AOTHOR	Kester, Donald L.
TItLe	The Community College Counselor Is the College
	Primary Institutional Leader in the "Cooling Out"
	Process.
pub date	Nov 74
NOTE	28p.
EdRS PRICE	Mr-\$0.75 HC-\$1.85 plus postage
DESCRIPTORS	*Academic Education; *Career Planning: *Community
	Colleges; *Counselor Functions; Post Secondary
	Education; Questionnaires: *Student Attitudes; Tables
	(Data): Technical Reports
IDENTIRIERS	*Cooling Out Process; *Nor Cal attrition Stuay
ABSTRACT	
Abstacy	The role of the counselor in helping the communit
college student	redefine his occupational and educational future is
discussed, and	data frow the Nor Cal lttrition Study are provided.
analysis of the	data showed that the counselor is the institutional
leader in the	cooling out" process. Tables provide the study data,
anc appendixes	present tabulations of Response to Question 17 of the
Wor cal co-oper	ative Research Questionnaire, Phase II and III 1969-7
(Which of the f	ollowing people would you rely on most for advice
about school or	job plans?). lists of participating colleges in Nor
Cal Phase II an	4 III, and the final reprrt of the Nor Cal Study
consisting of d	ata from the two phases of the study. (DB)

THE COMNUNITY COLLEGE COUNSELOR
 IS THE COLLEGE'S PRIMARY INSTITUTIONAL LEADER IN THE "COOLING OUT" PROCESS

By
Donald L. Kester, Ph.D. Consultant, Division of Program Evaluation, Research, and Pupil Services Los Angetes County Superintendent's Office

> THE COMMUNITY COLLEGE COUNSELOR IS THE PRIMARY INSTITUTIONAL LEADER IN THE "COOLING OUT" PROCESS

In 1960, Dr. Burton Clark published a book and an article in which he identified two latent functions of the community junior college. Until the time of Clark, the goals or functions of the community junior college were agreed upon by professionals in the field to include the following:
(1) Transfer function.
(2) Terminal function.
(3) General education function.
(4) Continuing education function.
(5) Student personnel function.
(6) Community services function. (Medsker, 1960)

When Clark arrived on the scene he identified two more functions and the phrase he turned to describe one of them continues to make his name important in the area of the sociology of the community college system. The two functions he identified were:
(1) The "cooling-out function,"
(2) The protection by the junior college of the selective interests of the other segments of higher education. ${ }^{1}$ (Clark, 1960a, 1960b)

By using the "case study" approach, Clark investigated one community college, then known as San Jose Junior College. Of course,

[^0]San Jose City College, as it is now known, was a member of the Cal Research Consortium and participated for three years in the Nor Cal Attrition Reduction Effort.

Clark pointed out that there was a basic inconsistency in American society. This society encourages everyone to achieve when in reality, hierarchical work organizations and other factors permit fewer and fewer persons to succeed at ascending levels. Thus American society encourages people to achieve when there is actually only limited opportunity to do so. Clark referred to this inconsistency in American society as a "disjuncture" between culturally instilled ends and institutionally provided means of realization. He went on to say that the community junior college is the social unit in American society whose latent function is to ameliorate the consequent stress by "redefining failure" and providing for a "softer" denial. He further stated, "the major form of the soft response...is found ...in the college that specializes in handing students who will soon be leaving--typically the two-year public junior college." This "cooling-out" function of the commanity junior college, Clark himself noted, is "...one major role and sociologically the most interesting one (that) has not been previously identified...." (Burton Clark, 1960a, p. 157) The performance of the "cooling-out" function by the community funior college allows the system of higher education in America to be both democratic and selective. The inconsistency between culturally encouraged achievement motives and the realities of limited opportunities
needs to be worked out by the community junior college. It is this segment of higher education that operates to ameliorate the stress that arises by performing a "cooling-out" or reorienting function for those students who are caught in the "disjuncture" between ends and means. In short, Clark seems to be saying that American society is both democratic and selective and that it falls to the commanity junior college to not only be both democratic and selecijce, but also somehow be the institution that ameliorates the co:equent stress. Clark writes:

> The central point can be restated as follows: the basic problem of the junior college is the processing of the student who falls between the terminal and transfer groups. Students with transfer intentions for the most part do not transfer but neither do they complete terminal curricula. Most terminate their education while in the college but do so as dropouts while pursuing transfer work. In this way the modal student does not fall clearly into the transfer or the terminal category.... (Burton clark, 1960a. p. 84)

In a jcurnal article, Clark refers to these students who are caught in the "means-ends disjuncture," as "latent terminal students." (Burton Clark, 1960b, p. 572) In his article Clark estimates that the "latent terminal students" number "about half of all the students in the California junior colleges...." (Burton Clark, 1960b. p. 572) He further states that the "basic problem" of processing these latent transfer students is handled by moving them out of a transfer major into a one or two-year vocational, business or semi-professional program. In the "cooling-out" process that the community junior college performs,
latent terminal students find their occupational and educational futures being redefined.

While clark's intensive case study analysis of one community junior coilege in California was enough to spark the idea that this segment of higher education performed a latent "coolingout" function, it did not provide the knowledge of which "institutional leader" at the commanity college carried out this process. Who, in fact, helps the student to redefine his occupational and educational future? In the Sociology of Teaching, the author, William haller, has a chapter entitied, "reaching as Institutionalized Leadership." In this chapter, Waller notes that leadership "depends upon a psychic set-up of expectancy, upon a certain eager attentiveness focused upon the leader and a willingness to take a cue from him...the led must have some faith in the competence of the leader...the school depends almost entirely on institutional leadership." (Waller, 1967, pp. 189-192) But who is the community college's institutional leader when it comes to the reorienting process in which students find their educational and occupations futures being redefined? Who does the job of helping to transform the transfer into terminal students? Who are the "responsible operatives," or "coolers," who represent the community college in its effort to ameliorate the consequent stress experienced by these latent terminal students? In short, who are the college's institutional leaders in the "cooling-out" process? Clark did mention the role of the counselor in four of the five stages of the "cooling-
out" process in San Jose Junior Ccilege, and he did speak of counselors as "agents of consolation," in the institution which worked to change the intentions of the over-ambitious students, and tried to reduce aspiration as well as to help define and help fulfill it. But the clearest answer to the question of who is the institutional leader in the community junior college who spearheads the drive in the "cooling-out" function is found in the recent analysis of Question 17 in the Nor Cal Attrition Reduction Questionnaire.

