
DOCUMENT RESUME

ED 098 963 IR 001 342

AUTHOR Brown, John Seely; And Others
TITLE Sophisticated Instructional Environment for Teaching

Electronic Troubleshooting. Final Report.
INSTITUTION Air Force Human Resources Lab., Brooks AFB, Texas.
REPORT NO AFHRL-TR-74-77
PUB DATE Oct 74
NOTE 146p.; Report period covered January 1973-March

1974

EDRS PRICE MF-$0.75 HC-$6.60 PLUS POSTAGE
DESCRIPTORS *Computer Assisted Instruction; Computer Oriented

Programs; *Electronic Equipment; Electronic
Technicians; Program Descriptions; *Programing;
*Simulation; *Technical Education

IDENTIFIERS *Air Force; Natural Language Programing; SOPHIE;
Sophisticated Instructional Environment

ABSTRACT
A programing approach was used to implement a

simulated laboratory. training situation in which a student is allowed
to troubleshoot a defective regulated power supply. The ways in which
students can use natural language to ask questions about and
manipulate the simulated device are described. The techniques
developed to recognize English, to simulate the electronic circuit,
and to model the student's knowledge about the circuit are explained.
A conclusions section explains the generality of the work performed
and possible extensions of the techniques to other training
situations. (Author)

al

MR FORCE 11

H
U

tr!

C A

US DEPAQT ANENT OF HEALTH
EDUCATION & WELFAAE
NATIONAL INSTITUTEOF

EDUCATION
DOC ,,Tf N EN f.tE p.00

D. fDEN C F ED f NON,
NASC,..5, ON OWgiN

N fq Nf nF . f A ON '...P.N,ONS
,DD A O ND' Nf f EPRE

E C %.' A. N, TT ot

a 'DN r. v

c

R

E
S
0
U
R
C
E

S

0 04
AFHRL-TR-74.77

SOPHISTICATED INSTRUCTIONAL ENVIRONMENT
FOR TEACHING ELECTRONIC TROUBLESHOOTING

By

John Seely Brown
Alan G. Bell

Richard R. Burton
University of California, Irvine

Irvine, California 92664

TECHNICAL TRAINING DIVISION
Lowry Air Force Base, Colorado 80230

October 1974
Final Report for Period January 1973 March 1974

Approved fot public release; distribution unlimited.

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE,TEXAS 78235

I

0 U.:
NOTICE

When US Government drawings, specifications, or other data are used
for any purpose other than a definitely related Government
procurement operation, the Government thereby incurs no

responsibility nor any obligation whatsoever, and the fact that the
Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data is nut to be regarded by
implication or otherwise, as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way
be related thereto.

This final report was submitted by the University of California, Irvine;
Irvine, California 92664, under contract F41609,73-C,0006, project
1121, with Technical Training Division, Air Force Human Resources
Laboratory (AFSC), Lowry Air Force Base, Colorado 80230. Mr.
Edward M. Gardner, Computer Based Systems Branch, was the contract
monitor.

This report has been reviewed and cleared for open publication and/or
public release by the appropriate Office of Information (01) in
accordance with AFR 190-17 and DoDD 5230.9. There is no objection
to unlimited distribution of this report to the public at large, or by
DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved

MARTY R. ROCKWAY, Technical Director
Technical Training Division

Approved for publication.

HAROLD E. FISCHER, Colonel, USAF
Commander

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Oats Entred)

FORM

00i 13M- """ P431.r

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

AFHRLTR74-77

2. GOVT ACCESSION NO. 3 PECIPIENTS CATALOG NUMBER

S. TITLE (end Subtitle)

SOPHISTICATED INSTRUCTIONAL ENVIRONMENT
FOR TEACHING ELECTRONIC TROUBLESHOOTING

5 TYPE OF REPORT 6 PERIOD COVEREO
Final
January 1973 March 1974

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*)

John Seely Brown
Alan G. Bell
Richard R. Burton

S. CONTRACT OR GRANT NUMBER(*)

F41609-73-C-0006

9 PERFORMING ORGANIZATION NAME AND AOORESS

University of California, Irvine
Irvine, California 92664

10. PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMBERS

62703F
11210205

11 CONTROLLING OFFICE NAME ANO AOORESS

Hq Air Force Human Resources Laboratory (AFSC)
Brooks Air Force Base, Texas 78235

12. REPORT DATE

October 1974
13. NUMBER OF PAGES

144
14. MONITORING AGENCY NAME 6 AOORESS(II different from Controlling Office)

Technical Training Division
Air Force Human Resources laboratory
Lowry Air Force Base, Colorado 80230

_

15. SECURITY CLASS. (of this* report)
Unclassified

15a. DECLASSIFICATION/DOWNGRADING
SCH E DUL E

16 DISTRIBUTION STATEMENT (of his Report) .

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th abatroci entered In Block 20, If different from Report)

to SUPPLEMENTARY NOTES

This research was completed under sub-contract with Bolt Beranek and Newman, Inc., Cambridge, MA.

19, KEY WORDS (Continue on re oo Ide if necry and
simulation
electronic equipment
technical trauung
Computer Assisted Instruction
computer programming

identify by block number)

electronic troubleshooting
electronics training
SOPHIE
SOPHisticated Instructional Environment_

20. ABSTRACT (ContInUe on revers eide If necmery and Identify by block number)

This report describes the programming approach used to implement a simulated laboratory training situation
in which a student is allowed to troubleshoot a defective regulated power supply. The ways in which students can
use English to ask questions about and manipulate the simulated device are described. The techniques developed to
recognize English, to sunulate the electronic circuit, and to model the student's knowledge about the circuit are
explained. A conclusions section explains the generality of the work performed, and possible extensions of the
techniques to other training situations.

-s. ,...i,:,..,

1 JAN 73 I
a ',/

EDITION OF 1 NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When D.t. Entered)

I Inrlassified
SECURITY CLASSIFICATION OF THIS PAGE(Then Dote Encored)

Arcs (,Erf wiLlIBLE ova

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(TFA4m Dale Encored)

SUMMARY

Problem

BEST co
1,

The use of fonted electronics equipment to teach students how
to isolate defects and repair them has caused numerous problems in
the classroom. An instructor must insert faults manually and
monitor students to insure that they do not further damage equip-
ment while they are trying to fix it. Electronic devices are not
built for training and are often delicate, and of course do not
'teach' ttle student other than to provide experience. In addition,
it is not cost effective to provide adequate instructors to monitor
each student and to tell him whether he is using proper trouble-
shooting techniques as he operates.

Approach

Sophie (Sophisticated Instructional Environment) was developed
to simulate electronics equipment with a computer program; it thus
cannot be damaged by student error except as intended for realism.
Sophie was designed to recognize major classes of English dis-
course about the instrument so that students could 'talk' about
the instrument without learning special notations or encodings;
Sophie further produces all responses in English for the same
reason. Sophie was given an understanding of the circuit so that
the student can find out whether his proposed fixes are reasonable
on the basis of his measurements. A student is thus allowed to
talk with Sophie about the circuit, change components, take measure-
ments, and request evaluation of his performance in finding the
inserted fault. The program has been tested by informal users
and is awaiting test, using actual students from an Air Force
electronics training course.

Findings

The highly complex program was found to typically consume
less than 3% of the processor capacity of a medium size computer
while running interactively, and to produce response times within
about 2 seconds from requests; this represents greater than an order
of magnitude over previous efforts in this area. English accept-
ability was very good and English output was terse but completely
readable. The program has been observed to be significantly better
than human observers in isolating faults randomly inserted and much
more astute than students at finding the flaws in their trouble-
shooting reasoning. The techniques developed for recognizing and
processing English are very good and have already been applied to
two other Air Force projects. The generality of the technique to
other subject areas should be investigated further, particularly
the use of capabilities such as Sophie as an author aid for
producing other less sophisticated but more cost-effective types
of instructional material.

B[S1 531.E

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

00t

Objectives and Background
Reasons for Choosing Electronic Troubleshooting
Scenario
Goals
Performance
Implementation
Overview of Sophie
Protocol
Examples of Sophie's Linguistic Capabilities
Possible Uses of Sophie

page

4

CHAPTER 2: NATURAL LANGUAGE UNDERSTANDING 22
Introduction
A Semantically Driven Fuzzy Parser
Limitations
"Naturalness" of the Language Capabilities
Description of the Parsing Process
The Parser
Semantic Interpretation

CHAPTER 3: ENDOWING SOPHIE WITH SOME INTELLIGENCE . . . 39
Introduction
Inference Generation by Simulation
Answering Questions about Particular Measurements
Inferences Involving Fault Propagation
Hypothesis Evaluation (Testing)
Hypothesis Generation

CHAPTER 4: INTERNAL DESIGN OF SOPHIE 49
Introduction.
Overview
Control
Simulation Interface Prodess
Modification and Setting Specialists
Measurement Specialists
Answering Factual Questions
Fault Questioning Specialist
Inserting Faults
Replacing Parts
Measurement Checking Specialist
Hypothesis Testing Specialist
Conditional Specialist
Hypothesis Generation Specialist
Miscellaneous Routines

BEST

CHAPTER 5: SIMULATION TECHNIQUES

00

Introduction
The General Purpose Circuit Simulation
DC Analysis Package
Modifications Made to SPICE
Introducing Faults into SPICE
Performance of General Purpose Simulation on DC
Analysis

The Circuit-Dependent Functional Simulator
Using Circuit Dependent Knowledge in Modelling the
IP-28

CHAPTER 6: SEMANTIC NET
Introduction
Implementation of the Semantic Net
Retrieving Information from the Net
An Example of the Net
Network Functions

CHAPTER 7 CONCLUSION
Introduction
Generality
Adding New DC Circuits
Handling More Complicated Circuits
Handling AC Circuits
New Avenues of Research
Different Domains of Knowledge for Sophie
Some AI Issues

APPENDIX 1:

APPENDIX 2:
APPENDIX 3:
APPENDIX 4:
APPENDIX 5:

INSTRUMENT AND CIRCUIT DESCRIPTION OF
THE IP-28 POWER SUPPLY
BNF DESCRIPTION OF THE GRAMMAR
PROGRAM LISTING OF THE GRAMMAR
EXAMPLES OF SEMANTIC FORMS
PROGRAM LISTING OF SEMANTIC NETWORK
FUNCTIONS

page

68

82

94

103

107

113

116

119 .

REFERENCES 141

Chapter 1

Introduction

Objectives and Backqround

BEST COPY AVAILABLE

00,-_,

Although digital computers have become increasingly

more powerful and versatile, their use in instruction has

grown primarily in but one dimension -- that of finding

cost-effective ways of providing more students with access

to frame-oriented CAI systems. This report describes a

research project pursuing a different dimension which has

culminated in a system named Sophie.* Sophie takes full

advantage of the symbol manipulation capabilities of

advanced computer systems and advances the frontier of

providing a qualitatively new kind of instructional

environment.

The basic challenge in creating Sol. ie is that of

endowing a CAI system with sufficient symbolic knowledge,

problem solving strategies, and natural language

capabilities so that it can mimic many of the capabilities

of a human tutor. For example, we want Sophie to be able to

respond, on its own, to a student's questions, evaluate his

hypotheses, and provide detailed feedback about his answers.

In short, we are trying to utilize many of the concepts and

techniques of Artificial Intelligence in building a truely

intelliaent CAI system that exhibits a sense of

*A SoEhisticated Instructional Environment

4

1=-

I 1

BES1 C.C.;:l AVAILABLE

"understanding" about the subject domain it is teaching.

Over the last few years there have been several

research groups building CAI systems that have some of the

above-mentioned capabilities. GEO-SCHOLAR (Car73) is

probably the best known of these systems and was the first

to demonstrate the feasibility of this kind of instructional

system. However, GEO-SCHOLAR had some serious limitations.

For example, its parser was primarily keyword driven and

therefore could not begin to handle complex statements or

questions posed by the student. Also, its problem solving

abilities were confined to techniques which operated on

semantic networks, a data type which captures some kinds of

information exceedingly well but other kinds of information

such as procedural not as well.*

Sophie, unlike GEO-SCHOLAR, uses several

representations of knowledge including semantic/conceptual

networks and has inferencing procedures which are specially

designed for each of these representations. Much of

Sophie's power arises out of the interaction of these

representations although the main seat of intelligence in

Sophie resides in its ability to draw conclusions and make

inferences from setting up, "runningTM, and examining

(abstracting) a simulation model of its problem domain. We

*Recent research on SCHOLAR is alleviating some of these
limitations.

t.

BEST COPY AVAM6 F 0 1. u

believe that Sophie obtains so much leverage from

inferencing based on *intelligently" invoked simulation that

it simultaneously satisfies two virtually contradictory

goals. On one hand, it can produce deep inferences which

enable it to answer questions which even human tutors would

find extremely difficult to answer. On the other hand, it

is sufficiently fast and complete that it can be thoroughly

exercised in an instructional environment.

In order to illustrate the philosophy behind Sophie the

general domain of electronic knowledge was chosen and the

initial task of building a system for teaching electronic

troubleshooting was started.

Reasons for Choosing Electronic Troubleshootina

There are basically three reasons influencing our

choice of electronic troubleshooting as the subject domain

around which to build this system.

The first concerns the belief that troubleshooting or

debugging reflects a qualitative, common sense kind of

reasoning that has never been satisfactorily studied. This

kind of reasoning does not have its roots in axiomatic

logics or exact quantitative reasoning. A good repairman

draws useful conclusions without even knowing the logical

assumptions underlying much of his reasoning. The rational

basis for his cognitive skill reflects much more the

6

BEST CCYY r'''!t nt.E Ott

property of abduction in that the important question is how

to merge a few examples (or measurements) with an underlying

logic to arrive at a set of viable sub-theories or

' hypotheses. This kind of process underlies not only

troubleshooting but a great deal of human intelligence.

Hopefully, Sophie will provide us with a tool and a

controlled environment to experiment more fully with this

kind of reasoning.

The second reason that this domain was chosen is that

the typical laboratory for learning electronic trouble

shooting has several severe limitations. Such a laboratory

usually consists of several pieces of working equipment into

which the instructor can insert faults. However, the class

of faults that he can insert is artificially limited by

practical considerations* and in some cases, he can fail to

predict the full ramifications of his inserted fault leading

to other components being damaged. Likewise, when the

student replaces a component, either it or other components

are apt to be destroyed in the operation, the former

happening when he has failed to locate the fundamental

fault. Another kind of limitation is that a great deal of

GOMMia..

*Examples of such considerations might be: can the fault be
easily triggered off by simply setting a switch, can it be
easily detected by carefully examining the circuit to see
what solder joints have been tampered with, can the faulted
component be easily obtained if it is to replace a working
component, etc.

7

014

the student's time is ineffectually used by his having to

make time consuming measurements which, for example, might

require cutting wires and removing elements from the

circuit, etc. Finally, the instructor seldom has the time '

to have the student articulate his hypotheses as he goes

about troubleshooting and then to evaluate those hypotheses

or to answer questions that arise in the student's mind as

he is actually working with the instrument. A computer

based problem solving "laboratory" could circumvent all

these limitations.

The third reason relates to our being able to design

especially powerful inference procedures to perform the

kinds of deductions required for handling questions that

arise in this domain. We shall explore this issue in depth

later in the report.

Scenario

Our system is based around the scenario of a student

attempting to isolate a fault in a given instrument. In

this setting, Sophie would present the student with a

circuit schematic of an instrument and, if requested, would

automatically select and insert a fault of some specified

degree of difficulty. The student would then try to isolate

the fault by requesting various measurements under any

instrument setting that he desires. At any time he can

8

BEST COPY AVAILABLE 01,-;
offer an hypothesis about what he thinks is wrong with the

instrument and have the system evaluate his hypothesis.

This evaluation would report to the student whether his

hypothesis is consistent with what he should have learned

from his measurements. (Of course, the particular set of

measurements is not known ahead of time.) The student could

also, at any time, replace a given component, but before it

is replaced he would be queried as to what he thought was

wrong with it. If his answers were correct, the component

would be replaced. In those cases where he had only

discovered a fault caused by a deeper fault, the replaced

component would be reblown until he discovered the

fundamental fault. If the student becomes stuck and cannot

think of any faults which would explain the measurements he

has made, he can ask for help. Sophie would then generate

possible hypotheses which the student could explore.

Goals

In order to engender this kind of scenario, Sophie has

to understand enough about a given instrument to be able to

derive the answers to any measurements the student might

request. Likewise it has to accept any hypothetical fault

about any component in the instrument and derive the results

of requested measurements in the context of that faulted

circuit. In addition to measurements, it has to infer

answers to questions concerning properties of a given

BEST COPY AVAILABLE
01,1

component and determine if and when a given component might

blow because of another component blowing. Most

importantly, it has to be able to intelligently evaluate a

student's hypothesis about what might be wrong. Simply

checking if the hypothesis is in fact true (i.e. is it the

actual fault) would not suffice since there may be several

theories about possible faults that are consistent with the

set of measurements he has thus far taken. In addition,

even when an hypothesis is inconsistent with his

observations, it must inform him as to the nature of this

inconsistency. Finally, Sophie should appear "friendly" by

allowing the student to communicate with it in a natural

subset of English and should respond fairly quickly to his

requests.

Performance

Sophie has met all of these goals and has exceeded our

expectations in terms of its speed. The average amount of

CPU time it uses to parse a student's question, semantically

interpret this parse, and derive an answer to his question

or measurement takes, on the average, less than two seconds

on a PDP-10 running TENEX (Bob72). Hypothesis evaluation

takes several seconds longer depending on how many

measurements the student has currently made and how many of

these measurements need to be considered for refuting or

supporting his hypothesis.

10

&ES; CC

Implementation

Sophie has been implemented primarily in INTERLISP

(Tei74) but includes a general purpode circuit simulation

system written in Fortran. The LISP portion takes almost

the full 256k address space (of which slightly more than

half is the LISP system itself). The simulation system

takes an additional 40k and runs in a separate address under

the control of the LISP portion. The simulator currently

contains a model of the Heathkit IP-28 regulated power

supply which is a reasonably sophisticated, six transistor,

current and voltage limiting power supply. (See Appendix 1

for a description of the IP-28.)

Overview of Sophie

Upon entry into Sophie, the student receives a prologue

describing the instrument being modelled and giving him a

brief summary of the system's deductive and linguistic

capabilities. The student then can ask the system to

randomly generate an easy or hard fault or he can perform

experiments in the working circuit in order to better

understand the internal operation of the instrument. He can

also request that any component of the circuit be modified

or faulted in any reasonable way and on this modified

circuit he can either perform experiments or examine how a

fault or modification may have caused other components in

11

BEST COPY AVAilitni.
01 c

the circuit to blow. In addition to active measurements, he

can request factual information about any part in the

instrument such as the beta of a given transistor or the

power rating of a resistor, etc.

If he has chosen to have Sophie insert a fault, he can

then attempt to isolate the fault or faults by requesting

various experiments be run on the faulted instrument (i.e.

by making measurements). At any time he can ask that the

measurement he has just made in the faulted circuit be

repeated on a correctly functioning circuit in order to

determine if his measurement reflects a symptom, and if it

does, to find out how great the discrepancy is between the

two values.

While the student is using Sophie to troubleshoot an

unknown fault, he can request that a part be replaced, ask

if a part is bad (or if anything is still bad), propose for

evaluation an hypothesis about what is wrong, or request

help if he is at a loss in conjuring up some hypotheses

which are consistent with all his measurements. If in the

midst of a troubleshooting session he'has a deep question or

an idea about the interaction of components in the circuit he
F

can SAVE the context of his current scenario and invoke a

fresh version of Sophie on which to perform an experiment.

Later, he can return to his old context (RESTORE) and

continue his troubleshooting session. The hypothesis

12

MI COPY A;;.:-Ift.ABLE

evaluator and reviewing features of Sophie are correctly

keyed into this SAVE-RESTORE feature so that evaluation is

only performed on those measurements performed while

actually trying to troubleshoot the given fault. Finally,

the student can ask Sophie questions about what happens if a

particular component is bad, etc.

In order to illustrate some of Sophie's capabilities,

we include below an annotated protocol generated by a

student using Sophie in the troubleshooting mode.

Parts typed
..comments are in script type,

PROTOCOL

by the student are Underlined.

WOULD YOU LIKE TO SEE THE PROLOGUE?
> YES

NfLCOME TO SOPH/E, A SIMULATED ELECTRONICS LABORATORY, THS
PIECE OF EQUIPMENT YOU ARE STUDYING IS THE IP..28 REGULATED
WOULD YOU LIKE ME TO PRINT A CIRCUIT SCHEMATIC FOR YOU?
> NO

01,

POWER SUPPLY,

SPRHIE HA$ A CORRECTLY FUNCTIONING /p.28 WHICH you ARE FREE TO ExpleoRE,
YOU CAN TAKE MEASUREMENTS IN THE WORKING CIRCUXTJ FAULT THE CIRCUIT
(S90, "SUPPOSE THE EMITTER OF Q6 OPENS") AND THEN TAKE MEASUREMENTS
TO SEE HOW THE FAULTED CIRCUIT BEHAVES; (4. ASK HE TO "INSERT A FAULT"
AND TRY TO DISCOVER WHAT IS WRONG IF YOU THINK you KNOW WHAT Is
WRONG, YOU CAN "REPLACE" THAT PART AND SEX IF YOU WERE CORRECT,
WHILE YOU ARE TROUBLESHOOTING, THE LABORATORY HAS A TUTOR
ONe.cALL WHO CAN COMMENT ON THS cONSISTENCX or A PARTICULAR HYPOTHESIS
NAT THE MEASUREMENTS YOU HAVE MADE, YOU CAN INVOKE THE TUTOR
Bt PROPOSING YOUR FAULT (roc, "COULD THE PROBLEM 83 THAT 822 Zs OPEN"),

13

BEST COPY AMIABLE

WOULD IOU LIKE TO
YES

START WITH A FAULTED INSTRUMENT WHICH NEEDS FIXING?

a fault, modifies the instrument, and is now ready to
the malfunction.

