ED 098 963

AUTHOR
TITLE

INSTITUTION
REPORT XNO

PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
IR 001 342

Brown, John Seely; And Others

Sophisticated Instructional Environment for Teaching
Electronic Troubleshooting. Final Report.

Air Force Human Resources Lab., Brooks AFB, Texas.
AFHRL-TR~-74-77

Oct 74

146p.; Report period covered January 1973-March

1974

MF-$0.75 HC~$6.60 PLUS POSTAGE

*Computer Assisted Instruction; Computer Oriented
Programs; *Electronic Equipment; Electronic
Technicians; Program Descriptions; *Programing;
*Simulation; *Technical Education

*Air Force; Natural Language Programing; SOPHIE;
Sophisticated Instructional Environment

A programing approach was used to implement a

simulated laboratory training situation in which a student is allowed
to troubleshoot a defective requlated power supply. The ways in which
students can use natural language to ask gquestions about and
manipulate the simulated device are described. The techniques
developed to recognize English, to simulate the electronic circuit,
and to model the student's knowledge about the circuit are explained.
A conclusions section explains the generality of the work performed
and possible extensions of the techniques to other training

situations,

3

{Author)

AFHRL-TR-74-77

AIR FORCE

s
Ly

>
'\ -5
A\

SOPHISTICATED INSTRUCTIONAL ENVIRONMENT
FOR TEACHING ELECTRONIC TROUBLESHOOTING

By
John Seely Brown

NN Alan G. Bell

P Richard R. Burton
:":) ’ University of California, Irvine
[trvine, California 92664
o
¢ -
C -

TECHNICAL TRAINING DIVISION
Lowry Air Force Base, Colorado 80230

E D
Bt Tk R SR P TN e O S e R re i i R SO S e N WA R A

October 1974
Final Report for Period January 1973 — March 1974

U DEPARTAMENTOF HEALTH
EOUCATION I WE L FARE
NA TIONAL INSTITUTEOF

EDU CATION
fha o DOC LNMENT mu REEN REPRO
N oL EDE XA Y wy RECE LED B ROM
Cea B PPRQONGR TRIWN FATONORIGIN
AT oW T PONTS N A ORCPINIDONS
Ve AT DO AT NEES aRe Y REPRE
£ ONTNE €A NAT NN NS TUTEOE

IO AT DNPT T WOR RO Y

Approved for public release: distribution unlimited.

/NMOOVCCONMAU 2> T

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE,TEXAS 78235

00¢

NOTICE

When US Government drawings. specifications, or other data are used
for any purpose other than a definitely related Government
procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the
Government may have formulated, furmshed, or in any way supphed
the said drawings, spectfications, or other data is not to be regarded by
implication or otherwise, as in any manner heensing the holder or any
other person or corporation, or conveying any nghts or pernussion to
manufacture, use, or sell any patented invention that may in any way
be related thereto.

Thus final report was subnutted by the University of Califorma, Irvine;
Irvine, California 92664, under contract F41609.73-C-:0006, project
1121, with Technical Training Division, Air Force Human Resources
Laboratory (AFSC), Lowry Air Force Base, Colorado 80230. Mr.
Edward M. Gardner, Computer Based Systems Branch, was the contract
momtor.

This report has been reviewed and cleared for open publication and/or
public release by the appropriate Office of Information (OI) in
aceordance with AFR 190-17 and DoDD 5230.9. There is no objection
to unlimited distribution of this report to the public at large, or by
DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved
MARTY R. ROCKWAY, Technical Director

Technical Training Division

Approved for publication.

HAROLD E. FISCHER, Colonel, USAF
Commander

Unclsifie 0044 pesy oory merrame

SECURITY CLASSIFICATION OF THIS PAGE (When Duoﬁnllnd)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3 PECIPIENT'S CATALOG NUMBER
AFHRL-TR-74-77
. TITLE (and Subtitle) S TYYPE OF REPORT & PERIOD COVEREOD
SOPHISTICATED INSTRUGTIONAL ENVIRONMENT Final
FOR TEACHING ELECTRONIC TROUBLESHOOTING January 1973 — March 1974
6. PERFORMING ORG. REPORY NUMBER
7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(s)
John Seely Brown .
Alan G. Bell F41609-73-C-0006
Richard R. Burton
9 PERFORMING ORGANIZATION NAME AND AOORESS 10. ::gﬁy:o%‘ensr?‘r-PROJECT. TASK
University of California, Irvine NUMBERS
Irvine, California 92664 62703F
11210205
11 CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT DATE
Hq Air Force Human Resources Lzboratory (AFSC) October 1974
Brooks Air Force Base, Texas 78235 13. NUMBER OF PAGES
144
4. MONITORING AGENCY NAME & AOORESS(If different from Controlting Olfice) 15. SECURITY CLASS. (of thie report)
Technical Training Division Undlassified

Air Force Human Resources Laboratory
Lowry Air Force Base, Colorado 80230

1Se. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the sbetrect entered in Block 20, il ditferent from Report)

18 SUPPLEMENTARY NOTES

This research was completed under sub-contract with Bolt Beranek and Newman, Inc., Cambridge, MA.

19. KEY WORDS (Continue on reverse slde il necessary and identily by hlock number)

simulation electronic troubleshooting

dectronic equipment electronics training

technical training SOPHIE

Computer Assisted Instruction SOPHisticated Instructional Environment
computer programming - - -

20, ABSTRACT (Continue on reveres elde If necessary and identity by block number)

Thas report describes the programming approach used to implement a simulated laboratory training situation
in which a student is allowed to troubleshoot a defective regulated power supply. The ways in which students can
use English to ask questions about and manipulate the simulated device are described. The techniques developed to
recognize English, to simulate the electronic circuit, and to model the student’s knowledge about the circuit are
explained. A conclusions section explains the generality of the work performed, and possible extensions of the
techniques to other training situations.

| 0]
FORM o
DD , Jan 73 1473 7 EoITION OF 1 MOV 85 15 OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entersd)

- 0ol
preY 000y PUAILABLE

. - * N - L) he
SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

O

ERIC

Aruitoxt provided by Eic:

BEST cory freiime

SUMMARY
Problem

The use of fonted electronics equipment to teach students how
to isolate defects and repair them has caused numerous problems in
the classroom. An instructor must insert faults manually and
monitor students to insure that they do not further damage equip-
ment while they are trying to fix it. Electronic devices are not
built for training and are often delicate, and of course do not
'teach' the student other than to provide experience. In addition,
it is not cost effective to provide adequate instructors to monitor
each student and to tell him whether he is using proper trouble-
shooting techniques as he operates.

Approach

Sophie (Sophisticated Instructional Environment) was developed
to simulate electrcnics equipment with a computer program; it thus
cannot be damaged by student error except as intended for realism.
Sophie was designed to recognize major classes of English dis-
course about the instrument so that students could 'talk' about
the instrument without learning special notations or encodings;
Sophie further produces all responses in English for the same
reason. Sophie was given an understanding of the circuit so that
the student can find out whether his proposed fixes are reasonable
on the basis of his measurements. A student is thus allowed to
talk with Sophie about the circuit, change components, take measure-
ments, and request evaluation of his performance in finding the
inserted fault. The program has been tested by informal users
and is awaiting test, using actual students from an Air Force
electronics training course.

Findings

The highly complex program was found to typically consume
less than 3X of the processor capacity of a medium size computer
while running interactively, and to produce response times within
about 2 seconds from requests; this represents greater than an order
of magnitude over previous efforts in this area. English accept-
ability was very good and English output was terse but completely
readable. The program has been observed to be significantly better
than human observers in isolating faults randomly inserted and much
more astute than students at finding the flaws in their trouble-
shooting reasoning. The techniques developed for recognizing and
processing English are very good and have already been applied to
two other Air Force projects. The generality of the technique to
other subject areas should be investigated further, particularly
the use of capabilities such as Sophie as an author aid for
producing other less sophisticated but more cost-effective types
of instructional material.

00.

BESY (o v~ ntg

00c
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION « « ¢ « o ¢ o o o o o o o o o o

Objectives and Background

Reasons for Choosing Electronic Troubleshooting
Scenario

Goals

Per formance

Implementation

oOoverview of Sophie

Protocol

Examples of Sophie's Linguistic Capabilities
Possible Uses of Sophie

CHAPTER 2: NATURAL LANGUAGE UNDERSTANDING + « « « « o &

Introduction

A Semantically Driven Fuzzy Parser
Limitations

"Naturalness"™ of the Language Capabilities
Description of the Parsing Process

The Parser

Semantic Interpretation

CHAPTER 3: ENDOWING SOPHIE WITH SOME INTELLIGENCE . . .

Introduction

Inference Generation by Simulation

Angswering Questions about Particular Measurements
Inferences Involving Fault Propagation

Hypothesis Evaluation (Testing)

Hypothesis Generation

CHAPTER 4: INTERNAL DESIGN OF SOPHIE .« & &« ¢ « ¢ o o &

Introduction

Overview

Control

Simulation Interface Prodess
Modification and Setting Specialists
Measurement Specialists
Answering Factual Questions
Fault Questioning Specialist
Inserting Faults

Replacing Parts

Measurement Checking Specialist
Hypothesis Testing Specialist
Conditional Specialist
Hypothesis Generation Specialist
Miscellaneous Routines

22

39

49

BEST Curv 1 aBLE

00,
page

CHAPTER 5: SIMULATION TECHNIQUES « ¢ ¢ ¢ o o o o o o o @ 68

Introduction

The General Purpose Circuit Simulation

DC Analysis Package

Modifications Made to SPICE

Introducing Faults into SPICE

Performance of General Purpose Simulation on DC

Analysis

The Circuit-Dependent Functional Simulator

Using Circuit Dependent Knowledge in Modelling the

IP-28

CHAPTER 62 SEMANTIC NET ¢ o & o o o o o o o o o o o o o o 82

Introduction

Implementation of the Semantic Net

Retrieving Information from the Net

An Example of the Net

Network Functions
CHAPTER 7 CONCLUSION ¢ « ¢ ¢ o o o o o o s o o o o o o 4 94

Introduction

Generality

Adding New DC Circuits

Handling More Complicated Circuits

Handling AC Circuits

New Avenues of Research

Different Domains of Knowledge for Sophie

Some AI Issues
APPENDIX 1: INSTRUMENT AND CIRCUIT DESCRIPTION OF

THE IP=28 POWER SUPPLY « « ¢ ¢ ¢ o o o o o o 103

APPENDIX 2: BNF DESCRIPTION OF THE GRAMMAR . « + . ¢« o . 107
APPENDIX 3: PROGRAM LISTING OF THE GRAMMAR .« +« « « .+ . 113
APPENDIX 4: EXAMPLES OF SEMANTIC FORMS ¢ ¢ o o o o ¢ o @ 116
APPENDIX 5: PROGRAM LISTING OF SEMANTIC NETWORK
. FUNCTIONS & ¢ & ¢ 4 ¢ ¢ ¢ o o o o o o o o o 119 .

REPERENCBS [. 1[0]_

)
Laey]
k)
o

S

BEST {OPY AVAILABLE
00c

Chapter 1

Introduction

Objectives and Background

Although digital computers have become increasingly
more powerful and versatile, their use in instruction has
grown primarily in but one dimension «- that of finding
cost-effective ways of providing more students with access
to frame-oricented CAI systems. This report describes a
research project pursuing a different dimension which has
culminated in a system named Sophie.* Sophie takes full
advantage of the symbol manipulation capabilities of
advanced computer systems and advances the frontier of
providing a qualitatively new kind of instructional

environment,

The basic challenge in creating Sop ie 1is that of
endowing a CAI system with sufficient symbolic knowledge,
problem solving strategies, and natural language
capabilities so that it can mimic many of the capabilities
of a human tutor. For example, we want Sophic to be able to
respond, on its own, to a student's questions, evaluate his
hypotheses, and provide detailed fecedback about his answers,
In short, we are trying to utilize many of the concepts and
techniques of Artificial Intelligence in building a truely

intelliaent CAI system that exhibits a sense of

*A Sophisticated Instructional Environment
4

BEST COFY AVAILABLE

N

"understanding® about the subject domain it is %eaching.

Over the last few yYyears there have been several
research groups building CAI systems that have some of the
above-mentioned capabilities. GEO=SCHOLAR (Car73) is
probably the best known of these systems and was the first
to demonstrate the feasibility of this kind of instructional
system, However, GEO-SCHOLAR had some serious limitations.
For example, its parser was primarily keyword driven and
therefore could not begin to handle complex statements or
questions posed by the student. Also, its problem solving
abilities were confined to techniques which operated on
semantic networks, a data type which captures some kinds of
information exceedingly well but other kinds of information

such as procedural not as well,*

Sophie, unlike GEO-SCHOLAR; uses several
representations of knowledge including semantic/conceptual
networks and has inferencing procedures which are specially
designed for each of these representations. Much of
Sophie's power arises out of the interaction of these
representations although the main seat of intelligence in
Sophie resides in its ability to draw conclusions and make
inferences from setting wup, "running®, and examining

(abstracting) a simulation model of its problem domain. We

*Recent research on SCHOLAR is alleviating some of these
limitations.

K

BEST COPY AVAiLAS:f 01u

believe that Sophie obtains SO much leverage from
inferencing based on “intelligently"™ invoked simulation that
it simultaneously satisfies two wvirtually contradictory
goals. Oon one hand, it can produce deep inferences which
enable it to answer questions which even human tutors would
find extremely difficult to answer. On the other hand, it
is sufficiently fast and complete that it can be thoroughly

exercised in an instructional environment,

In order to illustrate the philosophy behind Sophie the
general domain of electronic knowledge was chosen and the
initial task of building a system for teaching electronic

troubleshooting was s*arted.

Reasons for Choosing Electronic Troubleshooting

There are basically three reasons influencing our
choice of electronic troubleshooting as the subject domain

around which to build this system.

The first concerns the belief that troubleshooting or
debugging reflects a dqualitative, common sense kind of
reasoning that has never baen satisfactorily studied. This
kind of reasoning does not have its roots in -axiomatic
logics or exact quantitative reasoning. A good repairman
draws useful conclusions without even knowing the logical
assumptions underlying much of his reasoning. The rational

basis for his cognitive s8skill reflects much more the

REST COFY 7V ' AALE Olz

property of abduction in that the important question is how
to merge a few examples (or measurements) with an underlying
logic to arrive at a set of viable sub-theories or
hypotheses, This kind of process underlies not only
trouwbleshooting but a great deal of human intelligence.
Hopefully, Sophie will provide us with a tool and a
controlled environment to experiment more fully with this

kind of reasoning.

The second reason that this domain was chosen is that
the typical laboratory for learning electronic trouble
shooting has several severe limitations. Such a laboratory
usually consists of several pieces of working equipment into
which the instructor caﬁ insert faults. However, the class
of faults that he can insert is artificially limited by
practical considerations* and in some cases, he can fail to
predict the full ramifications of his inserted fault leading
to other components being damaged., Likewise, when the
student replaces a component, either it or other components
are apt to be destroyed in the operation, the former
happening when he has failed to locate the fundamental
fault. Another kind of limitation is that a great deal of

- D WS e e S G G R R A D oD ae WD BB ws S

*Examples of such considerations might be: can the fault be
easily triggered off by simply setting a switch, can it be
easily detected by carefully examining the circuit to see
what solder joints have been tampered with, can the faulted
component be easily obtained if it is to replace a working
compunent, etc,

’-

01

the student's time is ineffectually used by his having to
make time consuming measurements which, for example, might
require cutting wires and removing elements from the
circuit, etc. Finally, the instructor seldom has the time
to have the student articulate his hypotheses as he goes
about troubleshooting and then to evaluate those hypotheses
or to answer questions that arise in the student's mind as
he is actually working with the instrument. A computer
based problem solving “laboratory" could circumvent all

these limitations.

The third reason relates to our being able to design
especially powerful inference procedures to perform the
kinds of deductions required for handling questions that
arise in this domain. We shall explore this issue in depth

later in the report.

Scenario

Our system is based around the scenario of a student
attempting to isolate a fault in a given instrument, 1In
this setting, Sophie would present the student with a
circuit schematic of an instrument and, if requested, would
automatically select and insert a'fault of some specified
degree of difficulty. The student would then try to isolate
;he fault by requesting various measurements under any

instrument. setting that he desires. At any time he can

BEST COPY AVAILABLE 01.
offer an hypothesis ahout what he thinks is wrong with the

instrument and have the system evaluate his hypothesis,
This evaluation would report to the student whether his
hypothesis 1is consistent with what he should have learned
from his measurements. (Of course, the particular set of
measurements is not known ahead of time.) The student could
also, at any time, replace a given component, but before it
is replaced he would be queried as to what he thought was
wrong with it., If his answers were correct, the component
would be replaced. In those cases where he had only
discovered a fault caused by a deeper fault, the replaced
component would be reblown until he discovered the
fundamental fault. If the student becomes stuck and cannot
think of any f;ults which would explain the measurements he
has made, he can ask for help. Sophie would then generate

possible hypotheses which the student could explore.

Goals

In order to engender this kind of scenario, Sophie has
to understand enough about a given instrument to be able to
derive the answers to any measurements the student might
request. Likewise it has to accept any hypothetical fault
about any component in the.instrument and derive the results
of requested measurements 1in the context of that faulted
circuit. In addition to measurements, it has to infer

answers to questions concerning properties of a given

BEST COPY AVATLABLE 01

component and determine if and when a given component might
blow because of another component blowing. Most
importantly, it has to be able to intelligently evaluate a
student's hypothesis about what might be wrong. Simply
checking if the hypothesis is in fact true (i.e. 1is it the
actual fault) would not suffice since there may be several
theories about possible faults that are consistent with the
set of measurements he has thus far taken. In addition,
even when an hypothesis is inconsistent with his
observations, it must inform him as to the nature of this
inconsistency. Finally, Sophie should appear "friendly®" by
allowing the student to communicate with it in a natural
subset of English and should respond fairly quickly to his

requests.

Performance

Sophie has met all of these goals and has exceeded our
expectations in terms of its speed. The average amount of
CPU time it uses to parse a student's question, semantically
;nterpret this parse, and derive an answer to his question
or measurement takes, on the average, less than two seconds
on a PDP-1f§ running TENEX (Bob72). Hypothesis evaluation
takes several seconds longer depending on how many
measurements the student has currently made and how many of
these measurements need to be considered for refuting or

supporting his hypothesis,

10

BES SO LVPUABLE
Implementation Ol <

Sophie has been implemented primarily in INTERLISP
(Tei74) but includes a general purpose circuit simulation
gystem written in Fortran. The LISP portion takes almost
the full 256k address space (of which slightly more than
half is the LISP system itself). The simulation system
takes an additional 4Pk and runs in a separate address under
the control of the LISP portion. The simulator currently
contains a model of the Heathkit IP-28 regqulated power
supply which is a reasonably sophisticated, six transistor,
current and voltage limiting power supply.. (See Appendix 1

' for a description of the IP-28.)

Overview of Sophie

Upon entry into Sophie, the student receives a prologue
describing the instrument being modelled and giving him a
brief summary of the system's deductive and linguistic
capabilities, The student then can ask the system to
randomly generate an easy or hard fault or he can perform
experiments in the working circuit in order to better
understand the internal operation of the instrument. He can
also request that any component of the circuit be modified
or faulted in any reasonable way and on this modified
circuit he can either perform experiments or examine how a

fault or modification may have caused other components in

11

gest copy Malagie Ole
the circuit to blow. In addition to active measurements, he
can request factual information about any part in the
instrument such as the beta of a given transistor or the

power rating of a resistor, etc.

If he has chosen to have Sophie insert a fault, he can
then attempt to isolate the fault or faults by requesting
various experiments be run on the faulted instrument (i.e.
by making measurements). At any time he can ask that the
measurement he has just made in the faulted circuit be
repeated on a correctly functioning circuit in order to
determine if his measurement reflects a symptom, and if it
does, to find out how great the discrepancy is between the

two values.

While the student is using Sophie to troubleshoot an
unknown fault, he can request that a part be replaced, ask
if a part is bad (or if anything is still bad), propose for
evaluation an hypothesis about what is wrong, or request
help if he is at a loss in conjuring up some hypotheses
which are consistent with all his measurements. If in the
midst of a troubleshooting session he has a deep question or
an idea abogt the interaction of componentsin the circuit he
can SAVE the context of his current scenario and invoke a
fresh version of Sophie on which to perform an experiment.

Later, he can return to his old context (RESTORE) and

continue his troubleshooting session, The hypothesis

12

evaluator and reviewing features of Sophie are correctly ()1.,
keyed into this SAVE-RESTORE feature so that evaluation is
only performed on those measurements per formed while
actually trying to troubleshoot the given fault. Finally,
the student can ask Sophie questions about what happens if a

particular component is bad, etc.

In order to illustrate some of Sophie's capabilities,
we include below an annotated protocol generated by a

student using Sophie in the troubleshooting mode.

PROTOCOL

*® parts typed by the student are underlineg,
s*Comments are {(n script type,

WOULD YOU LIKE 10 SEE THE PROLOGUE?
> YES

WELCOME TO SOPHIE, A SIMULATED ELECTRONICS LABORATORY, THE
PIZCE OF EQUIPMENT YOU ARE STUDYING IS THE IP-28 REGULATED FOWER SURPLY,
WOULD YOU LIKE ME TO PRINT A CIRCUXT SCHENATIC FOR YOU?

> N0

SOPHIE HAS A CORRECTLY FUNCTIONING IP-28 WHICH YOU ARE FREE TO EXPLORE,
YOU cAN TAKE ME\SUREMENTS IN THr WORKING CIRCUIT; FAULT THE CIRCUXTY
(5,6, "SUPPOSE THE EMITTER OF Q¢ OPENS") ANp THEN TAKE MEASURENENTS

TO SEZ HOW THE pPAULTED CIRCUIT BEHAVES} OR pASK NE TO “INSERT A FAULT"

AND TRY TO DISCOVER WHAT IS WRONG, IF YOU THINK YOU XKNOW WHAT IS
WRONG, YOU CAN "REPLACE® THAT PAR? AND SE& IF YOU WERE CORRECT,

WHYLE YOU ARE TROUBLESHOOTING, THE LABORATORY HAS A TUTOR

ONmCALL WHO CAN COMMENT ON THE CONSISTENCY OF A PARTICULAR HYPOTHESIS
WET THE MEASURENENTS YOU HAVE MADE, YOU CAN INVOKE THE TUTOR

BY PROPOSING YOUR PAULT (E,G, "cOULD THE FROBLEM BE THAT R22 IS OPEN“),

13

Olc BEST COPY AVARABLE

WoULD YOU LIKE 70 START WITH A FAULTED INSTRUMENT WHICH NEEDS FIXING?
> YES

System randomly selects a fault, modifies the instrument, and s now ready to
answer questions about the malfunction. .