If American society at large must be both democratic and selective, and if the funior college ameliorates the stress by performing the "cooling-out" function, then these data sugge3t that it is the community college counselor who is the "institutional leader" in this reorienting process. As the intensive statistical analyses of Question 17 for both Phase 2 and Phase 3 indicate, the students in the community junior colieges who answered this question do indeed have a "willingness to take a cue" from their commanity college counselor, and "have some faith in the competence" of this leader. The data in Table 1 indicate that in all colleges that participated in Phase 2 and/or Phase 3 of the Nor Cal Attrition Study, students said they would rely most on their counselor for "advice about school or job plans." After it was seen that freshmen in all colleges seemed to be identifying the counselor as the institutional leader to whom they would turn in their academic and occupational planning, a statistical analysis of this question was
undertaken. ${ }^{2}$ it was postulated that the universe of community funior college freshmen depended significantly upon their counselors in the area of advice about "school or job plans." This research hypothesis became a statistical hypothesis that was tested at the .05, .01 005, and . 001 levels. Confidence intervals were calculated around each sample proportion according to the methods advised by Gunther and Mariscuilo. (Gunther, 1965, p. 157, 158; Mariscuilo, 1971, p. 250, 380) In every case, for every one of the comunity colleges, the proportion of students indicating they would rely on "teachers," or "others." The statistical significance was found to exist in every case at or beyond the .01 level. This level of significance was attained in every community junior college that participated in Pinase 2 of the study, and with every community junior college that participated in Phase 3 of the study. An example might help explain the presentation of the analysis of the data from one college.

In Table 2 it will be seen that the descriptive statistics for College F as it participated in phase 3 of the Nor cal study indicate that 459 students chose the response category "Counselor," whereas 95 students chose the response category "Teacher." Since College F had a respondent sample size of 1011 , the proportion of students answering "Counselor" was 45.40%, and the response rate for "Teacher" was 9.40\%. In order to test the hypothesis

[^1]that there is no significant difference in the proportion choosing "Counselor" and "Teacher," confidence intervals were determined around the sample percentage of 45.50 and 9.40 by the methods of Gunther and Mariscuilo. As shown in Table 2, at the alpha level ($1<.05$), the percent of students choosing "Counselor" is between 42.33 and 48.47\%. The percent of students choosing "Teacher" is between 7.60 and 11.20\%. Similarly, confidence intervals for the sample proportions were determined at the .01 level, at the .005 level, and the .001 level. At the .001 alpha level for example the interval is 40.01 to 50.79 percent for the "Counselor" category. The next step in the analysis consisted of constructing matrices having eight rows and eight columns which matched the response categories to the question and in which the confidence bands took the general form of column percentage minus row percentage. It was shown that at the .05 level, the population of entering freshmen at College F chose "Counselor" between 42.33 and 48.47\%. The research question that is examined in the matrix shown in Table 3 given that the level of alpha $=.05$, is the question, "At the population level, is the percent of students who selected 'counselor' greater than the percent of students who selected "teacher'?" The calculations that were performed in order to produce the matrices for College F consisted of determining a lower and an upper limit for the subtraction of "Counselor" minus each of the other response categories, including "reacher." Using the data for College F as an example, the lower limit for
"Counselor" was 42.338 and the upper limit for "Teacher" was 11.208. At the population level, more students selected "Counselor" than selected "Teacher" by a difference of 42.338 minus 21.20%. This produces a lower limit in the alpha $=.05$ matrix of 31.13% given "Counselor" as the column and "Teacher" as the row. Similarly, the upper limit for this difference between "Counselor" and "Teacher" is determined by taking the upper Iimit fox the confidence interval for "Counselor," which is 48.47%, and subtracting from that the lower limit for "Teacher, " which was 7.60\%. Thus the upper limit in the .05 matrix is 40.87%. An easy way to test the question, "Do more students in the population of entering freshmen select 'Counselor' than select 'Teacher' or 'Other' or any other response category?" is to read down the "Counselor" column in the Table 3 matrix. If one wishes to be extremely precise, one need only read the left hand column under the "Counselor" column. In the example fri College F lalpha $=$.05), the population of entering freshmen at that college prefer "Counselor" over "No One" by at least 35.05\%; "Counselor" over "Teacher" by at least 31.13\%; "Counselor" over "Mother" by at least 31.78\%; and "Counselor" over "Others" by at least 34.33\%. In a similar fashion, the confidence intervals for the sample proportions for each of the response categories as calculated at the $.01, .005$, and .001 levels are used to determine the matrices for alpha $=.01$, alpha $=.005$, and alpha $=.001$, respectively. For every college involved in Phase 2 or Phase 3, the population of entering freshmen prefer "Counseior" over "Teacher"
or "Other"; the response categories which exhaust the universe of people available at the comunity college for help in this area. The determination for Chi Square is also given again, in every case, for every college, the Chi Square analysis testing the hypothesis that the proportion of students selecting each of the eight categories is equal of such a value as to permit rejection of the hypothesis of equal proportions for each of the eight categories. In every case, for all colleges in Phase 2 and Phase 3, the Chi Square value is of such a magnitude as to be significant at the . 001 levels. [The Chi Square was performed as recommended by Guenther (Guenther, 1965, p. 180).1

Further information is contained in the sense that both Phi (ϕ) and Phi prime (ϕ^{\prime}), where ϕ is theorem 17-2 and ϕ^{\prime} is theorem 17-3, have been calculated for each college, after Mariscuilo. (Mariscuilo, 1971, p. 406)