A rum
ARE:

System randomly selects
answer questions about

THE INSTRUMENT HAS
AiD ITS CURRENT SETTINGS
CC 1,0 (CURRENT CONTROLOWM 0,0 (MIN CURRENT) TO 110)
CN HIGH (CURRENT RANGE SWITCH, HIGHmi AMP, LOW.,1 AMP)
LOAD 1000,0 (LOAD RESISTANCE IN OHMS)
VC 1,0 (VOLTAGE CONTROL.FRom 0,0 (MIN VOLTAGE) TO 1,0)
VR HIGH (VOLTAGE RANGE SWITCH, HIGHz30 VOLTS, LOw10 VOLTS)
NOW YOU CAN REQUEST MEASUREMENTS TO LOCATE THE fAULT1

>)WHAT IS THE OUTPUT VOLAEG
Y. OLTAGE

Example of spelling correction -- especially useful if he is using a 33 teletype or
there is communication noise.

THE OUTPUT VOLTAGE IS 30,03 VOLTS,

This is the output voltage across a 1000 ohm load when the malfunctioning instrument
is set as above.

If YOU ARE NOT SURE WHETHER A VALUE IS CORRECT, IOU CAN ASK 'IS THAT
VALVE CORRECT ?'

>)IS THAT CORRECT?
Student wants -to know if this measurement reflects a symptom.

IN A WORKING CIRCUIT THE OUTPUT VOLTAGE IS 30,07 VOLTS,
THAT VALUE IS CORRECT,

>)CHANGE THE LOAD RESISTANCE TO 30 OHMS Put on a new load resistance.

THE LOAD IS 30,0

>)Now'wHAT Is THE op VOLTAGE "OP" is an abbreviation for output.

THE OUTPUT VOLTAGE IS 1,82 VOLTS,

))WHAT SHOULD ZT art
IN A WORKING CIRCUIT THE OUTPUT VOLTAGE IS 29,118 VOLTE,
Student has now detected a symptom!

IS THE Vs/ or THE CURRENT LIMINTG TRANSISTRO
TRANSIsToR
aq!IMITING
THE BASE SMITTEN VOLTAGE Of (16 ZS 36,43
A/LLZvoLTs, "*>(Q6 should be off)

waHAT /5 THE COLL CURRENT OF THE VOLTAGE WITINe TRANSISTOR
THE COLLECTOR CURRENT OF Q5 IS 0,0 AMPS.

(Q5 should be off)

14

UST Ct1i21 !E

>>WHAT IS THE V BETWEEN NODE 4 AND NODE 5
THE VOLTAGE BETWEEN N4 AND N5 XS ,77 VOLTS,

>>COULD THE BETA OF 04 BE TOO LOW
I NEED A PARTICULAR VALUE FOR THE BETA OF Q4
IS IT OKAY IF I USE 20 ?
> OK

Student generates an hypothesis.

HMMM, LET ME THINK ABOUT THAT FOR A HENUTs,

:71istem needs a specific value

and then suggests one.
Student can override suggestion
and put in his own value.

WHEN THE SETTINGS WERE!
CCe10, CR,H/GH, LOAD30,0, VC111,0, VR,H/GH Defines the context of his

measurement. (In this case

THAT FAULT CONFLICTS WITH THE FOLLOWING there were only two to

MEASUREMENT', choose from.)

YOU OBSERVED THAT THE VOLTAGE BETWEEN 4_____-- This is the most important

04 AND N5 WAS 77 VOLTS. descrepancy and should call

IF THE BETA Of 64 WERE 20 XT WOULD BE 1954 VOLTS, attention that probably

111 A WORKING CIRCUIT IT IS 41,7 VOLTS, one of two transistors
is totally malfunctioning.

AL50:
THAT FAULT CONFLICTS WITH THE FOLLOWING
AEASUREMENT.
YOU OBSERVED TH AT THt OUTPUT VOLTAGE WAS ion
VOLTS, 14"- This is a minor descre-

II! THE BETA OF Q4 WERE 20 IT WOULD 8E 6,94 VOLTS, panty although the actual
IN A WORKING CIRCUIT IT XS 29,88 VOLTS, voltage difference is
0 THAT FAULT WOULD ACCOUNT FOR SOME OP much larger than above!

TIE MEASUREMENTS UNDER THOSE SETTINGS.

SHALL I CONTXNUE COMMENTING ON TOUR HYPOTHESIS?
)0 NO THANKS

>)sAvE The student wishes to explore another hypothesis before continuing.

COMTE= SAVED, TO RETURN TO IT TYPE 'RESTORE',

>>SHORT R11 Making a hypothetical modification to the circuit.

NOW R11 If-SHORTED

>>wHAT IS THE OUTPUT
CONGRATULAT/ONS, tit JUST BLEW
CONGRATULATIONS Q5 JUST BLEW
CONGRATULATIONS, Di JUST BLEW
CONGRATULATIONS, 02 JUST BLEW
TAE OUTPUT VOLThGB IS ,22 MILLIVOLTS.

The effect of the above modification causes
Q2, Q5, D1 and D2 to blow.

15

>MAT 13 WRONG
01 8E FAULTED OPEN
42 IS FAULTED OPEN
4i2 XS FAULTED se/EC/Bo a 3H/SHOM
DS XS FAULTED le/IC/BC m SH/SH/SH

IS FAULTED SHORTED

BEST COPY AWAILASIE
0 2

U

Tells the student the precise way
the parts blew.

a)RIBTORB The student has finished exploring his
PREVIOUS SZTUAT/ON RESTORED. hypothesis and goes back to trouble-

shooting.
msym Prints the results of his measurements in a condensed format. This

CE:HIGH. LOAD.1000.0. rc.la, ragixom, information is
Tits OUTPUT VOLTAGE IS 30,03 VOLT3. stored on a

CC1,0. CM:HIGH. LOAD30,0. V41.1q. VRZOIto history list.
THE OUTPUT VOLTAGE IS 1.83 VOLTS.
THE BASE EMITTER VOLTAGE Of 06 IS 36.23 HZ4XVOLTS,
THE COLLECTOR CURRENT Of Q5, ZS 0.0 MS,
OE VOLTAGE amain' N4 AND 115 13 ,77 VOLTS,

31)BHAT ARE THE SPECIFICATIONS 01 44
THE BPEcIrTCATI01AB OF 44 ARE;
BETA " 100
BOIER/RATEMo.,4 6.WATT3

))11AHATISAA4A1:011ALLYTips BA" c m r cm is egr-sxLiamitiose indicates that the beta of Q4 i8
about what it should be.

aPIIN&T IS THE COLL CURRENT OF 44
tqa COLLECTOR CURRENT or Q4 TB 60.58 BE41.4103$

))WHAT IS THE !We EMITTER V Of Q3
THE slog smiTTIN VOLTAGE OF Q3 IS ,61 HX4XVOLTs
something is clearly amiss here. This voltage reading is essentially zero.

),IEEFLAc1111
I AN opiNoTO ASK YOU SOME QUESTIONS ABOUT
If AT ANY TIME you HOux.17i VSKE TO MAKE MORE
1ASURENEMT3i SIMPLY MS CONT901.:.

WI ANY JUNCTIONS SHORTED?
YES

W4feW JUNCTIONS AEI SHORTED?
) THE EASE EMITTER JUNCTION
AMY OTHERS?
a

03 1N NOT FAULTED vi THAT MANNER.
44 NOT IMAM,

aa;11 IT POSSIBLE THAT R22 X3 SHORTED
THAT FAULT IS CONSISTENT WITH ALL Of THE
ApAsUENHENT3 You NAv; NA082

2/WR doesn't mean that he nas necessarily found the

))WHAT IS THE RESISTANCE or R22
THE MEASURED RESISTANCE or S22 IS 0,0 OHMS

16

NOW 43 IS FAULTED,
This com...ard Uoefu! if e;.-;

student realizes that he hasn't
deduced the way a part had
faulted.

Even if he answers this incor-
rectly but has identified any of
the shorted junctions it would
accept this and tell him the
complete fault mode.

fault.

Checking to see if it is,

in fact, the fault.

>>REPLACV R22
R22 REPLACED

This time Replace doesn't ask any questions
since it figures he must know the exact way

R22 is faulted.

))MOW WHAT IS THE OUTPUT VOLTAGE Checks the output voltage.

THE OUTPUT VOLTAGE IS 29,88 VOLTS,

>>IS THAT CORRECT
IN A WORKING CIRCUIT THE OUTPUT VOLTAGE IS 29,88 VOLTS,

THAT VALUE IS CORRECT,

>>I3 ANYTHING ELSE WRONG
NO

Just checking to see if anything else
is still wrong that possibly the last
measurement wouldn't have detected.

>)RESTART
Closes the protocol file for this

COMMENCING RESTART,
sescion. Initializes a new file.

TOTAL REAL TIME or SESSION = 40 MINUTES

TOTAL CPUTIME Or SESSION = 58 SECONDS

WOULD YOU LIKE TO SEE THE PROLOGUE?

> NO

WOULD YOU LIKE TO START WITH A FAULTED INSTRUMENT WHICH NEEDS TIEING?

> NO

021

>>WHAT ARE THE SETTINGS or THE CONTROLS

THE CURRENT SETfTN41 ARE:

CC 1,0

CR HIGH
LOAD 1000,0

YC 1.0

Vi HIGH Student poses a hypothetical question.

>>IF THE BASE or Us OPENS WHAT HAPPENS TO THE OUTPUT VOLTAGE

IS THE COMPLETT FAULT MODE EB/EC/K m OP/OK/OP

WHAT ni; INTENDED?
> YES
If--63 HAD ?AULT MODE EB/EC/BC m OP/OK/OP

UNDER THE PRESENT SETTINGS, THE OUTPUT VOLTAGE IS 46,81 VOLTS,

IN h WORKING CIRCUIT IT IS 30,07 VOLTS,

))WHAT HAPPENS TO THE OUTPUT VOLTAGE WHEN R9 OPENS

Zr R9 WERE OPEN
UNDER THE PRESENT SETTINGS THERE IS NO CHANGE, 1,E, 30,04 VOLTS,

LET ME TRY SOME OTHER SETTINGS,

UNDER THE SETTINGS!
CC1,0$ CRHIGH, LOAD*10,0: VR4ON

THE OUTPUT VOLTAGE IS 6,76 VOLTS,

IN A WORKING CIRCUIT IT IS 9,89 VOLTS,

'>>STOP. Tells the system he is ready to quit.

17

Sophie searches for

a new setting of the
controls and load
resistance to
determine if R9
opening can affect
the output voltage

BEST COPY AVAILAELE 024
Examples of Sophie's Linguistic Capabilities

We have mentioned that Sophie must permit the student

to request measurements and state hypltheses in a reasonable

subset of English. Although we stress that its current

linguistic capabilities are highly tuned to the subject

domain and are far from handling most of the English

language, we provide below some examples of student's

statements that Sophie presently understands.

Requesting measurements: (parse times including semantic
interpretation are placed in parentheses)

What is the voltage across the base emitter junction of the
current limiting transistor? (140 ms)
What is the VBE of Q6? (120 ms)
What is current thru the base of Q5? (130 ms)
What is the IB of Q5? (100 ms)
What is the output voltage? (80 ms)
What is the voltage between node 1 and the positive terminal of
C6? (280 ms)
What is the dynamic resistance of R11? (120 ms)
What is the power rating of R8? (100 ms)
What is the beta of the voltage limiting transistor?

(110 ms)
What are the specs of Q3? (90 ms)
In a working circuit what is the output_voltAge of the power
reference transformer? (90 ms)

Modifying the instrument:

Change the output load to 10 megaohms
Suppose the beta of Q5 is 200
Suppose the breakdown voltage of D5 is 30 volts
Let C2 be leaky
Turn up the voltage control
Set the voltage range switch to 30 volts
Set the current control to maximum
Suppose-the BE junction of Q6 is shorted

18

6E31 CC,7111V7n.1113LE

Questions:

4*

Is the current limiting transistor bad
What happens to the VBE of Q4 when R22 shorts
If R8 opens then what happens to the output voltage
What are the specifications of Q3
What is wrong
What happens if Q3 shorts

Hypothesis checking:

Is it possible that the breakdown voltage of D5 is too low
Could the problem be that C2 is leaky
Could the beta of Q4 be too low
Replace R6

Noun phrase utterances: (noun phrases get interpreted
as questions)

Voltage between the base of Q5 and the wiper of R7
Output voltage
VBE of Q6
I thru C6

Miscellaneous commands:

Review
Remove all faults
Reset the instrument
Restart
Save
Restore
Stop
Review all

Possible Uses of Sophie

Although Sophie may be viewed as a CA/ system in its

own right, we prefer to view it as a set of powerful tools

with which to implement various teaching strategies. For

example, one can imagine this system being used in

conjunction with a frame-oriented system which would be

19

BEST COPY AVAILPFIF 02,1

responsible for presenting textual material about the

operational principles of a given instrument. Once this

material was mastered, problems would be presented to the

student for which the unique power of Sophie would best be

suited. These problems could involve faulting the

instrument in ways which demonstrate the interactions of the

component which the student has just been told about, or

they could simply allow him to fully explore the internal

states of a given section of the instrument.

A more exciting possibility involves a gaming

situation. After students are exposed to the fundamentals

of how a given circuit operates, they would participate in a

two-person game wherein one student introduces a subtle

fault into the circuit and predicts the consequences of his

modification. The other student must then discover the

modification by performing a series of measurements. Each

measurement has a cost* and the total cost is computed for

his sequence of mAAsu.-...--te. After the fault is isolated

the roles are reversed and the game is played again.

Another version of this game is also possible. After a

*The cost could be varied to encourage students to learn
different methods of troubleshooting but would usually
reflect the difficulty involved in actually making the
measurement in a real electronics laboratory, i.e. external
measurements are the cheapest while ones which would require
removing a component from the circuit are expensive.

20

PEP COPY AWAKE Oa;
modification is introduced by one student, the other

proposes measurements which the first student answers as

best he can on the basis of his earlier predictions of what

the circuit will do given the modification he introduced.

The system scores both students: one on the basis of

relevancy, cost, and type of the measurement he asks for,

and the other in terms of accuracy of the predicted answer.

Many variations of this game are possible. For example,

both scores might be made visible to both players (or only

their own score, or neither), or correct answers might be

provided by the system to both players (privately or

publicly). Moreover, the system could exercise some

judgment and interrupt the answerer if a mistake by him

might result in a potentially disastrous compounding of

misunderstandings.

Although the gaming scenario may seem of primary

relevance for diagnostic training, it has a far greater

importance in providing the student with an intuitive

understanding of the qualitative and causal behavior of

system components, etc. In fact, one of the best ways of

discovering the purpose for a particular component is to

"alter" that component and see what aspects of the circuit's

behavior changes.

21

I

041101E

Chapter 2

Natural Language Understanding

Introduction

02c

As instructional systems grow in their ability to

answer questions and evaluate hypotheses, the need for

parsing techniques more powerful than ad hoc keyword

analysis schemes becomes a necessity. This is not to say

that there is no place for keyword analyses in CAI for they

can be very useful in highly predictable environments. But

there are major limitations to keyword parsers and in many

cases they actually become more cumbersome and inefficient

than a well designed structural parser. For example,

although a keyword analysis might suffice in decoding the

utterance:

"What is the output voltage?"

such a technique begins to get messy if "output voltage" can

have numerous modifiers such as:

"What is the output voltage of the power reference transformer?"

If these modifiers can in themselves be modified, the

situation quickly grows out of hand for even the most

advanced ad hoc keyword system. As an example of such a

22

AIM

REST copy r.,',--!MLE

situation consider the question:
02,

"What is the voltage between the anode of D6 and the
collector of the voltage limiting transistor?"

Our approach to constructing a frofit-end natural

language processor was heavily influenced by pragmatic

considerations. We needed a parser that would be practical

to use in a CAI environment and one which would take only a

few man-months to complete. Our first choice was to use one

of the most powerful and clean parsing systems currently

available -- namely Woods' LSNLIS parser. tSee

(Woo72a)(Woo72b) for descriptions of this parser.) Although

our slightly trimmed down version of this system proved to

be surprisingly efficient, we eventually rejected using it

because it produced a structural description of a question

which was more detailed than our semantic routines could

take advantage of. Although we could have further

simplified Woods' grammar, etc. we decided to explore a

fundamentally different approach.

A Semantically Driven Fuzzy Parser

After studying numerous protocols of students using a

mocked-up version of Sophie, we noticed the powerful

constraints that existed in the relationships between the

various semantic/conceptual entities making up a. question.

23

BEST COPY PYAILABLE 02c

For example, if one asks for a voltage measurement it is

either between two nodes, across a particular component, or

across some output terminals. It seemed that this high

degree of semantic predictability could be utilized by a

predictive analyzer ("parser") by simply refining the usual

syntactic categories such as noun phrase into relevant

semantic/conceptual categories such as "measurement". In

general, such refinements could lead to a phenomenal

proliferation of categories to be captured by the "grammar",

but an analysis of our data indicated that such an approach

was feasible. These and other considerations lead us to

build a highly efficient top-down (goal-oriented), context

free parser which makes its predictions on the basis of

semantic rather than syntactic categories.

Our natural language processor incorporates a certain

dimension of "fuzziness". If at a given moment in a parse

it is searching for a particular instantiation of a semantic

category, and the word currently. .being pointed to fails tc

atisfy this instantiation, it skips over that word and

continues searching.* This means that if the student uses

certain words or concepts that the system doesn't know

about, it can ignore these words and try to make sense out

of what remains. However, this kind of "fuzziness" is not

* The number of words that can be skipped over is controlled
by the particular semantic category being searched for.

24

PFST COPY f,d'i:LABLE
02;;.

always a blessing. Since words can be skipped over during

the parsing, there is always the possiblity of misparsing a

sentence. Thl.s problem requires either placing a severe

constraint on the ordering of grammar rules, or it requires

finding all possible parses of a sentence in order to

discover the parse that accounts for the greatest number of

words in the sentence. Because the second of these two

alternatives is potentially very time consuming, we use the

first technique. To limit the negative consequences which

may result from a misunderstood question, Sophie responds to

a student's question with a full sentence which tells the

student what question is being answered.

Limitations

By restricting ourselves to a context free type of

parser, we obviously sacrificed capturing (in any reasonable

way) transformational paraphrases of an utterance. Instead,

we settled for allowing only one or two ways -- hopefully

the simplest ways --' of saying or requesting anything that

the question answering component of our system could

handle.* For example, our system parses the question:

*Certain paraphrase capabilities were explicitly put into
the natural language processor. For example, one can either
ask for the voltage across the base emitter of a transistor
or for the base emitter voltage of a transistor.

25

0:3u
BEST COPY AVAILABLE

What is the beta of the current limiting transistor?

but does not parse the same question paraphrased as:

What is the beta of the transistor which limits the current
flow?

We realized that by not accepting many of the syntactic

paraphrases of an utterance, the naturalness of our system

could be drastically reduced. However, we hoped that the

system would accept enough "English" that the natural flow

of communication would not be impaired thus enabling the

user to get involved with solving a problem rather than with

searching for ways of saying or asking for something.

"Naturalness" of the Language Capabilities

In order to study how easily users could adapt to these

linguistic limitations, we collected well over a hundred

hours of protocols of people using Sophie from various ARPA

sites. Each user had seen a protocol of a "typical" session

which gave him some idea of the system's linguistic and

logical capabilities. Initially, anytime Sophie encountered

a sentence which it could not parse, that sentence was

automatically stored on a file which was later used to

provide data for expanding our grammar. A point has now

been reached in which Sophie handles nearly all sentences

generated by users who have had at least one prior session

26

I3ESI COI'? Al.:It/1.'3LE

with the system.
031

These experiences convinced us that for our highly

Constrained domain our approach to parsing was viable.

Although extensively handling paraphrases would surely have

helped our system appear more natural, three other issues

seemed at least as important. The first is the need for

handling abbreviations such as VBE standing for "base

emitter voltage". Such a facility has now been added to our

natural language processor. The second is the need for a

spelling corrector, a facility which can greatly reduce the

amount of concentration, and hence effort, that a poor

typist expends in addressing the system. Our natural

language processing system now utilizes the spelling

correction algorithms provided by the INTERLISP DWIM

facility (Tei74). The third is much more problematic. It

concerns the issue of handling context dependent anaphoric

references and ellipses, e.g. pronoun references referring

to a prior sentence. Having this capability appears to be

especially crucial when the user has become totally immersed

in using the system as opposed to simply trying it out.

Some examples will illustrate how helpful such a facility

could be:

Example 1:
What is the voltage across the base emitter
junction of the current limiting tansistor?

What is the current through it?
("It" refers to "the base emitter junction of the
current limiting transistor.")

27

034 BEST COPY AVAILABLE

Example 2:
What is the current through the base of Q6?

What is it through the emitter?
("It" refers to "current" and "Q6" is implied but
not mentioned.)

What about through the collector?
(In this case, "current" and "06" are both implied
but neither is mentioned.)

Example 3:
What is the output voltage?

What is the voltage control set to?

Is that correct? ("That" refers to "the output
voltage" in the earlier statement.)

A solution to this problem is extremely complex and is

beyond the scope of Sophie.

Description of the Parsing Process

The parsing of a student's response begins with a

scanning of the complete string. During this scan, any

abbreviations in the string are expanded into their full

form. In addition, a mechanism for handling contractions

and run-ons is provided to allow for the expansion of such

words as "what's" and "whatis". Compound words are

rewritten as single entities, if possible, because if left

until parsing, they would complicate the grammar and might

require backing up to disambiguate. For example, in the

question, "what is the voltage range switch setting,"

28

, BEST COPY f,V.P.0 !VILE 03c.

