```
ED 096 17%9
S2 018479
myTlE
    Multi-Sensory Aids in the Teaching of Mathematics.
    National Council of Teachers of Mathematics, Yearbook
    AB [1945].'.
INSTITUTIUN Nationaf Council of Teachers of Mathematics, Inc.,
    Washington, D:C.
PUB DATE
4 5
NOTF
470p, %
AVAILABLE FROM National Council Uf Teachers of Mathematics,'Inc..
1906 Association Drive. Reston, Virginia
EDRS PRICE
DESCRIPTORS
MF-$0.75 HC Not Available from EDRS. PLUS POSTAGE
*Audiovisual Aids; Exhibits; Instructional Films;
*Manipulative Materials; Mathematical Models:
*Mathematics Education; *Multimedia Instruction;
Multisensory Learning; Reference Books; Slides; Tape
Recorders; Visual Aids; #yearbooks
```


ABSTRACT

```
The chapters in this yearbook describe some of the experiences the individual authors have had in making and/or using multisensory aids in wathematics instruction. \(A\) number of different aids are noted to indicafe the range of possibilities. Three more chapters set the stage for the remainder of the book which is divided into the following sections: drawing and design; demonstrations and exhibits; models and devices; instruments and tools; materials for constructinn of models and devices; and slides, filns. three-dimensional projectior, and equipment. In the appendix a short description of individual models and devices is given by content areas. (LS)
```

The National Council of Teachers of Mathematics \& \because EIGHTEENTH YEARBOOK xi,

1

Multi-Sensory Aids

 in, the
Teaching of Mathematics

COMPILED BY

THE COMMITTER ON MULAISENSORY AIDS
*. OF THE NATIONAL COUNCIL. OF TEACHERS OF MATHEMATICS

US DEPARIMENTOFHEALTH EDUCATION B WELFARE NATHCNALINSTITUTE OF EDUCATION

$$
\text { horded } A=
$$

an',

> BL:REAU OF PUBLICATIONS IFIC:HERS COLLEGE, COLUMBIA UNIVERSITY NEW YORK, 1945

Copyright, 1945, by The National Councid of Teachers of Mathematics, Inc.

Cortespondence relating to and orders for arditionsal copies of the Eighteenth Yearbook and the earties Yearbooks should be aldressed to

National Conncil of Teachers of Mathematics

le0l Sixtemih Street, Now.
Washington 6. D. (i.

Sesond Printing, April, 1946 Third Printing. September, 1947
Fourth Printing, August, :958

1

EDITOR'S PRFFACE

This is the eighteenth of the series of Yearbooks started in 1926 by The National Counc:' of Teachers of Mathematics. The titles. of the preceding Yearbooks ane as follows:

1. A Survey of Progress in the Past Twenty-Five Years.

- 2. Curriculum Problems in 'Coaching Mathematics.

3. Selected Topics in the Teaching of Ma hematics.
4. Significant Changes and Trends in the Teaching of Mathematics

Throughout the World since 1910.
5. The Teaching of Geometry.
6. Madhematics in Modern Life.
7. The Teaching of Algebra.
8_{4} The Teaching of Mathematics in the Secondary School.
9. Relational and Functonal Thinking in Mathenatics.
10. The Teaching of Aisibmetic.
11. The Place of Mathematics in Modern Education.
12. Approximate Computation.
13. The Nature of Proof.
14. The Training of Mathematics Teachers.
15. The Place of Mathematics in Secondary Education.
16. Arithmetic in General Eduration.
17. A Source Book of Mathenatical Applications.

It is unfortunate that this Yearbook is late in appearing. but circumstances over which we have had no control made it impossible to get the Yearbook out on time. We hope that the quality of the material and the nature of the articles will make up for the thateness in the appearance of the volume.

Because of possible charges in price in these uncertain times. all prices of materials referred to in this book should be catefully verified before such materials are ordered.

We do not clam that, this Yeatoook contains all the possible - teaching aids that may have been suggested, but we hope that many teachers will fiad it the soutce of great help and inspiration.

As Fiditor I wish wexpres my personal apprectation to Professor Hildebandt and his committee, who have done the main work for this volume, and to The Mational conncil of Teachers of Mathematios tor their contimued suppont and adsice.
the national council of tedchers of mathemailcs

OFFICERS
President--F. L. Wren, George Meabody College, Nashville, Tenn,
First Vice President-Euwin G. Olds, Cancegie Institute of Technology, Pittsburgh, Pa.
Second Vice.President--Edith Woolsey, Sanford Junior High School, Minneapolis Minn.
Secretary-Truasurer-Eidwin W. Schrenar, Western Illinois State Teachers College, Macomb, Ill.
additional menhers on the boakd of directors

Gne Year	$\left\{\begin{array}{l}\text { A. R. Congdon, Lincoln, Neb. } 1945 \\ \text { Ina E. Holroyd, Kansas State College, Manhattan, Kin. } 1945 \\ \text { A. Brown Mnintr, Cleveland, Ohio } 1945\end{array}\right.$
Two Years	$\left\{\begin{array}{l}\text { Hilnegarin Bege, Intermediate School, Detroit, Mich. } 1946 \\ \text { H, W. Charlksworth, East High School, Denver, Colo. } 1946 \\ \text { Veryi, Schilt, Public Schools, Divisions 1.9, Washington, D.c. } 1946\end{array}\right.$
Ihree Years	

EDITORIAL COMMITTER
Editar-in-Chief and Business . Yanager of The Mathematics Teacher and the Year. 1 book-William David Reeve, Teachers College, Columbia University, New Yurk City. Associate Editors-Mra Sanford, State Normal School, Oncenta. N. Y.; W. S. Staliauch, School of Commetce, New York University, New York City.

The National Council of Teachers of Mathematics is a national organization of mathematics teachers whose purpose is to:

1. Grate and maintain interest in the teaching of mathematics.
2. Keen the values of mathematics before the educational world.
3. Help the inexperieniced teacher to vecome a good teacher.
4. Holp teachers in service to become better teachers.
5. Raise the general level-o: instruction in mathematios.

Anyone interested in mathematios is eligible to membership in the National Council upon payment of the ammal dues of \$2.0., The dues include suldxiption to the ulficial journal of the Council (The Mathematics Teacher). Correspmotence should be aldiessel to The Mathematics Teacher, 52 West 120th Street, New York 27, N. Y.

Key, George W., 1100 N. Elwood Ave., Peoria, Ill.
Kidd, Kenneth P., Peabody Teachers Collcege, Nashville, Temn.
Kitchens, Nell, Hickman High School, Columbia, Mo.
Krieger, florence;' High School, Rapid City, S. D.
Kruse, W. F., Bell and Howell Cumpany, Chicago, III.
Kugler, Herry. L., \mid E. Willow Grove Ave., Philadelphia, la.
Lanf, Rumi, State Teachers College, - Maryville, Mo.
-Large, Fmata M., Juniur High School, Aberdeen, S. D.
'ekts, Luella E., Senior High School, Winona, Minn.
Leonida, Sister M., 415 W . Montoe St. Decatur, Ind.
Lighthail, Lora, Junior High School, Fort Dodge, Iowa.
Lloyd, Danifl B., Theodore Roosevelt High School, Washington, D. C.
Locke, L. Liliand (deceased). Formerly at Brooklyn College, Brooklyn, \mathbf{N}. Y.
L.ythe, Edith, High School, Skokie, : ill.

Mainard, Pompey, Newark College of Engineering, Newark, N. J.
Mallory. Virgil S., State Teachers College, Upper. Montclair, N. J.
McCamman, Carol V., McKinley High School, Washington, D. C.
Mc.Cluskey, Mary O., Senior High School, Fort Dodge, Iowa.
Mfserve, Bruce E., 1625 Forest Ave., Portland, Me.
Messner, Madeline D., 400 Chandlet Ave., Rodselle, N. J.
Miller, A. Brown, 9295 Avalon Rd., Shaker Heights, Ohio.
Mourf, Whithel... Linivetsty of Louis. ville, I.quisville, Ky.
Morris, Duris F. N., 101 W. 72nd St., New York. N. Y.
Nichomson. G. H., Universi, y of Vermon. Burlington, Vt.
Nickif. Geokgr: H. Senior High School. Keokuk, Iowa

Nielsen, Mildred R., 516 Seventh St., Ames, Iowa.
Planney, R: J., High School, Newton, Iowa.
Pori.ock, Saul, 158 N. Lake St., Los Angeles, Cr_{r} :
Potter, Mary, City Hall, Racine, Wis.
Raman, Btanche, Lanphier Kigh School, 'Springfield, III.
Ramsdell, F. A., Worcester Filmi Corporation, Worcester, Mass.
Richards, F. S., 2810 Taylor Ave., Ral. cine, Wis.
Robinson, Howard 'E., High School, Madison, Ohio.
Rogers, Hokjense, Winthrop College Training School, Rock Hill, S. C.
Rogeus, Mary C., Roosevell Junior High school, Westield, N. J.
Rohde, Florence, Public Schools, Lu. verne, Minn.
Rossopf, M. F., John Burroughs Sclirol. Clayton, Mo.
Rule, John T., Massachuselts Institute of Technology, Cambridge, Mass.
Sande:s, Paul J., 111. Oakland Rd., Maplewood, N. J.
Savage, Adah, Public Schools, Guif. rd, Me:
Schaff, William L., Brcoklyí College, Brooklyn, N. Y.
Scott, Raymond R., william C. Bagley High School, Tahlequah, Okla. ${ }^{\text {. }}$
Schuler, Eucebia, High School, Ameri. cus, Ga .
Schuld, E. G., Wisconsin High School, Madison, Wis.
Schuer, Veryl, Wilson Teachers College. ' Washington, D. C.
Seybold, Anicy, High School, Monticello, III.

Shenton, Walter F.. The American University, Washington, D. C.
Shrady, C. D., Edwin Could Foundation for Chitdren, New iork, N. Y.
Sifton, Edith, Public Schools, Seattle, Wash.
Bimons, Lao G., Professor Fmeritus, Huncer College, New York, N. Y.

Sttomer, Hakry, New Ulecht High Ulisvik, B. R., Wiscomsin High School, School, Brooklyn, N. Y, Madison, Wis.
Smith, arthor F. Jf., High School, Van fengen, H., Iowa State Teachers Col. Plainfield, N. J.
Smith, lemard L., High School, Belv. derer N. J.
Smbth, Whanm P., High School, Me. machen, N. J.
Spozfr, Hfrbert f., University Elemen. taty School, Iowa City, Iowa.
Sonfow, dewn B., Lincoln School, Font Doulge, lowa.
Tablor, Gordon M., Vemon L. Dave Junior High School, East Orange, N. J.

Tennyson, J. Anna, Langley Junior High School, W'ashington, D. C.
Tterky, Hfartata, Uuiversity Migh School, Uhbina, ill.
Tinghy, F. M., 221 V. Culer dye., Oak Park, III.
Tuti.y, Jean, High School, Stockton, Cal. Trimp, Lanern, High Shhool. West Frank. fuit, Ill.
lege, Cettar Falls, lowa.
Watson, frora Mae, Hardifig High School, Charlotte, N.C.
Webster, Mary L., 838 Wilson Ave., Co. lumbus, Ohio.

* Wermouth, Entel, Public Schools, W'ells, Me.
Wimpman, E. A., Carnegie Instituie of Technology, Pittsburgh, Pa.
Winnek, Douglas f., 106 Haven Ave., Mount Vernon, N. Y.
Wonds, Fidrh, Okolona High School, L.ouisville, Ky:

Wyman, Carl E., Audubon Junior High School, Cleveland, Ohio.
Yodrr, L. G., Yoder Instruments, East Palestine, Ohio.
Yoeng. Edon M., Junior High School. Bloomfield, N. J.
Young, Katherinf: S., Wallace Junior High School, W'aterloo, lowa.

INTRODUCTION

Teaching aids in mathematics are not new. The last hundred years have brought us the telephone, the phonograph, the radio, television, the silent and sound motion picture, the stereoscope, the threedinmensional colored pictures on lenticulatec. film and the Polaroid taree-dimensional pictures, and motion pictures in color..These inventions and developments are being used in many forms in out schools at the present time. It is only natural that mathematics teachers, too, consider the possible adaptation of these materials to the improvement of instruction in their field.

The eighteenth annual convention of the National Council of Teachers of Mathematics held in Chicago on February 19, 1937 revealed a number of the uses to which mathematics teachers are putting these recent developments. For example, its honorary president, Professor H. E. Slaught of the University of Chicago, could not be present at the dinner; but his greeting ${ }^{1}$ to the mem. bers had been recorded and was reproduced over the loud-speake: system of the banquet room. Some day we may have more recording from others who have contributed so much to the teaching and the development of mathematics. One of the groups at the discussion luncheon, under the leadership of Miss Mary A. Potter, prepared a list of materials on the topic "The Kinds of Pictures We Use in Teaching Mathematics' and this list was made available later in mimeographed form. At this convention, recent silent and sound filins closely related to mathematics were shown, and a large exhibit of charts, graphs, models, and other materials perepared by teachers in the Chicago schools indicated further worthwhile aids. It was apparent that mathematics teaching is being carried on with various kinds of materials: that we learn by seeing and hearing as well as by doing.

The Visual Aids Committee of the National Council of

[^0]

Teachers' of Mathematics, under the chaitmanship of Professor E. R. Bi eslich, was later appointed ind this committee publicized further suggestions and improvements. As the field continued to grow, the suggestion was made that a report be prepared on the work in multi-sensory aids carried on by mathematics teachers throughout the councry. The Board of a irectors of the National Council, at its amnual convention in Atlantic City, N. J., in 1941, voted that the report be prepared as a Yearbook of the Council.

The present report does not claim to be an exhaustive study of all the aids which mathematics teachers have used and can use to good advantage. The individual articles describe some of the experiences which their authors have met and indicate as large a number of different aids as fossible. It is hoped that the report will be followed in a few years by one showing improvements and changes which have kept pace with the progress of such aids in the world : bout us.

Many of these articles are the results of papers and studies reported at conventions of the National Council held at Baton Rouge, Atlantic City, Boston, Bethlehem, San Francisco, and Denver. Discussions devoted to multi-sensory aids were held at most of these meetings; they have been the impetuis for many new suggestions and experimenfis.

It is not possible to indicate all the members and friends of the National Council who have contributed materials, references, and suggestions. A list is given at the close of this Introduction. To them and others whose names, may have been omitted the Com-' in :ttee wishes to express its deepest gratitude for the help given. It is most gratifying to note that when mathennatics teachers pool their resources, much can be accomplished. If this Yearbook were inscribed with a dedication, it would be to those teachers who have done and are doing constructive work for the improvement of mathematics teaching.

It is fitting that we express our appreciation to one teacher in particular: Miss Mary A. Potter, prefent of the National Council from 1940 to 1942. During her years in office, Miss Potter rendered many services to this Committee and arranged programs on multisensory aids at the sereral conerntions of the Council. In addition to her many duties and responsibilities asapresident, she gave un-

Introduction,

hesitatingly of her time, advice, and assistance to problems relating to the development of this Yearbook.

We wish also to voice our thanks to every member of the Board of Directors, who, during the years of the preparation of this Yearbook, have recommended the preparation and publication of this report. To Professor W. D. Reeve, with the enviable record of seventeen yearbooks for the National Council to his credit, any words of appreciation are inadequate for the interest, help, and cooperation he has so generously given.

E. H. C. H.

the national council of teachers of mathematics

E. H. C. Indebrandt, Chaimal, Nurthwestern Eniversity, Evanston, Illinois

Katre Bfll, Lewis and Clark High School, Spokane, Washington
E. R. Breslich, Professor Emeritus, University of Chicago, Chicago, Illinois

Vera Sanford, State Normal School, Oneonti, . Wew York
E. W. Schremer, State Teachers College. Macomb, Illinois

Ruth W. Stokfs, Winthrop College, Rock Hill, South Caulina
Henry W. Syer, Culver Military Academy, Culver, Indiana (Oy leave, United States Armed Forces)
A. H. Whetrer, High School, Worcester, Massachusents
R. C. Yatrs, United States Militiry Academy, West Pehint, New York

Mary Young, Sunset Hill School, Kimsas Gity, Misoury

PERSONS COOPFRAIING IN THIS REPORT

Adams. Doterias I', Mase huselts Institute of Iechmology. Catnbridge, Mass.
Alfnius, Alfild. Publi Schools, Deller. Colo.
Assmes, E. F., High School. Nutey, N. J.
Aucsburcfr, Prarl. High Seliool, Gibson City, Ill.
Balmfr, H. F., Museum of Science and Industry, Jatkson Park, Chicago, Ili.
Baravaltif, H. V., Adelphi College, Gar d?n City, N. Y.
Bargaf Woki, Waiter. Waukegat Township ilighemhool, Watuheg:n. IH.

Brbourd, Frfor. Slate Teachens College, fosey Gity, N. J.
13t.17, Whllam, 200 University ${ }^{\text {D }}$ Ave.. Ruchester, \mathcal{N}.
Masiak, Lat ka, Hughes High School, Cin. cimati, Ohio.
Rejsd. Retitrarord, 112 Prospect St.. I.eonia, N. J.

Boytr, Ifa E.., State Teachers College. Millessille, Pa.

Brkw, Fkivis. M.. High School, Oneida, N. Y.

Carron.i., L. Grace, New Rochelle High School, New Rochelle, N. Y.
Cassidy, Lorena E., East High School, Wichita, Kans.
Charl.s.sworth, H. W., East High School, Denver, Colo.
Church, Belle L., 22 Loomis St., Mont. pelier, Vt.
Claijeir, Saidie Ef; High School, Spring. field, 111.
Collins, Mildred R., Hope High School, Providence, R. I.
Colliton, J. W., Rutgers University, New Brunswick, N. J.
Cone, Bonnie E., Cehtral High School, Charlotte, N. C.
Congdon, A. R., University of Nebraska, Lincoln, Neb.
Corbetr, I. M., Corbett Blackboard Stencil Chart and Map Co., North Pelham, N. Y.

Coxi.ter, H. S. M., University of To. ronto, Toronto, Canada.
Deck, Luther J., Muhlenberg College, Muhlenberg, Pa.
Deruty, Roier L., Ben Davis High School, Indianapolis, Ind.
dickter, M. Kichard, Furness Junior High Scl.vol, Philadelphia, Pa. (In the U. S. Atmed Forces.)

Dixon-Kfola, 2206 Elsinore Ave., Balimore, Mid.
Donchian, Paul S., 85 Gillette Sg., Hartford, Conn.
fehr, Howard F., State Teachers College, Upper Montclair, N. J.
Fiscmr, Christine, High School, Belleville, II.
Fobifison, Ida D., 5520 South Shore Drive, Chicago, Ill.
Fostre, Etifisin G., Underhíli, Vt.
rulirmann. H., 509 5th St., Manhattan Beach. Cal.
Grorge, O. A., 19 Sixth St., N. W., Mason City, Iowa.
Gibrong, M. Almerta, Southern Illinois Normal U!niversity, Carbondale, III.
rinsuekr. Jinuthill., Yeshiva College, New York, N. Y.

Glascock, Lucy, Eldorado, Ill.
Golderg, Michael, Navy Depariment, Washington, D. C.
Grecory, M. Cottell, High School, Louisville, Ky.
Grove, I. Seth, State Teachers College, . Shippensburg, Pa .
'Hach, Aller M., Junior High School, Fort Dodge, Iowa.
Hiamrin, Joy, 307 S. Dakota Ave., Sioux Falls, S. D.
hannelly, Robert J., Junior College, Phoenix, Ariz.
Hartley, Miles C., University High School, Urbana, III.
Harreill, Ftheda S., Vernon L. Davey Junior High Schoot, East Orange, N. J.
Harris Schools, 2400 Lake View Ave., Chicago, 111 .
Hayden, James R., High School, New Bedford, Mass.
Heath, Dwight F., Franklin College, Franklin, Ind.
Heimers, Lili, State Teachers College, Upper Montclair, N. J.
Henry, Mary E., Riverside High School, Mitwaukee, Wis.
Herbert, Marriet b., University of South Carolina, Surnter, S. C.
Hesse, Eama, University High School, Oakland, Cal.
Higcins, Charles J., 116 Hyde Park: Ave., Bošton, Mass.
Hilsenrath, Josemi, Newark, College of F.ngiuecring, Newark, N. J. (In the U. S. Armed Forces.)

Hoel, Lesta, Public Schools, Portiand, Ore.
Innes, Frances C., 711 Geneva St., Dundee, Ill.
Jonfs, Phunis S., Ohio State University, Columbus. Ohio.
Joseph, Margarft, 3933 N. Farwell Ave., Milwauke, Wis.
Kiniston, Rachel, High School,' Stock ton, Cal.
Kertrs, ferdinand, High School, Perth Amboy, N. J.

CONTENTS

PAGE
vii
vii Introducitiun
E. H. C. Mildebrandt, Northwestern University, Evanston, Ill.
MUITTI-SENSORY AIDS
Multi-Sensory Ains: Some Theory and a Few Practices , 1
lidith Sifton, Seattle Public Schools, Seattle, W'ash."
A Mathematics Classroom I3fcomes a Laboratory 16
I. Grace Carroll, New Rochelle High School, New Rochelle, N. Y.
Visual Aips in I'fainhes 30
E. R. Breslich, Professor Emeritus, University of Chicago, Chicago, Ill.${ }^{13}$
A Laboratory Approach to Sotid Geomerry 42
Miles C. Hartley, Universily High School, Urbana, Ill.
DRAWING AND DESIGN
Geometric Drawing 64
H. V. Baravalle, Adelphi College, Garden City, N. Y.
Curve-Stiqging in Geometry 82Carol V. McCamman, McKinley High School, Washington, D. C.
Window Transparencies 86

* J. Anna Tennyson, Langley Junior thigh School, Washington, D. C.
demonstrations and exhibits
Mathematigal. Demonstrations and Exhibits 88
Phillip S. Jones, The University School, Ohio State University, Columbus, Ohio.
East High School Vitalizes Mathematics 104
H. W. Charlesworth, East High School, Demer, Colorado.
MODEL.S AND DEVICES
Empioving Visual hids to Teach i ocus in Plane Geometry 109
Edna Hitchcock Young, Junior High School, Bloomfield, N. J.
Linkacies 117Major Robert, C, Gates; United States Military Academy, West Poini, N. Y.Graphical Reprfsentation of Cumplex Roots130
Houard F. Fehtr, State Teachers College. Montclair, N. J.
A Device for feaching the Fundamental Operations with Dikected Nuxibers 139
Hortense Rogers, Winthrop College Training School, Rock Hill, S. C.
Trisfction 146Major Robert C. Yates, United States Military Academy, West Point, N. Y.
Paper Folding 154Major Robert C. Yates, United States Military Academy, West Point, N. Y.
Linkages in Thrfe Diminsions 160
Michael Goldberg, Naxy Department, Washington, D. C.
xiv
PAGE
INSTRUMENTS AND TOOLS
The Preparation and Use of Nomógraphic Charts in High School Mathematics 164
Douglas P. Adami, Massachusetts Institute of Technolagy, Cambridge; Mass.
The Construgtion and Use of Homemade Instruments in Indirect Measurement 182
Virgil S. Mallory, State Teachers College, Montclair, N. J.,
A Classifigation of Mathematical Instruments and Sources of Their Pictures 194
Henty W. Syer, Culver Military Academy, Cuiver, Ind. In U. S. Armed Forces.
Geometrical Tools 204Major Robert C. Yates, United States Military Academy, West Point, N. ४.Mathematical Apparatus212Phillip S. Jones, The University School, Ohio State University, Colum.bus, Ohio.MATERIALS FOR CONSTKUCTION OF MODELS
Materials for Mathematical Models: Their Selection andUsE226Joseph Hilsenrath, College of Engineering, Newark, N. J. In U. S. ArmedForces.
Balsa and Clay as Teaching Aids in High School Mathematics 245
Harriet B. Herbert. University of South Carolina, Columbia, S. C.
HISTORY OF MODELS AND DEVICES
Historical Material on Models and Other Teaching Aids in Mathematics 253Lao Genevra Simons, Professor Emeritus, Hunter College, Neiw York,N. \mathbf{Y}.
The Construction of Plaited Cprystal Models 266Virgil S. Mallory, State Teachers College, Montclair, N. J.
Color in Geometry
L. Leland Locke.(deceased), formerly at Brooklyn College, Brookbyn,269N. Y.
An Early Work on Mechanical Devices for Drawing the Conic Sections 278
Phillip S. Jones, The University School, Ohio State University, Colum. buis, ohio.
SLIDES, FILMS, THREE:DIMENSIONAL PROJECTION,AND EQUIPMENT
Geometry with an Opaque Projector " 280
J. W. Colliton, Rutgers University, New Brunswick, N. J.
The Maring and Use of Slides for the Teaching of Mathe- matics 289Kate Bell, The Lewis and Clark High Schoul, Spokane, Wash.Inexpensive Homemade Slides for Daylight Projection294Frieda S. Harrell, Vernon L. Davey Junior High School, East Orange,N.J.
PAGE
A Lantern-Slide Prefector as a Construction Projegt 304Gordon MacLeod Taylor';'bexnon L. Davey Junior High School, EastOrange, N. J.1
The Geometry Tracher Exprimeyts with Motion Pictures 318
Rachèl Keniston and Jean Tully, Stockton High School, Stockton, Calif.
Making and Using Motion, Pigtures for the Teaching of Mathematics 325Henry W'. Syer, Culver Military Academ, Gulver, Ind. On leave, in U. S.Armed Furces.
Geiometrig Sifreograms and How to Make Them 346
W'aller H. Shenton, The American University, Washington, D. C.
Tife Sterlogiraph as a Teaching Toor. 858
John T. Rule, Massachinsets Institute of Technulogy, Cambridge, Mass.
Available: Equipmint and Principles of Use of Visual. Aids 360
M. Rirhard Dickter, Furness Junior High School, Philadelphia, Pa. InU. S. Armed Forcers.
APPENDIX
I. Short Mascriptions of Individual Models and Devices 369
Arithmetic 869
General Mathematies 871
Algebra 876
Plane Geometry 879
Solid Geometry 395
Trigonometry 403
II. Bhbiogoraphe 407
periodical.s 407Arithmetic. General Mathematics. Algebra. Plane Geom-etry. Solid Geometry. Plane and Spherical I'rigonometry.Junior College Mathematics.Ciaph Paper. The Slide Rule. Calculating Instruments.Surveying Instruments. Alighment Charts the Sun Dial.Homemade Instruments for Jrawing Curves. Linkages.Telescopes.
Experiments. Trisection. Paper Folding. Dissection. Dupli-cation of the Cube. Use of Geometrical Tools.
The Mathematics I aboratory. The Mathematios Classroomand Its Equipment. Mathematics Clubs. The MathematicsLibrary. Films, Slides and Projectoon Equipment. Contests.Exhibits. Plays. Recreation. Games.
BGors4.43Models. Tools and Instruments. 'The Slide Rule. Surveying.Stereogiaphs. (ieometrical Drawing, Art, Architecture, andDynamic Symmetry. Paper Folding, Soap Films, and OtherFixperiments. Recreation and Amusements. Numbers.Sontre books for Further Study and Miscellaneous.History of Mathe natios. I'caching of Mathematics.' 「ables,Bibliography of Aids. Dictionary.
Fil Ms AND fillusirips452
Films. Filmstrips. Other Materials
- Multi-Sensory: Aids in the
Teaching of Mathematics

$$
\approx
$$

\because
\because
\cdot

There is plenty of arithnetic in the coobing lessons that come to the third hoade when the "kitchettete" is sent to a schon-buying the supplies, check. ing the change, measuring the ingrediens, timing the pudding, making paper doilies, setwing the table, serving the class.

MUSTI-SENSORY AIDS: SOME THEORY' AND A FEW PRACTICES

Edith Sifton

Multr-sensory aidsi A new terig? What does it mean? New, yes, but the questions can be answered, very easily by recalling some of the educational history of the past few years. Remember those first projectors and their glass slides, and how progressive some of us felt when we began to use them in our tlassrooms? Shortly, we brought movies to our students and began to talk to each other about the various kinds of "visual a adds." Next, we added ear appeat, and "talkies" became, in our language, "audio-visual aids."

- Now, we find ourselves---teachers of mathematics-stepping to the fore with an entire yearbook devoted to "multi-sensory aids." We are noting that children learn through other avenues than their eyes and ears-for example, their hands!
But, in taling such a step, it seems that we have moved somewhat ahead of the procession. Search as we will, we cannot find, to date at least, the word "multi.sensory", listed in any of our numerous books dealing with the theories of education.
As teachers of mathematics, however, we should have no diffi culty in finding our way in this new field of educational thoughtt, for it dovetails so neatly with today's theories in our own subject area. We know, in the first place, that of all the subjects taught by teachers and studied by children, mathematics is, by its very nature, one which gains greatly by the use of multiple and simultaneous impacts upon the mind of the learner. We know, too, that for our pupils, learning must be something more than seeing and hearing; for them mathematics must be a means for doing things in the classroom as well as in a later, workaday world.
Under such circumstances, we need hardly be surprised to find that many of today's teachers of mathematics have devised and used a goodly number of multi-sensory aids, even though edica-

1 tional philosophers have neglected to develop any theory to guide
those teachers who are in the front lines. We have, in fact, but to look about us to find uncidents and examples that will give us data for evolving some theories of our own, and for listing some very effective practices, in this new field.
To begin, consider an incident that occurred recently at the University of Wishington during a meeting of some of the members of the Pacific Northwest Resources Workshop. In the course of the informal discussion one of the group "iwondered," aloud, just what any mathematics teacher would find useful in a study of resources. The staff member in charge of the mathematics section of the Workshop met the challenge promptly. Her first words were: "Well, if students, are going to 'mathematick', they will have to be given something to 'mathematick' about."

If we grant mathematics should be taught as though the word sere a trinsitive, active verb, we may have a clue to one of the reasons why we have found it rather difficult to devist, or obtain, तisual aids that completely satisfy us. Do not misanderstand-we need visual aids. We cannot ignore them, nor discount the fact that the impression a picture makes on the mind of a child is often * (much more lasting and vivid than one made by words, printed or spoken. Visually, we can give our pupils understandings, meanings, and appreciations that would otherwise be impossible. There are times, also, when pictures can do a very good job of explaining difficult points. Consider, for example, those children who, with such seeming trust, ask us to "explain the theory of relativity." We can satisfy such requests by showing them the film on Finstein's theory. The idea is presented upon a level at which children feel at home, and they can see the picture several times, with increasing understanding each time. Again, we need not more than one showing of such films as "The Vernier" and "The Micromener" to find ground for the belief that the present crisis in training industrial workers will, in the end, bring us other good films in the field of mathematics.

On the whole, it certainly is not without reason that the ex. pression "I see" so often means "I understand." 'There must also be vety real reasons why a, child instinctively wants to tonch evewthing he sees; why he wants to lean actively rather than passively; why he takes his toys apart to see what makes them go:

Real cups, pints, pharts, ajud gallons mear in grade fopir teal problems in maltipli. cation, division, and factions.

 on the flen ami ic HuWad homl 1.15 (1) (1). Withel whe .thal

$$
\because!n!r
$$

why, in high school, his hands fairly itch to get hold of a transit, while a picture of one arouses only casual interest.
Possibly just a little theorizing is in order in connection with the responses of teachers and parents to this youthful instinct to learn by handling, manipulating, and "doing." Looking about us we lind, apparently, at least three schools of thought in the field. We might agree with the first up to a certain point-that a child may need to have his hands slapped until he gets over that impulse to pull the coffee-maker over onto himself. If this technique were repeated too often, however, there avould be some chance of slapping curiosity right out of the child's mental makeup. Teachers, at least, have fou (nd intellectual curiósity too valuable an incentive to learning to want it eliminated, or even so much as dulled.

Our second school of thought seems to believe that whatever attracts the child's eyes, and therefore his hands, should be placed upon the highest shelves, or be kept out of sight enturely, back of closed doors. The bric-a-brac is too valuable to be entrusted to the mercies of awk ward fingers. There may be a possibility that mathe-- matics teachers feel that their particular set of bric-a-brac is too complicated for unskilled hands. Followed consistently, this second method of dealing with a child's attempts to explore his world might conceivahly lead to a fairly typical case of intellectual malnutrition.

Scrutinizing the third school of thought, we find people who see to it that children have supervised, not to say planned, opportunities to handle anything from which they can learn, if they but show interest in it. Some even go to the length of stimulating curiosity atrd interest in secing, handling, and maripulating objects. Celtain items among our mathematical bric-a-brac may have to be simplified a bit, but many of them can be given to our children to hatude and "work," with benefit to all concerned.

By the way, there is more back of the attitude of this last group than a laudable desire to see children learning happily. Put something conctete into the hands of a child, something that will enable him to enter actively into the learning situation, and auditory, visual, oral, tactual, and muscular sensations unite in a drive , that has real power in forming new thought patterns.

All this theorizing has its placee, no doubt, but in the end, putting theory into active practice is the only way to bring in divi. dends. If we turn to the work of some of the mathepatics teachers belonging to that third school of thought, we can see how they do

* it, and ger, as well, a glimpse of the value of the dividends. From each of them we can take away ideas that can be applied to our own work, no matter what its level-in the end many more ideas than could be gathered from whole volumes of expositions on theory. So let us visit a few of those teachers who have been making the word "mathematics" a transitive, active. verb for their students.
As you begin these classroom visits imagine that you are a pongil in the second grade. The arithmetic course of study for this grade declares that you stould be taught to tell time by hoirs and to five-minute subdivisions. You might be shown the clock on the wall, and have carefully explained to you just how you are to read the time. Your teacher might also use that cardboard clock dial, setting the hands to slow the time for recess or for lunch. She may even ask you to set it for tiae time to come to school, or the time to go to bed. But suppose your teacher also lets you make a clock dial of your own, with movable hands; and not only has you set it: for the hours and minutes you must learn, but lets yon set it just for fun, whenever you have finished your work ahead of the rest of the class. Suppose she is always willing to pause for a second or two to answer such a question as, "Docs my clock say quarter past three?" Which methed would you, a seven-year-old, choose?

And next, suppose you have moved on to the third grade and are in the midst of your first hand to-hand struggle with remaindens in division. Yon are dividing 11 by 3 . Miss Smith could go over the wook carefully at the board, could make matters quite clear to you with assorted additions, subtrastions, examples, and problems. She might also make a row of eleven marks on the board, cross them off there at a time, and prove to you that there is a remainder of two. But suppose that, instead, she tells you to take some of the small log-cabin blocks, some of the seeds left from the Hallowe en pumpkin, or some of those little clay balls you are using for strawberries in the play-store. She asks you to
show her how many threes can be made with eleven of them. You try them in little rows, like soldiers on parade; you put them in little clover-leaf groups; 'each time you have two left over, Wouldn't you prefer to acquire division facts with your hands and eyes, as well as with your head? Wouldn't you understand then better, and remeniber them longer?

You will find that elementary, intermediate, and upper grade teachers are also giving their pupils understanding of the various phases of mathematics by tppealing to the mind through the hands as well as through the eyes and ears. In a fifth grade classroom we find a group of children deeply engrossed in using an abacus. They are adding numbers so accurately and rapidly that we have difficulty in following the process. Units, tens, inundreds, thousams have new and concrete meanings for these boys and girls. Across the hall in the seventh grade arithmetic class some boys are increasing their understanding of the tens system by putting the machinery of a dismantled light meter into action. As we look over the shoulders of some other pupils jn the sixth grade, we find them operating an old speedometer, setting it for some original problems in decimals.

Going on to the case of fractions, we find that a six-year-old needs no more formal instruction in the meaniag of one-half than to have his teacher say to him, as he divides that apple for the birthday party, "If the apple isn't cut in half, we always give our visitor the larger part." If, a few years later in his carecr, the child forgets that $3 / 6$ is the equivalent of $1 / 2$, or that $9 / 6$ equals 1,3 . he will be handed those brightly, colored paper plates cut into halves, quarters, thirds, sixths, and eighths. As he fits the red plate, cut into sixths, into the yellow one, divided irto halves, or into the green one with its thirds, active hands as well as active mind will help him learn the "lesson."

In the ninth grade general mathemazics class, bopers and girls are reviewing decimal fractions. The instructor is discussing precision measurements. That enlarged picture of a micrometer caliper on the bulletin board is interesting to the class and with some explanation, moderately compreherisible. The pupils pay closer attention, however, when the teacher uses an actual micrometeriand measures the thickness of a dollar bill right before
their eyes. But the whole thing begins to "click" with them when he gives them each a turn at the instrument, and hands them ai leaf-feeler gage as well. They finger, and measure these pieces of y metal. They turn the thimble to discover, if they can, any visible change in the opening as the spindle moves through five orethousandths of an inch. Playing? Possibly. But gaining also some appreciationtof the kind of measurements made by whole armies of toclay's workmen and, in addition, at least an inkling of the meaning of approximation.

When it comes to acquiring some feeling for the "size" of large numbers, one must have more than a good imagination or a chance to gaze at a star-sprinkled sky. Here again teachers with ingenuity have brought the hands of their children to bear upon the task.

Take the case of the fifth grade that was learning to read and write numbers in the milliors. Had any of them ever seen a million of anything? One boy offered the suggestion that there were millions of tiny pebbles in that fine gravel that covered the playground. How much would it take to make a million pebbles? The children thought a gallon-and could they count it and see? They compromised by counting a pint to start with. Each counted his share of the pint, and the amounts were added. The class de cided it would really be better to finish by calculation; so they multiplied to find the number of pebbles in a gallon. Finally, by rounding off and dividing, they learned that they would have had to bring 125 gallons of gravel into the classroom in order to have one million pebbles.

Again, a seventh grade, trying to compare government finances with their own, devised a way of getting an idea of the size of a hillion dollars. Using some small kindergarten blocks in lieu of dollars, they took turns at counting the blocks for one minute at a time. The average number counted per minute was determined, and then, by dividing, the class found it would take the average pupil almost seventy five years to count a billion doliars. To those boys and girls a billion now means more than a certain numper of zeros trailing after the digit 1 .

In teaching the various topirs and units in measurement encountered recurrently in the course of study, many teachers bring
the tables concerning pints and quarts, square feet and square yards right out of the textbook and into the children's own world. In the second grade we see small boys and girls discovering for themselves some of the facts about liquid measure by pouring water into a large assortment of quart, pint, and halfpint containers they have found in their homes. A little later in the ryear the teacher takes advantage of a hot day to increase their knowledge of measurement to a fraction of an inch by allowing each child to measure and fold a paper drinking cup of his own. Just before Christmas, a fifth grade arithmetic teacher and an art teacher collaborate in having the children make gift boxes. In the arithmetic class, drawing the plans calls for estimation, measurement, addition and subtraction of fractions.

There are pupils in the seventh grade who persist, in spite of $*$. teacher demonstration and exhortation, in working their area problems on the basis of twelve square inches to the square foot. However, after drawing a square foot on wrapping paper, cutting a square inch out of cardboard, and filling that larger square with smader ones by tracing around the cardboard, the children know just why they must use 144 , and not 12 , in their problems.

On making their first bow to areas, the children in one fifth grade are allowed to draw a square yard upon the floor, and to divide it into square feet. Renewed from, day to day, walked over, as well as looked at, "squate yard" becomes more than just another abstract word. In fact, the children can almost feel, as well as see, square yards in Mother's new linoleum and in the garden phots they are plaming for their science project.

If the measurement we teach is to be practical, children must be able to estimate size and measitre objects at least as effectively as they work book problems listed under the topic. As one case in point. consider another class in the fifth grade. The question of the size of Captain Vancouver's boat came up in the course of a discussion. One pipil thought it must have been as long ats the school grounds; another that it could have been put into the trall. There was nothingeto do but to measure hall and playground. The second pupil won the argument, but, with little more than a hint from the teacher, the class was off on a project of estimation and measurement that took in mumerous and rather astonish.
ing items which the children found interesting. Included' were the size of the "Saratoga," heights of school desks, lengths of the curtains at home, the distance to the University bridge, the length of each child's stride, the number of strides in a quarter mile. Need one add that the tables of measurement customarily presented at this level were also involved in the many problems posed by students as well as by the textbook? Or that there were opportunities also for some telling demonstrations of the advisability of using good judgment by suiting the size of a unit to the size of the quantity to be measured?

Moving farther along our educational assembly line, we find that multi-sensory methods render equally effective assistance in overcoming some of the difficulties of high school pupils and their teacbers. A plane geometry class is learning the theorems dealing with the measurement of angles in a cirtle-hardly active mathematics. Suppose, höwerer, the students use homemade sextantsperhaps of their own manufacture-and thy their hands at the business of shootitig the sun and determining the latitude of their city. They may not, as a result, be able to navigate the Pacific, but for them the measurement of central angles comes in life. Again. steel tape, shadows, and mirrors can be used to create problems that not even a sophomore can consider academic. Give a boy a ruler and a calling card and he can construct a small model of a cross-staff that enables him to make and solve some problems of his own in proportidn, and that introduces him to the principle of the instument with which, as a youms naty officer, he may some" da! keep his "battewagon" in formation. A langer piece of cadboard a sting. and some sort of plamb bob can be turned into an "altimeter" that. having been used to measure inaccessible distances. leads to an intelligent use of the tangent ratio. More rardboad cut inte stips, can be made into reasomably workable pantographs, into instuments for trisecting certain angles, or into parallel rulets. Brass paper fasteness will do for joints.
. The units on loci are often made the most abstact and the most disliked in plane geometry. Some of the more analytical minds of a class will find pleasure in using compass and ruler to discoser fon themselves new lifi. such as conic sectiong. But for students who are of a mone concocte and pratical tum, using a

Why shouk geometw students 'e left in ignorance of the existence, use, and geometry of the pantögraphr (Tenth grade)
couple of student-made models of the Osbornc fire-finder, some maps furnished by the supervisor of the near-by national fores: reserve, and locating, thereby, some hypothetical forest fires will give a lift that makes lighter work of the whole topic. One such experience, and boys and girls will observe and report many of the innumerable applications of loci to be found all about them.