The same kinds of nalculations were done for Phase 2 and Phase 3 data. For all twenty-three colleges involved in Fhase 2, and for all twenty-nine colleges ir Phase 3, the analyses of these fiata lead to the same concluoion. The counselor is shown to be the institutional leader in the "cooling-out" process. Overwhelmingly, students choose counselors as the person they would rely on most for advice about school and job plans. At the student population level, the commanity college "Counselor" is always chosen over the community college "Teacher" and "Other." In fact, in the entire universe of people to whom the student could turn to for advice, the community college "Counselor" is shown
to bu THE person the students rely on most.
The intensive care study that Burton Clark conducted in the late 1950 s provided a new term in community college education, the "cooling-out" process. In 1973, the kinds of statistical analysis performed on both the Nor Cal Phase 2 and the Nor Cal Phase 3 data bases as shown in cables 1 and 2 below have shown that the community college counselors are the "primary institutional leaders" in this "cooling-out" process.

Finally, there are some unanswered questions. Burton Clark indicates his conjecture that the "cociing-out" function is latent; that is, hidden from the commonity. The question arises, Is this really true? Has it ever been measured? A study could be done to find out whether or not members of the junior college's surrounding commmity do in fact see this as a function of the junior college. Do they see it, or is it hidden? Burton Clark also says that the "cooling-out" function needs to remain hidden or the ability of the college to perform this function would be impaired. Is this true? Are there any hard data to indicate that this has ever happened or is now happening? The same two questions hold true for the function of protecting the four year colleges and universities so that they can be selective. Does the conmunity recognize this as a function, or is this indeed hidden? Does this really need to be kept hidden?

Clark mentions how in the class, "Orientation to College", a student's skills and ability to reach higher levels can be impersonally discussed. Waller also makes a point of the impersonal nature of teaching in the clasirrom. Both Waller and Clark imply that this factor of being impersonal is a necessary
ingredient of talking tough. Could this conjecture somehow be tested? Is not the usual nature of counseling to be in a one-to-one situation? Perhaps being impersonal is a factor in a one-to-thirty situation in teaching. Isn't there a factor of spontaneity and "being personal" that exists in the counseling relationship? Can't a counselee "be personal" in the one-to-one counseling situation? Is there any evidence to suggest that if being personal occurs, then it is somehow detrimental? Perhaps in this situation being personal has an effect opposite fron being detrimental.

Finally, Medsker and Clark indicate that a decade ago between two-thirds and three-fourths of entering freshnen said they were transfer students. Nor Cal finds that this proportion is down in the fifty percent (50\%) range. This is presented in Appendix 2.

Are students actually more realistic now than they were ten years ago? What does this mean in terms of the college's focusing attention on the "coolingout" function? Are conmunity college freshmen better, more realistically oriented than they were twelve vears ago. If so, what American institution is helping the jumior college in its "cooling-out" function?

TABLE 1

Nor Cal Community College Students" Selection of the "Most Significant Source of Advice Regairing Their School and Job Plans"

Source of Advice	1969		1970	
Number	Percent	Number	Percent	
Counsclor	9,598	40.8%	11,141	40.8%
Father	5,654	24.0%	6,450	23.6%
Mother	2,282	9.7%	2,527	9.2%
Teacher	1,798	7.6%	2,131	7.8%
No one	1,102	4.7%	1,404	5.1%
Bro/sister	1,088	4.6%	1,156	4.2%
Friends	1,018	4.3%	1,140	4.2%
Other	1,008	4.3%	1,387	5.1%
	23,548	100.0%	27,336	100.0%

TA B L E 2
Display of Chi Square and other statistical values as well as confidence interval bounds
surrounding each sample proportion at the four alpha levels, full-time, day
(Data from phase $\begin{aligned} & \text { 3--Analysis of questionnaire responses made by first-time, full- } \\ & \text { freshmen at one California community college.) }\end{aligned}$

17. Which of the following people would you rely on most for advice about school or job plans?

$$
\phi^{\prime}=0.40
$$

TABEE
Display of the lower and upper limits of the interval obtained by
subtracting the row percentage range from the colum percentage range*

BIBLIOGRAPHY

Clark, Burton R. "The Cooling Out' Function in Higher Education," The American Journal of Sociology, Vol. iXV, No. 6, May 1960 (b).

Clark, Burton R. The Open Door College, McGraw-Hill Book Company, New York, 1960(a).

Etzioni, Dr. Amitai. "The High-Scoolization of Colleges," mimeograph by the author, who is Chairman of Columbia University Department of Sociology, 1970.

Kester, Donald L. "NorCal--An Impressive Achievement." This is the text of a speech delivered at the 1970 Annual California Junior College Association Convention, in ERIC. ED 044111.

Kester, Donald L. "Theoretical and Practical Parameters of Two Year Impact on Potential Dropouts, " unpublished doctor of philosophy dissertation, University of California, Berkeley, 1973 (287 pages). UCB Ed-Psy Library Call No. LB6,.5, K427

Kester, Donald L. "The Lesson of the Three Year NorCal Attrition Study: Many of the Potential Dropouts can be Helped," in ERIC. ED 057771 (200 pages).

Kester, Donald L. and Thomas F. MacMillan. "Promises to Keep: NorCal Impact on Student Attrition," The Community and Junior College Journal, published by the American Association of Commuity and Junior Colleges, February, 1973, Vol. 32. No. 5, pages 45 and 46.

Kester, Donald L. "California Comunity College Stopouts: A Comparison of the Three NorCal California Coordinating Council for Higher Education Follow-up Studies," in ERIC. ED 057779.

Kester, Donald L. "Further Validation of the NorCal Questionnaire: Secondary Validation," in ERIC. ED 062965.

Kester, Donald L. "Descriptive Data Base for the Three-Year NorCal Attrition Study--Phase I, Phase II, and Phase III," in ERIC. ED 063922.

Kester, Donald L. "Social Demand Analysis, Cost Benefit Analysis, and Manpower Analysis Converge to Present a Clear Mandate-The Open Door Mast Remain Open," in ERIC. ED 045070.