"voltage range switch" is rewritten as "VR." If not

rewrittenc "voltage" would be mistaken as a noun and an

attempt would have to be made to parse "range switch

setting" as a place to measure voltage. Of course after

this failed the correct parse would be found but reducing

compound words avoids the otherwise necessary computation.

Another operation performed during the prescan is

cursory spelling correction. Spelling correction is

attempted on any word of the input string which the system

does not recognize. The spelling correction algorithm that

is used takes the (possibly) misspelled word and a list of

correctly spelled words and determines which (if any) of the

correct words is close to the misspelled word (using a

metric determined by number of transpositions, doubled

letters, dropped letters, etc.). During the prescan, the

list of correct words is very small (approximately a dozen)

and is limited to very commonly misspelled words and/or

words which are critical to the understanding of a sentence.

The list is kept small so that the time spent attempting

Spelling correction, prior to attempting a parse, is kept to

a minimum. Remember that the parser has the ability to

ignore words in the input string so we do not want to spend

a lot of time correcting a word which won't be needed in

understanding the statement, But notice that certain words

can be critical to the correct understanding of a statement.

For example, suppose that the phrase "the base emitter

29

BEST COPY AVAIOBLE 03,i

current of Q3" was incorrectly typed as "the bse emitter

current of Q3 ". If "bse" were not recognized as being

"base" the parser would ignore it and (mis-)understand the

phrase as "the emitter current of Q3".* Because of this

problem, words like "base", are considered critical and

their spelling is corrected before any parse is attempted.

Note that there are a lot of words (e.g. "capacitor*,

"replace", "open", etc.) which if misspelled would prevent

the parser from making sense of the statement but would not

lead to any mis-understandings. These words are therefore

not considered to be "critical" and would be corrected in

the second attempt at spelling correction which is done

after a statement fails to parse.

After a student's statement has been prescanned, an

attempt is made to parse it using an embodiment of the

grammar listed in Appendix 2. The top-level rule is given

in Figure 2.1.

Figure 2.1

<STATEMENT> : <REQUEST> ! <SET> ! <MODIFY>

As mentioned earlier, our grammar uses non-terminals which

represent semantic/conceptual categories. This rule

*To minimize the consequences of such mis-interpretation,
the system always responds with an answer which indicates
what question it is answering, rather than just giving the
numeric answer.

30

indicates that any statement which the student makes to the

system is either 1) a request for information of some kind,

<REQUEST>, 2) a command to modify the circuit model in some

way, <MODIFY>, or 3) a command to change the settings of one

of the controls, <SET>. To determine if the statment is a

request, Sophie calls the function <REQUEST>.* <REQUEST>

looks at the input string and calls other functions, (for

instance, <MEASUREMENT>) to decide whether or not the string

is a request for information. If the input string is a

request (that is, parses into a <REQUEST>), the function

<REQUEST> returns a program (function call) which represents

the *meaning* of the student's question. This program is

then executed (EVALed) to answer the question. If the

statement is not a request, Sophie calls the function

<MODIFY> and then the function <SET> to determine if the

statement parses to either a modification command or a

control changing command. From either <MODIFY> or <SET>

(whichever is successful), a function call is returned which

when EVALuated, performs the desired commands.

If neither <REQUEST>, <SET>, nor <MODIFY> is

successful, the statement does not parse and two contingency

methods are tried. The first attempt made is to put a "What

is* on the front of the input string and then to see if the

*This is because the grammar is written directly as LISP
functions which incorporate the parser. This concept will
be explained in more detail later.

31

BEST COPT AVAILABLE 03t

resulting string is an acceptable <REQUEST>. (This

abbreviated form of question-asking shortens the amount of

typing the student must do.) If this fails, Sophie uses the

spelling correction program that was used in the prescan,

but this time with a much larger list of words

(approximately 125). If any misspellings are discovered,

the statement is re-processed.

The above discussion glosses over two very important

points: 1) how the parse is actually performed and 2) how

the semantic form representing the "meaning" is determined.

The Parser

Most parsing systems make a distinction between the

grammar and the mechanisms for interpreting the grammar.

This is done for economy of expression and clarity. It is

important to choose a formalism in which to express the

grammar which has enough freedom to allow the grammar writer

to express his rules naturally and concisely, but provides

enough structure that the mechanisms for handling the rules

can still be done efficiently. Some examples of grammar

formalisms are BNF, ATNs (Woo72a), PROGRAMMER (Win73, and

pattern matching languages for transformational grammars.

Our system expresses the grammar directly as LISP functions.

This means that the language which the grammar accepts is

determined by evaluating the grammar itself (i.e. the

32

BEST COPY AV.:TABLE

0,7/

grammar becomes the parsers). Since the grammar is written

in LISP it provides a natural method of ordering the

application of grammar rules and allows the grammar to be

compiled which makes the resulting parser very efficient.

The back-up required by the parser is handled by using the

normal LISP control structure via COND, AND and OR

functions.

When writing the grammar, the rule for each

non-terminal is written as a single function which takes

into account all possible ways of expressing that semantic

category. Each of the grammar functions is a function of

one argument, the string which the function (non-terminal)

is to accept or reject. For example, the non-terminal

<NODE> is represented as a LISP function <NODE> which can be

called by any other LISP function to, in effect, answer the

question "Does the string starting at this point parse into

a <node>r*

There are generally two types of checks that a

rule-function performs. One is a check for the occurrence

of a word or words which satisfies certain predicates in the

input string. This checking is done with two functions --

CHECKLST and CHECKSTR. CHECKLST looks for a word in the

string matching any of a list of words. CHECKSTR looks for

*This is similar to the concept of a push to another network
in the ATN framework.

33

1

03o BEST COPY AVAILABLE

a word in the string satisfying an arbitrary predicate. It

is through these functions that the parser gets its

fuzziness. For example, if CHECKSTR is called with the

string "resistor R9" and a predicate which determines if a

word is the name of part (e.g. "R9"), CHECKSTR will succeed

by skipping the word "resistor", which is, in this case, a

noise word. The other usual type of operation performed by

the grammar rules is to check for the occurrence of other

non-terminals. This is done by calling the proper function

(grammar rule) and passing it the correct position in the

input string.*

If the grammar rule is successful (if the string parses

into the correct semantic category), the rule-function

passes back two pieces of information. First, it returns

some indication of how much of the input string it accounted

for, (that is, where it stopped). The convention adopted is

that a grammar rule returns as its value a pointer to the

last word in the string accepted by that rule. Second, the

non-terminal passes back a structural description of the

phrase that was just parsed. This structure is passed back

in the free variable RESULT (analogous to Woodss "*" upon

return from a PUSH).

*There are no restrictions placed on the grammar rules and a
function can do whatever is necessary or efficient to
recognize an occurrence of its semantic category.

34

OFST

Semantic Interpretation

The structural description of a phrase returned by a

grammar rule is a piece of LISP code which when evaluated

represents the meaning of that phrase. Each semantic

category in the grammar has a corresponding set of functions

or class of objects in the semantics of the system which is

the reason for the existence of that semantic category.

Each grammar rule knows enough about its semantics to

construct the proper function call for any of its various

phrasings. In other words, the semantic interpretation of

the parse tree is occurring during the parsing.* For

example, consider the non-terminal <MEASUREMENT> shown in

Figure 2.2. The reason for this non-terminal is to parse

all of the ways that a student can specify a measurement

(voltage across D3, output current, etc.). To make a

measurement the system needs a quantity to measure

<MEAS/QUANT> (voltage, current, resistance, power

dissipation), and something to measure with respect to (e.g.

a part, <PART/SPEC>: a transistor junction, <JUNCTION>; or

possibly a point in the circuit, <NODE>). So the rule for

<measurement> expresses all of the ways that the student can

give a measurable quantity plus supply its required

arguments. The structure which results from <MEASUREMENT>

is a function call to the function MEASURE which supplies

*A notion very similar to that used in REL (Dos71).

35

Otiu BEST COPY AIIMIOLE

the quantity being measured and other arguments specifying

where to measure it.

Figure 2.2

<MEASUREMENT> := output <MEAS/QUANT> of <TRANSFORMER>
<TRANSFORMER> <MEAS/QUANT>
<MEAS/QUANT> between <NODE> and <NODE>
<MEAS/QUANT> of <PART/SPEC>
<MEAS/QUANT> between output terminals
<MEAS/QUANT> of <JUNCTION>
<MEAS/QUANT> of <NODE>
<MEAS/QUANT> from <JUNCTION>
<JUNCTION/TYPE> <MEAS/QUANT>

of <TRANSISTOR/SPEC>
<TRANSISTOR/TERM/TYPE> <MEAS/QUANT>

of <TRANSISTOR/SPEC>

A careful examination of Figure 2.2 reveals that

<MEASURE'ENT> also accepts "meaningless" phrases such as

the power dissipation of Node 4." In addition, it accepts

SWIM meaningful phrases such as the resistance between Node

3 and Node 14" which Sophie does not calculate at present.

It is possible to write restrictions into the grammar so

that phrases like these are not parsed (as they are now).

In fact, we were often faced with this p:oblem of whether or

not to write the grammar to do what amounts to argument

checkina and to thus block meaningless parses. For example,

suppose we have a function which measures the resistance of

a part in the circuit and a function which measures the

current flowing through either a part or a terminal of a

transistor. Should the distinction between resistance and

I

36

U'

3ES1 (,OH AVAPLABLE

current (i.e. that the resistance of a transistor terminal

is not meaningful) be made in the parser or in the

specialists which carry out the measuring? In other words,

when presented with the phrase "resistance of the base of

Q2", should the grammar block the parse of it? Although the

above phrase would not have been parsed by earlier versions

of our gramar, our tendency has been to allow the grammar to

accept more statements and to have the argument checking

done by the semantic routines. This has the advantage of

allowing the semantic routines to provide the feed-back as

to why a sentence cannot be interpreted or "understood".* It

also keeps the grammar from being cluttered with special

rules.for blocking meaningless phrases.

The most difficult aspect of the natural language

processor has been extensibility. There are basically two

types of changes which must be made to the grammar. One

occurs when a new feature is to be added to the system.

This requires writing a new rule to accept the various ways

of specifying the new feature. The other type of change

involves having the grammar accept a new way of saying

something that it already knows about. This requires

rewriting some existing rules. It is this second type of

change which usually results in undesirable interactions

=1,0.

*Providing feed-back as to why an utterance is not accepted
is a difficult problem which has yet to be solved in any
general way.

1

37

IN

04 BEST COPY Pr-TABLE

between rules and unforeseen side-effects. Our experience

with making extensions to the grammar has shown us that it

can be a difficult task but no more so than trying to add

new features to any other complex program which is already

written. Parts of the grammar have undergone several major

restructurings and although the existing grammar represents

a much larger subset of English than the original version,

it is not significantly more complex nor significantly

harder to change. Of course, as Sophie grows and the types

of responses it must handle become more complex, there is no

guarantee that the grammar won't become so complicated that

new changes cannot be easily incorporated.* What we have

shown is that this approach is feasible for a large enough

subset of "English", and efficient enough that some natural

language capabilities can be employed for CAI systems.

*If (when) this point is reached, Sophie will have become
complex enough to employ a more powerful parsing technique
(e.g. Woods' LSNLIS Parser).

38

PUT COP': r. LE

Chapter 3

Endowing Sophie with Some Intelligence

Introduction

Sophie manifests most of its "intelligence" through its

question answering and hypothesis evaluation and generation

abilities. The primary seat of its intelligence resides in

a collection of special purpose inferencing procedures each

of which perform a certain class of inferences extremely

efficiently. These procedures reflect an intentional move

away from axiomatic deductive strategies, and although they

may appear to be in the spirit of procedural deduction

schemes, they are based on quite a different principle. In

fact, most of our inferencing strategies are not really

deductive but instead they derive a conclusion by

intelligently computing "examples" and using these examples

to decide on the validity of an hypothesis or the answer to

a question.

By their very nature our inferencing strategies are

incomplete but they are extremely skilled in answering

certain classes of questions. Although we feel that we have

just begun to explore the potential of this approach, this

chapter presents an informal description of some of the.

inference mechanisms now operational in Sophie.

39

04'i BEsT COPY 'MIME

In addition to these mechanisms, Sophie contains

numerous small "seats of knowledge" called specialists.

Although only an overview is given of these specialists in

this chapter, the following chapter will discuss how these

specialists are organized and work in harmony with the

central inferencing schemes.

Inference Generation by Simulation

The major component of our inferencing system is a

simulation program which models a "piece of knowledge" which

in this case is an electronic instrument*. The underlying

idea of how simulation can be used to perform inferencing is

straight-forward. Let us first consider the problem of

evaluating a hypothesis (always with respect to a given

circuit) of the form:

"If X then Y"

where X is a proposition about some component in the given

instrument and Y is a proposition about its behavior or

symptoms. An example of such a hypothesis might be:

"If C2 is shorted, the output voltage is zero."

The validity of the hypothesis can be tested by invoking the

simulator. First the simulation model of the instrument

*More precisely, it models a schema of electronic
instruments with one element of the schema being the working
instrument and the other elements representing various ways
the instrument can be faulted.

40

I..

BEST CCTV runii311 04;;

must be modified so that 2 is shorted (i.e. the

proposition X must be made true on the model) and then the

simulation must be executed. Since the results of the

simulation run contains all the consequences of C2 being

shorted, the hypothetical consequent -- the output voltage

being zero -- is simply checked against these simulation

results.

The above paradigm glosses over several logical

difficulties concerning which boundary and/or input

conditions should be used for the simulation runs. If it is

necessary to determine all the logically possible

consequences of a hypothetical modification, then the

simulation must, in principle, be run over a potentially

infinite collection of the instrument's control settings,

etc. While for most practical situations there are only a

finite number of cases "worth" considering, this number can

still be quite large. It is clearly desirable to have an

additional inferencing mechanism which can determine what

the worthwhile cases are for any particular hypothesis.

This additional mechanism must embody electronic knowledge

of a different sort than is represented in the simulator.

Thus, metaphorically, the simulator may be interpreted as

creating examples whereas this additional mechanism tries to

guarantee that these examples will be useful.

There are several classes of hypotheses (questions)

41

04c BEST COPY AVAlLP.3LE

which explicitly dictate the control settings and boundary

conditions to be used in the simulator and that can

therefore directly call the simulator without needing any

intelligent meditation.

Answering Questions about Particular Measurements.

The questions that fit most directly into the

simulation paradigm concern requests for measurements. For

example one might want to know what the voltage is across a

particular component when the instrument controls are set to

some values. After computing the voltage at every node in

the simulated circuit, it is straightforward to derive

answers to additional questions about the current through

any component, the active resistance of a component, the

power dissipation of a component, etc.

All these measurements can be determined either with

respect to a working instrument or with respect to a faulted

instrument. In this latter case the fault must be

completely specified (e.g. the leakage resistance of C2 is

1000 ohms) and then used to alter the model of the circuit

in the simulator. Sophie contains fault specialists who sit

on top of the simulation system and are responsible for

carrying out this operation. These specialists must know

about how particular components can be faulted and how each

component is modelled. By using this knowledge they can

42

t4 bait's ,LJAVAI 04 I

carry out the proposed modification on the internal

representation of the circuit.

Inferences Invoking Fault Propagation

In addition to fault specialists there are specialists

who examine the results of each simulation tun in order to

make sure that no component in the circuit is dissipating

too much power or experiencing too high a voltage. Such

considerations are important since when one component is

faulted other components often become subjected to excess

conditions. These specialists are responsible for detecting

such situations, deciding how the given component should be

blown, and then recursively calling the fault specialists to

blow it in that way. At any given moment, several

components might be subjected to excessive stress but if one

were to blow it would protect the other from blowing.

Therefore, only one component at a time is actually blown

before rerunning the simulation.

These specialists are also responsible for determining

an ordering on which of the overstressed components is most

likely to blow. What develops is a fault propagation tree

which captures either all of the reasonable consequences of

a particular fault or the most likely chain of

consequences.*

43

0 4 o BEST COPY A11,11! E

At each level of this tree is a set of nodes

representing those component failures which are equally and

most likely to occur as determined by the low level fault

specialist. Then another specialist chooses one of these

and re-runs the simulation. The figure below illustrates a

typical fault propagation tree which was generated by

faulting the 113-28 model by shorting the collector emitter

of Q4.

04 SHORTS (COLLECTOR -EMITTER)

05 SHORTS

060PENS

Di SHORTS

02 OPENS

0% OPENS

SHORTS

D OPENS D OPENS
D2 SHORTS

2 SHORTS

OUTPUT VOLTAGE = ZERO

The information in the tree is used in three inferencing

tasks. The first use is in answering simple questions about

a measurement in a hypothetically faulted circuit when the

hypothetical fault propagates. Second, it is used in

* Sophie uses only this latter mode of operation.

44

BEST COPY T',7:11?tE

informing the student that the component he has just

replaced in his attempt to fix the instrument has just

re-blown since he didn't correctly locate the root of the

problem. The third use is in hypothesis evaluation where

the student forms a conjecture about what is wrong and his

conjecture would entail some additional component being

blown.

Hypothesis Evaluation (Testing)

Another kind of inferencing task concerns the

evaluation of a student's hypothesis about what component he

thinks is faulted in the instrument. The evaluation must,

take into account the information solely derivable from the

set of measurements he has taken up to the time of his

conjecture. That is, it must test the logical consistency

of the hypothesis against what information he should have

gained from his measurements irrespective of whether the

hypothesis entails the actual fault.

The evaluation strategy makes extensive use of

simulation. First, the simulation model is modified so as

to be consistent with the given hypothesis and then all the

student's measurements are repeated under this

"hypothetical" model. Next, the same set of measurements is

repeated but this time in a normal or working model of the

instrument. This results in three pieces of data for each

45

05u
BEST COPY AVAILABLE

measurement that he has taken. This collection of triples

is then sent to an evaluation specialist who employs various

strategies for "judging" the given hypothesis and for

identifying and ordering what explanatory information should

be given to the student if, in fact, the hypothesis is

illogical.

Hypothesis Generation

One of the most difficult tasks performed by Sophie is

determining the set of possible faults that are consistent

with the observed behavior of the instrument. At any time

the student can ask for help and Sophie must then generate

the set of hypotheses which would explain or logically

follow from the particular set of measurements the student

has thus far made. The way in which Sophie generates this

set of hypotheses (i.e. possible faults) is to combine both

backward and forward types of reasoning.

First, a backward working specialist examines an output

voltage measurement (taken by the student) and generates a

list of possible hypotheses that "vaguely" explain that

measurement. Each hypothesis so generated is evaluated by a

forward working specialist who invokes a simulation of the

hypothesis to see if it really accounts for all the known

output voltages and internal measurements.

46

1;tnii ;:.1!.11.At11.1

051

In some cases the backward specialists generate as a

hypothesis a fault schema, i.e. a "fault" that has some

unspecified parameters. The hypothesis that the beta of

the Darlington amplifier (of the IP-28) is low" is an

example of a fault schema as is the hypothesis "C2 is

leaky". Rejecting such hypotheses requires some subtle

reasoning: given two measurements it is possible that each

measurement, by itself, could be explained by instantiating

a fault schema to a particular value. However, it may turn

out that the instantiations required by each measurement are

in fact different and hence this fault schema cannot explain

both measurements simultaneously. Although a sophisticated

forward deduction system might be able to detect this

inconsistency, we eventually settled on using a simulation

in conjunction with a specialist who tries to find an

instantiation value of the fault schema by "intelligently"

manipulating the simulation model.

The exact values for these fault schemas can only be

found if at least one output voltage measurement is made in

which the voltage is not the correct value for the settings.

However, even when a measurement is correct (in the sense of

being the same value as would be found in the working

circuit), it is possible to determine a range of values for

these schema. For example, Sophie has a specialist who can

determine the range of values for the beta of the Darlington

(in the IP-28) which could account for the observed output

47

LEST COPY AV /11,81.E

current. By successively refining this range, it is

sometimes possible to rule out certain faults. These

specialists do not use simulation but instead have enough

built-in intelligence to be able to deduce these ranges for

any of the fault schemas that arise in this context.

In summary, the hypothesis generation process invokes

backward specialists who suggest crude hypotheses, forward

specialists who manipulate a simulation model to rule out

hypotheses suggested by the above mentioned mechanism, and

finally, a collection of ad hoc specialists who can infer

what cannot be wrong from knowing non-symptomatic

measurements.

48

BEST COPT kk;,41.1..311.

Chapter 4

Internal Design of Sophie

Introduction

This chapter provides a comprehensive description of

the processes which underly Sophie. First there is a

presentation of the overall organization of Sophie which

includes a description of the framework within which various

specialists work. Following this overview each of the

specialists is discussed providing both a description of the

task of each specialist as well as the method each uses to

perform its task. The portions of the system which are not

discussed in this chapter are: the natural language

processor (Chapter 2): the general purpose simulator and the

functional simulator (Chapter 5), and the semantic network

(Chapter 6).

Overview

Figure 4.1 shows the basic organization of processes

and data within Sophie. The processes are represented as

boxes and the data areas are represented as ovals. The

solid arrows indicate the flow of control* between processes

*Control is passed via function calls and hence always
returns to the calling process. The directions of the
arrows indicate which processes call which other processes.

