DOCUNENT RESUAE

ED 097 899 IR-001 267

AUTHOR Peelle, Boward A.

TITLE The Computer "Glass Box": Teaching With A Programming
Language.

INSTITUTION Massachusetts Univ., Amherst. School of Education.

PUB DATE May 74

NOTE 25p.; Paper presenteé at the Shared Educational

Computer Systems (SECOS) Conference (New Paltz, New
York, May 1974)

EDRS PRICE MF-$0.75 HC-$1.85 PLUS POSTAGE

DESCRIPTORS Computer Assisted Instruction; *Computer Programs;
*Concept Formation; Learning Processes; Programing
Languages

IDENTIFIERS APL; A Programing Language; Computer Glass Box

ABSTRACT

Using A Programing Language (APL), a "computer glass
.box" was designed to stimulate students to think about selected
concepts as well as to elucidate and reveal understanding. This
approach is pedagogically suitable for a wide range of educational
lavels--from elementary school children to university graduate
students. Using APL computer programs, students can proceed to learn
during several complementary activities. Specifically, they can:
examine, analyze, predict, execute, scrutinize, experiment, modify,
generalize, invent, and discuss. The ideal APL is also expository; it
#gpeaks®™ to its reader, explicating concepts and procedures in
concrete terms. (WCH)

THE COMPUTER "GLASS BOX":

TEACHING

WITH

A PROGRAMMING LANGUAGE

By

Howard A. Peelle
University of Massachuseits

May 1974

US DEPARYMENTOF MEALTNM
EDUCATION A WELFARE
NATIONAL INSTITUTE OF

EDUCATION
et ean at s NREbrn
teen Coe o ke E LI E RN
- e W m anNM AT N, kN
L " R SO IRNE TEL SR VEN
L N T Y
R S A A T
4 R L A S L

THE COMPUTER "GLASS BOX":
TEACHING
WITH

A PROGRAMMING LANGUAGE

Howard A. Peelle
University of Massachusetts

Introduction

The COMPUTER GLASS BOX is a bold new approach to teaching with
A Programming gpnguage.l In this approach, short and quickly comprehensible
computer programs are given to students for their direct viewing. .Each
program embodies a concept, a procedure, or a relationship and is
written as simply and clearly as possibie. The inner workings of such
a program are visible and, nence, become the basis for learning.

This approach utilizes a computer program more as a "glass box"
than a black box. The program's formal definition -- expressed in the
explicit terms of a programming language -- serves to elucidate and
reveal understanding. By observing the structure of a program as well

as its behavior, key concepts may become transparent to the student.

lé”gpogramming‘kpnguage (abbreviated APL) is a new multi-purpose
computer programming language developed by Kenneth Iverson of IBM.
Originally conceived as a unifying mathematical notation, APL has since
been used successfully in fields such as business, scientific research

and education.

Related Research

The glass box approach represents a synthesis of ideas put forth
by three other researchers. MIT's Seymour Papert has recommended that
children study procedures actively by using a computer programming
language (called LOGO) as a conceptual framework [1]. Kenneth Iverson
of IBM has persistently stressed simplicity and gemerality in using
APL to expose fundamentals in a variety of mathematical and scientific
disciplines [2]. IBM's Paul Berry first advocated open use of APL as

a strategy for teaching in what he called the "functional approach" [3].

Characteristics of the COMPUTER GLASS BOX Approach

In contrast to conventional computer-assisted instruction (CAI),
the glass box approach allows the student significant control over
his own learning processes. This control is achieved through the
activity of programming. Programs can be entered independently by
the student via a computer terminal, and their use requires no other
pre-stored curriculum material--as do most CAI applications. Indeed,
making the full power of the computer accessible to the learmer is
180° from the kind of CAI characterized by programmed instruction, tu-
torial, or drill-and-test sequences.

This approach is pedagogically suitable for a wide range of educatiomal
levels--from elementary school fhildren to university graduate students.
Especially for children who have been held powerless in lock-step edu-
cational systems, use of the computer in this way opens up new worlds

of learning--active learning, learning with power.

Using glass box computer programs, students can proceed to learn

during several complementary activities. Specifically, they can:
examine the program's definition (intuitively)
analvze the program’'s definition (logically)
predict the outcomes of the program
execute the program on a computer
scrutinize the program's behavior

experiment with different applications of the progra

modify or expand the prégram

generalize the program

invent new or related programs, and

discuss implications with teachers and peers.

These student-initiated, student-respensible, success~oriented activities
differ dramatically from frantic hand-waving about abstract concepts

often seen in classrooms.