TNE INSTRUMENT HAS A FAULT
AdD XTS CURRENT SEBTTINGS ARE:

ce 1,0 (CURRENT CONTROL,FROM §,0 (MIN CURRENT) TO 4 g)
o | HIGH (CURRENT RANGE SWITCHy HIGH=1 ANP, LOW=,1 ANP)

LOAD 190040 (LOAD RBSISTANCE IN OHNMS)

ve 1,0 (VOLTAGE CONTROL<FROM 2,0 (MIN YOLTAGE) TO 1,8)

YR HIGH (YOLTAGE RANGE SWITCH, HIGN=3D9 VOLTIS, LOWmig YOLTS)

BOW YOU CAN REQUEST MEASUREMENTS TO LOCATE THE TAULT,

>»WHAT IS THE OyTRUT VOLAEG
=YOLTAGE

Example of spelling correction -- espectially useful if he is using a 33 teletype or
THE QUTPUT VOLTAGE IS 30,03 VOLTS, there 1s communication notse.

This is the output voltage across a 1000 ohm load when the malfunctioning instrument
is set as above.

IT YOU ARZ NOT SURE WHETHER A YALUE IS CORRECT, YOU CAN ASK 'IS THAT
VALUE CORRECT?'

>3TS THAT CORRECT? Student wants to know if this measurement reflects a symptom.

IN A WORKING CIRCUI? THE OUTPUT VOLTAGE IS 30,27 YOLTS,
THAT VALUZ IS CQRRECT '

>»CHANGE THE LOaD RESISTANCE TO 30 OHMS Put on a new load resistance.
THE LOAD IS 30,9

>’NQW'UgM‘ IS THE QP VQLTAGE "op" {s an abbreviation for output.
THE OUTPUT VOLTAGE IS ¢,82 VOLTS,

—_

»»WHAT SHOULD X7 BE? '
IN A WORKING GIRCUIT THE OUTRUT VOLTAGE IS 29,88 VOXLT§,

Student has now detected a symptom!

>»WHAT IS THE VRE OF THE CURRENT LIMINTG TRANSISTRO
=TRANSISTOR
wLINITING

THE BASEZ BMITTER V 0
AILLIVOLTS, R VOLTAGE OF 26 15 356,33 => (@6 should be off)

>»WHAT IS THE CoLL CURRENT OP THE VOLTAGE LIMITING TRANSISTOR
THE COLLECTOR CURBRENT OF Q5 IS 9,0 AHFS, _ "0 = . " .o

14

P?‘S]’ C'” von v,, $h|£ Ol

>>WHAT IS THE V BETWEEN NODE 4 AND NODE 5 Student generates an hypothesis.
THE VOLTAGE BETWEEN N4 AND NS XS 477 VYOLTS,

>>CoULD THE BETA OF QU BE TOO LQW

I NEED A PARTICULAR VALUE FOR THE BETA OF Qy System needs a speelfic value

IS IT OKAY IF I USY 20 ? and then suggests one.

> 0K Student can override suggestion
- and put in his own value.

HAUMM, LET ME THINK ABOUT THAT FOR A MINUTE,

WHEN THE SETTINGS WERE}))
CCe1,0, CR-HIGH, LOADA30,0, VCw1,0, VR~HIGH Defines the context of his
measurement. (In this case

THAT FAULT CONFLICTS WITH THE FOLLOWING there were only two to
WEASUREAENT, chqosg from.))
YOU OBSERVED THAT THE VOLTAGE BRTWEEN *— This ts the most important
Ny AND NS WAS 77 vouLTs, descrepanc:y and should call
Ir THE BETA OF Qu WERE 29 XT WOULD BE 4 54 YOLTS, attention that probably
IN) WORKING CIRCUIT XT IS 4,7 VOLTS, - one of two transz‘sto‘rs

: 18 totally malfunctioning.
ALSO:
THAT FAULT CONPLICTS WITH THE POLLOWING
HBASURBMENT
YO0U OBSERVED 'I‘ﬂAT THE OUTPUT VOLTAGE WAS 1,82
VorTs, Y~ This is a minor descre-
If THE "BETA OF Q4 WERE 2p XT WOULD BE 6,94 YOUTS, pancy although the actual
IN A WORKING CIRcUIT IT 18 29,88 VOLTS, voltage difference tis
BT THAT PAULT WOULD ACCOUNT Fom SOME OF much larger than above!

THE MZASUREMENTS UNDER THOSE SETTINGS,

SHALL I CONTINUE COMMENTING ON YOUR HYPQTHESIS?
> NO _THANKS

>>3)VE The student wishes to explore another hypothests before continuing.
cOWTTXT SAVED, T0 RETURN T¢ IT TYPR 'RESTORE',

>»SHORT R11 Making a hypothetical modification to the eircutt.
NOW R{A SHOR?TED

>»WHAT IS THE OytTRUT V¥

CONGRATULATIONS, Q2 JUST BLEy The effect of the above modification causes
C‘NGRATULATIONS @5 JUST BLEW Q2, @5, D1 and D2 to blow.
CONGRATULATIONS Dy JUST BLEW

CGNGRATULATIONS D2 JUST BLEW

THE OUTPUT VOLTAGI IS ,22 MILLIVOLTS,

15

>»WHAT IS WRONG o,

DT IS FAULTED oPEN BEST COPY disiLagie 0=V

92 IS FAULTED oPEN

82 IS PAVULTED rB/EC/BC = SH/SH/SH Tells the student the precise way

Q5 IS PAVULTED £B/EC/BC = SH/SH/SH the parts blew.

219 I3 PAULTED SHORTED

>>RESTORS The student has finished exploring his

PREVIOUS SITUATION RESTORED, hypothesis and goes back to trouble-
shooting.

>REVIBW Prints the results of his measurements in a condensed format. This
CCe1y8) CRWHIGH, LOADe100D,8, VC=1,0, YRwHIGH, information is

THE OUZPUT VOLTAGE XS 38,83 VOLTS, stored on a
CCw1,0y CRLHIGH, LOAD«3Q,0, VCat1,0, YReHXIGH, history list.

THE OUTPUT VOLTAGS IS 1,82 VOLTS,

THE BASE BMITTER VOLTAGE OF 06 IS 36,23 NILLIVOLTS,

THE COLLECTOR CyRRENT OF Q5. IS g, AMPS,

THE VOLTAGE BETWEBW N4 AND NS IS ,77 YOLTS,

»>WHAT ARE THB_gPNCIPICATIONS OF QU

THE SPECIPICATIONS OF Q4 ARE]
P87) .. 188

POVER/RATING .0« 6 WATTS

»PWHAT IS THE B)SB CURRENT OF Qu . :
THE BASE CURRENT OF QU I3 ST HILLIANDS, 0oance O rold e,

>PWHAT IS THE ColL CURRENT OF Qu
THB GOLLECTOR CURARNT OF Q4 IS 60.38 NILLIANPS,

>PVHAT XIS THE BASE RMITTER V OF Q3
TRE BASE EMITTER VOLTAGE OF Q3 IS ,61 MILLIVOLIS,
Something is clearly amiss here. This voltage reading is essentially zero.

>>REPLACE Q3

I AN GOING T0 AJK YOU SOME QUESTIONS ABOUT HOW Q3 IS PAULTED,

I¥ AT ANY TINE YOU WOULG LYKE T0 MAKE MORE ,This comnamd 18 useful 1f tic
BEASURBMENTS, sSINPLY TYPB CONTROLel, ‘_Jatudent realiaes that he hasn't

deduced the way a part had

ARE ANY JUNCTIONS SHORTED? faulted.

> yBs .

WHICH JUNCTIONS ARE SHORTED?

> R ASE EMITTER JUNCTION

ARY OTHERS? _

> Mo - ' Even if he answers this incor-
g; :g:“gg’::g::u’ IR THAT MANNER, rectly but ha.s ide.ntiffed any of
< . the shorted junctions it would

t thi d tell him th

>>38 17 POSSIBLE THAT 822 IS SHORTED comelate ot oy him the
THAT PAULT IS CONSISTENT NI AL THE :

AEASUREHBNTS YoU MAVE MADE
s dosom's mban Shat e “necaseamg fownd the fault.

>>WHAT IS THE RESISTANCE OF R22 @—— . Chacking to see if it is,
THE KEASURED RESISTANCE OF W2d I3 0,0 OHNS, . o000 o oo

16

>>REPLACE R22 T@is time Replace doesn't ask any questions
R22 REPLACED since it figures he must know the exact way
R22 is faulted.

02
od
>>80W WHAT IS THE OQUTRPUT VOLTAGE Checks the output voltage.

THE OUTPUT VOLTAGE IS 29,88 VOLTS,

Y
>>IS THAT CORRECT %,3
IN A WORKING CIRCUIT THE OUTPUT VOLTAGE IS 29,88 VOLTS, -
THAT VALUZ IS CORRECT, ‘ %5

-

il
>>1S ANYTHING ELSE WRONG Just qhecking to see if anything else =
NO is still wrong that possibly the last Eé

measurement wouldn't have detected. Eé
>?RESTART Closes the protocol file for this F;
COMMENCING RESTART, sescion. Initializes a new file.
TOTAL REAL TIME OF SESSION = 4@ MINUIES
TOTAL CRUTIME O SESSION 2 58 SECONDS
WOULD YOU LIKE 70 SEE THE PROLOGUE?
> ¥o
WOULD YOU LIKE 70 START WITH A PAULTED INSTRUMENT WHICH NEEDS FIXING?
> NO
>>WHAT ARE THE SETTINGS OF THE CONTROLS
THE CURRENT SETTIRGS ARE!
c¢ 1,0
CR HIGH
Loap 1090,0
Ve 1,0
va HIGH Student poses a hypothetical question.
>>IF THE BASE Op U5 OPENS WHAT HAPPENS 10 THE OVUTPUT VOLTAGE
IS"THE COWPLETE FAULT MODE EB/EC/BC » OP/OK/OF
WHAT $0U ISTINDED?
> YES
I Q% HAD TAULT MODE EB/EC/BC = oP/OK/0P
UNDER THE PRESENT SETTINGS, THE OUTRUT VOLTAGE XS 46,81 VOLTS,
I8 A WORKING CIRCUIT IT IS 3p,07 YOLTS,
>>WHAT HAPPENS TO THE OUTPUT VOLTAGE WHEN R9 OPENS
IF R9 WERE OPEN ’
UNDER THE PRESENT SETTINGS THERE IS NO GHANGE, I,E, 3p,04 VOLTS,
LET ME TRY SOME OTHER SETTINGS, Sophie siigchegff:;e
UNDER THE SETTINGS: a "i” ;e azzgzoad
CCr1,0, CReHIGH, LOAD=13,8, VGCul.Dy VReLQW CONErOSE CRY
THE QUTPUT VOLTAGE IS 6,76 VOLTS, ' resigtance 039
IN A WORKING CIRCUIT IT IS 9,89 VOuIS, determine if

opening can affect
the output voltage

>?ST0F. Tells the system he is ready to quit.

———————

17

BEST COPY AYANARLE 02«
Examples of Sophie's Linguistic Capabilities

We have mentioned that Sophie must permit the student
to request measurements and state hyp>theses in a reasonable
subset of English. Although we stress that its current
linguistic capabilities are highly tuned to the subject
domain and are far from handling most of the English
language, we provide below some examples of student's

statements that Sophie presently understands.

Reqﬁestinq measurements: (parse times including semantic
interpretation are placed in parentheses)

What is the voltage across the base emitter junction of the
current limiting transistor? (140 ns)

What is the VBE of Q6? (120 ms)

What is current thru the base of Q5? (130 ms)

what is the IB of Q5? (100 ms)

What is the output voltage? (88 ms)

What is the voltage between node 1 and the positive terminal
Ccé6? (280 ms)

What is the dynamic resistance of R1l1l? (120 ms)
What is the power rating of R8? (109 ms)
What is the beta of the voltage limiting transistor?
(110 ms)
What are the specs of Q3? (90 ms)
In a working circuit what is the output._vnltage of the power
reference transformer? (90 ms)

Modifying the instrument:

Change the output load to 1§ megaohms

Suppose the beta of Q5 is 2048

Suppose the breakdown voltage of D5 is 30 volts
Let C2 be leaky |

Turn up the voltage control

Set the voltage range switch to 30§ volts

Set the current control to maximum

Suppose- the BE junction of Q6 is shorted

18

of

BEST COAY AYABARLE
Questions:

Is the current limiting transistor bad

What happens to the VBE of Q4 when R22 shorts

If R8 opens then what happens to the output voltage
What are the specifications of Q3

What is wrong

What happens if Q3 shorts

Hypothesis checking:

Is it possible that the breakdown voltage of D5 is too low
Could the problem be that C2 is leaky

Could the beta of Q4 be too low

Replace R6

Noun phrase utterances: (noun phrases get interpreted
as questions)

Voltage between the base of Q5 and the wiper of R7
Output voltage

VBE of Qb

I thru Cé

Miscellaneous commands:

Review .
Remove all fault
Reset the instrument
Restart

Save

Restore

Stop

Review all

Possible Uses of Sophie

Although Sophie may be viewed as a CAI system in its
own right, we prefer to view it as a set of powerful tools
with which to implement various teaching strategies. For

example, one can imagine this system being used in

conjunction with a frame-oriented system which would be

19

BEST COPY AVAILARIE 024

responsible for presenting textual material about the
operational principles of a given instrument. Once this
material was mastered, problems would be presented to the
student for which the unique power of Sophie would best be
suited. These problems could involve faulting the
instrument in ways which demonstrate the interactions of the
component which the student has just been told about, or
they could simply allow him to fully explore the internal

states of a given section of the instrument,

A more exciting possibility involves a gaming
situation. After students are exposed to the fundamentals
of how a given circuit operates, they would participate in a
two-person game wherein one student intréduces a subtle
fault into the circuit and predicts the consequences of his
modification. The other student must then discover the
modification by performing a series of measuteménts. Each
measurement has a cost® and the total cost is computed for
his sequence of meacurcmente, After the fault is isolated

the roles are reversed and the game is played again.

Another version of this game is also possible, After a

*The cost could be varied to encourage students to learn
different methods of troubleshooting but would usually
reflect the difficulty involved in actually making the
measurement in a real electronics laboratory. i.e. external
measurements are the cheapest while ones which would require
removing a component from the circuit are expensive,

20

sy
REST COPY AYRILABLE 02,
modification is introduced by one student, the other
proposes measurements which the first student answers as
best he can on the basis of his earlier predictions of what
the circuit will do given the modification he introduced.
The system scores both students: one on the basis of
relevancy, cost, and type of the measurement he asks for,
and the other in terms of accuracy of the predicted answer.
Many variations of this game are possible., For example,
both scores might be made visible to both players (or only
their own score, or neither), or correct answers might be
provided by the system to both players (privately or
publicly). Moreover, the system could exercise some
judgment and interrupt the answerer if a mistake by him
might result in a potentially disastrous compounding of

misunderstandings.

Although the gaming scenario may seem of primary
relevance for diagnostic training, it has a far greater
importance in providing the student with an intuitive
understanding oifi the qualitative and causal behavior of
system components, etc. In fact, one of the best ways of
discovering the purpose for a particular component is to
*alter™ that component and see what aspects of the circuit's

behavior changes.

21

Chapter 2

BeSt

Natural Language Understanding

Introduction

As instructional systems grow in their ability to
answer questions and evaluate hypotheses, the need for
parsing techniques more powerful than ad hoc keyword
analysis schemes becomes a necessity. This is not to say
that there is no place for keyword analyses in CAI for they
can be very useful in highly predictable environments. But
there are major limitations to keyword parsers and in many
cases they actually become more cumbersome and inefficient
than a well designed structural parser. For example,
although a keyword analysis might suffice in decoding the

utterance:

*what is the output voltage?”

such a technique begins to get messy if “output voltage® can

have numerous modifiers such ae:

"what is the output voltage of the power reference transformer?"

If these modifiers can 1in themselves be modified, the

situation quickly grows out of hand for even the most

advanced ad hoc keyword system. As an example of such a

22

RFST (0P o L ARLE 02 ‘

situation consider the question:

*What is the voltage between the anode of D6 and the
collector of the voltage limiting transistor?®

Our apprcach to constructing a frout-end natural
language processor was heavily influenced by pragmatic .
considerations., We needed a parser that would be practical
to use in a CAI environment and one which would take only a
few man-months to complete. Our first choice was to use one
of the most powerful and clean parsing systems currently
available == namely Woods' LSNLIS parser, {see
(Woo72a) (Woo72b) for descriptions of this parser.) Although
our slightly trimmed down version of this system proved to
be surprisingly efficient, we eventually rejected using it
because it produced a structural description of a question
which was more detailed than our semantic routines could
take advantage of. Although we could have further
gimplified Woods' grammar, etc. we decided to explore a

fundamentally different approach.

A Semanticaily Driven Fuzzy Parser

After studying numerous protocols of students wusing a
mocked=-up version of Sophie, we noticed the powerful
constraints that existed in the relationsihips between the

various semantic/conceptual entities making up a. question.

23

BEST COPY MVAILABLE 020

For example, if one asks for a volgage measurement it is
either between two nodes, across a particular component, or
across some output terminals. It seemed that this high
degree of semantic predictability could be utilized by a
predictive analyzer ("parser") by simply refining the usual
syntactic categories such as nourn phrase -"into relevant
semantic/conceptual categories such as "measurement®, In
general, such refinements could 1lead to a Pphenomenal
proliferation of categories to be captured by the "grammar®”,
but an analysis of our data indicated that such an approach
was feasible. These and other considerations 1lead us to
build a highly efficient top-down (goal-oriented), context
free parser which makes its predictions on the basis of

semantic rather than syntactic categories.

Our natural language processor incorporates a certain
dimeiision of "fuzziness". If at a given moment in a parse
it is searching for a particular instantiation of a gsemantic
category, and the word currently being pointed to fails tec

atisfy this instantiation, it skips over that word and
continues searching.* This means that if the student uses
certain words or concepts that the system doesn't know
about, it can ignore these words and try to make sense out
of what remains., However, this kind of "fuzziness® is not

* The number of words that can be skipped over is controlled
by the particular semantic category being searched for.

24

REST COPY fvSiABLE 02-.

always a blessing. Since words can be skipped over during
the parsing, there is always the possiblity of mis-parsing a
sentence. This problem requires either placing a severe
constraint on the ordering of grammar rules, or it requires
finding all possihle parses of a sentence in order to
discover the parse that accounts for the greatest number of
words in the sentence. Because the second of these two
alternatives is potentially very time consuming, we use the
first technique, To limit the negative consequences which
may result from a misunderstood question, Sophie responds to
a student's question with a full sentence which tells the

student what question is being answered.

Limitations

By restricting ourselves to a context free type of
parser, we obviously sacrificed capturing (in any reasonable
way) transformational paraphrases of an utterance. Instead,
we settled for allowing only one or two ways =-- hopefully
the simplest ways =- of saying or requesting anything that
the question answering component of our system could

handle.®* For example, our system parses the question:

*Certain paraphrase capabilities were explicitly put into
the natural language processor. For example, one can either
ask for the voltage across the base emitter of a transistor
or for the base emitter voltage of a transistor.

25

SU

BEST COPY AVAILABLE

What is the beta of the current limiting transistor?

but does not parse the same question paraphrased as:

What is the beta of the transistcr which limits the current
flow?

We realized that by not accepting many of the syntactic
paraphrases of an utterance, the naturalness of our system
could be drastically reduced. . However, we hoped that the
system would accept enough "English" that the natural flow
of communication vould not be impaired thus enabling the
user to get involved with solving a problem rather than with

searching for ways of saying or asking for something.

"Naturalness" of the Lanquage Capabilities

In order to study how easily users could adapt to these
linguistic 1limitations, we collected well over a hundred
hours of protocols of people using Sophie from various ARPA
sites. Each user had seen a protocol of a "typical" session
which gave him soﬁe idea of the system's linguistic and
logical capabilities. Initially, anytime Sophie encountered
a senteﬁce which it could not parse, that sentence was
automatically stored on 'a file which was later used to
provide data for expanding our grammar. A point has now
been reached in which Sophie handles nearly all sentences

generated by users who have had at least one prior session

26

BEST CUFY R ismie

034

with the system.

These experiences convinced us that for our highly
cornstrained domain our approach 'to parsing was viable.
Although extensively handling paraphrases would surely have
helped our system appear more natural, three other issues
seemed at least as important. The first is the need for
handling abbreviations such as VBE standing for "“base
emitter voltage". Such a facility has now been added to our
natural language processor. ' The second is the need for a
spelling corrector, a facility which can greatly reduce the
amount of concentration, and hence effort, that a poor
typist expends in addressing the system. Our natural
language processing system now utilizes the spelling
correction algorithms provided by the INTERLISP DWIM
facility (Téi74). The third is much more problematic. It
concerns the issue of handling context dependent anaphoric
references and ellipses, e.q. pronoun references referring
to a priof sentence. Having this capability appearé to be
. especially crucial when the user has become totally immersed
in using the system as opposed to simply trying it out.
s5ome examples will illustrate how helpful such a facility
could be:

Example 1: .
What is the voltage across the base emitter
junction of the current limiting tansistor?
What is the current through it?

("It” refers to "the base emitter junction of the
current limiting transistor.")

27

03« BEST COPY AVAILABLE

Example 23
What is the current through the base of Q6?

what is it through the emitter?

("It" refers to “current®™ and "Q6" is implied but
not mentioned.)

What about through the collector?

(In this case, "current" and "Q6" are both implied '
but neither is mentioned.)

Example 33 .
What is the output voltage?
What is the voltage control set to?