49

05.1 BEST COPY A4Aarat

and the dashed arrows indicate the flow of data for these

processes.

t

MCASuNEMENT
Cm(KING

SPEC MIST

uditAt.
PimPost

SIMULATION
ROUTINES

IL, SIMULATION
INTERFACE
ROUToNts

I

FAULT

z

Figure 4.1

SPCCIALIST 3

outsym.
vmAus,

PO MIS S
ES !NG

SPECIALIST

SETT NG I
M001 YING

SPECIALISTS

FAULT
NIP ACE IIiNSCREING

I I SPECIALIST
SPECIALIST

I

11

CONTROL

MEASURING
SPECIALISM

/
/

-t-
I

H
,

I I
I

I I I I

I

NATURAL
L ANGUAGI
PNOCESSOR

IUNC IONAL
SIMULATOR

NOTMCS
GININATION

SPECIALIST

PAC UAL
Out TIOR

ANSI RING
SPECIALIST

msCCUMCOM
Ro4TINES

COMENIONAL
SPICIALIST

SEMANTIC NETWORK

Control

The processing of a statement begins when Control

receives an input from the teletype. Control passes the

statement to the natural language processor which parses it

50

I

BES1 CO} t P.' .':'1.'151F. 05,;
and returns its semantic interpretation (see Chapter 2) .

This semantic interpretation is a program which represents

the "meaning" of the statement. The semantic form is

evaluated causing the appropriate specialist to be invoked

which in turn computes an answer to the student's question

or performs the student's command. It is the specialists

which comprise most of Sophie's problem solving abilities.

Each specialist is very good at performing specific tasks

within a specific context. It is Control's responsibility

to maintain the proper context for the statement at hand.

After the specialist has finished, Control uses the semantic

form and the result of its evaluation to synthesize a

response.

In addition to calling the natural language processor,

invoking the correct specialist, and constructing and

printing a response, Control is also responsible for keeping

track of the numerous pieces of information about what has

already been deduced and what has already been presented to

the student. Finding a good way to organize and update this

information can drastically simplify the operation of the

specialists that access it.

History Lists

The information about what the student has done or has

been told is kept on a history list. After each user

Si

i

0 5 o Wry AMAMI

interaction, the type of statement, the semantic form, the

result of evaluating this form and the current instrument

context is saved on the history list. At any time during a

session this list is a complete record of everything that

has happened. The list is used by various specialists such

as the hypothesis evaluation process to determine what

measurements the student has taken.

Maintaining the proper instrument context:

Whenever the student requests a measurement (e.g. what

is the output voltage?) there is an implied context in which

that measurement should be made. Nearly all the measurement

specialists operat4 from a voltage table which gives the

voltage of each node in the circuit with respect to ground.

The simulation process computes on demand this table for

given control settings, load resistance and fault

specification. Control is responsible for insuring that the

values in the voltage' table are the correct ones for

answering the question currently being processed. For

example, when the student changes one of the controls the

voltage table must be updated to reflect this change.

Whenever the instrument context is changed, Control calls

the simulation interface process to set up the correct

voltage table before the measurement specialist is called.

52

1iES1 COPY 0.:i.P.BLE

Simulation Interface Process OS

The simulation interface process exists between Control

and the simulation process to cope with two specific

problems. First, the interface process keeps track of

previous runs by the simulator. When it is asked to fire up

a simulation run, it first checks the list of all previous

contexts to see if it has already computed a voltage table

for that context. If it has, that table is returned without

invoking the simulation system. Since a student is often

switching between the same two states of a circuit (i.e.

the faulted circuit and the non-faulted one), searching the

prior contexts before running a simulation can save a

tremendous amount of computer time.

The other problem handled by the simulation interface

concerns what to do when the simulation is run with a fault

which causes another part in the circuit to become

overloaded (i.e. leading to fault propagation). To handle

these cases, after the simulation program is called,

specialists check all of the parts in the circuit to

determine if any of them are overloaded. If any are

overloaded, one possible fault is chosen and inserted into

the circuit model, a message is printed to the student and

the simulation is called again.* This is done so that the

*When the simulation is being run to check out a student's
hypothesis, the process of blowing more parts is much more
controlled.

53

05,- BEST COY ,`31.E

student is never taking measurements in an unrealistic

circuit.

Modification and Setting Specialists

The state or context of the circuit is completely

determined by the control settings, the load resistance and

the faults which have been introduced. This information is

kept on two special variables: SETLIST which contains the

information regarding controls and load resistance, and

FAULTLIST which contains the information about the faults in

the circuit. To change the control settings the setting

specialist changes the information on SETLIST. Similarly,

the modification specialist knows how to change the

FAULTLIST to insert a particular fault. The modification

specialists also know the fault models of the various types

of parts and if given a non-instantiated fault, (C2 is

leaky, the base of Q2 opens, etc.), it will propose a

complete fault to the student and interact with him until a

complete fault has been agreed upon.

Measurement Specialists

The specialists which calculate voltages, currents,

power, etc. know how to use the voltage table to answer the

questions at hand. For example, VOLTAGE?, the specialist

which calculates voltage measurements, can measure the

54

0 5 t, BEST L:k1"1 d=111ABLE

voltage across a part, across the load resistor, across a

junction of a transistor, between two points in the circuit

or at a single point with respect to ground. Before using

the voltage table, VOLTAGE? accesses the semantic net which

contains, for example, the information required to map

between terminals and their locations in the table of

voltages. In addition to VOLTAGE?, there are the CURRENT?,

RESISTANCE?, and POWER? specialists which measure the

obvious quantities. Current measurements can be rather

complicated when using just a table of voltages as in the

case of the current through the terminal of a transistor.

The different types of measuring specialists are all

called by a single routine MEASURE which is returned in the

semantic form from the parser. This allows MEASURE to

perform some argument checking which would otherwise have to

be done separately by each of the other routines. In

addition, by using a relatively small number of top level

semantic routines, the information on the history list is

more, easily deciphered by the various procr%sses which use

it.

Answering Factual Questions

One type of factual question which Sophie can answer

deals with the various properties of parts in the circuit.

This information, such as the beta of a transistor, is

55

06u UST COPY AVAILABLE

stored in the semantic net and is retrieved by the process

CHECKSPEC. Another type of factual question concerns

information which is not time invariant and therefore not

stored in the net. This type of question is considered

below.

Fault Questionin9 Specialist

In certain modes of use, it is permissible for the

student to ask whether a particular part is faulted. (This

facility is especially useful when troubleshooting faults

which cause many other parts to blow.) These requests are

handled by the fault questioning specialists (SEEFAULT).

The context needed by this specialist is the list of faults

and using this list, this specialist can determine i) if a

particular part is faulted a particular way (e.g. Is R9

open?", Is the leakage resistance of C2 5000 ohms?," "Is

the beta of Q5 too high?", "Is the collector of Q3 open?");

ii) if a particular part is faulted in any way (e.g. "Is Q5

bad?"); or iii) if any part is faulted at all (e.g. "Is

anything wrong?"). While answering some of these questions

may require little more than a quick check of the list of

faults, (e.g. "Is anything wrong?"), some require

additional processing. For example, to determine if a

particular junction of a transistor is bad requires first

discovering if the transistor involved is faulted and, if it

is, decoding its fault mode to see if it entails that

56

0E1 BEST WPY AMIALE

junction. Also, to determine if a property of a part is too

low requires not only finding out what the value of that

property is but also what it should be.

Inserting Faults

The specialist which inserts faults into the circuit

(INSERTFAULT) is called when the user asks Sophie to

introduce a fault into the circuit. It is this specialist's

job to decide which fault should be inserted. (After a

fault is chosen, the modification commands are called to

make the appropriate changes to FAULTLIST.) Faults are known

to the system by number and it is possible that the student

asked for a particular fault by its number. (His instructor

may have given him the number.) In those cases when the

student did not ask for a particular fault, he may still

have specified a modifier of some kind (e.g. hard or easy).

The inserting routines keep lists of the faults which

satisfy the various modifiers. Another list records which

faults have already been inserted so that the student does

not get the same fault inserted twice in one session. Also,

before the modification routines are invoked the circuit is

cleared of any previous faults. After the circuit has been

modified, the semantic network is checked for any special

instructions about how to handle this fault.

57

Bui copy AVAILATRE

Replacing Parts

When the student asks that a part be replaced, the

replacement specialist (REPLACE) queries the student as to

how the particular component is faulted (open, shorted, base

open, etc.). Requiring the student to know the particular

fault mode of a part encourages him to think more deeply

about the symptoms he has observed. Determining how a

component is faulted rather than just that it is faulted

often requires a second examination of the chain of effects

which led to discovering the problem. If the part is not

faulted in the way in which the student has said, he is told

so and the part is not replaced. (This should not be

confused with the action of the hypothesis testing routines

whose job is to determine if what the student thinks is

wrong is consistent with what he knows.)

There are times when the system should be aware that

the student already knows what is wrong with a part and then

it should not question him. For example, when the student

tells the system to modify a given component, he shouldn't

be queried when he wants it replaced.* The student also

should know what the fault is after he has received an

affirmative answer to a question such as "Is R9 open?".

*This may not always be the case: the instructor may have
inserted the fault and then turned the system over to the
student. Consequently a flag can override this situation.

58

Is.4i Geri

06c
Information that the system thinks that the student knows

about faults is kept on the list USERFAULTKNOWLEDGE. Before

the student is asked about the fault, the replacement

specialist checks this list.

The questions asked a user are determined by the type

of part being replaced. For each type of part (transistor,

resistor, diode, capacitor, etc.) there is a corresponding

specialist which knows how that component can be faulted.

Once this specialist has completely determined (via

questioning) what the user thinks is wrong, it calls the

fault questioning specialist to see if that fault is in fact

present. In the case of a transistor, the part is replaced

if the student is correct about at least one of the

junctions.

Measurement Checking Specialist

While troubleshooting a fault, a student may need to

know whether a measurement that he has just taken is

correct,* that is, is it a symptom. Sophie allows the

student, after a measurement has been taken, to ask if his

previous measurement was correct, e.g. "Is THAT right?".

To handle this request the measurement checking specialist

first gets from the history list the semantic interpretation

"Correct" meaning the same as it would be in a non-faulted
circuit.

59

E

. 06.1
MST COPY AMPLE

of the last question asked by the student. The specialist

then sets up the measurement taking environment of a working

circuit by clearing the fault list and calling the

simulation interface specialist to determine the correct

table of voltages for the non-faulted circuit under the

present control settings. The previous semantic form

(measurement) is then EVALuated in the newly established

context to determine what the measurement would be in a

working circuit under the same control settings. The

student is told what the correct measurement is and this

value is compared with the value he observed earlier to

determine its correctness. Then the original fault list and

table of voltages are restored, thereby restoring the

context of the faulted circuit.

Erpothesis Testing Specialist

The purpose of the hypothesis testing specialist is to

provide Sophie with a way of checking the logical

consistency of the student's conclusions. It does this by

taking the student's proposed fault and determining if the

symptoms of that fault agree with the symptoms that the

student has observed. If there is agreement in all of the

measurements that the student has taken, the proposed

hypothesis is consistent. If the results of the proposed

fault disagree at some measurement, this measurement,

represents either a consequence of the circuies'operation

60

UST S r.;:MtE
06,2;

which the student overlooked or was unaware of, or it

represents an error in the student's logical thinking

processes.* Sophie has the capability of finding such points

of disagreement and telling the student about them.

The hypothesis testing specialists are invoked when the

student proposes a hypothesis (e.g. "I think that C2 is

leaky" or "Could the problem be that the base of Q3 is

open?"). Because these specialists derive all of their

inferences by inserting a fault into the circuit, they must

know exactly which fault the student intends. So if the

student proposes a fault schema (e.g. C2 is leaky but what

is its leakage resistance), these specialists propose a

reasonable instantiation of the schema but allow the student

to override it and provide his own value. Once the complete

fault is known, the list of faults is checked to see if the

hypothesized fault is, in fact, what is wrong with the

circuit. If so, Sophie informs the student that his

proposed hypothesis is consistent with all of his

measurements.

To evaluate a hypothesis which is not the real fault,

the hypothesis specialists must know all of the measurements

that the student has taken under various instrument

*If this is the case, the student can explore the proposed
fault immediately using the save-restore facility.

61

06c CET COPY AYARABLE

settings. This information is obtained by scanning the

history list. The measurements that were made are divided

into two classes: external and internal. The external

measurements are the measurements a student could take in a

real electronics laboratory without taking the cover off the

instrument, that is, the output voltage and output current.

The internal measurements are everything else. The internal

measurements are further broken down into context frames,

that is, all of the measurements taken under the same

control settings are grouped together.

The specialist then checks the consistency of the

measurements one context frame at a time. Within a frame,

comparisons are made between each of the measurements and

what that result would be under the proposed hypothesis.

The comparison requires knowing not only the measurement in

the hypothetical case but the one in the working circuit as

well. The working measurement is necessary to determine

when the other two measurements differ significantly. For

example, if the measurement that the student observed was 25

volts and the measurement under the hypothesized fault was

30 volts the difference between these two may or may not be

significant. If the measurement in the working circuit is

30 volts, the proposed fault does not account for the lower

voltage observed in the faulted circuit. However, if the

working circuit voltage is 3 volts, the hypothesis is doing

a pretty good job of explaining this measurement.

62

13E.S1 t 06,
The order in which Sophie comments upon the

discrepencies that it finds can be critical. The hypothesis

testing specialist first comments on all of the measurements

which the student has made in the latest context. Since the

simulation under the various contexts is saved, this insures

that the student will get some feedback within at most, two

simulation runs thereby guaranteeing a minimum response

delay. This feedback will include those measurements which

he has made most Kecently and are foremost in his mind. The

second group of measurements commented upon are the external

measurements. Then the measurements from each of the other

frames starting with the second most recent are discussed.

Each tine comparisons are made within a group of

measurements the results of these comparisons are reported

to the student and he is asked if he wishes the evaluation

procedure to, continue. In reporting the results of the

comparison, the measurements are onlered according to the

amount of disagreement between the observed measurement and

the hypothetical value. For each measurement there are four

cases that might occur. The observed and hypothetical

values may agree. The observed value may represent a

symptom (i.e. be wrong) while the hypothesized value is

right. In this case, the fault proposed by the student does

not account for this particular symptom. The observed value

may be correct while the hypothetical value is wrong. In

this case the proposed fault would create symptoms which the

63

I

0 6 BEST COPY O'iLTIE

student did not observe. Or the observed result and the

hypothetical result may both be wrong but not the same. In

every case but the first, the student is told how the

measurements disagree and is given the observed, the

hypothesized and the correct value of his measurement. If

no differences are found, the student is told this also.

A necessary prerequisite for performing the above

procedures is the ability to determine when the hypothesized

measurement and the observed measurement disagree

significantly. The specialist which makes this decision

uses three pieces of information: the values of the

hypothesized measurement, the observed measurement and the

working measurement. It calculates a "distance" between the

hypothetical value and the observed value. This distance is

basically a product of two factors. One factor is the

percentage difference between the two values. The other

factor is based on how far these two values are from the

correct value.

A problem occurs when a simulation with the

hypothetical fault reveals that it would cause other

components to blow, that is, when the fault propagates. In

this situation, the overloaded parts are not automatically

blown. Instead, the student is informed that the fault he

proposed would propogate and that new faults are likely to

occur. The most likely fault is chosen and the student is

64

I

11'4.:,11ARLE

asked if he would like the evaluation of his hypothesis to

continue with the additional fault. This gives the student

a chance to avoid having to wait while the simulation runs

again while still providing him useful feedback about his

hypothesis.

Conditional Specialist

The conditional specialist is invoked to answer if-then

types of questions (e.g. "If C2 shorts what happens to the

current thru the collector of 05?"). As was stated in

Chapter 3, the method the conditional specialist uses to

answer this question is to create a context in which C2 is

shorted and then to call the measurement specialist to

determine the collector current of Q5. In addition to

putting a particular fault in the context that it

establishes, the conditional specialist must also decide

what control settings and load resistance to use. The

strategy employed is to first try the present settings. If

under the present settings, the consequent measurement is

the same in both the faulted circuit and a working circuit,

then these settings are probably not the proper ones to

demonstrate the effects of the fault and the conditional

specialist checks the semantic network for more appropriate

settings. In any event, the student is told what the

consequent measurement is in both the working and faulted

circuits.

65

BEST COPY AVAILABLE

Hypothesis Generation Specialist

When a student, after taking several measurements,

cannot think of any possible faults which would explain

those measurements, he can ask for help. The hypothesis

generation specialists have the job of providing the student

with some possible faults. Chapter 3 describes the method

used by this specialist.

Miscellaneous Routines

In addition to the major types of features described

earlier, Sophie offers several other features. One of these

(REVIEW) provides the student with a review of all of the

measurements he has made since the beginning of a

troubleshooting session. This can be very useful in long

sessions or when using a CRT terminal.

To save the initial cost of starting Sophie, there is a

restart command which re-initializes the system but does not

re-perform the expensive operations of setting up the

simulation process. A similar operation is provided by the

SAVE and RESTORE commands. The SAVE command saves the state

of the current session so that it may be returned to by a

RESTORE command and performs a recursive call on Sophie.

This is mainly useful during a troubleshooting session after

the student has been told that one of his hypotheses is not

66

I
i"..,I,

t-.1 / : t, : ' 1f f
071

completely correct. The student can then immediately

explore his hypothetical fault by SAVIing the current

session and inserting his hypothetical fault into the

circuit of the new version of Sophie. When he has completed

his exploration, he can RESTORE his trouble-shooting session

and continue where he left off, trying to find the real

fault.

67

I

Chapter 5

BEST COPY AMR/ABLE

0 '74

Simulation Techniques

Introduction

As we indicated in Chapter 3, most of our inferencing

strategies are centered around the use of simulation models.

This chapter describes the two kinds of simulations used in

Sophie. The first is a general purpose simulation system

which accepts a description of an arbitrary circuit and

produces exact quantitative results in both working and

faulted version of the circuit. This system is used to

answer all requests concerning measurements. It is also

used by the hypothesis evaluator.

The second simulation system is a circuit-dependent,

functional simulator which runs several orders of magnitude

faster than the general purpose one but which produces only

approximate results. This system incorporates much

specialized knowledge about the internal functioning of the

IP-28 instrument and currently is used only by the

generation specialist.*

A functional simulator which handles the class of all

faulted instruments stemming from one working instrument is

*This is the section of Sophie which is the most difficult
to change when giving it a new instrument to model.

68

BUT COPY Pt't'"' 7
()7,

considerably more complicated than a functional simulator

for just the working instrument. In particular the

"transfer function" of each functional block must be so

modelled that any internal component of a block which

becomes faulted can be directly translated into a new

transfer function. Also if the simulator takes advantage of

the internal logical constraints inherent in the instrument,

it must be able to take into account all the ways these

constraints can be influenced by any possible fault.

Nevertheless a highly tuned functional simulation of an

instrument can provide such significant speed-up that uses

of simulations which were previously unthinkable can now be

quite effective.

The General Purpose Circuit Simulator

SPICE* (Nag71)(Nag73) is the general purpose electronic

simulation program used in our system. The input files for

SPICE contain a description of the topological arrangement

of the circuit components and their nominal values;

specifications of parameters for whatever models may be used

for non-linear components such as BJT's and diodes; and a

*SPICE was originally written by Laurence Nagel at the
University of California at Berkeley. The original program
consists of some 8,000 lines of FORTRAN source code and was
designed to run on the CDC 6400.

69

1

07.1 BEST COPY IWAILABLE

list of desired output options. Possible circuit components

include independent and dependent voltage and current

sources, field effect transistors, BJT's and diodes, as well

as the usual linear devices. Provision is also made for

specifying model devices not already included in SPICE's

basic library.

SPICE performs three different types of circuit

analysis: DC operating point, AC response spectrum, and

transient behavior. SPICE's DC operating point analysis

includes operating point values for model parameters as well

as the voltages at each node of the circuit. Transient

analysis consists of a series of DC analyses against a

varying input voltage, with charge storage elements taken

into account. The AC analysis subprogram simply determines

the DC operating points whose values are phasors rather than

real numbers. AC solutions are expressed separately for the

given input signal frequencies rather than as dependent

functions of the frequency. Since AC analysis assumes that

all nonlinear devices operate linearly sufficiently close to

a particular DC operating point, it is of limited use for

deducing if a particular modification has caused a component

to instantaneously enter a saturation or cut-off state, etc.

In addition, since the CPU time required for transient

analysis is prohibitive (on the order of ten CPU-seconds for

the circuit under consideration), we use only the DC

operating point analysis.

70

CLir L:.:12,3LE

DC Analysis Package

The DC analysis subprogram is divided into three

sections: READIN, SETUP, and ITERATION. READIN accepts the

description of the circuit and inserts this information into

the various internal arrays. Array-stored information

includes the nodes to which each element is connected, the

value of each element, and the type of each component.

READIN also simplifies the external description (e.g. it

re-numbers the nodes so that they are consecutive) and

checks for possible specification errors.

SETUP allocates space in the sparse array and stores

the pointers to it. It first checks each component and

determines which locations of the array will be occupied.

It then adds whatever locations are required for forming

intersections with other locations already allocated.

Finally, SETUP stores the appropriate pointers for each

component.

The ITERATION section solves the internal

representation created by READIN and SETUP. The method cif

solution is based on Kirchoff's and Ohm's Laws. The basic

matrix equation is:

E = Y
-1

I

where I is the vector of source currents for the nodes, Y is

the matrix of mutual conductances between nodes, and E is

the resultant vector of node voltages. The Y matrix is

71

0 7 u BEST COPY man.r

"loaded" by adding the conductance cf each component to the

two diagonal terms and subtracting it from the off-diagonal

ones. The I vector is thPr, 1,-,Arld with the values of the

known current sources. After these are loaded for all the

circuit components, the Y matrix is inverted by the

Doolittle method (Fox65) and multiplied by the I vector.

This obtains the voltage for each node.

The above method is all that would be required if the

circuit contained only elements with linear I-V curves.

However, transistors and diodes have exponential curves.

These non-linear characteristics are handled by an iterative

process. A "best guess" of the voltage drop across a diode,

for example, is computed and used to determine a point on

the I-V curve. The inverse of the derivative at that point

is then determined and used as the value of the effective

conductance, thus modifying the Y matrix. The I intercept

of this derivative is then determined and used to modify the

I vector. The new,Y matrix is then inverted and the basic

matrix equation is re-solved for the new values. The

resulting E vector is then used to replace the previous

"best guess" and the above sequence of events is repeated.