Going on to solid geometry, the fact that volumes of similar solids vary as the cube of corresponding dimensions is merely book learning to most boys and girls. Bring out, however, two tea boxes, approximately cubes, without disclosing the fact that they formerly held a half-potind and a pound, respectively. Let the students first estimate the ratio of the volumes, and then measure the dimensions and determine the ratio by calculation. The astonishment on the faces about the classroom is evidence enough that.some active thinking is being done.

It took two classes in solid geometry to make one teacher realize the effectiveness of letting students use their own hands. Some of the students of the first class were having the usual difficulty in visualizing the solids generated by rotating plane figures. One of the boys watched the instructor whirl some cardboard forms and notech. evidently, the indifference of the rexsults. A few days later he came to class with a set of triangles and rectangles that he had made by bending wire. He had made each with a sort of stem, and had also made a stand from one of his.mother's shortening cans by punching holes in the top and bottom. Winding the stems with string, and inserting the stems in the norestin the stand, he whirled the figures like tops, and so formed ghostly solids. The buceeding semester that set of figures was put on a table a few duss befure the rotation problems were to come up. Students of this serond class played with the figures before and after class sessions. with what seemed to be almost idle pleastire. When it (ame wassioning the problem: in this class, however, there was no demonstratige for the teacher to do-the students' visualizations were all nicely taken care of!

Such instances are all wery well, you may say, but after all, mathematics means solving problems. Agreed! And, one might atd, it is one thing to wolve even the nost pracical of problems that have been nicelt wombed in a textbook, and quite another
to discover some for yourself, right on the open range, in work or in play, in home or in community.
Here again, teachers in every grade can show us just how well children will respond to discovering and solving original problems. One second grade wrote a whole series of problems centered about the aquarium they were setting up. How much would it cost to buy the fish, the: food, and the plants? How much more sand would they have to put in if it was to be two inches deep? How many guarts of water would they have to pour in if one gallon was needed for each inch of fish? Further details are hardly needed to show that such a project can involve a number of multisensory appeals and several learnings, along with the mechanics of addition and subtraction.
Of course such programs for developing original problems become more complicated in later work; but consider one example from the sixth grade. In the textbook, there was a unit in which the problems were based on transportation figures. First the class made some original additions to that list, based upon similar facts obsetved on summer trips. But before long their study led them richt out of the textbookand transportation, and into a discussion of the post office. Interest was so keen that the teacher arranged for a conducted tour of the terminal station, with each pupil responsible for bringing lack at least one interesting number fact. Back in class, the number facts were compiled into a single list, and from it the children wrote an entirely original set of problems.' One problem, for instance, called for finding the cost of sending a cake by air mail to a brother in camp; another, for the number of lethers passing through the canceling machines in a dias; a third. for the average number of people served by each local carrict. In the end. the pupils' own set of problems was longer than ans which a textbook would have provided. Furthermore, there owuld hardly have been a better way of learning to solve problems than by discovering, analyzing, and then formulating some for themselves.

One might go on indefinitely with examples of the ways in which various teathers are coordinating children's eyes, ears, and hands. in giving them opportunities to learn how to "mathematick." Having once seen the respense that children of all ages

In! it fon founctf-a "rafter" and a capenters sumate can be made to athl whe the understanding of the "eheory" back oi some practical geometr. (Tenh quade)

boll mas be able b
bon. And wen use, a
जher male w.thout mat
 - trano mate mae and f.in fal kean somblhins wh the pimeplex it em ph. : I welth grade)

Multi-Sensory Aids
 15

\therefore make to sucl: methods, most of us could never again pleád lack of class time as a reason for not using them. One may have to admit that planning multi-sensory activities takes ingenufty and a dash of imagination besides; that discovering openings for such planning takes sensitiveness to the signs of dawning child interest, and, above all, an appreciation of the pervasiveness of mathematics. But handling such projects in class consumes, generally, not more than ten or fifteen per cent of the mathematics period. During that tinte, teachers not only develop some real understandings and appreciations, but build up, as well, a "head of steam" that carries pupils through whole days of purposeful work on excrcises and problems.

- A MATHEMATICS CLASSROOM BECOMES A LABORATORY

L. Grace Carroll

A century ago such philosophers as Huxley, Spencer, and Rousesear felt and preached the need for functional education. As a result, they succeeded in introducing science and the scientific method into secondary education; the concepts of learning by doing and experimenting were concomitants. Curriculum offerings introduced since their time have, like science, been taught in laboratories and workshops by means of the laboratory method

But there have been various reasons why mathematics teaching has adhered in most respects to the old method of question and answer: tradition, the regime of conservatism, lack of appreciation and understanding on the part of teachers, lack of realization of the needs for and the opportunities offered by a laboratory set-up, indifference, poor organization, unwillingness to try anything new, possible difficulties in administer action, expense, and lack of ingenuity. P

Multi-sensory aids are not new. They were introduced and reccommended by Rousseau. Later the philosophy of learning by doing was popularized in the elementary school by John Dewey and his followers in the activity program. Today every elementary school teacher who considers herself even pseudo-progressive aims to make her classroom a laboratory. Consequently, the modern elementary school classroom is a workshop in which children do things and grow in the process.

But, in the high school, classical subjects which antedate Husley, Spencer, Rousseau, and the activity program are all too commonly taught by the medieval methods of lecture, question, and answer. Except, perhaps, for the differences in dress and attitude of the students, a casual visitor might be unable to tell the difference between many 1944 classrooms in mathematics and their prototypes of the Middle Ages.

The first requirement for a mathematics laboratory is the will to start. The chief need is the initial effort to organize available materials, thus providing opportunity to work with these materials and to discover mathematical laws and concepts int an objective way. With some help and direction from the teacher, considerable equipment will accumulate as the work proceeds. This pupil-inspired material is often more valuable than commercial equipment. It tends to stimulate interest, to create desirabte attitudes, and to furnish the thrill that comes from accomplishment.

This section of the Yearbook uses the New Rochelle Public Schoots as an illustration of work being done in a modest effort to, improve present practices in the treaching of secondary school mathematics. It does not attempt to describe an ideal situation, first, because we do not claim to have-an ideal gituation, and second, because there is no end to progress. Everyend is but a beginning and "under every deep a lower deep opens."

The present program had its beginnings in discussions among groups of mathematics teachers, some of whom felt that improvements were needed in mathematics, both in subject matter and in method. The Superintenndent thereupon appointed a committee to study the status of mathematics in New Rochelle and to make recommendations for change, if change were needed. Committee members were released from regular classroom duties to carry through this study. They observed classes, interviewed teachers, conferred with students, and summarized their findings. Their report included detailed information on present practices and a summary of suggestions for improving them.

Through the exchange of ideas and through the combined efforts of administration and committee, New Rochelle has effected many constructive developments. One of these was an effort to im: prove the teaching of mathematics though the use of visual aids. A mathematics exhibit to which both elementary and serondary schools contributed was displayed in the museum at the Administration Building. It included, among other things, old mathematics textbooks and other looks of histerical walue; mathe matical instruments, both commercial and pupil-made; an antique quilt of "mariner's compass" pattern; tantern slides; stereographs: film strips, motion-picture films; solid geometry models marde of
cardboaid, cellophane, and wood; charts; drawings; photographs. of pupils' activities; and other articles of mathematical interest.

Subsequently two mathenatics laboratories were started experimentally. As the laboratories began to develop, questions were raised by teachers and pupils. Among them were such questions as these:

What is a mathematics laboratory? How will a mathematics laboratory differ from any other classroom?

Can more than one teacher use the same mathematics laboratory?

Will a classroom laboratory contribute to a program of directed study?

Can mathematics be taught as a laboratory subject in the same way as the arts and other sciences?

What extra- expense will be involved in developing a^{2} laboratory?

What equipment will be needed?
Why are our old methods underfactory? We have no fault to fincl with the status quo.

This aticle will describe how some of these questions were answered in our own situation.

What is a mathematics laboratory? It is a place for learning by doing. Any laboratory is a workshop: Onc concept of a mathematics laboratory is an enviromment in which a pupil.learns efficiently and more meaningfully the mathematics he should learn anyway. The teaching is informat and individual. with all possiinle opportunities offered to discerer or rediscover mathematical truths and latws. Visual aids are used in making the work as ohjective as the problems require and the facilities permit. Just how this can be done will vare, but a few illustrations of ways in which we have done it are gisen in this aticle.

How will a mathematics laboratory differ from , ms other class. room? The answer to this question is found in put in any classroom used by a progressive teacher. Fquipment (or its lack) is not the only distinguishing factor. There is an informal type of teaching and a type of directed study, both of which vitatize the of discovery. An extended list of materialsiand equipment suggested for inclusion in a laboratory is given on pages 26-29.

Can more than one teacher use the same mathematics laboratory? This is possible and in some cases it nay be very desirable. But, in general, a teacher prefers to convert her own classroom into a-hboratory. However, she usually is willing to share mate- . rials and ideas with other teachers who are actively interested.

Can mathematics be taught as a laboratory subject in the same way as the arts andother sciences? Perhaps the answer is best expressed by saying that no two laboratory subjects are taught in exactly the same way. Here is an illustration of a topic taught in a very informal way:

The topic was "Straight-line Graphs." Thermometers and care-. fully constructed diagrams of thermometers were studied; the way the readings changed together was expressed in words and by means of the formulit. This same relationship was expressed by means of a table. The students learned to interpret a graph inrolving signed numbers, and then expressed by means of a graph the way degrees centigrade and degrees Fahrenheit change together. They made the first graphs by locating poinis.. From a study of their work and obserration of the formula, they discovered the meanings of slope and intercept. With most of the graph work that followed, they preferred to use the slope-intercept method.

This is a procedure any class could use. There had been so minch group interest and careful work that the teacher thought-aloud-that it would be helpful if future classes could see pictures of this class at work and could know how this class made its discoveries. She had made the comment hoping that it would result in a meaningful activity. She was not disappointed. One pupil interested in photography as well as in mathematics suggested that he take pictures of the class at work. The result was approximately sixty 2×2 lantern slides showing the develupment of hore numbers change together and the class as they worked discoseling functional relationships. The slides showed the initial steps in
making a graph and the proceses required in reasoning and drawing the graph by the slope-intercept method.

Because of the picture-taking, the carly stages of the study were repeated, but with more meaning and added interest. The students were proud of their accomplishment. They were thrilled when the pictures of the class and their discoveries were shown on the screen. In addition to the lantern slides, there was a written account of the project illustrated by pictures mounted and used for a bulletin board exhibit.

The aim had been achieved. The pupils understood the meaning of how numbers change together and could express this functional relationship in a manner that suited their convenience. -

Thus these students carried through the experiment. As the project progressed, members of the class who were not working on the experiment at a given time were busy developing other projects along lines of their own interests. However, as occasion arose, they made contributions to the project in hand and so always had discoseries to challenge their interest.

This experiment also helped in furthering experiments with centigrade thermometers which were being carried on as part of the science work of this group of students.

Another experiment was finding the meaning of the formula $V=$ lwh. A student having some difficulty with the problem was willing (in fact, eager) to construct a rectangular solid and show by the construction of cubic units and the placing of these units how and why the number of cubic units in the rectangular solid is equivalent to lowh. The rectangular solid and the cubic units were made from heavy cellophane and put together with Scotch tape. The boy had been advised to make one of the little units of measure, but he insived on making the number required to fill the rectangular solid. Wuch disturbed when these units dici not fit exactly, he wanted to repeat his experiment. This proved an opporture time to study error and sources of error. The discussion and conclusions led to an appreciation of precision in measurements and a desite for accuracy. Not only did this class find the models helpful. but the project was used subsequently in other classes to develop the concept of wolume and to make meaningful the formula for finding the volume.

A Classroom Laboratory

At the ime time this student decided he was going to take all the mathematics he could get (he had not liked mathematics before). His decision is an illustration of what happens to those minds that learn by concrete doing rather than by abstract thinking.

What extra expense will be involved in'developing a laboratory? The expense of a laboratory will depend on a number of things. The students and teacher can provide much of the necessary equipment. The expense need not be great. On the other hand, there is much that can be done if money is available.

What equipment is needed? Ample blackboard space is imperative. For graph work one section of the blackboard should be ruled and outlined in pale green or yellow paint, with heavier lines defining every fifth or tenth space. If blackboard space is limited, a substitute is heavy white cardboard, ruled with ink and then covered with a film of Protectophane. If cardboard is the background, wax crayon is used instead of chalk. It can be rubbed off with tissue or a piece of cloth. The squared cardboard can be hung in a convenient spot or rested on the chalk tray. When not in ises. it can occupy any convenient place bitt it should always be accessible.

If the teacher prefers fixed desks and chairs, they should be placed to one side of the room and space left free for group work. conferences. and pupil discussion.

Texthooks other than the regular class textbook should also be arailable in the laboratory library. since the point of view and methods of different authors should be given consideration. In addition, various reference books, magazines, and other books of cultural and historical value should be found in the library. This library should be a regular part of the laboratory equip. ment. It may be supplemented by temporary loans from the school or public library.

As materials accumulate, it is necessary to add bulletin boards. bookeases. exhibit shelves, and fling cabinets so that the materials may be used efficientiy and sated for future reference. This equipment need not be expensive. In many schools it an be made in the school shops or be interested individual students or teachers. Often there are in storerooms or vacant classooms unused cases
that have long been forgotten and can be used to good advantage here.

Space is needed in the laboratory for the exhibition of posters, clippings, classroom work, etc. A section' of wall covered (ith beaver board is excellent for the purpose. A strip of such material above the blackboard is also a help, as is a swing-wing display board.

The following are illustrations of various types of exhibits:
Mathematics and design. A very interesting exhibit appeared early in the year as the tenth grade pupils were beginning work in constructions. These were changed from time to time, and in the last appearance consisted of a group of the best designs carefully mounted on colored construction piper.

Mathematics and bridges. This material suggests a number of concepts, formulas, and laws of mathematics. It leads to discussions of rigid figures, the catenary, etc.

Mathematics and churches. The solid geometry classes were interested in the shape of the steeples of various churches. At first this included the churches of New Rochelle and later other churches of special interest in our own country and abroad. Then other factors in the architecture and the mathematics involved were noted and utilized in the regular classwork.

Mathematics and defense. This ippeared in two separate exhibits. While the upper classmen were working after school hours on an exhibit for Mathematics and Defense, an eighth grade pupil became interested not only in the materials but in the mounting of clippings and the way in which they could be mounted. Some time before the upper classmen had completed their work, this boy appeared with a folder filled with carefully prepared clippings and descriptive material. The clippings were concerned with aluminum, petroleum, tin, nitrate, gold, silver, precious stones, silver, etc. These were some of his treasures, saved from his work in the seventh grade. Since all of this had to do with defense, someone asked if he would like to have an exhibit of his own. He was delighted with the suggestion. The evinibit was soon in place and he saw to it that it was a pleasing one. It temained for two weeks as our first defense exhibit. Its owner was surprised to discover
that mathematics had to do with these tangible things, but pleased when he found illustrations of mathematics which he could recog nize in the mining, transportation, and utilization of these valuable materials.

The materials for the second exhibit on Mathematics and Defense were largely made up of pictures from magazines, brought in by many students. Committees worked in mounting and organizing the materials. In one case it was divided into three groups: Land, Sea, and Air. Later, the exhibit was remodeled and soon it became the new exhibit on war.

Mathematics and maps. Even before the exhibit on war had been completed, someone suggested Mathematics and Maps. A sheet of paper was posted in a convenient place, and students listed the mathematics they discovered in making and using maps. Discoveries are necessarily always limited by the students' knowledge, but their discoveries help others, give them a certain satisfaction in telling how they made their discoveries, and create interest not conly in the specific subject matter but in its utilitarian and cultural values.

One pupil did some research in the making and reading of maps. This provided an opportunity to teach map-making. While there is not always time to follow up all the leads at the time the problem is presented, a challenge is offered that may function in later group or individual discoveries.

Mathematics in the army and nary. This subject, as well as Mathematics and Aviation, has been of special interest. Posters showing the importance of mathematics to the amed services were accompanied by pictures of soldiers, sailons, and a batons making maps, reading maps, and surveying. These were used in discussions on "how to study," need for critical thinking, mathematics and reasoning, value of "If . . Then" tgpe of procedure in our study of mathematics, etc.

Great men of mathematios. This topic adds interest w the his. iory of mathematics. In addition to a general exhibit, the picture of a great mathematician comected with the work to be studied at the time gives realism of the topic. If the picture can be kept in view during the stude of the related work and applications, the work elates iteelf w the great men of mathematis and the
time in which they lived. If, before teaching the Pythagorean theorem, a picture of Pythagoras and a short biography are placed Where they will be seen, and reference is made to them at the time the Pythagorean theorem is studied, there is aroused a feeling of acquaintance with Pythagoras and with the subject matter.

Several students were interested in history and in the travels of Pythagoras. One drew a map showing where Pythagoras had visited. Ainother handed in a poem. One wrote a play based on the legend of "The Seven Lamps of Capella Pittagora," in David Eugene Smith's Poetry of Mathematics; this was a result of a bit of research done by the class. One group was particularly interested in the \mathbf{P} y thagorean theorem and the mathematics necessary to prove this theorem. An illustrated story of the project was the contribution of another student; it included a list of all theorems, constructions, postulates, axioms and definitions required to prove the theorem. A class in tenth grade mathematics worked on this project while studying the I.aw of Pythagoras. Other members of the class made interesting contributions to the study. These form but one illustation of the interesting possibilities of the contributions that students can make and the pleasure they can detive from this type of laboratory work.

Another illustration is Archimedes, whose biography and picture are pertinent preceding and during the teaching of ratio and proportion. This furnishes another excellent opportunity for relating science and mathematics. The sfudents of this group were very much interested in discovering how Archimedes determined that Hiero's crowi was one hundred per cent pure gold.

The same method may be used in teaching such topics as similarity. Posters illustating similatity, monnted on the swing-wing display buard or any convenient bulleti" hoard. do much to create an interest in similaty if they ate in a plate convenient for reference at the psychological moment when the subject is introduced. One proof of interest is the new material and posters voluntarily boought in by.students.

A further illustration is the use of posters preceding the work on locus. In one case the class had access to a picture of a group of pirates phanning a map of the hidden treasure. This picture was taken by one of the students, who had previously built the
scenc on a table. He had used a piece of tin to represent water: the hills and land were made of sand; trees were bits of evergreen stuck in the sand. The pirates were tiny lead figures. The picture illustrated the story of an original locus problem.

One group was interested in the pantograph, and two boys decided to make one. They did part of their work at home and completed the p : ect in one of the school shops during the di. rected study part of the mathematics class. The boys had wondered hoir their instrument would compare with a commercial instrument. One of the girls brought one from home. When the : class had completed work with the two instruments, both were -given to the mathematics laboratory. It was quite a thrill for this girl to brins an instrument and explain to the class how it was used by an engineer. Work of this kind does much to create a mathematical atmosphere and a will to explore, analyze, and arrive at conclusions.
If a mathematics workshop, posters such as "anal.yze"-better stint, a poster copied from a recent geometry text-are invaluable aids in making analysis a tool of discovery. By frequent reference to these posters the students realize and appreciate the power of analysis and analytic proof.

Three tiny airplane models, cach mounted on one of its three dees to illustrate vertical, longitudinal, and horizontal axes, carry the meaning of x, y, and z axes "deep in the heart" of thinking in terms of three dimensions.

In addition to the models. mateials, and pictues that are changed frequently, there can be hung on the walls of the laboratory pictures that do much to afd to its atmosphere. The pictures on the wall of one laboratory are: "Galileo," a muragraph in soft tones in seven colors; "Tree of Knowledge," "History of Mathematics." "History of the Standard Units of Measurement"-a set of six pictures each $8^{\prime \prime} \times 10^{\prime \prime}$, which may be framed separately or as one.

Multi-sensory aids contribute much to the process of learning.

- While some of the vatues can be measured, there are immeasurathle attitudes and "esponses which are recognized and appreciated by both the teacher and the pupilai David Eugene Smith
often spoke of the "soul of mathematics." Possibly the response and attitude that result from this type of study of mathematics are in some way related to the "soul."

A mathematics laboratory is well worth all the effort it takes to build and organize. Multi-sensory aids are part of the commonsense method of developing power to discover, to understand, and

- to use mathematios and mathematical laws in meeting the challenge of today.

If given a start, a mathematics laboratoty is inclined to be a bit like Topsy-to "just grow." However, it does need an opportuaity to start. It needs help from administration, and it needs tachers interested in mahematical growth both in learning and in teaching mathematics.

Stggenthons for Materials and Equipment for
 a Mathenatics Laboratory

dining cabintts (ventical), sufficent for filing pupil repores, newspaper and magazinte clippings, and picture collections.
Postrer cabinet (or closet), in which large posters and charts may be kept flat.
Exhmir asts for dieplay ing theredimemsomal models. (Maty be old book. cases until better cases are available.)
swing.wing msplayfr, with wing of board. A compact method of increasing atalahle display surface. In theory; this is a large wooden (or fiber beard) trok, on the "pages" ' which pictures and clippings mity be displayed.
Biarinboard, one section (f which is ruled and painted for graph work. (Light green puint is preferable to pure white, and cach fifth line should be a bit wider than the others.)
Watboard (for exhibits and diaplay materials), replacing blachboard on one wide of the 1 oom, and also above the blackboart.
Wink timas (and (hairs) for discmsion and group pojects as well as for individual comvtuction work or drawing.
Spherifar. biackboard.
Giobs: of blaf worta. the type ordinarily wed in teaching geography as well an me with m.ukable suface.
ont: gomptay moblis, commercial or homemade (regnlar polyhedrons, (anic settom, (1t.).
hathe rety (letge demonotation model an wedt as amatl ones for indi' 'ual
 Siow York (ita)
 bushel manure, yuart, meter, sard, her, denk. g.ltammeter, giroscope, corlpan (marincrs). etc.

Iranstr. Homemate tamit is a possibility if a commercial instrument is not atailable.
Pavtugarit, not a diffule insmument to make.
paratidugesints and trisiotes. Made of wooden ships to help tead properties and criteria of a parallelogram; also rigid figures.
Cenompane: (cellulose areate), heavy cellophane (transparent) for making solid geomery modebis heary glated cellophane for handmade lamern slides. From Celluloid Corporation of America, Newark, N. J.
Protectormane comes in thin, tramparent sheets with adhesive on one side. Useful for covering pictures and clippings, and also for covering diagrams or graphs upon whith auxiliary lines may be drawn with wax crajons and wiped off again with cleansing tisue. Jrom Stanley Bowmar Co. 2929 Broadway, New York City.
Compasses, proiractors, ruifers.
Constriction paper.
Abacts.
Adming machine and other besinfs machines.
Cisps. Write to Superimendent of Documents, Washington, D. C., for Price

Wati charas, both commerial and homemade. For suggestions, see Enriched Teaching of Science in the High School, by Woodring, Oakes, and Brown, Burean of Publications, Tearhers College, Columbia University; and also

"Hisiory of the stanidard lints of measurement." Set of six pictures, each. $8^{\prime \prime} \times 10^{\prime \prime}$; may be framed separately or as one picture. From II. G. Ayre. Wrotem State Tearhers College, Macomb, Ill. A set with glossy finish, $\$ 2$.on: or hand-tinted, $\$$ jo 00 .
 Co., 2929 Boadway. New York City.
 Mathematica, Amberdam Ase and lekith St., New loh (ity.
 Mathematica, Amberdam Ave and lstih St. New York City.
 tion dre., Warhingum, D. C. Sepia. Sl. 10 eath.

 ture pejectors. lontable suceth and toom cepupped with dark shades.

Sorrors and Suppifs

small iost (upptox 25 cents for a sheet $81 / 2^{\prime \prime} \times 1 I^{\prime \prime}$). This is an excellent way in which copies of interesting and outstanding work by pupils can be kcpt . Some of these companies also reproduce material in quantity by the photo-offset process (approx., $\$ 1.75$ for the first 100 copies; 25 cents for each additional 100). Two companies in the New York area are Hudson Blue and Photo I'rint Co., Inc., 25 Broadway, New York City; Ccmmerce Photo Print Corporation, 1 Wall St:, New York City.
Unimerity prints notebook for mounting pictures. University Prints, Co., Newton, Mass. $\$ 1.25$. This notebook provides space for mounting 200 pic. tures. The sheets are green-gray. Paper for notes is also provided.
The motere cotiection. John C. Dana and Marcelle Frebanlt. H. W' Wilson Co., New York City. 90 cents. A paper-bound volume especfally designed for libarians, but of value to all teachers. Gives list of publishers and addreses for pictures and postcards! Some of the topics treated are: how pictures are obtained; filing of prictures; mounting, hanging, and display; classification and subject headings.
I'frtical. file in every hbrary. Orvizz and Miller. Remingion-Rand, Inc., 315 Fourth Ave., New York City. Free. Directions for filing and cataloguing clippings, picturcs, etc., which, although primarily for the librarian, are also of value to the mathematics teacher.
The betifetis board as a feacming devige. B. J. R. Stulper. Bureau of Publications, Teathers College, New York City. 20 cents. An interesting account of wass in which this rather neglected teaching device has been used effectively.
Grafmic presentations. Wi. C. Brinton. Published by author, 599 Eleventh A Ac., New York. 1939. 512 pp. $\$ 5.00$. Techniques of making charts, graphs, and other eppes of representation of facts.
How to lese pictorial statistics. Rudolph Modley. Harper and Brothers, New York, 1937. 170 pp . $\$ 3.00$. Illustrated with tables, charts, and maps. l'seful in all subjerts.

Amatfik sthf making. R. B. Beals. American Dhotography. Vol. 32, pp. 685 68R. October 1938. Valuable suggestions.

 V'mal [nstuctom. N. F. A., 1812 Illinois St., 1 awrence, Kan. 25 cents.
 507. Aptil 1998. The method of making lamean shates on glass or lumarith by hathe using a variety of techmiques. Diactions are aho given for a homemate light table for wonk on slider.
 least one compant which will make hatem shase, either plain or colored, or strip films. foom pitures or negatiocs. Consult local directory. Among
fims in the Now Yonk Cin :nca ar Comopolitan Sudios, 145 West 45th St.: Flward Vian Altena, 71 West 45 h St.; Ideal Studios, Inc., 160 West 46 h St.
Care of himbl hif amb momondigtire filam in libraries, Superintendent of Doctuments, Washingron, D. C., 1936.8 pp. 5 cents. Standards Research Paper No. 942 , on the care and storage of this visual material.
Bfoter bantfry stme co., 131 East 23rd St., New York City. This company setls lantern slide materials.

Measurliment

Mintorical. revifw of the meastrement of thength, Ford Motor Co., Dearbon, Mich. Fier. A folder givin a short illustrated history of measurements.
 Deparment of Commerce, Miscellancous Publications No. 64. Superintendcut of Doruments, Wahhington, D. C. 34 pp .15 cents. Although published in 1935, this bulletin is still one of the most valuable publications in the ficld.
 of Standirds. Superintendent of Dochments, LGashington, D. C. 40 cents. A valuable wall chart.
Stamdards of whegre and meastry. Paige live No. 64. Superintendent of Dosuments, Wiahington, D, C. Free. A list of government publications dealing with tests of metals, cement, concrete, iron, electricity, clays, and photoghtphic materials. Many publeations on standards of weight, length, cleomity, westance, cic.
 paper, and similar supplies. Write for further information and samples.
 City, Mannheim (!pe (No. 100) 7 ft . long. $\$ 8.00$. Polyphase type (duplex) 7 ft . long, \$15.00.
Iomer instremens, Fant Palentinc, Ohio. Mathematical aids.

VISUAL AHIS IN TEACHING.

E. R. Breslich

When visual aids are used in teaching, it is as necessary as in the case of any other teaching device to have clearly in mind the objectives to be attained with the pupils. Faulty use of a teaching procedure makes teaching ineffective. It may even destroy what the procedure is expected to accomplish. For example, one of the aims of supervised study is to make the pupil intellectually independent; yet one of the most common criticisms of supervised study is that it makes pupils depend too much on the teacher. The teacher who thinks that he can help the pupil best and most quickly by removing all obstacles will be doing much of the work for him and thus training him to be more and more dependent. However, the teacher who stimulates interest and effort, raises questions for which the pupil finds the answers, and instructs him in effective ways of study will train him to become more and more independent. Thus, the criticisms are not really directed against supervised study but against the way of administering it.

Similarly, those who minimize the importance of visual aid or even condemn its use have probably been influenced by faulty uses in teaching which they have observed.

The following discussion of the more important objectives and of the methods of using visual aids may suggest ways of making them effective.

Understanding the Meanings of Mathmamgal. Concepts

Cateful analyses of the mental processes and of the written work of pupils disclose that much of the difficulty they experience in the study of mathematics is caused by the failure to understand the basic mathematical concepts. Unfortunately, these concepts are tow often tegaded as simple by the teacher. For example, children are taught factions in the upper grades of the elementary school and use them thoughout high school. Howeser, the errors which
high schoe students make are coinvincing evidence of their lack of a clear understatiang of the meaning of the fiaction concept.

- The same is true of other basic concepts in the various mathematiaal subjects; for example, the literal number, signed number, exponent and equation in algebra; the triangle, circle, and area in syometry; and the trigonometric ratio and function in trigonometry. The teacher in search of ways of helping the pupil attain the necessiny understandings will fand that vistal aids ate a most helpful ally.

The following illustrations indicate the procedures for using visual aids with several basic mathematical concepts.

Iiteral number. The introduction of letters as number symbols maks an important step in mathematical education. Three aspects need to be taught in the begimares course.

Finst, the idea is to be dereloped that a literal number is an unknown momber which is malike the specific numbers of arithmetic. The discussion may stat from a line segment, or an angle, of maknown length or size. Conveniently this may be developed by a letter, such as lor a. The pupil then determines by measurement the numbers denoted be the leter l or a. Thus he leams how lettens are used comenienty as symbols for waknown numhers whose values mat be found be some process, in this case by measmencolt. I he mistake of thinking of literal numbers as names is theneby atoded. From the begiming the are actually symbols for numbers.

A secomi apert tading the papil to a fuller monderstanding of the meming of the lite mamber concept is the idea of general nomber. that is, of a moneter sumbol whith may have any value whatsoere. This mav be derised trom a thangle whose unk nown
 the value of the manown mumber $a-b+c$. However, the triande max be ans thande, and a . . . b - $\quad c$ therefore denotes the perimeter of all timgles that mat be domen. It will have a dif. ferent whe for exh new wimgle; in fact, it may have an indefinite number of whers.

The dea that a literal mamber mas be vatable mumber is visumied with the mumber sale. When a tow has naveled a quich mamber of mimates he distane passed over may be denoted
by d As the train continues to travel and the number of minutes changes, the distance represented by the literal number d al o changes. The changes may be visualized by mark f various values of d on the number scale. The number d is said to "vary" with the number of minutes. It is a variable number.

Angle Fividence that many pupils who have studied geometry for some time are confused about the meaning of an angle is obtained when they compare sizes of angles on the basis of lengths of sides or when they speak of a straight angle as a straight line.

The first step in developing this concept is to identify illustrations of angles in the classoom and out of doors, such as those observed on walls, ceiling, floor, desk, chalkbox, and other familiar objects found in every classroom. From such observations the pupil comes to the conclusion that an angle is a geometric figure formed by two straight lines which meet or intersect.

The blackboard compasses may then be used to visualize the meaning of the size of an angle. Keeping one arm of the compasses fixed in position, the teacher turns the otaer arm so that it occupies several other pensitions. This illustrates that the size of an angle depends on the size of the opening of the compasses or on the amount of tuming, not on the lengths of the sides. The smaller of two angles may actually have the longer sicies. The blackboard protractor is then introduced to show how the size of an angle may be found by measurement. The same instruments are used with good results to clarify the meanings of acute angle, right angle, obtuse angle, and straight argle. A straight angle is something very different from a staight line, because it has a vertex and two sides. It is iound by turning one side to the bosition of the other, not by moving the pencil point along the edge of a roler.

Signed numbers. Fxperience has shown that pmpih have much difficulty with signed numbers. Because of their importanc. in all algethaic work the best eaching procedure should be employed. Teathers have used with suceess a variety of devices to develop dear meanings. ()re of the simplest and most effective is the number seale, with which the pupil is usually familiar from its uses in measurement. He is acquainted with the fact that, as he passes fom the left to the right, the numbers on the scale increase, and
that as he passes from the right to the left, the numbers on the scale dectrase to zero. The scale is now extended to the left beyond the zero miak, and points are marked one, two, three, and more units from zeto. They are labeled -1, -2, -3 , etc. The entire scale is now examined to bring out such iacts as the following:
(a) All negative numbers are less than zero, in the sense that they lie to the left of \quad ero. $\mathrm{T}_{\text {mus }}-1<0,-2<0,-3<0$, etc.
(b) Any number on the scale is less than any number to its right; e.g., $-3<-2,-2<-1$. etc.
(c) Any number is greater than any number located to its left; .e.g., $-3>-5,0>-8$, etc.
The number scale need not be the only device used in teaching signed numbers. Temperature readings, distunces north and south or east and west, and other devices should follow until the meaning of positive and negative numbers is clearly understood. Not until this has been accomplished is the pupil ready to take the next step, to learn how to operate with signed numbers.

Equation. One of the best devices used to lead the pupil to a full knowledge of equations is a pair of scales such as are used in laboratorics. When in balance, the total amont is the same on both sides. In that position the scalcs illustrate an equation. Thus an equation is a statement of the equality of wo number expressions.

If the total amount on one side of the scales is changed, an equal change must be made on the other side to preserve the balance. Thus we may add the same number of weights to both sides, take away (subtract) the same number from both sides. dnuble or treble (multiply) the number of weights on both sides, or replas them by one-half, cne-third, etc. (divide) of the number of weights.

The changes with the loadings of the scales visualize the basic principles cmployed in solving equations. The frocess changes the values of the members of the equation, but \therefore es mot destore the equalit:

By always thinking of an equation as a statement of balance of two number expressions, the pupil will escape much of the confusion into which he is thrown by such merhanical processes as
tramsposition. Solving an equation alrays means to add to, subtract from, multiply, or divide both members by the same number.

Trigonometric function. For a complete understanding of the trigonometric functions the pupil must master such fundamental facts and principles as the following:
(a) A knowledge of the changes in value of the function as the angle changes from 0° to 360°.
(b) A knowledge of the greatest and least values which a function may have.
(c) Ability to determine the algebraic sign of a function for all angles lying in a particular quadrant.
(d) Ability to express the function of any angle in terns of an angle less than 45°.
(e) Ability to express the values of functions of negative angles in terms of positive angles.
These facts and others may be developed separately, biat they can all be visualied by one device, the graph. A quici glance at the graph, or indeed a 'ental picture of it, enables the pupil to answer questions relatin, to any of the facts stated above. The time used in making and interpreting the graphs of the trigonometric functions is very profitably spent.

Understanming Mathematigal Procfsses

Such abstract processes as division of decimal fractions, extraction of square root, factoring, and the operations with signed numbers can be tanght by rules. However, a rule is gradually forgotten and, in the performance of a process, confusion arises concerning the steps involved and the order in which the steps are to be taken. The difficulty may be reduced or even eliminated by the use of visial aids to illustrate the steps in a process and to clarify the reasons for the various steps. The pupil thus taught is given a chance to retun to these aids and through them to rise abow the confusion in which he finds himself.

The following examples show the use of visual aids in teaching mathematical processes:
thdition of signed numbers. Two rules are usually tanght: one raplies to mabers hasing like signs; the other, to mmbers hav-
ing unlike signs. The number scale visualizes both cases. The rule in the second case consists of the following steps. The arithmetical difference is taken, the sign of the number having the larger absolute value is fixed in mind, and that sign is written before the arithmetical difference. If a pupil has forgotten the rule or if he is not sure of it, he may return to the number scale to find the answer, or he may use the number scale to reconstruct or verify the rule. To find the sum of +12 and - -3 he proceeds as follows: +12 added to -3 means that he is to locate +12 on the scale and from that point to move 3 units to the left. He is then 9 units to the right of the zero mark, whicl? means that the answer is +9 . It is not necessary to make a drawing of the scale, because the steps are so simple that they are easily visualized mentally.

By this device he may add two numbers having like signs. Subtraction may also be visualized on the number scale. In this case the scale is merely used to visualize and'develop the rule. Because the rule is simple, pupills do not need to use the scale to solve subtraction problems.

Finding the square root of a n'mber. Because this process is not used as frequently as the four fundamental processes, it is more easily forgotten. Hence, it is necessary to use a method of teaching which will facilitate the recall of the steps involved.

The given number whose square root is to be found is represented by the area of a squate composed of two squates whose areas are a^{2} and b^{2}, and two equal rectangles each of area $a b$. The area of the large square is $a^{2}+2 a b+b^{2}$, which therefore represents the given number. This suggests the steps to be tanem in finding the side $a+b$, which represents the required square root. The problem thus reduces itself to finding a and b. The steps are:
(a) To find the largest number a whose spane in less than the given number, i.e., $a^{2}+2 a b+b^{2}$.
(b) a^{2} is subtuated from the given number, i.e., $a^{2}-2 \cdot b+b^{2}$.
(c) The remainder $2 a b$. I. h^{2} shows the temanime steps. i.e.. to divide it by 2 to detemine b, and to subtract $2 a b+b^{2}$ from the previous remainder.
(d) If thete is no new temainder, $a-b$ is the required root. If there is a new tomainder after subtrating $2 a b+b^{2}$ or if the
given number is not a square, steps similar to (c) are repeated.
The purpose of the use of the square is to facilitate the recall of $a^{2}+2 a b+b^{2}$, which then shows the steps to be taken in the process.
Solving equations. It has been shown ałoove how a pair of scales may be used to visualize the meaning and the process of solution of simple equations. As the pupil continues the study of algebra, other diffculties with equations arise. For example, it is not easy to see why a quadratic equation has two roots that are equally valid, why the solution of a system of linear equations should consist of a pair of numbers, and why simultaneous quadratic equations should have more than one pair of numbers satisfying the equations.

The answers to these perplexing problems are found in the use of graphs to visualize the processes of solving and in the solutions. themselves. The graph of a quadratic function $a x^{2}+b x+c$ shows the changes in the values of the functions. When the graph crosses the x axis twice, the function assumes the value 0 twice; the equation $a x^{2}+b x+c=0$ has therefore two roots. The graphical method also shows that four solutions are to be expected in the case of simultancous quadratics and that they are not necessarily distinct or even real. Furthermore, it illustrates each step in the process of solving and the meaning and purpose of each new equation derived from those that precede. It explains why the final results are the solutions of the original equations.

Experience has shown that the confusion that arises in the study of equations may be avoided by letting the graphical solutions always prectele the algebraic methods.

Understanding Relationships

Mathematical relationships ate mote readily understood and permanerly setained if they are illustrated in diagrams and models The purii who associates with the expression $(a+b)^{2}$ the area of a squate which is divided into two squares and two equal rectangles the sum of whose areas is $a^{2}+2 a b+b^{2}$ will al ways remember the conect equivalent of $(a+b)^{2}$. If the area of a triangle is developed from a diagiam showing it to be one-
half of the parallelogram, the pupil will understand why the factor $1 / 2$ occurs in the formula $A=1 / 2 b h$. Similarly, he will not forget that the formula for the volume of a pyramid contains the factor $\frac{1,3}{3}$ if he has developed it by pouring the contents of a pyramid filled with sand into a prism having the same base and altitude as the pyramid and finding that he must do it three times in order to fill the prism. He will be able to recall the formula $V^{\prime}=a b c$ for finding the volume of the rectangular parallelepiped if he has handled a rectangular block divided into a layers, each . of which is divided into b strips, each of which in turn is divided into c unit cubes. He will produce automaticaliy the relationship between the sides of a right triangle if he visualizes the familiar figure of a right triangle with a square drawn on each side.

Teachers recognize the importance of the ability to visualize telationships in algebra and analytic geometry. Pupils are expected to know that the graph of $y=m x+b$ is a straight line, that the graph of $y=a x^{2}+b x+c$ is a parabola, and that the points of intersection illustrate the solutions of the system

$$
\begin{array}{r}
a x^{2}+b x+c=0 \\
m x+b=0
\end{array}
$$

Thus they recognize the fact that a pair of equations, one of which is linear and the other quadratic, cannot have more than two solutions. These and further important facts which are not readily understood by solving the equations may be derived from graphs. Similarly, pupils are expected to know that the ellipse, the hyperbola, and the citcle represent, respectively, the relationships $x^{2} a^{2}+y^{y^{2}}=1, \stackrel{a^{2}}{b^{2}}-\frac{y^{2}}{b^{2}}=1$ and $x^{2}+y^{2}=r^{2}$. Such knowl. edge is useful in the solution of simultaneous equations.

Training in Space Imagination

Itaining in space imagination is generally listed as a major objective of the teathing of geomeny. Training is offered in plane geometry by extending the ideas and relations in the plane to thee dimenconal space whete they may be observed in familiar settings. The course in solid geometre aims further to develop the ability to bintalie spatial figures and telations. It also trains
pupils to make good drawings of these figuess on paper. Furthermore, pupils should learn to visualize in threedimensional space the points, lines, and planes shown in two-dimensional drawings. Very often herein lies a major difficulty in teaching solid geometry: Some pupils require considerable training before they are able to visualize from the textbook drawings the geometric forms which they find in their surroundings. Models of the drawings are helpful, especially those made by the pupils themselves.

It is advisable that in the early stages of the course, the study of the diagrams in the textbook be preceded by an examination of models. Thus, the pupil may count the vertices, edge"s, and faces of a cube on the tangible model. He may note the-relative positions of parallel and perpendicular lines and planes, and he may derive therefrom the formulas for finding the areas of faces and of the entire surface.

When he has become familiar with the model, he is ready to learn to draw it on paper. Many pupils need time and practice before they can make a satisfactory drawing. After that, they are prepared to study profitably the diagram of the cube in the textbook. Fiven then some pupils will find it necessary, or helpful, to return to the model to clarify their ideas.

Frequently, before reciting in class, the pupil may build up a model of the diagram with sticks and cardboard. Wide opportunity is offered here for the use of creative imagination.