Is that correct? ("That"™ refers tc "the output
voltage” in the earlier statement.) \\

~~

A solution to this problem is extremely complex and is

beyond the scope of Sophie,

Description of the Parsing Process

The parsing of a student's response begins with a
scanning of the complete string. During this scan, any
abbreviations in the string are expanded into their full
form. In addition, a mechanism for handling coﬁtractions
and run=-cns is provided to allow for the expansion of such
words as "what's" and “whatis". Compound words are
rewritten as single entities, if possible, because if left
until parsing, they would complicate the grammar and might
require backing up to disambiguate. For example, in the

question, "“what 1is the voltage range switch setting,”

28

. BEST COPY K7 AMLE 03

-

O
"voltage range switch® 1is rewritten as "VR." If not
rewritten, "voltage” would be mistaken as a noun and an
attempt would have to be made to parse "range switch
setting® as a place to measure voltage. Of course after
this fz2iled the correct parse would be found but reducing

compound words avoids the otherwise necessary computation.

Another operation performed during the prescan is
cursory spelling correction. Spelling correction is
attemgted on any word of the input string which the system
does not recognize. The spelling correction algorithm that
is used takes the (possibly) misspelled word and a 1list of
correctly spelled words and determines which (if any) of the
correct words is close to the misspelled word (using a
metric determined by number of transpositions, doubled
letters, dropped letters, etc.). During the prescan, the
list of correct words is very small (approximately a dozen)
and is limited to very commonly misspelled words and/or
words which are critical to the understanding of a sentence,
The list is kept small so that the time spent attempting
spelling correction, prior to attempting a parse, is kept to
a minimum. Remember that the parser has the ability to
ignore words in the input string so we.do not want to spend
a lot cof time correcting a word which won't be needed in
understanding the statement. But notice that certain words
can be critical to the correct understanding of a statement.

For example, suppose that the phrase "the base emitter

29

BEST COPY AVRILABLE 03,

current of Q3" was incorrectly typed as "the bse emitter
current of Q3". If "bse™ were not recognized as being
*hbase” the parser would ignore it and (mis=-)understand the
phrase as “"the emitter current of Q3".* Because of this
problem, words like "base®™, are considered critical and
their spelling 1is corrected before any parse is attempted.
Note that there are a lot of words (e.q. *~apacitor®,
*replace®, "open", etc.) which if misspelled would prevent
the parser from making sense of the statement but would not
lead to any mis-understandings. These words are therefore
not considered to be "critical®™ and would be corrected in
the second attempt at spelling correction which is done

after a statement fails to parse.

After a student's statement has been prescanned, an
attempt is made to parse it using an embodiment of the
crammar listed in Appendix 2. The top-~level rule is given

in Figure 2.1,

Figure 2.1

<STATEMENT> := <REQUEST> ! <SET> ! <MODIFY>

As mentioned earlier, our grammar uses non-terminals which

represent semantic/conceptual categories, This rule .

*To minimize the consequences of such mis-interpretation,
the system always responds with an answer which indicates
what question it is answering, rather than just giving the
numer ic answer.

30

BioT COPY AbcLORLE 03.:

indicates that any statement which the student makes to the
system is either 1) a request for information of some kind,
<REQUEST>, 2) a command to modify the circuit model in some
way, <MODIFY>, or 3) a command éo change the settings of one
of the controls, <SET>., To detérmine if the statment is a
request, Sophie calls the function <REQUEST>.* <REQUEST>
looks at the input string and calls other functions, (for
"instance, <MEASUREMENT>) to decide whether or not the string
is a request for information. If the input étring is a
request (that is, parses into a <REQUEST>), the function
<REQUEST> returns a program (function call) which représents
the "meaning® of the student's question. This program is
then executed (EVALed) to answer the question. If the
statement is not a request, Sophie calls the function
<MODIFY> and then the function <SET> to determine if the
statement parses to either a modification command or a
control changing command. From either <MODIFY> or <SET>
(whichever is successful), a function call is returned which

when EVALuated, per forms the desired commands.

If neither <REQUEST>, <SET>, nor <MODIFY> is
éhccessful, the statement does not parse and two contingency
methods are tried. The first attempt made is to put a "What
18" on the front of the input string and then to see if the

*this is because the grammar is written directly as LISP
functions which incorporate the parser., This concept will
be explained in more detail later,

31

¥,

BEST CopY AvAILABLE O3c

resulting string is an acceptable <REQUEST>, (This
abbreviated form of question-asking shortens the amount of
typing the student must do.) If this fails, Sophie uses the
spelling correction program that was used in the prescan,
but this time with a much larger list of words
(approximately 125). If any misspellings are discovered,

the statement is re-processed.

The above discussion glosses over two very important
points: 1) how the parse is actually performed and 2) how

the semantic form representing the "meaning" is determined.

The Parser

Most parsing systems make a distinction between the
grammar and the mechanisms for interpreting the grammar.
This is done for economy of expression and clarity. It is
important to choose a formalism in which to express the
grammar which has enough freedom to allow the gramﬁar wri ter
'to express his rules naturally and concisely, but provides
enough structure that the mechanisms for handling the rules
can 8till be done efficiently. Some examples of grammar
formalisms are BNF, ATNs (Woo72a), PROGRAMMER (Win73} and
pattern matching languages for transformational grammars,
Our system expresses the grammar directly as LISP functions.
This means that the language which the grammar accepts is

determined by evaluating the grammar itself (i.e. the

32

BEST COPY AVAILABLE 0
34

grammar becomes the parser!). Since the grammar is written
in LISP it provides a natural method c¢f ordering the
application of grammar rules and allows the grammar to be
compiled which makes the resulting parsexr very efficient.
The back-up required by the parser is handled by using the
normal LISP control s8tructure via COND, AND and OR

functions.

When writing the grammar, the rule for each
non~-terminal is written as a single function which takes
into account all possfble ways of expressing that semantic
category. FEach of the grammar functicns is a function of
one argument, the string which the function (non-terminal)
is to accept or reject. FoF example, the non-terminal
<NODE> is represented as a LISP function <NODE> which can be
called by any other LISP function to, in effect, answer the
question "Does the string starting at this point parse into

a <node>?"*

There are generally two types of checks that a
rule-function performs,. Cne is a check for the occurrence
of a word or words which satisfies certain predicates in the
input string. This checking is done with two functions «--
CHECKLST and CHECKSTR., CHECKLST looks for a word in the

string matching any of a list of words., CHECKSTR looks for

*This is similar to the concept of a push to another network
in the ATN framework.

33

03c BEST COPY AVAILABLE

a word in the string satisfying an arbitrary predicate, It
is through these functions that the parser gets its
fuzziness. For examplé, if CHECKSTR 1is called with the
string "resistor R9" and a predicate which determines if a
word is the name of part (e.g. ®“R9"), CHECKSTR will succeed
by skipping the word *resistor®, which is, in this case, a
noise word. The other usual type of operation performed by
the grammar rules 4is to check for the occurrence of other
ron-terminals, This is done by calling the proper function
(grammar rule) and passing it the correct position in the

input string.*

If the qramﬁar rule is successful (if the string parses
into the correct semantic category), the rule=-function
passes back two pieces of information. First, it returns
some indication of how much of the input string it accounted
for, (that is, where it stopped). The convention adopted is
that a grammar rule returns as its value a pointer to the
last word in the string accepted by that rule. Secdnd, the
non-terminal passes back a s8tructural description of the
phrase that was just parsed, This structure is passed back
in the free variable RESULT (analogous to Woods's "*" upon

return from a PUSH).

*There are no restrictions placed on the grammar rules and a
function can do whatever is necessary or ecfficient to
recognize an occurrence of its semantic category.

34

BEST 00y bt
03.

Semantic Interpretation

The structural description of a phrase returned by a
grammar rule is a piece of LISP code which when evaluated
represents the meanina of that phrase, Each semantic
category in the grammar has a corresponding set of functions
or class of objects in the semantics of the system which is
the reason for the existence of that semantic category,
Each grammar rule knows enough about its semantics to
construct the proper function call for any of its various
phrasings, In other words, the semantic interpretation of
the parse tree 1is occurring during the parsing.,* For
example, consider the non-terminal <MEASUREMENT> shown 1in
Figure 2,2, The reason for this non-terminal is to parse
all of the ways that a student can 8pecify a measurement
(voltage across D3, output current, etc,). To make a
rmeasurement the 8ystem needs a quantity to measure
<MEAS/QUANT> (voltage, current, resistance, powex
dissipation), and something to measure with respect to (e.g.
a part, <PART/SPEC>; a transistor junction, <JUNCTION>; or
possibly a point in the circuit, <NODE>)., So the rule for
<measuremen£> expresses all of the ways that the student can
give a measurable quantity plus supply its fequired
arguments, The structure which results from <MEASUREMENT>
is a function call to the function MEASURE which supplies

*A notion very similar to that used in REL (Dos71),

35

Ouu BEST COPY AVAILADLE
the quantity being measured and other arguments specifying

where to measure it.

Figure 3;3

<MEASUREMENT> := output <MEAS/QUANT> of <TRANSFORMER>
<TRANSFORMER> <MEAS/QUANT>
<MEAS/QUANT> between <NODE> and <NODE>
<MEAS/QUANT> of <PART/SPEC>
<MEAS/QUANT> between output terminals
<MEAS/QUANT> of <JUNCTION>
<MEAS/QUANT> cof <NODE>
<NEAS/QUANT> from <JUNCTION>
<JUNCTION/TYPE> <MEAS/QUANT>
of <TRANSISTOR/SPEC>
<TRANSISTOR/TERM/TYPE> <MEAS/QUANT>
of <TRANSISTOR/SPEC>

A careful examination of Figure 2.2 reveals that
<MEASUKL'{ENT> also accepts "meaningless™ phrases such as
"the power dissipation of Node 4." In addition, it accepts
séme meaningful phraées such as "the resistance between Node
3 and Node 14" which Sophie does not calculate at present.
It is possible to write restrictions into the grammar so
that phrases like these are not parsed (as they are now).
In fact, we were often faced with this p.-oblem of whether or
not to write the grammar to do what amounts to argument
checkina and to thus block meéningless parses. For example,
suppose we have a function which measures the resistance of
a part in the circuit and a function which measures the
current flowing through either a part or a terminal of a

transistor. Should the distinction between resistance and

36

BEST (0P NAILABLE 04,
current (i.e. that the resistance of a transistor terminal
is not meaningful) be made in the parser or in the
specialists which carry out the measuring? In other words,
when presented with the phrase "resistance of the base of
Q2", should the grammar block the parse of it? Although the
above phrase would not have been parsed by earlier versions
of our gramar, our tendency has been to allow the grammar to
accept more statements and to have the argument checking
done by the semantic routines. This has the advantage of
allowing the semantic routines to provide the feed-back as
to why a sentence cannot bz interpreted or "understood®.* It

also Kkeeps the grammar from being cluttered with special

rules . for blocking meaningless phrases,

The most difficult aspect of the natural language
processor has been extensibility. There are basically two
types of changes which must be made to the grammar, One
occurs when a new feature is to be added to the system.
This requires writing a new rule to accept the various ways
of specifying the new feature. The other type of change
involves having the grammar accept a new way of saying
something that it already knows about. This requires
rewriting some existing rules., It is this second type of

change which usually results in undesirable interactions

*Providing feed-back as to why an utterance is not accepted
is a difficult problem which has yet to be solved in any
general way. .

37

04« BEST CO7Y AVMLABLE

between rules and unforeseen side-effects. Our experience
with making extensions to the grammar has shown us that it
can be a difficult task but no more 86 than trying to add
new features to any other complex program which is already
written. Parts of tﬁe grammar have undergone several major
restructurings and although the existing grammar represents
a much larger subset of English than the original version,
it is not significantly more complex nor significantly
harder to change. Of course, as Sophie grows and the types
of responses it must handle become more complex, there is no
guarantee that the grammar won't become so complicated that
new changes cannot be easily incorporated.* What we have
shown is that this approach is feasible for a large enough
subset of "English", and efficient enough that some natural

language capabilities can be employed for CAI systems.

*If (when) this point is reached, Sophie will have become
complex enough to employ a more power ful parsing technique
(e.g. Woods' LSNLIS Parser).

38

BEST COoy 0T e
Chapter 3 04

Endowing Sophie with Some Intelligence

Introduction

Sophie manifests most of its "intelligence" through its
question answering and hypothesis evaluation and generation
abilities. The primary seat of its intelligence resides in
a collection of gpecial purpose inferencing procedures each
of which perform a certain class of inferences extremely
efficiently. These procedures reflect an intentional move
away from axiomatic deductive strategies, and although they
may appear to be in the spirit of procedural deduction
séhemes, they are based on quite a different principle. In
fact, most of our inferencing strategies are not really
deductive but instead they derivé a conclusion by
intelligently computing "examples™ and using these examples
to decide on the validity of an hypothesis or the answer to

a question,

By their very nature our inferencing strategies are
incomplete but they are extremely skilled in answering
certain classes of questions. Although we feel that we have
just begun to explore the potential of this approach, this
chapter presents an informal description of some of the.

inference mechanisms now operational in Sophie.

39

<

044 BEST COPY AVAILABLE
In addition to these mechanisms, Sophie contains
numerous small 'sgats of knowledge" called specialists.
Although only an overview is given of these specialists in
this chapter, the following chapter will discuss how these
specialists are organized and work in harmony with the

central inferencing schemes.

Inference Generation by Simulation

The major component of our inferencing system is a
simulation program which models a "piece of knowledge®™ which
in this case is an electronic instrument*, The wunderlying
idea of how simulation can be used to perform inferencing is
straight-forward. Let us first consider the problem of
evaluating a hypothesis (always with respect to a given
circuit) of the form:

®*If X then Y"
where X is a pfoposition about some component in the given
instrument and Y is a proposition about its behavior or
symptoms. An example of such a hypothesis might be:
"If C2 is shorted, the output voltage is zero."
The validity of the hypothesis can be tested by invoking the
simulator. First the simulation mcdel of the instrument

*More precisely, it models a schema of electronic
instruments with one element of the schema being the working
instrument and the other elements representing various ways
the instrument can be faulted.

40

_— 1 m - p—

BLST £OPY ruri ABLE 04
must be modified so that C2 is shorted (i.e. the
proposition X must be made true on the model) and then the
simulation must be executed. Since the results of the
simulation run contains all the consequences of C2 being
shorted, the hypothetical consequent -- the output voltage
being zero =-- 1is simply checked against these simulation

results,

The above paradigm glosses over several logical
difficulties concerning which boundary and/or input
conditions should be used for the simulation runs. If it is
necessary to determine all the logically possible
consequences of a hypothetical modification, then the
simulation must, in principle, be run over a potentially
infinite collection of the instrument's control settings,
etc. While for most practical situations there are only a
finite number of cases "worth®™ considering, this number can
still be quite large. It is clearly desirable to have an
adéitional inferencing mechanism which can determine what
the worthwhile cases are for any particular hypothesis.
This additional mechanism must embody electronic knowledge
of a different sort than is represented in the simulator.
Thus, metaphorically, the simulator may be interpreted as
creating examples whereas this additional mechanism tries to

guarantee that these examples will be useful.

There are several classes of hypotheses (questions)

41

O4c BEST COPY AVAILACLE

which explicitly dictate the control settings and boundary
conditions to be used in the simulator and that can
therefore directly call the simulator without needing any

ihtelliqent medi tation.

Answering Questions about Particular Measurements.

The questions that fit most directly into the
simulation paradigm concern requests for measurements. For
example one might want to know what the voltage is across a
particular component when the instrument controls are set to
gome values. After computing the voltage at every node in
the simulated circuit, it 1is straightforward to derive
answers to-additional questions about the current through
any component, the active resistance of a component, the

power dissipation of a component, etc.

All these measurements can be determined either with
respect to a working instrument or with respect to a faulted
instrument, In this latter case the fault must |Dbe
completely specified (e.g. the leakage resistance of C2 is
1080 ohms) and then used to alter the model of the circuit
in the simulator. Sophie contains fault specialists who sit
on top of the simulation 8ystem and are responsible for
carrying out this operation. These specialists must know
about how particular components can be faulted and how each

component is modelled. By wusing this knowledge they can

42

BESY Sud i .. AL 04,
carry out the proposed modification on the internal

representation of the circuit.

Inferences Invoking Fault Propagation

In addition to fault specialists there are specialists
who examine the results of each simulation run in order to
make sure that no component in the «circuit is dissipating
too much power or experiencing too high a voltage. Such
considerations are important since when dne component is
faulted other components often become subjected to excess
conditions. These specialisté are responsible for detecting
such s8ituations, deciding how the given component should be
blown, and then recursively calling the fault specialists to
blow it in that way. At any given moment, Several
components might be subjected to excessive stress but if one
were to blow it would protect the other from blowing.
Therefore, only one component at a time is actually blown

before rerunning the simulation.

These specialists are also responsible for determining
an ordering on which of the overstressed components is most
likely to blow. Wwhat develops is a fault propagation tree
which céptures either all of the reasonable consequences of
a particular fault or the most likely chain of

consequences,*

43

040 BEST COPY AVMLABLE

At each 1level of this tree is a set of nodes
representing those component failures which are equally and
most likely to occur as determined by the 1low level fault
specialist, Then another specialist chooses one of these
and re~-runs the simulation. The figure bzlow illustrates a
typical fault propagation tree which was generated by

faulting the IP-28 model by shorting the collector emitter
of Q4.

Q,SHORTS (COLLECTOR -EMITTER)

Qg SHORTS 04 OPENS

Qg OPENS

D;SHORTS D,OPENS

S
D, SHORTS

’

- D,OPENS D, SHORTS

OUTPUT VOLTAGE = ZERO

The information in the tree is used in three inferencing
tasks. The first use is in answering simple questions about
a measurement in a hypothetically faulted circuit when the

hypothetical fault propagates, Second, it 1is wused in

* Sophie uses only this latter mode of operation.

44

04 BESTCOPY ayrnamp
informing the student that the component he has just
;eplaced in his attempt to £ix the insérument has just
re-blown since he didn't correctly locate the root of the
problem, The third use is in hypothesis evaluation where
the student forms a conjecture about what is wrong and his
conjecture would entail some additional component being

blown,

Hypothesis Evaluation (Testing)

Another Kkind of inferencing task concerns the
evaluation of a student's hypothesis about what component he
thinks is faulted in the instrument. The evaluation must
take into account the information solely derivable from the
set of measurements he has taken up to the time of. his
conjecture, That is, it must test the logical consistency
of the hypothesis against what information he should have
gained from his peasu;ements irrespective of whether the

hypothesis entails the actual fault.

The evaluation strategy makes extensive use of
simulation. First, the simulation model is modified so as
to be consistent with the given hypothesis and then all the
student's measurements are repeated under this
*hypothetical® model, Next, the same set of measurements is
repeated but this time in a normal or working model of the

ingstrument. This results in three pieces of data for each

45

O5u BEST COPY WVAILABLE

measurement that he has taken. This collection of triples
is then sent to anﬂevaluation specialist who employs various
strategies for “judging"™ the given hypothesis and for
identifying and ordering what explanatory information should
be given to the student if, in fact, the hypothesis is
illogical.

Hypothesis Generation

One of the most difficult tasks performed by Sophie is
determining the set of possible faults that are consistent
with the observed behavior of the instrument. At any time
the studént can ask for help and Sophie must then generate
the set of hypotheses which would explain or logically
follow from the particular set of measurements the student
has thus far made. The way in which Sophie generates this
set of hypotheses (i.e. possible faults) is to combine both

backward and forward types of reasoning.

First, a backward working specialist examines an output
voltage measurement (taken by the student) and generates a
list of possible hypotheses that "“vaguely" explain that
measurement. Each hypothesis 8o generated is evalgated by a
forward working specialist who invokes a simulation of the
hypothesis to see if it really accounts for all the known

output voltages and internal measurements.,

46

BeST Luvry £ 20 ARLE
05

In some cases the backward specialists generate as a
hypothesis a fault schema, i.e. a "fault" that has some
unspecified parameters., The hypothesis that "the beta of
the Darlington amplifier (of the 1IP-28) 1is 1low" is an
example of a fault schema as is the hypothesis "C2 is
leaky". Rejecting 8such hypotheses requires some subtle
reasoning: given two measurements it is possible that each
measurement, by itself, could be explained by instantiating
a fault schema to a particular value, However, it may turn
out that the instantiations required by each measurement are
in fact different and hence this fault schema cannot explain
both measurements simultaneously. Although a sophisticated
forward deduction system might be able to detect this
inconsistency, we eventually settled on using a simulation
in conjunction with a specialist who tries to find an
instantiation value of the fault schema by "intelligently"

manipulating the simulation model.

The exact values for these fault schemas can only be
found if at least one output voltage measurement is made in
which the voltage is not the correct value for the settings.
However, even when a measurement is correct (in the sense of
being the same value as would be found in the working
circuit), it is possible to determine a range of values for
these schema. For example, Sophie has a specialist who can
determine the range of values for the beta of the Darlington

(in the IP-28) which could account for the observed output

47

05« GEST COPY RVARABLE

current. By successively refining this range, it is
sometimes possible to rule out certain faults, These
specialists do not wuse simulation but instead have enough
built-in intelligence to be able to deduce these ranges for

any of the fault schemas that arise in this context,

In summary, the hypothesis generation process invokes
backward specialists who suggest crude hypotheses, forward
specialists who manipulate a simulation model to rule out
hypotheses suggested by the above mentioned mechanism. and
finally, a collection of ad hoc specialists who can infer
what cannot be wrong from knowing non-symptomatic

measurements,

48

BEST COPv AvaiidLE
Chapter ¢ 05‘3

Internal Desigqn of Sophie

Introduction

This chapter provides a comprehensive description of
the processes which underly Sophie. First there 1is a
presentation of the overall organization of Sophie which
includes a description of the framework within which various
specialists work., Following this overview each of the
specialists is discussed providing both a description of the
task of each specialist as well as the method each wuses to
perform its task. The portions of the system which are not
discussed in this chapter are: the natural language
processor (Chapter 2); the general purpose simulator and the
functional simulator (Chapter 5); and the semantic network

(Chapter 6).

Overview

Figure 4.1 shows the basic organization of processes
and data within Sophie. The processes are represented as
boxes and the data areas are represented as ovals. The

solid arrows indicate the flow of control* between processes

*Control is passed via function calls and hence always
returns to the calling process. The directions of the
arrows indicate which processes call which other processes.