This process may be thought of as forming a Taylor series

approximation to the non-linear I-V curve. After each

iteration the newly obtained voltages are compared with

those produced by the previous iteration. If the voltages

are within 0.1% or 50 microvolts of each other, whichever is

72

rni

greater, then the analysis is complete.

0 ,

In certain circuits, the iterative process will fail to

converge. If 100 iterations are completed without

convergence the analysis is stopped. Fortunately this

happens primarily with bistable circuits, a situation that

should not arise in our case. Also, good convergence may

not be achieved due to the rapidily changing nature of the

exponential equation. To speed up convergence by limiting

overshoot, a limit of 1.4 volts is placed on the amount of

change in the voltage across semiconductor junctions.

Modifications Made to SPICE

In addition to converting SPICE to run under DEC's

Fortran, we removed all code which dealt solely with AC and

transient analysis. We also removed the ability to handle

component models, like those for MOSFET transistors which

are not likely to-be-used in the circuits_ being, simulated.

The size of the matrices was reduced since the branch and

node capacities of the program were greater than required.

This modified program is approximately 3500 lines of FORTRAN

code.

Introducing Faults into SPICE

The major addition to SPICE is the introduction of a

mechanism for introducing faults and circuit modifications

73

7C, LALO tnil I t. r..

quickly. One method of achieving this would be to modify

the external description of the circuit and read it in each

time the effect of a fault is sought. In the case of a

transistor with an open junction, for example, the input

statements to SPICE would be changed to show a diode for the

good junction and an open circuit for the defective one.

The circuit description would then be analyzed in the manner

described above. It was felt, however, that this would be

too slow.

The method chosen instead was to change the models of

all the components so that they take an additional piece of

information from a fault array. Actually two arrays are

involved: IFAULT is used to tell how a component is faulted

and FAULT is used to hold the faulted value of the

component. For example, the first array might tell if a

resistor were ok, open, shorted, or had changed its value.

The second array would only be used in the case that the

value had 'changed and would then be used to contain the new

value.

The actual faulting is done when the component is being

"loaded" into the sparse matrix. For example, the routine

for a resistor normally looks at the array VALUE, which was

setup when the initial circuit was read in. This value is

the conductance of the resistor. It would then add this

value to two locations and subtract it from two other

74

locations in the sparse matrix. However, if IFAULT

indicates that the resistor is not normal, the routine uses

the value in FAULT when the resistor changed value.

Otherwise, it uses conductances (inverse of resistance) of

100. and 1.0E-10 to represent shorted and open resistors,

respectively.

The diode and transistor models have series resistors

on their terminals. Opening a diode is performed by making

this conductance 1.0E-10. Shorting the diode is more

difficult. There exists four locations in the sparse array

for the diode. As with resistors, these locations are

modified by 100 to indicate the junction is shorted.

Transistors are similar to diodes. If a lead is to be

opened, the series resistor is opened. There are four

locations in the sparse array for each junction of the

transistor. Two of these are shared with one of the other

junctions. As with the diode, these four locations are

modified by 100. Changes in beta are performed by

substituting the beta in FAULT for the normal beta when

loading the transistor.

Performance of General Purpose Simulation on DC Analysis

For a faultable model of the IP-28 circuit (see

Appendix 1) SPICE takes on the average 1.8 cpu seconds

(PDP-10). The faultable model actually contains twice as

75

C)S;

many nodes as a simple model of the IP-28 because of the

additional parts needed to allow certain fault modes.

The Circuit-Dependent Functional Simulator

One of the practical limitations to simulation concerns

the issue of speed. Although certain questions might

require only one simulation run, other kinds of questions

require many runs and in some cases just one simulation can

involve several CPU seconds. What was needed was an

additional hierarchical simulation model which could take

advantage of specialized knowledge about a schema of

circuits. In particular it should be hierarchical in the

sense of simulating functional blocks and should utilize

logical constraints which hold over these functional blocks

to intelligently guess the effects of various feedback

loops, etc. It should also be designed to facilitate the

introduction and handling of a wide class of faults

pertinent to each functional block.

A circuit dependent simulation can be made which is

between 100 to 1000 times faster than the general purpose

simulation and thereby opens up an entirely new dimension of

uses. This speed-up has been gained at the cost of

generality by building into the system detailed knowledge

about the purpose and characteristics of each function

block. Speed has also been gained at the expense of

76

accuracy.

exponential

transistor

volts, etc.

fiLS; C1 :''1191E 081

For example, the simulator does not model the

curve of a transistor but instead "deduces" if a

is on and if so, assumes its VBE is about. .7

Modelling new instruments requires a thorough logical

analysis of their internal states under faulted conditions

as well as when properly working. Although this analysis

might be automated,* at this point in our research, it is

being done by hand.

Using Circuit Dependent Knowledge, in Modelling the IP-28

The purpose of the following subsections is to provide

an indication of how circuit dependent knowledge can be used

in creating a fast simulation which has enough flexibility

to permit the insertion of a wide class of faults. If the

reader is not already familar with the internal workings of

the IP-28 power supply, he is referred to Appendix 1.

Functional Simulation of the IP-28:

This simulation model consists of eight functional

blocks whose interconnections and mnemonics are illustrated

......

* A novel use for Sophie would be to aid in constructing
this analysis. After a general purpose simulation of a new
circuit is given to Sophie, the interactions of the
functional blocks could be explored under various fault
conditions.

77

in Figure 5.1.

RECTIFIER

Vim

02,

CS, CC
Rs

N1

CCONSTANTUREN
SOURCE

iSLS1
jury AVAILABLE

DARLINGTON
AMPLIFIER

I DARL

Q3, 04, R22

GCS

01, 02, RN, R4

N4

Figure 5.1

Ns 'SENSE Pd 11I
Ris, R14, Res

CURRENT LIMITER

SW2

oi

11VOLTAGE LIMITER

1

VOLTAGE
REFERENCE
SOURCE

(
VCTL

C1, C2

R3. R4 Rs%

Di, D4, Ds

Nis

LOAD

OUTPUT

The transfer function of each of these blocks is first

encoded as a LISP procedure. The following algorithm is

then used to determine the behavior of these

interconnections. First the output voltage is computed

under five different assumptions -- each assumption leading

to a possibly different output voltage:

78

Assumption 1:

Assumption 2:

Assumption 3:

The output
(limited)
setting.

The output
(limited)
setting.

1,ui

voltage is
by the

voltage is
by the

O8

being determined
voltage control

being determined
current control

The output voltage is being determined
(limited) by the amount of current
capable of being delivered by the
Darlington.

Assumption 4: The output voltage is being determined
(limited) by the maximum voltage
produced by the constant current source.

Assumption 5: The output voltage is being determined
(limited) by the voltage produced by the
power supply (VIN).

(The last three assumptions are pertinent only when we are
dealing with a faulted circuit.)

The simulation algorithm picks the lowest of these five

voltages and then uses this voltage to calculate such

quantities as the voltage drop across ISEN, the output

current, the amount of the CCS current being dissipated by

SW1 and SW2, and the voltage drop across the base emitter of

the Darlington. However, some of the five output voltages

computed above depend on the value of these internal

quantities (e.g. the voltage being produced by VIN depends

on the output current) and hence after these are computed

the five output voltages are re-computed and the whole

process re-iterated until the process converges (i.e. 1%

variation between two successive iterations). Usually, this

process converges in three to four iterations.

79

11E51 COPY il V2,11.ABLE

Simulating faults in the model: 08-i

There are two kinds of faults each of which is handled

differently. The first kind is a catastrophic fault such as

SW1 being shorted which preempts the above simulation and

immediately dictates the resulting behavior -- the output

voltage is zero.

The other kind of fault invokes the simulation to

determine its effect. With these non-catastrophic faults

the resulting behavior can be captured by changing

parameters or ignoring certain sections. Since the beta of

arm is used to calculate one of the 5 voltages, changing

this parameter would change that voltage and possibly the

output voltage. Likewise, if SW1 were open, the simulation

would ignore the voltage produced by the voltage control and

would take only the minimum of four voltages. A third

example would occur if D6 were shorted. In this case, the

voltage produced by the VCTL would be different by 0.7

volts.

Embedding faults in the function blocks:

The mapping between specified faults and the

information used by the simulation is done in two ways. The

first is pertinent to the VIN and CCS function blocks and

consists of directly modifying their transfer functions.

This is necessary since their behavior is dynamic with

80

respect to some condition which varies during the

simulation. For example, VIN needs to know the output

current to calculate its voltage. CCS needs to know what

voltage is across it.

The second method uses functions which are evaluated

before the simulation starts and which produce attribute

lists which are useful in determining the behavior and

effect of the block under a particular fault. For example,

the attributes for SW1 are: whether SW1 has any effect on

the output voltage, whether the Darlington is off because

node 4 is shorted to ground, the beta of SW1, the status of

D6, and whether the BE junction is shorted. The simulation

system uses these lists in order to determine if this block

can effect the output voltage and also to determine various

internal measurements. The attributes for DARL are: the

beta, the BE voltage drop and the value of R22. The

attributes for SW2 are: whether SW2 has any effect, the

voltage drop across the BE, and whether DARL is forced off.

The attributes for VCTL are: the voltage and resistance.

Finally, the attributes for ISEN and RLOAD are their

resistances.

Most of the above knowledge is quite ad hoc but is

extremely useful in constructing a fast simulation model

which can also simulate realistic faults.

81

WO' C

Introduction

Chapter 6

Semantic Net

0 8

The semantic network provides a uniform yet efficient

and very general means of representing the many different

types of non-procedural time- ii"-ariant knowledge required by

Sophie.* Developing specialized representations for each

type of information would be more efficient in terms of size

and speed but would be much less efficient in terms of the

programming effort required to make changes and additions.

Since our purpose was to experiment with different

approaches to representing and utilizing semantic/conceptual

information, we chose a completely general form of a

semantic net -- me in which we could freely modify and

extend our use of the semantic net without fear of

precluding some kind of retrieval or processing strategy.

Implementation of the Semantic Net

The modelling structure of the semantic net is a

descendant of Shapiro's semantic network of the MIND

* The net is not used for storing information about the
sequences of measurements made by a student. For such
information a tailored data structure is used.

82

tr ; 08

system (Sha71). The network consists of conceptual entities

or *items" connected by relations which hold between the

items. An item can be thought of as anything (object or

concept) about which information is known. Some examples of

items are D6, the class of diodes and the concept of D6

shorting. The network implementation is compatible with the

semantic network used by the speech understanding project at

BBN (Woo74)*. It includes convenient ways to add new

information to the net, delete or change relations in the

net and, of course, retrieve information from the net.

There are also functions for printing items in the net,

displaying the entire network, storing the net on disk, and

expanding and contracting the net. The implementation

provides the user with a complete set of LISP functions for

constructing, editing and retrieving information from a

general semantic network which is, in principle, capable of

representing any non-procedural information.

Shapiro's notion of a semantic network has been

extended to allow an item (conceptual entity) to have

properties as well as relations. The distinction between a

property and a relation is that a property is a relationship

*We are indebted to Ron Kaplan and Bonnie Nash-Webber for
sharing with us some of their code. Although our decision
to use this implementation structure was made independent of
the speech project, it hopefully will enable us to utilize
more of their linguistic research in building still more
powerful CAI systems.

83

08o

between an item in the network and a structure outside the

net whereas a relation can exist only between two items in

the net.* Properties allow us to make limited use of

specialized representations outside the network for

restricted pieces of information. For example, the fact

that C2 is a capacitor is represented by a relation link

(MEMBER /OF) because both C2 and capacitor are represented by

items in the net, but the fact that the value of C2 is 50

Microfarads is represented by a property (VALUE) because "50

Microfarads" is not represented in the network. There is no

a priori reason why "50 Microfarads" could not be an item

but since it stands in no relationships of interest with any

other item in the system it is more efficiently represented

as a property (i.e. the system is not interested in

structures over units or numbers).

Whenever a relation is added between two items, the

inverse relation between these two items is automatically

added.** For example, we can add the information that D6 is

a member of the voltage limiting section and is between 05

and R7 by using the function ADDITEM as follows: (ADDITEM D6

(PART /OF voltage/limiting/section) (CONNECTED/TO Q5 R7)).

The effect in the net is to put a PART /OF link from item D6

*This is a moot point for Shapiro who represents all
information in the net.

** Note this is not true of properties which have no
inverses.

84

08;,
to the item voltage/limiting/section an0 also a HAS /PART

link (inverse of PART/OF) from voltage/limiting/section to

D6. In addition there would be a CONNECTED/TO link from

item D6 to both items Q5 and R7 and from Q6 and R7 to D6

(CONNECTED/TO is its own inverse). This means that the part

of the network dealing with relations is a two-way graph

which allows a simple, very powerful accessing method which

can perform certain classes of inferences.

Retrieving Information from the Net

The basic accessing function for relational information

in the semantic net is the function IFIND. IFIND retrieves

items from a specification of how those items are connected

to other items. The specification is given in terms of

relation-item/list pairs of the form (R (I1 12 ...In)) which

give the relations (R) and the items (Ik) which constrain

the desired items. Given a list of relation-item/list

pairs, ((R1 (Ill Ilp))(R2 (121 ... I2r))...(Rn (Inl

Inq))), IFIND returns all of those items in the network

which for all Rk stand in relationship Rk to at least one of

the Ikj. In the simplest case there is only one

relation-item/list pair and the item/list contains a single

item. For example, (IFIND (PART /OF

VOLTAGE/LIMITING/SECTION)) will return a list of those items

which are parts of the voltage/limiting/section that is,

those items which stand in relationship PART/OF to the item

85

0 9 u

VOLTAGE/LIMITING/SECTION. This list is easy to find since

all of the desired items are connected to

voltage/limiting/section via a HAS/PART relation (the

inverse of PART/OF). In the relation-item/list pairs, the

item/list can be specified as calls to IFIND which allows

IFIND to be nested to any depth. Using our earlier example

again, (IFIND (CONNECTED/TO (IFIND (PART/OF

VOLTAGE/REFERENCE/SECTION)))) will first find all of the

items which are parts of the voltage/reference/section and

then return the union of those items which are *connected

to any of the items on this list.

In the case where there is more than one

relation-item/list pair, IFIND takes the intersection of the

lists returned by the single pair case. Thus,

(IFIND (PART /OF VOLTAGE/LIMITING/SECTION)

(CONNECTED/TO (IFIND (PART/OF VOLTAGE/REFERENCE/SECTION))))

will find those parts in the voltage limiting section which

are connected to the voltage reference section. The process

goes as follows. First form a list of all of those items

which have a PART/OF relation with voltage/limiting/section.

Next form a list of all of those items which have a

CONNECTED/TO relation with any item which has a PART /OF

relation to the voltage/reference/section. Note the amount

of redundant searching which is avoided by forming this

second list since each part in the voltage reference section

is on this list only once but may be reachable via many

86

09i

different CONNECT/TO links. The answer-to the request is

those items which appear on both of these lists. Thus IFIND

works by taking the intersections of unions of lists of

items. Since retrieval of this kind is potentially costly,

the storage structure of the network is maintained in sorted

order to allow efficient implementation of the intersection

and union operations.

An Example of the Net

Figure 6.1 shows several items from the semantic

network (as they appear when displayed by DESCRIBE, one of

the network printing functions). The items shown are:

item 1, capacitor; item 3, the particular capacitor, C2;

item 9, the fault F2 which is a part failing by shorting;

and item 82, the concept of the particular capacitor C2

failing in the particular way F2 (shorting).

To give an idea of the way information is represented,

we will give a description of the item representing C2.

PNAME is a special property which links the network (which

is implemented as an array) to LISP atoms. On the property

list of the atom C2 is the property SREF and the value 3

(this item's array location) which means that the C2

provides an entry point into the net.* VALUE,

BREAK/DOWN/VOLTAGE and LEAKAGE/RESISTANCE are properties

which C2 has. TOO/LOW/REST is the resistance that is

87

ITEMS:

1

3

9

Cr';'`','11!"!_111-3LE

Figure 6.1

Examples of Items from the Semantic Network

PNAME CAPACITOR
ARG/TO (F1) (F2) (F4)
MEMBER (C1) (C2) (C3) (C4) (C5) (C6)
MEMBER /OF (COMPONENT)

PNAME C2
VALUE (50 MICROFARADS)
BREAK-DOWN/VOLTAGE

(50 VOLTS)
LEAKAGE/RESISTANCE

(10000 MEGAOHMS)
TOO/LOW/REST

(10000 OHMS)
HAS /NEGATIVE /TERM

(N/C2)
HAS/POSITIVE/TERM

(P/C2)
HAS/TERMINAL

(P/C2) (N/C2)
MEMBER/OF (CAPACITOR)
PART/OF (REFERENCE/VOLTAGE)
PARTPR 81 82 83

09,-.

PNAME F2
EGO (SHORTED)
ARG (CAPACITOR)(DIODE)(RESISTOR)(SWITCH)

(TRANSFORMER/WINDING)(ZENER/DIODE)
FAULTPR 75 82 90 93 96 98 104 106 108 115 185 190

194 200 205 207 209 213 217 221 226 228
232 237 243 248 250 252 254 256 258 260
262 264 267

MEMBER/OF (FAULT)

82
FAULT (F2)
PART (C2)
SCHEMA (S33112)
FAULT-SETTINGS (LOAD 20) (CC 1.0) (VC 1.0) (CR HIGH)

(VR HIGH)

88

O9
proposed when a leaky C2 is inserted into the circuit. The

user can state a specific value for the leakage resistance

if he so desires; this value is the default when none is

specified.

HAS/NEGATIVE/TERM and HAS/POSITIVE/TERM are

respectively the normally negative and normally positive

terminals of C2. These are used to provide the proper sign

when the user asks for the voltage across C2, i.e. in a

normal circuit the answer will be positive, but if the

circuit is faulted in such a way that the potential

difference is reversed, the sign will be negative. The

HAS/TERMINAL is used in conjunction with TERMINAL/OF/NODE

links to represent the topology of the circuit. Note that

this information is a duplication of the HAS/NEGATIVE/TERM

and HAS/POSITIVE/TERM links. This duplication is necessary

because the implementation of the semantic network does not

allow structuring over relations. This is a shortcoming of

our semantic net and is a time-space trade off in favor of

time.

*In fact, atoms with SREF properties (terms) are the only
way to access the net. Note that this allows the network to
have items which do not have associated atoms. This can
amount to a considerable savings over a net implementation
based on atom structures. In the electronics network of 450
items only about one-fourth of these need atoms associated
with them. (However most of the rest do have a PNAME but
these are only for debugging purposes and could be removed
in a finished system.)

89

CG, 4. J

The MEMBER/OF relation represents the fact that C2 is a

capacitor. The PART/OF relation indicates which section

of the circuit C2 is part of. Using these last two

relations we can determine that C2 is a voltage reference

capacitor. PARTPR are links to concepts of C2 failing in

specific ways. Item 81 represents the concept of C2

opening, 82 that of C2 shorting and 83 the concept of C2

being leaky.

Network Functions*

The items in the semantic net are represented by small

integers which point to cells in the network storage area,

the array ITEMARRAY. Each cell of array storage can hold

two LISP pointers. The CAR of an array cell is an

ASSOC-type list of the relations of that item while the CDR

is its property list. To initialize a network, there is a

function NEWNET which takes one argument, the maximum number

of items. NEWNET allocates an array of proper size and

assigns it to the global variable ITEMARRAY. It also clears

the global variables TERMS (a list of the atoms which

correspond to items), EGO-DICT (a list of item print names),

and FREENODE (the free list of items). Whenever a new item

cell is desired, the function NEWITEM is called. If NEWITEM

*This section is a rather detailed description of the set of
network functions and would be of interest primarily to
those wanting to use this set of functions as tools for
building their awn networks.

90

1.1F
09,;

cannot find a free item cell in ITEMARRAY, the function

EXPANDNET is called to automatically double the size of the

storage array.

Before adding any information to the net, the user must

define the relations and properties he intends to use. This

is done with the function DEFRELS, e.g. (DEFRELS (R1 m/s

Rlinverse m/s) (R2 m/s) (Rn m/s Rninverse m/s)). If

Rinverse is not given, R is defined as a property. The m/s

is either M or S and determines whether the relation is

multiple or single valued. For example, (DEFRELS (MEMBER/OF

S HAS/MEMBER M) (COLOR S)) defines MEMBER/OF and HAS/MEMBER

as inverse relations and COLOR as a property. MEMBER/OF is

singular (i.e. an item is the member of only one thing)

while HAS/MEMBER is multiple (i.e. an item can have many

members). Defining a relation to be simple valued allows a

savings of one CONS cell per link and prevents the user from

inadvertently assigning it more than one value. If the user

is not interested in these points, he may define all of his

relations as M.

The main function for adding information to the network

is ADDITEM. ADDITEM can be used to add new information

about an existing item or to create new items. ADDITEM has

the disadvantage that any items created by it must be

"terms" (have LISP atoms which correspond to them). To

create items without PNAMEs there is a similar function,

91

tg,41 vt Y.
09c

'BUILD. There is also a function ICONNECT which is useful

for linking together groups of already defined items with a

single relation.

The retrieval of information from the net can occur at

several levels. The function IFIND which was described

earlier can be used for complex retrievals from the net.

The function ICONNECT? is useful for determining whether or

not two sets of items are anywhere related by a particular

relation. At the lowest levels, RELFOL returns the

relations of an item while PROPFOL retrieves properties.