The ideal glass box program is also expository--it ‘speaks’' to its
reader, explicating concepts and procedures in concrete terms. Desirable
characteristics »f such a program are:

Simplicity

Comprehensibility

Flexibility

Generality

Elegance

Provocative Implications

By "simplicity" I mean that a single idea of modest scope is to be taught
using a brief program (about 10 lines of APL coding, taking less than 5
minutes to type). By "comprehensibility", I mean using clear, readable
commands (usually one per line) with well-chosen mmemonic identifiers.
By "flexibility" I mean a program design whiéh is easily modified and
which can be used with other programs in modular structuring (nested sub-
programs with explicit resultants). By "generality" I mean developirg
mathematical models which can extend to a class of cases. By "elegance"
1 mean choosing expressions which strike one's aesthetic chords. And,
finally, a glass box program is "provocative' when its implications
suggest interesting follow-up discussions.

To the extent that chese characteristics foster insight and learning,

a glass box program is, itself, a pedagogical agent.

Examples of Glass Box Programs

To ifllustrate this approach, some sample glass box APL programs
are described below, with accompanying suggestions for extending their
use in teaching-learning settings. The sample programs are chosen from
special topics in the following areas:

Computer Assisted Instfuction
Psychology
Cybernetics

Computer Art

COMPUTER - ASSISTED INSTRUCT1ON

In order to emphasize the contrast with conventional uses of computers
for teaching, the first glass box program {11ustrated is~from the area of
computer-assisted i{nstruction. Instead of concealing the CAI program --

- usually designed to control the child's behavior -- we show him the

mechanism itself so that he may see how ’* works and ultimately control

“the computer.

Consider the APL program below which exposes the essence of drill-
and-practice in multiplication skills. In drill-and-practice, typically,
a student is given a series of problems to solve, 1s asked for his
answers, and the arswers are judged for correctness, etc. Indeed, the
computer is an excellent vehicle for administering drill-and-practice,

but a programming language can also describe this process clearly.

v DRILL

(11 NEWPROBLEN:

(21 'muLTIPLY'

[3] [O+PIRST?20

(4] [SECOND+?20

(51 ENTER:ANSWER<D

(6) +NEWFROBLEM IF ANSWER=FIRST»SECOND
(7] 'NOPE. TRY AGAIN.'

(8] +ENTER

v

The DRILL program begins with a NEWPROBLEM and prints 'MULTIPLY', a
simplified message telling the student what to do with the two numbers
that will follow. The FIRST number is an integer randomly chosen between
1 and 20, and the SECOND number likewise.

The student may ENTER his ANSWER which is then judged for correctness
by the program. IF the ANSWER equals the FIRST number times the
SECOND number, a NEWPROBLEM is given; otherwise (if ANSWER is wrong)
'NOPE. TRY AGAIN.' is printed, and the student may ENTER his ancwer
again.

NOTE:

IF is a sub-program used to facilitate the reading of branching

éomnands. Its definition is:

V BRANCH<«LINE IF CONDITION
(1] BRANCH«CONDITION/LINE

v

Its syntax is = (line number) IF (condition)

It means that IF the condition is true (evaluates to 1), the
program branches to the line number (or line label) given; IF
the condition is false (evaluates to 0), the program branches

to the next line.

*

6.5

In order to use the DRILL program, its name is typed. The following

is a sample: PRILL
MULTIPLY
19
2
O:
38
MULTIPLY
16
l1e
0:
248

ROPE. TRY AGAIN.

n:
288
MULTIPLY
]
12
ok
96
MULTIPLY
6
Q
0:
12
MULTIPLY
14
18

Students netice immediately that this program has a flaw. It
does not stop! Scrutinizing the program's definition reveals that after
getting a multiplication problem correct, one always gets a new problem -~
ad infinitum. Also, after getting a problem wrong, the student must
answer that same problem again ~-- another potentially endless loop.
The student's first task, then, might.be to build in an option to stop
the program at will.
DRILL is, of course, only a prototype program. With other modifications
of one's choosing, DRILL may become considerably more sophisticated.

Possible extensions include: (a) displaying pictorial feedback -- like

LA A 2 X

a "smiley face" for positive reinforcement «» 0 0 ¢ or a "grouchy
e V *
e _/ »
L2 2 X X]
[A X X K
face" o = x » instead of "NOPE. TRY AGAIN.', (b) presenting a pre-
» & "
e /T\ o
thete

specified total number of problems, (c) limiting the number of allowable
mistakes on individual problems (or all problems), (d) generalizing the
multiplicands to create a more flexible range of problems (including
negative numbers, decimals, etc.), (e) gathering performance data, (f)
using performance criteria to make diagnoses, (g) automatically adapting
level of difficulty based on diagnoses, (h) adding personalized instruc-
tions, and (1) building in timing components, jump-ahead options and

hints.