Kester, Donald L. "How Many Hours per Week are Full-Time Comminity Callege Counselors Expected to Work? Evidence Indicates that in California No Uniform Load Exists," in ERIC. ED 063922.

Kester, Donald L. "The Case for Institutionel Research: Progress Toward Educational Goals Demands Action-Oriented, Navigational Feedback Data." Mimeo.

Kester, Donald L. and Carolyn Greene. "What Problems do Black Commuity College Students Have? A Research Project at One Community College Finds Some of the Answers," in ERIC. ED 047690.

Kester, Donald La, Milton Danielson and Jennie Lackey. "A lerified Vocational Counseling Model," in ERIC. ED 087958.

Guenther, William C. Concepts of Statistical Inference, McGrawHill Book Company, New York, 1965.

Ma.Millan, Thomas F. "Establishing a Predictive Model for Early Kecognition of Potential Community College Student Attrition." Unpublished doctoral dissertation, University of California, Berkeley, 1969.

MacMillan, Thomas F. "The Nor Cal Project Phase I Final Report," May 1969, mimeo, in ERIC. ED 031240.

MacMillan, Thomas F. "Nor Cal: The Key is Cooperation," Junior College Journal, May 1970, Vol. 40, No. 8.

MacMillan, Thomas F. "Nor Cal Project: Phase II Final Report," Santa Barbara Junior College, June 1970, in ERIC. ED 039879.

MacMillan, Thomas F. "Nor Cal Research Group: A Follow-up of Students Who Discontinued Enrollment," California Coordinating Council for Higher Education. June 1970, mimeo, in ERIC. ED 039879

Marascuilo, Leonard A. Statistical Methods for Behavioral Science Research, McGraw-Hill Book Company, New York, 1971.

Medsker, Leland L. The Junior College: Progress and Prospect, McGraw-Hill Book Company, New York, 1960.

Waller, Willard. The Sociology of Teaching, John Wiley and Sons, New York, 1967.

Response To Questio: 17 of the Nor Cal Co-Operativo Researeh Questiomaire, Phise II, 1069-70

Which of the following people would you rely eht:l. 1 for advice allout school or job plans?