There are a large number of functions available for

editing information in the network. To delete information

about an item the function DELITEM is used. It provides

ways of deleting particular links between items, removing

all of those links of a particular relation that an item

has, or deleting an item entirely. This last action which

can also be done by function FREENODE puts the item cell

back on the free item list. The functions CHANGEREL and

CHNGPROP provide ways of changing respectively, the relation

between two items or the properties of an item. To change

the PNAME of an item there is a function RETITLE. In

addition, a way is provided for calling the BBN LISP editor

on either the property list of an item (IEDITP) or the list

of relations of an item (IEDITR). IEDITR must be used with

caution as all of the information on the relation list of an

92

I

09,
item is ordered and is duplicated on the relation lists of

the items pointed to by it and IEDITR makes no attempts to

change the inverse links.

To print out information from the network there are

three basic functions. The simplest, PRINTITEM, prints the

name associated with an item. If the item has a PNAME or an

EGO, that is what is printed. Otherwise, the item (the

number) itself is printed. The function DESCRIBE

(abbreviated D) prints out all of the arcs (properties and

relations) leaving an item. To make a copy of the entire

network, there is a function PNET. PNET prints a directory

of the relations and properties, the terms and the egos of

the network as well as DESCRIBEing each item. To save a

copy of the network for later use, as opposed to later

reading, the user should use the LISP function MAXEFILE on

the file NET. More detail about the implementation of the

network is available in the listings in Appendix 5.

93

PM

1..iLS- I

Chapter 7

Conclusion

Introduction

The prior chapters have provided a rather comprehensive

technical description of the top level details of Sophie.

Because of the complexity of this kind of system these

chapters may have raised more questions than they answered.

The purpose of this chapter is to anticipate and answer some

of these questions and to indicate some new dimensions along

which Sophie might be profitably expanded.

It is important to realize that we do not view Sophie

as a stand-alone CAI system but instead we view it as a

powerful adjunct to efficient CAI delivery systems such as

PLATO, AIS, etc. To use Sophie to spew out textual material

typically contained in frame oriented systems would be a

maximal misuse of Sophie's power. It seems best to let a

PLATO type system perform those functions for which it has

been carefully tuned and then to invoke Sophie (possibly via

the ARPA network) to handle deeper "problem-solving

sessions" with the student. In particular, by using Sophie

an author can easily present tasks or questions to a student

without being constrained to use only those tasks which

possess simple extensionally defined answer sets. Likewise,

with Sophie the author need not worry about selecting or

94

L
'g A,

providing the detailed feedback for each student's

individualized solution to a given task. Such uses make

optimal use of Sophie's intelligence and as Sophie gets

smarter (incorporating more knowledge and inference

procedures) the more profound and individualized the

analyses it performs will be.

Generality

Some of the most frequently asked questions about

Sophie concern its generality and the closely associated

issue of what an author must do to add new circuits to

Sophie's repository of knowledge. When we started designing

this system we purposely chose to model one and only one

circuit feeling it would be unwise to build in the

capability of handling multiple circuits until we had solved

the major stumbling blocks of successfully handling one

circuit. However the decision to model the IP-28 power

supply was partially based on our concern for generality.

Although many of our techniques for handling the power

supply are currently limited to DC techniques, this

particular power supply critically depends on encoding the

functions of its feedback paths. Having found viable

techniques for coping with feedback in itself guarantees us

one important dimension of generality. Not only do feedback

circuits permeate every moderately complicated electronic

instrument but it is precisely feedback which raises havoc

95

..J

I

IOU

with simplistic troubleshooting techniques (or logics) and

which causes hopeless problems with classical inferencing

techniques.

Adding New DC Circuits

Since much of Sophie's inferential capabilities stem

from specialists" .intelligently manipulating and

interpreting a general purpose simulation system, adding new

DC circuits basically involves communicating a complete

circuit description to the simulator. This could be done by

storing the description of the new circuit in the semantic

net. Since the various specialists are driven by the

relevant portions of the net, the specialists themselves

should require only minor changes. In addition, the

semantics of the natural language processor would have to be

enlarged to cope with whatever new concepts are present in

the circuit and to be able to determine the proper

denotation for terms used in asking questions about the

circuit. (Handling several circuits simultaneously would

require more profound changes but would surely be doable

within the current framework of Sophie).

The only major stumbling block for adding a new DC

circuit would concern the hypothesis generation specialists

which make extensive use of the fast circuit-dependent

simulator. Currently this simulator would require extensive

96

101
recoding for modelling most new circuits. Of course this

problem can be circumvented by deactivating certain

specialists but that action would eliminate most of the

deductive capabilities of the "HELP" command. However, we

think it might be possible to automate the construction of a

circuit dependent simulator by developing some automatic

programming techniques coupled with explicit knowledge

derivable from using the general purpose simulator system to

model the circuit under investigation. We see such research

as providing a challenging new direction to the concepts of

author aids and generative Cu l.

Handling More Complicated Circuits

Our approach to handling more complicated circuits will

use hierarchical functional models falling back on the

individual component level of simulation for the "terminal"

nodes. We expect no "terminal" to be any more complicated

than our current circuit and therefore we should be able to

use the general purpose simulator for modelling the lowest

level blocks. A great deal more research is required before

we fully understand the best way to handle "faultable"

hierarchical models. In particular we hope to develop more

qualitative simulators for the functional blocks which

manifest some of the advantages of our automata-driven

meteorological simulator (Bro73).

97

1(
ry,

1,-o 1.4",--1.,d

Handling AC Circuits

Although we could use our general purpose simulator for

modelling AC aspects of a circuit, we again favor the

development of a more qualitative approach which would merge

the DC simulation techniques (for determining operating

points, etc.) with AC specialists. These specialists would

not only provide a qualitative simulation of the AC behavior

but in conjunction with information derived from the DC

simulation they could be used for the hypothesis generation

or theory formation tasks.

New Avenues of Research

Although Sophie's present capabilities unquestionably

demonstrate that AI techniques can have an immediate pay-off

in CAI environments, we do not pretend that Sophie fully

demonstrates such capabilities. In fact, we have just

scratched the surface of what can be done with AI in an

educational or training environment. What follows are some

directions to be pursued using the basic framework set forth

by Sophie.

1) Using deductive type specialists to create a commentary
on, or a grading of, the sequence of measurements taken
by the student.
a) Creating a logical model of the information that

an "ideal" student would have deduced from this
sequence of measurements. This model could then
be utilized by tutorial specialists to guide the
student on remedial action and to explain to him
why certain of his measurements were redundant,
etc.

98

10,D

2) Expanding the question answering capabilities so that
causal explanations can be given to "why" questions
which follow "what happens if" type questions.

3) Building specialists that can deduce the appropriate
boundary conditions to use in setting up the simulation
runs for "if-then" questions and which can reveal why
these conditions are interesting. (Current procedures
perform simple inferencing of a SUPERC nature on the
semantic net).

4) Building specialists which can perform qualitative
reasoning about a new circuit and in particular, can
"understand" what each component is doing in a given
circuit, i.e. a set of specialists that can build a
qualitative description of a circuit given only the
semantics of the circuit.

5) Expanding Sophie's natural language capabilities to
handle contextual problems in a unified way.

6) Incorporating some of the Scholar-type networks and
inferencing procedures for answering generic types of
questions such as "What is a transistor", etc.

7) Exploring how Sophie might benefit from certain
distributive computation concepts wherein Sophie's
simulator might run on a number-crunching computer with
all the "smarts" sitting on top of the simulator
residing in a LISP machine.

8) Exploring how to effectively interface Sophie with a
PLATO type system.

Different Domains of Knowledge for Sophie

Although Sophie has been designed around electronic

knowledge the underlying philosophy of Sophie (and its

inferencing schema) can certainly be applied to other closed

"worlds". For example, any domain for which simulation

models exists would be obvious candidates. Several domains

of knowledge which look particularly promising are:

99

10,1
13E.Si

1) programming wherein one can "simulate" or execute
a program to verify some property about it and to
understand some of the ramifications of a given
malfunction or "bug"

2) mechanical systems

3) complex hydraulic systems

4) medical knowledge especially that pertaining to
physiological or pharmacological processes

Not only do all these domains involve the teaching of

troubleshooting or debugging techniques but they also lend

themselves particularly well to powerful simulations. In

fact many of the convergence problems plaguing simulation

techniques in electronics are minimal in these domains. But

of course there are other problems which are more difficult

to solve in these domains. For example, in the programming

area the inference techniques needed to derive "test data"

(i.e. boundary conditions) are considerably more subtle

than those in most electronic circuits.

Some AI Issues

Throughout this report we have tended to de-emphasize

the AI aspects of this research except to note that AI

techniques, judiciously used, can have an immediate impact

on CAI technology. In these closing paragraphs we will

sketch some of the novel and possibly significant AI

concepts developed in the course of building Sophie.

The key to Sophie's deductive or inferential

100

BSI LA '

capabilities lies in distributing intelligence across

numerous specialists each of which incorporates domain

dependent knowledge for carrying out its little task.

Distributing the intelligence allows Sophie to easily use

two drastically different means of encoding knowledge -- the

"analogue" model and the deductive specialist -- each of

which provides unique properties for expediting certain

kinds of inference. The analogue model is especially well

suited to account for the complex side effects and feedback

type interactions underlying the consequences of certain

actions. The deductive specialists are well equipped to

handle "linear" reasoning where the consequences of an

action do not cycle back and seriously alter the very state

on which the deduction was initiated. In those situations

where "feedback" leads to competing theories concerning what

should override what, the analogue model can be used to

simultaneously resolve all such conflicts. However, it

often renders opaque those aspects which are well captured

by the linear reasoning.*

An interesting AI issue lies in the interfacing of

these different representations. Just as Gelenter's system

used an analogue model of a theorem (in the form of a

diagram) we use a simulation of a "theorem" (representing a

*A somewhat similar situation occurs in the trade-offs
between time and frequency domains such as arise in Fourier
analysis.

101

10L
ES: LQ

circuit) not only for guiding some of the procedural

specialists but also for creating examples which provide

kernel data for other specialists. In addition, Sophie

incorporates heuristic "how to do it" type knowledge which

is used to manipulate the model and then examine the results

of this manipulation. It is precisely this kind of

non-axiomatic manipulation which looks most promising in our

view and has been one of the driving forces behind our

concept of Sophie. In summary, we believe that a profound

synergism can be obtained by correctly combining deductive

models with "analogue" models.

102

"I; qt.E

10
Appendix 1

Instrument and Circuit Description
of the IP-28 Power Supply

The IP-28 is a regulated power supply which has both

current limiting and voltage control capabilities.

(Schematic is included at the end of this appendix.) It is

designed to deliver 1 amp at 30 volts when the current range

switch (CR) is set to high and the voltage range switch is

set to high. If CR is set to low then it delivers a maximum

of 0.1 amps and if VR is set to low it delivers a maximum of

10 volts. The current control (CC) and voltage control (VC)

potentiometers regulate the cut off limits within the

specified ranges. When VC is set to 1, the cut off limit is

at the extreme high (e.g. 30V if VR -high) and if VC is set

to 0 the output voltage should be limited to about 1 volt.

The internal DC supply voltage level is maintained' by

means of a full wave rectifier (diodes D1 and D2) connected

to the center-tapped winding of the power transformer. A Pi

configuration filter (resistor'R8 and capacitors C3 and C4)

reduces the ripple in the DC supply voltage to manageable

proportions (about 4 volts AC remains). Transistors Ql, Q2

and resistors R9. R11 form a constant current source. This

particular configuration gives good stability over voltage

level variations twice as large as may be expected at the

output of the filter, as well as assuring temperature

103

I

US1 100

stability. The output of the constant current source drives

the Darlington pair pass transistor consisting of

transistors Q3 and Q4 and resistor R22. Q3, a power

transistor, is capable of handling the desired currents

(about 1 Amp), but is of relatively low beta. Q4's beta is

very high (nominally 150 - 300), their combination assures

both good capacity and quick response. R22 insures that the

Darlington will cut off completely in situations where the

collector-base leakage current of Q3 becomes significant.

R12 is a steady state load which assures that Q3 does not

cut off completely, and that minimum output voltage can be

reached quickly.

Switching transistors Q5 and Q6 control the amount of

current which actually flows into the base of Q4 from the

output of the constant current source. Current limiting is

achieved via rest 31c R15 and rheostats R14 (Current

Control) and R13 ::rimpot). The voltage across this series

resistance determines how much ourzeut Q6 will draw away

from the base of the Darlir.,Jton pair.

Voltage regulation is achieved via comparison of the

output of the Darlington with the output of the reference

voltage, the source of which is the half-wave rectifier on

the other winding of the power transformer (diode D3). The

output of the half wave rectifier is filtered by capacitor

Cl. Zener diode 04 insures that voltage will drop across R3

104

10;-,

to a steady 56 volts. D5 and R4 act similarly to drop this

voltage in turn to 36 volts. The use of two zener diodes

insures that the output (final) zener will remain in a

temperature stable region. The very clean reference voltage

thus produced is applied across rheostat R7 (Voltage

Control), one terminal of which is connected to the output

of the power supply. The difference between the voltage

drop in the reference branch of the circuit to the wiper of

R7 and the voltage across the output load appears across the

base-emitter junction of Q5, thereby controlling the amount

of current that transistor will draw away from the base of

the Darlington pair, C5 is used to reduce the output

inpedance of the power supply, and C6 insures that the

device will not oscillate due to switching transients.

105

37 V
A

C

47 M
C

01

C
3 S0

0}
1

n
v

5
0
v0 0

n

N
O

D
E

 N
U

N
SE

R
S

R
ID 33

00
11

"C
U

R
R

E
N

T
'C

U
R

R
D

IT
C

O
N

T
R

O
L

C
O

N
T

R
O

L
'

T
R

U
IP

O
T

.

za
gj

1.
7

11
.0

'C
U

R
R

E
N

T
R

A
M

G
E

5W
IT

C
H

a

IA
P

do
A

n

2

30
V

11

V
O

L
T

A
G

E
R

A
N

G
E

 S
W

IT
C

H
'

6,
10

V

R
I)

11
4

S
R

15
10

11
In

4A

C
A 20

0F

N
M

47
M

M

C
5

SO
V

R
. 1

2
ns

11
4

13
K

IM
12

25
11

22
00

11
11

00
11

11
1/

M
16

72
V

A
C

+
R
s

C
2

a
30

00
11

11
74

SO
V

+
+

M
IA

20
0V

34
V

 W
54

V
 '3

K
%

U
SA

G
E

00
04

..-
-.

..
=

M
a:

W
V

04
V

11

S
c
h
e
m
a
t
i
c

o
f

t
h
e

I
P
-
2
8

P
o
w
e
r

S
u
p
p
l
y

14

Lu t.,.

Appendix 2

BNF Description of the Grammar

11

This appendix gives a BNF-like description of the
language accepted by Sophie. The grammar is implemented as
LISP functions and some examples are listed in Appendix 3.
The parsing process is sketched out and a list of compound
words and abbreviations are given.

In the description, alternatives on the right hand side
are separated by ! or are listed on separate lines.
Brackets () enclose optional elements. An asterisk * is
used to mark notes about a particular rule. Non-terminals
are designated by names enclosed in angle brackets <>.

A

The Grammar

<statement> := <request> I <set> ! <modify>

<request> := <sim/request> [if <part/fault/spec>)
if <part /fault /spec) [then] <sim/request>

<set> := set* <switch/spec> [to] <switch/value>
set <pot/spec> [to] <pot/value>
set <load /spec) Ito] cload/value>
put <load/value> [of] <load/spec>
increase <pot/spec> (to] [<pot/value>]
decrease <pot/spec> [to] tcputivalue>1
*turn, put, let, switch, suppose and change also work.

<modify> := suppose* <part/fault/spec>
replace** <part/spec>
<fault/spec> <faultable/thing>
<fault/up>
clear <instrument/spec>
fix <instrument/spec>
remove fault
reset <instrument/spec>
restart
*let and change also
**switch and fix also.

107

}

<control/setting> := <switch/spec> ! <pot/spec> ! <load/spec>
[setting of] <control/setting>

<control/settings> : settings !controls

<correct/mod> := correct ! working ! good I normal
unfaulted I proper ! new ok ! okay

<diode/spec> := <diode> I <sener/diode>
<section> diode I <section> sener/diode

<extel/var> := something I anything

<fault/spec>:= open I short I burn/up I blown I leaky

<fault/up> := insert (<fault/mod>) fault
insert fault <num/spec>
use, introduce, enter and give also

<fault/mod> := hard I easy ! benhaim

<faultable/thing> :_ <part/spec> I <junction> I <terminal>

<faulted/mod> := broken ! fault ! bad incorrect ! wrong I problem
defective

<instrument/spec> := unit I circuit ! instrument I supply

<junction> := <junction /type> [of] <transistor/spec>
<transistor/term/type> and <transistor/tern/tyro> [of]

<transistor/spec>
<transistor /term/type> to <transistor/term/type> [of)

<transistor/spec>

<junction/type> := gob ! be I ec ! ce I cb ! be

<k/num/spec> :_ "numberwk (i.e. 10k)

<load/spec> := load output resistor

108

<load/value> := <num/spec> [unit] BEST COF l TaQL.ABLE
<k/num/spec> [unit]

<meas/quant> := voltage 1 current 1 resistance* 1 power
*means measured resistance

<measurement/modifier> := <right/meas/mod> ! <wrong/meas/mod>

<measurement/pronoun> := it 1 that [measurement]
that result 1 that value

<measurement> := output <meas/guant> [of <transformer>]
<transformer> <meas/quant>
<meas/quant> between* <node> and* <node>
<meas/quant> of** <part/spec>
<meas/quant> between output terminals
<meas/quant> of <Junction>
<meas/quant> of <node>
<meas/quant> from <Junction>
<junction/type> <meas/quant> of <transistor/spec>
<transistor/term/type> <meas/quant> of

<transistor/spec>
'from-to also works
**at, thru, in, into, across and through also work

<model/modifier> := <correct/mod> ! <faulted/mod>

<model/spec> ts in' <model/modifier> <instrument/spec>
supposed [to] be
'for and with also .

<node> to <terminal> 1 ground
junction of <part/spec> and <part/spec>
node between <part/spec> and <part/spec>
[point] between <part/spec> and (part/spec>
<node/name> 1 [node] <node/number>

<node/number> := integer -1<n<27

<num/spec> t= "any positive number" [k]

<part /fault /spec> := <faultable/thing> is <fault/spec>
<feultable/thing> [is] <model/modifier>

109

l't

u7 '7
<part/spec> [is] <part/value>

11'4 <exial/var> <faulted/mod> (<faultable /thing >)
<part/prop> <part /spec> <model/modifier>
<part/prop> <part/spec> <part/value>
<faultable /thing) has <faulted/mod> <part/prop>
<faultable/thing> has <part/prop> <part/value>

<part /spec) := <part/name> ! <load/spec> ! <section> <part /type)

<part/prop> := value ! beta ! break -down /voltage spec
leakage/resistance power/rating ! resistance*
*means specification value of resistance

<part /value) := <load/value> I high I low

<pot /spec) := cc I vc ! cct

<pot/value> := <num/spec> I on ! off low I med! high I max min

(right/meas/mod> := right correct reasonable I ok I okay
normal

<sim/reguest) 1= what is <measurement> [(model/spec>]
<model/spec> what is <measurement>
what is <simple/fact>[<model/spec))
what is < measurement /pronoun) <model/spec>
what is <control/setting>
what are <control/settings>
what are specs <pert/spec>
what should <measurement/pronoun> be
what should <measurement> be
what should <simple/fact> be
is <part/fault/spec>
is <measurement> <measurement/modifier>
is <measurement/pronoun> <measurement/modifier>what happen [(measurement>)
is it possible [that] <part/fault/spec>
could the problem be [that] <part/fault/spec>
could it be [that] <part/fault/spec>
I think [that] <part/fault/spec>
what is wrong
what could be wrong
help
review [everything]
VIVO

110

<simple/fact> := <pert/prop> <part/spec>

<switch/spec> := vr 1 cr I standby

UST

<switch/value) tof low I high I on I off ! 10v ! 10volt I 30v I 30volt
lamp ! .lamp 1a I .1a I min ! max
30 ! 10 1 ! .1

<terminal) := output [terminal] <transistorfters> 1 center /tap
positive terminal <part/spec>
negative terminal <part/spec>
erode <diode/spec> I cathode <diode /apec>
wiper <pot/spec>

<transformer> := t1 I t2

<transistor/spec> := <transistor> ! <section> transistor

<transistor/term> := <transistor/termitype> <transistor/spec>

< transistor /term /type> := base I collector ! emitter

<wrong/meas/mod> :ft wrong I incorrect

<transistor>, <capacitor>, < diode), <resistor> and <sener/diodo> all
check the semantic network and parse correct part names, e.g. r9, (16.

<section> uses the semantic network to determine it a word is a
section of the unit, e.g. current/limiter.

<part/name> uses the semantic network to see if a word is the name of
a part e.g. r6, c4, t2.

<node/name> checks semantic network for node names.

111

L1..;.1 Lot OLE

The Parsing Process

11 c,

The parsing is preceded by a prescan which expands
abbreviations, does spelling correction on commonly
misspelled words and recognizes compound words and inserts
the correct slashes; for example, the user can type current
control instead of CC or zener diode instead of zener/diode.

Any statement which does not parse normally is treated as if
it were a "what is" type of question and another attempt is
made by the parser, e.g. "beta of Q5" is treated as "what
is the beta of Q5". If the statement still does not parse,
an extended spelling correction is done.

Following is a list of the compound words and abbreviations
recognized by the parser.

compound abbreviations

Base Emitter -- BE COLL
Emitter Base -- EB EMIT

also CE, EC, BC, CB
Break Down Voltage IB
Burn Up IC
Center Tap IE
Constant Current Source IBE
Current Control IEB
Current Control Trimpot IEC
Current Limiting ICE
Current Range Switch /CB
Current Reference Source IBC
Leakage Resistance:- 0 or OP-
Output Stage OI
Pass Transistor OV
Power Rating
Power Transformer V
Reference Transformer VBE
Voltage Control VEB
Voltage Limiting VEC
Voltage Range Switch VCE
Voltage Source VBC
Zener Diode VCB

WHAT's
BDV
LEAK

112

Appendix 3

Program Listing of the Grammar

This appendix provides some
functions. Included are most
parse (recognize and semantically
of a terminal, i.e. "base of Q2"

(<TRANSISTOR/TERM>
(LAMBDA (STR)

(PROG (TS1 R1)
(RETURN (COND

11

examples of the grammar
of the rules necessary to
interpret) any occurrence
or "wiper of CC".