PSYCHOLOGY

With compuier programs suitable for viewing, students may learn

some fundamentals of psychology. In studying behavior, for example,

consider the following APL program1 which models -- aldbeit crudely --

an emotional reaction.

Vv TEMPER
TEMPER is a program wvhich will,

(1] EMOTION«O
(2] NEW : EMOTITOR«Q+EMOTION2 under certain conditions,

(3] +MAD IF ENOTIOR>10
'get mad at you'.
(] +NEW 5 7

[(S] MAD:'se!2iea?iy?

The program begins with zero EMOTION and then encounters a series
of numbers, representing 'events' in the life of the program. A low
number is low in emotional significence; whereas high numbers are highly

emotion-producing.

Each time & number is entered, the program generates a NEW EMOTION
based on a simple mathematical model: EMOTION becomes the number just
entered plus one half of the previous EMOTION. (In the course of human
events, this might be akin to the ameliorating effect of time on emotional

burdens, 1.e. 'sleeping cn your troubles'.)

This process continues until a test condition--the "threshold” for
mad behavior--is exceeded. The program goes MAD if EMOTION ever becomes
greater than 10. (%**121%%21} {s the computer's programmed vernacular.)

1This program is similar to one written in a simplified FORTRAN

by John Loehlin in Computer Models of Personality, Random House, NY, 1968.

To use the program, the child types its name (TEMPFR) and then

enters a sequence of numbers. For example: TEMPER
Q:
Where a 4 is like "stubbing "
your toe",
6 is like "losing your O:
wallet,” and 6
8 is like "missing the 3:
last bus." *
8
This sequence produced MAD behavior. eel?lae?ll

But, suppose one tries entering the same numbers in a different order:

TENPER
0:
8
a:
6
Jds
“
O:

Here, the program does not display MAD: ‘'#*[21%#211' Apparently, (for
this model) the sequence 8 6 &4 is "tolerable," whereas the previous
seguence 4 6 8 clearly was not tolerable!

Again, this suggests an analogy with human behavio:r: experiencing
the most emotion-packed events first and then tapering off may be more

tolerable than the reverse.

Other variations of input also suggest interpretation in terms of
human psychology. Sandwiching a low-emotion event between two high-
emotion events, say 7 2 7, can make the total sequence tolerable; by

contrast, the events 7 7 2 and 2 7 7 produce mad behavior.

10

The mathematics underlying this TEMPER model can be exposed quickly
and naturally. For example, after some experimentation with the program,

one might wonder: How many 58 can the program take before it 'blows

its top?'
TEMPER
0:
5
Q:
)
. U
S
U:
)
O:
S
U:
5
Q:

A sequence of 58 builds up EMOTION to higher and higher values, but never
reaches 10. This process parallels the well-known geometric series

1 "‘z' -,‘; ‘é‘ T'; :5!5 «++ the sum of which converges to 2.

Exploring in this way, a child may gain some insight into the nature

of infinite series in an active and interesting (at least less abstract)

gsetting.

11

Some simple modifications of the TEMPER program students might make
are to: (a) change the threshold, e.g. from 10 to 25 for higher tolerance,
or to 725 (a random number) for unpredictable behavior; (b) modify the
model, e.g. from EMOTION & 2 to EMOTION + 3 to express stronger *for-
getting'; (c) adapt the program for use by others, e.g. inserting
conversational statements such as "ENTER NUMBERS FROM 1 TO 9' or even
"CAUTION! THIS PROGRAM MAY BECOME EMOTIONAL...', and (d) make the
program dynamic, e.g. automatically resetting EMOTION to O after an
emotional catharthis.

Possible extensions of TEMPER include: (a) writing related programs,
such as a version with multiple emotional dimensions like ANGER, FEAR,
and LOVE, and (b' writing companion programs, such as two TEMPER-11ike
programs which interact with each other so that one's outrut is the

other's input.

13

CYBERNETICS

In the area of cybernetics, students can be introduced to some
sophisticated ideas by using simple computer programs. Scene analysis,
for example, is an important part of robotics research. In designing
vision machines, it is important to know what types of scenes can be

computationally distinguished. Consider the two scenes below:

SCENES
I
*

*
»
PTIIIITY
.
»
»
tesesRRee
.
TR eNREES
» .
* »
. "

(L A2 22222 2]

(2 2 L 8 22 XX

One scene is "connected"; the other is not connected. Note that the

same line segments comprise the two scenes, but that they are in different

positions.