17. Which of the following people wuild you rely on most for advice about school or juh plans?

Colluge	Respordent Sample sizes	Response Kate.	No Une	Father	Mother	Teacher	Counselor	$\begin{aligned} & \text { Brother/ } \\ & \text { Sister } \end{aligned}$	Pals	Other
A	534;	$\begin{gathered} 95.97 \\ 2: 3 \end{gathered}$	$\begin{gathered} 9.14 . \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} 9.14: ": \\ 48 \end{gathered}$	$6.34^{\prime \prime}$ 34	$\begin{array}{r} 12.311^{\circ} \\ 06 \end{array}$	$\begin{gathered} 44.21 \% \\ \hline 237 \\ \hline \end{gathered}$	$\begin{gathered} 2.907 \\ 16 \\ \hline \end{gathered}$	$4.47 x$ 24	11.35 $i 1$
B	68.1	$\begin{gathered} 95.9_{i}^{4} \\ 29 \end{gathered}$	$\begin{gathered} 4.12, \\ 27 \end{gathered}$	$\begin{gathered} 33.44 ; \\ 219 \end{gathered}$	$\begin{gathered} 11.7 \% \\ 77 \end{gathered}$	$\begin{gathered} 6.55^{\circ} \mathrm{t} \\ 43 \end{gathered}$	$\begin{gathered} 33.188^{\prime \prime} \\ 217 \end{gathered}$	$\begin{gathered} 4.284 \\ 29 \end{gathered}$	3.514 23	$\begin{array}{r} 3.05 \% \\ 20 \\ \hline \end{array}$
C	1652	$\begin{array}{r} 98.7 \% \\ 22 \\ \hline \end{array}$	$\begin{array}{r} 4.75 \% \\ 79 \\ \hline \end{array}$	$\begin{array}{r} 26.64 . \\ 441 \\ \hline \end{array}$	$\begin{array}{r} 1.89 \% \\ 180 \\ \hline \end{array}$	$\begin{gathered} 7.80 \% \\ 130 \\ \hline \end{gathered}$	$\begin{array}{r} 34.3 \times \% \\ 668 \\ \hline \end{array}$	$\begin{aligned} & 6.41^{\prime \prime} \\ & 106 \\ & \hline \end{aligned}$	$\begin{gathered} 5.20^{\circ} \mathrm{z} \\ \\ \hline 64 \end{gathered}$	$\begin{gathered} 3.75 \% \\ 0 . \\ \hline 0 \end{gathered}$
D	3171	$\begin{gathered} 97.9 \mathrm{~m} \\ 68 \\ \hline \end{gathered}$	$\begin{array}{r} 5.10 \% \\ 162 \\ \hline \end{array}$	$\begin{gathered} 23.58{ }^{C \prime} \\ 7+8 \end{gathered}$	$\begin{gathered} 7.78_{1}^{\prime \prime} \\ 247 \\ \hline \end{gathered}$	$\begin{gathered} 8 .+55_{2}^{\prime} \\ 240 \mathrm{~s} \end{gathered}$	$\begin{array}{r} 12.637 \\ 1352 \\ \hline \end{array}$	$\begin{aligned} & 4.033 \\ & 125 \\ & \hline \end{aligned}$	$\begin{gathered} 4.26 \% \\ 185 \end{gathered}$	$\begin{gathered} 4.13 x^{2} \\ 1: 11 \\ \hline \end{gathered}$
E	250	$\begin{gathered} 98.84 i \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 3.60^{\circ} \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 18.40^{5} \\ 46 \end{gathered}$	$\begin{gathered} 12.00 \% \\ \hline 30 \\ \hline \end{gathered}$	$\begin{array}{r} 11.200^{\circ} \\ 23 \end{array}$	$\begin{array}{r} 4.000^{2} \\ 120 \\ \hline \end{array}$	$\begin{gathered} 4.00 \% \\ 10 \\ \hline \end{gathered}$	3. sert 9	3.20% A
F	1011	$\begin{gathered} 96.6 \% \\ 36 \\ \hline \end{gathered}$	$\begin{array}{r} 5.33 \mathrm{i} \\ \hline \\ \hline \end{array}$	$\begin{gathered} 15.725 \\ 159 \\ \hline \end{gathered}$	$\begin{gathered} 8.80^{\prime \prime} \\ 89 \\ \hline \end{gathered}$	$\begin{gathered} 9.39^{\prime \prime} \\ 95 \\ \hline \end{gathered}$	$\begin{array}{r} 45.40^{0} \\ \quad 459 \\ \hline \end{array}$	$\begin{gathered} 4.54 \% \\ 46 \end{gathered}$	$\begin{gathered} 3.26 \mathrm{c} \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} \text { 7. } 12 x_{i}^{\prime} \\ i l \end{gathered}$
G	16-11	$\begin{array}{r} 96.64 \\ -\quad 57 \\ \hline \end{array}$	$\begin{gathered} 8.47 \% \\ 139 \\ \hline \end{gathered}$	$\begin{gathered} 24.92 \pi \\ 409 \\ \hline \end{gathered}$	$\begin{gathered} 9.324 \\ 153 \\ \hline \end{gathered}$	$\begin{gathered} 6.58 \pi \\ 108 \\ \hline \end{gathered}$	$\begin{array}{r} 31.68 \% \\ .320 \\ \hline \end{array}$	$\begin{gathered} 4.75 \% \\ 78 \\ \hline \end{gathered}$	$\begin{gathered} 5.9 \pi \\ 98 \\ \hline \end{gathered}$	$\begin{gathered} 8.28_{\mu}^{\prime \prime} \\ 13 \beta^{2} \\ \hline \end{gathered}$
H	2654	$\begin{array}{r} 97.9 \% \\ 37 \\ \hline \end{array}$	$\begin{gathered} 4.48 \% \\ 119 \\ \hline \end{gathered}$	$\begin{array}{r} 29.05 \\ 771 \\ \hline \end{array}$	$\begin{array}{r} 8.96 \mathrm{x} \\ 238 \\ \hline \end{array}$	$\begin{gathered} \text { 6. } 40 \mathrm{H}^{\prime} \mathrm{c} \\ 170 \\ \hline \end{gathered}$	$\begin{gathered} 38.80 \% \\ 1030 \\ \hline \end{gathered}$	$\begin{gathered} 3.42 \% \\ 91 \\ \hline \end{gathered}$	$\begin{gathered} 4.86 \% \\ 129 \\ \hline \end{gathered}$	$\begin{aligned} & 3.94 x \\ & 106 \\ & \hline \end{aligned}$
1	1076	$\begin{array}{r} 97.6 \pi \\ 27 \\ \hline \end{array}$	$\begin{gathered} 6.04 x \\ \quad 65 \\ \hline \end{gathered}$	$\begin{gathered} 25.65 \\ 276 \\ \hline \end{gathered}$	$\begin{gathered} 9.57 \mathrm{~K} \\ 103 \\ \hline \end{gathered}$	$\begin{gathered} 6.599^{7} \\ 71 \\ \hline \end{gathered}$	$\begin{array}{r} 37.36 \mathrm{~K} \\ \\ \hline \end{array}$	$\begin{gathered} 4.27 \% \\ 46 \\ \hline \end{gathered}$	$\begin{gathered} 4.333^{\prime \prime} \\ 52 \end{gathered}$	$\begin{gathered} 5.6012 \\ 02 \\ \hline \end{gathered}$
J	599	$\begin{array}{r} 95.5 \% \\ 25 \\ \hline \end{array}$	$\begin{gathered} 4.3+\sqrt{2} \\ 26 \\ \hline \end{gathered}$	$\begin{gathered} 17.699 \\ 106 \\ \hline \end{gathered}$	$\begin{gathered} 7.84 \% \\ \quad 47 \\ \hline \end{gathered}$	$\begin{gathered} 6.3+4_{6}^{\prime} \\ 38 \\ \hline \end{gathered}$	$\begin{array}{r} 50.25 \mathrm{Z} \\ 301 \\ \hline \end{array}$	$\begin{gathered} 3.50 \% \\ \quad 21 \\ \hline \end{gathered}$	$2.000_{i n}^{+}$	8.01%