(* SPECIFICATION of A
particular TRANSISTOR
terminal.)

((SETA TS1 (<TRANSISTOR/TERM/TYPE>
STR))

(SETA R1 RESULT)
(AND (SETA STR (<TRANSISTOR/SPEC>

(CDR TS1)))
(SETA RESULT (LIST R1 RESULT))
STR])

(< TRANSISTOR /TERM /TYPE>
[LAMBDA (STR N) (* Types of TRANSISTOR

terminals.)
(CHECKLST STR (QUOTE (RASE COLLECTOR EMITTER))

11])

(<TRANSISTOR/SPEC>
[LAMBDA (STR) (* Ways of specifying A

particular TRANSISTOR.)
(OR (<TRANSISTOR> STR)

(<SECTION-PART> STR (QUOTE (TRANSISTOR))

113

.- cs1 rt, -.1 It -.1E
A: ..> !... :skr....:v...

(< SECTION -PART>
[LAMBDA (STR PRLST)

(* Looks for A REFERENCE to A PART via
THE SECTION it is in.
PRLST is THE PART types acceptable for
THE particular occurrence.)

(PROG (R1)
(RETURN (AND (SETA STR (<SECTION> STR))

(SETA R1 RESULT)
(SETA STR (CHECKLST (CDR STR)

PRLST))
(SETA RESULT (LIST (QUOTE FINDPART)

R1 RESULT))
STRJ)

(<PART/SPEC>
[LAMBDA (STR)

(OR (<PART/NAME> STR)
(<LOAD/SPE(> STR)
(<SECTION -PART> STR

(QUOTE (CAPACITOR DIODE RESISTOR TRANSISTOR
ZENER/DIODEI)

(TERMINAL>
(LAMBDA (STR) (* ALL REFERENCE to A terminal

of A PART.)
(PROG (TS1 R1)

(RETURN
(COND
([SETA TS1 (GOBBLE (CHECKWRD STR

(QUoTE OUTPUT))
(QUOTE (TERMINAL]

(SETA RESULT (QUOTE P/OP))
TS1)

((<TRANSISTOR/TERM> STR))
((SETA TS1 (CHECKWRD STR (QUOTE CENTER/TAP)))

(SETA RESULT (QUOTE M/Tl<S>))
TS1)

((SETA TS1 (CHECKLST STR (QUOTE (POSITIVE
NEGATIVE)

(SETA R1 RESULT)
(AND

(SETQ TS1
(<PART/SPEC>

(CDR (GOBBLE TS1 (QUOTE (OF]
(SETA RESULT (LIST R1 RESULT))

,TS1))

114

110

((SETA TS1 (CHECKLST STR (QUOTE (ANODE
CATHODE) 11;)

(SETA R1 RESULT)
(AND

SETQ TS1
(<DIODE/SPEC>

(CDR (GOBBLE TS1 (QUOTE (OF)
(SETA RESULT (LIST R1 RESULT)

((SEW TS1 (CHECKLST STR (QUOTE (WIPER)
(AND (SETA TS1 (<POT/SPEC> (CDR TS1)))

(SETQ RESULT (LIST (QUOTE WIPER)
RESULT))

TS1))

(CHECKLST
[LAMBDA (STR LST N)

(* Looks for one of A list of wrds
(LST) within N words in THE STR.
If found RESULT is set to THE word
found.)

(PROG NIL
(OR N (SETA N FUZZINESS))

LP (COND
((OR (NULL STR)

(ZEROP N))
(RETURN))

((FMEMB (CAR STR)
LST)

(SETQ RESULT (CAR STR))
(RETURN STR)))

(SETQ STR (CDR STR))
(SETQ N (SUB1 N))
(GO LP))

115

;,4

Appendix 4

Examples of Semantic Forms

These are some examples of
Natural Language Processor.
semantic interpretation is
interpretation is a function
performs the processing required

sentences handled by the
Under each statement the
given. The semantic

call which when executed
by the statement.

Requesting measurements: (parse times including semantic
interpretation are placed in parentheses)

What is the voltage across the base emitter junction of the
current limiting transistor? (140 ms)

(MEASURE VOLTAGE (FINDPART CURRENT /LIMITER TRANSISTOR) BE)

What is the VBE of Q6? (120 ms)
(MEASURE VOLTAGE Q6 BE)

What is current thru the base of Q5?' (130 ms)
(MEASURE CURRENT (RASE Q5))

What is the IB of Q5? (100 ms)
(MEASURE CURRENT Q5 BASE)

What is the output voltage? (80 ms)
(MEASURE VOLTAGE LOAD)

What is the voltage between node 1 and the positive terminal
of C6? (280 ms)

(MEASURE VOLTAGE N1 (POSITIVE C6))

What is the dynamic resistance of Rll? (120 ms)
(MEASURE RESISTANCE R11)

What is the power rating of R8? (100 ms)
(CHECKSPEC POWER/RATING R8)

What is the beta of the voltage limiting transistor?
(110 ms)

(CHERSPEC BETA (FINDPART VOLTAGE/LIMITER TRANSISTOR))

What are the specs of Q3? (90 ms)
(CHECKSPEC SPEC Q3)

In a working circuit what is the output voltage of the power
reference transformer? (90 ms)

(MODELEVALQ (MEASURE VOLTAGE T2) GOOD)

116

I

Modifying the instrument:

Change the output load to 10 megohms
(STQ LOAD 1.0E7)

Suppose the beta of Q5 is 200
(DOFAULT Q5 200 BETA)

Suppose the breakdown voltage of D5 is 30 volts
(DOFAULT D5 30 BREAK-DOWN/VOLTAGE)

Let C2 be leaky
(DOFAULT C2 LEAKY)

Turn up the voltage control
(INCREASE VC)

Set the voltage range switch to 30 volts
(STQ VR HIGH)

Set the current control to maximum
(STQ CC 1.0)

Suppose the BE junction of Q6 is shorted
(DOFAULT (BE 06) SHORT)

Insert a hard fault
(INSERTFAULT HARD)

Noun phrase utterances: (noun phrases get interpreted as
7iiirestioni)

Voltage between the base of Q5 and the wiper of the voltage
control
(MEASURE VOLTAGE (BASE Q5) (WIPER VC))

Output voltage
(MEASURE VOLTAGE LOAD)

VBE of Q6
(MEASURE VOLTAGE Q6 BE)

I thru C6
(MEASURE CURRENT C6)

117

121

Miscellaneous Questions:

Is the current limiting transistor bad
(SEEFAULT (FINDPART CURRENT/LIMITING TRANSISTOR) BAD)

Is it possible that the breakdown voltage of D5 is too low
(TESTFAULT D5 LOW BREAK-DOWN/VOLTAGE)

Could the problem be that C2 is leaky
(TESTFAULT C2 LEAKY)

Is anything wrong?
(SEEFAULT EXIALVAR BAD)

What is wrong?
(LISTFAULTS)

If the EB of Q5 opens what is the voltage at node 4
(/FTHEN ((BE Q5) OPEN) (MEASURE VOLTAGE N4))

What happens when the current range switch opens
(IFTHEN (CR OPEN) (MEASURE VOLTAGE LOAD))

What could be wrong?
(HYPHELP)

Miscellaneous comma:4g:

Replace resistor R6
(REPLACE R6)

Review
(REVIEW)

Remove all faults
(CLEARUNIT)

Reset the instrument
(RESETUNIT)

Restart
(RESTART)

Save
(SAVESYS)

118

(r
RABLE

Appendix 5

Program Listing of Semantic Network Functions

This appendix is a listing of the functions necessary

to build and manipulate the semantic network used by Sophie.

It is included in this report in the hope that others may

. find this package useful for building their networks. These

functions can be obtained on Dectape or via the ARPA network

from the authors.

119

12

(DEFINED

12'1

(**INTRO
[LAMBDA NIL

(* This is a collection of LISP routines which
implement a semantic network patterned after
Shapiro,
A NET STRUCTURE FOR SEMANTIC INFORMATION STORAGE
in IJCAI 71)

(* The net is a collection of items
(which are physically small numbers used as pointers
into ITEMARRAY) linked together by RELATIONS and
which may have properties. RELATIONS are pointers to
other items in the NET and are stored in the CAR of
the array cell. Properties are pointers to objects
outside the NET and are stored in the CDR of the
array cell. Terms are lisp atoms which provide entry
points into the NET via the property SREF on their
property list. These are kept on a global variable
TERMS. EGO-DICT is a list of print name associated
with items in the NET which are used to improve the
readability of the NET.)

(* A network can be saved on dsk by initially doing
a LOAD on NET.INIT, evaluating
(NEWNET n) and then doing a mAKisrILE on NET whenever
a new copy of the network is desired.
NETVARS contains the relevant information about
saving the network.)

(* some accessing of information in the network is
performed by the function /FIND which is
block-compiled and is on a separate file, /FIND.COM
(which should be ioaded before SEM.))

120

CE S7 rA:"Y !VAR,.
BLE

(*REL
[LAMBDA (R) (Get the inverse of R)

(OR (CDR (GE' REL R))
(KELP R DOES NOT HAVE A RELATIONAL INVERSE.m))

(ADDITEM
DNLAMBDA ARG

(5 Adds information about an item or creates a new
item, The form of a call is
(ADDITEM t/i (ri t/ill t/i12 .
t/iln) (r2 t/i21 t/i22 t/i2n)
(rn t/int t/in2 t/inm)). If ri is a relation,
ADDITEM adds ri LINKS between t/i and each t/ilj,
All t/i can be either terms or items.
The t/i (ij), if not atomic can be a form which
evaluates to a list of items.
If 0 is a property, t/i1j can BE anything and is
stored as is.)

(IBUILDI (COND
((NUMBERP (CAR AEG))
(CAR ARG))

((SREF (CAP ARG)))
(T (ADDTERM (CAR ARG1

NEWITEM
(MAPCONC (CDR ARG)

(FUNCTION (LAMBDA (GRELSPEC)
(MAPCAR (CDR GRELSPEC)

(FUNCTION (LAMBDA (Y)
(LIST (CAR GRELSPEC)

x))

(ADDR!L
[LAMBDA (/TFMA R ITEMB)

(PUTLINK /TEMA R ITEMS)
(PUTLINK 'TUB (*RPL R)

ITEM])

(ADDTERM
(LAMBDA (ATM ITEM)

[OR (FNEMB ATM TERMS)
(SETA TERMS (MERGE TERMS (CONS ATM]

(PUT ATM (QUOTE SRL?)
(PUTPROP ITEM (QUOTE PNAME)

ATM])

121

(Add a 2-way link)

(* Adds a term and
connects it up to a
semantic referent)

CIJF F
(ADDTOPROP

[LAMBDA (NODE PROP PROPVAL)

(Adds properties to an item
(properties are on the CDR, relations are on the
CAR) if PROP is EGO, it updates EGO-DICT,)

(PPOG ((NODEPROPLIST (ELTD ITEMARRAY NODE))
PVLS)
[COND
((MULTP PROP)
(SETQ PROPVAL (CONS PROPVAL)))

((EQ PROP (QUOTE EGO))
(OR (MEMBER PROPVAL EGO-DICT)

(SETO EGO-DICT (MERGE EGO-DICT (CONS PROPVAL)
(CORD

((NULL NODEPROPLIST)
(SETD ITEMARRAY NODE (LIST PROP PROPVAL N)

((NULL (SETQ PVLS (GET NODEPROPLIST PROP)
(NCONC NODEPROPLIST (LIST PROP PROPVAL)))

((MULTP PROP)
(NCONC PVLS PROPVAL))

(T (HELP (QUOTE "ATTEMPT TO LINK SECOND SECOND VALUE")
PROP])

(CRANGEPEL
[LAMBDA (FROM TO OLDREL NEWREL)

(CRANGEREL is used. to edit the semantic network,
i.e. to Change the type of link between nodes from
and to. OLDREL is the old link, while NEWEL is the
new one.)

(DELREL (SETQ FROM (SEMNODE FROM))
OLDREL
(SETQ TO (SEMPODE TO)))

(ADDREL FROM NEWREL TO])

(CENGPROP
(LAMBDA (NODE PROP TO)
(COND

((SETA NODE (MEMB PROP (ELTD ITEMARRAY (SEMNODE NODE]
(PPLACA (CDR NODE) TO))

(T (RFLP (QUOTE NO PROPERTY")
PROP])

(DEEM
[LAMBDA (R1 SM1 R2 SM2)

(DEFREL is used to define new primitive RELATIONS
in the semantic network. It has been changed from
kaplan's version to allow the use of one way LINKS
or flags (properties))

122

gST sr,-OPY /11/41LA6LE

(COND
((GETgEL P1 T)

(ERROR P1 "ALREADY DEFINED AS A RELATION."))
((GETRFL R2 1)

(ERROR R2 ALREADY DEFINED AS A RELATION."))
([0P [NOT (FMEMB SM1 (CUOTE (S M]

(AM P2 (NOT (EMEND SM2 (QUOTE (S M]
(EPROP "RELATION SPECIFICATION HAS WRONG MULTIPLICITY SPEC.)))

(PUT P1 (QUOTE PFL)
(CONS SM1 P2))

(SFTQ RELATIONS (CONS R1 RELATIONS))
(COND

(P2 (PUT P2 (QUOTE RIL)
(CONS SM2 RI))

(SETA RELATIONS (CONS R2 RELATIONS)).

12r

(DEFRELS
[NLA?iBDA RFLDEFS

(Used for defining relations ie
(DEFRELS (r1 m/s r1 inverse m/s)
(r2 m/s r2inverse m/s) ...
(rn m/s rninverae m/s)) if rinverse is not given, ri
is a property.)

(MAPC RFLDEFS (FUNCTION (LAMBDA (RELDEF)
(APPLY

RELDEF(FUNCTION

DEFREL)
))

(DEGOS
[LAMBDA (FILE SORTFLAG)

(DEGOS is used to print out a dictionary of the
EGO LINKS for ease in looking through the semantic
NET. It is called by PNET.)

(PRIN1 "EGOS:" FILE)
(TEPPRI FILE)
(MAPC (COND

(SORTFLAG (SORT EGO -D/CT T))
(T EGO -D1CT))

(FUNCTION (LAMBDA (EGO)
(SPACES 2 FILE)
(PR/N1 EGO FILE)
(TERPRI FILE))

123

(DEL/T1M
UNLApBDA ARG

(41 Analogous to ADDITEM for deleting links.
ARG can BE (ITEM), (ITEM PROP).
(ITEM REL), (IT!M REL ITEM2)
(ITEM (r11 i1 22) (r12) (PROP)
(r14 i1 12 i3 ...) ...). At present all of a
property is deleted. To do otherwise, use IEDITP.)

BEST COPY lily

(PROG (ITEM RE, ITEM2)
(OR [NUMBERP (sego ITEM (SEMN2DE (CAR ARG]

(ERROR ITEM NOT AN ITEM.))

(COND
((NULL (CDR ARC))

(FRFENODE ITEM))
[(ATOM (SETO REL (CADR ARO)))

(00ND
((ON SWAY? REL)

(DELPROP ITEM RFL))
((SETA ITEM2 (CADDR ARG))

(OR (NUMBERP (SETS ITEM2 (SEMN9DE ITEM2)))
(ERROR ITEM2 NOT AN ITEM.))

(DELREL ITEM RBA, ITEM2))
(T (MAPC (RELFOL ITEM REL)

(FUNCTION (LAMBDA (I2)
(DELREL ITEM REL 12]

(T (MAPC (CDR ARG)
(FUNCTION (LAMBDA (X)

(COND
[(CDR X)
(MAPC (CDR X)

(FUNCTION (LAMBDA (Y)
(APPLY' (FUNCTION DILITEM)

ITEM
(CAR X)
Y3

(T (APPLY' (FUNCTION MITER)
ITEM
(CAR X)

(RETURN ITEM])

(DEL PROP
(LAMBDA (NODE PROP)

(Deletes a property from an item.
If the property is PNAME or EGO, it also removes its
value a:tyro TERMis or EGO-DICT.
If nothing is left on the item atter deletion, the
item is put on the freelist, FRLENODE,)

124

BEST COPY
111:f;i1.111.ii.f

(PROG (Ti)
[COND

[(EC PROP (QUOTE PNAME))
[CORD

((EQ (SREF (SEATO T1 (PROPFOL NODE Prk0P)))
NODE)

(REMPROP T1 (QUOTE Saar))
(SETQ TERMS (REMOVE T1 TERMS]

((EQ PROP (QUOTE EGO))
(SETA EGO -DICT (REMOVE (PROPFOL NODE PROP)

EGO-DICT]
(SETD ITEMARRAY NODE (KAPCON

(ELTD ITEMARRAY NODE)
[FUNCTIORD N (LAMBDA (14)

(CO
((EQ (CAR yr,

PROP)
NIL)

(T (LIST (CAR NP)

(FUNCTION CDDR)))
(CADR NP]

(FREEIFNULL NODE])

12:.

(DELREL
[LAMBDA (*FROM REL *TO)

(* DELREL is used to delete a link between two nodes
in the semantic network, 'FROM and *TO.
Since every link is two-way, DELRELI is called to
delete both directed LINKS.)

(DELREL1

(DELPEL1

(SETA *FROM (SEKNODE *FROM))
REL
(SETO *TO (SEMNODE *T0)))
*TO (*REL REL) *FROK)*FROM3)

(DELRFL1
[LAMBDA (FROM REL TO)

DELREL1 is called by DELREL to delete a directed
link between nodes from and to.
From and to are integers, pointing to nodes in the
semantic network. If nothing is left on node from
after the deletion, it is added to the pool of
available nodes, FREENODE.)

125

(FROG ((FLINKS (LINKS FROM))
X)
(OR (SETO X (ASSOC REL FLINKS))

(CO
(RETURN NIL))

ND
((EQ (QUOTE s)

(CAR (GETP REL (QUOTE REL]
(COND

[(EC TO (CDR X))
(SETA ITEMARRAY

FROM (MAPCONC ?LINKS (FUNCTION (LAMBDA (Y)
(AND (NEQ Y X)

(LIST Y)
(T (PRIM FROM)

(PRINT (QUOTE IS NOT LINKED TO))
(PR/N1 TO)
(PR/Ni (QUOTE VIA "))
(PRINT REL)
(RETURN T]

(T [SETO X (CONS (CAR X)
(MAPCONC (CDR X)

(FUNCTION (LAMBDA (Y)
(AND (NEQ Y TO)

(LIST Y]
(SETA /TEMARRAY

FROM (MAPCONC FLINK$ (FUNCTION (LAMBDA (Y)
(COND

((EQ (CAR X
(CAR

(AND (CDR X)
(LIST X)))

(T (LIST Y]

(DESCRIBE
(NLAMBDA

(P/tPC

(FREEIFNULL FROM])

ITEMS (Prints the arcs
leaving item/terms)

(COND
((NULL ITEMS)
LAST/TENS)

((NLISTP ITEMS)
(LIST ITEMS))

(T ITEMS))
(FUNCTION DESCR/BE11)

(DESCRIBEt
[LAMBDA (NODE)

(DESCR/BEt describes all the arcs leaving and
entering item. NODE is either a literal atom or a

. number. It a literal atom does not correspond to a
NOCE in the semantic network
(i,e it does not have an SRL, property), DESCRIBRI
returns NIL. If a NODE is in the pool of free nodes
and has no LINKS, it is not printed.)

126

(COND REIct
((NULL (SETO NODE (SEMNODE NODE]
((OR (LINKS NODE)

(LISTP (!LTD /TEMARRAY NODE)))
(PRIN1 NODE)
(TERPRI)
(00ND
((PROPFOL NODE (QUOTE PNAME))
(SPACES 3)
(PRIN1 (QUOTE ?NAME))
(TAB 14 1)
(PRINT (PROPFOL NODE (QUOTE PNAME]

(PRINTPROPS NODE)
(PAPC (LINKS NODE)

(FUNCTION (LAMBDA (RELSPEC)
(SPACES 3)
(PRIN1 (CAR RELSFEC))
(TAB 14 1)
(COND

((MULTP (CAS RELSPEC))
(MAPC (CDR RELSPEC)

(FUNCTION (LAMBDA (X)
(COND

((ILESSP 45 (POSITION))
(TAB 14 1)))

(PRINTITEM X)
(SPACES 1]

(T (PRINTITEM (CDR RELSPEC]
(TERPRI])

(DITEPS
['LAMBDA NIL

(PROD ((N 0)),
"/TEMS:)

(TERPRI)
(RFTO NITEMS (DESCRIBE1 (SETA N (ADD1 N]
(TERPRI)
(RETURN T])

131

(Prints all of the
items in ITEXARRAY)

127

(DRELS Cu:;;
[LAMBDA (FILE)

(PRIN1 "RELATIONSt" FILE)
(TERPRI)
(MAPC RELATIONS (FUNCTION (LAMBDA (RELATION)

(SPACES 2 FILE')
(PRIN1 RELATION FILE)
(TAB 12 1 FILE)
(PRIN1 (CAR (SETO RELATION (GETREL RELATION)))

FILE)
(COND
((CDR RELATION)

(TAB 17 1 FILE)
(PRIN1 (CDR RELATION)

FILE)
(TAB 27 1 FILE)
(PRINT (CAR (GETREL (CDR RELATION)))

FILE))
(T (TERPRI FILE])

I

13 (* Prints all of the
RELATIONS)

(DTERMS
[LAMBDA (SORTFLAG)

(* Prints all of the TERMS and the item number of
their semantic referent.)

