C.

proof: The proof follows immediately from Lemma 4.5 and 4.6.

We would like an even strong 1 result than Theorem 4.7. We would

like to be able to say that the I...A.4A in definition C is nonconvergent

with probability 1 even for strategies with optimal mean. Similarly,

we would like to be able to say that the limit in definition D is

nonconvergent with probability 1. The following two theorems are the

result of collaboration with B. Koopmann, C. Quails, P. Pathok. The proofs

arc contained in Appendix A.

theorem 4.8: Let t:itl be a sequence of independent identically distributed

random variables with nonzero variance and finite second moments, let

t
= u*, then lim (v*-A ) x a.s. where

t=1 t t

t
# L

%.
L
= V: = MX(1.1*,Xt)*.+4.01=1 t

Theorem 4.9: Let fu
t
I be a sequence of independent identically distributed

random variables with nonzero variance and let gu
t

= u*, then one of

the following three conditions hold:
Sn S

ni),a.s. ii) L -* -co a.s.
nn

lim
n

or

Sn
a.s., lim -co a.s. In all three cases

SI diverges a.s. where Sn
n

= IL.
t=1
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he can now obtain the theorem we need concerning definition 1):

Theorem 4.10: There are no strategies in a pure problem basis which

are asymptotically optimal according to definition P.

Proof: Theorem 4.8 shows that strategies having optimal means (Ps = P*)

cannot be asymptotically optimal according to definition D. Let s be

a strategy with os < 1.i*, then

S,t
$
t - A$ t

for all t,

where v* = max(;.4*,X
sot

)

t
= max(o

s s , t
).

n n
Therefore lim (v*-X ) > lim (o -A ) a.s.t=1 t s,t t=1 t s,t

Thus no strategies can be asymptotically optimal according to D.

We have shown that using knowledge of the true means of the distri-

bution of the uj does not provide a definition for asymptotic optimality.

However, we could use an estimate of the means as a value for P*.

Let f be a function of the sample means, we want to know if f ca: be

defined so that for strategies tj with pi = 1.1*

2 [f(X X < a.s.
t=1 lit'""NISI,t) j,t

and for strategies ti with of < *

t=1 1,VmdISI,t) = a.s.

We have been exploring this problem but have as yet not developed a

function satisfying these conditions.

In order to examine the convergence of SRI' algorithms over pure

problem bases, we conclude that we must employ other means than we

used for deterministic bases. The next section introduces the notion

of Linear Additive Models, and in Section III of this chapter we show that

in most cases the SRP procedures do i:ot converge in a pure problem bases.



Section II: The Linear Additive Model

In this section we will summarize the development of the Linear

Additive Model, a generalization of the Beta Model, given by Norman

(1970). It should be noted that Norman's results are only for the case

ISI = 2. This may appear to be a very limited analysis. However, all of

the major problems of convergence can be found in this "two dimensional"

case. In the psychological interpretation of the model, one is usually

interested in the two choice situation. Lamperti [1960] has obtained some

results for the Beta Model for the general case. Several of the results

presented in this section will be used later on. In Section III we

relate Norman's assumptions to the SRP plans we have defined.

Assumptions (Norman):

4.11 Qi, i = 1,2, is a probability distribution over the Borel

subsets of R, such that Mi(;) = e
;X
dtli(x) exists for

in some open interval J containing 0.

4.12 p is a measurable mapping of R into I = (0,1], such that

p(L) -.. 1 as L c, p(L) -,. 0 as L -m, and p is bounded

away from 0 and 1 on any finite interval. Let q = 1-p.

4.13 It = (Lt,Xt), t ?. 1, is a bivariate stochastic process in

R x (1,21, such that

r(x, = ilyTt_1,...,T1) = pt (pt 2 p(1,0)

P(Xt = = qt (qt = q(Lt)).

and for any B

Nat c BITt,Tt_1,...,T1) = (Ix (B) almost surely.

The means of the conditional distributions of L
t

are very important.

In fact, their valuis determine the convergence or divergence of the

sequenceyLettni =.5m1(1i .00,thenm.=W(0), for i = 1,2.
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In order for the sequence pt to converge, Lt must be absorbed at either

+. or Lemmas 4.14 and 4.15 state conditions for absorption and

reflection if the in. are' nonzero and are constant. Lemma 4.16 removes

the possibility for convergence of L to some finite lim_c, with nonzero

m..
I

Lemma 4.14: (Norman) a. If m
1
< 0, lim inf L

t
< m a.s. For any

6 0 such that H1(6) , 1, there is a constant B(6) such that

lim sup EL[v] < B(6).

h. If m, 0, lim sup Ln > -0 a.s. For any 6 < 0, such that M2(6) < 1.

there is a constant B(6) such that lim sup EL[vt] < B(6).

