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TECHNIQUES AND METHODS - -TOOLS

In 1971 a formal algorithm for analyzing communication net-

works in large complex oilanizations was presented. (1) Since

that time there have been mAny advances in the area--some conceptual

(2) and others operational. This paper will describe a new algorithm

which has been implemented in an axtended FORTRAN program which

runs on a CDC 6500 computer. (3) This algorithm could be realized

on any large general purpose machine, and it far surpasses any other

similar analytic technique we are aware of, in terms of utility,

capacity, and efficiency.

This paper will not discuss the theoretical basis of network

analysis, nor will it report any empirical findings. For coverage

of these areas, the reader is urged to see (2) and (4). Because the

computer program mentioned above is highly complex and system-depen-

dent, the actual code will not be presented. It should be possible,

however, to write a similar program for any given machine with the

information that will be presented here.

The paper will be divided into five major sections. The First

will briefly outline the goals of network analysis and present the

context in which these goals must be met. The second will describe

the actual algorithm and the rationale behind it. In section three

some especially important programming considerations are described;

section four covers some general characteristics of the running

program. Finally, the last section will describe briefly the historica

development of this algorithm. Throughout the major portion of the

first three sections, the approach taken in the description of techniqu

will be to discuss goals and constraints of each facet of the analysist
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and then to show that the methods used are able to efficiently

meet the goals, given the constraints.

Because much of the technique of network analysis depends

on the theory of network analysis, it is difficult to discuss analytic

methods without referring to the theoretical basis, which is covered

extensively in (2). Rather than repeating discussions which are

given better treatment in (2), the symbol "**" will be used to

indicate that a point covered in this text is discussed more fully

in 12).

Part One -- Network Anal siss The Problem

The goals of network analysis are to a) detect and b) describe

any structuring at each of three levels of the communication network.

(The nature of structuring in complex systemr is covered at length

in (5) and will not be discussed here.) These three levels are the

individual, the group, and the whole-system. The detection of struc-

ture a straightforward statistical problem which is easily done.

If there is any structuring, it is then possible to describe it, and

to analyze various characteristics of the system at different levels

of analysis. The kinds of characteristics that can be examined will

also not be covered in this paper; they are described in (6).

The basic problem we are thus faced wiss is this: Given some

particular network which we know to be structured, we must determine

what the units of analysis are at the various levels of analysis.

At the individual and whole-system levels this doesn't seem to be

much of a problem. At intermediate levels, however, the determination

of the component boundaries is a caplex problem. This is the problem

area upon which our attention is focused in this paper.
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What is meant by "the determination of component boundaries

at intermediate levels"? Basically this: if the system as a whole

is structured, it will show differentiation into parts. (5,7) These

parts will take the form of groups of individuals which will meet

certain specified criteria. We would like to know who is in these

groups. This, then, is our main goal.

What are the constraints under which we must meet this goal?

They center on the nature of the data we S4ve available. The data

ususily take the form of lists of links be'veen pairs of nodes.**

There is no limit on how many links any individual may have - -i.e.

the number of links may vary from one individual to the next - -there

is no set number.
2 All we know about each link is who it connects

and how strong it is. (We may also know if it is directed,or not.)

A major consideration is size of network - -we, would like to

be able to study very large systems - -we want a maximum capability of

at least a thousand nodes, and it might be nice to be able to look

at networks with several thousand nodes.
3 In networks we have ob-

served, the number of links per node has ranged from zero to a maximu*

average of about twenty. If we allowaliaiiit of 1000 nodes, we should

have room enough for at least twenty times that number of links. This

is a lot of data!

Network data is not like most data we are used to seeing in the

social sciences. The data elements do not describe properties of

individuals. Rather, they describe properties of relationships

between individuals. What we have, then, is a topological problem.

We cannot approach this problem with the Euclidian distance paradigm

used to structure other kinds of data. We cannot, therefore, hope to

use the mathmatical tools which produce unique exact solutions based

on a distance model. Instead, we use heuristic pattern-recognition
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techniques which result in topological representations which may

then be characterized along a number of dimensions.

The problem then is to arrange and represent the data in such a

way that it becomes possible to see the groups. We do not usv

traditional scaling approaches because our data do not fit those

models. Instead we use less elegant pattern-recognition techniques.

These techniques are described in

Part Two--The Algorithm

the next part of the paper.