(PRIN1 "TERMS:")
(TERPRI)
[MAPC (COND

(SORTFLAG (SORT (COPY TERMS)))
(T TERMS))

(FUNCTION (LAMBDA (TERM)
(SPACES 2)
(PR/N1 TERM)
(TAP 16 1)
(PRINT (NRET TERM]

(TERPRID

(EXPAtONFT
[LAMBDA (NEWSIZE)

(PRIN1 ""*FNLARGING NET TO " T)
PRIM NIWSIZE TI
PRINT1 ITEMS. T)
(PROG ((REV (ARRAY NETSIZE))

I)
LP [COND

((EQ I NITERS)
(SETO ITEMARRAY NEW)
(RETURN (SETO NETSIZE NETSIZE]

(SETA NEW I (ELT ITFMARRAY I))
(S ETD NEW I %ELIO IT I))
(SETO I (ADD1 I))
(GO LP])

128

(* Copy net into an
enlarged array)

(ERFEIENULL
[LAMBDA (NODE)

(* Checks and frees an item if it has neither
properties nor RELATIONS, FREENODE is the freelist,)

bri.7

(OR (ELTD ITEMARRAY NODE)
(ELT ITEMARRAY NODE)
(PROGN (SFTD ITEMARRAY NODE FREENODE)

(SETO FREENODE NODE])

(FREENODE
[LAMBDA (NODE)

[MAK (LINKS NODE)
(FUNCTION (LAMBDA (X)

(APPLY* (FUNCTION DELITEM)
NODE
(CAR X]

(MAP iELTD ITEMARRAY NODE)
FUNCTION (LAMBDA (X)

(DELPROP NODE (CAR X)
(FUNCTION CDDR])

(GETREL
[LAMBDA (R OKFLAG)

(COND
((NULL R)
NIL)

((GFTP R. (CUOTE REL)))
(OKELAG NIL)
((HELP R IS NOT A DEFINED RELATION.)

(GETRIL R OKFLAG])

(* Deletes a NODE by
deleting all of its
RELATIONS and
properties.)

(IBUILD
(NLAMBDA ARCS

(* Builds a new item from a specification list, ie
(IBUILD (PNAmE name) (0 t/11)
(r2 t/i2) (r1 t/i2) ...), Also see ADDITEN)

(IEUILD1 (NEW/TFm)
ARGS])

(IBUILD1
[LAMBDA (NEwITEN ARGS)

(* Builds an ITEM from a specification.
Returns a 'LIST' of the new ITER)

129

,

(PROG (REL ITEMS) 131(MAPC
ARGS
(rupcTioN (LMBDA (RELSPEC)

(PROG (ANS)
(SET0 REL (CAR RELSPEC))

Li CORD
((NOT (RELP REL))
(PRINT REL T)
(PRIN1 (QUOTE *IS MISSPELLED OR UNTEFINED")

T)
(TERPRI T)
(PRIM

(cgoTt

T)
TYPE S TO CHANGE SPELLING, D TO DEFINE")

(TERPRI)
(COND

((no (SETO ANS (READ T))
(QUOTE 1))

(PRIN1 (QUOTE *CORRECT SPELLING IS *)
T)

(SETQ REL (READ T))
(00 Li))

((EC Ate (QUOTE e))
(PRIM (QUOTE TYPE DEFINING FORM")

T)
(TERPRI)
(EVAL (READ))
(GO L1))

(T (GO Li]
(srm ITEMS (CADR RELSPEC))
(COND

((ONEWAY? REL)
(ADDTOPROP NEWITEM REL ITEMS))

((ATOM ITEMS)
(COND

((NUMBER? ITEMS)
(ADDREL NEWITEM REL ITEMS))

(T (ADDREL NEWITEM R EL (SRI, ITEMS T]
((NUMBER? (CAR (SETA ITEMS (EVAL ITEMS)
(MAPC ITEMS (FUNCTION (LAMBDA (ITEM)

(ADDREL NEWITEM REL ITEM]
(T (HELP "ATTEMPT TO LINK NON-ITEM TO ITEM VIA"

REL]
(RFTUPN (LIST NEWITEM)

130

(ICONNFCT
(NLAMBDA (ITEMA REL ITEMB)

(SETO ITEMA (COND BEST COPY E

((ATOM ITEMA)
(LIST (SREF ITEMA T)))

(T (EVAL ITEMA]
(SPTO ITEMB (COND

((ATOM ITEMB)
(LIST (OW ITEMB T)))

(T (EVAL ITEMS]
(MAPC ITEMA (FUNCTION (LAMBDA (A)

(MAPC ITEM% (FUNCTION (LAMBDA (B)
(ADDRU A REL

(/CONNECTED?
(NLAMBDA (ITEMA PEI ITEMB)

[SET() ITEMA (COND
((ATOM ITEMA)

(LIST (SRFF ITEMA T)))
(T (EVAL ITEMA]

[SETO ITEMB (COND
((ATOM ITEMS)

(LIST (SREF ITEMB T)))
(T (EVAL !TYKE]

(SOME ITEMA (FUNCTION (LAMBDA (A)
(SOME (PILFOL A PIT)

(FUNCTION (LAMBDA (AA)
(MEMB AA ITEMB])

13,.

(narr
WAMEDA APGS (Set difference of 2

itemlists,)
(SDIFF (EVAL (CAR ARGS))

(EVAL (CADP APGS])

(IFDITP
(NLAMBDA (ITEM)

(Iglowe editing of the property list
(CDR) of a item/term. Cannot BE used to delete all
of the properties of an ITEM,)

[EDIT! (FLTD ITEMARRAY (COND
((NUMBERP ITEM)

ITEM)
((SPIT ITEM)),
((ERROR ITEM NOT AN ITEM")

ITEM))

(IFD/TR
(NLAMEDA (ITEM)

(* Allows editing of the relation list
(CAP) of a item/term, Cannot BE used to delete all
of the properties of an ITEM.)

131

BEST COPY A.:-41:::.,11
[EDITE (ELT /TFMARRAY (COND

((NUMBERP ITEM)
ITEM)

((SRFF ITEM))
((ERROR ITEM "NOT AN ITEM~]

ITEM])

(LINKS
[LAMBDA (ITEM)

(ELT ITEMARRAY ITEM])

(MULTP
[LAMBDA (R)

(FQ (CAR (GETRFL R)) .

(QUOTE M])

(NEWITEM
(LAMBDA NIL

(COND
(FREENODE (PPOG ((I FREENODE))

(SETO FREENDDE (ELTD ITEMARRAY I))
(SETD ITEMARRAY I NIL)
(RETURN I)))

(T (AND (EQ NITEMS NETSIZE)
(EXPANDNET (ITIMES 2 NETSIZE)))

(SETQ NITEMS (ADD1 NITEMS])

(Retrieve LINKS of
ITEM)

(* Is R a multiple
relation?)

(* Allocate a new item)
(* Enlarging the net if
necessary)

(NEWNET
[LAMBDA (N)

(SETO
(SFTQ
(SETC
(srro
(SETO
(SETO
(SETO

(ONEWAY?
[LAMBDA

(NULL

(PNAME
[LAMBDA

I U

ITEMARRAY (ARRAY N))
NETSIZE V)
NITEMS 0)
SUBLIST NIL)
FREENDDE NIL)
TERMS NIL)
PG0 -D/CT NIL])

(C Construct a new net)
(* EXPANDNET will be
used to expand the net
if it becomes full.)

(Pn)
(CDR (GETREL RPL])

(ITEM)

(PNAME returns THE print NAME
(PNAME) of AN ITEM. ITEM must BE A NUMBER.)

132

I 01

(AfD ITFM (SETA ITFM (PROPFOL ITEM (QUOTE PNAME)))
(OR (LISTP ITEM)

(CONS ITEM])

(PN ET

(NLAYBDA (FILE)

BEST COPY pc,,,

(' Prints the entire net on file FILE
(relations, terms, egos and items) in a humanoid
readable (but not LISP readable) form.
To save the network use MAKEFILE
(NET) --- see **INTRO)

(PRFTTYDEF NIL FILE (QUOTE ((E (DRELS)
DTERMS T)
(DEGOS)
(DITEMS])

(PRINT1
[LAMBDA (XP)
(ppm XP)
(TERM])

(PR/NTITEM
[LAMBDA (ITEM)

(PRINTITEM prints items in the semantic network.
If the ITEM has a print name
(PNAME) or an EGO link, that is what is printed,
Otherwise, it is the ITEM itself.
EGO LINKS are printed in square brackets to
distinguish them from pnames which are in
parentheses.)

(OR (AND (NUMBERP ITEM)
(PROPFOL ITEM (QUOTE PNAME))
(PRINTDEF (PNAME ITEM

(POSITION))
(AND (NUMMI' /Tim)

(PROPFOL ITEM MOTE EGO))
MINI (QUOTE))

[NULL (PAPC (PRuPFOL ITEM (QUOTE EGO))
(FUoCTION (LAMBDA (X)

(PRIN1 X)
(COND

((ILESSP 65 (PoSiTION))
(TAB 20 1))

(T (SPACES 1]

(PR/N1 ITEM)
(PRIM (QUOTE "]"))
T)

(PRINTDEF ITEM (POSITION])

133

II 1

131

(PRINTITEMLIST
[LAMBDA (ITEMS FILE)
(PROG ((PREFILE (OUTPUT FILE)1).

(MAPRINT ITEMS NIL (> (FUNCTION PRINTITEM))
(TERPRI)
(RETURN (OUTPUT PNEFILE])

(PR/NTPROPS
[LAMBDA (NODE)
(PROG ((PPoPLIST (FLU ITEMARRAY NODE)))

LP (COND
((NULL PROPLIST)

(RETURN NIL))
((E0 (CAR PROPLIST)

(QUOTE PNAME)))
(T (SPACES 3)

(PRIN1 (CAP PROPLIST))
(TAB 14 1)
[COND

[(PULTP (CAR PROPLIST))
(YAPC (CADR PROPLIST)

(FUNCTION (LAMBDA (X)
(COND
((ILESSP 45 (POSITION))

(TAB 14 1)))
(PRINTDEP X (POSITION))
(SPACES 13

(T(PRINTDEF (CADR PROPLIST)
(POSITION]

(TERPRI)))
(SETA PROPLIST (CDDR PROPLIST))
(GO LP])

(PROPFOL
[LAMBDA (NODE PROP)
(GET (ELTD ITEMARRAY NODE,

PROP])

(PUTLINK
[LAMBDA (FROM R TO) (41 Add a 1-way link)

(PROG iITEPLIST (FLINKS (LINKS FROM)))
COND
((PULTP R)

(SETC TO (LIST TO]
(COND
[(NULL FLU(S) (0 From has no LINKS)
(SETA ITEMARRAY FROM (LIST (CONS R TO]

((NULL (SETA ITEMLIST (RELFOL FROM R)))
(41 From has no r -links)

(MERGE !LINKS (LIST (CONS R TO))
T))

((MULTP R)
(MERGE ITEMLIST TO))

(T (HELP R SINGULAR, CAN'T PUT MULTIPLx. LINK")))
(RETURN FROM])

134

(PUTPROP BEST COPY AVAIIAMF

[LAMBDA (NODE PROP PROPVAL)
(SFTD ITEMAPRAY NODE (NCONC rIST PROP PROPVAL)

LTD /TEMARRAY NODE)))
NODE))

(PturoL
(LAMBDA (ITEM REL)

(COND
((SETA ITEM (CDR (ASSOC REL (LINKS ITEM]

(COND
((MULTP REAL)
ITEM)

(T (LIST ITEM)

(RFLP
(LAMBDA (REL)

(GETP PEI (QUOTE REL))

(RPTITLE
(LAMBDA (OLDNAME NEWNAME)

(Gets a list of items
linked to an ITEM by a
relation)

(RETITLE is an editing function for the semantic
network. It permits one to change the print name of
a node.)

(PUT NEWNAME (QUOTE SRFF)
(SREF OLDNAME))

(CHNGPROP (SREF NEWNAME)
(QUOTE PNAME)
NEWNAME)

(REMPROP OLDNAME (QUOTE SREF))
(RPLACA (MEMB OLDNAME TERMS)

NEWNAME)
(SORT TERMS)
NEVNAME])

(SEMNDDE
[LAMBDA (NODE)

(* SEMNODE is used by many functions to change their
input into a pointer into the semantic network.
If NODE, which is bound in the calling function,
does not appear in the semantic network
(i.e. have an SREF), SFMNODE causes an error.)

135

-(COND
((NULL NODE) V-S1
NIL)

[(LITATOM NODE)
(COND

((SREF NOD:))
(T (ERROR WORD NOT IN SEMNET - NODE]

(T NODE])

(sREF
1LAMBDA (ATM BUILDFLAG)

(ODND
((GETP ATM (COOT? SREF)))
(BUILDFLAG (ADDT!RM ATM (NEWITEM])

(* Gets or builds a
semantic referent for an
atom (term))

(TOPFN
[NLAMBDA (FN) (* Does top-level print)

(PRINTITEMLIST [SETA LASTITEMS (APPLY FN (COND
(LISPXLISTFLG LISPXLINE)
(T (CAP LISPXLINE]

T])

(LISPXPRINT (QUOTE SEMFNS)
T)

lPFAQO SEMFNS -

(* *INTRO *REL ADDITEM ADDREL ADDTERM ADDTOPROP CHANGEREL
CHNGPROP DEFREL DEFRELS DEGOS DELITEM DELPROP DELREL
DELREL1 DESCRIBE DESCRIBEI DITEMS DRELS DTERMS
EXPANDNET FREEIFNULL FREENODE GETREL IPUILD IBUILDI
ICONNECT ICONNECTED? IDIFF IEDITP IEDITR LINKS MULTP
NEWITEM NEWNET ONEWAY? PNAME PNET PRINTI PRINTITEM
PRINTITEMLIST PRINTPROPS PROPFOL PUTLINK PUTPROP
REIFOL RELP RETITLE SEMNODE SREF TOPFN))

(LISPXPRINT (QUOTE SEMVARS)
T)

(RPAQQ SEMVARS ((VARS SEMMACROS (LISPXMACROS (APPEND SEMMACROS
LISPXMACROS)))

(P * SEMEXPRB)))
(RPAQQ SEMMACROS ((F (TOPFN IFIND))

(B (TOPFN !BUILD))
(- (TOPFN IDIPF]

(RPAQ LISPXMACROS (APPEND SEMMACROS LISPXMACROS))
(RPAQQ SEMEXPRS ((EQUIVALENCE (F IFIND)

(B 'BUILD)
(D is,SSCRIBE)
($ DEFREL)
(- IDIFF)
(C ICONNECT)
(C? ICONNECTED?)

136

I
U

(EQUIVALENCE (F IF/ND)
(B 'BUILD)
(D DESCRIBE)
(S DEFREL)
(- IDIFF)
(C /CONNECT)
(C? ICONNECTFD?))

STOP

137

7----
BEST COPY Iller3:

E

141

BEST COP? AVAILAI3LE

(FILECRFATED "12 -DEC -73 11:54:20" IFIND

changes to: IFIND,ORDERSECT,ORDERUNION,RELFOL,IFINDVARS)

(DEFINEQ

(IFIND
[NLAMBDA ARGS

(* Retrieves information from the network according
to a specification. For example
(IFIND (UNCLE JIM) ("SPOUSI
(IFIND (SIBLING "MARY)))) would retrieve those
ITEMS who are both uncles of JIM and married to one
of MARY'S siblings.)

(PROG (*REL ITEMS)
(NIVTERSECTION
(MARCAR ARCS

(FUNCTION (LAMBDA (RELSPEC)
(SETO REL (*RELACAR RELSPEC)))
(srro ITEMS (CADR RELSPEC))
(COND

[(ATOM ITEMS)
(COND
((E0 REL (COOT! SREF))

(LIST (SREF ITEMS)))
(T (RELFOL (SRfl ITEMS)*REL]

(T (NUNION (MAPCAR (EVAL ITEMS)
(FUNCTION (LAMBDA (ITEM)

(RELFOL ITEM *RELD

(NUMON
[LAMBDA (LISTS) (Brute force n-way

ORDERUNION)
(COND

[(CDR LISTS)
(ORDERUNION (CAR LISTS)

(NUMON iCDR LISTS]
(T (CAR LISTS])

(NINTERSECTIoN
[LAMBDA (LIST'S)

(COND
[(CDR LISTS)

(ORDERSECT (CAR LISTS)
(NINTEPSECTIOn (CDR LISTS]

(T (CAR LISTS])

O I

138

(Brute force n-way
ORDERSECT)

(ORDERSECT
[LAMBDA (Li L2)

(' Does a two-way INTERSECTION on lists which are
ordered via ILESSP. The reiations in the network are
maintained in sorted order.)

(PPOG (R)
LP COND

((OR (NULL LI)
(NULL L2))

(RETURN (OREVERSE R)))
((EQ (CAR Li)

(CAR L2))
(SETO R (CONS (CAP Li)

R))
(SETO Li (CDR 0))
(SETO L2 (CDR L2)))

((/LESSP (CAp Li)
(CAP L2))

(SETO Li (CDR Li)))
(T (SETO L2 (CDR L2]

(GO LP])

(ORDEMNION
[LAMBDA (Li L2)

(FROG (R)
LP COND

((NULL Li)
(RETURN (NCONC (DREVERSE R)

L2)))
((NULL L2)

(RETURN (NCONC (DREVERsE R)
L1)))

((EQ (CAR Li)
(CAR L2))

(SETO R (CONS
R))
(cAR L1,

(SETO L1 (CDR L1))
(SETO L2 (CDR L2)))

((lLESSP (CAR L1)
(CAA L2))

(SETO R (CONS (CAR L1)
R))

(SETO L1 (CDR L1)))
(T (SETO R (CONS (CAR L2)

R))
(SETO L2 (CDR L2]

(GO LP])

139

(Does a two-way UNION
of ordered lists.)

:15,31-t
v,s1 'vn 14,

(RFLFOL
(LAMBDA (ITEM RFL)

(* Gets those items linkeu to an ITEM via a
particular relation. This version is stripped of
error checking to increase the speed of IFIND.
There is another version on the file SEM,)

(COND
(CSETQ ITEM (CDR (FASSOC RE, (LINKS ITEM]

(COND
((MULTP REL)
ITEM)

(T (LIST ITEM])
)

(LISPXPRINT (QUOTE IFINDFNS)
T)

(RPAQQ IFINDFNS (IFIND NUDMON NINTERSECTION ORDERSECT ORDERUNION
RELFOL))

(LISPXFRINT (QUOTE /FINDVARS)*
T)

(RPACQ IF/bDVARS ((BLOCKS IFINDBLOCKS)))
[MOO IFINDBLOCKS ((IFINDBLK IFIND NUN/ON ORDERUNION NINTERSECTIO

ORDERSECT RELFOL (ENTRIES IFIND)
(GLOBALVARS ITEMARRAY)
MINIMS T)

(DECLARE
(BLOCK: IFINDBLK IFIND NUN1ON ORDERUNION NINTERSECTION ORDERSECT

RELFOL (ENTRIES IF/N1
(GLOBALVARS ITEMARRAY
(LINKFNS T))

)STOP

140

BEST COPY AVAILABLE

References 14 ,_

(Bob72) Bobrow, D.G., Burchfield, J.0., Murphy, D.L. and
Tomlinson, R.S. "TIMEX, a Paged Time Sharing
System for the PDP-10", Communications of the ACM,
March 1972

(Bro73) Brown, J.S., Burton, R.R. and Zdybel, F. "A
Model-Driven Question Answering System for
Mixed-Initiative Computer Assisted Instruction",
IEEE Transactions on Systems, Man and Cybernetics,
var: SMC-3, May 1,977

(Car73) Carbonell, J.R. and Collins, A.M., "Natural
Semantics in Artificial Intelligence," Proceedings
of Third IJCAI, SRI Publications Department, Menlo
Park, Calif. August 1973, pp. 344-351

(Dos71) Dosterto B.H. and Thompson, F.B., The Syntax of
REL English," REL Report No, 10 California
Institute of Technology, Pasadena, Calif.
September 1971

(Fox65) Fox, L., An Introduction to Numeric Linear Algebra,
Oxford UNiversity Press, 114FVbER71965, pp.
60-65, 99-102

(Nag71) Nagel, L.W. "Transient Analysis of Large
Non-linear Networks", IEEE Journal of Solid State
Circuits, Vol. SC-6, August 197f

(Nag73) Nagel, L.W. and Pederson, D.O. "SPICE: Simulation
Program with Integrated Circuit Emphasis",
Memorandum ERL-M382, Electronics Research
Laboratory, College of Engineering, University of
California at Berkeley, April 1973

(Sha71) Shapiro, S.C. "A Network Structure for Semantic
Information Storage, Deducation and Retrieval,"
Proceedings of Second IJCAI, 1971, pp. 512-523

(Tei74) Teitelman, W., INTERLISP Reference Manual, XEROX
PARC, Palo Alto, Calif., February 1974

(Win73) 'Winograd, T., Understanding Natural Language,
Academic Press, New York, 1973

(Woo72a) Woods, W.A., "An Experimental Parsing System for
Transition Network Grammars," BBN Report 2362, Bolt
Beranek and Newman, Inc. . Cambridge, Mass. May
1972

141

(Woo72b) Woods, W.A., Kaplan, R.M. and Nash-Webber, B.,
The Lunar Sciences Natural Language Information
System: Final Report," BBN Report 2378, Bolt
Beranek and Newman, Inc. Cambridge, Mass. June
1972

(Woo74) Woods, W.A. "Motivation and Overview of BBN
SPEECHLIS: An Experimental Prototype for Speech
Understanding Research", to appear in Proceedings
of IEEE Symposium on Speech Recognition, CMU, April
TIP

142