Some teachers object to the use of visual aids because they believe that the time spent on making models and building up diagrams could be more profitably empioyed in the study of the geometry involved. It is true that some teachers and pupils do become so interested in this type of work that they carry it to extremes. In such cases the study of geometry might actually suffer. Most teachers, howerer, will atoid extremes, eqpecially since the ripht kind of training will reduce the need for models to the point whore they will be used only in cases whici experience has shown to be very difficult. This may be necossary even late in the contse. For example, few pupils are able to form a clear concep. tion of spherial triangles and polygons merely by looking at the diegrims usually found in texthooks. If they are permitted to obserse how the teacher draws a spherical polygon on a spherical

- blackboard, the difficulty is easily removed. If no spherical btack:, board is available, good results may be obtained with a baseball. an orange, or an apple. Photographic views of polygons drawn on a spherical blackboard have been used with good results.

Increasing the Pupil's Understanding; of His Finikonment

One of the objectives of education is to acquaint the pupil more fully with his surroundings. Mathematics may contribute to this knowledge by making use of the many opportunities which geometry offers for observing geometric facts and principles in the classroom and out of doors. It is not difficult to find evidence that such training is badly needed. Sone pupils cannot supply even the most elementary information about the height of the building in which they lite, the size of the lot on which it is built, the width of the strect, and the distance to school. Partly responsible for this lack
\therefore of observation are the teachers of mathematics who limit their teaching to the facts in the texthook and fail to call attention to the abundance of illustations in the familar foms and objects which pupils may ohserve all around them.

The right kind of teaching makes pupils geometryminded. so that the recognize that geometric foms ane a part of their surroundings. The windowpanes and blackboard represent plane sunfaces. Tiangles are discovered whose sides are flagpoles or smokestacks. Filing cases, milroad cars, trucks, and cartons are rectangular forms, Frait cans, boilers, tree trunks, and silos are erlinders. Iumblens. wastebaskets, pors, and lampshades ate frustums of cones. Fservorere the pupits may recognize illustrations of the figute which they study in geomeny.

A small amome of simple work in sureeving should replace some textbonk poblems. wimbere the pupil's apperi.ation of mathematios.

Gasorocom Fequmpat

In most schools the mathematics classtom has poor equipment when eompared with that of other departments, c.g., the sciences. for vans it has been the opinion of ahod administrators in gena, ai that mathematio teathers can get on vely nicely with an
craser and a straightedge. It is difficult to change this attitude, which fails to recognize that mathematics courses can be greatly enriched by the use of equipment which relates mathematics to cersday life and.which, by illustrating and visualizing mathematical facts and pinciples, increases the pupils' understandings.

The following list of visual aids is by no means complete but it should prove helpful.

Mateinls present in the classoom. The fact that certain material is amilable without cost does not minimize its value. Indeed, its simplicity and familiatity mate it wefe effective, particularly in developing the basic concepsen geometry. The tacher should refer freely to illustrations found on the walls, ceiling, and floor of the room, the teacher's desk, chalkbes, windows, doors, book. (ases, and filing cases.

Materinls demated or made by the pupils. Here one may inWhe sheets of cardbord, sticks, string, pictures, posters, homemade onansit. plane table, and models. With a cardboard tube and two small protactors a skillful pupil can make a transit "hich is quite satisfactors for simple work in survering.

In some schools teathers and pupils have in a short time as. sembled excellent wollertions of poster which illatate mathe mut it pimiples or show the uses of mathematies. Recently such a collection of pupil-made posters was exhihited by Miss Ida

fontems and instm tions for making cardooand models of poly-

 thatore of wonk stimulates the creative imagimaton of pupils. I wh buw dim will uy wh mass the perceding class. If ennly the

 tiale. be lh. Hander. caphanshow moth of this woth can be done.

Inçproviar bul asential equipment. Here one should list

 yunted blathend fon whophal wonh w daith mathematical whan and parcome

Pioture of bidecs, dmas, and building exhibiting mathemat.

Visual Aids

ical facts show the applications of mathematics in art, nature, and architecture.

More expensive equipment. This may include low-priced transit, steel tape, level, and sextant for doing some field work to supplement geometry and trigonometry, diagrams in three dimensions, such as those published by Newson and Company, New York City, to illustrate and emphasize the significance of mathematics in everyday life; stercoscope with views showing the practical applications of mathematical principles.

Films are a valuable instrument for teaching mathematics. In their use mathematics is far behind the sciences. It is to be hoped - that this type of visual aid to mathematics will be more fully developed in the near future.

A IABORATORY APPROACH TO SOLID GEOMETRY

Miles. C. Hartley

Dlering recent years emphasis on logical reasoning in everyday life and on practical applications, as well as innovations to provide for individual differences, has resulted in radical changes in the courses of study and in the textbooks in plane geometry. Solid geometry, however, has not enjoyed this renovation; "Solid Geometry for Today" and "New Solid Geometry" are but modern names for Euclid, Books VI to IX, with the result that solid geometry as now taught in our secondary schools has been called the most uninteresting subject of the curriculum. It is the writer's purpose to present here the results of experiments conducted at the University High School, Urbana, Illinois, in the hope that this presentation may lead other teachers to try more laboratory work in their teaching of solid geometry and thus to stimulate greater interest in the subject.

One of the primary objectives of a course in solid geometry should be the development of a pupil's geometrical imagination so that he may visualize clearly the correct spatial relationships. This mental growth may be speeded up through perspective-drawings and pupil-made models.

Perspective

The ability to look at a two-dimensional drawing of a threedimensional objece and to see it as a solii. figure can, by a study of perspective, be developed so that diagrams of planes and polyhedrons assume a reality of depth as one reads into the figure the important third dimension.

The means of such development here presented is a lecturelaboratory method in which the teacher makes the drawings on the blackboatd as he gives the explanation and the students make the same drawings at their desks. The following discussion intro-

A I.aboratory Approach

duces the sudents to solid goomety through perspective diawing.
"In plate geometry you studied many figures, such as the poly. gon whd the cincle, which an be represented on a flat surface called a plane. These figures had only two dimensions: lengeth and width. In solid geometry you will stady ligures of three di. memsums: longh. width, and thickness. These figures, such as the cslinder, cone. prismi, and pyamid, are not contined to a plane; hence, the differ from the figures of plane geometry. Befone you tuds the properties of these figutes, you will want to learn to draw them so thet they will appear to be solid and not tlat like a sheet of paper. Ihis.is done b a method called perapectioe, whith in used to mate an object appear to have dimensions."
"If gon weme tiding along a conotete highway in the level comtuy of the Middle West, sou would see the flat pation suct hing akay in the disance matil it eetmed to meet the sky in a long. straight line which is salled the honian. In foom of yon, ats gon

the horizon is at three different eye levels. Bring to class examples of vanishing points in pictures and photographs.)
"Can you imagine a large box placed on the highway? The edges of the box which rest on the highway form parts of lines which, if extended along the highway, would meet at the vanishins point. This rould likewise be true for the upper parallel edges. In Figure ? you have a sketch of the box as it would appear if you were standing beside it. Figate, 3 shows how the box would appear if !ou were seated before it."

Figure !

Ficure 3
(Fxercises. Draw a kitchen table as it would appear if you wete standing beside it. Draw the table as it would appear if you were sitting beside it. Draw a picture of a stretch of a railroad mak with telegraph poles and fences on either side of it.)
fandel lines ane lines that ahas semain or

- nus tar they are ex-
.. 1 shme : \because four colocs of the box are parallel and all . : : 1 incet at the vanishing point. As we look down the highwrs. line sides of the concrete roadbed, the rows of telephone pulos. the whephone wises, and the fence form sets of parallel linc, which meet at the satte vanishing point. Hence, in perfartive a gromp of patallel lines which recede from the observer (whetore a a vanishing point on a level with the observers eye. The exoptions tre patallel lines which ran from right to left forallel th the horime: and parallel lines which are vertical. In the ber in Figum 2 . thene ate four sets of each type of parallel lince,"
 piped in selid aconetry) has six tertangular tates; as edges form
thee sets of faralled lines: four parallel tines of width, four paralle lines of length, and four paralle lines of height. If you turn the brick so that sou look along the length lines, you have an end view of it (fig. 4). The vanishing point does not appear in the drawing. bat you can find it by extending the two visible imes whichuphesent the parallel edges of lengh (Fig. 5). The horizon is drawn through this point and puatlel the front edges of the brick: When the bich is placed so that three of its faces are vis-

1:2ツ14

Figure 5
rible, these we thre lines which an be extended to locate the

$1 \because 11$ -
＂You must not forget the parallel lines which reptesent the width of the brick．When sou extend these lines，you find a sec－ ond whishing point which lies on the same horizon as the first vanishing point（lig．（9）．．Is gou tum the brick more and more，

1』いば！
son find that the first vanishing print moves away to the right atong the horizon and that the second vanishing point moves to the 1 ight abos．The third set of parallel lines is drawn straight up and down：there is no sanishing point to consider for them．＂
（Fxercior．In a photograph locate the vanishing points by ex－ tending foudtel lines．Make a drawing of a cube in each of the following positions：（a）midway betweon two vanishing points and below the honimn；（b）to the rightecenter of two ranishing points and below the homiton；（c）to the leftecnter of two van－ ishing points and intow the horizon；（d）midway between two s．mishing poins on a horion behind the cube；（c）to the right－ wolter of wes waishing points on a horizon behind the cube； （t）whe leftecnter of two tanishing points on a horizon behind the whe：）
 diapomals（fige I6，The peropective of a ter

1isulace 10 dmale is a quabilutemal but its conter is still the puint of intersection of the disuonah．Thun won have a method fon detemminith the point of bisection of a line rement in a perpertive d．min！．＂

 pint V^{\prime} determines the points $I I$ and l ，which are the mid points

ishing point l^{\prime} detemintes f as the mide point of $A(1)$ ，and（ $;$ as the mid－pojnt of $\sqrt{3}(.$, ．

＂You can use this same method to detemme the font side of a rectangle when you know thee sides and the center．For example， $A B$ and CD（Fig．12）ane two parallel lines of the same length；

1：4um 1：3

1はいいし1

A．is the mad puint of $A B$ ．Draw the the paralla lines $A C, E F$ ， and $B I$ ）．The line $A F$ will meet $B 1$ ）extended in point G（Fig． 13）：（；dutomines the position of line GII，the fourth side of the ternanle of which F is the come（Fig．14）．＂
lhis sume relationship hold，the in perspective and enables wh dan wate．Datw any vental line $A B$ with midpoint E

ligure
$B D$, the desired unit of length. Draw $D C$ parallel to $A B ; C D$ intersects $E V$ in F; $A F$ intersects $B V$ in G; draw $G H$ parallel to $A B$, etc. ' Then $B I=D G=G J=J M$, etc. Now, if you wish to draw the perspective of a fence and have two posts placed, you can draw as many posts as you wish all correctly spaced."
(Exercises. Draw a picture of railroad tracks with telegraph poles on either side. Draw the perspective of a checkerboard eight units on a side (a) using one vanishing point and (b) using two vanishing points.)

Figure 16

Figure 17
"In plane gemmetry we spoke of a plane as a flat sumface. Now in solid geometry we shall need a more precise definition expressed in mathematical language. Hence, a plane is a surface such that. if any two of its points are connected by a straight line. the line lies entirely in the surface. Since there is no limit to the size of a plane, it is impossible to show a complete plane in a drawing. It is customary to think of a plane as a rectangle which in a draw. ing beromes a traperoid or a quadrihateral. depending upon the position of the vanishing point. $M N$ is a horizontal plane (lig.
 all perpendicular to $A B$. (M ' is a vertis plate (fig. 17)."
(fixercises. Draw a right triangle in a horiontal plane; an isosceles trangle: an equilateral tangle. Draw two plance inter. secting in a homimontal linc: in a wetical line.

The comse may mow porced in the cuntomat mamer with the introductony work on lines and planes. It would be a grave
error, however, to terminate all discussion of perspective at this point. Perspective drawing should be used throughout the course and further explamations of the drawing of prisms, pyramids, cylinders, and cones should be given as needed.

Simple Models

Models hate been employed for many, many years, but they have not been used extensively in solid geometry because their value in the deselopment of the concept of space has been woefully underestimated. In the early stages of a course in solid geometry, models are essential. Sets of little wooden models of geometrical solids are asailable commercially but are too small for classroom demonstration; hence, homemade models as here described are usually to be preferred.

The elementary relationships of lines and planes are easily depicted as is shown in the following examples where definitiofs, postulates, and theorems concerning lines and planes are illustrated by means of ardhoand, wite, cork, and string. The cardboard whould be quite heatw or thin boards on pieces of plywood could be wed. 'The wite wold be pieces of an old clothes hanger.

/ Fume $1 \times$
I vantht lime emtersects a plane in a point. Vse a piece of
 He lane ric. las.

board halfway through and place them together to form the inter－ secting planes（Fig．19）．
Three planes may intersect in three parallel lines．Cut three pieces of cardboard halfway through and place them together to form the intersecting planes（Fig．20）．

Figute 20
Three planes may intersect in a straight line．Cut three pieces of cardhoard hallway thongh as shown（Fig．21）．

1ぼいい゚ 21
Three planes may intersect in a point．Join thee triangles as in Figure $29.4 B=\{1 F$ ．Cut out anound the edge，leating a lapel on $A F$ ．Fold on $A F, A E$ ，and $A C$ ；paste the lapel on $A B$ ．

If two straight lines do not lie in the same plane，they are skew lines．Use four pieces of wite and three corks（or modeling（lay）． Figue 23 shows two skew lines perpendicular to two intensecting lines；$A E \perp A D, C B \perp D B$ ．

Each of three lines may be perpendicula to the other tavo．Use three pieces of wire and a conk．$A B, C B$, and $D B$ are mutually perpendicular（It，2l）．

Finnce： 2

トッ41ばツ！

lach of there phanes max be perperndicular to the óthere tion．

All the perpendiculars to a lime at a given point lie in a plane perpendicular to the gian line．Lese ardboand，cork，and several！ pieces of wite．The vertical line is the gisen line；other wios are perpendicular to it．The conk holds the wites and is glued to the cardboard，which repesents the plane in which the perpendicu－ lars lie．（Fig．26）．

I：gute 2i

f：ッいは ご

A line perpermieular to one of reto parallel phanes is perpen－ dicular to the other．t＇se two pieces of cardbond and a quater．

1f two parallel planes aic intersected by a third plane, the lines of intersection are parallel. Use three pieces of cardboard cut halfway through, as shown in Figure 28.

Figue: ․
\because
If a line is perpendicular to each of tu'o intersecting lines, it is perpendicular to the plane of the turo lines. A quarter-inch dowel (or piece of wire). a piece oi heavy cardboard (or plywood) . and

Figute 29
string are the materials needed. $A B$, the cardboard, represents the plane; $M N$, the dowel, repesemts a line perpendicular to the lines ($A:$ and $E F$ drawn on the cardboard. ME:- $E N$. GM, HM, MM, G.V, $H N$, and N ate wing (lig. O?9).

String Mobel.s

It is tather gemendly asumed that after the intoductory unit in shid geometty the avenge pupia shombed ned mo further asistance in the sumaliation of spate retatonships. But many of

In units on Prisms, Cylinders, Pyramids, and Cones many theorems can be readily illustrated by means of string models. A brief suggested list of such theorems follows:
(a) The sections of a prism made by pasallel planes cutting all ti.e lateral edges are congencmt polygons.
(b) The plane passed through two diagonally opposite edges of a paralielepiped divides it into two equal triangular prisms.
(c) F.very section of a cylinder made by a plane passing through an clement is a parallelogram.
(d) If a pramid is cut by a plane paralled to the base, the sec. tion is similar to the base.
(e) The solume of a triangular promid is equal to one-third the ponduct of the altitude and the ane of the bose.
(f) The intersection of a right circulat cone and a plane is a conic section.

Figucs, two parts of which lie in parallel planes, are the easiest to represent as models, but more complex ones can be reproduced. One of the most valuatle models is the one tom the theorem. At oblique prism is equal to a right prism whose base is a right secfion of the ohlique prism and whowe altitule is c'qual to a lateral wedge of the oblique prism, in which the base of the oblique prism is not parallel to the base of the right pism. Practically every theonem and corollary repesents a possibility for conversion into conctete lorm by means of wood and string.

The materials needed for string models are plywod, onc-quar. ter of an inch thirk and cut into foot spuates: dowels, three cighths of an inch in diameter and cut into foot lengths: balls of capet wap, (or thread) in seveal colors; threcequater inch maits. The averase ows per model is about eleven coms. Fine e 30 show a model for thenem (f) where the conic sertion is a hepetolat

The ingenions tacher will find many wes to introduce this work. One possible pocedur wombld be a unit on Models to fol. low the unit on I ines and Planes. First, it would be necessary to define polthedron, prism, parallelepiped, pramid, cylinder, and cone. These definitions would take on deeper meanine if the soldes wete atmatiy constucted to meet the given gudifications.

For example, in the case of a parallelepiped, three pairs of congruent paraltitherams of corret dimensions could be fastened together by means of gummed labels; in the case of a cylinder, the

wolid could be gemelated byonning a setangle and then comstrusted hom or retangle and two chites of correct dimensions. Second. as seon as these definition we mondesteod. a list of theorems similat whe whe abow would be presented to the edass and eath member won'd :home a thonem for which he wished
 fould be diwibumed and the diterime the we what be followed umtil the model was complete. The wtat comstumen might be made in the wookhop it one "ere phalathe. han the wonk is so
 Ifter thi lahomato unit, the come womblollow its nomal ses quence the models being nsed for diontom demombations as

I.ABORAIORI SHELI NO. I

1. projfat. To constuct a model which will represent correctly the gec. metrical relationships of the given theorem.
2. thaorim. The plane passed.through two diagonally opposite e'dges of a parallelepiped divides at into two equal tiangular prisms.
m. material.s. 2 pieces of plywod, 12 in , by 12 in .

4 dowels, $3 / 8 \mathrm{in}$. in diameter.
$43 /$-inch nails; 1 ㄹinch nail.
Glue.
Carpet warp.
Hammer.
w. proch derfs.
A. Sketh in the pate below the figute fitst as it appears in the text. second, as it would appear fomm a point 90° to the right, and third, as it would appear from a point 90° to the left.

rague 1

Figuc』

Figure 3
B. Dnaw below the configutation which appears in the lower plane and in a phater p.undel wit.

1:3140

18:
(: Reprothe the two drawint of 13 on the wo pieces of plywod:
1). Ibug a two incit mail, mate hotes in the plyowed at one hatf inch mtednds mathe: the coulane of the drawings of C

1. On coul puet of plaworl lorate four point at the comers. eath one half im hom the ealge. Nat the four dowels to the plyword in thex lome positions. Plate a dop of glace on the end of earh dowe betone dising the nail.
2. I.ne atapet watp through the toles and from the upper to the lower piere of plewod to forni the lateral fates of the fugute. Use a dif. ferme who of warp to represent planes which intersect the figure. If a latge momber of theats mas pans thongh the same hole, that hole will mecematy have to be enlarged.
 lation an will help gon waty that your model represents the corrert relationhips.
the face angles of a polyhedral angle must be less than 360°, he must place together the vertices of three, four, or five equilateral thangles, three squates, or three regular pentagons. The polyhedons fomed under these conditions are the tetrahedron, octahedron, icosahedron, hexahedron, and dodecahedron, respectively. No regular polyhedron is possible with regular polygons of more than five sides as faces, because the sum of the face angles at each vetex would be 360° or more. Here the lesson usually ends, but it can profitably be carricd much further. Iev the pupil build these polyhedrons with regular polygons cut from cardboard and fastened together with stamp hingen or gummed labels. For ex ample, to build an octahedron, the pupil fastens together four equilateral triangles to form the finst polyhedral angle and then aduls one taiangle at a time so that at each vertex he has a polyhedral angle with four 60 (degrece face angles; finally he has a polyhedhom with eight faces.

An Archimedean or semi-regular polyhedron is a solid whose poly hedral angles are equal and whose faces ane composed of two or more different kinds of regular polygons. The pupil an "discover" these solids by experimenting with equilateral triangles, squates, regular pentagons, and other figures to. compute the mumber needed for a vertex and then completing the solid figme. The valous possibilities ate given in the table which folluws:

ARCHIMFDFAN POIMHFHRONS

A. Pohbedome with iwo kmoh of face and thedral angles.

l'uits uf lach IMMheiral thele

1. '1wo l20' amgler.

\because I wo las' angles. ome (it) angle.
3 'lwo la ": angles. whe (m) anste.
2. "wo l|! ancles. sme for ande.
 ome los ameta.
(6. I wo (10) amaler.. one 60 angle.

Number of tates
Four tegular lexagoms of fout cqualateral triangles.
six fegular ortagma of cight cgmiletteral triangles. Fuhturgalar hevanans + six squatres.
 wents equalared triangles. I wrlse wewhar promagoms f.
 Ihrer spatares + two equalat th.1 thinghles.

Niame of

Thume:ated triahedron 1inmated (ube Gumeated ontahedron
Trumeatrd dixlecahedion I rumeated irosahedron Aldimedean prism
B. Polyhedrom with two kinds of faces and tetrahedral angles.
7. Two 90° angles, Six spuares + eight equilat- Cuboctahedron
(wo (i0) angles.
8. Three 90° angles. one 60° angle.
9. Two 108° angles, (wo 60^{3} angles.
10. Three fo 0° ingles. one $\frac{\left.18()^{2}-2-2\right)}{n}$ angle.
aral hiangles.
Twelve spuares + eight equilateral triangles.
Twelve pentagons + twenty cyuilater:al triangles.
Two tegular polygons wibn sides and $2 n$ equilateral triangles.

Small thombicub. octahedron
Icosidodecahedron
Archimedean primatoid
C. Polyhedrons with two kinds of fuces and perntithedral angles.
 four 60^{2} angles. lateral tiangles.
12. One $108^{\text {B a }}$:agle, Twelve regular pentagons + Sumb dedecahedtom four 60° angles. right! equinteral aimigles.

- P) Polthedroms with thee kind of faces and aihedat angles.

13. One 90° angle. Six regular octagons + cight Girat rhombicub. ane lea angle, regular hexagons + twelve one lan angle
14. One 90° angle Twelve regular decagons +

Great thombicosi. one 120° angle, wenty regular hexagons + ante 144° angle hirns spatares. ?
15. One 108° angle, Twelse regulat pentagens thent Shombiosione go angle, thirty spuares + twonty eguiothe bit) angle latetaltrianges.
doder :chedron

I ee us suppese that a pupil elects wóbuild a polyhedron whose faces are equilateral trianoles and squats. Acoording to the table, this will be a coboctahedom, a small rombicuboctahedron, or a
 lateral triangles and separes, all with sides of the same length.' Next, usiner stamp hineres, he fastems a cardboand squate to each side of a cadhond triamgle. Now he may place either a sparare

solid catdboatd model. The finst step is to construct accurately the pattern on cardboard, using ruler and compass. White Rockton Index ($110-\mathrm{lb}$. basis) is a satisfactory grade of cardboard to use for this purposes. Lapels are drawn on the edges marked "minus." The second step is to cut out the pattern and to fold it on each common

Inute 31
 sthet, obaming. in this exmole, a small thombinboctahedron

Variatoms of this polyhedron may be ohtained by making pyatmids with repulat tiangular or quadrangular bases and gluing them to the faces of the cuboctahedron. However, better-looking solids ate fomed if the figure is built up with equilateral tri.

Figure 32

Figure 33
angles, isonetes triangles, and squares in the manner just described. Figure 34 represents an original pattern created by a student who sat that it was unnecessary to build the solid and that altemate squares in the pattern could be replaced by four isosceles triangles. By studying the numbers which represent corresponding pats of the two solids (Figs. 31 and 34), the reader will be able to discover how the presess was antied out. Figure 33 shows the completed model. In a similat mamer one can obtain a star-like
polyhedron by replacing each square with four isosceles triangles and each equilateral triangle with three isosceles triangles. Many unusual concave polyhedrons can be discovered by using semiregular polyhedrons as a basis and replacing faces with isosceles triangles of different altitudes.

Fiょ!te \ddagger
Interesting excroises might be: What is the length of each edge of regular (or semi-megular) polyhedons so that they will have equal vohmes? Fqual areas? How many axes of symmetry does cach polvhedron have: obtain the semi-regular solids by cotting - off the ventices of the eegula solids. For the semiacerular poly.
hedrons, verily Euler's theotem that the number of faces of any contex polyhedron, ongether with the number of vertices, is two more than the number of edges.

Celluloid Models

It should be stated in advance that celluloid is not easy to handle and that a certain amount of practice in using it is necessaty hefore satisfactory results can be obtained. Acetone (or nail polish remover which has an acetone base) is recommended as a subbitute for an adhesive: Sconch tape can also be used to fasten edges together. I apels, which are necessary for cardboard models. are optional in the case of cellnloid models.

The abstract situation of inscribed and cheumscribed spheres is very hard to visualize and frequently results in the meaningless memonization of the definition by the pupils. To add reality to the representation of inscribed spheres, celluloid can be employed effectively to make models in which polyhedrons, cones, or cylinders circumscribe spheres. Any kind of ball (preferably col-oted)-. ping pong ball, ennis ball, celluloid ball-can be used to represent a sphere. The following formulas give the relationthips between the diameter of the inscribed sphere and an edge or chenent of the circumscribed solid.

Sulal	Jiumates of Inscibred Sphate
Cube, cdge a	a
linahedroin. edge a	${ }_{i}^{\prime} \times \bar{j}$
()tahédom. edge a	$\frac{a}{3}, i$
Iosathelton, wage ${ }^{\text {a }}$	
Wodexaludhom, colge a	$" \begin{gathered} \because i+115 i \\ 10 \end{gathered}$
	: 2
 alimule 心	$:^{\prime}$

Ihe waperion pupils an be led w disone these relationships and

Laboratory Sheet No. 2 gives complete directions for making these celluloid models.

LABORATORY SHEET NO. 2

1. PROJECT. To construct a model which will rełtresent a cumscribed about a sphere.
in. materials: Celluloid
Acetone
Ball
Calipers
ill. procedure.s.
A. Preparation.
2. The fornula for the diameter (d) of a sphere inscribed in a --------- of edge a is
3. Solve this formula for a.
4. Calculate the numerical coefficient of $d: a=\cdots-\infty$.
B. Measure the diameter of the ball.

First measurement:
Second measurement: --_-...
Third measurement: -----.
Average diameter:
C. Using the average diameter of B and the formula of A9, calculate the length of an edge of the required polyhedron.
$a=-\cdots$.
D. Construct a cardboard polyhedron having each edge the length calculated in C. Place the ball inside the polyhedron before the figure is completely closed.
Does the polyhedron circumscribe the sphere? If it does not, check your work in A, B, and C.
E. Repeat D, using celluloid instead of cardboard.
iv. conclusion.
A. When is a polyhedron said to be circumscribed about a sphere?
B. Does your celluloid polyhedron meet these requirements; that is, is it circumscribed about the sphere?

B
Conclusion
This laboratory approach to solid geometry has been so satis. factory that it has become an integial part of our course of study. It has been responsible for the high degres of achievement of several important aims of the course, namely: to acquire an understanding of the spatial relationships which exist in the world about us, to become acquainted with spatial forms, to train the spatial imagination, and to obtain an analytical insight into our environment. For the student, it has aroused a vital interest in the subject of solid geometry, and for the teacher, it has presented a challenge
to seek and to test new devices of a multisensory character which may be pofitably inomporated into an erergowing course of study.

Refremicis

Campbeiti, Winmam. Obisctuational Geometry. Harper and Brothers, New Yotk, 1899.
Fink, Kart. . 1 Hief History of Mathemalics. Open Court Publishing Co., Chicago, 1903.
Haknem, Miffs C. l'atterns of Pulyhedrom. Edwands Brothers, Ann Arbor. 1911.

Lines, I. Solil Gionmetry. Manmillan Co., New York, 1985.
Perregali, C. and Wirbek. A. Lee Reliéf en Giométrie. E. Magron, Bienne, 1914.

Norling, ErNestr. Perspechée Made Easy, Macmillan Co., New York, 1939.
Phinils, A. W. and Fishfr, Irving. Elementr of Geometry. Anierican Book Co., 1898.
Strinhaus, II. Mathematiol Suapshots. (;. I:. Stenthert and Co., New York. Stennitz, Ernest. Polyherli') und Raumointellungen. Encyklopaedie der Mathematischen W'issemshaften, Dritter Band.
Westaway, Frfidric W'. Ciaftmanship in the Teaching of Elementary Mathe: matics. Jlackie and Son, Iomdon, 1931.

SEOMETRIC DRAWING

H.V. Baravalle

Grometric drawing is a mathematical laboratory method to be compared with the laboratory work done in the natural'sciences. It stimulates mathematical interest and serves as a basis for other mathematics courses. Besides the opportunities which it offers in comnection with mathematics, geometric drawing helps to develop manual skill. Many techniques are taught in the course. There is the handling of compasses, the drawing with triangles, the use of ruling pens and black eink, the applieation of color to both lines and areas, including shadow effects on solids and curved surfaces, and, finally, lettering. Through these techniques such artistic qualities as a sense of proportion when placing figures and script into a given space and skill in combining colors are developed. In referring to the script, it often happens that the handwriting of students improves as they develop their sense of form and propor: tion and skill in the use of their hands.

Geometric drawing thus holds a middle position between the academic work in the school and the arts and crafts, and offers special opportunities within the general educational tasks. It can be applied in various forms to different school levels. Courses in geometric drawing have been given since 1920 in the Waldorf School, both in the Teachers Training College and throughout the Junior and Senior High School, and later in about a dozen Furopean schools. In this country pioneer work with geometric drawing has been done, for the high school le el, mainly at the Edgewood School in Greenwich, Conn., and the High-Mowing School in Wilton, N. H., and for the college level at Adelphi College in Garden City, N. Y.

An introduction of geometric drawing in the seventh grade can be based on the natural sense of form and regularity which is inherent in the students, both boys and girls, at this age. The appreciation of the beauty in geometric designs predominates at
this age over interest in wimtific problems. Thencfore the approach will stat with the 1 cgular forms.

The course inusduces equitateral triangles, squares, and regular polvenos. The constmotion of requtar polygons is carnied out by disiding a cincle: thencfore, among the first steps are the exercises for dividing a cincle intu a given number of equal parts. The most natural division of a circle is the division into six ares where the circles own radius is used as measure to cut it. If one starts with a vertical and a horiontal diameter of a circle and then cuts the circle with the radius from any one ot the four end points of the eliameters to both sides, a circle of twele equal ares is ob. taincd. Aterwards straight lines can be drawn between the points of division. In Figure 1 a twelvesided star polygon is drawn by connecting every one of the twelse points on the circle with the fifth one following it. The spaces between the various sections of the star polygon lines are done altemately in black and white, but the students often use either water color or crayon to differentiate them.

The face of a compass can bee diatw as a practical applicatio: of a star polvgon. This requires a division into sixteen parts instead of twelve. The division of a circle into sixteen parts introduces the constrution of bisecting arches. for which either compasses, or strips of papee can be used. Stating with the vertical and horizomal dimmeters of a circle the biscction is first carried out with the four quatens of the dirke making eight pats, and the sensind bisection tesults in sixtern parts. Afterwards every point is conneted with ceve sevomh loflowing it around the circle. A sixteen sided tar polvon is thus ohtained. Finally the filling in of the bhack areas acontates the formain regions. North. South.
 as जomm in Fisure ".

It the thentefour points of division around a circle are joined be all the lines that an he dawn betwern them, a geometric fig.

 donts in then ber bime.

Figure 1. Twelve-sided Star Polygon

rgume ? Face of a Compras

Geometric Drauing

Finume 3. Incmit foursided Polygon with All Diagonals

Fght f. Se iev of I'rimgiev Demonstrating the Comemponding P:aphtioms hetween Sides and Aleas

An example is given in Figure 4. It is begun with the outside equilateral triangle. In this case the various ways of drawing equilateral thangles will be shown, one starting with the division of a circle into six equal parts, and then connecting every second point and skipping the int: ediate points. A second way begins with the base of the triangle and determines its top through the intersection of two circular arches that have their centers in the cnd points of the base and their radii 'equaling the length of the base. A third construction uses a drawing-triangle with an angle of sixty degrees.

Afte, the outside equilateral triangle has been completed, each side is bisected and the mid-points are mutually connected. These combeting lines, form a smaller triangle inside the first one in reverse position. Its sides are equal to one-half the sides of the outside tiangle, while its area is one-quarter -táat of the first thangle. The process is then repeated with the linner triangle. and thus a third triangle is formed inside the second one. Its sides are $1 / 2$ of $1 / 2=1 / 4$ of the first, and its area is $1 / 4$ of $1 / 4=1 / 16$ of the first.

This succes....n of triangles can be carried further by always drawing another triangle inside the last one. These triangles stand alternately upright and reversed and represent a geometric progression with the tatio ! ! as to the sides and 1,4 as to the areas. It is characteristic that even in algebra, progressions of numbers with constant ratios are named geomerric progressions. Drawing of the kind described will gise the student understanding of this term.

I further example of a geonetric progression is given in Figure \therefore it which twelve squares of the same size are arranged in the form of a ing. The corners at which two successive squares of the -ane ring wuch eath other lie at equal intervals along a cincle. Ite dawing of the figure is started with this citcle, which is dibded into twenty four parts. At every seond ome of these twentsfoum puints wo adoining squares cone werether. Through the wher intemediate tacher perints sadia are dawn and on them lisAla wher vertices of the squance poiming outwand and wewat the wente. There Tetace ate detemined on the radia with the help

Figute 5. Geometric Progression
necting the two points lying on the circle. Its mid-point is its in. tersection with a radius. By measuring the length of half the diagonal from the mid-point outward and toward the center, one obtains the outside and inside vertices of the squares. Between the inner vertices lies the next ring of squares. The circle which can be drawn through these points plays the same part for the second ring as the original circle does for the outer sing of syuares. Thus one ring of squares after another can be added.

When the drawing is completed, a number of geometnic facts can be discotered. If one imagines, for instance, the sides of any spuare in any ring prolonged, he sees that they lead into the sides of two other squares of the same ring. The extensions of the sides of these two squares also contain the sides of a fourth square. These four squares form the comers of a larger square. Thus cory inder of spatacs shows itself compored of 3×4 squares. These squares form a welvesided stan polygon. Furthermore, if one follows any side of a squate from the outer corner to the inner and then comtinnes the movement along the adjoining
side of the next squate, he makes the successive comens reached in this way form a logarithmic spial. There ate twenty-four logarithmic spitals in the drawing. The students will also discover that the pattern of this geometric progression am be found in mature. A geonmetric pattem of this kind is displayed by the middle part of a sunflower or, on a smaller scale, by daisies; logarithmic spinals are to be found in pine cones. in shells, and the like.

Exercises of this kind will demonstrate that studies based on geometric principles lead to manifestations which nature also poduces. The student will no longer consider mathematics iso. lated from natue. but as a pant of it.

In the eighth grade the student's mind tends to be more realistic.. At this stage of his development it is therefore particularly valuable for him to experience certain practical sides of geometry. Perspective draning can be successfully introduced at this age. Ihis study often leads a kind of foster-child existence in school curricula because perspective is genemally affliated with the ats. although it is essentially a geometuic subjet. It starts with basic constructions and opens possibilities for a variety of applications. The perspertive ser ies in an example. Its construction solves the poblem of how to obtain perspective drawings of objects placed at equal intervals and leading from the foreground into the dis. tance. The diminishing intervals illustate perspective diminutions, and the task of the construction is to apply these diminudons conectly. The comsum tion i, based upon thee facts: First. in perspectise picture smaight lines appear as straight lines. Scond distant wijertateonateduced scale. By combining these two facts the ranibing points ate obtained, i.e. the points to which parallel lime comserge. The thitd is the fact that in persper. tive daminas thon .he in a :omat persition vertical lines remain welial.

Hhe comstuction of propertibe wers is shown in figures 6

lines. There harizomal line which ommect the wops, their bases. and their midpuints ate added. Figute 7 , shows the perspective dawing of the same comb indation of lince. Firs. the two toremost verticals can be chowen at will, the smaller one being considered father away frem the spectator. I he staight lines connecting the tope and the bate of the vetticals comverge to a vanishing point and w does the thind honizomat line ommerting the mid. points. Then the lant dixamal an be added be comecting the top of the fint cential with the midpuint of the second. Where this diagonoll wathes the line comerting the hases. thene is the base of the thind aetical, whith in detemined by this intersertion and can be diaten in the picture. Now the seond diagonal an be added be commerting the whe of the second vertial with the middle. of the thind once :and its intersertion with the hase line furnishes the base of the lomath watal. Ihan the wathution am be continued.

merely of verticals and two sets of horizontals, all converging, either to the right or to the left, to two vanishirg points on the perspective horizon.

A next stepleads to the construction of roofs, an exercise which meduces indined phanes. 'I here are mainly two kinds of roofs: the printed wof and the gable roof. The perspective construction of a printed toof is shown in Figure le. It is carried ont with the help of diagonals ?lawn aross the base of the roof. For this purprese the invisible part of the house has of be added, as indicated

Figu: 12. Comstrution af a Pointed Remf

into contact with mathematical facts. A subject which is particulaty well adapted tor this purpose is the studv of curves.

There are two ways of drawing conves, either through succes. sions of points or by means of tangents. Cangents offer greater advantages for the beginner, because they form the curves directly without the drawing of a curved line being necessary. Examples for the study of cuses through their tangents are given in the following figures. The first shows the construction of a parabola (Fig. 15). The figule stats with the (wor outer lites, each of which

is divided into equal tenghs. The peime of division ate then connected though it aghe lines. The hashest perint on the left line is connceted whithe lowest peint on the bight line. Then the next highest peint on ihe left is connecterl with the mest lowest on the right. The succonims poced on both lines an opposite directions on one lime downands. on the ohe upwath. I he areas between the secrions of the we whe time lime we completed in a thecker. board mannet atomittels in bleth mat :hate. Following cither the
 one formed bw the tomgems.

in the figure by means of dotted lines. The peak of the roof lies vertically above the point of intersection of the diagomals.
The construction of a gable roof is shown in Figure 13. The gable roof ises to a ridge. It comnects in different was the foun walls of the building. Two of them rise up to gables, whereas the other two end in horizontal lines. The peaks of the gables are vertically above the middle points of their walls. Their construction is therefore again carried out with the help of diagonals which are drawn across the gable walls. The peaks of the gables in the perspertive drawing lie vertically above the intersection points of the diagonals.

Finally, the study of perspective an be extended to shatow constructions. An example is shown in Figure 14, After the draw. ing of the gate has been completed and the position of the sun chosen, the consturtion proceeds with toog groups of lincs. First. there are lines comerting various points of the gate with the position of the sum; second, there are conuecting lines drawn toward the ground plan of the sun which lies vertically below the sun on the perspertive honton shown by doted lines in the drawing. The mersections of these doted lines with those dawn to the sun furnish the shadow points.

differ the wass th cumburt the sunce curve．In Figure 16 parabolas are ohtained though the intersection of two serics of lines．The first selion omsists of parallel horiontal lines following one an－ other at＂fund distances．The second serics consists of concentric circles in ueasing their radii in equal steps．The areas between the varions sertions of the lines ane again done alternately in black

 circter

 （1）ルルル，

vals of $1 ; 3 ; 5 ; 7 ; 9 \ldots$ units，and in heights of $1 ; 4 ; 9 ; 16 ; 25$ \ldots from the top line．The vential lines are drawn at equal distances from each other．The narrow inner parabolas take one vertical step combined with one horizontal step．The next wider parabola combines each vertical step，with two horizontal steps． The widest outside parabolas take with every verticay step three steps siderays．The drawing could be continued in ple same way．

Funther exereines show attered conditions in ratious con etractions which hing abeut cotain（hanges in the arves．In

 111いと

Ceometric Drauing

hapertolds, both being curves of the second order have equations in this penition which we difterent fom one another mexek though a single plus sign choming into a minus sizn. Amother
 bolas is hama in Fizute 19 and 20.

 ane eratal ugn them. These perpembatan line tom the tom

horizontal diameter. Whis sale is then tansfened to both homirontal lines of Figure ge. The points of the scale are numbered according to the successive points around the circle. The numbers of the scale are directiy transferred the top line in Figure 22.

The poims on the bave sale aise show mmbers, but they ane tansposed. In the base soale number 1 ties under mumber 9 of the top sate, "2 under 10, 3 under 11,4 under 12 , and so on Then the points with the same numbers ate comee eed. These comenert ing lines form the tangents of a heperbola. I sate of difterem forms of hepertorlas an be ohamed by different tamsposition between the two wale.

Further drawings an be made to demonstrate different theorems. In example is shown in Figure 23. It demonstrates in a succession of the steps the theotem of pythagotas.

on top of the black square and then an equal triangle is omitted at its base. Between the second and the third stage (middle left) the fom of the black area does not change; it is just moved upward until its base line is lifted to the height of its top. In the fourth step) (middle right; the black area is split. Each of the two parts takes on the form of a parallelogram and is moved sideways with its bases and heights left unchanged; therefore it preserves its area. This motion can be continned until the black areas reach their last phase and become identical with the squares of the legs. This completes the derivation of the theorem of Pythagoras. It not only demonstrates that the areat of the squate on the hypotenuse equals the sum of the areas of the squares of the legs, but it shows the actual tansformation. The same derivation can be extended from the bight triangle to the ohlique triangle. In this form it demonstrates the cosime late of trigonometry (Fig. 24).

The further plans for geometric drawing continue up to the senior grade of high school and include an introduction of the descriptive geometry of solids with both plane and curved surfaces. Thie methods used remain the same. The examples elaborate especially on those facts which display geometric contents in their most complete form, for instance, the study of regular solids. The construction of geometric models by the student can complete this approach. In the last years more specialized work which includes problems of physics (meethanics and optics), of projective geometry, and of architectural drawing is carried out by the students.