Lemma 4.15: (Norman) a. If m1 > 0, then lim sup Lt = implies

lim Lt = a.s., and g0(L) = PL(lim Ln = -0) -* 0 as L

b. If m, < 0, then lim inf Lt = -0 implies lim Lt = a.s.

and gi(L) = PL(lim Lt ,) 0 as L

Lemma 4.16: (Norman) a. If mi > 0 or m2 > 0, P(lim sup Lt c R) = 0.

b. If m < 0 or m
2

< 0
'
P(lim inf L

t
c R) = 0.

With these lemmas, four possibilities for the asymptotic behavior

of pt can be distinguished provided that the mi are nonzero and that

the Qi are not dependent upon t. Either pt converges to 1 a.s., converges

to 0 a.s., does not converge to any limit, or has a probability of

converging to 0 and a probability 1-7 of converging to 1.

Theorem 4.17. (Norman)

a. If ml , 0 and m, - 0, lim pt = 1 a.s.

If mi e 0 and m, 0, Jim pt = 0 a.s.

c. If ml A 0 and m2 0, g1(L) g2(L) = 1, where g1(L) pt . 1),
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g2(1.1 = PL(lim pt = In addition gi(L) > 0,

g2(L) , 0, gi(14) 1 as L a, and g2(L) 4. I as L

d. if m 0 and m, - 0, lim sup p
t
= 1 and lim inf p

t
u 0 3.s.

These results are independent of the initial value of L.

Variations of this theorem for the Beta Model can be found in

Lamperti and Suppes [1960].

Two relations are developed by Norman which will prove useful

later: Let v
t

= e
Lt

, then

Lquation 4.18:

EUvt+livt)
x
lvt] = M1(X)pt + M2(x)qt

Equation 4.19:

E[vn.livn] = viki(141(x)pn + Mo(X)qn]
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Section 111: Linear Models and Pure Problem Bases

Now we relate Norman's assumptions to the SR1 algorithm where

IS; = 2. Let Tf be the time at which the second strategy is selected.

This time is finite with probability one.

Let

f-1
in(ti

1,t
+lc

1
)

f t=1

Lt = L + In for t 5 T
t-1

2,t-1
+k

1

Then from 2,12 and 2.13 we obtain:

Equation 4.20

= 1-2
-(1+e)for t < T

f
P
I,t

P = 2
-(1+0)

2,t

f

for t > T
f

P
(1+6)

=ri1,t
2(1+ eke +1 p(Lt)

P
21t

= 1-p(Lt) = q(Lt) .

For t T
f'

assumption 4.12 of Norman is certainly satisfied by

equation 4.20. Let ALt = Lt4.1 Lt and Qi,t be the probability

distribution of u
i,t*

If strategy i is used at time t we use the notation

,L.
1

Let
t*

Equation 4.21.
f erALi,t

dQi,t(ui,t), 1= 1,2.
1,t

Since + R
1

, 1 and by the assumption that the moment generating

functions of the u(a) exist (definitior 2.1)
M1

t(,) exists for

in some open interval .3 containing 0. Therefore, assumption 4.11 is

satisfied if we replace
Qi,t

with..lf the set S of strategies is a

set of pure strategies then we can remove the dependence on the time

variable and satisfy assumption 4.11. Assumption 4.13 follows from the
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definitionsofP.2st ,LI and.Q2 in a straight forward manner.

Unfortunately, SHP plans do not fall simply into the categories

for convergence outlined by Norman. Therefore, we must first extend

hisresultstoincludethecaseswherethem.might be O.

Lemma 4.22. If ml = 0, al > 0, or fq = 0, a2 > 0, then

(a) P(lim sup Ltc R) = 0. (b) P(lim inf Lte R) = 0.

Proof: Norman's proof of Lemma 4.16 relies on the observation that if

mi > 0, then Qi(( > 0 for some c > 0 and Qi((2e,-m)) > 0 for

some c < 0. This same observation holds if m = 0 and we know that

a. > 0. Once we have made this observation, Norman's proof applies to

the present lemma.

Lemma 4.23. a) if mi = 0, al 0 0 then lim Lt 0 +c°.

b) if ml = 0, cs, 0 0 then lim Lt 0 -co.