In any searching procedure it is necessary that the investigator

have a good idea of what it is that he is looking for. This common

sense notion cannot lightly be dismissed, especially if we wish to

write a computer program to do the searching for us. Computers,

like chickens, are monumentally stupid. Unlike chickens, however,

computers will do what we want them to do if we tell them exactly

what to do and how to do it. This means that must know exactly

what we are looking for. This demand for precision lead to the

somewhat complex definition of groups and other network roles which

is presented here.**

T. Nodes may be of two types--participants and non-participants.
Non-participants are either not connected to the rest of the
network or are only minimally connected. They include:

A. Isolate type one. These nodes have no links of any kind.
B. Isolate type two. These nodes have one link.

C. Isolated dyad. These nodes have a single link between them-
selves.

D. Tree node. These nodes have a single link to a participant,

and have some number of other isolates attached to them.
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II. Participants are nodes that have two or more links to other

participant nodes. They make up the bulk of the network in

most cases, and allow for the development of structure. They

include:

A. Group member. A node with more than soma percentage of his

linkage with other members of the same group. (this percent

is called the alpha-percent or a.-percent)

3. Liaison. These nodes fail to meet the 0.-percent criterion

with members of any single group, but do meet it for members

of groups in general.

C. Type other. These nodes fail to meet the o(- percent criter-

ion for any set of group members.

III. To be called a group, a set of nodes must satisfy these five

criteria.

A. There must be at least three members.

B. Each must meet the criterion with the other members of

this group.

C. There must be some path, lying entirely within the group,

from each member to each other member. (This is called the

connectiveness criterion.)

D. There may be no single node (or arbitratily small set of

nodes) which, when removed from the group, cause the rest

of the group to fail to meet any of the above criteria.

(This is called the critical node criterion.)

E. There must be no single link (or subset of links) which,

if cut, causes the group to fail to meet any of the above

criteria. (This is called the critical link criterion.)

Obviously, if we think a certain set of nodes might be a group,

we can be sure by applying tests to aee if the set meets the five

group criteria. If there are slight errors, we can adjust the

group boundary by adding or removing nodes to or from the group.

In other words, if we can get an approximate answer to the question
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of group boundaries, we can "clean it up" and make it exact by

the application of the criteria.

It turns out that we can take advantage of this fact ane make

significant savings because of it. This is because it is easier

to make an educated guess out the group structure and then adjust

this to an exact solution than it is to begin right away with a

search for the exact solution. The algorithm to be presented in

this paper follows this two-staged approach. In the first stage,

the data are rearranged in such a way that an approximate solution

is readily obtained. In the second, that tentative solution is

tested and cleaned up so that it becomes exact enough to satisfy

the criteria.

The Approximate Solution

There are three stages to this part of the analysis. In the

first stage the non-participants are identified and removed for the

rest of the analysis. This is done because the presence of non-

participants only serves to complicate things by increasing the

number and variety of nodes in the analysis. The non-participants

are easily identified by their patterns of interaction with other

nodes.

In the second and third stages of this part of the analysis

the data are re-arranged and tentatively partitioned into parts

which will correspond roughly to the final group structure.

Re-arranging the Data to Make the Groups Visible

This part of the analysis is essentially a refined version of

the algorithm that was presented in 1971. (1) What is being done
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can be understood easily with the following analogy. ImagIne

th nodes to be like billiards balls scattered about. In spacfb.

Imagine there to be rubber bands connecting the Kilts corresponding

to nodes with links between them. Imagine there to be springs

between balls corresponding to nodes that do not have links between

them. The rubber bards will act to pull the balls connected to

each other closer to each other, while the springs will push the

balls not connected to each other apart from each other. If we

hook up the rubber bands and springs and release the balls, they

will re-arrange themselves so that the balls corresponding to nodes

with links to each other will be close to each other, while the

balls corresponding to nodes that are not linked to each other will

be pushed away from each other. This example is :;hewn in Picture. 1.

We could refine this technique by using heavier rubbor bands

to represent the links that occur more often or are more important.

Since our objective here is to make it easier to identify groups,

we could make the process work even better if we could make the

rubber bands for within-group links heavier than the ones for other

kinds of links, In order to do this, we wilt need some indicator

that tells us which links look like within group links.

If two nodes are in the same group, they are likely to have

many links to the same people. There is likely to be a high number

of shared links, or two step links between this pair of nodes. If

they are not in the same group, they are not likely to talk to the

same people, and there are not likely to be many two-step links be-

tween the nodes. Thus, the number of two-step links is used as

an indicator of the probability that the link is a within group

link.