49

1y AT
05.4 REST COPY MAILATLE
and the dashed arrows indicate the flow of data for these

processes.,

Figure 4.1
& 5
I R |
-— MU TINES
-~ T t
e S L |
~ NATURAL
/ Ik B e ———— cowmaL
/ ’ 7 A o
Ve - "
/ \ ~ -
/ N SPECIALISTS ~ N
’ ' ™ -~ il e T SRRV — \
B - ‘
| ‘\\ al
‘ I \ w l‘
\ POTHESIS SETTING & HYPOTHESIS WSCELLANEOUS|
\ || el || et || et || e |)
\ ¥ ¥ 3 AV ¥
\ ! ! \l \ | /
l FauLY | FAT ‘ REPLACE || QUEITIOh I CONDITIONAL /
\ ~17" guesiow s riokeal I I N e ANSWERING SPECIALIST
s SPECIALISY | SPECIALIST / ’I SPECIALISY | /
@ Sy e I B B S : |
| | T ' : | | b
I I ! ! !
{ 1 {] 1 1 1 | 1 1 |
C SEMANTIC NETWORK)
Control

The processing of a statement begins when Control
receives an input from the teletype. Control passes the

statement to the natural language processor which parses it

50

VYL ".‘,sl\r::“;
BEST (O £ 31 ABLE 05.

and returns its semantic interpretation (sece Chapter 2).
This semantic interpretation is a program which represents
the "meaning®™ of the statement. The semantic form is
evaluated causing the appropriate specialist to be invoked
which 1in turn computes an answer to the student's question
or performs the student's command. It 1is the specialists
which comprise most of Sophie's problem sclving abilities.
Each specialist is very qood at performing specific tasks
within a specific context. It is Control's responsibility
to maintain the proper context for the statement at hand.
After the specialist has finished, Control uses the semantic
form and the result of its evaluation to synthesize a

response,

In addition to calling the natural lanquaqe processor,
invoking the correct specialist, and constructing and
printing a response, Control is also responsibie for keeping
track of the numerou§ pieces of information about what has
already been deduced and what has already been presented to
the student. Finding a good way to organize and update this
information can drastically simplify the operation of the

specialists that access it.

History Lists

The information about what the student has done or has

been told is kept on a history 1list., After each user

51

OSc gesy COPY RVAILRBLE
interaction, the type of statement, the semantic form, the
result of evaluating this form and the current instrument
context is saved on the history list. At any time during a
segsgion this : list is a complete record of everything that
has happened. The list is used by various specialists such
as the hypothesis evaluation process to determine what

measurements the student has taken.

Maintaining the proper instrument context:

Whenever the student requests a measurement (e.g. what
is the output voltage?) there is an implied context in which
that measurement should be made. Nearly all the measurement
specialists operaté from a voltage table which gives the
voltage of each node in the circuit with respect to ground.
The simulation process computes on demand this table for
given control settings, load resistance and fault
specification. Control is responsible for insuring that the
values in the voitage table are the correct ones for
answering the question currently being processed, For
example, when the student changes one of the controls the
voltage table must be updated to reflect this change.
Whenever the instrument context is changed, Control calls
the simulation interface process to set up the correct

voltage table before the measurement specialist is called.

52

REST COPY RUMILABLE
~

Simulation Interface Process (l),

The simulation interface process exists between Control
and the simulation process to cope with two specific
problems, First, the interface process keeps track of
previous runs by the simulator. When it is asked to fire up
a simulation run, it first checks the list of all previous
contexts to see if it has already computed a voltage table
for that context. If it has, that table is returned without
invoking the simulation system. Since a student is often
switching between the same two states of a circuit (i.e.
the faulted circuit and the non-faulted one), sSearching the
prior contexts before running a simulation can save a

tremendous arnount of computer time.

The other problem handled by the simulation interface
concerns what to do when the simulation is run with a fault
which causes another part in the circuit to become
overloaded (i.e. leading to fault propagation). To handle
these cases, after the simulation program is called,
specialists check all of the parts in the c¢ircuit to
determine if any of them are overloaded. If any are
overloaded, one possible fault is chosen and inserted into
the circuit model, a message is printed to the student and

the simulation is called again.* This is done so that the

*Wwhen the simulation is being run to check out a student's
hypothesis, the process of blowing more parts is much more
controlled.

53

05.- BEST COSY AYKD IOLE

student is never taking measurements in an unrealistic

circuit.

Modification and Setting Specialists

The state.or context of the circuit is completely
determined by the control settings, the loaa resistance and
the faults which have been introduced. This information is
kept on two special variables: SETLIST which contains the
information regarding controls and load resistance, and
FAULTLIST which contains the information ahout the faults in
the circuit. To change the control settings the setting
specialist changes the information on SETLIST. Similarly,
the modification specialist knows how to change the
FAULTLIST to insert a particular fault. The modification
specialists also knaw the fault models of the vérious types
of parts and if given a non-instantiated fault, (C2 is
leaky, the base of Q2 opens, etc.), it will propose a
complete fault to the student and interact with him until a

complete fault has been agreed upon.

Measurement Specialists

The specialists which calculate 'voltages, currents,
power, etc. know how to use the voltage table to answer the
questions at hand. For example, VOLTAGE?, the specialist

which calculates voltage measurements, can measure the

54

05. BEST U0 74411 ABLE

voltage across a part, across the load resistor, across a
junction of a transistor, between two points in the circuit
or at a single point with respect to ground. Before using
the voltage table, VOLTAGL? accesses the semantic net which
contains, for example, the information required to map
between terminals and their locations in the table of
voltages. 1In addition to VOLTAGE?, there are the CURRENT?,
RESISTANCE?, and POWER? specialists which measure the
obvious quantities. Current measurements can be rather
complicated when wusing just a table of voltages as in the

case of the current through the terminal of a transistor.

The different types of measuring specialists are all
called by a single routine MEASURE which is returned in the
semantic form‘from the parser. This allows MEASURE to
perform some arqgument checking which would otherwise have to
he done separately by each of the other routines. In
addition, by wusing a relatively small number of top level
semantic routines, the information on the history 1list is
more. easily deciphered by the various proc~sses which use

it.

Answering Factual Questions

One type of factual question which Sophie can answer
deals with the various properties of parts in the circuit.

This information, such as the beta of a transistor, is

55

06 BEST COPY AVAILABLE

stored in the semantic net and is retrieved by the process
CHECKSPEC. Another type of factual question concerns
information which is not time invariant and therefore not
stored in the net. This type of question 1is considered

below,

Fault Questioning Specialist

In certain modes of use, it 1is permissible for the
student to ask whether a barticular part is faulted. (This
facility is especially useful when troubleshooting faults
which cause many other parts to blow.) These requests are
handled by the fault questioning specialists (SKEFAULT).
The context needed by this specialist is the list of faults
and using this list, this specialist can determine i) if a
particular part is faulted a particular way (e.g. "Is R9
open?", "Is the leakage resistance of C2 5¢g¢ ohms?," "Is
the beta of Q5 too high?", "Is the collector of Q3 open?");
ii) if a particular part is faulted in any way (e.g. "Is QS5
bad?"); or iii) if any part is faulted at all (e.g. "Is
anything wrong?"). While answering some of these questions
may require 1little more than a quick check of the list of
faults, (e.q. "Is anything wrong?"), some require
additional processing. For example, to determine if a
particular junction of a transistor is bad requires first
discovering if the transistor involved is faulted and, if it

is, decoding its fault mode to see if it entails that

56

O€ 4 BEST COPY AvAILABLE
junction., Also, to determine if a property of a part is too

low requires not only finding out what the wvalue of that

property is but also what it should be.

Inserting Faults

The specialist which inserts faults into the circuit
(INSERTFAULT) is called when the user asks Sophie to
introduce a fault into the circuit. It is this specialist's
job to decide which fault should be inserted. (After a
fault is chosen, the modification commands are called to
make the appropriate changes to FAULTLIST.) Faults are known
to the system by number and it is possible that the student
asked for a particular faulf by its number . (His instructor
may have given him the number.) In those cases when the
student did not ask for a particular fault, he may still
have specified a modifier of some kind (e.g. hard or easy).
The inserting routines keep 1lists of the faults which
satisfy the various moéifiers. Another list records which
faults have alrecady been inserted so that the student does
not get the same fault inserted twice in one session. Also,
before the modification routines are invoked the circuit is
cleared of any previous faults, After the circuit has been
modified, the semantic network is checked for any special

instructions about how to handle this fault.

57

d8.. pgst COPY AVAILABLE

Replacing Parts

When the student asks that a part be replaced, the
replacement specialist (REPLACE) queries the student as to
how the particular component is faulted (open, shorted, base
open, etc.). Requiring the student to know the particular
fault mode of a part encouraqges him to think more deeply
about the symptoms he has observed, Determining how a
component is faulted rather than just that it 1is faulted
often requires a second examination of the chain of effects
which led to discovering the problem, If the part is not
faulted in the way in which the student has said, he is told
so and the part is not replaced. (This should not be
confused with the action of the hypothesis testing routines
whose job is to determine if what the student thinks is

wrong igs consistent with what he knows.)

There are times Qhen the system should be aware that
the student already knows what is wrong with a part and then
it should not question him. For example, when the student
tells the system to modify a given component, he shouldn't
be queried when he wants it replaced.* The student also
should know what the fault is after he has received an

affirmative answer to a question such as "“Is R9 open?",

*This may not always be the case: the instructor may have
inserted the fault and then turned the system over to the
student, Consequently a flag can override this situation.

58

06.

Information that the system thinks that the student knows
about faults is kept on the list USERFAULTKNOWLEDGE. Before
the student is asked about the fault, the replacement

specialist checks this 1list.

The questions asked a user are determined by the type
of part being replaced. For each type of part (transistor,
resistor, diode, capacitor, etc,) there is a corresponding
specialist which knows how that component can be faulted.
Once this specialist has completely determined (via
questioning) what the user thinks is wrong, it calls the
fault questioning speacialist to see if that fault is in fact
present, In the case of a transistor, the part is replaced
if the student is correct about at least one of the

junctions.

Measurement Checking Specialist

While troubleshooting a fault, a student may need to

know whether a measurement that he has 3just taken is

correct,* that is, is it a symptom. Sophie allows the

student, after a measurement has been taken, to ask if his
previous measurement was correct, e.q. "Is THAT right?".
To handle this request the measurement checking specialist

first gets from the history list the semantic interpretation

*"Correct" meaning the same as it would be in a non-faulted
circuit,

59

06 BEST COPY AVMLABLE
of the last question asked by the student. The specialist
then sets up the measurement taking environment of a working
circuit by clearing the fault 1list and calling the
simulation interface specialist to determine the correct
table of voltages for the non-faulted circuit under the
present control settings. The previous semantic form
(measurement) is then EVALuated in the newly established
context to determine what the measurement would be in a
working circuit under the same control settings. The
student. is told what the correct measurement is and this
value is compared with the value he observed earlier to
determine its correctness., Then the original fault list and
table of voltages are restored, thereby restoring the

context of the faulted circuit.

Hypothesis Testing Specialist

The purpose of the hypothesis testing specialist is to
provide Sophie with a way of checking the 1logical
consistency of the student's conclusions. It does this by
taking the student's proposed fault and determining if the
symptoms of that fault agree with the symptoms that the
student has observed. If there is agreement in all of the
meéasurements that the student has taken, the proposed
hypothesis 1is consistent. If the results of the proposed
fault disagree at some measurement, this measurement.

represents either a consequence of the circuit's operation

60

BEST €OV /' ADLE 06.
which the student overlooked or was unaware of, or it
represents an error in the student's logical thinking
processes,* Sophie has the capability of finding such points

of disagreement and telling the student about them,

The hypothesis testing specialists are invoked when the
student proposes a hypothesis (e.g. "I think that C2 is
leaky" or "Could the problem be that the base of Q3 1is
open?®) . Because these specialists derive all of their
inferences by inserting a fault into the circuit, they must
know exactly which fault the student intends. So if the
student proposes a fault schema (e.g. C2 is leaky but what
is 1its leakage resistance), these specialists propose a
reasonable instantiation of the schema but allow the student
to override it and provide his own value. Once the complete
fault is known, the list cof faults is checked to see if the
hypothesized fault is, in fact, what is wrong with the
circuit. If so, Sophie informs the student that his
proposed hypothesis is consistent with all of his

measurements.

To evaluate a hypothesis which is not the real fault,
the hypothesis specialists must know all of the measurements

that the student has taken under various instrument

*If this is the case, the student can explore the proposed
fault immediately using the save-restore facility.

61

1
06¢ BEST COPY A ATLABLE
settings. This information 1is obtained by scanning the
history 1list. The measurements that were made are divided
into two classes: external and internal. The exterrnal
measurements are the measurements a student could take in a
real electronics laboratory without taking the cover off the
instrument, that is, the output voltaqge and output current.
The internal measurements are everything else. The internal
measurements are further broken down into context frames,
that is, all of the measurements taken under the same

control settings are grouped together.

The specialist then checks the consistency of the
measurements one context frame at a time. Within a frame,
comparisons are made between each of the measurements and
what that result would be under the proposed hypothesis.
The comparison requires knowing not only the measuremént in
the hypothetical case but the one in the working circuit as
well. The working measurement is necessary to determine
when the other two measurements differ significantly. For
example, if the measurement that the student observed was 25
volts and the measurement under the hypothesized fault was
38 volts the difference between these two may or may not be
significant. If the measurement in the working circuit is
30 volts, the proposed fault does not account for the lower
voltage observed in the faulted circuit. However, if the
working circuit voltage is 3 volts, the hypothesis is doing

a pretty good job of explaining this measurement.

62

BEST ot « it 06,

The order 1in which Sophie comments upon the
discrepencies that it finds can be critical. The hypothesis
testing specialist first comments on all of the measurements
which the student has made in the latest context. Since the
simulation under the various contexts is saved, this insures
that the student will get some feedback within at most, two
simulation runs thereby guaranteeing a minimum response
delay. This feedback will include those measurements which
he has made most recently and are foremost in his mind. The
second group of measurements commented upon are the external
measurements. Then the measurements from each of the other.

frames starting with the second most recent are discussed.

Each time comparisons are made within a group of
measurements the results of these comparisons are reported
to the student and he is asked if he wishes the evaluation
procedure to. continue. In reporting the results of the
comparison, the measurements are oruered according to the
amount of disagreement between the observed measurement and
the hypothetical value. For each measurement there are four
cases that might occur. The observed and hypothetical
values may agree, The observed value may represent a
symptom (i,e, be wrong) while the hypothesized value is
right. In this case, the fault proposed by the student does
not account for this particular symptom. The observed value
may be correct while the hypothetical value is wrong. In

this case the proposed fault would create symptoms which the

63

| y |
06c BEST COPY AURRLANIE
student did not observe, Or the observed result and the
hypothetical result may both be wrong but not the same. In
every case but the first, the student is told how the
measurements disagree and 1is given the observed, the

hypothesized and the correct value of his measurement. If

no differences are found, the student is told this also.

A necessary prerequisite for performing the above
procedhres is the ability to determine when the hypothesized
measurement and the observed measurement disagree
significantly. The specialist which makes this decision
uses three pieces of information: the wvalues of the
hypothesized measurement, the observed measurement and the
working measurement. It calculates a “distance® between the
hypothetical value and the observed value. This distance is
basically a product of two factors. One factor 1is the
percentage difference between the two values. The other

factor is based on how far these two values are from the

correct value.

A problem occurs when a simulation with the
hypothetical fault reveals that it would cause other
components to blow, that is, when the fault propagates. In
thigs situation, the overloaded parts are no% automatically
blown. Instead, the student is informed that the fault he
proposed would propogate and that new faults are likely to

occur. The most likely fault is chosen and the student 1is

64

Bl Chry AYSLARLE
06+

asked if he would like the evaluation of his hypothesis to
continue with the additional fault. This gives the student
a chance to avoid having to wait while the simulation runs
again while still providing him useful feedback about his

hypothesis.

Conditional Specialist

The conditional specialist is invoked to answer if-then
types of questions (e.g. "“If C2 shorts what happens to the
current thru the collector of Q5?%). As was stated in
Chapter 3, the method the conditional specialist uses to
answer this question is to create a context in which C2 is
shorted and then to call the measurement specialist to
determine the collector current of Q5. In addition to
putting a particular fault in the context that it
establishes, the conditional specialist must also decide
what control settings and load resistance to use. The
strategy employed is to first try the present settings, If
under the present settings, the consequent measurement is
the same in both the faulted circuit and a working circuit,
then these settings are probably not the proper ones to
demonstrate the effects of the fault and the conditional
specialist checks the semantic network for more appropriate
settings. In any event, the student is told what the
consequent measurement 1is in both the working and faulted

circuits.

65

BES' COPY AVABLE ¢

Hypothesis Generation Specialist

When a student, after taking several measurements,
cannot think of any possible faults which would explain
those measurements, he can ask for help, The hypothesis
generation specialists have the job of providing the student
with some possible faults. Chapter 3 describes c¢he method

used by this specialist,

Miscellaneous Routines

In addition to the major types of features described
ear lier, Sophie offers several other features. One of these
(REVIEW) provides the student with a review of all of the
rea surements he has made since the beginning of a
troubleshooting session. This can be very wuseful in 1long

sessions or when using a CRT terminal.

To save the initial cost of starting Sophie, there is a
restart command which re-initializes the system but does not
re-per form the expensive operations of setting up the
simulation process, A similar operation is provided by the
SAVE and RESTORE commands. The SAVE command saves the state
of the current session so that it may be returned to by a
RESTORE command and performs a recursive call on Sophie,
This is mainly useful during a troubleshooting session after

the student has been told that one of his hypotheses is not

66

BEST Loy
071

completely correct. The student can then immediately
explore his hypothetical fault by SAVEing the current
session and inserting his hypothetical fault into the
circuit of the new version of Sophie., When he has completed
his exploration, he can RESTORE his trouble-shooting session

and continue where he left off, trying to find the real

fault,

67

BEST COPY RVANLABLE
Chapter 5 CT?c

Simulation Techniques

Introduction

As we indicated in Chapter 3, most of our inferencing
strategies are centered around the use of simulation models,
This chapter describes the two kinds of simulations used in
Sophie. The first is a general purpose simulation system
which accepts a description of an arbitrary circuit and
produces exact quantitative results in both working and
faulted version of the circuit. Tﬂis system is used to
answer all requests concerning meaéurements. It is also

used by the hypothesis evaluator.

The second simulation system is a circuit-dependent,
functional simulator which runs several orders of magnitude
faster than the general purpose one but which produces only
approximate results. This system incorporates much
specialized knowledge about’the internal functioning of the
Ip-28 instrument and currently is wused only by the

generation specialist.®*

A functional simulator which handles the class of all

faulted instruments stemming from one working instrument is

*This is the section of Sophie which is the most difficult
to change whgg giving it a new instrument to model.

7

68

BEST (GPY Aynnrne s 07
considerably more complicated than a functional simulator
for just the working instrument. In particular the
“"transfer function" of each functional block must be so
modelled that any internal component of a block which
becomes faulted can be directly translated into a new
transfer function. Also if the simulator takes advantage of
the internal logical constraints inherent in the instrument,
it must be able to take into account all the ways these
constraints can be influenced by any possible fault.
Nevertheless a highly tuned functional simulation of an
instrument can provide such significant speed-up that uses

of simulations which were previously unthinkable can now be

quite effective,

The General Purpose Circuit Simulator

SPICE* (Nag7l) (Nag73) is the general purpose electronic
simulation program used in our system, The input files for
SPICE contain a description of the topological arrangement
of the circuit coﬁbonents and their nominal values;
specifications of parameters for whatever models may be used
for non-linear components such as BJT's and diodes; and a

*SPICE was originally written by Laurence Nagel at the
University of California at Berkeley. The original program
consists of some 8,008 lines of FORTRAN source code and was
designed to run on the CDC 6484,

69

O74 BEST CuPY RAILABLE
list of desired output options. Possible circuit components
include independent and dependent voltage and current
sources, field effect transistors, BJT's and diodes, as well
as the wusual 1linear devices. Provision is also made for
specifying model devices not already included in SPICE's

basic library.

SPICE performs three different types of circuit
analysis: DC operating point, AC response spectrum, and
transient behavior. SPICE's DC operating point analysis
includes operating point values for model parameters as well
as the voltages at each node of the circuit. Transient
analysis consists of a series of DC analyses against a
varying input voltage, with charge storage elements taken
into account. The AC analysis subprogram simply determines
the DC operating points whose values are phasors rather than
real numbers., AC solutions are expressed separately for the
given input signal frequencies rather than as dependent
functions of the frequency. Since AC analysis assumes that
all nonlinear devices operate linearly sufficiently close to
a particular DC operating point, it is of limited use for
deducing if a particular modification has caused a component

= to instantaneously enter a saturation or cut-off state, etc.
In addition, since the CPU time required for transient
analysis is prohibitive (on the order of ten CPU-seconds for
the circuit under consideration), we use only the DC

operating point analysis.

70

231 Cury AUTLVSLE

DC Analysis Package

The DC analysis subprogram is divided into three
sections: READIN, SETUP, and ITERATION., READIN accepts the
description of the circuit and inserts this information into
the various internal arrays. Array-~stored information
includes the nodes to which each element is connected, the
value of each element, and the type of each component,
READIN also simplifies the external description (e.q. it
re-numbers the nodes 8o that they are consecutive) and

checks for possible specification errors,

SETUP allocates space in the sparse array and stores
the pointers to it. It first checks each component and
determines which locations of the array will be occupied,
It then adds whatever locations are required for forming
intersections with other locations already allocated.
Finally, SETUP stores the appropriate pointers for each

component.

The ITERATION section golves the internal
representation created by READIN and SETUP. The method df
solution is based on Kirchoff's and Ohm's Laws, The basic
matrix equation is:

E=vy !l
where I is the vector of source currents for the nodes, Y is

the matrix of mutual conductances between nodes, and E is

the resultant vector of node voltages, The Y matrix is

71

O7e BEST COPY pVEILAS!

"loaded® by adding the conductance cf each component to the
two diagonal terms and subtracting it from the off-diagonal
ones, The I vwvector is then loaded with the values of the
known current sources., After these are loaded for all the
circuit components, the Y matrix is inverted by the
Doolittle method (Fox65) and multiplied by the I vector.

This obtains the voltage for each node.

The above method is all that would be required if the
circuit contained only elements with linear I-V curves.
However, transistors and diodes have exponential curves,
These non-linear characteristics are handled by an iterative
process. A "best quess®™ of the voltayge drop across a diode,
for example, is computed and used to determine a point on
the I-V curve. The inverse of the derivative at that point
is then determined and used as the value of the effective
conductance, thus modifying the Y matrix. The I intercept
of this derivative is then determined and used to modify the
I vector. The new.Y matrix is then inverted and the bagic
matrix equation is re-solved for the new values. The
resulting E vector is then used to replace the previous
"best guess" and the above sequence of events is repeated.
This process may be thought of as forming a Taylor series
approximation to the non-linear I-V curve. After each
iteration the newly obtained wvoltages are compared with
those produced by the previous iteration. If the voltages

are within #.1% or 50 microvolts of each other, whichever is

72

£

L E 07,

greater, then the analysis is complete.