Proof:

a) buppose lim Lt = +oa.s. Since ml = 0, we can chose a X < 0 and an

0 such that M1(X) > 1+e. Then

and

1.im A Lt

t-+o

XL 0lime t'=

lim [141() p
t
+ M2(X) Qt! = M1 (x)

t-on

Given c we can find N
o
such that for all t > N

o

M1(X)
Pt M2(X) qt >

M1(A)

by Equation 4.19

Ejv'Lt+1] 041(X)-0t-N0-1(min[Mi(X) ,M2(7)1)No.eAL1

lim EreALt+11 > K lim (MI(X) -11t-N0-1 where k > 0.t
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But Lim Lfe t+1] = 0 so )(lim (M1(l) t-N
o
-1

4 0

By our choice of l and r, Mi(l) is a constant greater than 1.

,;Ince K is positivo, the limit cannot he less than or equal to 0.

Therefore we have a contradiction and our original assumption that

L
t

= 'I is incorrect. The proof of b) is similar.

Theorem 4.24

a) If mi = 0, m2 > 0, 01 > 0 then lim sup pi = 1 and lim inf pt = 0.

h) If mi < 0, mi = 0, cri > 0 then lim sup pt = 1 and lim inf pt = 0.

c) If ml = 0, ml = 0, ci > 0 then lim sup pt = 1 and lim inf pt = 0.

If mi = 0, ml 0, of > 0 then lim pt = 0 a.s.

e) If mi. > 0, m2 = 0, ai > 0 then lim pt = 1 a.s.

Proof:

a) From lemma 4.14h, lim sup Lt > -c.o.s., lemma 4.22a shows that

p(lim sup LteR) = 0. Therefore lim sup Lt = +..a.s. and by 4.12,

lim sup pt = 1.

From Lemma 4.22h P(lim inf LteR) = 0. If lim inf Lt

then since lim sup Lt = lim Lt = +ua.s. But since of 0

this contradicts Lemma 2.23a. Therefore lim inf L
t

= -ma.s, and by 4.12

lim inf pt . 0.

b) prcof is similar to a.

c) By lemma 4.22, P(lim sup LteR) = 0, P(lim inf LtcR) = 0. By lemma 4.23

lim Lt # 4.. and lim L
t

A Therefore, lim sup L
t

A lim inf L
t

and

lim sup Lt = +,a.s., lim inf Lt = -,a.s. and the theorem follows.

d) By lemma 4.22, lim inf Lt/ R a.s. and lim sup Lt/ R a.s. If

lim inf L
t

= +, than lim sup L
t

4,0 and lim L
t

But this contradicts

lemma 4.23a. Therefore lim inf Lt = -- and by lemma 4.15b, and m2 < 0,

lim L
t

--a.s., and by assumption 4.12 lim p
t

0 a.s.
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e) By lemma 4.22, lim inf Lt R .s. and lim sup Lt f R a.s.

If Jim .up Lt a then lim inf Lt v and lim Lt 2 '"us Rut this

contradicts lemma 4.23b. Therefore lim sup Lt ffi *do and by lenna 4.15a

And mi 0, lim Lt = a.s. and by assumption 4.12, lim pt = 1 a.s.

The intuitive character of the distinction between conditions d

and c of the theorem and the other three conditions should be clear.

If m
1

0 then probability one of selection of strategy 1 is an absorbing

barrier. if m
1
A 0 then probability one of selection of strategy 1 is

a reflecting barrier. Similarly if m2 < 0 then probability zero of

selection of strategy 1 is an absorbing barrier. If m2 z 0 then probability

zero of selection of strategy 1 is a reflecting barrier.

Definition 4.25: A function f(x) is etrioay concave if the tangent

to f(x) at any x lies above the graph of f. That is, f" < 0.

Lemma 4.26: If f is a real, continuous and strictly concave function

defined on an interval (a,b) of the real line, X a real random variable

defined on (a,b), then

Proof:

E[f(X)] 4 f(E[X]).

Since f is concave:

f(X) f(E[X]) P(EVQ)(x-E[X])
b b

5 f(x)dP (f(E[X]) + fs(E[X))(x-E[X]))dP
a Ja

E[f(X)] < f(E[X]).

Corollary 4.27: The natural logarithm is a concave function and therefore

n[ln(X)] I ln(EIX]).
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Noi. we consider the convergence of SRI a and h plans. Let

,

. arts supiise that strategy 1 is such that 01 = * (the ease

* is symmetric). Then we first need to calculate the values of

m
1
and m, for an SR1a.