BEST COPY AVAILABLE

Figure 1

This figure illustrates the billiard ball and rubber band

model described in the text. The network shown has two groups

of thlee nodes each. The three drawings represent three successive

increments of time, as the nodes move farther and farther in

response to the forces exerted by the rubber bands.

The original position of the balls is shown by the shaded

circles in the top drawing. Movement of balls during each time

increment is shown by the dotted arrows in the three drawings.

The scale was changed in going from the first to the second to

the third drawing, in order to show smaller and smaller regions

in space as occupying the same sized area in the drawings. The

region of the top drawing shown in the middle one is indicated

by the dotted box in the top. Similarly, the area of the bottom

drawing is shown by the dotted box in the middle one.
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Now, it is hard to represent large numbers of points in

multi-dimensional space. It takes a lot of information to do

this, and it is fairly difficult to move objects in this kind of

a space. Extensive experimentation with real data, however,

showed that it was not necessary to use a multi-dimensional

representation for this analysis; a single line segment was

sufficient. This kind of reduction in complexity of representa-

tion greatly reduced the amount of information needed to perform

the analysis at the same time it made the analysis itself easier

to do.

The analysis is performed as follows: Nodes are scattered

at unit points along a line segment N units long, where N is the

number of nodes. We then treat each link from, say, node A to

node B, as a vector, starting at A and pointing at B. We take

all the vectors for each person and compute the average, weighting

the individual vectors for strength of the link and probability

that the link is a within -group link. We then get a single point

for each individual, that point being the mean of that person's

vectors. This is illustrated in Figure 2. After all the means

nave been computed, each node is moved to the point indicated

by his mean.

After this process has been completed, nodes with links to

each other will be closer to each other than they were before.

They will not, however, be as close as they could be. This fact

is due to the way nodes are scattered inttially, and also because

of the statistical properties of the mean. For this reason, the

entire process is repeated, using the new locations instead of the

original positions used for the first set of calculations. A
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Figure 2

At the top Of this figure is shown a hypothetical network

consisting of two groups, each of which has three members.

The diagram in the middle shows how the six nodes are

initially placed along a line segment. The two solid

arrows pointing to the right in the top of this figure are

the vectors representing the links of Node *1 to Node *2 and

Node *6. The dashed arrow between the solid ones is the

average of the two. Below the line segment are shown the vectors

for the links of Node #6.

The diagram on the bottom of Figure 2 shows how the iterative

process of vector averaging works. The first line shows the

initial positions of the six nodes. The second shows what the

means could look like. Moving from the second to the third lines,

the scale has been expanded so that the nodes range over the

entire length of the continuum. The fourth and sixth lines

show the second and third sets of means; while the expanded

,ersions are shown on the fifth and seventh lines. (Note that

the values shown are not the actual values that would be obtained

for this particular network; they are intended merely to illus-

trate how the process might typically look.)
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Plot showing how the nodes moved in successiv(% iterations is

shown in the bottom half of Figure 2. Between each srt or

calculations it is necessary to expand the scale of the continuum

so that the spread or range which is occupied by the nodes

remains N units long. If this is not done, the points will

move closer and closer to each other, finally collapsing on a

single spot. This is the "scale expansion" referred to in Figure

2.

The formula used for calculating a person's mean is shown

here:
E *S )

M twfi.Si)

where wfi is the two-step weighting factor described above; Si

is a ratio-level indicator of the strength of the link; and Mi

is the old mean of the person to whom the link goes. The summation

is done as i goes from 1 to Q, where Q is the number of links that

the individual whose mean we are calculating has.

In the development of this algorithm different numbers of

iterations; different ways of varying relative contributions of

wfis, Si's, and Mi.'s; and different ways of assigning the original

M.'s were tried. In general, four to six iterations seemed to be

sufficient for any data set that was examined. If nodes are given

subject numbers running from 1 to N, where N is the number of nodes,

and these subject numbers are used as the first approximation for

the .Mi 's, the process seems to work well for all types of data.

In actual tests, when different subject numbers were assigned to

individuals, the solution obtained was identical to the first soluti

which indicates that the process is not terribly sensitive to the

original positions. Usually, the vfis and Sias are given equal



weight, although this has not been tested extensively.