In certain circuits, the iterative process will fail to
converge, If 1§48 iterations are completed without
convergence the analysis is stopped. Fortunately this
happens primarily with bistable circuits, a situation that
should not arise in our case. Also, good convergence may
not be achieved due to the rapidily changing nature of the
exponential equation. To speed up convergence by limiting
overshoot, a 1limit of 1,4 volts is placed on the amount of

change in the voltage across semiconductor junctions.

Modifications Made to SPICE

In addition to converting SPICE to run under DEC's
Fortran, we removed all code which dealt solely with AC and
transient analysis, We also removed the ability to handle
component models, like those for MOSFET transistors which
are not likely to-be-used in the circuits. being simulated,
The s8ize of the matrices was reduced since the branch and
node capacities of the program were greater than required,
This modified program is approximately 3588 lines of FORTRAN

code,

Introducing Faults into SPICE

The major addition to SPICE is the introduction of a

mechanism for introducing faults and circuit modifications

73

]

070 vlsl vans it
quickly. One method of achieving this would be to modify
the external description of the circuit and read it in each
time the effect of a fault is sought, In the case of a
transistor with an open junction, for example, the input
statements to SPICE would be changed to show a diode for the
good junction and an open circuit for the defective one.
The circuit description would then be analyzed in the manner

described above, It was felt, howevexr, that this would be

too slow,

The method chosen instead was to change the models of
all the components so that they take an additional piece of
information from a fault array. Actually two arrays are
involved: IFAULT is used to tell how a component is faulted
and FAULT is wused to hold the faulted value of the
component, For example, the first array might tell if a
resistor were ok, open, shorted, or had changed its wvalue,
The second array would only be used in the case that the
value had changed and would then be used to contain the new

value,

The actual faulting is done when the component is being
*loaded" into the sparse matrix. For example, the routine
for a resistor normally looks at the array VALUE, which was
setup when the initial circuit was read in. This value is
the conductance of the resistor. It would then add this

value to two locations and subtract it from two other

74

R Lo 7
locations in the sparse matrix. However, if IFAULT
indicates that the resistor is not normal, the routine uses
the value in FAULT when the resistor changed value.
Otherwise, it uses conductances (inverse of resistance) of

1f8. and 1.§E~1§ to represent shorted and open resistors,

respectively.

The diode and transistor models have series resistors
on their terminals. Opening a diode is performed by making
this conductance 1,0E-14, Shorting the diode is more
difficult, There exists four locations in the sparse array
for the diode. As with resistors, ¢these locations are
modified by 188 to indicate the Jjunction is shorted.
Transistors are similar to diodes. If a lead 1is to be
opened, the series resistor is opened. There are four
locations in the sparse array for each Junction of the
transistor. T™wo of these are shared with one of the other
junctions. As with the diode, these four locations are
modified Dby 180, Changes in beta are performed by
substituting the beta in FAULT for the normal beta when

loading the transistor.

Performance of General Purpose Simulation on DC Analysis

For a faultable model of the IP-28 clrcuit (see
Appendix 1) SPICE takes on the average 1.8 cpu seconds

(pDP-18) . The faultable model actually contains twice as

75

—~ -
’
O:\\,‘ ! . [S

many nodes as a simple model of the IP-28 because of the

additional parts needed to allow certain fault modes,

The Circuit-Dependent Functional Simulator

One of the practical limitations to simulation concerns
the 1issue o0f speed. Although certain questions might
require only one simulation run, other kinds of questions
require many runs and in some cases just one simulation can
involve several CPU seconds. What was needed was an
additional hierarchical simulation model which could take
advantage of specialized knowledge about a scheﬁa of
circuits, In particular it should be hierarchical in the
sense of simulating functional blocks and should utilize
logical constraints which hold over these functional blocks
te intelligently gquess the effects of various feedback
loops, etc, It should also be designed to facilitate the
introduction and handling of a wide class of faults

pertinent to each functional block.,

A circuit dependent simulation can be made which is
between 188 to 1008 times faster than the general purpose
simulation and thereby opens up an entirely new dimension of
uses. This speed-up has been gained at the cost of
generality by building iqto the system detailed knowledge
about the purpose and characteristics of each function

block. Speed has also been gained at the expense of

76

BLS) [* i anLE 084
accuracy. For example, the simulator does not model the
exponential curve of a transistor but instead "deduces" if a

transistor is on and if 8o, assumes its VBE is about .7

volts, etc.

Modelling new instruments requires a thorough logical
analysis of their internal states under faulted conditions
as well as when properly working. Although this analysis

might be automated,* at this point in our research, it is

being done by hand.

Using Circuit Dependent Xnowledge in Modelling the IP-28

The purpose of the following subsections is to provide
an indication of how circuit dependent knowledge can be used
in creating a fast simulation which has enough flexibility
to permit the insertion of a wide class of faults. If the
reader is not already familar with the internal workings of .

the IP-28 power supply, he is referred to Appendix 1.

Functional Simulation of the IP=28:

This simulation model consists of eight functional

blocks whose interconnections and mnemonics are illustrated

* A novel use for Sophie would be to aid in constructing
this analysis. After a general purpose simulation of a new
circuit 1is given to Sophie, the interactions of the
functional blocks could be explored under various fault
conditions.

77

Sl vurt AVAILABLE 08.:
in Pigure 5.1,

Figure 5.1
DARLINGTON
AMPLIFIER
N, DARL Ns | Isense N
RECTIFIER ‘ Qy, 9, Ry Ry, Ryy Ryg]
Y REFERENCE
R
ggg%ﬁ'gf CURRENT LIMITER SGURGE 0AD
URCE \ W,
Q VCTL
ccs ¢ OUTPUT
D, D, G C.
c ' ¢ . Ne Ry, Ry, ReRg
3. 4 R, R
Ry 9. 92, Ru.Re VOLTAGE | LIMITER 0, Dy Dy
SW,
D¢, Qs, C¢ Niy
Ny

The transfer function of each of these blocks is first
encoded as a LISP procedure, The following algorithm is
then used to determine the Dbehavior of these
interconnections. First the output wvoltage is computed
under five different assumptions =-- each assumption leading

to a possibly different output voltage:

78

Brol Luie .uni?,ﬂ.?"g 08\:

Assumption 1: The output voltage is being determined
(limited) by the voltage control
setting.

Assumption 2: The output voltage is being determined
(limited) by the current control
setting.

Assumption 3: The output voltage is being determined
(limited) by the amount of current
capable of being delivered by the
Darlington.)

Assumption 4: The output voltage 1is being determined
(limited) by the maximum voltage
produced by the constant current source.

Assumption 5: The output voltage is being determined
(limited) by the voltage produced by the
power supply (VIN).

(The last three assumptions are pertinent only when we are
dealing with a faulted circuit.)

The simulation algorithm picks the 1lowest of these five
voltages and then wuses this voltage to calculate such
quantities as the voltage drop across ISEN, the output
current, the amount of the CCS current being dissipated by
SW1 and SW2, and the voltage drop across the base emitter of
the Darlington. However, some of the five output voltages
computed above depend on the value of these internal
quantities (e.g. the voltage being produced by VIN depends
on the output current) and hence after these are computed
the five output voltages are re-computed and the whole
process re-iterated until the process converges (i.e. 1%

variation between two successive iterations). Usually, this

process converges in three to four iterations.

79

BEST COFY AY :LABLE

Simulating faults in the model: 08

-

There are two kinds of faults each of which is handled
differently. The first kind is a catastrophic fault such as
SW1 being shorted which preempts the above simulation and
immediately dictates the resulting behavior -- the output

voltage is zero.

The other kind of fault invokes the simulation to
determine its effect., With these non-catastrophic faults
the resulting behavior can be captured by changing
parameters or ignoring certain sections. Since the beta of
DARL is used to calculate one of the 5 voltages, changing
this parameter would change that voltage and possibly the
output voltage. Likewise, if SW1l were open, the simulation
would ignore the voltage produced by the voltage control and
would take only the minimum of four wvoltages, A third
example would occur if D6 were shorted. In this case, the
voltage produced by the VCTL would be different by #.,7

volts,

Embedding faults in the function blocks:

The mapping between specified faults and the
information used by the simulation is done in two ways. The
first is pertinent to the VIN and CCS function blocks and
consists of directly modifying their transfer functions.

This is necessary since their behavior is dynamic with

80

ELoi vuri AVAILASLE 08..
respect to some condition which varies during the
simulation. For example, VIN needs to know the output

current to calculate its voltage. CCS needs to know what

voltage is across it.

The second method uses functions which are evaluated
before the simulation starts and which produce attribute
lists which are useful in determining the behavior and
effect of the block under a particular fault. For example,
the attributes for Swl are: whether SW1 has any effect on
the output voltage, whether the Darlington is off because
node 4 is shorted to ground, the beta of SWl, the status of
D6, and whether the BE junction is shorted. The simulation
system uses these lists in order to determine if this block
can effect the output voltage and also to determine various
internal measurements. The attributes for DARL are: the
beta, the BE voltage drop and the value of R22. The
attributes for SW2 are: whether SW2 has any effect, the
voltage drop across the BE, and whether DARL is forced off.
The attributes for VCTL are: the voltage and resistance.
Finally, the attributes for 1ISEN and RLOAD are their

resistances.

Most of the above knowledge is quite ad hoc but |is
extremely useful in constructing a fast simulation model

which can also simulate realistic faults.

81

-
Chapter 6 08¢

Semantic Net

Introduction

The semantic network provides a uniform yet efficient
and very general means of representing the many different
types of non-procedural time-inrariant knowledge required by
Sophie.* DNeveloping specialized representations for each
type of information would be more efficient in terms of size
and speed but would be much less efficient in terms of the
programming effort required to make changes and additions.
Since our purpose was to experiment with different
approaches to representing and utilizing semantic/conceptual
information, we chose a completely general form of a
semantic net =- nne in which we could freely modify and
extend our use of the semantic net without fear of

precluding some kind of retrieval or processing strategy.

Implementation of the Semantic Net

The modelling structure of the semantic net is a

descendant of Shapiro's semantic network of the MIND

* The net is not used for storing information about the
sequences of measurements made by a student. For such
information a tailored data structure is used,

82

Broi wurs » =Ll 08,

system (Sha7l). The network consists of conceptual entities
or “items®™ connected by relations which hold between the
items. An item can be thought of as anything (object or
concept) about which information is known. Some examples of
items are D6, the class of diodes and the concept of D6
shorting. The network implementation is compatible with the
semantic network used by the speech understanding project at
BBN (Woo74)*. It includes convenient ways to add new
information to the net, delete or change relations in the
net and, of course, retrieve information from the net.
There are also functions for printing items in the net,
displaying the entire network, storing the net on disk, and
expanding and contracting the net. The implementation
provides the user with a complete set of LISP functions for
constructing, editing and retrieving information from a
general semantic'network which is, in principle, capable of

representing any non-procedural information.

Shapiro's notion of a semantic network has been
extended to allow an item (conceptual entity) to have
properties as well as relations. The distinction between a

property and a relation is that a property is a relationship

U G Gy WD 6 D Wy S8 e W "B

*We are indebted to Ron Kaplan and Bonnie Nash-Webber for
sharing with us some of their code. Although our decision
to use this implementation structure was made independent of
the speech project, it hopefully will enable us to utilize
more of their linguistic research in building sgtill more
powerful CAI systems. .

83

i 08(;‘

e ST
between an item in the network and a structure outside the
net whereas a relation can exist only between two items in
the net.* Properties allow us to make 1limited wuse of
specialized representations outside the network for
restricted pieces of information. For example, the fact
that C2 1is a capacitor is represented by a relation link
(MEMBER/OF) because both C2 and capacitor are represented by
items in the net, but the fact that the value of C2 is 5§
Microfarads is represented by a property (VALUE) because "5§
Microfarads® is not represented in the network. There is no
a priori reason why "5@ Microfarads" could not be an item
but since it stands in no relationships of interest with any
other item in the system it is more efficiently represented
as a property (i.e. the system 1is not interested in

gstructures over units or numbers).

Whenever a relation is added between two items, the
inverse relation between these two items is automatically
added.** For example, we can add the information that Dé is
a member of the voltage limiting section and is between Q5
and R7 by using the function ADDITEM as follows: (ADDITEM D6
(PART/OF voltage/limiting/section) (CONNECTED/TO Q5 R7)).
The effect in the net is to put a PART/OF link from item D6

- e e G BB wm B en e an WD @ = an

*This is a moot point for Shapiro who represents all
information in the net.

** Note this 1is not true of properties which have no
inverses.

84

Loy n . . oo 08:
to the item voltage/limiting/section and also a HAS/PART
link (inverse of PART/OF) from voltage/limiting/section to
D6, In addition there would be a CONNECTED/TO 1link from
item D6 to both items Q5 and R7 and from Q6 and R7 to D6
(CONNECTED/TO is its own inverse). This means that the part
of the network dealing with relations is a two-way graph
which allows a simple, very powerful accessing method which

can perform certain classes of inferences,

Retrieving Information from the Net

The basic accessing function for relational information
in the semantic net is the function IFIND. IFIND retrieves
items from a specification of how those items are connected
to other items. The specification 1is given in terms of
relation~-item/list pairs of the form (R (I1 I2 .,..In)) which
give the relations (R) and the items (Ik) which constrain
the desired items. Given a 1list of relation-item/list
pairs, ((R1 (111 .., 1Ilp))(R2 (r21 ... I2r))...(Rn (Inl
«es Ing))), IFIND returns all of those items in the network
which for all Rk stand in relationship Rk to at least one of
the 1Ikj. In the simplest case there is only one
relation-item/list pair and the item/list contains a single
item, For example, (IFIND (PART/OF
VOLTAGE/LIMITING/SECTION)) will return a list of those items
which are parts of the wvoltage/limiting/section that is,

those items which stand in relationship PART/OF to the item

85

e ey £ LABLE 09u
VOLTAGE/LIMITING/SECTION. This list is easy to find since
‘all of the desired items are connected to
voltage/limiting/section via a HAS/PART relation (the
inverse of PART/OF). In the relation-item/list pairs, the
item/list can be specified as calls to IFIND which allows
IFIND to be nested to any depth. Using our earlier example
again, (IFIND (CONNECTED/TO (IFIND (PART/OF
VOLTAGE/REFERENCE/SECTION)))) will first find all of the
items which are parts of the voltage/reference/section and
then return the union of those items which are "connected

to" any of the items on this list.

’

In the case where there is more than one
relation-item/list pair, IFIND takes the intersection of the
lists returned by the single pair case. Thus,

(IFIND (PART/OF VOLTAGE/LIMITING/SECTION)

(CONNECTED/TO (IFIND (PART/OF VOLTAGE/REFERENCE/SECTION))))
will find those parts in the voltage limiting section which
are connected to the voltage reference section. The process
goes as follows, First form a list of all of those items
which have a PART/OF relation with voltage/limiting/section.
Next form a list of all of those items which have a
CONNECTED/TO relation with any item which has a PART/OF
relation to the voltage/reference/section. Note the amount
of redundant searching which 1is avoided by forming this
second list since each part in the voltage reference section

is on this 1list only once but may be reachable via many

86

. /s
| RO VU] R N P
J 09,
different CONNECT/TO links. The answer/to//the request 1is
those items which appear on both of these lists. Thus IFIND
works by taking the intersections of unions of 1lists of
items, Since retrieval of this kind is potentially costly,
the storage structure of the network is maintained in sorted
order to allow efficient implementation of the intersection

and union operations.

An Example of the Net

Figure 6.1 shows several items from the semantic
network (as they appear when displayed by DESCRIBE, one of
the network printing functions). The items shown are:
item 1, capacitor; item 3, the particular capacitor, C2;
item 9, the fault F2 which is a part failing by shorting;
and item 82, the concept of the particular capacitor C2

failing in the particular way F2 (shorting).

To give an idea of the way information is represented,
we will give a description of the item representing C2.
PNAME is a special property which links the network (which
is implemented as an array) to LISP atoms. On the property
list of the atom C2 is the property SREF and the wvalue 3
(this item's array location) which means that the C2
provides an entry point into the net.* VALUE,
BREAK/DOWN/VOLTAGE and LEAKAGE/RESISTANCE are properties

which C2 has. TOO/LOW/REST 1is the resigstance that 1is

87

BEST £27 rmi asiE

Fiqure 6.1
09.:
Examples of Items from the Semantic Network
ITEMS:
1
PNAME CAPACITOR
ARG/TO (F1) (F2) (F4)
MEMBER (C1) (c2) (c3) (C4) (C5) (c6)
MEMBER/OF (COMPONENT)
3
PNAME c2
VALUE (5¢ MICROFARADS)
BREAK=-DOWN/VOLTAGE
(58 voLTS)
LEAKAGE/RESISTANCE
(10908 MEGAOHMS)
TOO/LOW/REST
(14960 OHMS)
HAS/NEGAT IVE/TERM
(N/C2)
HAS/POSITIVE/TERM
(p/C2)
HAS/TERMINAL
(p/C2) (N/C2)
MEMBER/OF (CAPACITOR)
PART/OF (REFERENCE/VOLTAGE)
PARTPR 81 82 83
9
PNAME F2
EGO (SHORTED)
ARG (CAPACITOR) (DIODE) (RESISTOR) (SWITCH)
(TRANSFORMER/WINDING) (ZENER/DIODE)
FAULTPR 75 82 94 93 96 98 144 1¢e6 1¢8 115 185 198
- 194 2p¢ 2065 267 209 213 217 221 226 228
232 237 243 248 258 252 254 256 258 260
262 264 267
MEMBER/OF (FAULT)
82
FAULT (F2)
PART (C2)
SCHEMA (s33112)
FAULT-SETTINGS (LOAD 2#) (CcC 1.8) (vC 1.8) (CR HIGH)
(VR HIGH)

88

cvorus ARLYE
; 09,

proposed when a leaky C2 is inserted into the circuit. The
user can state a specific value for the leakage resistance
if he 8o desires; this value is the default when none is

speci fied.

HAS /NEGATIVE/TERM and HAS/POSITIVE/TERM are
respectively the normally negative and normally positive
terminals of C2. These are used to provide the proper sign
when the user asks for the voltage across C2, i.e. in a
normal circuit the answer will be positive, but if the
circuit is faulted in such a way that the potential
difference is reversed, the sign will be negative. The
HAS/TERMINAL is used in conjunction with TERMINAL/OF/NODE
links to represent the topology of the circuit. Note that
this information is a duplication of the HAS/NEGATIVE/TERM
and HAS/POSITIVE/TERM links. This duplication is necessary
because the implementation of the semantic network does not
allow structuring over relations. This is a shortcoming of
our semantic net and is a time-space trade off in favor of

time.

*In fact, atoms with SREF properties (terms) are the only
way to access the net. Note that this allows the network to
have items which do not have associated atoms. This can
amount to a consgsiderable savings over a net implementation
based on atom structures. In the electronics network of 450
items only about one-fourth of these need atoms associated
with them. (However most of the rest do have a PNAME but
these are only for debugging purposes and could be removed
in a finished system.)

89

Tl T 09,

The MEMBER/OF relation represents the fact that C2 is a
capacitor. The PART/OF relation indicates which section
of the circuit C2 is part of, Using these 1last two
relations we can determine that C2 is a voltage reference
capacitor, PARTPR are links to concepts of C2 failing in
specific ways. Item 81 represents the concept of C2
opening, 82 that of C2 shorting and 83 the concept of (2

being leaky.

Network Functions®

The items in the semantic net are represented by small
integers which point to cells in the network storage area,
the array ITEMARRAY. Each cell of array storage can hold
two LISP pointers, The CAR of an array cell is an
ASSOC~type list of the relations of that item while the CDR
is its property list, To initialize a network, there is a
function NEWNET which takes one argument, the maximum number
of items, NEWNET allocates an array of proper size and
assigns it to the global variable ITEMARRAY. It also clears
the global variables TERMS (a 1list of the atoms which
correspond to items), EGO-DICT (a list of item print names),
and FREENODE (the free ligst of items). Whenever a new item
cell is desired, the function NEWITEM is called. If NEWITEM

*Phis section is a rather detailed description of the set of
network functions and would be of interest primarily to
those wanting to use this set of functions as tools for
building their own networks,

90

~h A 7
09.-

‘.

cannot find a free item cell in ITEMARRAY, the function
EXPANDNET 1is called to automatically double the size of the

gstorage array.

Before adding any information to the net, the user must
define the relations and properties he intends to use, This
is done with the function DEFRELS, e.qg. (DEFRELS (Rl m/s
Rlinverse m/s) (R2 m/s)...(Rn m/s Rninverse m/s)). If
Rinverse is not given, R is defined as a property. The m/s
is either M or S and detgrmines whether the relation is
multiple or single valued. For example, (DEFRELS (MEMBER/OF
S HAS/MEMBER M) (COLOR S)) defines MEMBER/OF and HAS/MEMBER
as inverse relations and COLOR as a property, MEMBER/OF is
singular (i.e. an item is the member of only one thing)
while HAS/MEMBER is multiple (i.e. an item can have many
members) . Defining a relation to be simple valued allows a
savings of one CONS cell per link and prevents the user from
inadvertently assigning it more than one value. If the user
is not interested in these points, he may define all of his

relations as M.

The main function for adding information to the network
is ADDITEM. ADDITEM can be used to add new information
about an existing item or to create new items. ADDITEM has
the disadvantage that any items created by it must be
“terms® (have LISP atoms which correspond to them). To

create items without PNAMEs there is a similar function,

91

LE 09c

PRPEVE WO RN

Lleol Wy o &

IBUILD. There is also a function ICONNECT which is useful
for linking together groups of already defined items with a

single relation,

The retrieval of information from the net can occur at
several levels, The function IFIND which was described
earlier can be used for complex retrievals from the net.,
The function ICONNECT? is useful for determining whether or
not two sets of items are anywhere related by a particular
relation. At the 1lowest 1levels, RELFOL returns the

relations of an item while PROPFOL retrieves properties.