1 t
4.1C

1m
1

= E[A1.1,t1 =
P

= 141n(ulteki)) in(p*-ki)

applying 4.27,

mi 4, 0

pft+ki

13[M2,t3 Elinw2tek1
= ln(0*4(1) E[In(u2,t4A1)]

applying 4.27,

In(octki) ln(p2+ki)

and since 0*

m2 0 .

We now have the conditions necessary to apply theorems 4.17d, 4.24a and

b and obtain:

Theorem 4.28: An SR1a plan over a pure problem basis 4A,u,S> with

iS: 2c 2 will not converge to the strategy with higher mean. In fact,

lim
suP

Plat l and lim inf Pi,t = 0.

Let t = max(,*,iii,t) where j is the strategy used at time t.

Then for the SRlb plan we have

,.t+k
1m2 = li[AL2,0 ]

2,t

Eiln(7?t+ki)] L[In(D2,tily]

by 4.27 E[ln(i). ki)] - ln(02+1(1)
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since 02, In(OtOil) In(02.ki) and E[ln(teki)] ln(02+kl)

therefore,

m 0
a

t 1m
1

=

1

2 F[In(uibt+k1)) E[ln(Oeki)]

ln(p*44(1) - E[ln(yki)]

since ,t o 0*, In(yki) ln(0*41(1), and E[ln(Oeki)] zoln(0*+ki)

therefore,

M1 " 0

Again applying theorem 4.17d, 4.24a and b we obtain:

Theorem 4.29: An SRlb plan over a pure problem basis <A,u,S, with

S . 2 will not converge to the strategy with the higher mean. In fact

lim sup
131,t

1 and lim inf Piot = 0.

We now investigate the convergence properties of SR3 A and 13

plans with IS1 = 2. Again we assume that 01 = p* (the case p2 = 0*

is symmetric). First, we calculate the values of the mit for SR3A:

lot
4.1(

1mitt = E[ALItt) =

by 4.27

= Ejln(11,t+k1)] E[ln(p*41)]

c ln(E[Altely) ln(04411)

4 0

For m, we we find:

p*+ki
m Ejln,
20t ,t

',2,t 1

h[ln(c*41)) R[ln(A2seki)]
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mitt > ln(c "+1:1) In(o241)

m2t > 0 .

By similar calculations for the SR3B plans with Ot * max( *oxist)

where j is the strategy used at time t, we find that the same relations

hold and mi,t 4 0 while m2,t 3 0.

Lemma 4.30: If mist 4 0, M7st 0 for all t, eist > 0 and o2st > 0

then lim sup pt = 1, and lim inf !It m 0.

eroof: the proof is similar to that for theorem 4.24 and relies on

4.24 part c.

Now we have shown the following:

Theorem 4.31: SR3A and SR3B plans over a pure problem basis <14,1+,S

with IS! = 2 will not converge to the strategy with the higher mean.

In fact lim sup 111,t = 1 and lim inf Pitt = 0.



CHAPTER

CONCLUSIONS

In this work we have examined the convergence properties of

a class of probabilistic sequential adaptive schemes called sequen-

tial reproductive plans, type I (SRP). Theorem 3.21 shows that a

subclass, the SRI plan over a finite restricted deterministic arena,

converges with probability 1 to a set of "good" strategies. However

Theorem 3.16 shows that these plans do not converge fast enough to

wzhieve the finite loss claimed in Holland [1970].

We have shown in Chapter 4 (Theorems 4.2, 4.3, 4.7, and 4.10)

that there is not an intuitive analogue in pure problem bases for

the notions of optimal strategy and arena which were defined for

deterministic bases. In fact, by extending results in mathematical

psychology, we have shown that several large subclasses of SRP plans

do not converge in pure problem bases. (Theorems 4.28, 4.29, 4.31)

Because of the convergence problems of SRP type I plans, we

suggest that they are not adequate models of the duplication process

in genetic adaptation. Two further plans have been studied as a

result of these findings. A plan which we call SRP Type IT, has

been developed by Holland and Molex [unpublished] which uses the

concept of an arena as a foundation for a non probabilistic, block

structured sampling scheme. This plan does overcome many of the

difficulties of SRP Type I plans. However, since it relies on the

concept of an arena, there are convergence problems in non-determin-

istic bases. Holland [1973] has examined the convergence of a much

simpler implementation of the duplication process.