The result of the application of this process is a continuum,

N units long, with a scattering of nodes along its length. A

sample network, together with the continuum that might result, is

shown in Figure 3. This continuum is used as the input to the

next stage of the analysis, in which tentative boundaries for

groups are drawn.

Drawing the Tentative Boundaries

For any human observer, even a casual glance at Figure 3

will be enough to suggest that there are three clusters of nodes.

The computer, however, must be told what a cluster looks :Like,

and how to look for one. People probably identify a cluster as

an area in which there are a lot of nodes, surrounded by areas

in which there are fewer nodes. This is essentially what we have

the machine look for.

We will need a plot of the "density" of nodes along the con-

tinuum. In order to get such a plot, we construct a "window" and

move it along the continuum, counting the number of nodes visible

through the window at each point. This is shown at the top of

Figure 4. Extensive testing has lead to the conclusion that the

most efficient way to proceed is to center the window over each

node, rather than to "slide" it gradually down the continuum.

The optimum size of the window, also determined by experimentation,

appears tO be stout two units on an N unit line. Windows smaller

than this introduce spurious statistical information, while with

windows larger than this, group boundaries tend to blur and merge

into indistinction. This is shown in Figure 4, where density plots
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Figure 3

The top of this figure shows a hypothetical network

composed of twenty nodes. Group boundaries are indicated

by the dashed lines.

The bottom shows what the final continuum might look

like for the network shown in the top. Again, the group

boundaries have been indicated by dashed lines.
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Figure 4

This figure shows how the density plot is made. The

example uses the continuum shown in Figure 3. In the top part,

the window is shown, centered successively on the first eight

nodes.

The three bar graphs in the !Kiddie show the effects of

differently sized windows.

On the bottom is shown the refined version of the plot, with

numbers of nodes visible to the right of the center of the

window plotted above the horizontal and numbers visible on the

left of the window plotted below the horizontal,
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appear for windows of varying widths.5 The result of moving the

windown down the continuum will be a list of densities, with one

value for each individual. Such a list could be represented as

a bar plot like the one shown in Figure 4.

With this representation, groups will look like mounds, with

boundaries between groups being indicated by low points. Although

it seems as though this representation would be adequate, there

arose problems which lead to an improvement over this simple plot.

Although the problems will not be discussed here, the improvement

will: Instead of just counting the number of nodes visible through

the window, two numbers are counted--the number visible on the

right half of the window, and the number visible on the left half.

When constructing the bar graph, the number visible on the right

half is plotted above the horizontal, while the number visible on

the left half is plotted below the horizintaL. The result is

shown at the bottom of Figure 4.
6

The final step in this stage is to have the computer draw

lines around the groups. The way this is done is by locating

spots at which there is a large change as we move from one point

on the continuum to the next. If we count the number of non-over-

lapping points and divide by the number of overlapping points for

each pair of adjacent nodes on the final bar plot, we will have

a fairly sensitive indicator of group continuity. This is shown

in Figure 5. High values for this ratio will indicate that there

is a large change as we move from one node to the next. Low values,

on the other hand, will indicate that there is only a small change.

If we choose a cutting point, and instruct the computer to draw a

line whenever the ratio goes above the cutting point, we will have



Figure 5

This figure illustrates the boundary-drawing process.

The density plot on the bottom of Figure 4 is shown on the

top of this figure. The table below the plot shows the

number of overlapping points, the number of non-overlapping

points, and the ratio of the two numbers; for each successive

pair of bars on the bar plot.

The ratios are plotted in the graph in the middle of the

page. The three dotted lines show the three different cutting

points.

Below the ratio plot, the original continuum is shown three

times. The first shows the effect of a high cutting point,

while the second and third ones show the results for moderate

and low values of the cutting point.
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told the computer how to draw the boundaries around groups. If

the value of the cutting point isvaitabibe, we can alter the sensiti-

vity of the group spotting routine in either direction. with a

window of two units, a cutting point of 1.0 appears to be optimum

for most networks. Different values, along with the results, are

shown in Figure 5.

This concludes the approximate phase of the analysis. The

result of this stage is a list of tentative groups of nodes. The

next part of the analysis involves the testing of this tentative

solution, and any alteration that may have to be done to "clean it

up."

Usina the Criteria for an Exact Solution

This part of the analysis can be divided into two parts. In the

first, individual nodes are tested to see if they meet the relevant

criteria for their role in the network. If they do not, the appro-

priate changes are made. In the second, whole groups are tested

for the criteria that are relevant at that level. Again, appropriate

changes are made if necessary. We begin with the individual testing,

which is very simple.