CURVE-STITCHING IN GEOMETRY

Carol V. McCamman

While using the mathematical library of Dr: Sophia H. Levy of the University of California, I was attracted by a little book entitled A Rhythmic Approach to Mathematics. ${ }^{1}$ Its numerous illustrations were designs, some simple, some intricate, many beautifully colored, but all composed of straight lines. I found that all of them had been produced by a simple plan of stitching on cards, and that many had been worked by very young children. I immediately made some of the designs myself and was fascinated by the possibilities of the method.

My enthusiasm for; these designs was shared by my geometry classes, and also by many others who saw them. The first year I took about twenty minutes of a class period to describe the method to my students, and showed them several of the designs I had made. This was all that was tequired to interest some of them in making their own designs. These designs, shown to the class, in turn aroused the interest of others.

The next year, in order to have every student take part in the work, I spent a full class period in explaining the method and in analyzing several designs made by former students Fach student was acked to plan a design of his own, which he would later work out in colors of his own choice. Not only did most of the students have their plans the following day, but many had started stitching, and somié brought in completed projects. Two class periods were long 'enough for everyone to get well started. Any further time needed was spent outside class. In many cases students made additional designs, some of the more enthusiastic members producing as many as six or eight.

The method used in making these designs is described in A Rhythmic Approach to Mathematics. This book, \$ong out of print,

[^1]was reproduced" in 1941 through the efforts and support of Mrs. W: F. Dummer, of Chicago, and interested teachers. In an introduction to the book, Mrs. Mary Everest Boole, the wife of the Eng. lish mathematician Gcorge boole, explains the way in which this method "of evoking the geometric instinct" was developed on the basis of the ideas of Boole and of the French mathematician Botalanger. The purposes of curve-stitching, as stated by Mrs. Somervel', are to provide the child with a background of pleasurable - experiences before he begins the actual study of mathematics; to develop in him an awareness of the intimate relation between number, form, movement, and the process of thought; and to enable him to translate, by means of his sense of relation, any of these into terms of any other.

When curve-stitching is done by students of geometry, both the methods and the aims are, of course, different from those for young children. However, the work in an important sense provides a background of expertence for mathematics yet to be studied, particularly analpic geometry and projective geometry. To many begiming students of anahtic geometry, the concept of an envelope is abstract and mearingless; curve-stitching consists, actually, in constructing such a curve by making stitches which are the tangents to it.

I shall indicate brielly how to make several of the basicicurves. The paabola is obtained by comnecting equally spaced points in opposite directions on the sides of an angle (Fig. 1). Stitches are made from A to A^{\prime}, from B^{\prime} to B, from C to C^{\prime}, from D^{\prime} to D, etc. In making this and similar curves, the following rules should be obscived:
(a) From the firs: hole on the lower side of the angle put the needle into the first hole on the other end of the upper side of the angle.
(b) On the 'wrong's side of the card, always put the needle into the next hole; put a!l hoots and marks on this side.
(c) On the "right" side, put the needle into the hole next to the beginning of the last long stitch.
Many interestirg designs ave based on ciecles. For example,

[^2]draw two concentric circles and prick them so that the number of holes on the larger circle is twice the number on the smaller circle (Fig. ©) . Then stith from A to $A^{\prime}, 1$, to $B, C_{\text {it }} C^{\prime}, D^{\prime}$ to D, etc..

leghel

liguter
continuing to connect successive points until every hole on the outer circle has been used. To do this it will be necessary to go around the small circle twice. The curve obtained can be varied by changing the ratio of the numbers of points on the two circles, and also by stitching clockwise on one circle and çounterclockwise on the other.

Figure 3

An interesting design is obtained by working one-third of a circle against its ladius (Fig. 3).

An almost eniless varicty of designs can be produced. Young children, especially, will be interested in the "curve of pursuit" (suggested by Mrs. Somerwell), in which the stitches show the successive intentions of a dog as he chases a rabbit, while the curve obtained represents his path.
students uning this method should be encouraged to originate their owt deaigns and color schemes. As the author states, "Verbak exphamatione of how to work the designs represented would have a puite faise upparance of being very complicated." It is relatively difin ult to cop dasigns others have nade, but pratetice with needle and thead fon in hour or so will enable anyone to start making his won designs.

When I first berame interested in these designs, I wondered
whether, in geometry classes composed largely of boys, the work would be stigmatized as "embroidery" and "sissy." I need not have worried. Not once did anyone seriously suggest that curve-stitching was a feminine occupation. On the whole, the boys seemed ather more intsested than the girls-perhaps because of the nove'ty --and produced designs which were more original and, in most cases, better executed than those of the girls.

When the completed designs were exhibited, the students voted for their favorites. One of the best liked was a pale pink and blue design, very carefully worked, made by one of the stalwarts of the football team. An intricate and lacy design was made by a boy noisy inn roice and manner, who, was so unfamiliar with sewing that he thought the needle had to be tied to the end of the thread. A particularly striking design was made by a Chinese boy who at one time had been considered incapable of taking the regular mathematics couses. His chief diffeulty wathis inabiltty to express himself in a strange language. His design, carried out in bright colors of fine silk thread, showed excellent workmanship and originality.

I have found curve-stitching a valuable supplement to the regular work in geometry. It requires only a small amount of class time. It makes the students aware of geometric relationships and develops their interest in the geometric basis of design - They seem to find real satisfaction in planning and making the designs. The imerested and critical appraisal which the class makes of each new design is an incentive to good work, as is also the favorable comment the designs receive when they are exhibited in the school hall. Some students who have not been doing well in geometry find in this work a new opportunity to be successful and to earn the paise of their classmases. In many such cases, the increased interest in geometrv seemed to carry over to subsequent work.

WINDOW TRANSPARENCIES

J. Anna Tennysan

Pupils enjoy making transparencies that simulate stained glass windows. This project may be the culmination of the construction work in intuitive geometry.
A small preliminary design is made on white paper. All lines are doubled, as most of the paper is to be cut away and only the narrow strips that outline the design are, to be left. Black cover paper, not too stiff, is cut to fit the windowpane to be covered. The original design, enlarged to proper proportions, is constructed on the black paper. White or light colored pencils make construction lines that are most easily seen. The paper between the narrow strips that represent the leaded seams in a stained glass window is cut away by means of a razor blade or small, sharp scissors.

There is now left a sk deton-like design. Thin paper of various colors or colored cellophane is used to replace the cut-out paper.

To heighten the resemblance to stained glass. the paper may be oiled or dipped in melted paraffin before it is used.

The finished transparencies are suggestive of mathematical forms and figures and create an atmosphere in which pupils are better able to enjoy and appreciate the role of mathematics in the art of design.

At Christmas stars and geometric Christmas trees used as basic figures in the design add a festive air to the classioom windows.

MATHEMATICAL DEMONSTRATIONS AND EXHIBITS

Fhillip S. Jones

The variety of interested and appreciative comments elicited from both student and adult spectators at the annual demonstra-tion-exhibit: prepared for several years past by the mathematics department of The Edison Institute of Technology has led to the conclusion that more should be done about this method of increasing interest in and appreciation of mathematics. Scattered periodical articles ${ }^{1}$ have tol 1 of occasional mathematical exhibits and the fun and pedagogical values derived from them. However, repeated expressions of surprise at the fact that mathematics had anything to exhibit outside of textbooks or a variet; of apparatus ready to supplement blackboard demonstrations proved that the advice to "dramatize the role of mathematics in modern life" 2 was not only excellent and deserving of more attention, but needed to be carried out in more concrete ways than are used at presert. It is the aim of this account of portions of past exhibifs and of the article on "Mathematical Apparatus" (pages 212-225) to focys more attention upon the values of dramatization and to offer a few practical suggestions which may help teachers in starting such a program.

These are the principles which have guided the construction and arrangement of our exhibits. (a) An exhibit must gain and retain the interest of the viewer. (b) Hence, it must be geared to the level of an intelligent bu: non-mathematically trained student or adult. (c) It must not so cater to popular interest and lack of training that it makes mathematics seem trivial or a collection of puzzles, recreations, classical solved and unsolved problems and paradoxes. (d) It must sustain interest in mathematics by pointing out that the subject is alive and "on the hoof" where it may be seen in daily life by any observer, and by siowing

[^3]its more obscure applications and relationships. (e) As a school demonstration, it should show largely the actual materials of daily class instruction, and, in this connection, should use the instruments and gadgets en hand for classroon instruction. (f) Accompanied by diagrams and direct explanation, it should demonstrate relationships conclusively and tell an interesting story where a similar but static display is ineffectual.

With this last point in mind, each of the sections of these exhibits has consisted of a table display of apparatus or models behind which stood a student to explain the mathematics of the section by using the apparatus and models plus a set of drawings and pictures tached to a display board behind him. Thus each part of the demonstration was carried out tangibly by mod ols, many of them movable, audibly by the students' discussion, and visually through diagrams. The organization of one exhibit was as follows.

On the table. String models of the conic sections and ruled quadric surfaces (these were made in the school machine shop,

Figure 1. The Conic Sections and the Ellipse
but could easily be made from cereal boxes); drawing board and paper with two thumbtacks stuck in and a loose string tied around them ready to demonstrate the pin and string construction of an ellipse; ${ }^{8}$ an elliptic trammel or ellipsograph. ${ }^{\text {a }}$

Pictorial display. Poster A listed the members of the conic family, explained their family name by mention of their historical origin in the study by the Greeks of the right-angled cone, and showed by diagrams of elliptic and parabolic orbits one of theirearliest applications at the hands of Kepler and Newton. -

Poster B showed two exact drafting-room constructions for ellipses, one using concentric circles, the other being a projective or so-called "parallelogram" construction."

The student. The sturdent explained the nature of the conics as shown by the string models and amplified briefly the outline of their history and use. He then demonstrated the pin and string construction of the ellipse and the operation of the elliptic trammel, while explaining the frequency with which this curve is met in the drafting room.

Section 2. The Ellipse and Parabola (Fig. 2)

On the table. An elliptical "billiard board" made by a student in the school woodshop demonstrated the property of the ellipse of reflecting anything starting from one focus back to the other focus, thus furnishing the principle underlying the construction of whispering galleries, such as that in the Capitol at Washington, D. C. Two focusing flashlights: one disassembled to show the reflector and the movement of the bulb; the other used by the student to demonstrate the result of moving the bulb into or out of the focus of the parabola

Pictorial display. Poster A containcd a diagram of an ellipse showing several tangents and the focal radii to their points of contact, also a picture from $L i f e^{5}$ magazine showing an experiment with ans elliptical light reflector at the General Electric Nela Park Laboratories.

Poster B showed a projective or parallelogram construction for the parabola. Diagrams showed the use of the focal properties of the parabola in the spotight and reflecting telescope.

The student. The student demonstrated the elliptical billiard

Figure 2. The Ellipse and the l'arabola
board and focusing flashlight as a part of an explanation of the focal properties of the two curves and their uses.
Section 3. The parabola, Catenary, Maxima and Minima (Fic. 3)
On the table. Stoppered glass tube partly filled with a colored liquid and mounted so it could be rotated about i\& vertical axis. thus showing the parabolic shape of the surface of a rotated fluid and demonstrating a device which, when geared to the drivers and properly calibrated, served as a speedometer or some early trains, the speed being determined by the height to which the oil would rise. ${ }^{\text {b }}$

It has been suggested to the author that, if mercury were used as the liquid and a light source with nearly parallel rays located above, the focal property of the parabola could be demonstrated and the variation in the location of the focus with a change in the shape of the parabola could be shown by varying the speed of rotation. In either case, a warning is in order to start the apparatus at slow speed and with a small amount of liquid to make sure that the tube is perfectly centered before proceeding.

Figute 5. The Parabula, Catenary. Maxima and Minnma
Also on the table were two pairs of ringstands of the same height, side by side, from which were suspended two cables. of the same length, one loaded horizontally to show a parabolic shape, the other a frec-hanging catenoid cable. (To have this set up as accurately as possible, the "cables" should be flexible and the load suspended from the one should be large in relation to the weight of the cable.)

A soap solution and wire forms for demonstrating minimal surfaces, and two tin cans, found in a grocery store, which had the same volume but different shapes and surface areas completed the array of apparatus.
F.ctorial display. Poster A showed a picture of the DetroitWindsor Ambassador Bridge and of a high tension line. Poster B was a diagram for and solution of the problem of determining the dimensions necessary to give the beam of maximum strength which can be cut from a given log.

The student. The student began his discussion by explaining wherein the rotating fluid demonstrated another occurrence of the curve which the spectator had met in the previous section. He then called attention to the parabolic cables of the Detroit-

Windsor Ambassadur Bridge but emphasized ihat free-hanging cables, such as high tension wires, are not parabolic but catenoidal, The catenary, he continued, is a curve with many interesting properties and uses in its orn right; for instance, it is the sail curve, ${ }^{8}$ as could be shown by fastening a handkerchief to parallel uprights and allowing a fan to blow on it; it likewise provides the basis for computations made by surveyors in correcting for m . the saig in steel tipes and chains; ${ }^{9}$ it finds a place in architecture; ${ }^{10}$ and, as demonstated by the sonp solution and wire forms, it provides the curve which, when rotated, traces out the surface of least area, which can be used to join parallel circular rings. ${ }^{11}$ "The prob. lemn of "least" and "largest" incidentally, the student ex Manen, occuss in many places in mathenatics and its applications, sich as in determining the dimensions for the strongest beam that can be cut from a given log or in determining the dimensions for a tin can which will give the minimmm area for a fixed volume.

Sheiton 4. Plane and Spherical. Trigonometry and Graphical. Complation (Fig.4)
On the table. A large model screw thread and a spherical

blackboard made in the school shops. On the blackboard were laid out the equator, the meridian of Greenwich, and the latitude and longizude lines for New York and Paris; then in colored chalk were drawn the great fircle and the loxodrome joining the two cities. At the end of the table, for fiee distribution, was a pile of mimeographed "Graphical Computation Charts," nomograms on a single sheet for multiplication and division and for determining circumferences and areas of circles.

Pictorial display. Poster A (not shown in Fig. 4) comprised a diagram and solution for determining the helix angle of a U.S. Standard Form Thread; a diagram and solution of the spherical triangle for the distance and bearing of Paris from New York. Poster B showed photostats of alignment charts for tension in and horsepower of'belts. ${ }^{12}$ Poster C showed photostats of aerial navigation computation charts. ${ }^{13}$

The student. The student first explained the sulution of the screw thread problem by plane trigonometry, and then discussed the problem of geodesics, ${ }^{14}$ the contrast between great circle and rhumb line sailing, and the use of sphericat trigonometry in navigation. He then emphasized the usefulness of graphical computation in industry and navigation and passed out the mimeographed nomograms.

Seciton 5. Mechanicai, Computation-Slide Rele (Fig. 5) On the table. A set of, Napier's bones ${ }^{15}$ made by the student

Figure 5. Mechanical Computation_-Slide Rule
demonstrator, a Gunter's scale, a circular, a polyphase duplex, and a log-log-trig slide rule.

Pictorial display. A large classroom demonstration slide rule.
The student. The student discussed the historical development of logarithmic scales from Napier and Gunter to the modern slide rule and demonstrated each device.

Sechion 6. Mechanical Computation: Planimeter and Calculator (Fig. 6)

On the table. A polar planimeter set upon a diagram constructed from data of an experiment on hysteresis; an electric calculator.

Figus 6. Mechanical Computation: Planimeter and Calculator
Pictorial display. A picture from Life magaze showed a planimeter in use in determining areas of wood lots from aerial photographs; graph and discussion of representation of work by ath area.

The student. The student explained and demonstrated the two machines and their uses.

Slecion 7. Famous Problemis and Recreations

Ont the table. Angle trisector, made in the school machine shop, embodying the mechod of Archimedes; a rack of books labeled "Mathematics Goes Best Seller," including the well-known biog. raphies and popularizations of the last few years by Bell, Hogben, Kasner and Newman, several works on recreations and puazes by Ball, Heath, Steinhaus, and a little set of cardboard jigsaws cop) righted under the title "Geometricks," then popular in the stores; and, linally, a pile of mimeographed recreations, puzzles, and games for free distribution.

P'ictorial display. The display comprised Poster A, "Solved Problems"--the three famous Greek problems; Poster B, "Unsolved Problems"-Fermat's last theorem and the four-color problem.

The student. The student explained the problems listed on the placards (diagrams were shown for trisection and the four-color problem), demonstrated the angle trisector, and passed out mimeographed material.

The appearance of the placards was improved by making them of unifom siac (30" \times " $x^{\prime \prime}$) with mitom borders, and by using India ink for all lettering and diagrams (red for construction lines and spectial diagrans).

The greatest difficulty with the student demonstrators was that when they had worked out their display, made their placards, and studied the historical and theoretical background, they were not only prepared but very willing to talk too long. This danger was overcone by having them stick to a direct and concise explanation of the materials on displat, adding historical and other details oni as needed to answer questions.

Viug o ot mathe the studems whonomed had to put such ex hibits into operation had the greatest increase in mathematical knowledge and interest and alss the most fun. However, the spectatons and fellow budents prolited though stimulated interest in and added apprectation of the mathematical side of the world about them.

Fxhibits of this type often gain in whenence and real teaching walues if spectators can be routed thiough in definite order so that
the different sections can be planned as parts of a whole development of some general topic. If this is done, each student demonstrator shonld take care to point out the relationship of his section to those preceding and following as well as to the general theme of the exhibit.

Scobisith Topics for Exhbits

Several unifying topics which might be used as suggestions for either entire exhibits or sections of larger exhibits are briefly described below.

The conic sections. To materials such as those discussed above might be added the following: a model of rolling ellipses or ellip. tic gears; ${ }^{3}$ maps showing the occurrence of conic sections in map projections of the sphere, particularly the gnomonic or great circle sailing charts; ${ }^{10}$ a spring gun, a water can with holes punched in the side, or a hose arrangement to show the parabola as the path of a projectile. Further uses of the focal property of the parabola in construction of auditoriums, directional microphones, heat reflectors, etc., could be diagrammed and explained. ${ }^{17}$ The derivation of all the conics as sections of a cone of light may be set up with apparatus as simple as a flashlight and a piece of cardboard or be made as complex as one wishes. ${ }^{1 s}$ Conic compasses could be built and demonstrated. ${ }^{19}$

Computation-graphic and mechanical methods, instruments. The material on nomograms, intersection charts, Napier's bones, Gunter's scates, slide rules, calculators phictured and discussed in connection with Sections 4, 5, and 6 could be amplified with demonstations of the abacus, matigational computers, some of which can be made inexpensively, ${ }^{20}$ special slide rules;" ${ }^{1}$ of aerial navigation prohlems solved by vector diagrams which could also be made more concrete to spectators by setting up triangles of forces with suring batances from the physics laboratory of arithmetic short-cuts and discussions of calculating prodigiess:" and machines in adtanced mathematics (harmonic analyers, inte. grators, tide caloulators, etc.). The use of the carpenter's square, micrometers, ellipsocgraphs, and other measwing, chafting, and calculating toolo might be appropiately demomstated in such an exhihit.

- Mechanics, mechanical motions, and machines. A simple me.chanical' apparatus can be built to draw a spiral of Archimedes ${ }^{3}$ and to show its use in uniform motion cams ${ }^{8}$ and centrifugal pumps. ${ }^{3}$ The limacon of Pascal ${ }^{3}$ gives the shape of a simple harmonic motion cam which should atso be related to the trigonometric functions and wave motion. Rolling ellipses or elliptic gears have already been mentioned; rolling cones provide a method of obtaining a variety of speeds from uniformly rotating shafts. The involute of a circle ${ }^{3}$ may be traced by the unwinding, of a string from a circle, and its importance and conmon occurrence in the design of gear teeth pointed out. The locus of a point on a circle rolling on a straight line is a cycloid, ${ }^{3}$ a curve easily demonstrated mechanically or constructed by methods of elementary geometry, which has an interesting history, a modern use in geating, and a Nace in theoretical mechanics as a tautochrone ${ }^{3}$ and a brachistochrone. ${ }^{3}$ There is a considerable amount of elementary trigonometry in screw threads and gears, models of which may be made of iwood or metal. Parabolic and catenoidal cables have been mentioned previously; the shape of a beam or of its bending moment dixgram bent under some loadings is represented by a cubic or a parabolic curve.

The straight line. The question of how to draw a straight line is related to the question of what a straight line is, and may be used to introduce a discussion of logic and the philosophy of mathematics, as well as to introduce demonstrations of mechanical constructions using the Peacellier inversor ${ }^{23}$ and the hypocycloid traced by a point on a circle rolling on the inside of a second circle of twice the diameter. A variety of linkages giving both approximate and exact parallel and straight-line motions have arisen from the needs of machine design, that of James Watt being of historial interest. ${ }^{44}$ Straight-line geometry and projettive constructions for curves using only straight lines to lodate points or draw tangents are found to be fun for students and of interest to spectators." ${ }^{25}$ Related to this topic also is the general problem of shortest distances or geodesics mentioned earlier and also that of the significance of a straight line on a map. This latter is of particular importance today. An explanation with a globe, several maps, and sets of computations of the straight line as representing a rhumb
line or constant hearing course on a Mercator map and as representing a great circle on a gnomonic projection will attract interest. This leads natually to, the topic of map projection.
Map projections. This topic would make an entire exhibit, with a discussion of the many different types of maps, their history, their adaptation to particular purposes, and popular misconceptions taceable to them, with glohes, drawings, maps, aerial phowgraphs and surveys, the instruments of geodetic surveying, and the nature of the dependence of navigation on maps. ${ }^{26}$

Mathematici and the wain This topic suggests apparatus such as a spring gun and diagrams for demonstrating trajectories and problems in ballistics, range finding and gunnery, ${ }^{24}$ acrial photog. raphy, nivigation, and aeronautics. Probability and statistics play a part in war in a number of places, such as in ballistics and cryptanalysis, ${ }^{3}$ and might warrant a separate exhibit.

Probability and statistics. This exhibit can be made interesting througlr apparatus to show a mechanical construction of the probability curve by chance distribution of balls into cells; through the computation of π by experimentation, ${ }^{30}$ discussion of applications in gambling, insurance, popular polls, football forecasts, theory of earors, ballistics, cryptanalysis.

Wave motion. This is the common characteristic of so much in modern physics (and war)-sound, light, radio, heat, fluttering wings, and vibrating propellers-that a demonstration of the wide variety of applications of trigonometric analysis could hardly fail to interest everyone. ${ }^{31}$ This can be done by the use of an oscillograph or pencils fastened to vibrating rods or tuning forks, plus superimposed graphs of corresponding fundamental sine waves and harmonics. Simple harmonic motion apparatus discussed in another paper (see page 290) could be adapted to drawing sine waves. An interesting series of rehationships is demonstrated by wrapping a paper around a candle, cutting the cylinder at an angle to show an elliptic section, and then unwrapping the paper to show a sine wave. ${ }^{32}$

Every reader will undoubtedly be able to add to those listed briefly above many suguestions for the dramatization of mathematics. A skimming of the recent popularizations of mathematics
by Hogben, Kasner and Newman, and Bakst as cited in the notes will suggest other opportunities for dramatization. All that remains is to take action. Try it! It's funl

References and Notes

1. Charlesworth, H. W., East High School Goes to the Mathematics Exhibit. Denver Public Schools, 1941. A mimeographed bulletin describing the principles and methods responsible for the grow h of an annual exhibit which has become a large and successful all-school project and "tadition." A lung list of titles of individual projects is included.
Drake, R. and Johnson, D., "Vitalizing Geometry with Visual Aids." The Mathematics Teacher, Vol. 33, p. 56. February 1940. This artiche does not deal with exhibits explicitly but lists instruments, models, posters, and activities which would also be excellent for exhibits and includes a good bibliography.
Gregory, M. Cottell, "A Mathematics Exhibit." The' Mathematics Teacher, Vol. 23, p. 382, October 1980.
Krathwohl, Wm. C., "Helping Mathematics with an Exhibit." The Mathematics Teacher, Vol. 31, p. 38, February 1938.
Krathwohl, Wm. C., "Using and Preparing a Mathematics Exhibit." School Science and Mathematics, Vol. 39, p. 702, November 1939.
Hildebrandt, E. H. C., "Mathematics Exhibits." American Mathematical Monthly, Vol. 45, p. 688, December 1938.
Sell, Wm., "A Home-Made Mathematics Exhibit." American Mathematical Monthly, Vol. 40, p. 555, November 1939.
Wilson, R., "A Unique Mathematics Exhibit." The Mnthematics Teacher. Vol. 30, p. 128, March 1937.
2. National Council of Teachers of Mathematics, The lifteenth Yearbook, The Place of Mathematics in Secondary Education, 1940. Appendix I, "Analysis of Mathematical Needs," could also be used as a source of sug. gestions for themes for exhibits and for practical applications which could be demonstrated.
3. These items of apparatus are more fully pictured and discussed in the article "Mathematical Apparatus," pp, 212 to 225.
4. Any engineering drawing textbook, such as french, T. F., A Manual of Enginecring Drawing (McGraw-Hill, New York, 1941), and many handbooks will give both approximate and exact constructions for the conic sections and other useful curves. These are within the range of high school and junior high school geometry students and combine practice in the use of instruments with the fun of seeing an old, important, and useful curve gray pomt by point (on tangent by tangent) under one's hunds.

For contur tions of parabolas, we abo Wiolff, Georg. "The Mathematital Collction," The Eighth Yearbook of the National Council of Teach. ers of Mathematics, 1933, pp. 220, 221.
5. "Light Control Demonstator Shows How Lenses and Reflectors Work," Life, Vol. 8, p. 72, March 11, 1940.
6. Osgood, W. I., Mechanics (Macmillan Co., 1997), p. 105, derives the dif. ferential equation for this curve and lells of the early use on locomotives. See also Wolff, Georg, op, cit., p. 223.
7. A particularly interesting, popularized discussion by Harold J. Fitzgerald of sorre of the mathematical problens connected with the Golden Gate Bridge is to be found under the title "All Figured Out," in The Lion's Mouth section of Harper's Magazine, October 1936, p. 551.

For a technical discussion of loaded and free-hanging cables, see Seeley, 1: 13. and Ensign, N. E., Analytical Mechanics for Engineers (Wiley, 1933), pp. 93-96, or any other textbook in applied mechanics,
8. E:mychopedia Bitannica, 1/h Edition, "Curves, Special." Many interesting items on a large number of curves are scattered throughout this article.
9. Huntugton, F.. V., Handbook of Mathematics for Engineers, p. 150. Mc-Graw-Hill Book Co., 1934.
10. Wolf, Georg. "Mathematios as Kelated to Other Great Fields of Knowlelge." The Elementh Yearbook of the National Council of Teachers of Mathematics, 1936, p. 207.
11. For the catenary as a minimal surface, see Bliss, G. A., Calculus of Varia(ion) (Opein Court. 1995), pp. 85 H.; also Cournat, R., "Soap Film Experiments with Minimal Surfaces," American Mathematical Monthly, Vol. 17. 1. 167, Marth 1910; Steinhaus, M., Mathematical Snapshots (Stechert), p. 107.

Other references on minimal surfaces are: Douglas, J., "The Problem of Plateau," Scripta Mathematica, Vol. 5, p. 159, July 1938; "Soap Films Automatically Solve Problems in Higher Mathematics," Life, Vol. 12, p. 118. March 16, 1942.
12. These photostats were from Lipka, J., Graphical and Mechanical Computation (Wiley, 1918), an excellent elementary reference on nomography. see abor article on "Nomographs in High shool Mathentains" in this foarbook. A very nice, though complicated. nomographic chart for ele. mentary computation as well as the quadratic equation is pictured in an artule b! 1. R. Ford. ". In Aligmom (han for the Quadratic liquaton." Ameriean Mathematical Monthly. Vol. 46. p. 508, October 1939.
1:. Ithese darts wete from I.jon, Thohum (.., "practical Nir Navigation," Cavl Acronathes Bulletm. No. 24, 1940, pp. 147, 152.
11 Kinner E . alld Newmam, J., Mathematics and the Imagination (Simon and schunter. 19.40), p. 146. gives a good popularized discussion of the general prohtom of geodesios and adds (p. 181) a hit of fun interest with its spider and it! problems, is doce aloo Ball, W. W. R., Mathematical Recrathons and finays (Macmillan. 1940), p. 118.
1.). A trambation of Napier's own description of his bones or rods is given in Smih. D. E., A Somice Book in Mathematics (McGraw.Hill, 1929),
P. 182; Bakst, A., Mathematics, Its Magic and Masjery (Van Nostrand, 1941), p. 117: In the same chapter are also discussions of the abacus and other computing devices as well as arithmetic short-cuts.
16. Bradley, A. D., Mathematics of Map Projections and Navigation, pp. 24 ff. Yoder Instruments, 1938.
17. Karpinski, L. C., Benedict, H. Y., Calhoun, J. W., Unified Mathematics (D. C. Heath, 1922), Chap. XXII, presents many applications of conic sections.
18. Hurlburt, Everett H., "A Simple Optical Device for Demonstrating the Conic Sections," School Science and Mathematics, Vol. 41, p. 828, December 1941. Tells of an interesting spectator-operated device, wherein the guest picks his curve; pushes the button, and the device does the rest.
19. Lof, J. I.. C., "The Conic Compass," School Science and Mathematics, Vol. 38, p. 84?, November 1938.
20. A cardboard and celluloid "computer" ready to be cut out and assembled comes with Lyons, T. C., Practical Air Navigation. This computet consists of a circular slide rule with special markings and an arrangement of circular grids giving graphical solutions for vector triangle problems involving air speed, wind velocity, course, and ground speed.
21. Diserens, R. S., "Special Slide Rules," Product Engineering, June 1942. pp. 340 ff . This article includes helpful hints on construction as well as pictures and a bibliography. Also Mackey, C. O., Graphic Solutions (Wiley, 1936), Chap. II, p. 8, the theory of slide rules. Davis, O. S., Em. pirical Formulas and Nomography (McGraw-Hill, 1943). pp. 147 ff.
22. Ball, W: W. R., Mathematical Recreations and Essays, Chap. XIII, pp. 350 ff . Macmillan Co., 1940.
33. Stemhaus, op. cut.. p. 37. Aso Xittes, R. C.., Tools (Lougsiana State Uniwersity, 19f1). Section VI, I ine Motion I inkages, pp. 82 ff ,
24. Keown, R, M. and Faires, V. M., Mechanism, pp. 11 ff. McGraw-Hill Book Co., 1939.
25. Se tevth in projertive geomers, French, op. cit.; Yates, op. cit.; "Harvard ('niversity Sophomore Makes Line Drawings," Life, March 18, 1940, p. 43.
26. Bradlen. 1. 1)., of. cit. Also, by the same author. "Gnomonic Projection of the Sphere," Amerit an Mathematical Monthly, Vol. 47, p. 694, December 1940. Deetz, C. II. and Adams, O. S., "Elements of Map Projections," Depatment of Commerce, Cionst and Geodetic Survey Special Bulletin, No. 68, 1938. "Maps," L.ife, 13:5, pp. 57 ff . August 3, 19!2. Steinhaus, H. op. cit. pp. 9t ff. Baver, H. A.. Cilobes, Maps, and Skywhs. Macmillan (i). 19 t2.
27. The general relationship of mathematics to the war should become f.miliar to students working on such an exhibit through reading Morse, M. and Hart, W., "Mathematics in the Defense Program," American Mathematical Monthly, Vol. 48, p. 293. May 1941, or the Mathematics Teacher, Vol. 34, p. 195, May 1941, and other related artic les, particularly those in the May and November 1911 Mathematics Teacher (Ihe Brown

University Center for graduate study in applied mathematics in defense is discussed on pages 238 and 330 respectively of these two issues). See also: United States Al litany Academy, Some Military Applications of Elev mentary Mathematics, 1042. An interesting mimeographed collection with diagrams and some aerial photographs.
28. "Field Artillery-How to lire a 75 mm . Gun," Life, Vol. 10, p. 64, February 10, 1941. Thomas, J. M., Elementary Mathematics in driflery live. McGraw-Hill Book Co., 1941. Levy, S. H., Introductory Artillery Mather. matics and Antiaircraft Mathematics. University of California Press, 1949.
 379 ff. Macmillan Co., 1940. Mendelsohn, C. J., "Cardan on Cryptography." Script Mathematici, Vol.'6, p. 157. October 1939.
30. Interesting and suggestive popularized discussions of probability may be found as follows: Bakst, A., op. cit., pp. 329 ft .-the computation of π by chance is discussed on p. 350. Hogben, L.., Mathematics for the Million (Norton, 1987), Chap. XIL, pp. 571 ff. Kasher, E. and Newman, J., Mathmatics and the Imagination (Simon and Schuster, (1940), pp. 223 ff.
31. Karpinski, Benedict, Calhoun, op. cit., Chap. XXVI, p. 407.
32. Karpinski, Benedict, Calhoun, op. cit., p. 419 . Steinhaus, Hi., op. cit., p. 59.

EAST HIGH SCHOOL. VITALIZES MATHEMATICS

H. W. Charlesworth

For a number of years East High School of Denver has been holding a mathematics exhibit: These annual events have become quite spectacular, each year growing in importance as well as in size. The Fourth Annual Mathematics Exhibit of April 8 to 11, 1942, filled the entire floor space of the boys' gymnasium, which was attractively decorated in red, white, and blue. Since these exhibits were open during school hours and at least two evenings, they were seen by the entire student body and visited by several hundred patrons and out-of-town teachers and their pupils. A visitor to one of these exhibits could easily imagine himself to be at a world's fair.

Sponsorship of the Exhibits

The exhibits were started and are still sponsored by the Eucliclian Club, the mathematics club of the school. Because this club wished to give mathematics the prominence it deserves in a modern high school, the exhibit was chosen as one means of showing the value and importance of mathenatics in modern life. It has proved to be more than was hoped for. Now it is listed in the student handbook as one of the traditions of the school.

These exhibits require a great deal of plamning and work on the part of teachers and pupils. They are a cooperative school endeavor. Any pupil, group of pupils, class or club may enter a project, serve on committees, or help in some way. The real sucress of the exhibit depends upon student participation. More than there hunded pupils shared in some way in making the exhibit of 1912.

The exhibits are financed by the sale of souvenir pencils and magic slates and by money donations from the various school organizations and clubs. The exhibit in 1942 cost approximately $\$ 150$.

General View of Exhibit Room. Theme: Mathematics. A Dniversal Langrage

Mhammatios and linht-at Pat of Exhbit on Mahomatios and Phasial somece Booth lirepared W Four boss

The Display

The exhibit is the result of pupil study and research. The one stipulation is that the exhibit must show the applications of mathematics. It must not be a display of classroom work or a collection of papers or notebooks. Pupils work up a project for the exhibit, alone or in a group. Although actual work is done outside class time, it is expected that many projects will originate in the classroom work.

The project may be worked out in any field, provided that the purpose is to show the use of mathematics. The project may be original or not. It may be the result of a hobby, provided, of course, that it gives prominence to the use of mathematics. It is expected that pupils work with the advice and help of teachers and others.

The results of the project must be colorful and displayed attractively, and must be accompanied by appropriate posters and explanatory materials. Much freedom is allowed in this display, and pupils are encouraged to decorate the exhibit space allotted to them. A group project, one involving five or more pupils, a class or a club, is given an exhibit space of at least eight feet by ten feet.

The cooperation of local business and industrial concerns is encouraged, provided no advertising as such is done. Pupils who get help from community organizatons are expected to study and work out the problem for themselves. We want it to he an educative process. The cooperation of out-of-school groups has been very satisfactory and has proved to be a great help in relating school and community in mutually beneficial ways.

Theme and Decorations

Fively annual exhibit has a theme. Two recent ones have been "Mathematics-A Universal Language" and "Mathematics in the World of Tomorrow." We symbolize the theme by a large central exhibit piece, usually a composite geometric solid occupying floor space of about twelve feet by twelve feet and standing from fourteen to twenty feet high. In 1942 we constructed a stellated icosahedron about thirteen feet in width; this was suspended from the ceiling and made to revolve, apparently revolving on the apex

Bouth Prepaned by Five Buys with Melp of Colomdo School of Mines

A Iypical Individual Pboject-Mathematics and Space-Flight
of a square pyramid. This piece was done in red, white, and blue to conform to the general scheme of decoration, as were also the booths and other texhibit units. iSignificant wording was printed on the four lateral faces of the pyramid.

Values Derivfid from the Exhbits

The valu : originally set have been realized, many of them far beyond expectations. We are learning how to bring about and develop other values, some of which are not obvious and are slow in development. These annual exhibits bring our mathematics department into close contact with other departments of the school, which cooperate in a very fine way. The exhibits have als, helped to improve community and schiool relationships.

Despite certain curricula changes that have tended to discourage the election of mathematics courses, the subject has more than held its own in our school. We believe that these exhibits have helped greatly. The values to the participants cannot be measured, but we are confident that they far exceed the actual cost. It is true that the exhibits mean a great deal of work, but we heartily recommend them to any school desirous of keeping mathematics in its proper place of prominence in a modern high school.

Recombing the Exhmbr

Fach year we print a mimeographed looklet which tells how we plan and conduct our exhibits. It gives brief descri, tions of several typical projects and lists many othens. (Supply extausted.)

We made mosies of the 19.40 and 1942 exhibits. The latter was a student project from beginning to end, constituting one of the major projects of the exhibit. The group of sthdents who made the movie were allowed twenty five dollars for the entire job, and they did it for slightly less. Nine hundred feet of film were exposed, about five hundred feet of which were retained. It is a good picture, a $16 . \mathrm{mm}$ silent film accompanied by a typed narrative. This film, Muthematios in the W'old of Tomorrou, will be lent for the cost of tampontation both ways. The mimeographed booklet, together with the namated film, gives quite a complete story of our annual exhibits

EMPLOYING VISUAL AIDS TO TEACH I.OCUS IN PLANE GEOMETRY

Edna Hitchcock Young

The topic "locus" is truly a difficult one in the teaching of plane geometry. No doubt many teachers and students have emerged from such a unit both discouraged and confused.

The usual definition, "d locus is the path of a point which moves so that it always satisfies a given geometric condition," is itself meaningless to the majority of students. L'p to this point in the course earh figure in geometry has been static; then suddenly a concept of motion is introduced. To add further to his bewilderment the student is expected to be able to prove that every point on a specific locus satisfies the given condition and either that every point which does satisfy the condition is on the locus or that any point not on the locus cannot satisfy the condition. After completing the work on locus, both teacher and student experience a mental jolt when they view the results of a simple test on perhaps only the fundamentals of locus. It is safe to predict that the resulting figures will range from circles and parallel lines to r. cloids and rectangles and even some indescribable figures-to sat nothing of the accompanying prowf, if the sutident has enough mental fortitude to attempt one.

It is a natural temptation to omit the unit entirels or to skim over it superficially, thereby reducing its demomalizing effects to a minimmm. Yet the unit on loctas is a bidge between the stad of the theories of geomens and incer practical application in the fields of mechanics, construction, matigation, and analytic geometry. It is also valuable as a comprehensise review of the relation of many geometric facts to cach other.

It was a determination to preserve the study of locis that grew into an experience most satisfying to me. In the spring of 1936 , a neophte teacher. I was gected by a chass of some tharty students who had been weeded from the lasses of thee other teachers in
an attempt to reduce excessive teaching loads. I would not have admitted it then, but 1 will now-I was panic-stricken and there: fore I clung firmly to the text. Things began to run smóothly toward the end of the unit on circles, but I hate to recall the subsequent work on locus-it exhausted me and "finished" that class so far as enjoyment of geometry was concerned. No matter how much I tried, I could not recapture their interest.

By fall I had recovered from my case of "locophobia" and returned to school resolved to oust this dread disease from the classroom. With the very first constractions, such as angle bisectors and perpendicular bisectors, the term "locus" was introduced, this time with emphasis on its derivation from the Latin word meaning "place." "Where are some points which are each equidistant from two fixed points A and $B ?$ " I asked. After marking several such points with compasses, the students discovered that the "place" or the "locus" of all of them was the perpendicular bisector of $A B$. It was quite obvious to them that any point on this perpendicular bisector was equidistant from A and B, and that every point elsewhere was nearer to either A or B. This procedure of talking about locus was injected into every construction problem from the beginning of our study, so that with the arrival of the unit on locus the term itself was nothing new.

To launch the unit with enthusiasm and to introduce the concept of motion, we tried to visualize the path of the center of an automobile whel as it rolled along the street. This was not difthcult, but the path of a point on the circumference of the same wheel proved more stimulating. Heated arguments followed; some students thought the locus would be a straight line parailel to the surface of the road; others suggested that it would be a circle; still others imagined a series of loops like an old fashioned penmanship exercise. Fien after they had gone home and observed actual whecls in motion and experimented with their mother's chinaware and pantry equipment, there was still a difference of opinion. Finally one enterprising lad-I wish I could recall his name, for I am greaty indelted to him-conceived the idea of bringing a model into the classioom to terminate the controversy. He made one of a wooden wheel, with a radius of about four inches. which tolled along a staight track. By insenting a pencil near the circle,
he actually tated a cycloid on a board mounted behind the revolving wheel. This model, although conde, was convincing.

The discussion of the locus of the center of a circle of given radius which remains tange to the sides of a triangle or rectangle brought forth diffeytinces of opinion again. But the idea of making models had tiken hold and soon there were many models, not the elaborate polished variety, but simple cardboard models to be used today and discarded tomorrow. Some students ventured to apply the same method to squares, pentagons, and regular hexagons, as shown in Figure l, at the left, below. In each case a model displayed why the internal figure is a polygon, while the external figure has rounded vertices.

Figure 1

Figure 2

More and more models were brought to class; interest in them seemed to grew. Manv students told of the combtruction difficultios they had enfountered and the ways in which they had overcome them. Some were really ingenious. For example, while using the model for the eycloid, the class observed that it was difficult to make the wheel roll. for it had a tendency to slide on the track.