14

Suppose one of these two SCENES {s PICKed at random. Call it
MYSTERY.
MYSTERY « PICK SCBEES
Further suppose that you are permitted to PEEK at small portions of the
MYSTERY scene -- called "microscenes"” -~ but you are not told where the

microscenes came from. For example,

PEEK MYSTERY

mane PEEKing at MYSTERY is like
* using a flashlight to illum-
d 1
PEEK MYSTERY ipate small unidentifiable
places on a much larger un-

known scene.
[X X X]

PEEK MYSTERY

LA A

After a period of probing, the question arises: Can you determine
which scene it is that you are looking ac?l (The answer is postponed so

that the reader may ponder this question.)

1This question is treated as a theorem by Minsky and Papert in

their book Perceptrons, MIT Press, 1970.

15

The APL programs which facilitate exploration of this question in

scene analysis are simple indeed:

V MYSTERY+PICK SCENES
{1] MYSTERY+SCENES[?2;;]

¢ MICROSCENE«PEEK SCERE
[1] MICROSCERE«SCENE[(14)+(?10):(14)¢(?10)]

This program will PICK one of 2
SCENES at random for the result
called MYSTERY.

This program will PEERK at some
two-dimensional SCENE and produce

a random 4 by & portion for the
result called MICROSCENE.

The enterprising student might elect to automate the production of

MICROSCENEs.

AUTOPEEK

LR A R 4

LA

»

*ew

v AUTOPEEK

{11 v

(2] PEEK MYSTERY
£31 '

[u] +1

16

Soon it should become clear that these two SCENES cannot be distinguished
on the basis of random microscenes alone. (Of course, if one could trace
sequentially through a scene, its "connectedness" or “non-connectedness"
could be determined easily.)

Pessible extensions of this excursion into scene analysis include
studying percep:rons1 and related questions about "gpatially local

evidence." For example, if all the possible microscenes look like these:

~ ‘ 000
omon o ool fom 00D
0ooo 00D 000 0o 000
anon 000 0on

(plus geometric translations of these)

Can you determine the type of scene from which they were drawn?

(This one is left for the reader.)

lPercepttona are theoretical machines which can be trained to detect
features of a scene by computations in a layered network of logical elements.

COMPUTER ART

The world of computer art can be opened to students through a few

simple APL programs. Beginning with a foray into automated design,

they can proceed to engage matters of aesthetic judgement and artistic

technique.

For example, consider the following DESIGN program.

O PICTURE«SIZE DESIGN COLORS
(1] ROWMARY+p COLORS
(2] PICTURE«COLORS(?SIZEpRONMANY)

1

DESIGN uses some COLORS (symbols on the keyboard) and some SIZE (two
dimensions of a matrix) to produce a PICTURE.

A simple program like DESIGN goes a long way with children. They

seem never to tire of it, for it can produce quite a variety of desigus:

40 20 DESIGN ' “~-ll-_ "'

17

18

10 20 DESIGN ‘'//4eT\\!

874V / 7AV\T\V\U\\@/\\

V/ORVAR/VN/AN///7A7\V

\VV///9@/\@\\/\\@®\?\

\‘TAL VANYZAAYZAYZA LN A}

AVN\\GVA\T\/V/AV/\\\\

/ee//40Ve///\L/e/VLe0

178\7/\V/V\/\004A /¥ \\ _ 10 20 DES:zGy * ~
TVo\\e\eV/\AVA®AAAL/

\/e\TV7A\@V\//\@\TA\

vea\\\V7\a07\4\\\4\2 ~ ~ ~ o~ o~

10 20 DESIGN ' O0 0 © o , !

0 oo e O
00 0 00,0 o O
0 0 0 0 o0e 00 .,

° Qee O ee(o
eo 0000 © 110
o o . 00O
Qe O© 0 0O ,0 0
e O 0o 0O o 10 20 DESIGN ‘*__~ =
0. o o
.‘ [] * * * o.

« U ~UUUdusUdUw g
UOUU U dulde ssUDe
»UULIL «U0D«0s Uis0U
«0 ULOUU*D ULU+0U
L +U00w Ul OU«000
eeeJee jUeoiJe J0«000
o sxsns]]s =000
sUsQUSO0e0s0e0 OeDw
«] «0JU0« UJd«0 «3000
UULBUOUNU«0= 30«0000

19

While these "computer hieroglyphics" may have dubious aesfhetic
appeal, one can imagine -- instead of these typed symbols -~ randomly
generated swatches of color, perhaps displayed on a television-like screen.