Individual Testing

First, people not in groups are tested to see if they meet the

au-criterion for either liaison or group membership in any group. If

any individual does meet the criterion, he is reclassified on that

basis. If the individual fails both tests, he is labelled as "type

other".



Second, members of groups are tested to see if they meet

the ep.criterion for group membership. Again, if the criterion

is not met the appropriate changes are made.

Because changes made at any point in time can affect the

roles of other people who were tested earlier, the tests are

applied twice, to make sure that the final classification will

be consistent with itself.

Group Testing

In this section we change our level of analysis to whole

groups, rather than separate individuals. The criteria to be

tested in this part are the connectiveness and critical link/node

criteria. Since the information generated in the testing of the

connectiveness criterion is necessary in the testing of the

other two, it will be covered first.

The basic device used in the testing of these criteria is

the distance matrix, which is constructed for each group. In

this n by n matrix (n is the number of members in the group),

the element in row i, column j gives the number of steps needed

to get from individual i to individual j in the group. If there

is some finite number in each element of the matrix, the group

will be connected. This means that there will be some path

from each individual in the group to every other individual in

the group. The longest any path could ever be is n-1 steps. A

sample network, together with its distance matrix is shown in

Figure 6.

The way the distance matrix is constructed is as followse
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Figure 6

At the top of Figure 6 is shown a hypothetical eight-node

network. The matrix directly below the network is a binary

version of the network. In this matrix, each node has a row

and a column. The iej entry of the matrix is 1 if node i is

linked to node j.

The second matrix is the distance matrix for the same

network. The entry in the JO element of the matrix is the

number of links in the shortest path from node i to node J.
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A matrix is constructed in which there is a row and a column

for each node in the group. All the elements are initialized to

zero. Whenever there is a link from node i to node j we enter

a 1 in row i, column j. If the link is reciprocated we also enter

a 1 in row j, column i.**

We then repeatedly perform a boolean logic operation which is

analogous to raising the matrix to successively higher and higher

powers. Instead of entering the cross product of the ith row and

the jth column as the i,j element in the product matrix, however,

we enter the first power on which this value becomes non-zero.

(This operation is performed with a series of nested DO-loops and

IF statements in FORTRAN. With careful organization, the process

can be optimized to take significantly less time to compute than

a standard algebraic multiplication of matrices.)

We stop raising the matrix to higher powers when one of two

conditions obtains: either a) all off-diagonal elements become

non-zero, which implies the group is connected; or b) when going

from any power k to the next power k.ol no entries change value,

which implies the group is not connected at level k and will

never be connected at any level.
7

If the group is not connected, it is split into a connected

part and all the rest. Each of the two parts is then treated as

a separate group, and subjectJd to all the tests that any group

must undergo.

At this point, there are only the critical links/nodes criteria

remaining to be tested. These criteria serve as checks against

situations like those shown in the bottom half of Figure 7, where

two groups have been mistakenly identified as one. This situation
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is generalized to include situations in which there are any number

of multiple groups, connected in some relatively minimal way,

which we wish to separate into distinct groups. The occurrence

of these confusions ts a result of the inelegance of the approximate

techniques used in the first half of the analysis. For analytic

purposes, it is practical to combine these two criteria into a

single rule which says that no subset of some arbirtary size

may be removed from a group and cause the group to become disconnecters

If there is such a subset, the group will be seen to be "really"

two or more groupP.** As a result of thisczaikination, whenever

two groups are joined by a bridge link (a link between members

of different groups), one of the nodes of this link will be iden-

tified as a liaison. That node will later be tested for the

Orcriterion of group membership, and if he passes, will be returned

to his group.

The problem has thus been reduced to one of identifying any

critical nodes which may exist in a group. If there is one, he

will be the node with the lowest average distance from all other

nodes. This is because all paths from nodes in either half of

the group to the other half 'must go through the critical node.

The average distance from any node to all the other nodes is

given by the average of all the entries in that node's row in the

distance matrix. This is illustrated in Figure 7. If there is

a set of critical nodes they will be the nodes with the smallest

row means.