Many suggestions were made, such as stretching a pieç of inner tube around the wheel to increase its traction on the track. The result was an improved model, but one still imperfect. Someone suggested the use of a strip of corrugated cardboard on the outer rim of the wheel and a strip of the same cardboard on the track. It was found that stretching the corrugations on the curved surface prevented perfect synchronization with the cogs on the flat surface. Then spikes were inserted on the surface of the wheel and the track was replaced by a soft, easily penetrated material. This time it was observed that the spikes on the wheel had to enter and leave the track at angles instead of along the lines perpendicular to the track. This difficulty may have been overcome, but the problem was solved when a student found that a piece of flexible wire held securely in a position parallel to the track and wrapped tautly around the axle of the wheel prevented its sliding and made it revolve as it progressed along the track.

Enthusiasm for models need not weaken the demonstration phase of the work. Many students, once understanding the meaning of locus, prefer to imagine the path of the point or to discover its form by referring to related theorems; others continue to depend upon a model as an aid. For example, alert students would associate the locus of the point of intersection of the diagonals of a rectangle having one side fixed in length and position, with the perpendicular bisector of the fixed line. However, many students lacking this facility to associate ideas abstractly would realize that the problem becomes the locus of a point equidistant from the extremities of a line, upon examination of a model such as the one shown in Figure 2. Although my experience has been too limited to justify generalization, I have found that frequently the better students prepare the poorer models. Often they have fine ideas but seem to lack the mechanical skill to execute them, while some of the poorer students create excellent projects. Perhaps this is the natural result of the proportionally greater number of poorer students participating in "shop" courses. However, this difference in ability is most helpful in maintaining a balance - between the discussion of models and geometric demonstrations.

To clarify this point, let us consider an example. A problem frer
quently encountered is to find the locus of the mid-point of a given line-segment which moves so that its extremities remain on the sides of a right angle. The alert student immediately associates this problem with the theorem that the mid-point of the hypotenuse is equidistant from the three vertices; hence he knows that the mid-point must always be one-half the length of the given line-segment from the vertex of the right angle, and that it is therefore an arc of a circle with its center at the vertex and its radius equal to one-half the given line-segiment. It would be criminal to stifle his clear thinking and imagination by compelling him to make a model. At the same time there are students incapable of this kind of abstract thinking who, with the cover of a pasteboard box and a ruler or short stick, can discover for themselves the form of the locus and can see the concrete application of the theorem. Frequently a model inspires the creation of a new problein, such as the locus of a fixed point other than the mid-point of given line-segment which moves with its extremities on two perpendicular lines.

Thus the two extremes of ability can work together on the same unit, each contributing to the growth of the other through verbal demonstration or physical evidence.
I_{1} :s somewhat difficult for the teacher to decide whether models should be required, whether proofs should be required, and how to measure the individual's achievenent. Prise problems, like all other problems in teaching, can be answered only in terms of the abilities, interests, temperaments, and aspirations of the individual members of the class. It seems advisable to allow the student considerable freedom in the selection of the particular kind of work he will do; but, bright or dull, he will need guidance in his efforts.

It has been my experience that the following procedure is helpful. First, the term locus is introduced as soon as possible in conjunction with the most simple cons, ruction problems so that, when the locus unit itself is approached, the term is already understood. Since the Pythagorem Theorem may be applied to several locus prohlems, especially those involving circles with chords or tangents: and since the mit itelf is valuable as a comprehemsive review, it is best wostpone the locus chapter until well
near the end of the course. A discussion of the cycloid or the cardioid stimulates interest in the unit and challenges even the better students to build models. If the students fail to take the initiative; a few models from previous years are brought into the classroom in order to motivate greater interest. Students like to manipulate things, and soon there is a discussion about how to improve one or what principles are involved in the other. However, only a few models are carried from one class into another, for I firmly believe that great value is derived from a child's studying a problem, planning a model, and carrying these plans through to a finished product. Afte, we have discussed many problems, each student is requested to select a specific problem upon which he is to become an authority. He/may do one of two things: he may describe the locus and prove it quite formally to the class; or he may prepare a model and demonstrate to the class how it operates and what theorems it illustrates. The first procedure is within the range of only the better students, but through them the entire group becomes acquainted with at least the essence of the geometric proof of a locus problem.

The second procedure is open to all students, for the only materials necessary can be found in their own homes or the school's industrial arts shop. An. embroidery hoop or a coffee-can cover makes an excellent circle. In Figure 3 a can wor wan used to find the locus of the inid-point of all chords of fixed length in a given circle. The chord is a strip of wood with a piece of lead fastened at its mid-point. Figure 4 shows an emboidery howp being used as the fixed circle in finding the locus of the center of a circle of given radius, which remains tangent to the fixed circle. In this model the student made use of the line of centers in order to show both internally and externally tangent circles.

A simple yet very effective model can be made entirely of cardboatd. In order to show the locus of the vertex of a right angle whose sides pass through two fixed points, it is necessary only to mark the two points on cardboard and cut a slit from one to the other. A second piece of cardboard, cut to a right angle, inserted in the opening is movable. By rotating the right angle and pressing it fimbly against the ends of the slit, the student sees that the vertex traces a semicircle. Iwo pins, one ea at the two given

Figure 3

Figute;
points, may be substituted for the slit, and acute or obtuse angles may be substituted for the right angle. Each of these may be used as the vehicle for the application of the basic theorems about in. scribed angles.

Thus wires, strings, tin cans, rubber bands, pencils, nails, pressed - wood, and countless other common materials find their way intol the classroom in the forms of triangles, circles, parallel lines, elevator shafts, as shown in Figure 5. The models need not be permanently finished products, for only a few are to be preserved. However, frequently very finc models are prepared and these are useful in motivating the work of future classes or in suggesting possible variations to the students of less creative initiative.

The final emergence from this unit is no longer accompanied by a distaste for everything mathematical. True, students may still be unable to write a formal proof, but they have experienced the actual application of some of the basic principles of geometry and have gained an insight into the relationship of one part of a geometric figure to another.

Nothing lost by the better student; something gained by the poorer student! Is it not possible that models could be used elsewhere in mathematies to increase the efficiency and pleasure of hoth the teacher ind the learner?

LINKAGES

Robert C.! Yates

The most prominent motion is circular. The conversion of the easily attained circular motion into motion along a straight-line is of prime importance to the engineer and the mechapic. This was especially true seventy-five years ago when modern machinery was in its formative stage. Steam had only recently been applied to both land and water vehicles, but poorly riveted boilers and clumsy levers improperly lubricated played havoc athe-life and limb.

The generation of line motion was no doubt of concern to mathematicians from the time of Archimedes and, because no solution was apparent, many confused this problem with that of squaring the circle. A solution was first given by Sarrus in 1853 and another by Peaucellier in 1864, both of which lay unnoticed until Lipkin, a student of Tschebyschef, independently recreated Peaucellier's mechanism.

Fanned by Sylvester's enthusiasin [14],* interest in general linkwork immediately flamed high to attract the attention of men like Cayley, Kempe, Hart, Darboux, Clifford, Koenigs, Sir William Thompson, Darwin, Mannheim, and a host of other minds. The epidemic was so fierce and so universal that the subject was drained .lmost completely dry in the short span of four or five years. The drop in interest followed Sylvester's departure for America and Kempe's proof of the rediarkable theorem that any algebraic curve, no matter how complex, can be described by a linkage $[8,15]$.

We shall confine our attontion for the most part to linkages that produce line motion. Alfhough the drawings given here seem to indicate otherwise, there is io necessity thertbans or links be straight. Indeed, such a requirement would beg the question. The line segment joining two joints is the effective distance-the only requitememt is that all bars be plane inextensible members.

[^4]In making models of the various linkages, one should pbtain colored cardboard (poster board) about 12-ply, an eyelet panch, and boxes of No. 2 and No. 3 eyelets. Use the No. 2 eyelet to join two links; the No. 3 to join three or four links. Whoto.' trimmer cut the cardboard into strips about one-half inch wide, and mount the model on a cardboard background. To insure greater'accuracy, two bars of the same length should be punched simultancously [15].

The Peaucellier Cell

The Peaucellier cells [5, 11, 15] are displayed in Figure 1, where $O A=O B=A R=B R=a ; A P=P B=B Q=Q A=b$. It is obvious that the points O, P, Q, as well as points O, P, R, remain

I

Figure .
collinear as the cells are deformed. If X be the mid-point of the variable distances $P Q$ and $O R$, we have in either figure:
$(O A)^{2}-(A X)^{2}=(O X)^{2} \quad$ and $\quad(A P)^{2}-(A X)^{2}=\left(P^{2} X\right)^{2}$. Subtracting:

$$
\begin{array}{cc}
& (O X)^{2}-(P X)^{2}=(O A)^{2}-(A P)^{2}=a^{2}-b^{2} \\
\text { or } \quad & (O X-P X)(O X+P X)=a^{2}-b^{2}
\end{array}
$$

Thus, in the left figure, since $P \mathrm{X}=\mathrm{X} Q$ and $O X+P X=O X+$ $X Q=O Q$.

$$
(O P)(O Q)=a^{2}-b^{2}
$$

In the ight figure, $O \mathrm{X}+P \mathrm{X}:=R \mathrm{X}+P \mathrm{X}=P R$,

$$
(O P)(P R)-a^{2}-b^{2} .
$$

These relations constitute the fundanental property of the Peatcellier cells, a property that characterizes them immediately as mechanical inversors [15].

Figure 2
For line motion, a seventh bar of length c is attached with one end at P and the otfier end, M, to the base plane. The point O is attached to the plane so that $O M=c$. Then Q describes a straight line perpendicular to O.M as shov:n in Figure 9 . To prove this, let the linkage be placed in an arbitrary position as indicated. Draw a line through Q perpendicular to the line $O M$ of fixed points. It is evident, since the right trangles $O S P$ and $O H Q$ are similar, that

$$
O P^{\prime} / O H=O S, O Q \quad \text { or } \quad(O H)(O S)=(O P)(O Q)
$$

But $\left(O P^{P}\right)(O Q)$ is constant and so thencfore is (OH)(OS). Thus, since S is a fixed point and this product is constant, H is accordingly fixed and the point Q lies always on the perpendicular to $O . M$ at H.
∞ The other arangement of the Paucellier cell will produce line mution it P 's attared to the plane and () is made to traverse a circle passing throngh P. The demonstration is similar to the foregoing.

A line motion linkige amomuced by A. B. Kempe $[6,7,8,15]$ is built fon pention of the Pautellion wh. The "kites" APRT
and RO'ST of Figure 3 are proportional. That is, $A P=A T$, $P R=R O^{\prime}=R T, O^{\prime} S=S T$, and

$$
\triangle P / P R=P R / S T .
$$

Since the two kites are in union as shown, they have a common angle at T ind thus are similar throughout all deformations.

Figure 3
Let $\angle T A P=2 \theta=\angle T R O^{\prime}$ and $\angle A P R=9=\angle A T R=$. $\angle R O^{\prime} S$. Then

$$
\angle P R O^{\prime}=2 \pi-2 \varphi-4 \theta .
$$

Since triangle $P O^{\prime} R$ is isosceles, $\angle R P^{\prime}=Q+2 \theta-\frac{\pi}{2}$,
and therefore $\quad \angle A P O^{\prime}=\frac{\pi}{2}-20$.
Thus, since $\angle P A T=2 \theta, P A M$ is a right tiangle with the line joining P and O^{\prime} always perpendicular to the bar $A T$. Accordingly, if we fix O^{\prime} and move $A T$ parallel to itself, then P will describe a line perpendicular to $A T$. To do this, attach a bar OA equal in length and parallel to $O^{\prime} S$ and fix the point O.

Remove the bar $O A$, free the point (O^{\prime} from the plane, and fix P. Then attach to T one end of a bar which is equal in length to $A P$. Fix its other end to the plane at Q so that $P Q=A T$. This arrangement permits O^{\prime} to move on a line perpendicular to $P Q$ and the motion is somewhat freer than the foregoing.

The Hart Cell

A linkage of special importance is 'e four-bar crossed parallelogram of Hart [$1,8,15]$]. The bars are equal in pairs, i.e., (Fig. 4), $A D=B C, A B=C D$. We select four points O, P, Q, R on the bars in a line parallel to $B D$ and $A C$. These will remain collinear as the cell is deformed. Diaw the circle through A, P, and Q. Singe its center is on the perpendicular bisector of $P Q$, the line of symmetry of A and C, ther: C also lies on the circle. Let the

Figure
(ircle cut the bat $A D$ in the point T. This point is a fixed point of the bar. For, by the secant property of the circle,

$$
(D T)(D A)=(D P)(D C)
$$

in which the right member is a constant since D, P, and C are fixed points of the bar. In the left member, $D A$ is constant, and thus T must be a fixed point of $A D$. That is, throughout all deformations, A, T, P, Q, C, points fixed on the several bars, are always concyclic.

Now, since O is a fixed point of the bar $A D$, we have also by the secant property:

$$
\left(\theta i^{r}\right)(O Q)-(O T)(O A)=\text { constant } .
$$

Thus, since the product of the variable distances $O P$ and $O Q$ is constant, this remarkable four mechanism has the same fundamental property as that of the eatellier cell. For line motion, following the principles of Figure 2, we may fix O to the base plane
and caus* Q to move on a circle through O. Thus P describes a staight line.

The Hart cell has further interest. If we unionize two such cells by utilizing a short bar of owe as a long bar of the other, as shown in Figure 5, we may produce linear motion upon an entirely dif-

ferent principle $[6,7,8,15]$. In the left-hand figure, $A B C D$ and $A D F E$ are both crossed parallelograms. The angles of the first at A and C (i.e., θ) are always equal; those of the second at A and F (i.e., φ) are likewise equal. Generally, however, $\theta \neq \varphi$. But if θ is to equal φ throughout all deformations, the two crossed parallelograms must be sim:lar and their corresponding sides proportional. That is, if $0=\rho$, then

$$
A E / A D=A D / A B,
$$

or

$$
(A D)^{2}=(A E) \cdot(A B)
$$

Accordingly, if the bar $A I$) be fixed to a base plane, the rotation of $A B$ about A produces an equal and opposite rotation of $A E$ about A. Thus, if $A E$ be extended to G such that $A G=A B$ and the two equal bars G P and $B P$ be alded, the point P will be forced to move along the straight line passing through the two fixed points A and D.

Special note should be made of the connection here with the Kempe linkage for trisecting the general angle. It is obvious in the left fifure that two more bars may be attached to the linkage to produce theie equal angles at A-the three unionized crossed parallelograms having their corresponding sides proportional. (See article of Trisection elsewhere in this volume.)

()hmf Line Momon Linkages

We present here two linkages whose underlying principles differ from those of the foregoing. The first mechanism, outstanding for its ingenuity and simplicity, was devised by Hart. [4, 5, 15]. Iwo sets of equal bars. $A C=B D, P C=P D$, are joined as shown.

Figuc
The points A and B are fixed to a base plane at a distance h apart. If P be moved so that the angles at C and D are always equal, then (thangles $A I^{\prime} C$ and $B P^{\prime} D$ will be congruent and $A P$ always equal tw B12. Ihus P will lie alwass on the perpendicular bisector of the segment $A B$.
I he requirement that angles at C and D be always equal would secm diflicult indeed to arrange mechanically. Surprisingly enough such is not the case, lor, let $A C=B D \quad, a, P C=P D=b$. Then select (wo points R and S on $A C$ and $B l$), respectively, so that

$$
R C=S D=b^{2} / a .
$$

Then

$$
R C / P C=\left(b^{2} / a\right) / b=b / a=P C / A C .
$$

Thus $\angle P A C=\angle R P C=\angle S P D=\angle P B D=x$. Furthermore. $\angle \mathcal{A P C}=\angle P R C=\angle B P D==1$ Now since $P R=P S ; P A=P B$; and $y+z=\angle A P B$, then tiangles $A P B$ and RPS are similar. Accordingly,

$$
P R / P A=R S / A B=R C / P C=b / a .
$$

If we take the constant distance $A B_{\gamma}$ equal to a, then

$$
R S^{\prime}=6
$$

That is, if P describes the bisecting line of $A B$, then the distance between the moving polnts R and S is constant. Conversely, the angles at C and D will yemain equal and the point P will describe a line if R and S are jnined by a bar of the proper length.

Before attaching the linkage to a base plane, lay it open so that P is at the uppernost point. The mechanism forms the letter " A ". In this extreme position fix the points A and B along any desired line.

The second linkage for line motion is due to Kempe [8, 15]. As shown in Figure 7, the following lengths are selected: $A B=$ $B C=C D=C P=4 a ; A D=D C^{\prime}=C^{\prime} D^{\prime}=C^{\prime} P=2 a ; A D^{\prime}=a$.

Figure 7

The points A, D^{\prime}, and B are attached in a straight line to the base plane. We shall show that P^{\prime} lies always on this line. ${ }^{1}$

From the selected lengths, quadrilaterals $A B C D$ and $A D C^{\prime} D^{\prime}$ are similar, since they contain a common augle y at A. Thus, angles of the first quadrilateral, i.e., x, y, z, are equal to those of the second at corresponding vertices. Moreover,

$$
\angle A D C^{\prime}-x \text { and } \angle C^{\prime} D C=z-x-\angle C^{\prime} P^{\prime} C
$$

But $\quad \angle A D^{\prime} C^{\prime}=z$ and $\angle C^{\prime} D^{\prime} P=-n=\angle C^{\prime} P D^{\prime}$.
Accordingh. $\angle\left(\cdot D^{\prime}\right)^{\prime}=-(z-x)+(\pi-z)=\pi \cdots x$, and therefore the points B, P, and D^{\prime} are collinear. Consequently, P must move on the straight line $A D^{\prime} B$.

It shonld be noted that any perint on the bar $P^{\prime} C$, other than C or P, describes an ellipse.

Approximate Line Motion

The linkages discussed thus far have yielded exact solutions of the problem of converting from circular into straight-line motion. Prior to the appearance of the Peancellier cell, there were, naturally, a number of devies that produced motion along an approximately straight line. The most notable of these was the three-bar linkage of James Watt, father of the modern steam engine [6,15]. This ., displated in Figure $8 \mathrm{I} . P$ is the mid-point of $C D$ and $A C=B D$. C and B are attached to the plane so that $C D$ is perpendicular to $f\binom{$ and $l}{l}$ when they are parallel. Watt reasoned that the circular motiten of C counteracted that of D so that a point I ' midway on the taversing bar would travel along a "neutral" path appoximating a straight line. This device enabled him to reduce the height of his ene ine house by five feet, a step which must have repesented a caphal saing. A curions quotation from a leeter of 1784 to his som meah, his embusiasm: ". . . though I ant not overanxions alac lime 1 anm mote proud of the paralle motion than of any other incontion I hase ever made."

[^5]
1.guc 8

An interesting special case arises when it happens that $A B=$ $2 a ; C P=P D=a ; A C=B D=a \sqrt{2}$. Then the lucus of P is the familiar lemniscate.

The arrangement of three bars in Figure 8 II is the approximate line motion of Tschebychef given in 1850. Here, $A B=4 a$; $D P=F C=a ; A C=B D=5 a$.

In 1860, R. Roberts devised the three-bar linkage (Fig. 8 III) which produces a better approximation to line motion than either of the two foregoing mechanisms. Instead of a traversing bar, there is the plate CPD whicti carries the tracing point P. Lengths are as follows: $A C=C P=P D=D B$ and $A B=2(C D)$.

We cannot pass on without mentioning the general three-bar linkage shown in Figure 9 I. This mechanism produces a compli-

Figure 9
cated curve of the sixth degree [10]. If the triangle $A B C$ be drawn similar to the plate $P Q R$, the circumcitcle of $A B C$ will pass through the double points of this sextic curve.

Fighere 9 II exhibits a most remarkable property of the threebar linkage. Select a triangle $A B C$ and any internal point P. Draw lines through P parallel to the sides of $A B C$, thus determining a triple three-bar mechanism as shown. (The three-bar part $A B P Q R$ of 1 , for example, might be the same as that in II when extended.) Now, no matter how the linkwork be deformed, triangle $A B C$ remains alu'dys similar to itself. That is, for instance, if A and B are fined. l describes a three-bar curve, and the free point C remains at rest. O_{1}, if A, B, and C are fixed to the plane, all three of the threc-bar mechanisms produce the same curve in mutual harmony and cooperation.

Paraliffiocirams

The parallelogram has occupied from the beginning a prominent position in the theory of linkages [15. 16]. Its use as a basis for the familiar pantograph is illustrated in Figure 10. A rhombus

MANP" has two legs extended to points 0 and l^{2} so that $0, P^{\prime \prime}$, and P are coilinear. Friangles (omp" and o.tl are always similar and thus
or

$$
\begin{gathered}
\left(1 . M() .1 \quad\left(O H^{\prime \prime}() \quad 1,!\right.\right. \\
\left(O I^{\prime}==\Omega\left(O P^{\prime \prime}\right)\right.
\end{gathered}
$$

Accordingly, if O is fixed and P be moved on some curve, the point P^{\prime} traces a curve similar and similarly plared to the first but reduced in size by one-half.
An obvious extension of the pantograph to one with multiple copying points is shown also in Figure 10.

Clearly, the rhombus may be replaced by a general parallelogram if O, P^{\prime}, and P are kept collinear. This leads to the general pantograph shown in Figure 11, I. The bar $M P^{\prime}$ has been replaced

Figure 11
by another bar $O B$ without changing the effectiveness of the original parallelogram. The point P^{\prime} on $B N$ which is collinear with O and P is the copying point. Variously selected points P on the bar $A N$ extended will produce an assortment of reduction factors determined by:
or

$$
\begin{aligned}
O M / O A & =O P^{\prime} / O P \\
O P & =[(O M) /(O A)] \cdot(O P)
\end{aligned}
$$

The linkage of Figure 11 II is offered for its novelty [14, 15]. Five rhombuses are joined together as shown. In all fositions, M is the mid-point of $B C$, while G is the lower trisecting point of the line segment $A M$. Thus G is always the centroid of the variable triangle $A B C$.
of considerable importance to linkage theory and the description of higher plane curves (including the conics) is the crossed parahelogram, already introduced here in Figure $4[1,2,3,4,8$, 12, 15]. Further study may be had through the listings in the attached bitbliography.

References

1. Hart, H. Messenger of Mathematics, NS 4 (1875), 82.88; 116.120 .
2. Hart, H. Messenger of Mathematics, NS 5 (1876), 35 ff .
3. Hart, H, Messenger of Mathematics, NS 6 (1877), 169-172.
4. Hart, H. Proceedings of the Liondon Mathematical Society, 6 (1874), 137 f.; ○ (1877), 288 ff.
5. Hilsenrath, J. The Mathematics Teacher, XXX (1987), 277-284.
6. Kempe., A. B. How to Draw a Straight Line. New York, 1877.
7. Kempe, A. B. Messenger of Mathematics, NS 4 (1875), 121-124.
8. Kratpe, A. B. Proceedings of the London Mathematical Society, 6 (1875), 565 Erin; 7 (1876), 218 ff.
9. Ke.alpe, A. B. Proceedings of the London Mathematical Scciety, 9 (1878), 183.147.
10. Moriey, F. V. American Mathematical Monthly, 81 (1924), $71-77$.
11. Prauceither. N'ouv. Ann. de Math. (1864), 414, 493 ff.; (1873), 71.78.
i?. Roos, J. U. C. pe. Lemkages. New York, 1879.
12. Sarrls. Comple Rendus, 36 (1853), 1036-1038; 1125.1127.
13. Sytvesir. J. J. Procecilings of the Royal Institute, 7 (1874), 179 ff.; "Collected Works."
14. Yates, R. C. Tools, A Mathematical Sketch and iLodel Book. Baton Rouge, La., 1941.
15. Yates, R. C. The Mathematics Teacher, XXXIII (19:40). 301.310.

GRAPHICAI. REPRESENTATION OF COMPEEX ROOTS
 Howard F. Fehr

Complex numbers usually are first introduced into high school mathematics under the topic of Quadratics. The solution of quadratic equations by the methods of completing the square and substituting in the quadratic formula frequently leads to square roots of negative quantities. In order to admit expressions involving such quantities as rocts of an equation, it becomes necessaty to extend the number system to include complex numbers. The usual treatment of such numbers in the high school is mechanical and meaningless, but the Argand diagr. n can and should be used to represent such numbers as points in .. .lane.

The study of the quadratic function can well begin with the construction and study of its graph. In this way, it is easy to see that one of three conditions prevail: the x-axis cuts the graph at two distinct points; or it is tangent at one p int; or there is no intersection. In the last case the student is told that the roots of $f(x)$ $=0$ are imaginary; frequently he uses this word in its ordinary literal sense and thinks of the roots as purely fictional. It would be better to use the word "complex" instead of "imaginary." It is the purpose of this article to show that the actual graphical location of these complex roots is within the comprehension of the average high school junior and senior.

Consider the function $\chi=x^{2}-4 x+8$. The graph of this function lies entirely above the x-axis. Hence the roots of $f(x)=$ 0 are complex. From the graph it is evident that the roots of $x^{2}-4 x+8=4(y=4)$ are equal; if $y>4$, there will always be two real roots. For the high school student who has not studied complex numbers, the equation $x^{2}-4 x+8=0$ has no roots, while the equation $x^{2}-4 x+8=6$ has exactly two roots. If he solves the first equation, he finds the answers to be $x=2 \pm 2 i$, but these values do not appear on the usual graph.

A common method of constructing these complex roots makes use of tangents to the graph. Thus in Figure l, let the axis of the parabola meet the xaxis at A. From A draw tangents $A R^{\prime}$ and $A R$; then draw $R R^{\prime}$. Ict $l R^{\prime}$ meet the parabola's axis at Q. Then

Fはит 1
lay oft on both sides of the x-axis $A H_{1} \cdots A P_{2}=R Q$. Considering $Y^{\circ} O X$ as a comptex phane, P_{1} and P_{2}. then represent the romplex roots of the equation.

There are two pincipal objections whe use of such a constanction in the high school course: first, the dual use of the plane as rectangular coondinates to repersent lunctions of a real variable and also is a complex number phate is conturing and likely to lead to ermeons concepts; second, the proof that P_{1} and P_{2} represent the complex roots requires more advanced mathematics (such as a knowbedge of slope, equations of tompent lines to a parab). oha foom an extemal poin, and some whe inotsed algebraic manipulations than an be expected ot the high shool pupit. This method an be exterded, however, to cubies and higher equations, and the interested reader can find more information ia the

Most tathers will find the following method better suited to high school algehn.

We shath constuet the graph of $x^{2} \ldots$ is $\ldots x$ with hoth its real and its complex brameres. In order to do this. we comsider only
real values of the function but both real and complex values of the variable x, as shown in the table below. Designate the function by y and solve for x.

$$
\begin{gathered}
{\left[\begin{array}{rr}
y & x \\
\hline 8 & 2 \pm 2 \\
5 & 2 \pm 1 \\
4 & 2 \pm 0 \\
3 & 2 \pm i \\
0 & 2 \pm 2 i \\
-5 & 2 \pm 3 i
\end{array}\right]} \\
y=x^{2}-4 x+8 \\
x^{2}-4 x+4=y-4 \\
x=2 \pm \sqrt{y-4}
\end{gathered}
$$

It is evident in this form that:
(a) There are two values of x for each value of y.
(b) If $y<4$, the values of x are complex.

To construct the graph, we use the horizontal plane as the complex number plane in which values of the variable x are located. Through the point of origin of this plane we draw the y-axis per-

Figure 2
pendicular to the plane. Then for each value of y (as given in the table) we locate the corresponding two values of x. For $y \geq 4$ the points thus plotted give the ordinary parabola, which we call the real branch. For $y<4$, the points fall in a plane which is perpendicular to the YOa plane and two units from the point of origin. These points form an inverted parabola which we call the complex branch. It is readily seen that this latter branch cuts the x-complex-number plane in the two points $2 \pm 2 i$, which are the roots of the given equation. These points are actual intersections, as shown in Figure 2, and need not be imagined.

The construction can be attacked more generally by letting x have the complex value $a+b i$, and finding the conditions under which y is real. Thus if $y=x^{2}-4 x+8$, we have

$$
y=(a+b i)^{2}-4(a+b i)+8=a^{2}-b^{2}-4 a+8+i(2 a b-4 b) .
$$

If y is real, the coefficient of i is zero; hence

$$
2 a b-4 b=0, \text { and } b=0 \text { or } a=2
$$

If $b=0$, then $y=a^{2}-4 a+8$, which is the real branch of the quadratic drawn in the $Y O a$ plane.

If $a=2, y=4-b^{2}$. I his is the complex branch of the quadratic in the plane $a=2$, which is parallel to the $Y O b$ plane. The complete graph, therefore, consists of two branches; and for any real value of y, the graph will always have two and only two corresponding values of x, either real, equal, or complex.

A permanent model can the made by using three glass panes, cemented together so as to form the YOa plane, the $a O b$ plane, and the plane of the complex branch $a=2$. The $y, O a$, and $O b$ axes can be painted on the respective planes in black. The parabolas can then be painted on their planes, preferably in contrasing colors. Thus the real branch $a^{2}-4 a+8$ can be painted in blue on the YOa plane, while the complex branch $4-b^{2}$ can be painted in red on the plane $a=2$. The intersections $2 \pm 2 i$ can easily be hateled in the xplane.

Fach student can make his own model from ordina:-: graph paper. Firft, Fold the sheet in half, lengthwise. Draw the $O Y^{\prime}$ and $O a$ axes on both sides of the folded paper so that they correspond. Next, locate the axis of the parabola which is always at $x=$

Figure 3

- $b / 2 a$, and draw this axis to correspond on both sides of the folded paper. Slit the lengthwise crease from the right edge as far as the parabola axis and fold each slit part into three equal sections, making the middle one bend outwry. (See Fig. 3.) Then, by holding the slit ends together and pressing from both ends so that the middle sections bend outward, the paper is divided into two perpendicular planes, the $Y O a$ plane and the complex branch plane. Label the axes accordingly and plot the graph of each branch on all visible faces of the paper. Then looking directly toward the Y'O plane, one sees only the real branch of the parabola; it does not intersect the x-axis. Turning the model 90° around the y-axis, one sees only the complex branch of the parabola, which intersects the $b:$ axis at $\pm 2 i$. Hence the roots are $2 \pm 2 i$. When the entire graph paper is unfolded to a plane, it appears as in Figure 4.

To graph the general quadratic, we proceed in the same manner. Thus we substitute $a+b i$ for x in

$$
\begin{gathered}
y=p x^{2}+q x+r \\
y=p(a+b i)^{2}+q(a+b i)+r \\
==p a^{2}-p b^{2}+q a+r+b i(2 a p+q)
\end{gathered}
$$

Complex Roots

If y is real, the coefficient of i is $z e r o$, hence either

$$
b \ldots 0 \text { or } a=a / a p .
$$

If $b=0, y=l^{2}+q^{a}+r$ is the real branch.
If $a \cdots q y p y-q^{2}-p^{2}+r$ is the complex branch.
The cubic equation can be treated in a similar manner. In this ass there ane two complex branches which are located on the two

Figure 4
brander of a hyperbolic cylinder whose elements are perpenddicular to the x-plane. This is best illustrated by a particular equation. Int i^{3}. x. ti. As before, let y be real and x comTole, and subtile a - : hi for x.

$$
\begin{aligned}
& a^{3} \quad 3 h^{2} \cdot a+6+b i\left(3 a^{2} \quad h^{2}-1\right) .
\end{aligned}
$$

If $?$ is rat. he wetherent of i is 2 cion heme

$$
b=0 \text { or } 3 a^{2}-b^{2}-1=0 \text {. }
$$

It $b=0.1 \quad a^{3} \ldots a-6.1$ his is the real branch of the cubic: equation. Which in the pat usmatlygisen in the Yo plane.

If $3=$. $h=1 \quad 0.1-2 a^{3}+2 a+6$, which formula gives the value of the function on the complex branch. Notice that $3 a^{2}$. . $h^{2} \quad 1$ is the equation of a hyperbola in the $a O b$ plane. Heme ans complex number $n+b i$ that satisfies $3 a^{2}-b^{2}-1$ will give the real wale - $8 a^{3}-9 a+6$ to y. That is, any complex
number on the hyperbola in the $a O b$ plane substituted in the on gina equation will produce a real value for y, which is plotted above the complex value of x. The fact that the values of y for the complex branches are given in terms of a only makes it easier to evaluate and locate the points on the graph. Thus if $a=1$, $v=-8+2+6=0$; and the points on the hyperbola are $b^{2}-2$ or $b= \pm \sqrt{2}$. Hence the complex roots are $1 \pm i \sqrt{ } 2$. Simpmarly if $a \underset{\sim}{2}, y=-54$, and $b= \pm \sqrt{11}$. When $x=2 \pm i \sqrt{ } 11$, the value of the function on the complex branch is - 54 .

Figure 5
!"gur 5 shows how the complex branches begin at the maximum and minimum points of the real branch and have all their points dinectly above or below the hyperbolas in the aOb plane; that is, they lie on the hyperbolic cylinders. Such a graph shows immediately the values of y for which the cubic equation has thee real roots, two equal roots, or only one real and two complex roots. It clearly shows that a cubic equation always has three and only there toots.

The extension to the quantic equation should now be obvious. The quantic function has thee complex branches. Thus if $y=x^{4}$, whotiluting $a+b i$ for x gives

$$
\begin{aligned}
& y=(a-b i)^{4}=a^{4}-6 a^{2} b^{2}+b^{4}+4 a b i\left(a^{2}-b^{2}\right) . \\
& \text { If } y \text { is to be real, either } a=0, b=0 \text { or } a^{2}-b^{2}=0 .
\end{aligned}
$$

If $b=0, y=a^{4}$, which is the real branch.
If $a=0, y=b^{4}$, which is the normal complex branch.
If $a=b, y=-4 a^{4}$, , which are the two remaining complex
If $\left.a=-b, y=-4 b^{4},\right\}$ branches. Thus a plane $y=k$ cuts the graph of $y=x^{4}$ always in four and only four points. If k is positive, there are two real and two complex roots; if k is zero, there are four equal roots; and if k is negative, there are four complex points of intersection.

With a slight change in method, the complex intersections of

Figure 6
some conics can be shown as in Figure 6 above. In the circle $x^{2}+y^{2}=4$, we notice that if $x>2, y= \pm \sqrt{4-x^{2}}$ is a pure imaginary number. If we agree to give only real values to x, then for $x>2$ and $x<-2$ we plot the pure imaginary values of y in the horizontal plane, since the real values were in the vertical plane. This is equivalent to substituting $i y^{\prime}$ for y in the equation of the circle from which we obtain $x^{2}+\left(i y^{\prime}\right)^{2}=4$ or $x^{2}-y^{\prime 2}=4$. Hence the complex branch of the circle for real values of x is a hyperbola which is plotted in the horizonal plane.
The following problem illustrates how the complex intersections of two quadratics can be shown by using the above method of graphing the complex branches. Iet it be required to solve the set of equations $x^{2}+y^{2}=25$ and 3$)^{2}=16 x$. By ordinary algebra we find that the solutions are $x=3, y= \pm 4$ and $x=-\frac{5}{3}$ $y= \pm \frac{2 J i}{3}$. The ordinary graphs of the real branches of the circle and parabola show the intersections (3,4) and ($3,-4$). If we draw the complex branches, the other solutions will be apparent. The complete graph is shown in Figure 7.

The eomplex branch of the circle is the hyperbola $x^{2}-y^{2}=25$. To obsain the complex branch of $3 y^{2}=16 x, x$ real, let $y=a+b i$. Then $3\left(a^{2}-b^{2}+9 a b i\right)=16 x$. For x real, the coefficient of i is zero and $a=0$ or $b=0$. If $b=0,3 a^{2}=16 x$, which is the real

F口ure:
 is ploted in the lomizomtal plate. The intersection of the hyperbola and the comple bath hamandagive the complex solutions.

It is wident that the compere interections of a staight line
 win in x in complex win y, and ometsely. Thene is no real talue lon a lincar function if the variable is complex.

 Mathematial Month!y. Vol. 2l. p. 409. 1917.
2. Ghmax, H. M. "Complex Rexes of a Polsmomial Equation." American Mathemutual inombly, Vol. 48, p. 237, 1941.

 and (omproms. Den Sonh. 1887.

A DEVICEFOR TEACHING THF FUNIDMENT:AI. OPERATIONS WITH DIRECTED NUMBERS

Hortense Rogers

Anout 1925 an automobile race track was built near the highway between Rock IIIll. South Carolina, and Charlotte, North Carolina. People from la and near attended the races held there. One day a studenterecher of mathematios in the Winthop Training School brought to class a peoster with a race track on it. This positer suggested to the super visor the idea of using a race track for teaching the opections with signed numbers. The results showed real interest and a better understanding on the part of the students, and so the devioe has been used, with variations, for cighteen years. The bows and gitls enjoy the race, and directed mmbers take on a 16,1 meaning for them. The operations are rationaliad though the ir onotete experiences; the examples used are literally made W the stadems. Fombemone, fom a study of these examples they make their own algebraic rukes whech are later stated in good fom. They do mot question the bules for using sign. for th then thone bule ane oeasomable. Whomgh it
 way. the thinkine dome and the undentandine actuited by the students justify the vewo progess made in the bergiming of the studs.

A hear undersmading of cotain concepts shated perede the stud of the operations wiht diterted or signed mambers. These
concepts include: directed or signed numbers, negative number, positive number, the sign of a nurher, the absolute value, the reading and twriting of such numbers, the number scale, direc: tions on the scale, the meaning of a number negatively directed or positively directed with respect to another number, and so on. As each operation is introduced, a definition or meaning of the operation should be given to and understood by the students. The meaning of addition used with this device is in keeping with that given by Breslich and Everet .. ${ }^{\text {. }}$

The teacher may introduce the idea of hating a race in any way he wishes. The students will soon be enthusiastic and, with some guidance, will plan the race themselves. The following account may make it appear that the idea, carefully detailed, is handed out te the students. This is far from being the case. They really do discuss, plan, and make decisions. They will discuss the different kinds of races; and, after deciding on an automobile race, will talk about teams, tracks, cars, distances, and provision for these in the classroom. They will divide into teams and will appoint at least three committees: automobiic, track, and phannitig. These committees will be working simultaneously and will be ready by a set time. Fach committee will need some guidance.

The automobile committee. Fach team has an automobile committer. This team decides that the cars must face to the right, the positive direction. All members look in magazines or newspapers for pictures of cars. Each committee selects from those submitted the one its team will use. They mount the picture on cardboard; then they cut it out, carefully following the outline of the car. Next. near the top of the car they punch two holes through which a string on the race track is to be run. If convenient, these holes an be strengthened with nickel brads. The cars are now ready and ate turned over to the rack builders.

The track committee. This committee is composed of one or two members from each team. They usually select front blackboards for the race track and use as much space as possible. They fasten small strips of wood across the extreme ends of the blackboard. In each of these strips they place as many staples as there
 (hiogo Iniversis Piess. 1931. Alsu, I. P. Fwerett. The fundamemtal skills of Alpe

Directed Numbers

are teams. Then they tie strong twine to the staples at one end, run on the automobiles, and tie the twine to the corresponding staples at the wher end of the blackbond. Now, after plating all antomobiles in the middle of the strings, they draw clear lines just behind the tacks. They do this more easily if they use a yardstick. By stanting at the middle of the line, they measure off accurately spaces one and one-half inches wide, marking each with a vens short vertioal line, but making each fifth line a litele lomer thim the others. The marks appear as straight mileposts alomer the traks. It is well to select as a marker of the posts a pmpil who san make good figu es. Starting at zero, he puts the mimus and plus mumbers above the fifth posts only. The committecs joh at this point is completed.

The phanning committer This committec, which may be composed of a ferw from cath cean or of the whole class, decides on all other yuestions. They mas deride on a relay race so that each pupi man wimath dive a (.1t. The order of diving should be

 ! : 1. ! ! ! ! . . wid int the comuter. The spin. H!: : \because

from minu,
I armed substimute for a spinner

 fom the vane bex, ther vosuld be in the box at least ten of each pumber wed.

Definite imburtinn for exh diver ate ageed upon as follows:
(a) We tells where the eat is before he starts.
(b) He spins. and w! lis the doss what he gets. IV also states in whit dinc: fion the sian tells him who and how far the ab. solute balue tells him to go.
(c) Ste geves th the race track and. after .uthally comments the nomber of spares in the corter dine bom, he moves his car.
(d) He tells where his car is then.

Of course, all games require a referee-scorekeeper; usually the teacher serves. The following are his duties:
(a) He writes fairly large and spaces the scores well.
(b) He writes the name of each team on a board. If there is a lack of board space, he can use paper and before the next class session make mimeographed copies of the scores to give to the students. The use of the board is preferable for the class discussion.
(c) He writes for each driver the following:
(1) The number showing where his car is when he stats.
(2) Under that, the number he gets when he spins.
(3) The number showing where his car is after he moves it the driving distance.
A study of the sample soore board that follows will make clear the method of kecping the scores.

The students select the name for their own team. They usually decide that the winner shall be that team whose car is farthest to the right after a specified number of players on all teams have driven.

These preliminat amangements having been completed in class of onf of (las homs, the group is ready for the race. They first hate 1 tial heat in which only one on each team drives. The bace is on! The bots and girls enjoy the activity; shey have lots of fun and much freedom. Such comments as "put on your brakes," "don't go in reverse," some groans, some applanse, and won, are in order. As an award they put blue, red, or yellow atterisks on the winning cars. Imanably they request to race again the next das. This privilege is sometimes, but not always, granted.

Of course, the time spent on such an activity must be used for teal teathing and real thinking. The adding of signed numbers is hept in mind while the students are comoting the distances and moxing the cas. Thev are quite willing to accept the fact that the results ane the concet sums. But they cannot always have cars and track. It is now the teacher's task to guide the class in using these examples which the have made themselves to disener how to add directed numbers without the aid of the number scale. Toward that end then study the sore beard, a sample of which follows.