K	895	$\begin{gathered} 96.1 \% \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 7.26 \% \\ 65 \\ \hline \end{gathered}$	$\begin{array}{r} 12.060^{n} \\ 108 \end{array}$	$\begin{gathered} 11.067 \\ \hline 99 \\ \hline \end{gathered}$	$\begin{array}{r} 10.72^{\circ} \mathrm{c} \\ 96 \\ \hline \end{array}$	$\begin{gathered} 44.02 \% \\ 394 \\ \hline \end{gathered}$	$\begin{gathered} 3.46 \% \\ \quad 31 \\ \hline \end{gathered}$	$\begin{gathered} 4.807 \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 6.3948 \\ 59 \\ \hline \end{gathered}$
L	247	$\begin{gathered} 96.1 \% \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 7.28 \% \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} 21.45 \% \\ 53 \\ \hline \end{gathered}$	$\begin{array}{r} 8.907 \\ 22 \\ \hline \end{array}$	$\begin{gathered} 8.50 \% \\ 21 \\ \hline \end{gathered}$	$\begin{array}{r} 38.86 \% \\ 96 \\ \hline \end{array}$	$\begin{array}{r} 5.267 \\ -13 \\ \hline \end{array}$	$\begin{gathered} 2.42 \pi \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 7.2 \mathrm{~N}^{\circ} \mathrm{C} \\ 19 \end{gathered}$
M	1070	$\begin{gathered} 97.8_{i} \\ 26 \\ \hline \end{gathered}$	$\begin{array}{r} 5 .+27 \\ 59 \\ \hline \end{array}$	$\begin{gathered} 27.57 \text { 要 } \\ 295 \\ \hline \end{gathered}$	$\begin{gathered} 8.41 \% \\ 90 \\ \hline \end{gathered}$	$\begin{gathered} 8.136 \\ 97 \\ \hline \end{gathered}$	$\begin{gathered} 37.94 \% \\ 406 \\ \hline \end{gathered}$	$\begin{gathered} 4.57 \mathrm{~K} \\ 49 \end{gathered}$	$\begin{array}{r} 3.27 \% \\ 35 \\ \hline \end{array}$	$\begin{array}{r} 4.68 \% \\ 4.08 \\ \hline \end{array}$
N	393	$\begin{gathered} 98.7 \% \\ 5 \\ \hline \end{gathered}$	$\begin{array}{r} 3.05 \pi \\ 12 \\ \hline \end{array}$	$\begin{array}{r} 24.42 \pi \\ 96 \\ \hline \end{array}$	$\begin{gathered} 9.41 \% \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} 10.68^{\circ} \\ 48 \\ \hline \end{gathered}$	$\begin{array}{r} 45.27 \% \\ 178 \\ \hline \end{array}$	$\begin{gathered} 1.78 \% \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 2.544 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 2.79{ }^{10} \\ 12 \end{gathered}$
0	1835	$\begin{array}{r} 96.3 \% \\ \quad 70 \\ \hline \end{array}$	$\begin{gathered} 4.08 \% \\ 75 \\ \hline \end{gathered}$	$\begin{array}{r} 22.99 \% \\ 422 \\ \hline \end{array}$	$\begin{gathered} 10.08 \% \\ 185 \\ \hline \end{gathered}$	$\begin{array}{r} 7.522^{\prime \prime} \\ 138 \\ \hline \end{array}$	$\begin{gathered} 42.88{ }^{\prime \prime} \\ 787 \\ \hline \end{gathered}$	$\begin{array}{r} 4.08^{\circ} \\ 75 \\ \hline \end{array}$	$\begin{gathered} 3.764 \\ 69 \\ \hline \end{gathered}$	4.58% 4
\mathbf{P}	860	$\begin{gathered} 98.19 \\ 17 \\ \hline \end{gathered}$	$\begin{gathered} 4.53 \% \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 25.28 \pi \\ 217 \\ \hline \end{gathered}$	$\begin{gathered} 10.23 \pi \\ 88 \\ \hline \end{gathered}$	$\begin{gathered} 5.00 \mathrm{i} \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 41.167 \\ 354 \\ \hline \end{gathered}$	$\begin{gathered} 4.53 \% \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 5.58: \% \\ 48 \end{gathered}$	$\begin{gathered} 3.7 \%^{-} \\ 32 \\ \hline \end{gathered}$
Q	948	$\begin{array}{r} 98.15 \\ 19 \\ \hline \end{array}$	$\begin{gathered} 3.697 \\ \quad 35 \\ \hline \end{gathered}$	$\begin{gathered} 2 \% .36 \% \\ 231 \\ \hline \end{gathered}$	$\begin{gathered} 7.70 \% \\ \quad 73 \\ \hline \end{gathered}$	$\begin{array}{r} 8.222^{\circ} \\ 78 \\ \hline \end{array}$	$\begin{gathered} 46.51 \% \\ 441 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{3 . 6 9 r} \\ \hline 35 \\ \hline \end{gathered}$	$\begin{array}{r} 3.05^{\prime \prime} \\ 29 \\ \hline \end{array}$	$\begin{gathered} 2.74 .9 \\ 20 \\ \hline \end{gathered}$
R	795	$\begin{gathered} 92.1 \% \\ 68 \\ \hline \end{gathered}$	$\begin{gathered} 4.77 \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} 29.189 \\ 232 \\ \hline \end{gathered}$	$\begin{array}{r} 11.19 \% \\ \hline 89 \\ \hline \end{array}$	$\begin{gathered} 5.91^{1} . \\ 47 \end{gathered}$	$\begin{gathered} 37.489 \\ 298 \\ \hline \end{gathered}$	$\begin{array}{r} 4.40^{\circ} \\ 35 \\ \hline \end{array}$	$\begin{gathered} 2.89 \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} 4.15 \% \\ 3: 8 \\ \hline \end{gathered}$
S	746	$\begin{gathered} 96.97 \\ 24 \\ \hline \end{gathered}$	$\begin{array}{r} 4.29^{3} \alpha \\ 32 \\ \hline \end{array}$	$\begin{gathered} 20.50 \% \\ 153 \\ \hline \end{gathered}$	$\begin{gathered} 9.387 \\ 70 \\ \hline \end{gathered}$	$\begin{gathered} 8.44 \mathrm{f} \\ 63 \\ \hline \end{gathered}$	$\begin{array}{r} 46.78 \pi \\ 349 \\ \hline \end{array}$	$\begin{gathered} 4.02 \% \\ \quad 30 \\ \hline \end{gathered}$	$\begin{gathered} 2.94^{1 / 2} \\ 22 \end{gathered}$	$\begin{gathered} 3.61 .7 \\ \quad 37 \end{gathered}$
T	482	$\begin{array}{r} 96.0 \% \\ 20 \\ \hline \end{array}$	$\begin{gathered} 3.529 \\ 17 \end{gathered}$	$\begin{gathered} 27.17 \% \\ 132 \\ \hline \end{gathered}$	$\begin{gathered} 12.65 \mathrm{Y} \\ 61 \\ \hline \end{gathered}$	$\begin{gathered} 3.6017 \\ .27 \\ \hline \end{gathered}$	$\begin{gathered} 37.55 \% \\ 181 \\ \hline \end{gathered}$	$\begin{gathered} 5.50^{\prime 7} \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} 3.31 \% \\ 16 \\ \hline \end{gathered}$	$\begin{gathered} 4.1+7 \\ 20 \\ 20 \end{gathered}$