Extensions of this work may be made in several directions. The
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results we have obtained on Linear Additive models could be extended

to n dimensions. Further models of the duplication operator can be

studied and incorporated in a detailed theoretical study of the other

genetic operators in the artificial adaptive framework. We are

presently working on a theoretical comparison of artificial genetic

techniques with numerical analysis techniques in n dimensional function

maximization.



APPENDIX A*

Theorem: Let X
1,

X2,... be a sequence of independent identically

distributed real random variables, not identically zero. Then

Sn
n

and a certain trichotomy holds.

diverges a.s.

Proof: 1. Suppose first that P(X1 > 0) > 0 and P(X1 < 0) > 0.

m Su
Writing ng.1 = xl (1/i),* Ym, we note that

(1711 y ., X (1 /i) C [
11

(S /n)Ym
1 t.1 .1 n

[Um Ym X1 til Urn' +m] C: 17114 4')

[lim Ym = -m, lim Ym = X1 (1 /i) 4. C lim n.4.1 (Sn/n)

NO41,11,11.1,41swe

[lim Ym = lim Y
m

X1 iLl (1/i) -. +.1 C [ lim nLi (Sn/n)

2. By the Hewitt-Savage 0-1 law, the four events, on the right hand

side of the above implications have 0 or 1 probabilities. Now

P(X1
(1 /i)

> 0 and P(X1 iLl (l/i) > 0 and at least

one of the following is true: P(lim Ym < .) > 0, P(lim Ym < -co) > 0

or P(lim Ym = lim Ym > 0.

Consequently we have the following trichotomy:

m S

i) nil n
p

ii) +.a,s,
n=1 it

* See Koopmans et al. [to be published).
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S S
, niii) lim ` anu I'm -- +a.s.

Sn
S+ 5-

S-
Writing z = n. .. s , we see that in case i) :: -a =.vn n n n

SI S- S+
in case ii) ! --2- .., and in case iii) F. -IL = ,v and E -11 = m.n n n

Tr-

S 5- S+
3.

IfP(X1 0) = 1, then case i) with E = - E---n
n

= -a.s. and E---n s' 0

8n
S. S-

If P(X1 0) = 1, then case ii) with ET-= E e= wa.s. and Ein re 0

S
In all three cases, -

n
is divergent a.s.

Theorem:

Let be i.i.d. with E[Xij = 0, and 0 < a2 <

Let S
n

= X
1
+...+X

n' n
S+ = max (0,S

n
) and S- = max (0,-S

n
).

- SI
Then

I

1:

n
= +ooa.s. and E nn.=

Proof: From the previous theorem it follows that either

or

S+

E = a.s.in

S-
E n= cr, a.s.

In

'1 co S..
Suppose that E

n

= wa.s. and does not diverge.
1 1 n

Then
- S

n
= a.s.in

S
P(

n
n _0. 4.,..) = 1

N S
n

N
Let T =Y. =X 1:

1
/i + ... +X

N

1
/NN i n 1

i=1

= Ck
N

Xk
k=1
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whre C
k'N

1

tk 4....
1
/N

It is easy to see that

and

X
k

k=1
k,N

k=1

d d
I,N 2,N - -N,N

lim d
1 N

= 0

and (Y
k,N

1 k N , N I) are uniformly small random

variables.

Let Fk,N he the distribution function of Yk,N. Then by the Lindeherg- Feller

criterion:

if

But

T
N

A N
y c

k
2
N

k.1
is asymptotically normal with zero mean and

unit variance,

y
2
d
Fk,N

= 0

k=1

dk Xk dFk , where Fk is the d.f. of Xk
1k=

d
k,N

X
k

>

N
X2ci

d2 x2
= z di: kFk (Xk)

N

..., 1
k=1 ' k=1 '

Idk,Oki '''' I
Idk,NX 1 ? E

N / c
d-
k

...) x

2

dF
1
(X) :1 X

2
dF

1
(X)

k=1 '

N
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0 as N... since lim 4
1,N

a 0 .
N.

so the central limit theorem holds and hence

T
lim P[

v

> 0) = 1/2 .

1j +co

77k,N2

i.e. lim P[TN > 0] =
1
/2

N+-0

but this contradicts what we had before, namely;

S
lim IN = E n

= a.s.
1

S-
Therefore, the assumption that ) n does not diverge is false.

Hence both
S- S+
-IL and E nn diverge a.s.n
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