Score Board

Siluer Streak

Lucky Thirteen

0 $-\quad 5$	- 5 -6	$\begin{aligned} & +1 \\ & -10 \end{aligned}$	-9 -3	$\begin{array}{r} -12 \\ 0 \end{array}$	$\begin{aligned} & -12 \\ & +10 \end{aligned}$
-. 51$)$	$\because 18$	-90 .	-1213	$-12 \mathrm{D}$	-20
-	+ 5	$+8$	- -6	- 3	- 4
$\therefore-7$	+-3	… 2	$!$	1	$\ldots 4$
				115	10 I

spilfire

11	!	.-.10	\because	- +3	-7
- 9	- 1	$\because 8$? \%	-f. 1	--10
$-----$	1113		$\begin{array}{rl} -- \\ 1 & 3 \\ 1 \end{array}$	$\therefore 71$	… 3 (1)
- \because	--	-i. 1	-1. 1	.-- i	- $1:$
--5	- !	+ 3	--10	.. 10	-8
-83	-1. 1 ($-1-4$. 60	\cdots	-9: 13

As an aid in studying the combinations on the score board the students mark, using capiăl letters, groups of examples having certain combinations. First, they find all the sums when each addend is positive. They mark these with an A and study them. These observations enable them to discover the answers to the following questions:
(a) What is the sign of the result?
(b) Is this the sign of each one marked?
(c) What is the absolute value of this result?
(d) How can one get this absolute value from the absolute values of the two given numbers? It may be necessary to suggest the answer by asking which one of the four operations one can use.
(e) Is this true of the absolute talue of each one marked?

The class is then guided in stating all this in one good clear-cut sentence. Then the teacher writes on the board:

In adding two poritive numbers, use the - sign and the absolute values.

The students should read this together several times, filling in the blanks with the wods plus and add. Later it would be well for one child to go to the board and write the words above the blanks.

Now have the students matk with a B all sums made from two negative numbers. Follow the same procedure as above, asking similar quentions and uing a similar sentence.

Next, have them matk with a C all sums made from a negative fand a positive number. Ask the same finst question. Also, ask whether this is true of all maked with a (:. The answer is no. Hence, have them draw a ciocle aoond each C alongside the answers that are negative and leave only a C for all that are positive. Again have them study the two goups for a clue as to how to decide on the sign. Although this poocedure will take more time than was required for the preceding groups, nearly all the students will discoser and agree that the sign is the sign of the one having the larger absolute value. Then thes can study these numbers to find how to get the abolute value. The sentence which the group formulates will then be witten on the board:

In adding a negative and a positive number, use the sign of the number having the -_ absolute value and _-_ the smaller absolute value from the greater absolute value. (The correct words here are respectively greater and subtract.)

Similarly, they matk with a D and study the examples with one number and a zero. The sentence will be:

In adding zero and either a negative or a positive number, the answer is the -_ negative or positive number. (The correct word is given.)

Similarly, they mark with an E and study the examples with the answer zero. The sentence will be:

In adding a negative and a positive number with the same absolute value, the answer is

What other combination gives zero? The answer is "two zeros." This step may be omitted.

These generalizations should be followed immediately by practice in applying each rule discovered and stated by the class. Some examples worked by applying the rules should be checked by using an automobile. The top track and car are usually left on the board for several weeks. This plan keeps a momber wale betore the class, but permits the use of the board for other purposes.

The automobile race, with necessary variations, has been used to teach subtraction and multiplication of directed numbers also. The interest of a given group should determine how long to continue itsuse. It is a device that has proved profitable for many students and it probably will clarify for others a basic matter that has often proved a stumbling-block.

TRISECMION

Robert (i. Yates

The problfan of trisecting the angle has been a fertile source of mathematical ideas and to it much of the history of mathematics owes its origin. For some time it has been known that the general angle camot be tisected by straightedge and compasses [10]; yet many still entertain a hope that the impossible may be accomplislied [15]. Certain angles, notuly $90^{2}, 54^{3}, 9{ }^{2}$, do admit of trisection hy staightedge and compasses. Some geometrical tools, a few of which are to be discussed here, are papabte of solving this poblem. There ate cunses.* other trim the staight line and citcle. which preent means by which the general angle may be tisected [15]. Outhanding among these are the quadratrix, the

$$
1
$$

11:..11

 the unit distame and haw the paralled $A C$ to o O, meeting $O B$

[^6]extended at $(\therefore$ Then $\angle D(O)==0$ Nigu diaw $O D$ equal to the unit length so that triangle $A O D$ is isusceles with base angles 2θ (since they ane altemate intenion angle $\angle D . A O=\angle A O T$). It is evident, since $\angle A D()$ is the sum of the opposite interior angles of triangle $D(: O$ and $\angle D C O=0$, that $\triangle D O C=0$. Thus triangle $D C O$ is isosceles and $D C=D O=1$. Let x denote the distance $O(:, \underline{y}$ the distance $A D$, and a the projection of $O A$ upon the side ()B (i.e., (os; 30). From the similar right triangles CaID, CNA, and (:ILO, we have:
$$
x=(x+a) /(1+9 y)=(1+y) / x .
$$

The elimination of y here produces:

$$
x^{3}-3 x-2 a=0
$$

Since, we maty consmot the quantity $a=\cos 3 \theta$, we may think of this as being gisen with the angle $A O B$. If the point C, or its distance x abong on , an be detemined, the problem is at once solied by comnecting (: to A and thea constructing the trisecting parallel 0 $\%$. Thus the gemetrical solution of the problem is equivalent to the algetraic solution of the corresponding trisec. tion equation.

This cubic equation camor in general be decomposed into factons with teal constructible weflicients [5, 10] and thus its roots

1.iun:
joining rigidly together a segment and its perpendicular bisector. Let $\angle A O B$ (see Fig. 2) be trisected. Place the edge (S S of the " T " along one side $O B$ of the angle and mark two distinct points, C and C^{\prime}, at a distance $P Q(=a)$ from $O B$. Draw $C C^{\prime}$. Insert the segment $P R$ so that P falls upon $O A, R$ on $C C^{\prime}$, with the edge $Q S$ passing through O. Then $\angle A O B$ is trisected by $Q S$, for, from the congruent ri tht triangles $P O Q, R O Q, R O M$,

$$
\angle P O Q=\angle R O Q=\angle R O B .
$$

The tomahawk $[6,15]$ is similar to the carpenter's square. It is formed by rigidly attaching a tangent line to a semicircular disk whose diameter is extended the length of the radius (sce Fig. 3).

Figure 3
Its application to the trisection of a given angle $A O B$ is imme diate.

The two foregoing instuments may also be used to draw the cissoid and duplicate the rube (i.e., extract the cube root of a selected segment) [17].
A single: straightedge carring tioo arbitrarily placed marks, P and Q, will tri ct the general angle if assisted by the compasses $[3,8,15,17]$. I et the distance $P Q$ be $2 a$. Upon one side $O B$ of the given angle establish $O T \rightarrow a$. Draw $T X$ and $T Y$ perpendicular and paralle respectively w OA. Place the ruler through O so that P and ! fall on these lines as shown. Then OPQ tisects $\angle A O B$, as shma in Figute 4 , page 14 . For. if M be the mid-point of $P(Q$;

Trisection
and

$$
P M=M Q=M T=a
$$

Since $\angle O M T$ is an exterior angle of triangle $M Q T$, and further since $M T=O T=a$, then

$$
\angle M O T=\angle O M T=2(\angle M Q T)
$$

But since ()() taterses two paralle lines.

$$
\angle A O Q=\angle O Q T
$$

Thus

$$
\angle M O T=2(\angle A O Q)
$$

and OQ is a tusector of $\angle A O B$.

Fщule
It should be noted that as P travels along $? X$ with the straightedge alwas, through (). the path of Q is one branch of the conthoid of Nitomedes, one of the curves prominent in the history of trisection [15,: 17].

As P and (? Hawe umon the fixed lines $T X$ and $T X^{\prime}$, the pabl of any selcoted point of l () is an ellipse having the fixed lin sas axes of stumetus. The envelope of the lines $P($, and of the fu:ntly of ellipses thas formed, is the astroid, the fourcusped member of the hyporscluid famly [16, 17].

The paper and cone $[1,15]$ combination affords an interesting - trisection arrangement. A right circular cone is constructed, hav-

Fupue ${ }^{5}$
ing its slant height equal to three times the base radius. The cone is phaced so that the center of the base is coincident with the vertex of the given angle $A O B=30$. Then arc $A B=3 \% 0$. A sheet of paper is now wrapped around the cone, and the points A, B, and V^{\prime} are marked on it as shown. When the sheet is removed and thatened out, the angle $A I^{\prime} B$ is one third the angle $A(O B$, as shown in Figure 5 , abowe For, siace $15=3 r$,

$$
\text { arc } A B \therefore 3 r(A H B
$$

and thus

$$
\therefore A L^{\prime} B=0=(\angle A B) 3
$$

The imonument of Pascal 11,15 . loi is compored of thace bats and incorporates a straight groove or slot, in which a point F slides. The $w=$ bars, $O F$ and $O F$, are taken equal in length and hinged together at $($). The grooved bar $I D$) is extended to C so that $C E:=O F-O F-a$. To trisect a given angle $A O B$, fix the bar OF upon a side $O B$ of the angle and move the point C until it falls on the extension of 0.1 , a whon in ligute ti. Now, since $\angle O C E \quad \therefore$ COE : 0 and $\angle O E F$ OOF

$$
\angle A O F \quad 3 \%
$$

Figure ${ }^{6}$
Other features of this mechanism are noteworthy. If the bar $O F$ is fixed, as is the case in trisecting an angle, the path of C is a limacon of Pascal. If, instead, (CD) is fixed. any selected point of $O F$ (or any point rigidly attached to $O F$) describes an ellipse symmetrical about (D. If C is fixed and O be moved along a fixed line C A, , then F describes the cyroidum anomalarum of Ceva, a curve resembling the lemmiscate.

The common funtograph $[4,9,15,16]$ is formed from a hinged parallologram with extended legs. If the Pascal device of Figure 6

is reflected in the bar (D), the result (if the birts $O F$ and $O^{\prime} F$ are extended) is the appifitus shown in Figure 7. Let X and Y be the points of intersection of the sides of a given angle $A E B$, with the circle having I : for center and $E O$ for radius. Fix the diagonal groove along the bisector of the given angle and let the point 5 move until the bars $O F$ and $O^{\prime} F$ pass though X and Y. Then' $\angle O F O^{\prime}=(\angle A E B) / 3$, for it is ohsious that

$$
\operatorname{arc} \lambda P:=\operatorname{arc} O O^{\prime}=\operatorname{arc} P^{\prime \prime}
$$

and since arc $O O^{\prime}=$ arc $P^{\prime \prime}$,

$$
\angle X I P \quad \angle P E D^{\prime \prime}=\angle D^{\prime \prime} E Y=\angle O F O^{\prime}
$$

The grooved bar may be discarded, of course, if some other arrangement is made to guide the point F along the bisector.
crossed parallelograms [s, 1.5$]$ form a trisector. Let OABC be constructed from four bass, cyual in pairs and coossed. That is,

Figure $\%$
$O A=B C \quad a ; O C \quad A B=b$, with the bas hinged at O, A, B, and C. It is crident that the angles at () and B remain equal the ugh all defomations of the parallelogram. A second crossed parallelogram in joined to the first as shown, so that $D E=O C=b$ and $O D=C E=c$. Gencrally, $\angle D O C \neq \angle C O .1$. However, if these angles are to be equal, the tyo crossed parallelograms must be similar and have proportionay sides, and conversely so. (See Fis. 8.$)$ Thus. if
then

$$
\begin{aligned}
& \therefore \text { IOC: } \therefore(0.1 . \\
& a b \cdot b i c o b^{2} \text {.ac. }
\end{aligned}
$$

If a third crossed parallelogram be joined to the second in similar fashion, three equal angles will be formed at O as shown in Figure 9. The four lengeths involved form a geometric progression.

The bars $O A, O(;, O I$, etc., may be extended to convenient lengths for the sake of appearance.

References

1. Alary. Journal de Mathématiques Spéciales. 1896, pp. 76.84; 106.112.
2. Breidenbach, W. Die Dreiteilung des Winkels. Leipzig, 1933.
3. Brゅsiy, W. H. Amerian Mathematical Monthly, 43 (1996), pp. 265-280.
4. Ceva The acta Erud. MIDCXCV (1005), p. 290.
5. Dickson, I. E. E:lementury Theory of Equations. New York, 1914.
6. Goob, A. Srientific 1 musiments. n.d.; reprinted about 1937.
7. Hensos, II. P. Ruler and Compasses. London, 1916.
8. Kıump, A. B. Mesenger of Mathematics, NS IV, 1875. pp. 121-194.
9. Lagarkiele, J. F. The Tisection Complass. New York, 1831.
10. Iiomelle's Journal, if, p. 366.
11. Mur.hraling. I. Das Prohlem der Kreistelung. Ieipzig. 1913.
12. Nenthen, I. W: "The Multistetion of Angles." The Analyst, X, 1883, pr . 1143.

13. Vamis. 1. Kinnthuktunen und apphoximationen. I.eiprig, 1911.
14. Yashs, R. C. The Tisectuon Poblem. Baton Rouge. 1949.

15. Yaty, R. C. Tuols, A Mathematical Sketch and Molel Book. Batom Rouge 191!.
16. (ienctal bibliogrophy. I:Intermeidure des Mathématiciens. Supplements of May and Jume. I'an, I! 1 I.

P:AlER FOIDNAG

Robert C. Yates

The are of paper folding has been transplanted into the field of plane geometry with fascinating results by the Indian, T. Sundara Row [12]. With a few assumptions, it is not difficult to show that all Euclidean plane constructions may be effected by folding and creasing [16].

It must be remarked here at the start that a crease in a sheet can be assumed straight not because two planes intersect in a line, but rather for the following reasons. Let P^{2} and Ω be two points of the paper that are brought into coindidence by the folding process. Then any peint A of the onease is equidistant from P and Q, since the lines $A P$ and $A Q$ are pressed into coincidence. Hence the crease, being the locus of such points A, is the perpendicular bisector of $P(Q[15,16]$. We make the thece ass inptions:
(a) that we may place one point of the sheet upon another and thus cocate a straight crease;
(b) that we may establish the crease through two distinct points;
(c) that we may place a given point upon a given line so that the resulting crease passes through a second given point. ${ }^{1}$ This implies the ability w fold a crease over upon itself or upon another.

Fifmemtary Constructions

Yith these assumptions, the following exercises may be introduced into classrom activities. They are presented merely as suggevions. Interated perams will hate no thombe in extending the list. A particularly fine medium for folding is the wax paper insariably found in kiteleen cabinets.
(1) Fstablish the crease though a given point I ' perpendicular

[^7]
Paper Fulding

to a given line L. (loold I. over upon itself so that the crease passes through P.)
(2) Fistablish the crease throughagiven point 1 pi rallel to a given line l. (Obtain two perpendicular ereases.)

Figure 1
(3) Obtain the foot D of an altitude of a given triangle $A B C$. Now fold the vertices A, B, C over to D. This model illustrates the three basic and important theorems (Fig. 1):
(a) the sum of the angles of a triangle is 180°,
(b) the line joining mid-points of two sides of a triangle is parallel to and equal to half the third side; and
(c) the area of a triangle is half the product of a side and its altitude. A large model made from cardboard and soth tape will prove its worth.
(4) With a given triangle, fold the sides over upon themselves to obtain the angle bisectors and the incenter.
(5) With a given triangle. fold each vertex over upon the other two to obtain the perpendicular bisectors of the sides and the circumcenter.
(6) With a given triangle, fold each side over upon itself so that the crase passes through the opposite vertex. These creases are the altitudes which meet in the orthocenter. The triangle formed be the feet of the altitudes is the triangle of least perimeter that imes be inserthed to a given triangle $[2,10,14,16]$.
(7) With a wiven tiomele, establish the crease through each vertes and mid point of opposite side. These creases are the medians which meet in the centroid.
(8) With a given square, fold the corners to the center. The creases form a second square whose area is half the first. This continued process illustrates the sequence

$$
1 / 2,1 / 4,1 / 8,1 / 16, \ldots .1^{n}
$$

which occurs frequently in every algebra course.
(9) With a given square, fold and crease the inscribed square. Find the intersections of creases bisecting the angles between the

Figure 2
sides of inner and outer square. These intersections are vertices of a regular octagon (Fig. 2); or
(10) Crease the quadrisectors of the angles of a given square and thus obtain the vertices of a regular octagion (Fig. 2).

The Conics

If the word "line" in assumption (c) be interpreted to mean "curve," the construction of the conic sections becomes permissible $^{2}[5,7,13]$.

Ellipse. For the ellipse (Fig. 3A) fold a point A, selected within a given circle of radius r and center O, over upon the circle as at X. Let the crease $V Z$ ineet $O X$ at P. Then, since $Y Z$ is the perpendicular bisector of $A X, A P=P X$. Thus $O P+A P=O P+P X$ $=O X=r$, a constant. Accordingly, the locus of P is the ellipse with O and A as foci. The crease $Y Z$ is tangent to the ellipse at P since $\therefore A P \% \cdots \angle Z P \mathrm{X}: \cdot \angle O P Y$ insures the optical property. Special cases arise if A is taken on the given circle or at its center.

[^8]If the former, the locus is a single point-the center of the circle: if the latter, the locus is a circle.

(G)

Figure 3
Hyperbola. For the hyperbola (Fig. 3B) the point \mathbf{A} is selected outside the given circle. The locus of P, the point of intersection of the crease $\%$ and the extended radius $O X$, is the hyperbola having O and A as foci and all creases as tangents. For, since $Y Z$ is the perpendicular bisector of $A X, A P=P X$. Thus $A P-P O$ $=P X-P(O=O X=r$ and $\angle A P Z: \angle Z P O$. The asymptotes are the creases determined by points X that are intersections of the given circle and the circle on $O A$ as a diameter. The equilat eral (rectangular) hyperbola results if $O A=r \cdot \sqrt{ } 2$.
Parabola. For the parabola (Fig. 3C) a point O is folded over upon a given line L as at X. The perpendicular to L from X neets the crease at l. The locus of such points P is the parabola having I as directrix, O as focus, and the creases as tangents. For, since $P Z$ is the perpendicular bisector of $O X, O P=P X$ and $\angle O P Z:=\angle Z P X$.

Regllar Polygons

The foregoing examples represent only a part of the exercises possible by folding and acasing. The srope of this set can
be considerably extended if we admit a process of "knotting" a paper strip whose edges are parallel $[8,9,16]$. For example, the regular polygons with an odd number of sides may be formed from a single strip (Fig. 4). For the pentagon, tie a single overhand

Figure 4
knot. tighten carefully, and press flat. To form the heptagon (not (omstumbible be stadightedge and compasses), first tie an overhand knot as in the construction of the pentagon. Before tightening. however, pass the lead under and back through the knot.

Regular polygons with an ceen number of sides may be formed similaty, means of two stipn of the same width (Fig. 5). The

Figure 5
hexagon results from tying the sailor's reef or square knot (i.e., tuck the ends of each stripinto a loop formed in the other). The formation of the octagon is very much more involved.

Referfices

1. Abraham, R. M. W'inter Nights' Enterlainment. New York, 1939.
2. Coterani and Robbiss. What Is Mathematios? New York (1941), 346 ff .
3. Fot rets, l:. l'omede's originaux de Constructions géométriques. Paris, (1921), 113-139.
4. Immang, J. Fun with Paper. New York, 1939.
5. I.otha. A. J. School Science and Mathematics, Vll (1907), 595-597.
6. I.otika, A. J. Messenger of Mathematics, 34 (1905), 142-143.
7. Lotra, AnJ. Construction of the Conic Scetions. Scientific American Supplement 1912, 112.
8. aIorley, F. V. American Mathematical Monthly, 31 (1924), 237.239.
9. Morley, F. V. Proceedings of the London Mathematical Society, 22 (1924), xxxvii.
10. Morley and Mortex. Intervipe Geomety Iombon (1933). 171.176.
11. Natuonal Mathematics Magazine, XVI (1942), 409.410.
12. Row, T. S. Geometrical Exercises in Paper Folding. (Trans, by Beman \& Smith), Chicago, 1901.
13. Klep, C. A. dmerican Mathematical Monihly, 31 (1924), 432.435.
14. Schwarz. H. A. Gesammolte Mathematische Abhandlungen, II, 345.
15. Stakey. E. P. Ameriean Mathematual Monthly. 47 (1940). 398.
16. Yiuts, K. (: Took, A Mathematical Sketch and Model lbook. Baton Kouge, 1941.

LINKAGES IN THREE DIMENSIONS

Michael Goldberg

A closfd minged chain of seven or more links in space is always movable. For fewer than seven links, the linkage is generally rigid. Figure G is such a rigid five-bar linkage. However, special conditions may permit motion of a hinged linkage of six or fewer links. Several examples are included in the accompanying illustrations, and their specifications are listed on page 162.

160

Linkages

The links are pictured as rigid tetrahedra, each of which is hinged to its neighbors along two opposite edges (except for Figure J, in which the links are flat plates). The length of a link is the length of the common perpendicular between the hinges in a link. The twist of a link is the angle between the hinge axes in the link.

The developments of thee tetrahedal links are shown. These may be used as templates to cut pieces of drawing paper which may be folded and pasted, by means of the flaps, to form the tetrahedra. These three forms suffice to make the linkages A, D, H. K, and C. The links may be joined by adhesive cloth, preferably on the inside of the links. where it is less likely work loose.

I inkage A can be formed by using two links of the 90° twist and two links of the 30° twist. I.inkage D can be formed by using

Typu of Linkage		Tuist and Letngth of Links					
A	Bemnett four-bar	90°	30°	90°	30°		
		$2 a$	a	$2 a$	a		
B	Bennett four-bar	90°	45°	90°	45°		
		${ }^{2} a$	V^{12}	$2 a$	$\sqrt{2} a$		
	Bennett four-bar	60°	120°	60°	120°		
		a	a	a	a		
	Goldberg five bar	90°	60°	90°	30°	308	
		$2 a$	$2 a$	2.	a^{\prime}	a	
	Goldberg five bar	75°	90°	45°	30°	90°	
		$\left(1+V^{\prime 2}\right) a$	$2 a$	$V^{\underline{2}}$	1	$2 a$	
F	Goldierery six bar	125°	90°	50°	30°	45°	90°
		$\left(1+\sqrt{1 / 2}-2 \sin 50^{\circ}\right) a$	9	$2 a \sin 50^{\circ}$	a	$\sqrt{2 a}$	$2 a$
	Rigid five-bar	90°	90°	90°	90°	90°	
		$4 a$	$4{ }^{4}$	$4 a$	$4 a$	$\sqrt{ } 97 \mathrm{a}$	
	Symmetric six-bar	90°	90°	90°	90°	90°	90°
		a	a	a	a	a	a
1	Bricard rectangular six-bar	90°	90°	90°	90°	90°	90°
	$A^{2}+B^{2}+C^{2}=a^{2}+b^{2}+c^{2}$	A	-	B		C	c
J	Bricard octahedial six bar		movabl	octahedron			
K	Seven-bar	90°	ists, eq	length li			

Linkages

163
Wo links of the 90° twist, two links of the 30° twist, and one link of the 60° wist. linkige It can be formed by using six links of the 90° twist. Linkage K can be formed by using seven links of the 90° twist. Linkage C can be formed by using two links of the 60° twist and two links. of 120° twist obtained by assembling the tetrahedron "inside-out."

The construction of linkage J is given in an article by the aus thor noted below.

Reflrencej;

Brantit. (; 'T. "The ikew lsogram Mechanism." Procectings of l.ondon Mathematcal Soctely, Vol. 13 (2nd series), (1919-14). pp. 151.173.
Bricard, R. "I.egons des sinématique," Jaris (1927), Vol. 2, pp. 7-12, 185-199. 311.332.

Gomberg, Minafl. "Polyhedral Linkages." National Mathematics Magazine, Vol. XII (1912), pr. 1.10. Ase "New Five Bar and Six-Bar Linkages in Three Dimensions." Tiunsachons of The American Society of Mechanical Enginerts, Vol 65 (1913), P1. 649661.

THE PREPARATION AND USE OF NOMO(GRAPHIC:* CHARTS IN HIGH SCHOOL MATHEMATICS

Douglas P. Adams

The smpie alignment chart has proved a very attractive problem for elementary students. Some of them are delighted with its practical value; others are pleased by the simplicity of its operation; a few are interested only in its mathematical properties.

Plane geometry and logarithms are a sufficient foundation to carry the student far into the elementary aspects of the subject. A number of competent treatments of alignment charts have been written which require no more advanced nathematics than these high school suljects provide. The prime need for accurate drafting of the chart once it has been worked out frequently causes interest in the subject to arise in the school's drafting department. Whether, in general, the mathematics department or the drafting department is the better equipped to support this interest is an academic question obviously varied in answer and of small apparent value. High school students have a way of answering it by themselves.

The present article touches only one lype of chart among several, all of which are quite simple. This type, however, is enormously valuable and is without question the one which should be thoroughly mastered before any others are investigated. If sufficlent interest is shown, other types can be treated later.

Let us see how simple it is to develop an alignment chart. An ordinaty square-mded trapezoid has been drawn in Figure 1A. In elementary school it is customary to turn this figure so that the two parallel sides are also parallel to the botom of the sheet. These twe sides are then called bases A and B, and we quickly show that if a thind parallel C is drawn halfway between them,

[^9]its length will be the average length of the two and will be given the fommula $C=(A+B) / 2$.
In Figure 1B, scales have been measured off on each of these three lines with zero points at the square end. Points A and B lie on these scales at the distances A and B from the square end.

Figutes 1 A and 16
Then the slanting line will cut the middle parallel at a point distant $C=(A+B) / 2$ from the spuate end. These facts are equally tue for any traperoid, such as the one shown by the doted line. Figure 1B shows this dotted, slanting end cutting the upper base at $A=7$, the lower base at $B=5$, and the middle parallel at $(:) \cdot(1+B) / 2$ or $(7+5), 2=6$.

Figures 2A and 2B are identical with Figures 1 A and 1 B except that they have been turned veatically. Figure $2 B$ also contains a third straight line and illustrates how this simple rudimentary alignment chart could be put to use by placing a straightedge or straight line through numbers on the outside scales which it is

desited to add. One-half the sum of these numbers is then given by that number on the middle scale which is cut by the straightedge.

Figure 3A is a more general trapezoid with two slanting ends and with bases A and B and a middle patallel of length $C=(A+$

Figues 3A and 3B
B): Figune 3 B shows the scales laid out on the parallels as they were in I"gure 1B, with the zero points of the scales over at the left and lying on the oblique line which forms the left side of the trapezoid. As in the preceding case, the length of the middle parallel is $C=(A+B) / 2$ and the middle sale will be cut at that number by the slanting end line.

In Figures 4 A and 43 the parallel sides have been made vertical; in Figure $4 B$ a straight line has been drawn through the random' pointh d . A. $B \quad 11$ which cronses the middle paralled at the

lipulen 4.1 abla ils

Four things should be acceptable to the reader by now.
(1) It should be clear that if the numbers marked on the middle scale are doubled, then a straight line through the A and B mumbers he wishes to add cots the middle scale at the true value of the sum, not at one-half that value. Figures 5A and 5B illustrate

Fugne 5.1 and: 5
this point and are cach complete alignment charts for the formula $A+B=C$ for theirnepective ranges of A, B, and C.
(2) He shoukd observe that the zero points of the three scales for this very simple chat are always collinear. This is proper becanse, when $A \quad 0$ and $B \quad \|, C=A+B$. 0 and the thee values should lie on a staight tine.
(3) He should not hesitate to extend any of the scales up or down through persitice or negative values as far as need be to cover the range of vatibles which interests him. In so doing he will simply be cteating a new traperoid with the same properties that the first one had.
(4) He shond walie that any restiotel portion of the chart. such as that shown in lisume she is, standing alone, a perfectly gond and mable that even thouph the ewo prints of the scales may happen to lic outside it.

We wish thate an aliamont hant for the equation A - B -
 to 30 . Itow shombthe midde patallel scate be graduated?

Solution. The A-scale zero point is 5 units below the base line ${ }^{f}{ }^{f}$ the chart. The B-scale zero point is 25 units below the base line of the chart, or twenty units lower than the A-scale. The A, B,

Figute $;$.
and C zero points lie on a straight line, as we observed before, because when $A=0$ and $B^{B}=0, C=A+B=0$. Hence, the C-scale zero point is halffiay between the A :scale and B-scale zero points or 15 units below the base line of the chart. Hence the base line of the chart will cut at number 30 on the C.scale. Do not forget that, to make the C-scale read the direct sum and not half the sum of $A+B$, the graduations should be twice as close as the A and B scale graduations.

Alternative solution. The iowest mumber on the C-scale (on the base line) will be the sum of the lowest numbers on the A and B-scales, or 30 . Geaduations are then made wioe as close as those on the A - and B-scales, so the middle sale rums from 30 to 40 .

Inifostramive Probifm (Fig. 7)

We wish to have an aligment chart for the equation $A+B=$ (i, on which the 4 scale runs foom -- 10 to +20 and the B-scale runs from - 5 to 35 .

Solution. We can place the thee zeros of the A -,B-, and C-scales on a straight line parallel to the bottom of the sheet and complete the chart as before, with the coscale twice as densely graduated as the A and B-scales, and show in the completed chart only such whers of A, B, and C as were included in the given ranges. The diagram will then be badly lopsided, the A scale hanging 5 units
below the end of the B-scale and the B-scale rising 15 units above the end of the Ascale.

Preferable solution. Plan to have the three zeros on a slanting line. The B-scale is 10 units longer than the A-scale. Plan to have the B-scalle project 5 units higher on each end than the A-scale. Then the lowest B-graduation, $B=-5$, appears 5 units below

frume 7
the lowest A-graduation, $A=-10$, and the B aero point will be 10 units below the A zeru point. The C-scale zero point will be halfway between the A and B zeros' on the middle scale and hence 5 units above the B-zero point. Nake the remaining graduations on the C-scale twice as close as those on the A - and B-scales.

hillustrative Problem (Fig. 8)

We wish to construct an alignment chart for addition on which the A scale 1 bus fom 0) 1010 and the B scale runs from 5 to 1%. B is also aimays to be inceased by three before being added to A. That is, we wish to have an alignment chart for finding the vaiue of 6 where $(-A+(B+3)$.

Solution. Substitute $B^{\prime} \because B+3$ where B^{\prime} runs from 8 to 18 , because B ran hom: 61%. Solve the problem as has been done before for the relation $C:-A+B^{\prime}$. Then diminish each B^{\prime} graduation by 3 to find the corresponding B graduation. Graduate only in B.

The limitations of the type of chant we have just been studying are appacme. An alignment chart is always used in connection
with a formula which, directly or indirectly, has practical signifcance. Hence, the banges of the A and B-sales maty differ very greally. Such a diagram will be very lopsided if it is made according to the method used above. Hence the question arises as to whether the longer of these scales could not be squashed down or the shorter expanded or both steps taken until they were equal in llength and filled perfectly the sides of a rectangular chart of specified dimensions. The graduations of a uniform scale after condensation or expansion would still be uniform among themselves thoughout the length of that scale but closer or farther apart than the graduations of a different scale which had not been so treated. Thus, if it were desired to reduce a scale whose length wats 10 inches into one whose lengh was 0 (inches, the distance of each graduation from the zero point of its scale would have to be multiplied by $1 / 2$. This relationship can be expressed in an equation.
I.et $A_{1} A_{2}$, be the distance between any two graduations A_{1} and d.

Then

$$
\begin{aligned}
A_{1} A_{2} & =m_{\Delta}\left(A_{1}+A_{2}\right) \\
B_{1} B_{2} & =m_{B}\left(B_{1}-B_{2}\right) \\
C_{1} C_{2} & =m_{6}\left(C_{1}-C_{2}\right)
\end{aligned}
$$

Let S be the distance between the A-and B-scales, or the available chart widh, and let $h_{A, t}$ be the distance from the C-scale to the al-scale.

Then

$$
h_{\lambda_{A}, G}=\begin{gathered}
m_{A} \cdot S \\
m_{A}+m_{a} .
\end{gathered}
$$

Thus we know where to place the C-scale once m_{a} and m_{A} are known.

Ih. 'sirative Probifm

We wish to construct a large alignment chart for the equation $A+B=0$ C on a $1!9^{\prime \prime} \times 24^{\prime \prime}$ sheet with about a two-inch margin. Fon various reasons we propose to condense the B-scale by a scale multiplier $m_{n}==1 / 2$, but to keep the A-scale its full size, so that $m_{1}==1$. Whese should the c.scale be placed?

Solution.

$$
\begin{aligned}
& m_{\mathrm{d}}=1, \\
& m_{n}=1 / 2 .
\end{aligned}
$$

Since we wish about a woinch margin, the distance between scales should be taken as la. Then

$$
S=15
$$

Whenwe have $\quad h_{A, p}=\frac{S \cdot m_{A}}{m_{!}+m_{b}}$

$$
\begin{aligned}
& h_{1, C}-=\frac{15}{1 / 2+1} \\
& h_{4}, \ldots, \frac{13}{3}=-=10 .
\end{aligned}
$$

The remaning quention is whether the (: scald will be condensed by some multiplier m_{6}. when m_{1} is different from m_{n} and if so what its multiplier m e should be.

The fommala for me com be worked out and will be found to be

$$
m_{G} \cdot m_{A} \cdot m_{G} .
$$

dense the A-scale by a multiplier $1 / 3$ and to expand the B-scale by a multiplier 3. Where will the C-scale lie and what will be its multiplicr?

Solution.

$$
\begin{aligned}
& m_{1}-1,3, m_{B}=3, S=15 \\
& h_{A} \cdot:= \\
& m_{A}+m_{A}+m_{B} \\
&=13 \cdot 1 / 3 \\
& 1 / 3+3 \\
&=1: 3 \cdot 10 \\
&=\frac{3}{2} \\
& m_{C}=m_{A} \cdot m_{B} \\
& m_{A}+m_{B} \\
&=1 / 3 \cdot 3 \\
& 1 / 3+3 \\
&=10,3 \\
&=3 \\
& 10
\end{aligned}
$$

Ihlesirative Problem (Fig. 9)

We wish to construct an aligment chart to represent the formula $A+B=C$, where A is to range from 0 to 100 and B is to range from -- 20 to 60 . The lagest piece of paper available is $19^{\prime \prime} \times 24^{\prime \prime}$ and a two inch margin is desired.

Solution. I et us place the A - and B-scales 15 inches apart, and let each seale be 20 inches high. The A-scale will have a multiplier 1,5 . The B scale will have a multiplier $1 / 4$.
[hen

$$
\begin{array}{cc}
h_{A . C}=m_{A}+m_{B} \\
& 15.1 / 5 \\
= & 1 / 5+1 / 4 \\
= & 62:
\end{array}
$$

$$
\begin{aligned}
& m_{C}=\frac{m_{A} \cdot m_{B}}{m_{A}+m_{B}} \\
&=1 / 5 \cdot 1 / 4 \\
& 1 / 5+1 / 4 \\
&=1 / 9 .
\end{aligned}
$$

The lower :dge of the chart runs through $A=0, B=-20$. and hence through $C=-20$.

Figure 9
Illustrative Problem (Fig. 10)
We wish to make an alignment chart which will fill a rectangle about $15^{\prime \prime} \times 20^{\prime \prime}$ to represent the equation $3 A+(B-7)=$ $(C+2) \cdot A$ ranges from 0 to $20 ; B$ from 25 to 30 .
Solution. The given equation can be reduced to the form

$$
3 A+B=C+9 .
$$

We can make a substitution.
Let

$$
\begin{aligned}
& A^{\prime}=3 A \\
& B^{\prime}=B \\
& C^{\prime}=C+9
\end{aligned}
$$

Our given equation can then be written

$$
A^{\prime}+B^{\prime}=C^{\prime},
$$

where A^{\prime} ranges from 0 to $60 ; B^{\prime}$ ranges from 25 to 30 . We are well equipped to make a chat for this equation in A^{\prime} and B^{\prime}.
cleaty

$$
\begin{aligned}
m_{A^{\prime}} & =1 / 3 \\
m_{D^{\prime}} & =4 \\
m_{0^{\prime}} & =4 \cdot 1 / 3 . \\
& =4 / 13 \\
& =1 / 3 \\
h_{A^{\prime}, c^{\prime}} & =\frac{15 \cdot 1 / 3}{4+1 / 3} \\
& =15 / 13 .
\end{aligned}
$$

Thus we have fond where the ($:$ - (and hence (- -) scale will lie, and have found the C^{\prime} multiplier me'. We could casily graduate the scales in values of A^{\prime}, B^{\prime}, and C^{\prime}, but hope to be able to graduate in A, B, and C, our original variables. This is done as follows:

Let
Then

$$
A-0
$$

$$
A^{\prime}=3.1=0 .
$$

since 1.0 octurs at the base line of the chart, that is where f' () occurs.

Let

$$
A=5 .
$$

Then

$$
A^{\prime}=15 .
$$

 ut a distume ($1 / 3$) 5.5 :- 5 so that is whe the graduation $A=5$ lies. All other A graduations can be similaty worked out. It will be fomm that the twenty mits of A tun ont to be crenly distrib. uted thoughout the twemty mits of length of the A-scale, just as desired. Nevertheless, the steps taken through . \mathbf{I}^{\prime} and the comlua. tign of m_{a}^{\prime} are unaroidable.

The B 'scale is idential with the B-scale and offers little trouble.
The (i-scale is found as follows: The lowest value of C is given be adding the howest values of A and B, and equals 16 . Hence the luwes value of (\because is 25 .

Let us now find，for example，where $C=20$ occurs．－

$$
\begin{aligned}
& C^{\prime}=C+9 \\
& C^{\prime}=29 .
\end{aligned}
$$

The distance of $C^{\prime}:=2!3$ above $\left(C^{\prime}=2\right.$（at base line）is given by

$$
\begin{aligned}
m_{1} \cdot(29) & 35) \\
3 & =130^{(29-25)} \\
& =16 \\
& =1.23
\end{aligned}
$$

Although we have now discussed the general mechanics of con－ struction and operation of the three－parallel－lines typejof chart， we have not yet touched that particular application which m tkes it so very valuable．The chart would scarcely be worth the atten－ tion we have given it if it could not be used for multiplication as well as for addition．

Ifidustrative：Problem（Fig．11）
An alignment chart to fill a $10^{\prime \prime} \times 10^{\prime \prime}$ rectangle is desited for the equation $U \cdot V=W$ ，where U runs from 1 to 1000 and V runs from 1 to 1000 ．

トッロバ11

Figure 12

Solution. Taking the logarithm of both sides of the equation we have

$$
\log (U \cdot V)=\log W^{\prime}
$$

$$
\log U+\log V=\log W^{\prime}
$$

Let

$$
\begin{aligned}
& A=\log U \\
& B=\log V \\
& C=\log W
\end{aligned}
$$

where A and B both range from $\log 1$ to $\log 1000$ or from 0 to 3 .
Then, on substitution, our given equation becomes one with which we are familiar; namely

Then

$$
A+B=C
$$

$$
\begin{aligned}
m_{A} & =6.66 \\
m_{B} & =6.66 \\
m_{G} & =3.33 \\
h_{A \cdot C} & =\frac{m_{A} \cdot S}{m_{A}+m_{B}} \\
& =\frac{(6.66) \cdot 15}{6.66+6.66)} \\
& =15 \\
& =7.5
\end{aligned}
$$

and the c-scale will lie in the center of the chant. We wish to grad uate eventually in the original variables $C^{\prime} . J, W$. This can be done through the equations

$$
\begin{aligned}
A & =\log V \\
B & =\log V \\
C & =\log W
\end{aligned}
$$

I: us the graduation $U=30$ implies an A graduation:

$$
\begin{aligned}
.1 & =\log 30 \\
& =1.4771 .
\end{aligned}
$$

Nomographic Charts
The lowest A reading on the base line is

$$
\begin{aligned}
A & =\log 1 \\
& =\dot{0} .
\end{aligned}
$$

The difference between the readings $A=\log 30$ and $A=\log 1$ is 1.48 .

But $m_{A}=6.66$, so that the distance between the readings is

$$
6.66 \times 1.48=9.85
$$

Thus the graduation $U=30$ occurs 9.85 above the base line.

Illustrative Problem (Fig. 12)

We wish to construct an alignment chart on a $15^{\prime \prime} \times 20^{\prime \prime}$ rectangle for the fornula $2 U \cdot V^{2}=W^{\prime 3}$, where U ranges from 5 to 50 and V from 2 to 10.

Solution. Taking the logarithm of both sides we have

$$
\begin{aligned}
\log \left[(2 U) \cdot\left(V^{2}\right)\right] & =\log \left(W^{3}\right) \\
\log (2 U)+\log \left(V^{2}\right) & =\log \left(W^{2}\right) \\
\log 2+\log U_{0}+2 \log V & =3 \log W .
\end{aligned}
$$

Let

$$
\begin{aligned}
\log 2+\log U & =A \\
2 \log V & =\dot{B} \\
3 \log W & =C .
\end{aligned}
$$

Our original equation becomes one with which we are familiar; namely,

$$
A+B=C,
$$

where A ranges from $(\log 2+\log 5)$ to $(\log 9+\log 50)$. Hence the total range in A is given by $(.30+1.70)-(.30+.70)=1$. B ranges from $2 \log 2$ to $2 \log 10$, giving a total range of 1.40 . Then $m_{A}=20, m_{a}=14.28$.
Hence

$$
\begin{aligned}
m_{t} & =\frac{90(14.88)}{20}+14.88 \\
& =8.33 .
\end{aligned}
$$

The position of the C-scale is given by

$$
h_{A, G}=\frac{15(20)}{34.38}=8.75
$$

How should the graduation $W=5$, for instance, be placed? We have

$$
\begin{aligned}
C & =3 \log W \\
& =3 \log 5 \\
& =3(.70) \\
& =2.09 .
\end{aligned}
$$

The lowest value of W (on the base line) corresponds to the lowest values of U and V, (on the base line); hence, for $I V$ on the base line we have

$$
2 \cdot 5 \cdot 2^{2}=W^{3}
$$

$$
3.40=W
$$

but

$$
\begin{aligned}
C & =3 \log W \\
& =1.60 .
\end{aligned}
$$

The difference between these two values of C is 0.49 .
Then the distance between the two readings, which is also the distance from the base line to the graduation $W=5$, is given by

$$
\begin{aligned}
m_{e}(.49) & =. .8 .33(.4!) \\
& =4.12 .
\end{aligned}
$$

Thus the graduation $W-: 5$ occurs 4.12 units above the base line.
The illustrative problems we have solved above all have about the same approach. The rules noted below should be followed carefully.
(1) The equation for which the chart is to be made must be put in the simple form $A+B=C$, by the use of the simple variables A, B. C. This may require the application of logatithms and several substitutions.
(9) The ranges for the simple variables A, B, C are computed fom the ranges of the original variables in conjunction with the equations of substitution between them and the new, simple variables.
(3) The multipliens m_{1}, m_{n} for the simple vamables A and β can now be detemined since the height of the chart is known and the ranges of the simple variables have just been foumd in (2),
(4) The position of the inner scale cam now be found from the relation

$$
\ddot{m}_{4, \mu}-\ddot{m}_{4}-s
$$

where S is the prestribed listance between the outer scales.
(5) The mullipiiis me can be ewaluated from the relation

$$
m_{6}=: \begin{gathered}
m_{1!} \cdot m_{h} \\
m_{1}+m_{n}
\end{gathered}
$$

(6) We now calibrate the stales in teme of the original variables by finding the values of the simple variables to which they correspond and learning where these latter values would lie. Naturally we choose those comenient values of the original variables which we wish to have appear on the chare.