U	317	$\begin{gathered} 96.68 \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \hline 9.77: 1 \\ \hline \\ \hline \end{gathered}$	$\begin{array}{r} 12.616 \\ \hline 40 \\ \hline \end{array}$	$\begin{gathered} 3.15 \% \\ 10 \end{gathered}$	$\begin{gathered} 7.57^{\circ} \mathrm{c} \\ 24 \\ \hline \end{gathered}$	$\begin{array}{r} 44.16 \% \\ 140 \\ \hline \end{array}$	$\begin{gathered} 1.89{ }^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} 5.36 \\ 17 \\ \hline 17 \end{gathered}$	$\begin{gathered} 15.45 \mathrm{~F} \\ \hline 49 \\ \hline \end{gathered}$
V	545	$\begin{gathered} 98.47 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 4.22 \pi \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} 28 .+47 \\ 155 \\ \hline \end{gathered}$	$\begin{gathered} 11.18 \% \\ 61 \\ \hline \end{gathered}$	$\begin{gathered} 6.60 \% \\ 36 \\ \hline \end{gathered}$	$\begin{gathered} 37.98 \% \\ 207 \\ \hline \end{gathered}$	$\begin{gathered} 5.13 \% \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} 2.9 s^{\prime \prime \prime} \\ 16 \\ \hline \end{gathered}$	$\begin{gathered} 3 .+8{ }^{4} 7 \\ 10 \end{gathered}$
W	728	$\begin{gathered} 96.6 \text { 6' } \\ \hline 26 \\ \hline \end{gathered}$	$\begin{gathered} 3.57^{\%} \% \\ 26 \\ \hline \end{gathered}$	$\begin{array}{r} 29.25 \% \\ \hline \quad 213 \\ \hline \end{array}$	$\begin{gathered} 11.40 .6 \\ 8.6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.82 \% \\ \hline 57 \\ \hline \end{gathered}$	$\begin{array}{r} 35.85 \% \\ 261 \\ \hline \end{array}$	$\begin{gathered} 4.94^{\prime \prime 6} \\ 36 \\ \hline \end{gathered}$	$\begin{gathered} 3.29 \% \\ 24 \\ \hline \end{gathered}$	$\begin{array}{r} 3.34 \\ 25 \\ \hline \end{array}$
X	456	$\begin{gathered} 97.6 \% \\ 11 \\ \hline \end{gathered}$	$\begin{array}{r} 7.23 \% \\ \hline \\ \hline \end{array}$	$\begin{array}{r} 17.32 \mathrm{~N} \\ 79 \\ \hline \end{array}$	$\begin{gathered} 6.35^{\circ} \% \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} 8.99^{\prime} \\ +1 \\ \hline \end{gathered}$	$\begin{gathered} 43.644^{(K \prime} \\ 199 \\ \hline \end{gathered}$	$\begin{gathered} 2.633^{\prime .} \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 2.83 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 10.96 i \\ .06 \\ \hline \end{gathered}$
Y	301	$\begin{gathered} 94.4^{\prime \prime} \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} 3.63: \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} 27.24^{\prime \prime \prime} \\ 82 \\ \hline \end{gathered}$	$\begin{gathered} 10.29^{\prime \prime} \\ 31 \\ \hline \end{gathered}$	$\begin{array}{r} 8.97 \\ 27 \\ \hline \end{array}$	$\begin{gathered} 37.87 \% \\ 114 \\ \hline \end{gathered}$	$\begin{array}{r} 2.32 \\ 7 \\ \hline \end{array}$	$\begin{gathered} 3.9 \times 1 \% \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 5.64 \\ 1: \\ \hline \end{gathered}$
Z	2115	$\begin{gathered} 96.0^{\prime \prime \prime} \\ \\ \hline \end{gathered}$	$\begin{gathered} 4.5 .3 " \\ 99 i \\ \hline \end{gathered}$	$\begin{gathered} 19.38 ' 7 \\ +10 \\ \hline \end{gathered}$	$\begin{aligned} & 8.60^{\circ \prime \prime} \\ & -182 \\ & \hline \end{aligned}$	$\begin{gathered} 9.03 \% \\ 191 \\ \hline \end{gathered}$	$\begin{array}{r} 44.39^{\prime \prime} \\ \quad 839 \\ \hline \end{array}$	$\begin{gathered} 5.29 \% \\ 112 \\ \hline \end{gathered}$	$\begin{array}{r} 4.63! \\ 98 \\ \hline \end{array}$	$\begin{array}{r} 4.11^{\prime} \\ 47 \\ \hline \end{array}$
AA	517	$\begin{gathered} 93.5_{\pi}^{\prime 2} \\ 9 \end{gathered}$	$\begin{gathered} 3.29 i \\ 17 \end{gathered}$	$\begin{gathered} 93.40^{\circ \prime} \\ 121 \end{gathered}$	$\begin{gathered} 9.67^{\circ} \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 7.033^{\prime \prime} \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} 43.71_{14}^{\prime \prime} \\ 226 \end{gathered}$	$\begin{gathered} 3.09^{\prime \prime} \\ 10 \end{gathered}$	$\begin{gathered} 5.0 x^{\prime \prime} \\ 26 \end{gathered}$	$3.8 t i^{\prime}$ 20
BB	763	$\begin{gathered} 93.5 \% \\ 1: 3 \\ \hline \end{gathered}$	$\begin{array}{r} 3.3 \%^{\circ} \\ +1 \\ \hline \end{array}$	$\begin{gathered} 23.95 \cdot 1 \\ 1 \times 3 \\ \hline \end{gathered}$	$\begin{array}{r} 8.25^{\prime \prime} \\ 63 \\ \hline \end{array}$	$\begin{gathered} \hline 5.89 \\ 45 \end{gathered}$	$\begin{gathered} 43.11^{\prime \prime}: \\ 329 \\ \hline \end{gathered}$	$\begin{gathered} 3.14: 1 \\ 27 \\ \hline \end{gathered}$	$\begin{gathered} \text { 3. } \mathrm{No} \\ \hline 1 \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 6 .+2 ; \\ 49 \end{gathered}$
CC	79	$\begin{gathered} 97.5 \prime \prime \\ 2 \\ \hline \end{gathered}$	$\begin{array}{r} 3.747 \\ 3 \\ \hline \end{array}$	$\begin{gathered} 5.04 i^{\prime} \mathrm{c} \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 7.69^{\prime} \\ 6 \\ \hline \end{gathered}$	$\begin{array}{r} 12.65: 7 \\ 10 \\ \hline \end{array}$	$\begin{gathered} 38.22^{\prime \prime} . \\ 40 \\ \hline \end{gathered}$	$\begin{array}{r} 3.797 \\ 3 \\ \hline \end{array}$	$\begin{array}{r} 3.74 i \\ 3 \\ \hline \end{array}$	$\begin{gathered} 5.06^{\prime} \\ 4 \\ \hline \end{gathered}$
TOTAL	27336	$\begin{gathered} 97.1^{\prime} ; \\ 4.30 \\ \hline \end{gathered}$	$\begin{aligned} & 5.13 ; \\ & 1404 \\ & \hline \end{aligned}$	$\begin{array}{r} 23.597 \\ 6450 \\ \hline \end{array}$	$\begin{aligned} & 9.24 \% \\ & 2527 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.799^{\prime \prime} \\ & 2131 \\ & \hline \end{aligned}$	$\begin{aligned} & 40.755^{\prime \prime} \\ & 111+1 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.22^{\prime \prime} \\ & 1156 \end{aligned}$	$\begin{aligned} & 4.17 \% \\ & 1140 \end{aligned}$	$\begin{aligned} & 5.07^{\circ} \\ & 13 \times 7 \end{aligned}$