There are a large number of functions available for
editing information in the network. To delete information
about an item the function DELITEM is used. It provides
ways of deleting particular links between items, removing
all of those links of a particular relation that an item
has, or deleting an item entirely. This last action which
can also be done by function FREENODE puts the item cell
back on the free item list. The functions CHANGEREL and
CHNGPROP provide ways of changing respectively, the relation
between two items or the properties of an item. To change
the PNAME of an item there is a function RETITLE., In
addition, a way is provided for calling the BBN LISP editor
on either the property list of an item (IEDITP) or the list
of relations of an item (XEDITR). IEDITR must be used with

caution as all of the information on the relation list of an

92

091 ~A‘ (‘, ﬂ.i‘{!;'r:; !:‘.
item is ordered and is duplicated on the relation lists of
the items pointed to by it and IEDITR makes no attempts to

change the inverse links.

To print out information from the network there are
three basic functions. The simplest, PRINTITEM, prints the
name associated with an item. If the item has a PNAME or an
EGO, that 1is what is printed. Otherwise, the item (the
number) itself is printed. The function DESCRIBE
(abbreviated D) prints out all of the arcs (properties and
relations) leaving an item. To make a copy of the entire
network, there is a function PNET. PNET primts a directory
of the relations and properties, the terms and the egos of
the network as well as DESCRIBEing each item, To save a
copy of the network for later wuse, as opposed to later
reading, the user should use the LISP function MAKEFILE on
the file NET. More detail about the implementation of the

network is available in the listings in Appendix 5.

93

Chapter 7 09:

Conclusion

Introduction

The prior chapters have provided a rather comprehensive
technical description of the top level details of Sophie,
Because of the complexity of this kind of system these
chapters may have raised more questions than they answered.
The purpose of this chapter is to anticipate and answer some
of these questions and to indicate some new dimensions along

which Sophie might be profitably expanded,

It is important to realize that we do not view Sophie
as a stand-alone CAI system but instead we view it as a
powerful adjunct to efficient CAI delivery systems such as
PLATO, AIS, etc. To use Sophie to spew out textual material
typically contained in frame oriented systems would be a
maximal misuse of Sophie's power. It seems best to let a
PLATO type system perform those functions for which it has
been carefully tuned and then to invoke Sophie (possibly via
the ARPA network) to handle deeper *problem~solving
sessions” with the student., In particular, by using Sophie
an author can easily present tasks or questions to a student
without being constrained to wuse only those tasks which
possess simple extensionally defined answer sets, Likewise,

with Sophie the author need not worry about selecting or

94

Booyuug 4 s 09.
providing the detailed feedback for each student's
individualized solution to a given task. Such uses make
optimal use of Sophie's intelligence and as Sophie gets
smarter (incorporating more knowledge and inference
procedures) the more profound and individualized the

analyses it performs will be,

Generality

Some of the most frequently asked questions about
Sophie concern 1its generality and the closely associated
issue of what an author must do to add new circuits to
Sophie's repository of knowledge, When we started designing
this system we purposely chose to model one and only one
circuit feeling it would be unwise to build in the
capability of handling multiple circuits until we had solved
the major stumbling blocks of successfully handling one
circuit. However the decision to model the 1IP-28 power
supply was partially based on our concern for generality.
Although many of our techniques for handling the power
supply are currently limited to DC techniques, this
particular power supply critically depends on encoding the
functions of its feedback paths, Having found viable
techniques for coping with feedback in itself quarantees us
one important dimension of generality. Not only do feedback
circuits permeate every moderately complicated electronic

instrument but it is precisely feedback which raises havoc

95

[¥p]
]

.
r-
1y

oga AR DS
ot 5.(0.- .

100

with simplistic troubleshooting techniques (or logics) and
which causes hopeless problems with classical inferencing

techniques.

Adding New DC Circuits

Since much of Sophie's inferential capabilities stem
from “specialists” _intelligently manipulating and
interpreting a general purpose simulation system, adding new
DC circuits basically involves communicating a complete
circuit description to the simulator. This could be done by
storing the description of the new circuit in the semantic
net. Since the various specialists are driven by the
relevant portions of the net, the specialists themselves
should require only minor changes. In addition, the
semantics of the natural language processor would have to be
enlarged to cope with whatever new concepts are present in
the circuit and to be able to determine the proper
denotation for terms used in asking questions about the
circuit, (Handling several circuits simultaneously would
require more profound changes but would surely be doable

within the current framework of Sophie).

The only major stumbling block for adding a new DC
circuit would concern the hypothesis generation specialists
which make extensive use of the fast circuit-dependent

simulator. Currently this simulator would require extensive

96

AR .1()4
recoding for modelling most new circuits. Of course this
problem can be circumvented by deactivating certain
specialists but that action would eliminate most of the
deductive capabilities of the "HELP" command. However, we
think it might be possible to automate the construction of a
circuit dependent simulator by developing some automatic
programming techniques coupled with explicit knowledge
derivable from using the general purpose simulator system to
model the circuit under investigation. We see such research
as providing a challenging new direction to the concepts of

author aids and generative Cz.I.

Handling More Complicated Cirxcuits

Our approach to handling more complicated circuits will
use hierarchical functional models falling back on the
individual component level of simulation for the "terminal®
nodes. We expect no "terminal® to be any more complicated
than our current circuit and therefore we should be able to
use the general purpose simulator for modelling the lowest
level blocks. A great deal more research is required before
we fully understand the best way to handle "faultable"
hierarchical models. In particular we hope to develop more
qualitative simulators for the functional blocks which
manifest some of the advantages of our automata-driven

meteorological simulator (Bro73).

97

Handling AC Circuits

Although we could use our general purpose simulator for
modelling AC aspects of a circuit, we again favor the
development of a more qualitative approach which would merge
the DC simulation techniques (for determining operating
points, etc.) with AC specialists. These specialists would
not only provide a qualitative simulation of the AC behavior
but in conjunction with information derived from the DC
simulation they could be used for the hypothesis generation

or theory formation tasks.

New Avenues of Research

Although Sophie's present capabilities unquestionably
demonstrate that AI techniques can have an immediate pay-off
in CAI environments, we do not pretend that Sophie fully
demonstrates such capabilities. In fact, we have just
scratched the surface of what can be done with AI in an
educational or training environment. What follows are some
directions to be pursued using the basic framework set forth

by Sophie,

1) Using deductive type specialists to create a commentary
on, or a grading of, the sequence of measurements taken
by the student.

a) Creating a logical model of the information that
an "ideal" student would have deduced from this
sequence of measurements. This model could then
be utilized by tutorial specialists to guide the
student on remedial action and to explain to him
why certain of his measurements were redundant,
etc.

98

10:

e Voo .
STV L‘\-’l’, ,

2) Expanding the question answering capabilities 8o that
causal explanations can be given to "why" questions
which follow "what happens if® type questions.

3) Building specialists that can deduce the appropriate
boundary conditions to use in setting up the simulation
runs for "if-then®™ questions and which can reveal why
these conditions are interesting. (Current procedures
perform simple inferencing of a SUPERC nature on the
semantic .net) .

¢

4) Building specialists which can perform gqualitative
reasoning about a new circuit and in particular, can
"understand" what each component is doing in a given
circuit, i.e. a set of specialists that can build a
qualitative description of a circuit given only the
semantics of the circuit.

5) Expanding Sophie's natural language capabilities to
handle contextual problems in a unified way.

6) Incorporating some of the Scholar-type networks and
inferencing procedures for answering generic types of
questions such as "What is a transistor®, etc,

7) Exploring how Sophie might benefit from certain
distributive computation concepts wherein Sophie's

. simulator might run on a number-crunching computer with
all the "smarts® sitting on top of the simulator
residing in a LISP machine,

8) Exploring how to effectively interface Sophie with a
PLATO type system,

Djfferent Domains of Knowledge for Sophie

Although Sophie has been designed around electronic
knowledge the underlying philosophy of Sophie (and its
inferencing schema) can certainly be applied to other closed
"worlds", For example, any domain for which simulation
models exists would be obvious candidates, Several domains

of knowledge which look particularly promising are:

99

104
BEST (o ML ASLE
1) programming wherein one can "simulate" or execute
a program to verify some property about it and to
understand some of the ramifications of a given
mal function or "bug"
2) mechanical systems

3) complex hydraulic systems

4) medical knowledge especially that pertaining to
physiological or pharmacological progesses

Not only do all these domains involve the teaching of
troubleshooting or debugging techniques but they also lend
themselves particularly well to powerful simulations. In
fact many of the convergence problems plagquing simulation
techniques in electronics are minimal in these domains. But
of course there are other problems which are more difficult
to solve in these domains. For example, in the programming
area the inference techniques needed to derive “test data®
(i.e. boundary conditions) are considerably more subtle

than those in most electronic circuits.

Some 51 Issues

Throughout this report we have tended to de-emphasize
the Al aspects of this research except to note that Al
techniques, judiciously used, can have an immediate impact
on CAlI technology. In these closing paragraphs we will
sketch some of the novel and possibly significant AI

concepts developed in the course of building Sophie.

The key to Sophie's deductive or inferential

100

10

BESH (v Botemy
capabilities lies in distributing intelligence across
numerous specialists each of which incorporates domain
dependent knowledge for carrying out its little task,
Distributing the intelligence allows Sophie to easily use
two drastically different means of encoding knowledge == the
"analoque® model and the deductive specialist == each of
which provides unique properties for expediting certain
kinds of inference. The analogue model is especially well
suited to account for the complex side effects and feedback
type interactions underlying the consequences of certain
actions, The deductive specialists are well equipped to
handle "linear®™ reasoning where the consequences of an
action do not cycle back and seriously alter the very state
on which the deduction was initiated. In those situations
where "feedback" leads to competing theories concerning what
should override what, the analogue model can be wused to
simultaneously resolve all such conflicts, However, it
often renders opaque those aspects which are well captured

by the linear reasoning.*

An interesting AI issue 1lies in the interfacing of
these different representations., Just as Gelenter's system
used an analogue model of a theorem (in the form of a
diagram) we use a simulation of a "theorem"™ (representing a

*A gsomewhat similar situation occurs in the trade-offs
between time and frequency domains such as arise in Fourier
analysis.

101

" 10c

LEST G PP
circuit) not only for guiding some of the procedural
specialists but also for creating exampies which provide
kernel data for other specialists, In addition, Sophie
incorporates heuristic “"how to do it" type knowledge which
is used to manipulafe the model and then examine the results
of this manipulation, It is precisely ¢this kind of
non-axiomatic manipulation which looks most promising in our
view and has beén one of the driving forces behind our
concept of Sophie. In summary, we believe that a profound
synergism can be obtained by correctly combining deductive

models with "analogque® models,

102

=t
—
rv

£i6T Lot
10,
Appendix 1

Instrument and Circuit Description
of the IP-28 Power Supply

The IP-28 is a regulated power supply which has both
current limiting and voltage control capabilities.
(Schematic is included at the end of this appendix.) It is
designed to deliver 1 amp at 38 volts when the current range
switch (CR) is set to high and the voltage range switch is
set to high. If CR is set to low then it delivers a maximum
of #.1 amps and if VR irs gset to low it delivers a maximum of
16 volts. The current control (CC) and voltage control (VC)
potentiometers requlate the cut off 1limits within the
specified ranges. When VC is set to 1, the cut otf limit is
at the extreme high (e.g. 38V if VR=hiqh) and if VC is set

to # the output voltage should be limited to about 1 volt.

The internal DC supply voltage level is maintained by
means of a full wave rectifier (diodes D1 and I2) connected
to the center-tapped winding of the power transformer. A Pi
configuration filter (resistor ‘R8 and capacitors C3 and C4)
reduces the ripple in the DC supply voltage to manageable
proportions (about 4 wvolts AC remains). Transistors Ql, Q2
and resistors R9, R1ll form a constant current source. This
particular configuration gives good stability over voltage
level variations twice as large as may be expected at the

output cf the filter, as well as assuring temperature

103

| I

' P Wk}

stability. The output of the constant current source drives
the Darlington pair pass transistor consisting of
transistors Q3 and Q4 and resistor R22. Q3, a power
transistor, is capable of handling the desired currents
(about 1 Amp), but is of relatively low beta. Q4's beta is
very high (nominally 150 - 300¢); their combination assures
both good capacity and quick response. R22 insures that the
Darlington will cut off completely in situations where the
collector-base leakage current of Q3 becomes significant.
R12 is a steady state load which assuree that Q3 does not
cut off completely, and that minimum output voltage can be

reached quickly.

Switching transistors Q5 and Q6 control the amount of
current which actually flows into the base of Q4 from the
output of the constant current source, Current limiting is
achieved via res? »>r R15 and rheostats Rl14 (Current
Control) and R13 [lrimpot). The voltage across this series
registance determines how much curreit Q6 will draw away

from the base of the Darlir«ton pair.

Voltage requlation is achieved via comparison of the
output of the Darlington with the output 6f the reference
voltage, the source of which is the half-wave rectifier on
the other winding of the power transformer (diode D3). The
output of the half wave rectifier is filtered by capacitor

Cl. Zener diode D4 insures that voltage will drop across R3

104

{. i . w.r '5.\’ 10
N THORN .
PRS- <

to a steady 56 volts. D5 and R4 act similarly to drop this
voltage in turn to 36 volts. The use of two zener diodes
insures that the output (final) zener will remain in a
temperature stable recion. The very clean reference voltage
thus produced is applied across rheostat R7 (Voltage
Control), one terminal of which is connected to the output
of the power supply. The difference between the voltage
drop in the reference branch of the circuit to the wiper of
R7 and the voltage across the output load appears across the
base-emitter junction of Q5, thereby controlling the amount
of current that transistor will draw away from the base of
the Darlington pair. C5 is wused to reduce the output
inpedance of the power supply, and C6 insures that the

device will not oscillate due to switching transients.

105

KA1ddns x9mod 8Z~dI 9243

30 DTIeWRYDS

ANd1NO
-ho -
5
-
Tt
L _ T m o
w
L >'ou >on.n. QNP "IVI0A
o == AW ASe & -
Az + + A%| swSuooos Ace
%3 uw Lo]
¢ - = 4
AU 5i =
~l ~
. voost jf voozz| fuszzt__ uxm oso| u» us
oyl e [y i wlie T
a a \AAd .a \A A4 - A Al 4 Y ﬂ -'.-. A A Al q“‘ H
ALY AOE vio v
- - \10dMINL N, 08ANDD
JHOLIMS JONVY JHOLMS 3O0HVY TJOUINOD .
I9VLITI0A INIYNND, AN3HNND,
w3
3
-7
ey
E TT
<z)
[
A
=

106

Aruitoxt provided by Eic:

E

bi.:o‘ ‘,\;:4 ;

111

Appendix 2

BNF Description of the Grammar

This appendix gives a BNF-like description of the
language accepted by Sophie. The grammar is implemented as
LISP functions and some examples are listed in Appendix 3.
The parsing process is sketched out and a iist of compound
words and abbreviations are given. 4

In the description, alternatives on the right hand side
are separated by ! or are 1listed on separate lines.
Brackets [] enclose optional elements. An asterisk * is
used to mark notes about a particular rule. Non-terminals
are designated by names enclosed in angle brackets <>,

The Grammar
{statement) := {request) | <{setd ! {(modifyd>

{request) := {sim/request) [if {part/fault/spec)]
if {part/fault/spec) [then] <{(sim/request)

{set) := set® (switch/spec> [to] {switch/value)
set (pot/spec) [to] <pot/value)
set {load/spec) |to] «load/value)
put <{load/valued [of] (lcad/spec)
increase {(pot/specd [to [(pot/valut)}
decrease {pot/specd> (to] (|<put/value)
*turn, put, let, switch, suppose and change also work,

{modify)> := suppose®* (part/fault/spec)
replace** {part/spec)
{fault/spec)> {faultable/thing)
{fault/up)
clear {instrument/spec)
fix {(instrument/spec)
remove fault
reset <{instrument/spec)
restart
*let and change also
##gwitch and fix also,

107

Bt (2 e 11«

{control/settingd 1= (switch/spec) ! {pot/spec> ! (load/spec)
[setting of] <{control/settingd
{control/settings) i= settings |.controls

{correct/mod> 3= correct ! working ! good ! normal
unfaulted | proper ! new ! ok ! okay

{diocde/spec) := {diode) | <{zener/diode)
(section) diocde ! (section)> zener/diode

{extal/var> := something ! amything
{fault/spec>:= open ! short ! burn/up | blown ! leaky

{fault/up) := insert® [(fault/modd] fault
insert fault <{num/spec)
®*use, introduce, enter and give also

{fault/mod> 1= hard | easy ! benhaim
{faultable/thing) := {part/spec)> ! (junction) ! {(torminal)

{faulted/mod) := broken | fault ! bad ! incorrect ! wrong ! problem
defective

{instrument/spec> := unit ! circuit ! instrument ! supply

<{junction) := {junction/type> [of] {transistor/spec)
(transistor/term/type) and (transistor/term/type> [of]
{transistor/spec)

{transistor/term/type)> to {transistor/term/type) [of]
{(transistor/spec)

{junction/type) := e¢b | be ! ec | ce ! cb ! bc
<{k/num/specd := "number 'k (i.e, $0k)

{load/spec) t= load ! output resistor

108

{load/value) := {(num/specd [unit] BESY COFf R 7iLABLE 11
{k/num/specd> [unit]

<{meas/quant) := voltage ! current ! resistance® ! power
*means measured resistance

{measurement /modifier) := {(right/ameas/mod) 1 <{wrong/meas/modd

(measur ement/pronoun) := it ! that [measurement]
that result ! that value

{measurement} := output <(meas/quant) [of (transformer)]
(transformer)> <{meas/quant)
{meas/quant) between® (node) and* <(node)
<{meas/quant) of** (part/spec)
{meas/quant) between output terminals
{meas/quant)> of <{junction)
{meas/quant) of <{node)
(meas/quant)> from <junction)
{junction/type)> (meas/quant)> of {transistor/specd
(transistor/term/type> <{meas/quant)> of

<transiator/spec§p

*from-to also works
®#%at, thruy, in, into, across and through also work

{model/rodifier) := {correct/mod) ! {faulted/mod)

(model/spec) := in* (model/modifier)> d{instrument/spec)
: supposed [to] be
*for and with also .

{node) := (terminal) ! ground
junction of (part/spec> and {part/spec)
node between {part/specd> and {part/spec)
{point) between {part/spec) and <{part/spec)
{node/name) ! [node] <(node/number)

<{node/number> 1= integer ~1{n<27
<num/specd> 1= "any positive number (k]

{part/fault/spec)> := (faultable/thing) is] {fault/spec)
- {faultable/thing)> [is] {(model/modifier)

109

I,r”r ~oo L od

1. FE
{part/spec) [is] {part/valued
11 {exial/var) <faulted/mod) (<faultable/thing))
(part/prop)> (part/specd <(model/modif{ier>
{part/prop> <part/spec) (part/value)
(faultable/thing) has <(faulted/modd {part/prop)
(faultable/thing) has {part/prop> {part/value)

{part/spec) 1= (part/name) | (load/spec> | (section) <part/type)

{part/prop)> t= value ! beta | break-down/voltage ! spec
leakage/reststance ! power/rating ! resistance®
*means specification value of resistance

{part/valued := (load/value) | high | low
{pot/spec) := cc | ve | cct
{pot/value) = <num/specd> | on | off | low | med] high ! max ! min

{right/meas/mod> := right | correct | reasonable ! ok | okay
normal

{sim/request) := what is {measurement) [<model/spec))
{model /spec) what is (measurement)
what is (simple/factd [(model /specd)
what is (measurement/pronoun) <{model/spec)
what is <{control/setting)
what are {control/settings)
what are specs {part/spec) ’
what should {measurement/pronound be
what should (measurement) be
what should <{simple/fact) be
is (part/fault/spec)
is (measurement) (measurement/modifier>
is (measurement/pronoun) {measurement/modif ier)
what happen [<(measurement))
is it possible [that) (part/fault/spec)
could the problem be [that) <{part/fault/spec)
could it be [that) {part/fault/spec)
f think [that) <{part/fault/spec)
what is wrong
what could be wrong
help
review [everything)
save

110

(simple/factd := {part/prop> {part/spec) EESTﬁ&;%Q‘wafj
{switch/spec) := vr | cr ! standby

(switch/value) 1= low | high ! on ! off ! 10v | 10volt ! 30v | 30volt
farp ! ,tamp ! 1a ! ,1a | min ! max
301 10 1 1 1 .1

{terminald i= output [terminal] ! (transistor/term) | center/tap
positive terminal <{part/spec)
5 negative terminal {part/specd
arode <{diode/spec> ! cathode (diode/spec)
wiper (pot/spec>

{(transformerd := ti1 ! t2

{transistor/spec) := (transistor> ! (section) transistor
(transistor/term> := {transistor/term/type) <{transistor/spec)
{(trareistor/term/type> := b2ze | collector ! emitter
{wrong/meas/mod> := wrong ! incorrect

{transistor)>, {capacitord>, <dioded, (resistor) and <zener/dicded all
check the semantic network and parse correct part names, e,g. r9, g6,

{(section) uses the semantic network to determine 1if a word is a
section of the unit, e,g, current/limiter,

{part/name> uses the semantic network to see if a word is the name of
a part e, g, r6, c4, t2,

<nod5/name> checks semantic network for node names,

111

L‘LJ! Lul g !.x‘.:;RQLE 11(/

The Parsing Process

The parsing 1is preceded by a prescan which expands
abbreviations, does spelling correction on commonly
misspelled words and recognizes compound words and inserts
the correct slashes; for example, the user can type current
control instead of CC or zener diode instead of zener/diode.

Any statement which does not parse normally is treated as if
it were a "what is" type of question and another attempt is
made by the parser, e.g. "beta of Q5" is treated as “what
is the beta of Q5". If the statement still does not parse,
an extended spelling correction is done.

Following is a list of the compound words and abbreviations
recognized by the parser.

compound abbreviations
Base Emitter =- BE COLL
Emitter Base =-- EB EMIT
also CE, EC, BC, CB I
Break Down Voltage IB
Burn Up IC
Center Tap IF
Constant Current Source IBE
Current Controi IEB
Current Control Trimpot IEC
Current Limiting ICE
Current Range Switch ICB
Current Reference Source IBC
Leakage Resistance: O or OP-
Output Stage (0) §
Pass Transistor ov
Power Rating R
Power Transformer v
Reference Transformer VBE
Voltage Control VEB
Voltage Limiting VEC
Voltage Range Switch VCE
Voltage Source VBC
Zener Diode VCB
WHAT's
BDV
LEAK

112

namp

T YRV
r‘f,}. {\,,»':' RV,

»,

Appendix 3 11,

Program Listing of the Grammar

This appendix provides some examples of the grammar
functions. Included are most of the rules necessary to
parse (recognize and semantically interpret) any occurrence
of a terminal, i.e, "base of Q2" or "wiper of CC".