> Ihlutratiel l'rombim (Fig. 13)

We wish to construct an alignment , hart on a $19^{\prime \prime \prime} \times 2 \cdot 4^{\prime \prime}$ sheet with about a 2 -inch border for the equation

The range of U ' is from 0 ow 2 x . The mange of I^{\prime} is hom Ito 30 .
Solution. Taking logathoms of both sides we have
(1) $1 / 3 \log (U+2)+.78 \log V \cdot \log _{\log }(W+4)$

Let

$$
\begin{aligned}
& A=1 / 3 \log (\dot{U}+3) \\
& B=.78 \log V \\
& C=: \log (W: 11 .
\end{aligned}
$$

Then we hate whieved the simple form:

$$
A+B=c
$$

Figure 13
(2) \cdot The range of the simple variable A is from $1 / 3 \log$ (2) up to $1 / 3 \log (30)$, or from .10 to .49 ..The tange of the simple variable B is from $.78 \log (1)$ up to $.78 \log (30)$ or from 0 to 1.15. The total range in A is .39 . The total range in B is 1.15 .
(3) Then $m_{A}=\frac{20}{.39}:=51.02$

$$
m_{B}=\frac{20}{1.15}=17.36
$$

(4) The position of the C-scale is given by

$$
\begin{aligned}
h_{A . O}=\frac{S \cdot m_{A}}{m_{A}+m_{B}} & =\frac{15(51.02)}{51.02+17.96} \\
& =11.19 .
\end{aligned}
$$

(5) The multiphier m_{c} is given by

$$
\begin{aligned}
m_{\sigma} & =\frac{m_{A} \cdot m_{B}}{m_{A}+m_{A}} \\
& =\frac{(51.02)(17.36)}{(51.02+17.36)} \\
& =12.95 .
\end{aligned}
$$

Let us find, for example, where the graduation $U=1$ would lie.

When $U=1, A=1 / 3 \log (1+2)=.16$. We sav that the lowest A ratding is .10 , and the difference between this reading and the lowest A reading is .06 . The distance between these readings (or the height above the base line of the A graduation corresponding to $U=1$) will equat the product of the multiplier m_{A} and the difference of these readings, or $U=1$ occurs at a height of (51.02)(.06) $=3.96$ above the base line. Other U-giaduations are computed in idencical manner.

It is important to systematize computations. Once a routine has been set up the labor for a difficult chart swill not be as great as it at first seems. A measuring-scale graduated in decimals is nelpful but not indispensable for laying of the results.

It should be emphasized that the material in this article, is not intended to be a basis for teaching the subject of aligmonent charts to the average high school student. It should, however, prove an adequate guide to those able, ambitious, and aggressive young prople who enjoy wrestling with new problens once they know that a fair fight promises a liberal reward.

THE CONSTRUCTION AND USE OF HOMEMADE INSTRUMENTS IN INDIRECT MEASUREMENT

Virgil S. Mallory

Ir is probably true that teachers of mathematics in general and those in the senior high school in particular are more inclined to emphasize abstract theory and manipulations than the practical uses of mathematics. There is considerable truih in the statement that most teachers of mathematics consider that the only equip. ment necessary in the classroom is a blackhoard, a piece of chalk, and a bit of string with which to draw circles. That this attitude on the part of mathematics teachers is detrimental to efficient teaching should be obviuus to any intelligent person.

Knowledge of the transfer of training and how transfer takes place through the conscious effort of the teacher to initiate real life situations, or situations so closely related to those in real life that the student cannot fail to see the application, must cause many real mathematics teachers to realize the necessity of using many practical applications of mathematics. The oft-repeated and justifiable criticism that a student frequently cannot apply his mathematics in a field as closely related to it as phys'cs emphasizes this need. Yet frequently one must go to the science laboratory in order to find such obvious applications of mathematics as are afforded by studying the relative volumes of the cylinder, cone, and sphere through actual measurement instead of only through theoretically derived formulas, a comparison which should be made in the mathematics classroom. Moreoyer, it is not unusual to see a teacher present board measurement (where it is taught) without a single piece of board in the classroom with which to show a board foot and without any attempt to use the doors and desk tops in the classtoom actually to measture and examine board feet.

The reason for this apathy is not difficult to find. Many teach. ers of mathematics have not had any engineering or shop training
and do not know the applications of mathematics that should unite theoretical and pactical work. On the other hand, many who do know about the possible applications fail to realize that for the students book problems and book explanations cannot take the place of laboratory demonstrations and field work. This is a fact that science teachers understand full well. What is more, laboratory and field work, with the necessary planning and accumulating of material, is more difficult and time consuming than assigning the "next ten problems in the book." Only a real teicher is willing to expend the extra time and effort required.

Unless the teacher has definitely in mind the objectives he hopes to attain in presenting field problems or laboratory work in mathematics, the work will become aimless and lose much of its educative worth. Although no attempt will be made here to catalogue all of them, there are definite values which this type of work can contribute to the education of the child, and which can be readily attained. Some of these are:
(1) An appreciation of the reality of mathematics and of the way it functions in everyday life.
(?) An appreciation of the approximate nature of all neasurement and of the need for the intelligent determination of the number of significant figures to be retained in a final result.
(3) An appreciation of the omnipresence of the opportunity for error, its possibility not only in calculat i but in application, and of ways to discover and avoid such errors.
Thus the child soon learns to look for error in the calibration of protractors and yardsticks, in the use of fle: ible tapes, in frequent applications of the unit (sum as the use of a footrule vs. at 100 foot tape in measuring a length), in careless reading of measures, in scale drawing through use of a soft nencil, and in many other ways.
(4) An appreciation of the function relation that is direct and dramatic.
Thus the child who discowers that an enor of less than a degree in laying out an angle on his scale dawing may cause a large vatiation in the apparent height of the uee or flagpole has a real
appreciation of the fadt that in a triangle the side opposite varies with the angle.
(5) An acquaintance with and skill in using various simple ineasuring instruments.
(6) A liking for mathematics and a desire to learn more about a subject that has such interesting applications.
When this type of work is properlyoconducted, children generally enjoy it. Thus it provides an excellent device for motivating the more theoretical or manipulative work.

Field work in measurement can be taught in every grade from seven to twelve. lndirect measurement with solutions by scale drawings provides a natural motivation for the general mathematics of grades seven to ten; in la*er grades the trigonometric functions can be used to solve problems, although the value of scale drawings in the actual solutions should not be minimized. No class in trigonometry is complete without field work.

Entirely aside from the cost involved in providi.ag expensive equipment, there are both practical and pedagogical reasons why inexpensive transits made in the school shop or at home are better for classroom use than are the ready-made ones. The most inportant reason is that the protractors, the working part of the measuring device, are seen by the child, and are not complicated by adiusting devices, a knowledge of which he must master. Furthei.. re, costing less than seventy-five cents each and readily made in the school shoj or at home, the instruments can be provided in quantities sufficient for class use.

The class that looks at and admires the store-bought transit while the teacher demonstrates it never attains that facility and appreciation of measurement which can be obtained by having every four members of a class work as a crew with an instrument itself. The use of cloth tapes will eliminate the expense of the repair of tapes and instruments which is inevitable with more expensive instruments. By working in crews of four, students cievelop an e.prit de corps and a healthy sense of competition that have most beneficia: results.

Teaching devices for any type of school, while informal, require the maintenance of ordered discipline. Class instruction sovering every detail of the work, the assignment of pupils to crews, the
measurements to be made, the scale to be used, and what each crew is to do when its measurements are completed should he given before the class leaves the chassroom. The measurements to be made should be confined to a limited area so that the teacher can easily oversce the groups and give the necessary individual instruction, There will be more of this instruction and correction of proredures for separate crews the first time the class goes out than later on.

As far as possible each crew should be composed entirely of boys or entirely of gitls. The teacher should make certain that everyone has a chance, at some time or another, to experience all the tasks from sighting the object to using the tape. Fach member of a crew should have a notebook in which he makes a freehand drawing of the problem before leaving the classrom and on which he places the measurements as he obtains them.

To be most successful the field work should be preceded by lessons in scale drawing so that the stadents will acquire the ability to transfer their notes to a carefully made scale drawing. Pratice should also be given in changing measurements to the scale agreed on. Thus if the scale is $1: 20$, how long a line on the paper will be represented by a measurement of $93^{\prime \prime} 6^{\prime \prime}$?

In making the scale drawings the most satisfactory method is for eath student to be provided with a shamp. hard pencil, a compass, a ruler, a protrator, and an inexpensive dawing set. The drawing set may consist of a drawine board (about $14^{\prime \prime} \times 18^{\prime \prime}$ or larger), a T-square, a 45°-right triangle, and a 60°-righi triangle. Such equipment, made of wood, may be bought at little cost from sthool supply houses or may be made of plywood in the school workshop.

Each crew should have a homemade school transit provided with both vertical and horizontal protractors, a $25-50$, or 100 . foot cloth tape (sometimes obtainable in 5 and 10 cent stores), and half a douen $1 /{ }^{\prime \prime \prime} \times{ }^{\prime \prime}$ dowel stichs \{obtained in a hardware store) for the head tapeman to mark the point where the end of the tape come's and for the rear tape-man 'o pick up. The number of these dowels that the rear tape man has at the end of a measurement will tell the number of times the full tape neasurement is contained in the distance measured.

Even if drawing boad, T-square and triangles cannot be obtained, the project need not be given up. The next most satis: factory method is to use large sheets of graph paper. The grid lines will furnish perpendicular lines and measures to aid in the construction. Graph paper ruled ten lines to the inch is also copvenient to use in making measurements to tenths of an inch and estimates to hundredths of an inch, always a desideratum in cal. culated results.

The Hombmade Iransit

Types of problems. The following five problems show the tepes that can be solved with the homemade transit. In each case the student slanuld solve, by scale drawing, a similar problem so that he may know how to proceed with his solution as soon as he has obtained the field measuremenis. If the class has studied the trigonometric functions, that method may be used as a check on the drawing. The teacher should know the answers to the field problems but obviously should not indicate them to any crew until all have completed their work.

1. Find the height of the school flagpole (or a tree or the school building).

The problem involves measurig, with the vertical transit (Fig. 1), angle a, and with the tape the distance $A B$, and the height $C B$ of the tamsit. and is solved by making, a scale drawing of a right triangle. In measuring $A B$ it should be noticed that the line $A B$

[^10]is horizontal and does not follow the contour of the ground. In measuring the height of the transit, notice that this is not taken at $A E$, but that a pupil determines the point B at which the horizontal line $A B$ intersects the pole. The llagpole or tree should, in this problem, be on horizontal ground and perpendicular to the ground. Similar problems using the right triangle in either the vertical on the horimontalphane can be casily devised.
2. A surveyor wished to find all the dimensions of a triangular fied which imbludad part of a swanp. He also wished to know the perpendiciliar dintance fom :t a $B C$ (AD). He can measure angles B and C wilh his protatom and BC with his tape. (Sec lig. 2.)

Figute 2
lhin fuhbern inwhes the solution of atm ohlique triangle. given two , ung es and the included side. The horizontal protractor on the tomsit is used in monsuring the angles. A scale drawing solver the problem.

Natmal tenation the poblem wombl. of comse, be a swamp, apond. on womb will point A manted by a tall tace. Lacking these, an inhoinaty swanp or pond can be used or a point A so far anaty that its distatue is more easily found by measuring the parts indicated abowe han by a diret measmement.

Figure 3
3. Two boys swam from a point on one shore of a lake to a point on the opposite shore, and they wished to know how far they had swom. They found it by measuring AC and $B C$ and angle C.
'I'his probleta involves the solution of an oblique triangle, given two sides and the included angle. The horizontal protractor on the transit is used and a scale drawing solves the problem.

Instead of measuring the distance $A B$ across a swamp or lake (Fig. 3), the distance $A B$ through some school building, may be measured. The distance through a small hill or woods can also be used instead to show how such distances may be measured.
4. Some Boy Scouts and a camp (C) in the woods. They knew that town A was directly west of camp and 3 niles from camp, that town B was $41 / 4$ miles from camp, and that the distance between A and B was 33 miles. They wished to find the compass bearing in p rder to go directly from C to B, knowing that the direction was something east or west of north. (See Fig. 4.)

Figure 4

This problent involves the measurement of three sides of an oblique triangle. Practical problems of this kind are not as easily found as in the other cases. The solution is, of course, by scale drawing.
5. A surveyor wished to find the height above ground of a church spire. He found it by measuring side $A B$ and angles A and $D B C$. (See Fig. 5.)
This problen! involves an oblique triangle with two angles and the included side to be measured and the solution by means of a
scale drawing. Any situation where a building has a tower or a cupola set back from the edge of the roof is suitable. There are

Figure 5
many modifications of this problem: (a) At the seashore or at a lake (or on a level plane) to measure the height of a cliff or tower from which observations are made by using the angle of depression of two buoys or other objects in the line of sight and a known distance apart. (b) In (a), to find the distance apart of the buioys or objects when the height of the cliff or tower is known. (c) To find the height of a fagpole on a hill by measuring $A B$ and the angles of elevation of its top from points A and B and of its foot from either point A or B.

How to Make a Simple Transit ${ }^{2}$
The table top. Figure 6 shows the table top of the transit. It is a piece of wood (three-ply wood is best) $121 / 4$ inches square and $3 / 8$ inch thick. Draw a circle with 5 -inch radius on this. Drill a $3 / 4$-inch hole through the center and drill and countersink six $3 / 10$-inch holes spaced as shown at C in the drawing.

[^11]The legs for the dansit ate the dowe sticks, 3.9 inch in dian. eter and 3 feet long. They an be obstined at any hardware store.

ligusy 7
attached to the table top. Figure s shoms how the legs are atached to the table top by means of 1 -inch by l-inch angle irons. Use

Figues ? finch by Batinch Hathead stove bolts to tasten the legs to the angle itoms athe table top.

The honizantal protractor. Glue a paper potatotor (Fig. 9) to a piece of heary ardboard or pressed wond l2-inches square. You call make the pothactor fiom polar coandinate paper. Mark it from 0° to 1so in eath direction. Drill a hole wih sime diameter in the center as shown.
Whe printer is a ! inch dowel witk (Fing. 10) with one end sharpened as shown. This fits in the If inch hole drilled in the 3 ? ind dowed stick shown in ligure 11. At A a sctew ese is placed to attach a lead sinker for a plumb hoh. The completed tansit for meanuing homiantal angles is shown is. Fig. me 12.

The terticat protractor. Tin meas the the angle of deprewion w the athale of elevation in finding the height of an ohjert a vertical pre

Figule 9

Figure 10

Figure ! !
tractor, shown in Figure 13, replaces the horizontal protractor and pointer. A semicircular protractor marked from 0° to 90° in both directions is glued to a semicircular piece of stiff cardboard or pressed wood and a $3 / 10$-inch hole (K) is drilled as shown in Figure 14. At B are screw eyes to be used for sighting.

Figure 12

ligure 13

This protractor is fastened at K to the $3 / 4$-inch dowel stick shaped and drilled as shown in Figure 1:5. The drawing in Figure 10 shows the details of fastening the protractor to the dowel stick. A sinker hung by a string at K^{\prime} (rigute 18) acts as a plumb bob to enable one to read the angle of clevation. Figure 17 shows a $1 / 4$. inch dowel stick used to support the upight. (See F., Figure 13.)

Figure 14

Other Devices for Indirect Measurement

Other homemade devices for making indirect measurement are perhaps better known.

An isosceles right triangle of cardboard held so that one leg is horizontal and so that the lappotenuse can be used as a sighting edge will give the height of a thee when the observer stands at a point where the line of sight intersects the tree top.

Figure 16

Figure 17

The measurement of the shadow of a yardstick and of the shadow of a tree at the same time will give the data necessary to determine the height of the tree.

The use of the geometric square, cross-staff, drumheads, a wooden right triangle, and other historical devices, ${ }^{3}$ not as obvious in their applications, can also be used for indirect measurements, as can the hypsometer and clinometer. ${ }^{*}$

The plane table, ${ }^{5}$ merely a drawing board mounted on a tripod, and with some kind of sighting arrangement (an alidade; it may be only a ruler with two pins mounted for sighting). is an excellent device for making maps and determining inaccessible distances and angles. It is frequently used by the United States Army.

[^12]
Abstract

Homemade Instruments193

This type of work is probably more difficult to arrange in the larger city high schools than in suburban or country schools where outdoor facilities are readily obtained. But even in a city high school the ingenious teacher, through the use of the classroom, corvidor, auditorium, playground, or park, can accomplish a great deal.

A ClASSIFIC.ATION OF MATHEMATICAL INSTR MENTS AND SOURCES OF THEIR PICIURES

 1Henry W. Syer

Teachers who wish to enliven their mathematics instruction and make it more practical will welcome mathematical instruments which can be used for this purpose. However, there are so many hundreds of different machines that it is impossible to collect them all. Moreover, many of the interding historical models are available only in large citics or at great expense. Therefore, the following list of illustrations of mathematical machines has been compiled.

Pictures should not be considered a substitute for the machines themselves, which should be brought into the classroom and given to the students to manipulate and examine at first-hand and as often as possible. Pictures should be considered a method to increase the total number of instruments with which the class can become funiliar. They can be used in everyday instruction as the sources of problems in geometry and algebra, as correlative material for outside projects, for club progranis, and for bulletin board displays.

The final classification of mathematical instraments given at the end of this article is complete and elastic enough to include any future instruments, which may creep into my file. The sources of pictures listed, however, include only pictures large enough to be of use in the classroom. y

Plans for Furure Development

There are two ways in which these pictures of instruments can be made available to high schools incepensively. First, photographic. planographic, and photostatic reproductions could easily be made large enough for schools to mount on bristol board and keep in the ant collection on mathematics office to be circulated to the teachers. The second method is cren less expensive
and calls for photographing the pictures in convenient sets on film strips which can lee projected. One set of these film strips has already been completed and is now on sale."*

The first of these methods has the advantage that the pictures can be arranged in any order, can be used by many students or chasses at the sme time, and can be left on permanent display. The second method, however, has the advantage of very inexpensive duplication, easy control by theteachers, and the possibility of being seen by a large group at one time.

Concise, accuate descriptions of the history and use of the machines, tugether with their methods of operation, should accompany cither the set of photographs or the filur strip. Care must be taken that, in an atteript to be complete, one does not make these deseriptions abstruse. They should be simply worded. and should pice ouly essential information for quick understanding by serondary shool students.

L.ists of Sources

There are two dhef sources of pictures of mathematical instruments: fist, musemms, commercial instrument companics, and priate collerlom: secomd. books on the histony of mathematies in general or on calculatum machanes in pantular. These will be found in the bibligeraphy that follows and in the list of abbere viaturs mider the dassification of instuments.

Rherbicis

1. Catalogue of Smith Collection of Instruments, The Industrial Mnseum of New York. Fhihit of Faly Astronomiat and Mathematical Instruments, Fohuars, 1!39n.
2. Catalogue Ohin id de Colletiom du Comervanore National des Arts et Metier, Tionicme Faricule. Paris, ! 906.
3. Catatogue de la Collertion Mortator- Instramens de Mathematiques Anciomus. Pratis.

4. Banvarn, F . P . The Gasting Comater and the Combing Board. Oxford, 1916.
 stret. Chic.us, III.
5. Baxakdala., D. Mathematics 1. Calculating Machines and Instruments. Catalogrue of the Collections in the Science Museum, South Kensington, England. London, 1926.
6. Betrini. Appiaria. Bologna, 1641.
7. Bron, Lee S. N. Traite de la Construction et des Principaux Usages des Instrumens de Mathe'matique. Paris, 1725.
9! Bor tos, I. Time Menarement. New York, 1924.
8. Brodetskr, M. A. A Fïst Course ir Nomography. Loudon, 1920.
9. Cajort, li. A History of the L.1garithmic Slide Rule. New York, 1909.
10. Cotsworin, M. B. The Evolution of Calendars. Washington, 1922.
11. Cotffignal., Louis. Ies Machines a Calculer. Paris, 1933.
P. Corne, Alamer. "Value of Nomographic Charis in the Teaching of Physics." Si heool Science and d(athemelics, Vol. XXXVII, 6, 323, January, 1937.
12. Dav, (il we, History of Commerce. 1926 ed. p. 156.
13. Diamain, Fichard. Grammelogia. London, 1630.
14. d'Ocagne, Pimbert Maurice. Calcul Simplifed. I'aris, 1905.
15. -........ Trate de: Nomograghe. Paris, 1899.

19, Dyck. W'atther. Kalalog Mathematsther und Mathematisch.thysi.

20. Fekritr, W. J. I'unched Card Methods in Scienlific Computation. New York, 1940.
21. Ganat:", Gabineo. Le Operaxioni del Compasso Geometrico et Militare. Padua, 1600.
29. (;alli, A. Mathemalische Instrumente. I.eiprig, 1912.
 Gork lahibit of E arly Astronomical and Mathenratical Instruments, Pebluary, 1930.
24. Gunv, Sampel. Treatise of the Construction and Use of the Sector. Lon. don, 1729.
25. Gumtur. K. T' (:hatuer and Messähalla on the Astrolabe. Oxford, 1929.

27. --..... Ilistoric Insthumemts for the Aldvancement of Science. London, 1995.
28. Heather. J. F. Mathemalical Instruments. London, 1869.
29. Hfather, M. A. Mathemálical Instruments, Their Construction, Adjust. ment, Testing, and Use. L.ondon, 1871. Vol. I, Drawing and Measuring Instuments. Vol. II, Optical Instruments. Vol. III, Surveying and Astro' nomical Instruments.
30. Hirn. G. A. Theorie Analitique Elementare du Planimétre Amsler. Paris, 1875.
31. Horsberoh. E. M. Modern Instruments and Methods of Calculation. 1 ondon, 1914.
32. Jacon, L.. Calcul Mécanique, I'aris, 1911.
33. I acmmann and Rudolff. Gromatici Veteres (Vol. I of Blume, Lachmann and Rudolft; Die Schiften der Romischen Feldmesser). Berlin, 1848.
34. Iancaster-Jones, Geodery and Surveying. Catalogue of the Collections in the Science Museum, South Kensington, Fingland. Londom, 1925.
35. Le Clerc. Traité de Géométrie. Paris, 1690.
36. Leechiman, J. D. and Harrington, M. K. String Records of the North. ivest, Indian Notes and Monographs. 1921.
37. Letaniz, G. W. Machina arithmetifa in qua non additio tantum ef sub. tractio sed et multiplicatio nullo, divisio vero paene nullo animi laberve peragantur. 1685. Published in Dic Zeitschrift fïs-l'ermessugsuresen. 1897.
38. Lanz, K. Die Rechenmaschinen und dis Masthincherchn'n. I ciprig, 1915.
39. Le:ybourn, Whiliam. Art of Numbering by Speaking Rods, I.ondon, 1667.
40. Lipka, Joseph. "Alignment Charts." The Mathematics Teacher, April, 1921.
41. Locke, L. Laiand. "The History of Modem Calumang Mahines, An American Contribution." American Mathematical Monthly. Vol. XXXI, 9. November, 1924.
42. ---.. The Ancient Quipu or Peruvian Knot Recond. Ametican Museum of Natural History, 1923.
43. I.öschner, Hans, Sonnenuhren, Graz, 1905.
44. Marshat.1., W. C. Graphical Methods. New York, 1921.
45. Mitinam, W. I. Time and Timekeepers. New Lork, 1923.
46. Morin, M. de. Les Appareils d'Integration. Paris. 1919.
47. Mority, S. G. An Introduction to the Study of the Maya Mieroglyphs.
48. Napler, John. Rabdologiae. Edinburgh, 1617.
49. Otghtred. The Circles of Proportion and the Honermial Instument. ITanslated by Wm. Forster, 1632.
50. I'ascal., Ernesto. Insici Integrati. Naples, 1914.
51. Sabiany, H. Modern Machine Calculation.
52. Sanferd, Vera. A Short History of Mathematios. Boston, 1930.
53. Shester, C. N. "The Use of Mathematical Imauments in Teahing Atahematics." Third Yearbook National Coumel of Trahem of Mathe matics (1928), pp. 195-222.
54. Smith, David Eugene. History of Mathematics. Boston, 1925. Vol. I, Generai Survey.
55. ————. History of Mathematics. Boston, 1925. Vol. 11, Special Topics.
56. ————. Number Stovies of Long Ago. Bipston, 1919:
57. Smith and Ginsbirg. Numbers and Numerals. New lork. 1937.
58. Stark, Wilitan E. "Early Forms of a Few Common Instruments." School Science and\&wathematics, Vol. IX, 9, December, 1909. I. Parallel Rulers (1686), II. Pantograph (1645), III. Semi-Circular Slide Rule (1696). .
59. - --.... "Me.suring lnstruments of Long Ago." Shool Stemerthd Mathe. matics, Vol. X, 1, 2, January and February, 1910. 1. Marked Rods. 2. Surveyor's Cross. 3. Survejor's Compass. 4. Height by Mirror. 5. Width by Visor of Cap. 6. Gcometric Sguare. 7. Cross Staff. 8. Sector Compasses.
60. Stoffer, Johan. Treatise on the Asirolahe. Oppenheim, 1524.
61. Thatcine, Edwin. Thatcher's Calculating Instmument. New Yonk. 1884.
be. Itrek. J. A. V: Origin of Modenn Calmating Machines. Chiago, 1921.
63. Win os. I'. W. The Romance of the Calendar. New York. 1937.
64. Wios, C. C. The Fundamental Operations in Bead drithmetic. Hong Kong.
65. Wrise, A. The Mongol Astronomical Instruments in Peking. Travaux de la 3ral Sewion da Congres Intemationate du Orientalistes, Vol. II.
66. Yarben. Article on "Dialling." The Industrial Museum of New York Ex. hibit of Eaty Astomomial athd Mathematial Instruments, February, 1930.
67. Aneritan Office Machines Resomeh Scrvice Olfice Machine Research, Inc., Rockefeller Center, 630 lifih Ave., New Yonk.
68. Monamenti Antichi pubblicati per cura della R. Accademia linece, XXVIII.
69. Quadrati Gomedrici lims. Jaris, 1579.

Classification of Mamematical Instruments, with Sources* In the following classification will be found the name of the instument, followed by a fow selected sources of pictures large enough to be of use in the charsroom.

Sfction I. Measlrement Instrements
P'art A. I.aboratory Iistauments

1. Discrete Juits

Hand Comnter-Cemo Cat. .
Hand Multi-Coumter- (67:8.2, Mal. Comuter 2)
Photo-Electric Counter
Tent Sorer-International Gat.
2. I.cngth

C.alipers - Cemo Gint.: B. \& S. Cat.

- Ahburabitions med:

 ter." page 2.

$K W:=$ (.atalog. K•lin White (o... Bowtom, Mas

Micrometer Screw-Cenco Cat.; B. \& S. Cat. Spherometer-Cenco Cat.
3. Mass and Weight

Historic Sets of Weights
Money Changers Weights-(52:123)
Pile de Charlemagne-(2:238)
Analytic Balances
Balance de precision-(2:248)
Modern Analytic Balances-Cenco Cat.
Commercial Scales-Toledo
Retail Scales, Metal Chart, Postal Scales, Brine Solution Scales, Platform
Scales, Oil Barreling Scales, Counting Scales, Paper Ream and Box-board
Scale, Yardage Scale. Motor Truck Scale, Double Pendulura Principle
4. Time

Clepsjdra-(45:49)
Lamp Timekeeper-(45:54)
Sun Dials
Ancient-(66); Pillar Dial-(66); Modern- Cenco Cat.; On Gema Building, Graz; Engiish; Cluster of Sun Dials at Bedales, Sussex, England;
Porket Sun Dial-(3); Brechte's Pendant Sun Dial (26:186)
Calendar, Coffin Lid of Tefabi-Isis, Vol. XVII.
Business Time Printers-International Cat.-(67:8.1, Int. P.S. 1)-Clock Systems, International Cat.
Stop Watches-Cenco and International Cat.
5. Speed and Velocity

Speed Indicator-Cenco Cat.
Part B. Applied Instruments
I. Surveying

Groma-So. Kensington Museum (52.236), (54:124)
Baculuin--(55:347), (52:237)
Range Finder-(55:363), (2:71)
Semi.circle-(35:205)
Quadrant-(52:234, 540$),(55: 352)$
Plane Table-- (52:249). (2:57), K \& E Cat., (34:208, 215)
Circumferentor- (52:248)
Theodolite-So. Kensing(on Mueum- (2:52), (2:5:1)
Transit-(2:53), K\&ECCH
I.evel-(52:030), (8). (2:69), K\&1: (..1t.

Leveling Rod-K \& E. Ciat.
Surveying Compass-K \& E Cat.
2. Navigating

The "Bowe"-(4:86)
Sextant-(2:99), K\&EC. Cat.
Ship Log-K W Cat.

Nautical Compass-K W Cat.
Sounding Machine-K W Cat.
Artificial Horizon-K W Cat.
Course Protractor
lelorus-K W Cat.
Current Meter-K W Cat.
Anemometer-K W Cat.
3. Astronomy

Celestial Giohe--(52:17), (55:365), (2:77)
Nocturnal- (26:276)
Volvelles '(or Aequatoria)- (26:2.42)
Orrery- (26:258)
Astrolabe-Chaucer's Time, (55:348), Italian 1558-Front (23); Back; Front, (52:242); Back, (52:243); Front, (55:349); Astrolabe de G. Ar senius (2:80); Use in Mensuration (55:849); Use of (60)
Armillae- (26:148)

Se.ction II. Calculation Instruments •

Part A. Graphical Methods

1. Drawing Instruments

Proportional Dividers- (8), K \& E Cat.
Sector Compasses-(52:398); (52:342); (24:frontis.); (35:207); (35:208)
Parallel Rules-(8), K W Cat.
Pantograph-(8), K \& E Cat.
Equal Division Instrument- (9:18)
Conographs-(19); Ellipsograph (2:87); Parabolagraph-(31:269); Circle Divisor (2:39)
Co-ordinator-(31:269)
Perspective Instrument-(19:239)
Trace Computer-(19:164)
2. Nomographs

Vernier Scale
Plain Scale-(4:159); Gunter's Scale (8)
Oughtred's Circles of Proportion- (52:3:16)
Alignment Charts-(10, 14, 17, 18, 40, 44)
Network Charts-(same as Alignment Charts)
3. Lengths of Curves

Curve Measurer-(22:65)
4. Areas

Plamimeter Disc P-K \& E C:at.: Corodi Precision Disc Planimeter(6:70): Polar Planimeter-K \& E Cat.; Amsler Polar Planimeter-(6:64); Boy's Polar Planimeter-(6:66); Rolling Planimeter-K \& E Cat.; Planimeter (46:72); (31:200, 203); Radial Planimeter, K \& F. Cat.
Integraph-Amsler Integraph (6:65); Amsler's Integraph-K \& E Cat.;

Corodi Integraph-K \& E Cat.; Boy's Curve Drawing Integrator-(6:65): Integraph-(46:146); Integraph--(32:66); Ciné Integraph-M.I.T.
. Integrometer-Hele-Shaw (31:189,: (46:96); Integral Computer-(19:199 or 200)

Part B. Slige Rules

Linear ${ }^{\text {Slide }}$ Rule-(52:348); K \& E Cat.; Cursors on Rule-(31:170).
Circular Slide Rule-(31:163); K \& E Cat.; Pocket Slide Rule-(31:175)
Cylindrical Slide Rule (Thatcher)- ($\mathbf{1 1 : 1 7 4 \text {); K \& E Cat. }}$
Continuous Slide Rule (Paisley)-(67:4.2-Paisley, 1)

Part C. Solving Equations

With Balances-(32:132)
With Liquids- - $9 .:$:135)
Isograph-From ESell Laboratories Record, Vol. 16. No. 4, December, 1997, pI. $130 \cdot 140$
Differential Analyser--Encyclupaclia Britan:ica, 14th Fd., Vol. 4, p. 548
Wilbur Analyser-liom M.I.T. News Service
Harmonic Analyser-Michelson and Stratton, (6:74); Michelson and Stratton, (22:149); Henrici, H. A.-(6:71); Henrici-Cuadi-(22:141); H. A. (19:214); H. A. (46:166): H. A. (46:170); Tide Predicting Mach.(31:251)

Part D. Business Machines

1. Early Methods

Chinese Bamboo Rods- (54:96) (54:140)
Korean Bone Computing Rods ($56: 53$)
Greck Wax Tablet-(56:50)
Finger Reckoning-(52:77)
Reglettes de Grenaille-(17:15); (32:8)
Tally Sticks-(52:26); (55:193)
 min (67:4.0, Mult.-Div. 2); Chinese (6:10); Modern Chinese-(56:54); Modern Jap:urse (55:173); Modern Russian (SChoty)-(55:176); Chinese (57:26); Japanese (57:26); Roman-(57:25)
Knoted Cord-(11) N. S. American Quipu-- (42)
Napier's Rods--(02:339): (6:11); (67, 4.0, Mult.Div.-5); Cylindrical Form - (6:12)

Product Table-Ready Reckoner (67, 4.0, Mult.-Dis-18)
2. Mdding Marhines

Pascal (16:42)-First Mathine with "Carry Principle"-(52:351). (62:11). (2:180), (67:4.0. Mult.Dix.-7)
I.eibnitz (1671)-Stepped Drum Primsiple-(61:132), (67:4.0. Mult.Div.7), (67:4.3. (alc. Mach.-3) (67:4.3-(.alc. Mach.-4)

Thomas de Colner (1820)-tirst Commercial Mfgr. Arithmometie (2:184), Arithmometer (6:20)
Felt (1887)-Touch Machines. Principal of Touch Machine (13:11); "Macaroni-Bux" Model-(62:52); First Comptoneter- (62:56); Comp. tometer, Early Form (6:27); Comptometer Liey-controlled; portion show. ing mechanism ($6: 27,28$); Mod. Outside-From Comp.
Addition-Subtraction Models. Add-Sub (1842) (2:182); Underwood 10.Key Machine-From Comp; $+\times$ Calc. (Burroughs)-From Comp.i + , Printer (Burroughs)-From Comp.; Bur. Printing Adder (07:3.21, Simp. Keg.-21)
Special "Plus" Model-Ten register machine (67:3.12; Plus p. 4)
3. Calculating Machines

Bollée (1887)-First Direct Multiplier. Machine à Calculer (2:189); Plan (62:186); Principle (67:4.3, Calc. Mach.-16); Principle (17:74), Principle (13:40)
Millionaire Machine (1893). Millionaire Calc. Mach. (6:28); Working

- Diagrams (66:4.3, Calc. Mach.-17); Plates (67:4.3, Calc. Mach.-17)

Active and Inactive Pin Principle. Front Elecation (67:4.3, Calc. Mach.8): Brunsviga Mach. (67:4.3, Calc. Mach.-7); Brunsviga \& Interior (6: 22); Connection Power Machine (67:4.3, Calc. Mach.--12)

Proportional Gear Principle. Diagrams (67:4.3, Calc. Mach.-15); Mar-chants-(From Comp.)
Proportional Rod Principle. Diagram (67:4.3 Calc. Mach.--11); MentedesFuklid (:alc. Miwhines (19i0) (b:29)
Mistellaneous Calculating Machines
Morelind (1666)-(6:14, 15)
Stanhope (1775-1777). (6:18)
Arithmaurel (1854). (2:186)
Barbour (1872)-(62:180)
Roth (c. 1888) (2:187)
T(hobichef Multiplier (1893). (2:187)
Madras (1920). (6:30)
Momoe C:alc. (1923)-(6:30)
Unitas (1925). (6:21)
Calmating Mahines. I:mylopocha Butamica, Ith Ed., Vol. 4. p. 548
4. Advanced Machines

Recording and Listing Mathines
Early Felt (1888)-(62:119)
Burroughs Early (1897)-(6:24)
Accounting Machines, Underwood-From Comp.
Burroughs Bookkeeping-From Comp.
Burroughs Typewriter Calalator-From Comp.
Burroughs Multiple Form Writer-From Comp.
Enderwood Double Automatic Feed Billing Madh.-From Comp.
a Clansification of Instrument.
Statisuanl"!ye Mathines
Remington-Rand Pundi. Fom Comp.
Keminglom. R and Sorter-From Comp.
Remingtom Rand 1'rimes-From Comp.
Kemingtsm-R.nd Mnliplying Punch..From Comp.
Tabulator (Eard :all punched- (20:7)
Soiting limin of Card ${ }^{1}$ 'ib bulatot- (20:11)
Altomatic Plughoary (20:14)
Difference Engine
Mabbages (181:)-(6:32)
Sheute (1858) and Wheelwork-(6:35)
Miscellancous Advanced
Lightning Cashier-(07:9.X. L. "Cal.-1)
Burroughs Cash Keginter ($\$$-From Comp.
Payroll Madhine,--International Cat.
bari-Mulued berting Machines

GEOMETRICAL TOOLS

.Robert C. Yates

The rules and tools of the plane geometry of Euclid are too frequently misunderstood. After we grant the postulates and axioms fixed upon by Fuclid and Plato, the general question of constructibility becomes important, a question which concerns the nature of the tools and the precise manner in which they are used. Following the dirtates of Euclid, we state the rules governing the straightedge and compasses $[6,7]$:
(1) The straightedge establishes the straight line of indefinite - length through two given distinct points.
(2) The compasses establishes the circle passing through a given point with center at a second given point distinct from the first.
These operations are the only ones permitted. An illustration of their limited nature is afforded by the problem of drawing the

Figure 1
bisctor of the given angle $A O B$. First select any arbitrary point P on AO through which is drawn the circle with center at O. This meets $O B$ in Q. Now with center at Q draw the circle through P, and with center at I ' the cincle through . Q. These meet in M. and the line OM when drawn is thus the bisector. (See Fig. 1.)

The disagreement here with the usual practice lies in the selection of the circles $P(Q)$ and $Q\left(I^{2}\right) \cdot{ }^{1}$ The prevalent classroom custom allows arbitrarily drawn circles involving a process of carrying a fixed radius, a practice certainly not granted by the ordinary rules for such work.

The point is again illustrated by the problem of drawing the circle with center at O and given radius $A B$. Since we are not per-

Figure 2
mitted to carry the radius into position, we must establish a point X such that $O X=A B=r$. This is accomplished as follows. Draw circles $O(A)$ and $A(O)$ meeting in C. Draw the equal line seg. ments $O C$ and $A C$. Now draw circle $A(B)$ to meet $A C$ in D; then $C(D)$ to meet $O C$ in X, a point on the required circle. This is evident since $A B=A D=r ; C D=C X=O C-r$. (See Fig. 2.)

Thus the nature of the Euclidean compasses prescribes collapsibilits. That is [7], since the compasses does not incorporate the principle of the diridens, it apparently folds up automatically when its points are lifted from the plane. Once the demonstration of Figure ? is made, of course, the privilege of drawing circles whose adii are not given in position is to be assumed. Considerable added interest is attacned, however, to problems of construction when processes ane firmly restricted to the original rules [11].

Plane geometrical tools other than the straightedge and compasses are generally called nom-Finelidean. These include the parallel and angle rulers, the carpenter's square, the compasses of Hermes, and various linkage devices [11]. We shall discuss a few of the more elementary of these.

[^13]The parallel ruler [9, 4, 11], an instrument of indefinite length, has two parallel straight edges. The width of the ruler may be selected as the unit of length. It is used in a twofold fashion: first, to establish the line through two given points, A and B, and its parallel at a unit distance; second, to determine lines separated by a unit distance passing through each of two given points, A and $B,(A B>1)$. These operations are illustrated in Figure 3. Note

Figure 3
that the positions in the right-hand drawing place in our possession a rhombus and thus two perpendicular lines, an item of considerable importance.

It is not difficult to prove that the parallel ruler is equivalent to the compasses and thus is sufficient equipment to make all plane constructions of a Fuclidean nature [11]. As an illustration, con-

Figure 4
sider the bisection of an angle $A O B$. Place the ruler first with one edge along $O . A$, then along $O B$. Lines intemal to the angle determined by the other sides of the ruler locate a point P on the bisector, as,in the drawing at the left in Figute 4.

The perpendicular to a line L at a point P on L is crected as follows. Place the ruler in an arbitrary position with one edge through P. The other edge cuts L in X. Now turn the ruler over to establish a third parallel line and another point Y on L. If the ruler be placed with its edges through X and Y in its two positions, a rhombus is formed with one diagonal as $X Y$ and the other as the required perpendicular.

The general -angle ruler [2, 4, 11, 1?], of which the parallel ruler is a special case, is also capable of effecting all constructions of classical plane geometry. To illustrate its use, construct the parallel

Figure :
to a line L through a point P. Place the ruler with one edge along L and the other through P. Then repace the ruler parallel to its original position so that the second edge passes through P.