Appendix 3

The following colleges participated in Phase II of the Nor Cal Attrition Study. Those colleges are listed in alphabetical order. The order of the colleges was changed, letters of the alphabet were assigned, and each college's responses to question 17 were listed. In this way the participating colleges receive the attention they deserve, the responses of individual college's incoming freshmen can be shown, and each college's profile of responses remain a secret.

Nor Cal Phase II

Participating Colleges

American River College in Sacramento
Butte College in Butte
Cabrillo College in Aptos
Chabot College in Hayward
City College of San Francisco in San Francisco
College of San Mateo in San Mateo
College of the Sequoias in Visalia
Contra Costa College in Richmond
De Anza College in Cupertino
Diablo Valley College in Pleasant Hills
Foothill College in Los Altos Hills
Laney College in Oakland
Merced College in Merced
Merritt College in Oakland
Monterey Peninsula College in Montcrey
Napa College in Napa
Ohlone College in Fremont
Porterville College in Porterville
San Joaquin Delta College in Stockton
San Jose City College in San Jose
Sierra College in Rochlin
Yuba College in Marysville

Appendix 4

The following colleges participated in Phase III of the Nor Cal Attrition Study. Those colleges are listed in alphabetical order. The order of the colleges was changed, letters of the alphabet were assigned, and each college's responses to question 17 were listed. In this way the participating colleges receive the attention they deserve, the responses of individual college's incoming freshmen can be shown, and each college's profile of responses remain a secret.

Nor Cal Phase III

Participating Colleges

American River College in Sacramento
Barstow College
Cabrillo College in Aptos
Chabot College in Hayward
City College of San Francisco in San Francisco
College of San Mateo in San Mateo
Colloge of the Sequoias in Visalia
Contra Costa College in Richmond
De Anza College in Cupertino
Diablo Valley College in Pleasant Hills
El Centro College in Dallas, Texas
Foothill College in Los Altos Hills
Fullerton College in Fullerton
Los Angeles Valiey College in Van Nuys
Merced College in Merced
Merritt College in Oakland
Monterey Peninsula College in Monterey
Napa College in Napa
Ohlone College in Fremont
Porterville College in Porterville
San Joaquin Delta College in Stockton
San Jose City College in San Jose
Sierra College in Rochlin
Shasta College in Redding
Solano College in Fairfield
Victor Valley College in Victorville
Yuba College in Marysville

UNIVEESITY OF CALIF. LOS ANGELES

DEC $0: 14 \pi$
CLEARINGHOUSE FOR
JUNIOR COLLEGE
INFORMATION

Data thosa fhase 2 -- athal ress of quxemich is

$$
\frac{3.731}{110}
$$

A.:7!

3TM
茂
E $1 \geq 1,3.6$

 2513 C. 5174
 1
8
0
0
0

1

朗

$-\frac{1}{23}$

3,7493_31

 $\frac{0.10 \%}{13}$

$$
\frac{3-73}{42}
$$

5
8.75

 4115 $47,27,-3,321311,55$

3
2
2
5
5
3

$\frac{42,619}{151} \frac{3,471}{5 n}$
$39,7 \times 1012.83 \quad 3.93 \ln 5.63$

$39.3 n \quad 2,348$

$$
\frac{3,537}{18}
$$

क. 56
fito 11.

－

Pab＿Com＿

$\stackrel{y}{*}$

 -3.3%42．90

 $\left\lvert\, \begin{aligned} & 6 \\ & 2 \\ & 8 \\ & 8\end{aligned}\right.$ $\frac{1-2-510}{11-0-1.26}$
 0
0
0 0
0
0
-1
-1
-1
-1
-1

12． 5 4？

$\stackrel{1}{2}$

${ }^{4}$
？
 1 -11
-3
 $+$ $=1$ $\begin{array}{rl}13 & 0060+51 \\ 13 & 0\end{array}$ $1 \cdot 1$范

data from phase 3 .. axisivis of hetestion 17

[^0]: ${ }^{1}$ This function is mentioned more recently in Dr. Amitai Etzioni, Chairman of Columbia University's Department of Sociology, in "The High-Schoolization of Colleges," 1970 mimeograph.

[^1]: ${ }^{2}$ Appreciation is expressed for the consultation time given on this subject by $D r$. Mariscuilo and Dr. Woodson of the University of California at Berkeley.