(<TRANSISTOR/TERM>
{ LAMBDA (STR) (* SPECIFICATION of A
particular TRANSISTOR
terminal.)

(PROG (TS1 R1)
(RETURN (COND
((SETQ TS1 (< TRANSISTOR/TERM/TYPE>
STR))
(SETQ R1 RESULT)
(AND (SETQ STR (<TRANSISTOR/SPEC>
(CDR TS1)))

(SETQ RESULT (LIST R1 RESULT))
STR])

(<TRANSISTOR/TERM/TYPE>
(LAMBDA (STR N) (* Types of TRANSISTOR
terminals.)

- (CHECKLST STR (QUOTE (RASE COLLECTOR EMITTER))
Ni)

(< TRANSISTOR/SPEC>
(LAMBDA (STR) (* Wways of specifying A
particular TRANSISTOR.)
(OR (<TRANSISTOR> STR)
(<SECTION-PART> STR (QUOTE (TRANSISTOR])

113

oSy MY LLAUULE
(<SECTION=-PART> 11a
{LAMBDA (STR PRLST) ©
(* Looks for A REFERENCE to A PART via
THE SECTION it is in.
PRLST is THE PART types acceptable for
THE particular occurrence.)
(PROG (R1)
(RETURN (AND (SETQ STR (<SECTION> STR))
(SETQ R1 RESULT)
(SETQ STR (CHECKLST (CDR STR)
PRLST))
(SETQ RESULT (LIST (QUOTE FINDPART)
R1 RESULT))
STR])

(<PART/SPEC>
{ LAMBDA (STR)
(OR (<PART/NAME> STR)
(<LOAD/SPEC> STR)
(<SECTION=PART> STR
(QUOTE (CAPACITOR DIODE RESISTOR TRANSISTOR
ZENER/DIODE])

(<TERMINAL>
{LAMBDA (STR) (* ALL REFERENCE to A terminal
of A PART.)
(PROG (TS1 R1)
(RETURN
(COND

({SETQ TS1 (GOBBLE (CHECKWRD STR
{QUUTE OUTPUT))
(QUOTE (TERMINAL}
(SETQ RESULT (QUOTE P/OP))
TS1)
((<TRANSISTOR/TERM> STR))
((SETQ TS1 (CHECKWRD STR (QUOTE CENTER/TAP)))
(SETQ RESULT (QUOTE M/T1<S>))

TS1)
([{SETQ TS1 (CHECKLST STR (QUOTE (POSITIVE
NEGATIVE]
(SETQ R1 RESULT) .
(AND
(SETQ TS1
(< PART/SPEC>

(CDR (GOBBLE TS1 (QUOTE (OF]
(SETQ RESULT (LIST R1 RESULT))
'TS1))

114

[[SETQ TSl (CHECKLST STR (QUOTE (ANODE
CATHODE) 11,

(SETQ R1 RESULT)

(AND
SETQ TS1 &
(<DIODE/SPEC> b
(CDR (GOBBLE TS1 (QUOTE (OF) ’g2
(SETQ RESULT (LIST R1 RESULTI] %,
([SETQ TS1 (CHECKLST STR (QUOTE (WIPER] ‘.
(AND (SETQ TS1 (<POT/SPEC> (CDR TS1))) £
(SETQ RESULT (LIST (QUOTE WIPER) N
RESULT)) A
TS1)) ‘

(CHECKLST

[LAMBDA (STR LST N)
(* Looks for one of A list of wrds

(LST) within N words in THE STR.
If found RESULT is set to THE word

found.)

(PROG NIL
(OR N (SETQ N FUZZINESS))

LP (COND
((OR (NULL STR)
(ZEROP N))
(RETURN))
((FMEMB (CAR STR)
LST)
(SETQ RESULT (CAR STR))
(RETURN STR)))
(SETQ STR (CDR STR))
(SETQ N (SUB1 N))
(GO LP))

115

p oo~

I LE
Appendix 4

s L

Examples of Semantic Forms

These are some examples of sentences handled by the
Natural Lanquage Processor., Under each statement the
semantic interpretation is given., The semantic
interpretation 1is a function call which when executed
performs the processing required by the statement,

Requesting measurements: (parse times including semantic
interpretation are placed in parentheses)

What is the voltage across the base emitter junction of the
current limiting transistor? (140 ms)
(MEASURE VOLTAGE (FINDPART CURRENT/LIMITER TRANSISTOR) BE)

what is the VBE of Q67 (120 ms)
(MEASURE VOLTAGE Q6 BE)

wWhat is current thru the base of Q52 (130 ms)
(MEASURE CURRENT (BASE QS5))

wWhat is the IB of Q5? (188 ms)
(MEASURE CURRENT Q5 BASE)

what is the output voltage? (80 ms)
(MEASURE VOLTAGE LOAD)

What is the voltage between node 1 and the positive terminal
of C6? (280 ms)
(MEASURE VOLTAGE N1 (POSITIVE C6))

what is the dynamic resistance of R1l1l? (1286 ms)
(MEASURE RESISTANCE R11)

Wwhat is the power rating of R8? (100 ms)
(CHECKSPEC POWER/RATING RS8)

W??s is the beta of the voltage limiting transistor?
(ms)
(CHEKSPEC BETA (FINDPART VOLTAGE/LIMITER TRANSISTOR))

What are the specs of Q3? (99 ms)
(CHECKSPEC SPEC Q3)

In a working circuit what is the output voltage of the power
reference transformer? (99 ms)
(MODELEVALQ (MEASURE VOLTAGE T2) GOOD)

116

Modifying the instrument:

124

Change the output load to 1# megohms
(STQ LOAD 1.0E7)

Suppose the beta of Q5 is 20
(DOFAULT Q5 288 BETA)

Suppose the breakdown voltage of DS is 38 volts
(DOFAULT DS 3§ BREAK-DOWN/VOLTAGE)

Let C2 be leaky
(DOFAULT C2 LEAKY)

Turn up the voltage control
(INCREASE VC)

Set the wvoltage range switch to 3¢ volts
(STQ VR HIGR)

Set the current control to maximum
(STQ CC 1.0)

Suppose the BE junction of Q6 is shorted
(DOFAULT (BE Q6) SHORT)

Insert a hard fault

(INSERTFAULT HARD)
Noun phrase utterances: (noun phrases get interpreted as
quesgions)
Voltage between the base of Q5 and the wiper of the voltage
control

(MEASURE VOLTAGE (BASE Q5) (WIPER VC))

Output voltage
(MEASURE VOLTAGE LOAD)

VBE of Q6
(MEASURE VOLTAGE Q6 BE)

I thru Cé6
(MEASURE CURRENT C6)

117

IR SN B . LRI o 9J .
T, [V T Y N o b

,,,,,

Miscellaneous Questions:

Is the current limitiﬁg transistor bad
(SEEFAULT (FINDPART CURRENT/LIMITING TRANSISTOR) BAD)

Is it possible that the breakdown voltage of D5 is too low
(TESTFAULT DS LOW BREAK~DOWN/VOLTAGE)

Could the problem be that C2 is leaky
(TESTFAULT C2 LEAKY)

Is anything wrong?
(SEEFAULT EXIALVAR BAD)

What is wrong?
(LISTFAULTS)

If the EB of Q5 opens what is the voltage at node 4
(IPTHEN ((BE Q5) OPEN) (MEASURE VOLTAGE N4))

what happens when the cuxrent range switch opens
(IFTHEN (CR OPEN) (MEASURE VOLTAGE LOAD))

What could be wrong?
(HYPHELP)

Miscellaneous commanéé;

Replace resistor Ré ;> .
(REPLACE R6{

Review
(REVIEW)

Remove all faults
(CLEARUNIT)

Reset the instrument
{RESETUNIT)

Restart
(RESTART)

Save
(SAVESYS)

118

PEST 00Y iy nn
Appendix 5

Program Listing of Semantic Network Functions

This .appendix is a listing of the functions necessary
to buiid and manipulate the semantic network used by Sophie.
It is included in this report in the hope that others may
find this package useful for building their networks. These
functions can be obtained on Dectane or via the ARPA network

from the authors.

119

1'2\ ,

o

(DEFINEQ
(** INTRO

BEST €0 LILBLE 19,

(LAMBDA NIL

(* This is a collection of LISP routines which
implement a gemantic network patterned after
ghapiro, -
A NET STRUCTURE FOR SEMANIIC INFORMATION STORMAGE
in IJCAI 71)

(* The net is a collection of items

(which are physically small numbers used as pointers
into ITEMARRAY) linked together by RELATIONS and
which may have properties, RELATIONS are pointers to
other items in the NPT and are stored in the CAR of
the array cell, Properties are pointers to objects
outside the NIFT and are stored in the CDR of the
array cell, Terms are lisp atoms which provids entry
points into the NET via the property SREF on their
property list, These are kept on a global variadble
TERMS, PFGO-DICT is a list of print name associated
with items in the NET which are used to improve the
readability of the NET,)

(* A network can be saved on dsk by initially doing
a LOAD on NET,INIT, evaluating

(NEWNET n) and then doing a MAKEFILE on NET whenever
& new copy of the network is desired,

NETVARS contains the relevant information about
saving the network,)

(* some accessing of information in the network is
performed by the function IFIND which is
block-compiled and is on a separate file, IFIND,COM
(which should be ioaded before SEM,))

120

N ——

BE3T oy MVAILARLE

(*RrRPL -
{LAMBDA (R) : (* Get the inverse of R)
(OR (CDR (GETREL R)) -
(HELP R "DOFS NOT HAVE A RELATIONAL INVZRSE, })

(ADDITEM
[{NLAMBDA ARG

(* Adds information about an item Or Creates a new
item; The form of a call is

(ADDITEM t/4 (r1 t/411 t/112 .,

t/l'n) (r2 t/121 t/122 see t/‘:n) s e

(rn t/inY t/4n2 .., t/inm)), If r! is a relation,
ADDITEM adds r1 LINKS between t/4 and each t/i1j§.
All t/4 can be either terms or items, -
The t/i (1)), if not atomic can be a form which
evaluates to a list of items,

If r1 is @ property, t/413 can BE anything and is
stored as is,)

(1BUILDY [COND
((NUMBERP (CAR ARG))
(CAR ARG))
((SREF (CAR ARG)))
(T (ADDTERM 2&3 ARG}
NEWITEM
(MAPCONC (CDR ARG)
(PUNCTION (LAMBDA (GRELSPEC)
(MAPCAR (CDR GRELSPEC)
(FUNCTION (LAMBDA (Y)
(LIST (g?a GRELSPEC)
Y

(ADDRFL :
— [(LAMBDA (ITFMA R ITEMB) (* Add a 2-way 1ink)
(PUTLINK ITEMA R ITEMB)
(PUTLIRK ITEMB (*RPL R)
ITEMA))

(ADDTERM

{LAMBDA (ATM ITEM) (* Adds a term and
connects {t up to a
semantic referent)

[OR (FMEMB ATM TERMS)

. (SETQ TFRMS (MERGE TERMS (OCONS ATM)
(PUT ATM (QUOTE SREP)
(PUTPROP ITEM (QUOTE PNAME)
ATM]))

121

BEST Cury 2000 - E
(ADDTOPROP 120
(LAMBDA (NODE PROP PROPVAL)

(* Adds properties to an item
(properties are on the CDR, relations are on the
CAR) if PROP is EGO, it updates EGO-DICT,)

(PROG ((NODEPROPLIST (ELTD ITEMARRAY NODE))
PVLS)
[conD
((MULTP PROP)
(SETQ PROPVAL (CONS PROPVAL)))
((EQ PROP (QUOTE EGO))
(OR (MFMBER PROPVAL PFGO-DICT)
((SETQ EGO-DICT (MERGE PGO-DICT (CONS PROPVAL]
OOND
((NULL NODEPROPLIST)
(SETD ITEMARRAY NODZ (LIST PROP PROPVAL ;)
((NULL (SETQ PVLS (GET NODEPROPLIST PROP)
(NCONC NODEPROPLIST (LIST PROP PROPVAL)))
((MULTP PROP)
(NCONC PVLE PRQPVAL))
(r (RELP (cuog: "ATTEMPT TO LINK SECOND SECOND VALUR)
PROP

(CHA NGERFL
[LAMBDA (FROM TC OLDREL NFWRFL)

(®* CHANGERFEL is used. to edit the semantic network,
i.=2, to change the type of link between nodes from
and to., OLDREL is the 014 link, while NEWREL is the

new one.)

(DFLREL (SETQ FROM (SEMNODE FROM))
OLDREL
(£ETQ TO (SEMNODE TO)))
(ADDREL FROM NEWREL 7T0])

(CHNGPROP
{LAMBDA (NODE PROP TO)
(COND
([seETQ NODE (MEMB PROP (PLTD ITEMARRAY (SEMNODE NODE]
(RPLACA (CDR NQDE) TO))
(T (RFLP (QUOTE "NO PROPERTY")
PROP])

(DFFRFL ‘
(LAMBDA (R1 SM1 R2 SM2)

(* DEFFRFL is used to define new primitive RELATIONS
in the semantic network, It has baen changed from
kaplan‘s version to allow the use of one way LINKS
or flags (properties)) .

122

BEST COPY AumILAB
124

(COND
((GETRFL Rt T) "
(ERROR RY ALREADY DEFINED AS A RELATION,))
((GETREL R2 T) .
(ERROR R2 ALRFADY DEFINED AS A RELATION.))
({or [NOT (FMEMB sM1 (CUOTE (S M]
(AND_R2 (NOT (FMEMB SM2 (QUOTE (S M) .
(ERROP RELATION SPECIFICATION HAS WRONG MULTIPLICITY SPEC.,)))
(pur RY (QUOTE PFL)
(CONS sM1 R2))
(SFTQ RFLATIONS (CONS R1 RELATIONS))
(coND
(r2 (PUT R2 (QUOTE Rl.'L;
(CONS sM2 R1)
(SETQ RFLATIONS (CONS R2 RELATIONS]):

(DEFRFLS
(NLAMBDA RFLDFFS

(* Used for defining relations e

(DEFRELS (r1 wm/s riinverse m/s)

(r2 m/s r2inverse m/s) ...

(rn m/s rninverse m/s)) if rinverse is not given, ri
is a property,) "

(MAPC RFLDEFS (FUNCTION (LAMBDA (RELDEP)
(APPLY (FUNCTION DEFRFL)
RFLDEF]))

(DEGOS
(LAMBDA (FILE SORTFLAG)

(* DEGOS 1is used to print out a dictionary of the
EGO LINKS for ease in looking through the semantic
NET. It is called by PNET.)

(PRINT "rcos:” FILE)
(TERPRI FILE)
(MapcC (CORND
(SORTFLAG (BORT EGO-DICT T))
(T BGO-D1CT))
(FUNCTION (LAMBDA (FGO)
(SPACES 2 FILER)
(PRINY BGO FILE)
_ (TERPRI FILE])

123

(DELTTEM BEST LGPV o) T oix 12¢
[NLAYBDA ARG

(* Analogous to ADDITEM for deleting links.

ARG can BE (ITEM), (ITEM PROP),

(ITEM REL), (ITEM RFL ITEM2)

(XTEM (r11 41 12) (r12) (PROP)

(rla 11 12 13 ...) ...). At present all of a
property is deleted. To do otherwise, use IEDITP.)

(PROG (ITEM REL ITEM2)
(R [NUMBERP (SETQ ITEM (SEMNQDE (CAR ARG]
(FRROR ITEM NOT AN ITEM,
{conD
((NULL (CDR ARG))
(FREENODE ITEM))
[(ATOM (SETQ REL (CADR ARG)))
(coND
((ONEWAY? REL)
(DELPROP ITEM RFL))
((SETQ ITEM2 (CADDR ARG))
(OR (NUMBERP (SETg ITEM2 (SEMNQDE ITEM2)))
(ERROR ITEM2 NOT AN ITEM,))
(DELREL ITEM RB. ITEM2))
(T (MAPC (RELFOL ITEM REL)
(FUNCTION (LAMBDA (I2)
(DELREL ITEM REL 12]
(T (MAPC (CDR ARG)
(FUNCLION (LAMBDA (X)
(COND
((CDR X)
(MAPC (CDR X)
(FUNCTION (LAMBDA (Y)
(APPLY® (FUNCTION DELITEM)
ITEM
(CAR X)
Y]
(T \APPLY* (FUNCTION DELITEM)
ITEM
(CAR Xx)
(RETURN ITEM])

(DELPROP
[LAMBEDA (NODE PROP)

(* Deletes a property from an item.

If the property is PNAME or EGO, it also removes its
value irum +ERMs or EGO-DICT,

If nothing is left on the item arter deletion, the
item is put on the freelist, FRLENODE.)

124

BEST cgpy

nilhig 12.
(PROG &T1)
COND
{((ECc PROP (QUOTE PNAME))
(COND
((EQ (SREF (SFTQ T1 (PROPFOL NODE PnrOP)))

NODE)
(REMPROP TY (QUOTE SxEr))
(SETQ TERMS (RFMOVE T1 TERMS]
((EQ PROP (QUOTE 2GO))
(SETQ FGO-DICT (REMOVE (PROPFOL NODE PROP)
BGO-DICT)
(SETD ITEMARRAY NODE (MAPOON
&ELTD ITEMARRAY NODE)
FUNCTION (LAMBDA (wnP)
(conNp
((EQ (CAR nr)
PROP)
NIL)
(T (LIST (CAR NP)
(CADR NP)
(FUNCTION CDDR)))
(FREEIFNULL NODE])

(DELRFL
{LAMBDA (*FROM RFL *TO)

(* DELREL is used to delete a link between two nodes
in the semantic network, *FROM and *70,

Since every link is two-way, DELREL! is called to
delete both directed LINKs.s

(DFLRELY (SETQ *FROM (SEMNODE ®*FROM)) .
REL ‘
(SETQ *T0 (SEMNODE *70)))

(DELRELY *TO (*RFL REL)*FROM)*FROM])

(DELREFLY
{LARBDA (FROM RFEL TO)

(* DELRELY is called by DELREL to delete a directed
link between nodes from and to,

From and to are integers, pointing to nodes in the
semantic network, If nothing is left on node from
after the deletion, it is added to the pool of
available nodes, FREENODE,)

125

Lesi Lo | ‘f .
(PROG ((r)'x.mxs (LINKS PROM)) 1
X
(OR (SFTQ X (ASSOC REL FLINKS))
(RETURN NIL))
{conD
((zo (cUOTE s)
(car (GETP RFL (QUOTE REL)
(COND
[(rQ TO (CDR X))
(SETA ITEMARRAY
FROM (MAPCONC FLINKS (FUNCTION (LAMBDA (Y)
(AND (NEQ Y X)
(LIST Y]
(T (PRINY FROM) -
(PRINY' (QUOTE = IS NOT LINKED TO))
(PRINY TO) . _
(PRINT (QUOTE ~ VvIA "))
(PRINT RPFL)
(RETURN T]
(T [SETQ X (CONS (CAR X)
(MAPCONC icoa X)
FUNCTION (LAMBDA (Y)

(AND (NEQ Y TO)
(LIST Y]
(SETA ITEMARRAY
FROM (MAPCONC FLINKS (FUNCTION (LAMBDA (Y)
(COND
((2Q (CAR X
(CAR Y))
(AND (CDR X)
(LIsT X)))
(T (LIST Y]

(FREEIFNULL FROM])

(DFSCRIBE

(NLAMBDA ITEMS (* Prints the arcs

leaving item/terms)

(MAPC (COND
((NULL XITEMS)
LASTITFMS)
((NLISTP ITEMS)
(LIST ITFMS))
(T ITENMS))
(FUNCTION DESCRIBE1])

(DESCRIBE1
[LAnang (NODE)

(®* DESCRIBE1 describes all the arcs leaving and
entering item, NODE is either a literal atom or &
number, If a literal atom does not correspond to a
NOLCE in the semantic network

(1.e. it does not have sn SREF property), DESCRIBE!
returns NIL, If a NODE is in the pool of free nodes
and has no LINKS, it is not printed,)

126

%

(COND § OOV L e s
{(NULL (SFTQ NODR (SEMNODE NODE] BEST £nen b 13
((OR (LINKS NODE) 4

(LISTP (FPLTD ITEMARRAY NODR)))
(PRINY NODE)
(TERPRI)
{conp
((PROPFOL NODE (QUOTE PNAME))
(SPACES 3)
(PRINY (QUOTE PNAME))
(TAB 14 1)
(PRINT {PROPFOL NODE (QUOTE PNAME)
(PRINTPROPS NODE)
(*APC (LINKS NODE)
(FUNCTION (LAMBDA (RELSPEC)
(SPACES 3)
(PRINY (CAR RELSPEC))
(TAB 14 1)
{conD
{(MULTP (CAR RELSPEC))
(MAFC (CDR RELSPEC)
(PUNCTION (LAMBDA (X)

(COND
((ILESSP 45 (POSITION))
(TAB 14 1)))
(PRINTITEM X)
(spaces 1)
(T (PRINTITEM (CDR RELSPEC]
(TERPRI]))
(DITEMS
{LAMBDA NIL (* Prints all of the
: items in ITEMARRAY)
(PROG ((N 0)), .
(PRINY "ITEMS:)
(TERPRY)
(RPTQ NITEMS (DESCRIBEY (SETQ N (ADD1 K)
(TERPRI)
(RETURN T))

127

(DRELS BEST CU-Y Surdfint 13.
{LAMBDA (FILE) *“ (* Prints all of the
. . RELATIONS)

(PRIN1 "RELATIONS: FILE)
(TERPRI)
(MAPC RELATIONS (FUNCTION (LAMBDA (RELATION)
(SPACES 2 FILF)
(PRINY RELATION FILE)
(TAB 12 1 FILE)
(PRIN1 (CAR (SETQ RELATION (GETRFL RELATION)))
FILE) :
(COND
((CDR RELATION)
(TABR 17 1 FILE)
(PRINY (CDR RELATION)
FILE)
(TAB 27 1 PILE)
(PRINT (CAR (GETREL (CDR RELATION)))
FILE))
(T (TERPRI FILE])

(DTERMS
(LAMBDA (SORTFLAG)

(* Prints all of the TERMS and the item number of
their semantic referent,)

(PRINY "TERMS: ")
(TERPRI)
{MaPC (COND
(SORTFLAG (SORT (COPY TERMS)))
(T TERMS))
(FUNCTION (LAMBDA (TERM)
(spaces 2)
(PRINY TERM)
(TAR 16 1)
(PRINT (SREF TERM)
(TERPRI])

(EXPANDNET
[(LAMBDA (NEWSIZE) (* Copy net into an
. - enlarged array)
(PRIN1 “**®FNLARGING NET TO T)
éPRIN1 NEWSIZE T)
PRINTH ITEMS, T)
(PROG ((ﬁsw (ARRAY NPFWSIZE))
1
LP [COND
({EQ I NITEMS)
(SETQ ITEMARRAY NEW)
(RETURN (SETQ NETSIZE NEWSIZE]
(SETA NEW I (ELT ITEMARRAY 1))
(SETD NEW I (ELID ITEMARRAY I))
(sFrQ 1 (ADDY 1))
(GO LP])

128

T T ' 13.