The fact that critical nodes have lower row means than the other

members suggests that there must be some variation in the row

means if there are any critical nodes. We can take advantage of
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Figure 7

On the upper left-hand corner of this figure is shown a

hypothetical nine-member network. To the right of this is the

distance matrix for that network. The rightmost column of the matrix

contains the means of the rows of the matrix. The values in this

column are thus the mean number of steps it takes that node to reach

all other nodes. The overall mean for the group, together with

the standard deviation of the distribution of means, is shown below

the matrix.

The network in the bottom left-hand corner is an example of

the kind of situation that occurs when two or more groups are iden-

tified as a single group. Clearly, Node #5 is a liaison between

the two groups. The middle matrix on the right half of the page

is the distance matrix for this group. Note the relatively high

standard deviation for this group, compared to the one above it.

The third matrix was constructed after removing node *5.

Note that there are no values for many of the elements, indicating

that the group is no longer connected. The means shown for this

bottom matrix are the values that would be obtained if the group

were split in two, and the means for each group calculated separately.
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of this fact if we only look for critical nodes when there is some

variance. It turns out that this leads to a large saving, in terms

of cmputation time. This is because of the way we test for

critical nodes.

To check a node to see if it is critical, we remove it from the

group and re-calculate the distance matrix. If, as a result of

the removal, the group becomes disconnected, we have found a critical

node. If the group is still connected, we try the next candidate- -

the node who, of all the remaining nodes, has the smallest row mean.

We will usually stop this process after taking out some percentage

of the original group (usually ten) if the group continues to remain

connected. If this happens, we put all the removed nodes back into

the group.

It is easy to see that there is a lot of work involved in the

searching for critical nodes. This is why the heuristic device

of checking the variance of the row means is so important. Tn every

network that has been examined so far, this heuristic has worked

correctly. That is, it did not prevent any critical nodes from

being found. Similarly, the approach of looking at nodes with

thg lowest row means always seems to find the critical nodes.

The optimum value to use as a cutting point for the variance test

seems to be about 0.3. Whenever the standard deviation of the row

means exceeds this value, there is likely to be a critical node.

Whenever the standard deviation is less than this value, there is

not.

After all groups have passed these tests, the obtained classifi-

cation of nodes to groups and other roles will be exact. At this
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point various indices may be calculated and the results tabled in

any convenient manner. A flow chart of the algorithm is shown in

Figure 8.

Part ThreeProgramming Considerations

This section will discuss several aspects of the analysis

technique that are relevant to the actual coding of a program

to perform the analysis. Some of these involve programming

approaches which make the program both more powerful and easier

to write, while others include programming "tricks" that greatly

increase the efficiency of the program.

Programming Approaches --General Considerations

FORTRAN seems to be a good language to use for this type

of program. The logical structure of FORTRAN is sufficiently

powerful to handle the logic of the analysis, and the relative

efficiency of FORTRAN makes the large amount of arithmetic

affordable. In addition, FORTRAN is widely available, easily

learned, and easily written. Finally, the only operating version

of the program was written in FORTRAN, and it would seem to be

easier to do another program in the same languaget,.,rather than

a different one.

The other major general consideration involves internal

data representation. The data should be stored in the form

of variable length lists, rather than matrices. The use of

the matrix format will greatly limit the capacity of the program,

will make it prohibitively expensive to run, but will greatly

simplify the programmer's task. To utilize a list processing
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approach in FORTRAN is not difficult. A set of standard state-

ment functions will handle most routine list-processinq prcwedures

with ease.

Careful organization of logical steps is crucial if an ef-

ficient program is to be written. This is especially true in

an algorithm as complex as this one, where huge numbers of deci-

sions must be made about vast amounts of information. The pro-

grammer shotAld expend'aconsiderable amounts of time deciding how

to organize both the data he is working on and the operations

he is performing on the data. In general, everything should

be modularized, standardized, and clearly organized. This means:

a) The algorithm should be broken down into logical steps.

b) All notation--i.e. variable names, statement numbers,

logical organization, etc.--must be consistent throughout

the program.

c) extreme care must be taken to clearly organize the code.

That is, code should be "clean", concise, and "nice". If

a section "feels clumsy" there is probably a better way

to do it, and it is worth looking for a better way.

Documentation is essential. It is probably not possible to

write a program for this algorithm without extensive documentation.

This means flow charts, verbal descriptions of logic flows and

objectives, memory use maps, and comment cards are all essential.

Programming "Tricks"--Optimization

There is a lot of room to optimize in this kind of program.