Extensions of this approach to computer art include: (a) automating
DESICGN, (b) weighting the selection of COLORS, (c) asking for human
judgement (Do you like it or not?) in order to adjust weights on COLORS
or other aesthetic factors, and (c) piecing together several computer-

generated PICTUREs into a montage.

20

Another approach to computer art involves viewing programs which
simulate artistic technique. For example, consider the program MONDRIAN
below (named after the Dutch abstract painter).

v MONDRIAN
(11 CANVAS+30 50p' *
(21 DAB:COLOR«"'0{1»'[?3]
fal SIZE«+3 ST ?6 10
[u] PICK:PLACE+?30 50-SIZE
(5] OVERLAP~¢/¢/CANVAS[PLAC£[1IQ\SIZE[1]:PLACE[2]¢\SIZE[?]1" '
(6} +PICK IF OVERLAP>?
{71 CANVAST PLACEC11e1SIZET1):PLACE(2)+\SIZF[211+COLOR
- «DAB IFP(PFRCERT' 'ON CANVAS)>67
(9] CANVAS

v

MONDRIAN begins with a blank canvas (arbitrarily set at 30 by 50). Then
the program chooses a random COLOR, SIZE and PLACE to DAB.

OVERLAP measures the extent of overlap with DABs already on the CANVAS.

IF OVERLAP is greater than 2, then it will PICK another PLACE. (This
is tantamount to finding relatively open space on the CANVAS).

IF, however, OVERLAP is not too large, the COLOR is put on the CANVAS
at the PLACE and in the SIZE selected.

The program continues to DAB IF the PERCENT of blank spaces ON the CANVAS

1s greater than 67. In other words, as soon as it is 1/3 filled up,
CANVAS is displayed.

Note: MONDRIAN uses two simple sub-programs (mostly for readability).
They are PERCENT and ON: Vv HUNDPEDTHS«PERCENT N

(1] HURDREDTHS«L0,5¢100~N
Vv DENSITY«SYMBOL ON PICTURE v

(1] DENSITY*(4/0/SYMBOL=PICTURE)G('/OPIC?URE)

Now, MONDRIAN at work:

21

MOBDRIAN
RREARBRRERNS
' ITET XTI 2T 3000
0000000000 tREBERNERERS 00gao
0000000000 seeentene 00000 0000a
Q000000000 00000
JaoJla 00000
0003000 0u0u0a0
Q0uaoy 0000a0u
0000000 0000u00 JuJaoono
Q000000 0000000 00a00uan
ooooocco UDON ao0uaon 00000000
auboy aooooan 10006000
CUODUOUUD UOU0U eeess (0000000
seeee 0UUOOOOUD sseee 0O000OGOD
tennw sje/iisinnisihe I11 2
Iy XTI
»» oo o(JUOUD sensne
s o +e«JUUOO ' TITT X
»eee 3000 XTI Y 2 22T Y 3T
tRRBRBES T
SRANERRW XTI TITI T LY
TIYTIYYY XTI
T T XTI Y TXTTIY
ctee 0000000000 weassssatsne I
seves OOCO0000000 shene I XX 2
Q000000000 XX XY XTI X T2

Possible extensions of this kind of program include: (a) simulating
and combining additional artistic techniques (those that can be operational-
ized), (b) computing abstract measures of differemce between random "paintings"
produced by the computer, (c) converging to minimal differences from a pre~
viously specified "ideal" painting, and (d) developing a model for aesthetic

judgment -- perhaps one which "evolves.”

22

Conclusion

These are but a few APL "glass box" programs designed to stimulate
students to think about selected concepts. Each of the sample programs
shown here can be used as is and, of course, can be extended in a myriad
of directions. Other topics well-suited for this pedagogical approach
include some dravn from linguistics, statistics, mathematics, engineering,
ecology, and physical sciences.

The challenge to educators, then, is to identify such topics suitable
for embodiment as glass box programs, to search out the kernel concepts
to be taught, and to lead students to better understandings of those

concepts using a programming language.

23

References

{1] Papert, S. "Teaching Children Thinking", M.I.T. LOGO Memo #2, Oct. 1971.
{2] 1Iverson, K.E. "APL in Exposition", IBM Tech. Report #320-3010, Jan. 1972.

(3] Berry, P. et.al. "APL and Insight: The Use of Programs to Represent
. Concepts in Teaching", IBM Tech. Report #320-3020, March 1973.