LD

[o]
iy

(FREEIFNULL
{LaMBDA (NODE)

(* Checks and freeu an item if it has neither
properties nor RELATIONS, FREENODE is the freeslist,)

(OR (ELTD ITEMARRAY NODE)

(ELT ITEMARRAY NODE)
(PROGN (SFTD ITEMARRAY NODE FREENODE)

(SETQ FREENODE NODE])

(PREENODE
(LaMBDA (NODE) {®* Deletes 2 NODE by
deleting all of its
RELATIONS and

properties,)

{MAPC (LINKS NODE)
(FUNCTION (LAMBDA (X)
(APPLY* (FUNCTION DFLITEM)

NODE .
(CAR X]
(MAP &ELTD ITEMARRAY NODE)
FUNCTION (LAMBDA (X)
(DELPROP NODE (CAR X]

(FUNCTION CDDR])

(GETREL
(LAMBDA (R OKFLAG)

(coND
((NULL R)
NIL)
((GFTP R (CUOTE REL)))
(OKFLAG NIL) “
((HELP R IS NOT A DEFINED RELATION,)

(GETRIL R OKFLAG))

(1BUILD
[NLAMBDA ARGS

(* Builde 2 new item from a s

(IBUILD (PNAME name) (rt t/it

ycci!icatton list, 1ie
(r2 £/12) (xrY t/42) ...). A106 see ADDITEMN)

(YBUILDY (NEWITFM)
ARGS])

(IBUILDY
[(LAMBDA (NFWITEM ARGS)

(* Builds an ITEM from a specification,
Returns a ‘LIST’ of the new ITEM)

129

(PROG imcwms) 13
ARGS
(FUNCTION (LAMBDA (RELSPEC)
(PROG (ANS)
_ tsno RFL (CAR RELSPEC))
LY [COND
((NOT (RELP REL))
(PRINT REL T) -
(PRINY (QUOTE IS MISSPELLED OR UNDEFINED)
by

(TERPRI T)
(PRINY

(cpore .
TYPE S TO CHANGE SPFLLING, D TO DEFINE’)

((ro gsm‘c ANS (READ T))
CUOTE 8)) .
(PRINY (QUOTE "CORRECT SPELLING IS)

T)
(SETQ REL (READ %))
(G0 L1))
((2c Ad8 (QUOTE D)) -
(PRINY (?Uo'rz TYPE DEFINING FORM)
T
(TERPRY)
(EVAL (READ))
(6o L1)
(* (G0 L1
(SETQ ITEMS (CADR RELSPEC))
(COND
((ONEWAY? RFEL)
(ADDTOPROP NEWITEM REL ITEMS))
((aTOM ITENMS)
(COND
((NUMBERP ITEMS)
(ADDREL NEWITEM REL ZTEMS))
(T (ADDRFL NEWITEM REL ssnu ITENS T)
[[NUMBERP (CAR (SETQ ITEMS (BVAL ITEMS}
(MAPC ITEMS (FUNCTION (LAMBDA (ITENM)
« (ADDREL NEWITEM REL ITEM) -
(T (HELP AT‘;‘EHPT TO LINK NON-ITEM TO ITEM VIA
REL
(RETURN (LIST NEWITEM])

130

(xc[ounsc'r
R , e .y
N!fgrgghxég:n?mgxﬁ TTENB) BEST Oty Judn irt e 1
((ATOM ITEMA) 3.
(LXST (SREF ITEMA T))) ’
(T (®EVAL ITEMA)
(SFTQ 1TEMB (COND
((ATOM ITEMB)
(LIST (SREF ITFMB T)))
(T (evAaL ITEMB)
(MAPC ITEMA (FUNCTION (LAMBDA (A)
(MAPC ITEMR (FUCTION (LAMBDA (B)
(ADDREL A REL B])

(ICONNECTED?
(NLAMBDA (ITEMA RFL ITEMB)
[SETQ ITEMA (COND
((ATOM ITFMA)
(LIST (SREF ITEMA T)))
(T (EVAL ITEMA)
[sETQ 1TEMB (COND
((ATOM ITEMB) .
(LIST (SREF ITEMB T)))
(T (EVAL ITFMB)]
(SOME ITFMA (PUNCTION (LAMBDA (A)
(SOME (RELFOL A REL)
(PUNCTION (LAMBDA (AA)
(MEMB AA ITEMB))

(IDIFF
[NLAKBDA ARGS (* Set difference of 2
itemlists,)
(SDIFF (EVAL (CAR ARGS))
(EVAL (CADR ARGS])

(xrDITP
(NLAMBDA (ITEM)

(* »llowe editing of the property list
(CDR) of a item/term, Cannot BE used to delete all
of the properties of an ITEM,)

[EPITE (FLTD ITEMARRAY (COND
((NUMBRRP ITEM)
ITEM)
(isnrr ITEM)), "
((ERROR ITEM "NOT AN ITEM)
ITEN))

(IEDITR
{NLAMBDA (ITEM)

(* Allows editing of the relation list

(CAR) of a Ltem/term, Cannot BE ugsed to delete all
of the properties of an ITEM,)

131

) BEST C5PY Ruaiinmy 17
(EDITE (ELT ITFMARRAY (COND ’ Ju
. ((NUMBERP ITFM)
ITEM)
((SREF ITEM)) .
- ((ERROR ITEM NOT AN ITEM]

ITEM))
(LINKS
{LAMBDA (ITEM) (* Retrieve LINKS of
ITEM)
(FLT ITEMARRAY ITEM])
(MULTP
{(LaMBDA (R) (* Is R a multiple
relation?)
(rQ (CAR (GETRFL R))
(quoTe M])
(NEWITEM
(LAMBDA NIL (* Allocate & new item)
(* Enlarging the net i(f
necessary)
(COND

(PREENODE (PROG ((I FREENODE))
(SETQ FREENODE (ELTD ITEMARRAY 1))
(SETD ITEMARRAY I NIL)
(RETURN 1)))
(T (AND (EQ NITEMS NETSIZE)
(EXPANDNET (ITIMES 2 NETSI2E)))
(SETQ NITEMS (ADD1 NITEMS])

(NEWNET
{LaMBDA (N) (® Construct a new net)

(® EXPANDNET will be
used to expand the net
if it becomes full,)

(SETQ ITEMARRAY (ARRAY N))

(SFTQ NETSIZE N)

(SETC NITEMS O)

(SFTQ SUBLIST NIL)

(SETQ FREENODE NIL)

(SETQ TERMS NIL)

(SFTQ ¥GO-DICT NIL))

(ONEWAY?
{LaMeDA (RFL)
(NULL (CDR (GETREL RM.])

(PNAME
[LAMBDA {I7FM)

(®* PNAME returns THE print NAME
(PNAME) of AN ITEM, ITEM must BE A NUMBER,)

132

(AW ITFM (SPTQ ITFM (PROPFOL ITEX (QUOTE PNAME)))
(OR (LISTP ITEM)
(CONS ITEM]) ;
T A T NN
(PNET EST CORY pye)
{NLAMBDA (FILE)

(* Prints the entire net on file FPILE
(relations, terms, egos and items) in a humanoid
readable (but not LISP readable) form,

To save the network use MAKEFILE

(NET) ——- see **INTRO)

(PRETTYDEF NII, FILE (QUOTE ((E énnzns)

DTERMS T)
(DBGOS)
(DITEMS])
(PRINT
{(LAMBDA (XP)
PRIN! XP)
TERPRI])
(PRINTITEM

{LAMBDA (ITEM)

(®* PRINTITEM prints items in the semantic network,
If the ITEM has a print name

(PNAME) or an EGO link, that is what is printed,
Othervise, it is the ITEM itself,

FGO LINKS are printed in square brackets to
distinguish them from pnames which are in
parentheses,)

(OR (AND (NUMBERP ITEM)
(PROPFOL ITEM (QUOYE PNAME))
(PRINTDEF (PNAME ITEM
(POSITION))
(AND (NUMBEXP ITEM)
(PROPFOL I'T'EM g?QOTE EGO))
(PRINY (QUOTE))
[NULL (»APC (PRUPFOL ITEM (QUOTE BGO))
(FUWCTION (1AMBDA (X)
(PRINY X)
(cond
{ (JLESSP 65 (POSITION))
(TAB 20 1)}
(T (SPACES ¢
(PRINY ITEM) -
(PRINY (CuOTE "1"))
!]

(PRINTDEF ITEM (POSITION])

133

13

(PRINTITEMLIST gost ool it 13
(LAMBDA (I'tFMS FILE)
(PROG ((PREFILE (OUTPUT FILE))), K , .
(MAPRINY ITEMS NIL "¢ ">" " 7 (FUNCTION PRINTITEM))
(TERPRY)
" (RETUx~ (OUTPUT PNFEFILE])
(PRINTPROPS
(LAMBDA (NODE)
(PROG ((PRUPLIST (FLTIV ITEMARRAY NODE)))
Lp (OOND
((NULL PROPLIST)
(RETURN NIL))
((FQ (CAR PROPLIST)
(QUOTE PNAME)))
(T (SPACES 3)
(PRINt (caR PROPLIST))
(TAB 14 1)
{conD
{(#ULTP (CAR PROPLIST))
(FAPC (CADR PROPLIST)
(FUNCTION (LAMBDA (X)
(COND
((ILESSP 45 (POSITION))
(TAE 14 1)))
(PRINTDEF X (PNSITION))
(SPACES 1]
(T (PRINTDEF (CADR PROPLIST)
(POSITION]
(TERPRIY)))
(SETQ PROPLIST (CDDR PROPLIST))
(o LP))
(PROPFOL

(LAMBDA (NODE PROP)
(GET (ELTD ITEMARRAY NODE,

PROP])

(PUTLINK
{LAMBDA (FrrROM R Toz
FLINKS (LINKS FROM)))

(PROG iITEMLIST
COND

({(MULTP R)
(SETC TO (LIST TO]

(COND

((NULL (SETQ ITEMLIST (RELFOL FROM R)))

[((NULL FLIMKS)
(SETA ITEMARRAY FROM (LIST (coNs R TO)

(MERGE FLINKS (LIST (CONS R TO))

T))
((MULTP R)

(* Ad4 a t-way link)

(* From has no LINKS)

* From has no r-links)

(MERGE ITEMLIST TO))
(T (HELP R_ SINGULAR, CAN't PUT MULTIPLe LINK')))

(RETURN FROM])
134

REST COPY AVANARLE

(PUTPROP 1
(LAMBDA (NODE PROP PROPVAL) 3.
(SETD ITEMARRAY NODE (NCONC (LIST PROP PROPVAL)
FLTD ITEMARRAY NODE)))
NODE])
(RELPOL
{LAMBDA (ITFM REL) (* Gets a list of items
linked to an ITEM by a
relation)
(COND
((SETQ XITEM (CDR (ASSOC REL (LINKS ITEM]
(CoND
((MULTP RFL)
ITEM)
(T (LIST ITEM]))
(RFLP
(LaMBDA (REL)

(GETP RFL (QUOTE REL])

(RFTITLE .
{(LAMBDA (OLDNAME NEWNAME)

(* RFTITLE is an editing function for the semantic
network, It permits one to change the print name of
a node,)

(PUT NFWNAME (QUOTE SREFF)
(SREF OLDNAME))
(CHNGPROP (SREF NEWNAME)
(QUOTE PNAME)
NEVWNAME)
(RFMPROP OLDNAME (QUOTE SREF))
(RPLACA (MEMB OLDNAME TFRMS)
" NEWNAME)
(SORT TERMS)
NEWNAME])

(SEMNODE
[LAMBDA (NODE)

(* SEMNODE is used by many functions to change their
input into a pointer into the semantic network,

.1f NODE, which is bound in the calling function,
does not appear in the semantic network

(1,2, have an SREF), SFANODE causes an error,)

135

ok
(COND Cl "{/{ [s
((NULL NoDE) , pest v 1.
NIL) Lu
{(LITATOM NODE)
(CoND
((SREF NODE)) ”
(T (ERROR WORD NOT IN SEMNET -~ NODE]

(T NODE]) ’
(SRFF
.[LAMBDA (ATM BUILDFLAG) (* Gets or builds a
scmantic referent for an
(atom (term))
OOND

((GETP ATM (QUOTE SREF)))
(BUILDFLAG (ADDTERM ATM (NEWITEM])

(TOPFN
(NLAMBDA (FN) (* Does top-level print)
(PRINTITEMLIST [SETQ LASTITEMS (APPLY FN (COND
(LISPXLISTFLG LISPXLINE)
] (T (CAR LISPXLINE)
T])

(LISPXPRINT (?UOTE SEMFNS)
T
(RPAQQ SEMFNS .
(®**INTRO *RF!, ADDITEM ADDREL ADDTERM ADDTOPROP CHANGEREL

CHNGPROP DEFREL DEFRFLS DPFGOS DFLITEM DELPROP DELREL
DELRELY DESCRIBE DESCRIBEY1 DITEMS DRFLS DTERMS
EXPANDNET FRPEIFNULL FREENODE GETRFL IBUILD IBUILDY
JOONNECT ICONNECTED? IDIPF IEDITP IEDITR LINKS MULTP
NEWITEM NEWNET ONEWAY? PNAME PNET PRINT! PRINTITEM
PRINTITEMLIST PRINTPROPS PROPFOL PUTLINK PUTPROP

RELFOL RELP RETITLE SEMNODE SREF TOPFN))
(LISPXPRINT (QUOTE SEMVARS)

T)
(RPAQQ SEMVARS ((VARS SEMMACROS (LISPXMACROS (APPEND SEMMACROS

LISPXMACROS)))
(P ®* SEMEXPRS)))

[RPAQQ SEMMACROS ((F (TOPFN IFIND))
(B (TOPFN IBUILD))
(- (TOPFN 1DIFF)
(RPAQ LISPXMACROS (APPEND SFMMACROS LISPXMACROS)!
[RPAQQ SEMEXPRS ((EQUIVALENCE (P IFIND)
(B IBUILD)
(D C®SCRIEE)
(8 DEFREL)
(- IDIFF)
(C ICONNECT)
(C? ICONNECTED?)

136

(ECUIVALENCE (P IFIND)

_ STOP

BEST p
(B IBUILD) 14,4
(D DESCRIBE)
(¢ DEFREL)
(- IDIFF)
(Cc ICONNECT)
(¢? ICONNECTED?))

[y
[
rvy

137

BEST COF{ AVniLABLE
14;;

(FILECRFATED "12-DEC-73 111543120 IPIND
changes to: IFIND,ORDERSECT,ORDERUNION,RELFOL,IFINDVARS)

(DEFINEQ

(IPIND
(NLAMBDA ARGS

(* Retrieves information from the network according
to a gpecification, For example

(1rIND (TUNCLE “JIM) (“spoust

(1PIND (TSIBLING "MARY)))) would retrieve those
ITEMS who are both uncles of JIM and married to one
of MARY’S siblings.)

(PROG (*RFL ITEFMS)
(NINTFRSECTION
(MAPCAR ARGS
(FUNCTION (LAMBDA (RELSPEC)
(SETQ *RFL (*RFL (CAR RELSPEC)))
(SETQ ITEMS (CADR RELSPEC))
(coND
. [(ATOM ITEMS)
(CoND
((EQ *REL (QUOTE SREF))
(LIST (SREF ITEMS)))
(T (RELFOL (SREF ITEMS)*RFL]
(* (NUNION (MAPCAR (EVAL ITEMS)
(PUNCTION (LAMBDA (ITEM)
(RELFOL ITEM ®REL])

(NUNTON
(LAMBDA (LISTS) (* Brute force n-way
ORDERUNION)
(coND
[(CDR LISTS)
(ORDERUNION (CAR LISTS)
(NUNION (CDR LISIS]
(T (CAR LISTS]})
(NINTERSECTION
[LA¥BDA (LISTS) (* Brute force n-way
: ORDERSECT)
(COND ~
{(CDR LISTS)
(ORDERSPCT (CAR LISTS)
: (NINTERSFCTION (CDR LISTS]
(T (CAR LISTS])
138
- - |

—]] . I

(ORDERSECT o TUTY ey 14..
{LaMBDA. (LY L2)
(* Does a two-way INTERSECTION on lists which are
ordered via ILESSP. The retations in the network are
maintained in sorted order.)

(PROG &R)
- LP COND
((oOrR (NULL L1)

(NULL L2))
(RETURN (DREVERSE R)))
((EQ (CAR LY,
(CAR 1L2))
(SETQ R (OONS (g?n L)
R
(SETQ L1 (CDR wuLY)
(S*rQ 1.2 (CDR L2)))
((TLESSP (CAN L1)
(CAR 12))
(SETQ LY (CDR L1)))
(T (SerQ L2 (CDR L2]

(co LP])
(ORDERUNION
{LAMBDA (L1 L2) (* Does a two-way UNION
of ordered lists,)
(PROG ip)
Lp [oonD
((NULL L)
(RFTURN (NCONC (DREVERSE R)
L2)))
((NULL L2)
(RETURN (NCONC (?x;n):\)mnsz R)
L
((EQ (CAR L1)
(CAR L2))
(SETQ R (CONS ’(Sl)m L1,

(SETQ L1 (CDR L1)
(SETQ L2 (CDR L2)))
_ ((1LESSP (CAR L1)
(car L2))
(SETQ R (CONS (():AR L)
R

(SETQ LY (CDR L1)))
(T (SETQ R (cons “5“ L2)
R

(SETQ L2 (CDR L2)
(60 LP))

139

i 14.

SRR
SR

(RFLFOL
(LAMBDA (ITEM RFL)

(* Gets those items linkeu to an ITEM via a
particular relation, This version is stripped of
error checking to increase the speed of IFIND,
There is another version on the file SEM,)

(coND
([SETQ ITFM (CDR (FASSOC REL (LINKS ITEM]
(COND
((MULTP REL)
ITEM)
(T (LIST ITEM])

(LISPXPRINT (?UOTE IFINDFNS)
T
(RPAQQ IFINDFNS (IFIND NUMNON NINTERSECTION ORDERSECT ORDERUNION

RELFOL))
(LISPXFRINT (?UOT! IrINDVARS)"
T
}RPAQO IPI NOVARS ((BLOCKS * IFINDBLOCKS)))

RPAQQ IFINDBLOCKS ({IFINDBLK IFIND NUNION ORDERUNION NINTERSECTION
ORDERSECT RELFOL (ENTRIES IFIND)

(GLOBALVARS ITEMARRAY)
(LINKFNS , T)

)

(DECLARE
(BLOCK: IFINDBLK IFIND NUNION ORDERUNION NINTERSECTION ORDERSECT

RFLFOL (ENTRIES IFIND
(GLOBALVARS ITFMARRAY
(LINKFNS . T))

)sToP

140

References 14.

(Bob72) Bobrow, D.G., Burchfield, J.0O., Murphy, D.L. and
Tomlinson, R.S. "TENEX, a Paged Time Sharing
System for the PDP-10", Communications of the ACM,
March 1972 -

(Bro73) Brown, J.S., Burton, R.R. and 2dybel, F. "A
Model-Driven Question Answering System for
Mixed-Initiative Computer Assisted Instruction",
IEEE Transactions on Systems, Man and Cybernetics, .
Vol. SMC-3, May 1973

(Car73) Carbonell, J.R. and Collins, A M., "Natural
Semantics in Artificial Intelligence," Proceedings
of Third IJCAI, SRI Publications Department, Menlo
Park, Calif. August 1973, pp. 344-351

(Dos71) Dostert, B.H. and Thompson, F.,B.,, "The Syntax of
REL English," REL Report No. 1, California
Institute of Technology, Pasadena, Calif.
September 1971

(Fox65) Fox, L., An Introduction to Numeric Linear Algebra,
Ooxford University Press, New York, 1965, pp.
60-65, 99-162

(Nag71) Nagel, L.W. "Transient Analysis of Large
Non-linear Networks®, IEEE Journal of Solid State
Circuits, Vol, §SC-6, August

(Nag73) Nagel, L.W. and Pederson, D.O. "“SPICE: Simulation
Program with Integrated Circuit Emphasis"®,
Memorandum ERL-M382, Electronics Research
Laboratory, College of Engineering, University of
California at Berkeley, April 1973

(sha71) Shapiro, S.C. ™A Network Structure for Semantic
Information Storage, Deducation and Retrieval,"
Proceedings of Second IJCAI, 1971, pp. 512-523

(Tei74) Teitelman, W., INTERLISP Reference Manual, XEROX
PARC, Palo Alto, Calif,, February 1974

(Win73) Winograd, T., Understandin; Natural Language,
Academic Press, New York, 1973

(Woo72a) Woods, W.A.,, "An Experimental Parsing System for
Transition Network Grammars," BBN Report 2362, Bolt
Beranek and Newman, Inc., . Cambridge, Mass. May
1972

141

L'\“ 2. PRI
sl wo oy o, !£

tlead g

14(;

(Wo072b) Woods, W.,A., Kaplan, R.M. and Nash-Webber, B.,

(Woo74)

"The Lunar Sciences Natural Language Information
System: Final Report,"™ BBN Report 2378, Bolt
Beranek and Newman, Inc. Cambridge, Mass. June
1972

Woods, W.A, "Motivation and Overview of BBN
SPEECHLIS: An Experimental Prototype for Speech
Understanding Research®", to appear in Proceedings

%§ IEEE Symposium on Speech Recognition, CMU, April
74 o

142