Careful attention to organization at all levels of analysis will

reveal parallel logic processes which could be handled by the
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same section of code, for example, There are many points

at which a single recursive loop of code, although more dif-

ficult to write than a sequential series of instructions,

will perform an operation faster and more efficiently.

All list searching can be optimized if the lists areordered

such a way as to minimize mean search time. The use of

indirect addressing in most of these kinds of situations can

make many search operations almost automatic.

Finally, the use of a CDC machine (or one similar to it)

with its more powerful version of 2xtended FORTRAN, rather

than an IBM. with standard FORTRAN G or H, will make significant

differences in the ease with which the program is written,

as well as the actual cost of running the final program.

Because different computer installations have different

ways of doing certain things, it is not possible to be more

specific with any of these comments.
8

Part FourGeneral Characteristics of the Network Analysis Program

The only implementation of the algorithm, as of this date,

is an Extended FORTRAN program which operates on the CDC 6500

at Michigan State University. The code for the entire program

including data cleaning routines and complex table-producing

routines, occupies approximately 2,300 computer cards. The

program is stored in the form of a compiled version of the

most recent revision, eliminatidg the compilation cost each time

the program is run.

The code alone occupies 31,0008 60-bit words of core,
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leaving about 130,0008 words for data. This gives a capacity

of 4,095 nodes and 32,767 links. Execution time increases

linearly as a function of network size .and compleiity. Some

times appear below.

Number of links Number of Nodes Execution Time

2000 725 57 seconds

1000 270 68 seconds

Execution time is a function of network complexity, as

well as the absolute size, as can be seen above. The printout

describes the network in great detail, and print charges

usually exceed compute charges by a factor of about four.

The printout for a network of 1.000 nodes is three to five

inches thick.

The program is well protected against many user errors

and odd data configurations. It has been tested on random

data, and it performed as expected. (11) The largest network

ever run was with an N of 960. Estimates suggest that to do

this analysis by hand would take ten tireless errorless men

over a century. It took the computer less than two minutes.

Part Five--Historical Development

Work was begun in this area at MSU in late 1970. The

first working program, operationalizing parts of the algorithm

described in (1) was completed in late 1971. The output of

that program was a large matrix, with rows and columns arranged

so that people who talked to each other were close to each other

in the matrix. In June of 1972 the analytic methods used were

refined and extended to include the group detection routines.



These were further refined and extensively tested in Summer and

Fall of 1973.

In the time from 1972 to the present, the program was

continuously being improved, as better and better methods of

problem solving were discovered. In addition, errors of various

types were tracked down and fixed. The theoretical basis on

which the program stands was being refined at the same time

improvements were being made on the program.

At this point in time, we know of no significant errors in

the program itself, although users of the program sometimes

make errors when running their data through it. Attempts

are being made to include routines in the program which viii

identify even these kinds of error, thus protecting the user

from himself.
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1 William D. Richards is a graduate student at Stanford's

Institute for Communication Research.

2. In the past, some investigators have limited the number of

links per node to some constant, like three or four. There

is no reason to do this, as it severely distorts the data.

3. Many of the most interesting properties of networks don't

seem to be found in small simple systems. We have seen

several moderately large networks which show qualitatively

different properties than smaller ones. Perhaps very large

networks will be different in similar ways.

4. This analogy may have been suggested by James A. Danawski,

a colleague of miner who has provided much invaluable assistance

thrcIghout the development of this methodology.

5. A major problem with the examples used to illustrate the dif-

ferent parts of the algorithm is that they are too simple

to accurate mirror the kinds of things that happen with real

data. This simplicity was felt to be necessary, if the

examples were to be clear.

The size of the window is given a good information theoretical

treatment in a paper by Gauthier. (09

6. With real networks, the bar plot is much more complex and rich

in detail. There are usually more nodes in each group, and

the shapes of the groups in the bar plot is strikingly dif-

ferent from the ones seen in Figure 4. However, the ones

shown there do illustrate the concept being put forth.

7. The author was not able to devise a proof for this theorem,

so he tested it empirically with a large number of examples.

It never received any disconfirming evidence, and if a T-test

were done on the results, the significance level would be

with p less than 0.00001. He is therefore confident in the

truth of the theorem,

8. The author suggests that he is not primarily a computer programmes

and regrets that his research interests prevent him from

learning the peculiarities of other computer systems, which

would allow him to be of more assistance to others working

in the area. He is, however, willing to discuss any problems
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that may be encountered in attempting to program the algorithm.
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