The perperdicular from P to L is obtained by placing the ruler in two opposite positions on one side of L and then reffecting in L, as in Figure 5. These four positions determine a rhombus one of whose diagonals is perpendicular to L.

An interesting constuction, which we leave here as entertainment, is the location of arbitray points on a circle with center 0 and radius $O A[11]$.

We have alhaded seteral times to the fact that all Fuclidean plane constructions ${ }^{2}$ may be accomplished by the compasses alone $[1,3,4,5,7,8,9,11]$. This fact was established by Georg Mohr and Mascheroni in the late seventeenth and eighteenth centuries

[^14]with a theorem that created considerable interest among geometers. The proof of its equivalence to the straightedge-compasses combination reaches its zenith in showing that the point of intersection of two lines, given only by two pairs of points, can be located by the compasses without recourse to the straightedge. Unfortunately, space does not permit the demonstration here.

Figure 6
A beautiful construction illustrating this so-called geometry of Mascheroni is the location of the mid-point of the segment $A B$ (Fig. 6). Construct the circle $B(A)$. Now with the same radius, locate the hexagonal points $A H K C$, where C is collinear with A and B and diagonally opposite A. Let $C(A)$ cut $A(B)$ in P and Q. Finally, $P(A)$ and $Q(A)$ intersect in X, the mid-point of $A B$. For, if $A B=P A=Q A=r$, then $A C=C P=C Q=2 r$; and, since $P A X$ and $C A P$ are cimilar isosceles triangles,

Accordingly,

$$
A P / A \mathrm{X}=P C / A P=2
$$

$$
A X=(A P) / 2=(A B) / 2
$$

Almost all standard constructions offer special interest when performed by the compasses alone. This tool, incidentally, is the natural medium through which the geometry of inversion is executed.

Although quite useful as an auxiliary instrument in general
plane constructions, the straightedge certainly does not appear very. fowerful. Surprising, however, is the fact that it, is capable of solving elaborate and complicated problems of construction. An example of this is the remarkable construction of the tangents to any given conic from an èxternal point. As an illustration, the tangents to a circle from an external point P are located by first

. Figure 7
drawing threc arbitrary secants from P. By cross-joining the points of intersection of these secants with the circle as shown, the line $X Y$ which cuts the circle in the points of tangency is determined, as in Figure 7.
A field in which the straightedge plays a natural role is that of projective geometry. (The foreooing construetion may be recognized as a special application of Pascal's theorem on poles and polars.) It is here that lines and their intersections are dominant features, while such notions as distance, angle, area, parallelism, and the like have no interpretation whatever.

The straightedge becomes considerably more effective if somewhere in the working plane there is given either a circle with center, a square, a parallelogram. a conic, or some other identified configuration. Such arran ements produce systems known as the geometry' of Poncelet-Steiner.

Fundamental in these systems is the construction through a given point P of the line parallel to a bisected segment $A O B$. Draw $P B$ and $A P$, and upon the latter select an arbitrary point E. Draw $E O$ intersecting $P B$ at I. Then $A I$ mects $B E$ in Q such

that $P Q$ is parallel to $A B$. This may be 'recognized as the quadrilateral construction of harmonic points or, in more elementary fashion, as the construction of a diameter $P Q$ of a circle homo-

Figure 8
thetic to another with diancter $A O B$ having centers of similitude at I and E.

A few exercises may serve to awaken an interest in this type of construction:
(1) Upon a fixed circle with center O, draw the diameter that is parallel to a given line L. (Establish a bisected segment upon \dot{L} by drawing three parallel lines of arbitrary direction, one of which passes through O.)
(2) Given a circle with center O. From a point P construct the perpendicular to a given line L.
(3) Given a square. Draw the line through a corner parallel to a diagonal. (The diagonals yield the center of the square and Figure 8 applies.)
(4) Bisect the sides of a given square.

The preceding discussion forms but the briefest introdaction to the general subject of mathematical tools. But it is through the study of the niture of these instruments that a working knowledge of plane geometry and a sympathy with its structures are acquired.

8. Carnahan, W. H. School Science and Mathematics, XXXII (1592), 384390.
-
4. Fourrey, E. Procédés originaux de Constructions géométriques. Paris, 1924.
5. Got.dberg, M. School Science and MalKematics, Vol. XXV (1925), pp. 961 965.
6. Meath, T. L. Thirteen Books of Euclid, I. Cambridge, 1926.
7. II udson, H. P.Ruler and Compasses. London, 1916.
8. Mascheroni, L. Geometria del Compasso. Pavia, 1797.
9. Mohr, G. Euclides Danicus. Kopenhagen, 1672.
10. Silvely, L. S. Modern Geometry. New York, 1999, 80-92; 132-195.
11. Yates, R. C. Tools, A Mathematical.Sketch and Model Bonk, Baton Rouge, 1941.
12. Yates, R. C. National Mathematics Magazine, Vol. XV (1940), pp. 61-72.

MATHEMATICAL APPARATUS

Phillip S. Jones

In the classioom, mathematics club, assembly program, or exhibit, mathematical demonstrations which use moving apparatus as well as visual diagrams and verbal explanations attract and retain more attention and show relationships more clearly than do static displays.' This is particularly true if the apparatus calls attention to the appearance or use of mathematics in daily life.

In Figure 1, for instance, the pin and string construction for an ellipse, the setup for which is seen in the upper left-hand corner, gives a mechanical construction for a curve which is continually seen about us. This construction serves not only to visualize a locus definition, namely, that the ellipse is the locus of a point noving so that the sum of its distances from two fixed points is constant, but it also explains why the elliptic "gears" at the bottom of the board will mesh. For these congruent ellipses are pivoted at their foci with the distance between these foci equal to the constant sum of the focal radii; hence the radii to the point of contact may vary, but their sum remains constant. These gears convert uniform rotary motion into variable rotary motion and are useful, for example, in such machines as slotters and shapers where a slow working stroke and a quick return stroke are desired.

In constructing these "gears" from plywood, it was found necessary to glue felt to their edges to provide traction and to join the two foci not used as pivots with a link equal in length to the major axis in order to prevent the gears from falling apart at some points of their cycle. This same motion can be obtained with a simple four-bar linkage, as shown in the upper right-hand corner of Figure 1. This linkage offers many opportunities to show interesting geometric relationships and to give practice in functional

[^15]Mathematical Apparatus . : . 213

Figure 1
thinking. If you let the long bars (one "bar" of the linkage is supplied by the board on which it is mounted) become uncrossed, you have a parallelogram which can be used for transmitting uniform rotary motion; if you distort the parallelogram again, you have an apparatus for changing rotary motion into reciprocal motion. If you generalize this fou bar linkage a little more by not requiring the opposite sides to be equal, the immediate problem (Given the relative lengths of the links, what kinds of motion are possible?) leads to much real functional geometric thinking in a situation that has many practical applications.

The property of the ellipse demonstrated by this pin and string construction readily explains why naval pilots, flying out from an aircraft darrier and planning to return to another base or to the same carrter in another position, find, if there is no wind, the territory over whith they may fly bounded by an ellipse. This is one of the so-called "radius of action" problems which a former
student characterized in a letter as being most interesting because the problem is to "find the carrier or you're a dead pigeon."

Of course, ellipses are most commonly seen as the apparent shape of circles viewed at an angle. The draftsmen meet them so often that many drafting rooms have elliptic trammels or ellipsographs more precise than that shown in Figure 2, but operating

Figure 2
on the same principle. This ellipsugraph may be fastened to a blackboard with suction cups; the knobs make it possible to draw ellipes of various shapes by setting any desired semi-major and semi-minor axes.

The student who made and demonstrated the elliptic gears found a piece of old bass qipe, cut it at an angle, had it plated, and then had a grand time at a public exhibit explaining to passers.hy that everyone knew that salami was alwasesubert an amele, thus giving elliptice slices, because such slices were the shape that best fitted into sandwiches--another application of the ellipse.

An elliptic "billiard board" is pictured and described in another article on "Mathematical Demonstrations and Exhibits" (p. 90) as are atso the paraboloid formed by the surface of a rotated fluid. models of parabolic and catenoidal cables, and the demonstration of the catenary as the sail curve. The parabola and the catenary look so much alike that persons first viewing them

will need consincing that they are not the same; but a parabobic: template (Fig. 3) with a hole drilled at its focus for a piece on chalk will enable one to draw a catenary, the center curse, by rolliter the parabola along the meter stick which is held by two suction (up, I piece of sting an lex held up and shown to fit the cuse of this atenary but not that datw anound the panabolic tomplue. The tatagle, string, and sution cup shown at the exthone ight in Figure 3 provide a method of introducing and datwind the patabola as the locus of points equidistant from a faxel puint the forus. repesented by the suction (up) and a fixed lime the ditectix. ecpersented by the meter stick). A piece
of chalk held against the triangle is forced by the string; whichis fastened to the upper vertex of the triangle and to the suction cup, io slide upward along the triangle as the triangle is slid along the straightedge. The chalk traces the parabola.

Possibly the most common locus seen today is that of a piece of mud on the tire of an automobile. If the mud is on the extreme

Figure 4.
outside edge of the tire, it traces the cycloid shown in Figure 4. This curve has so many interesting properties, so many famous names (Galileo, Newton, Lecil nit, Bemonhli) associated with it, and has featured in so many famous quarcels that it has been called the Helen of Geometers, for Helen of Troy. The tracks at the right in the picture demonstrate two of its most interesting properties: namely, that it is, under the action of gravity, the path of quickest descent. the brachistochrone, from one given point to another in a vertical phane, as shown by the fact that, when a ball on the cocloidal and one on the linear path are released at the same time, the former arities at the botom first. It is also the tautochone or curve of equal time as shown by the fact that, if
one ball be teleased from the top of one cycloidal, track and one from the middle of the other, they both arrive at the botom at the same time. Scientists have tried to use this property in designing clucks:

Plywood fomms, such as those shown in liguc 5, stuck to a blackboard with suction cups, and a piece of chalk fastened to a cereal

Figure 5
bex which will roll on the phwood foms facilitate the demonstration of the locus of a cincle rolling on another circle; namely, the epiccloid, which plased its pant in the I'tolemaic theory of the mature and which, with the cycloid and hypocycloid, forms the rumes used in the design of cycloidal gear teeth and gear trains. The conseat the leit is the two-cusped epicycloid or nephroid and that in the come is the cadiond, maned for its heart-like shape. These two curves an also be demonstrated as caustics. The nephroid is the envelope of light rays reflected from a circular water glass or napk in ring for a light source emitting parallel rays, while the condioid is the ueflection pattern for a point source of light on the circle.

The corloid is the locus of a point on a circle which rolls with-

Figure 8

Figure ;
out slipping on a straight line. If a straight line rolls on a circle, the curve is that seen at the extreme right in Figure 5, which was taaced by a piece of chalk on the end of a string as the string was unwound from a cereal box held with its base against the blackboard. This curve is the involute of a circle, and is used commonly today in the design of gear teeth, for which purpose it is superseding the cocloids. It is also used in desigining some cams.

A fly, represented by the upright peg or pencil in Figure 6, walk. ing out on the spoke of a uniformly rotating wheel, represented by the slotted arm mounted on a fixed vertical axis, would, as seen in the figure, trace a spiral of Archimedes. The movement of the peg in the appatatus in Figure 6 is accomplished by fixing it to a slider moving in the slotted arm. This slider is in turn fastened to one side of a sting belt running around a fixed pulley mounted on the vertical axis of rotation and a second idler pulley at the end of the rotating arm. This spiral has not only an interesting history, as its name implies, but several modern uses. The cam at the lower left in Figure 7, each side of which is shaped as an Achimedean spiral, converts uniform rotary motion into uniform recipoocating motion. The casings of centrifugal pumps, such as the German supercharger shown in the photograph, follow this spiral to allow the air which increases uniformly in volume with each degree of rotation of the fan blades to be conducted to the outlet without ocating back-pressure. H. T. Brown in his " 507 Mechanical Movements" suggests the use of this curve as a guide for the feed motio: in a drilling machine.

The apparatus in Figure 8 consists of a base circle, a point on the circle represented by a suction cup, a straigl: ! ine represented by a stick which is constrained by a bracket on the suction cup to pass ahways through the fixed point, and two nails representing two points on the line a fixed distance apart. If the first nail foilows the fixed circle, the second nail, or a piece of chalk substiftuted for it, traces out the limacon or snail curse of Pascal. This curve. when used as the shape of a cam as shown at the left in Figure 9. converts uniform rotary motion into simple harmonic motion. The device at the right in Figure 9 a an be thought of as proof of this fact because the two followers can be seen to move together, and the second device. which is a Scotch crosshead, is

Figure 8

constructed according to the definition of simple harmonic motion as the motion of the projection, represented by the crosshead, of a point traveling at a uniform rate on a circle, represented by a rotating arm which has a peg sliding in a slot on the back of the crosshead. A pencil fastened to this follower would draw a sine wave on a roll of paper drawn past it.

Incidentally, the cardioid, or heart-shaped curve, is also a special case of the limacon and may then be demonstrated by the method suggested.

Much interesting and simple trigonometry may be shown to apply to models of screw threads and gears. The history and logic of logarithms and the slide rule can be made more real by demonstrations of Napier's bones and Gunter's scale, and trisection devices always involve good geometry and have a never-ending appeal. These items and calculating machines and planimeters have been mentioned in a previous article (see pp. 94 to 96). Many other interesting devices will be found suggested and described in the general sources listed on i age 223.

The equipment which is pictured here was made and demonstrated at the Edison Institute of Technology, Dearborn, Michigan, in connection with classwork and exhibits by freshman and sophomore college students. However, the conic sections fit in well with the work done in functions and graphical representation in many second year high school algebra courses. Constructions, such as those shown on the charts in Figures 10 and 11. exist for all the curves discussed and are so varied and simple, as well as useful in the drafting room, that high school geometry students could easily do them and could see real use made of constructions for tangents, fommalas for lengths of circular arce, and so on. Fven junior high school students could draw màny of these curves in connection with work done in learning the use of instruments. Certainly it seems that quadratic equations should never be left without a look at their graphical solution and some information about the properties of the related parabola. The other simple loci which were discussed earlier can add much that is practical and attention getting, as well as thought-provoking and functional to the study of loci. These loci are more real in their use than and as simple in their construction as those problems about buried

Figute 10

ligucell
treasure which are found in the few paragraphs on loci included in many geometry texthooks.

Apparatus of all sorts is useful in the classioom in giving the student added insight into and practice in seeing and thinking about mathematical relationships, as weli as in getting his interest and attention. The students who design and make these "gadgets" after studying their history and use are, of course, the ones who get the most real fun and profit from them. However, these devices accompanied by charts and explamations will attract attention and bring questions and interested, understanding comment not only from students in the classrom and mathematics club, but from passers by at shool open-louse exhibits or assemblies.

Selected References

(iencral

Fehr, II. F. and Hamarand, E. M. C. The Constructionand Use of Mathe. mation Models. The ambors, State Teathers College. D'pper Montlair, N. J., 193s. A mimengraphed bulletin desobibing a vaniety of models, ap. paratus, innomments, rectations.
Hacos. (i. 1). Mechantal Applinnees, Mechanienl Novements and Novelties

Hisaos, G. D. Michamial Moromeme. bowers and Deaces, Norman W'. MenLey lobliding (o.. Niow Yonk, 1903. This and the preceling work by

 Section XVI of the seomal hook, on "Dratughing Deviees," inchates conchoich. chlpowiphs, patallel and atraght-line linkages.

 and atcials.

 of luthe number of linhiges.

The 'lipse
Elliptic gears:
Hiscox. Mechanical Appliances, ete., op, cit. lage 233 discusses a second type of elliptic gears which rotate about their centers but are mounted at an oblique angle with the axes of rotation.
Karpinski, Benfdict, and Cathoun. Unified Mathematics. D. C. Heath and Co.. New York. 1918, pp. 357.358.
Kfown and Faires. Op. cit., pp. 5 ff .
Yatrs, R. C. Tools.p. 176.
The radius of action problem:
Pope F. And Oris, 1. S. Flements of Aemomatm. World Book Co., Yonkers, N. Y., 1941. Chap. 2j. pp. 362 ff ., Area of At tion and the Ellipse, pp. 872. 375. f:llipsographs:
Fraveh, T. E. A Manual of Eingineering Drauing, Mociraw-llill Book Co., New York, 19:11, pp. 69, 556.
Hiscox. Mechanical Appliances, op. cit., pp. 857 ff .
Hiscox. Mechamial Mon'ments, op. cit. Pp. 305 ff. This and the preceding reference picture a variety of different ellipsographs.
Kfiffti, and Fssir Co. This company manufactures a precision ellipsograph of the type in Figure 2.
Krtgtak, H.""A Simple Blackboard Ellipsograph," The Mathematics 7racher, 33:179, dpril, 19:0. The pin and string construction at the black. board. using a suction cup outfit.
Tur Porr Compans. This company manufactures the "Premier Ellipsograph" for draftmen, photoengravers, and lithoprinters. They are of a t!pe difterent form that pictured:
Yates, R. C. "An Fillinsugraph," National Mathematics Magazine, 12:218, Februans, 1938. A seven bar linkage which will also draw a stuaight line.
The Four-Bar I.inkage
Kfown and Faires. $O p$. cit, pp. 5 ff .
lates. R. C. Tools, p. 176.
Vatas. R. (:. "Ihe Sony of the Parallelogram," The Mathematics Teacher, 33:301. Nuvember, 1940.0
The Gyclouds
Curse of quickest descent:
Bums, (i. A. The Cillculus of Vamatum. Open (imun Puh. Co.. Chitago, 1925. pr. 41 ff.
The tautorhrone and clocks:
Oncoon. W. F. Mer hanics. Macmillan Co., New Yomk, 1937. In gearing:
Kfown aidn Marfs. Op. cit., pp. 169 ff . Hiveny and mise ellancous:
(iajori. F. Hateny of Mathematies. Mamilan (io., New York. 1919.

Encoclopredia Ryitannica: 1th Edition, "Curves. special."
Kasner, E. and Newman, J. Mathematics and the Imagination. Smon and Schuster, 1940. pp. 196 ff.
Steminacs, H. Mathematical Snapshots. G.. F. Stechert and Co., New York. p. 46. Caustics:
Ene yolopardia Bratanima: 1th l:dition. "Curves, sperial."

The Involute -
In cams:.
Keown and Falkfs. of cal., p. $8 \dot{2}$.
In gearing:
Fellows Gfar Shapre Co. The Involute Gear. Springfield, V't.
Keown and Falres. Op. cil., pp. 151 ff,
The Spiral of Archimedes
The uniform motion cam:
Keown and Falres, op.cit., pp. 69 ff.
Centrifugal pumps:
Marks, 1.. S. Mechanical Engineer's Mandbouk. Mcciatw-hill.dook Co., New York, 1930.
History and Miscellancous;
. Ifath, T. L. The Works of Archimedes. Cambridge University Press, 1897.
Steinhats. H. Op. cit., $f 48$.
The Limacon
The simple harmonic motion wim and Sonth croshecad:
KEOnin and Falres. Op. all. pp. 72. 9 .
Stelvhat's, H. Op. cil., p. 5.
Linkages:
Yates, R. C. Tools, p. 182.
Geometric Constructions for Aboie l.oci
French, T. E. A Manual of Enginereng Dauing. McGraw-Hill Brok Co., New York, 19:11. (Or any other text of this type will gise simple exact constructions for all these curves as well as appoximate constructions.)
Keown and Faires. Op. cit., pp. 237 ff., or oher textbooks in medhamisms.
Huntington, E. V. Handbook of Mathematios for Ensimeens. Maciraw-Mill Berk Co., New York, 1934. p!. 138-156.

MATERIALS FOR MATHEMATICAL. MODELS: THEIR SELECTION AND USE

Joseph Hilsenrath

An experienced monflatiker, whether he be a builder of airplane models, ship models, model railways, model racing yachts, or mathematical models, as long as he is an enthusiast, has many of the following characteristics: he never throws anything away and so has an accumulation of junk around his house; he stops to look at any and every windew he passes and hence seldom arrives home on time; ha is a friply good conversationalist and thus gains ${ }_{4}$ a lot of free advice and information from others; he is a lover of machinery and is forever buying some new gadgets and then doing without lunch once or twice a week; and he is constantly on the lookout for some ready-made article which he can with little effort appropriate to his needs and which will result in a decided economy in both time and money in the making of a future model.

A lesson wh.ch every teacher can learn from this enthusiast is to be on the alert for materials which can be employed in or adapted to the production of models and equipment for the classroom. Some of the raw materials which can be used for this purpose may be waste material in some industry. Ingenuity is the teacher's best assistant. Articles manufactured for other purposes or for general consumption may often be adapted to instructional purposes. The most expensive material is that which has only a special function and herice is in demand by only a limited number of users.

An examination of commercial catalogues and publications will give many clucs to available materials. These may include catalogues from modelmakers, supply houses, toy manufacturers, commercial steel dealers; hardware dealers, stationery houses, mail. order lumber yards, scomtific ins'rument companies, photogra. phers' suppliers, automobile supply stores, wholesale radio sup.
pliers, window trimmers' supply honses, as well as tade magatines and hobby publications.

A leisurely trip through a five-and-tencent store or a large hardware house will give an idea of articles which can be used or easily adapted to model needs. Spheres may be found as croquet balls, billiard balls; mables, rubber balls, temnis balls, spherical balloons, beads, and wions other ormaments. Cylinders. cubes. and prisms appear as candy boxes, tin cans, powder boves, food cartons, mailing tubes, and toys. Cardboard or metal discs may appear as mats or may have been discarded as waste by stamping industries. Wire circles are used be manufacturers of tamp shades. Some of the small solids are made by tor mamafacturers, and some of the larger ones are often used by window display firms. Gears, pulleys, circles, and links from such sets is Meccano or Frector can also be used to advantage.

Models can be made and used by student and teacher alike. Some models should lie constructed by evely student in the :lass. They need not be elaborate and may be restricted to those which can be made from cardboard or string. They may be sliped into an envelope-pocket in the student's notebook and can be used effectively in developing intuitive and informal work. The teacher may fund it adrantageons to produce orme models in fromt of the class with the aid of a few pieces of cadboard, some suips of wood of various lengths, a mator blade monnted in a handle, a paper punch. and some hass paper fasteners. Other models can be carefulls made and hept acailable, 1 ead fon (lass demonstations at a momemts motice.

As an example of a model which an be mode by studems or teachers under various conditions we may consider the cabe. a cube may be made in all of the following was:
(1) Twelve toothpicks ghed together at the ends to form the edges.
(2) Twelve wooden appliatons alued as moted abose, but painted.
(3) Twelse pieses of stiff wine soldencel at the wenticen and painted.
(4) I paper or cardboard template folded and eders pasted together.
(5) Six squates cut from stiff celluloid or transparent plastic material and glued together at the edges.
(i) Solid cube cut fiom soap.
(7) Solid cube cut from modeling clay.
(8) Solid cube cut from a block of wood.
(9) Solid culse cut from alaminum, brass, or plastic (opaque or themsparent).
(10) Sheet metal folded and soldened.

Numbers 1, 2, 4, 6, and 7 are the simplest to make, require few tools, and can be constructed by evervone in the class. The cost of 1 and 4 is nil. Numbers 6 and 7 may be transformed into a number of semitcegular solids be cutting off de proper corners. Solids constructed of batss or other metals require little machining and are excellent for display purposes.

The nature and numere of materials and tools required will trow along with the neer! and use made of models. The following list may prove suggestive.

Materials Tooh Required Foon Rerommended

1. Toothpieks
2. Wosoden applimators
3. Venetian blind vats
4. Surel ustapping
5. Cardboard
b. Bus-bar wire
6. Thin florist's wire
7. Steel wite circles
8. Plywond
9. Sheer metal
10. Brans strips and bans
11. Modelmaker h lumber
12. Bahat wood
13. Glats
14. Soap
15. Clay
16. Colured striny Nome
17. Plaster of paris Nione
18. P!astic sheets
19. Plastic tube, har, and ron! None
A

G, K
(;
(;) K
M
H. K. I.

1
1
.1
1

A
A. M. N
A. B Small drill
(. II. I. J. 1.
A. H.C. D. F.
H. I. () Small drills
A. Ғ, M, N

[^16]-

Tools

A. Kazor blade type $k n i f e^{1}$	F. Stapler G. Pair of sidecutting	k. Soldering iron L. Metal shears
B. Paper punch	pliers	M. Coping saw
C. Straightedge	H. Scriber	N. Crosscut saw
D. Pair of scissors	1. Metal punch ${ }^{2}$	O. Hack saw
E. Small hammer	J. Eyelet punch	P. Class cutter
	Acressomies	
a. Paper fasteners	f. Wire brads	1. Thumb tacks
b. Eyelets	1. Suction cups	m. Gummed letters and
c. Staples	i. Solder and soldering	figures
d. Paste, glue, aiplane cement	parte j. Tape. masking.	n. Paints, assorted colors
e. Rubber bands	drafting, binding.	o. I.eather strips
f. Elastic, round and flat	etc. k. Violin I).wring	p. Ciolf tees

Since some of the items listed above may appear to be out of place, a feri of their advantages will be illustrated. Paper fasteners are convenient pivots, for hastily constucted models made of cardboard or wood strips. If more durable and accumate pirots are required for cardboiid or steel strips. eyclets should be used. An accuate, incepensive piont may be made from a piece of gut or D-string, as follows: a) pietce the two pieces of cardboard with a needle of suitable diameter and with a knife cut a piece of gut about an eighth of an inch longer than the thickness of the two pieces to be piroted: b) insent the piece of gut inte the holes and touch a heated olject to each end in succession in order to spread the ends and form a perfect rivet which will resist the wear of cardboard. fiber, or plastics.

Rubbee band and round clastios are ideal for setting up grometric figuter on theorm beards and may be used in making a tariable mudel of a moded surface where it is necessary that the

[^17]connlime alwayn suaight lines. Suction cups may be used to fasten models to the hackhourd; some cups are available with a bolt which permits piroting. Tape is valuable in holding materials in phate during ghing. as a mosking guide for painting, and as a binder for models made of glass. (The writer has found Kodak binding Tape to be most satisfactory; 10 yards of $3 / 8^{\prime \prime}$ width cost ?(0).) I cahor stips may serwe as hinges for plywood models illus. tatingencos. (iolf tees are inserted in the holes of theorem boards and the chastic is atheched to them. On the broad surface or head, -mall lethens may be pasted to identify various points. Gummed L.thens and figures will add th the appearance of a model and save time in its comstruction."

A highty painted model has distinct pedagogical value, but it is important that the painting be catefully done because a model is often made or mined by the way the paint is applied. Bright colons should be selected. A fast drying lacquer should be used; it in mont comomical to purchase lat quer in tiny bottes often sold in hobly stomes for five or ten cents. (Exaporation makes the

 lon some models it is quite satisfactory; its disaduantage is its lack of stomgh. i hobby or neighborhood hardware store may carry
 stips in 3i" longths were found in a typical store: $1 / 32^{\prime \prime} \times 2^{\prime \prime}$, $1 ; 3^{\prime \prime \prime \prime} \times 3^{\prime \prime}, 1 / 16^{\prime \prime} \times 1 / 16^{\prime \prime}, 1 / 16^{\prime \prime} \times 1 / 8^{\prime \prime}, 1 / 16^{\prime \prime} \times 1 / 4^{\prime \prime}, 1 / 16^{\prime \prime} \times 2^{\prime \prime}$,

Candhoad may he ohtained from stationers, printers, bookbindens, med p.pel supply houses in assorted colors, various thickneros. and mome daplers of rigidity. Some teachers have found
 twis nochons to wom this material are a straghtedge, a sharp then hande hilfe. and pate. To fold the cardboard, score (cut hallway hocugh; it alomp a shapht line with a sharp razor-blade knife mol fold awn hom the side soored. If the blade is quite whor ${ }^{\text {P }}$, mas loe dawn lighty along the line, for the weight of

[^18]the knife alone may cut to the proper depth: A light touch will score even the thimest cardboard. Pliable cardhoard thus cut gives the template an excellent hinge. The writer has a set of collapsible cardboard models with such cuts for hinges; these have been subjected to a year's service without marked signs of wear. Hinges may be reinfored by applifing binding tape along the folding edges. If the size of the model necessitates the use of more than one sheet or if one wishes to economize by using small pieces, these parts should be cut to the proper shape, a hinged flap included on every edge, and these flaps either pasted or stapled to their adjoining pieces. Cutting a piece of cardboard requires marking a pencil line on it and cutting along this freehand rather than by means of a guide. Models made from cardboard or paper have included plane figures, planes in space, solids bounded by planes. developable surfaces, some ruled surfaces, solids built from a section of plane curves. and surface !inkages. ${ }^{4}$

Where it is necessary to emphasize lines rather than surfaces, sticks are used to great advantage. Wood applicators, which may be puchased in any drug store, are the best source. They consist of tound sticks about $1 / 16^{\prime \prime}$ in diameter and six and one-lialf inches in length. Ther may be purchased in small quancities or be
 size with a razor blade or knife, are uniform in thickness, can be joined with airplane coment or collodion, and when painted cannot be distinguished from wire A model made from applicators is lisht, thansparent, neat, and easily constructed. To provide a more rigid stheture diagonals may be placed in faces which ane polvigns.

Applicators should be painted before the moded is stanted. A single coa: of tacquer applied with a small camel's hair brush will be cuite satisfactory. No spectal skill is required and contrasting colors will provide pleasing 1 esults. The stick should be held between the fingertips and tevolved until it is painted to within one hatf inch of each end. One end may then be placed in a pice of chay to a depth of $1 / 4$ inch and the upper pare painted, leaving a small mpainted portion whith is seldom used. Apphicators have:

[^19]been used to great admantage in making acgular or Platonic solids,
 able smfaces , and some tuled sumferes.

Wine may be used in phoce of applicators, pantionlarly for those rases acpuiting cincular or in regular shapers, such as helices, surfaces of icwolution, and quadris sulacs. The best wire for models is a tin-coated copper wire nsed in modo wook and called bus-bar, It

 neceled, as in the conmameton of an eath medel for map projec-
 source and may be purchased in waioms sies in department stores. "lhese stex circles are not teadily soldered, but a little experience mahes ome adept at this wonk.

Wood stips ate impontant in the construction of classroom models. With the aid of a set of suips of varied length, with holes phathed at the end, and afew paper fisteners as pivots, it is pos. sible to make up triangles or quadilaterals to illustrate the definitions and propositions of book I and Book III of Fuclidean geometty. Suipes should be ahom one-half inch wide and painted. Venctian blind shats, an excellent somuce of supple are one-eighth inch thick and cither two or wo and threeedghths inches wide,

 able rip them into whe half inth suips. or the shoul woodwork

 Vhmbl be mane than ample for mdinary requitements. A paper penth mas he wed wome holes in the ends of the slat, and if
 held aramet the bhehbond. The shas may also be used in conmow line hanhbond linh.ses which may be attached to the board by meato of suction cups.

Suel shaping is wembly bent into d: alar shapes and can be

[^20]rooms to bind boxes and bales and is valuable in making models of spheres for solid geometry, astronomy, and navigation. It may be secured in either a galwanized or a black japanned finish and in a number of thicknesses and widths. For small spheres and linkages, $3 / 8^{\prime \prime} \times .015^{\prime \prime}$ and for larger spheres either $1 / 2^{\prime \prime}$ or $5 / 8^{\prime \prime}$ widths are recommended." The strapping should be cut with small metal shears, allowing enough room for the punching of holes with the metal panch described in a previous footnote. Pieces of strapping are joined together with eyelets fastened by means of an eyelet punch. Before being punched holes-should be marked with a scriber. A little practice will make one adept at setting the punch over exactly the required place.

Transparent models are often desired for display purposes and can be made of glass. It is best to determine the shapes and sizes needed and to have these cut by a glazier. One can do his own cutting, but it is advisable not to try before observing a glazier at his work. Some of the prices guoted for glass are: single thickness, 15¢ per square font; double thickness, 20 éper square foot; opaque (op.al), , 3: $¢$ per square foot; colored (cathedral). 50 () to 60 e per
 inch; polishome \because - per inch.

Plastics are also useful for transparent modets because they on be readily handed, are mbreakable, and present a good appearance. Their disadvantares ate that the statch easilv and are
 rith. and Plexighas. The loner is a themephestic and after being imenersed in boiline water, ma* he shaped into iercuralar contours. Sheets of plastics come in thickneses varing fom . 0 ofo" to . $500^{\prime \prime}$

 cost $\$ 1.00$ per spuate foot and sheets! !" thick 5 (i) 9 per spuare foot. less sepensime pieres ane the thimer cellutod or aretate shects. Heaty shoets or bas must be cut with a sate and an be mathened just as well as any metal. Thin sheets oan be cot with a kiffe, When making staight cut. guide the knike with a steel or metal wher and make a che in the material. This linst cut will

[^21]seldom ever penetrate to the other side; after a slight cut has been made, the piece can be bent back and will break evenly along the cut, ${ }^{\top}$ The best way to cement plastic material is to dissolve some of it in a solvent, such as acetone, and use the mixture as a cement. This cement is also supplied ready-made by the manufacturer of plastics.

Figure 1

1. Regular I'ulybedrom (tamparent plastic)
2. Intraneated I'olyhedrons (paper)
3. Fxatacited Polyhedons (paper)
4. Stellated Pulthedrons (paper)
5. Intersectine Solids (transparent plastic)
6. Cissal Models (paper)
7. Archimedean Solids (paper)
*. Geluchated Sulids (wood)

[^22]

Figure 2

i. (annic Sectiont (pilavet of Pans)
7. Solide of Revolation ewodl)
8. Ruled Surfarre (abund rastios)
9. Cialton Probshility Broud (wool and nab)
10. Stercogram (wood)

Some of the techniques used in the construction of models may be illustrated by a few examples which follow. However, a more
 Giebel. Fehr and Hildebrandt and the Committe on Models and Visual Aids of the dssoc iation of Mathematics Teachers of New York City. ${ }^{4}$

Model No. 1: Plane Geometry. For the proposition, if $a>b$ then $A>B$.

Materials: Cardboard-1 piece, white; 1 piece, white on one. side and red on the other.

Construction. On a moderate-sized picce of white cardboard draw a scalene triangle with side $C B$ greater than $C A$ (see Fig 3).

Figute 3
Bisect angle C and mark off $C X$ equal to $C A$. Connect X with D, the intersection of the bisector with $A B$. Cut out of the red and white cardboard a figure congruent to $C A D X$, and draw the line (D) on the white side. Score along $C D$) so that the quadrilateral hinges and folds back on the red side.

Fasten the triangle $A(D)$ in place, white side down, with either paste, staples, or both, leaving triangle CIDX free to fold back and forth. When (:D). is folded back over $A C D$, we have a white triangle $A B C$. When it is unfolded, se have the figure for one of the proofs of this theorem. The lines $C D$ and $D X$ should be accentuated with black ink.

Medel No. 2: Sphencal Trigonometry. To show the relationship: $\cos a==\cos b \cos c+\sin b \sin c \cos A$.

Materials. One piece of cardboard, white on both sides.
Construction. lay out a sector of central angle 150° for a circle of $6^{\prime \prime}$ radius. Divide this sector into three sectors whose central angles are unequal: so that the sum of any two is greater than the
third. Call the center O and the radii $O, A, O B, O C$, and $O A_{1}$. The three central angles will be c, a and b, in order. Fxtend the radii $O B$ and $0 C$ (see Fig. 4). Draw the tangent to arc $A B$ at A and extend it to meet $O B$ at B^{\prime}. i) raw the tangent to arc $A_{1} C$ at A_{1} and extend it to meet $O C$ in (C^{\prime}. Connect C^{\prime} and B^{\prime}, and on this line as base construct a triangle with $A C^{\prime}$ and $A B^{\prime}$ as the other two sides.

Figure
This triangle should be made to fall outside the sector; its wertex may be denoted as A_{2}. Cut away the figure bounded by the lines $O A, A B^{\prime}, B^{\prime} A_{2}, A_{\because}, G^{\prime} A_{1}, A$,

Now draw the lines on the reverse side of the cadboard co respondine to thene on the fome. Some alones the lines $O B^{\prime}, I^{\prime} C^{\prime}$. and $O C^{\prime}$ on the back and fold fonward along these lines. The result will be a tetraht'on $O--A B^{\prime} C^{\prime}$ with a spherical triangle $A B C$ drawn on its faces and a fourth face perpendicular to the edge O.A.

The relationship is powed in the following manner:
In triangle $A B^{\prime} C^{\prime}$, by the law of cosines:

Subtracting the scound equation from the first and combining:

$$
0-2 \quad 2 \sec b \sec c \cos a-2 \tan b \operatorname{tancos} A
$$

Multiplying by $1 / 2 \cos c \cos b$ we get:

$$
\begin{gathered}
0=\cos b \cos c-\cos a+\sin b \sin c \cos A . \\
\therefore \cos a=\cos b \cos c+\sin b \sin c \cos A .
\end{gathered}
$$

Model No. 3: Solid Geometry. Cube with inseribed octahedron.
Materinls. Red, white, and blue applicators, one dozen of each color.

Construction. On a piece of cardboard draw a square 4 iṇches on a side. Cut four blue applicatons (hereafter called sticks) and miter them to coincide with the square. Drop some airplane glue or collodion on the corners and allow to dry. The glue will sem to disappear; in reality it flows around the sticks and makes a smooth joint. It is better to apply small quantities of the glue at intervals of a minute than to apply a large quantity at one time. Repeat this process on another piece of cardboatd so that it will not be necessary to wait until the first dries. Allow the two squares to dry for about ten minutes.

Cut four blue sticks about one-eighth inch shorter than the side of the squate. Remove the two squares from the cardboard, cutting them free if they stick, and prop them up so that they are perpendicular to the cardboard. Place two sticks on the cardboard between the two squares and glue them in place. Allow them to dry and glue the remaining two edges. The cube is now defined by its twelve edges.

Cut six white sticks the length of the diagonal or a face of the cubc. Starting from any vertex, place one diagonal in each face. Place only six diagonals and make sure that there are three meeting at each of the vertices A, C, F, H (see Fig. 5). The six white sticks determine a tetrahedron inscribed in the cube. The other diagonals determine another tetraliedron. They might be added in another coli- if desired.

Mank the mid points of the six whee diagonals and call them a, b, c, d, e, f. With cutting pliers make a slight nick at each of these points. Cut the red sticks to fit between c and d, d and e, e and f, and f and c. If these ane cut with pliers, the conds will be wedge-shaped and can ie :atade to rest in the nicks mentioned above. Glue in place and allow to dry. Place the cube so that b is at the botom: fit the pieces $b c, b d$, be, and bf and glue in place.

Figure 5
This operation is rather delicate and will require some patience. ? epeat with the lines $a c, a d, a \epsilon$, and $a f$, and the model is complete.

To make this model of glass, use six perfectly square pieces of glass, joined as shown in Figure 6. The tetrahedron can be folded from paper and its vertices glued to the glass before the sixth side is attached. The glass can be joined with any transparent cement or airplane glue. Black binding tape, such as that used for binding lantern slides, may also be used. The ordinary $2^{\prime \prime} \times 2^{\prime \prime}$ glass lantern-slide covers are superb for a small model. The arrangement in Figure 6 shows two tiny cubes omitted in two

Figure 6
corners. These may be ignored because their size is only the thickness of the glass, or they may be filled with glue.

The following propertics of the regular solids suggest other models of this type: the diagonals of the faces of a cube determine two inscribed tetrahedrons; the mid-points of the edges of a tetrahedron joined in succession form an octahedron; the mid-points of the faces of an octahedron joined in succession form a cubc; the diagonals in the faces of a dodecahedron form five inscribed cubes; the body diagonals of a dodecahedron form a stellated icosahedron; and the body diagonals of an icosahedron form a stellated dodecahedron.

Model No. 4: Geometry of Space: Hyperbolic paraboloid.
Materials. Applicators and a piece of wire (optional).
Construction. Bend a picce of wire into the form of a rhombus and bend two adjacent sides out of the plane of the other two, thus

Figure 7
forming a space quadrilateral. Mark off about ten equally spaced points on each of the sides of the quadrilateral. Lay an applicator between a point and its corresponding point on the opposite side and glue in place. Repeat for each of the maks on the two sides. The set of lines joining the two sides is one set of generators of the hyperbolic paraboloid. By repeating this operation with the remaining two sides, we get an overlapping set of reguli which also determine the surface. Figure 7 shows a surface made in this fashion.

The joining of corresponding points of any tho skew lines in space will yield such a surface. The nonadjacent sides of a tetrahedron, being skew lines, will answer the purpose and provide a very neat method of constructing such a surface. This construction, accomplished without the use of wire, is composed entirely of applicators.
-Glue six applicators together to form a tetrahedron. Mark off ten equally spaced marks on each of two opposite edges. Nick the sticks at each of the marks with pliers and glue applicators between concoponding points an noted above. The result is very pleasing.

Still another way to make this model is to build a hinged skewed yuadrilateral and string round clastics through screw eyes fastened in the wood sides of the quadrilateral. 'This will provide a variable model (see Fig. 足, model \&) which is very effective.

Moidel No. ${ }^{\text {s }}$: Ilane Geometry. Theorem board.
Materials. Plybord, $20^{\prime \prime} \times 20^{\prime \prime}$; wire brads; elastic bands.
Construction. In the center of a piece of plywood paint a circle, the ditcumfenence of which is onequarter inch wide. and with diameter 15 inches. The plywood need not be more than onequarter inch in thickness. Drive small wire brads around the circle at interwals of about one-half inch. Outside the circle drill a few holes latge enough to accommodate a golf tee. These tees are whe becd for stringing tangents and secants to the circle.

Fgntex

Drill a hole at the center of the circle and place a golf tee in it. With this device it is possible to set up the figures for all the propositions on circles and for many other theorems. The lines are formed by large elastic bands or round elastics (see Fig. 8) .

Model Nó. 6: Solid Geometry. A collapsible spherical frame.
Materials. Steel strapping, brass eyelets.
Construction. Cut four strips of strapping about three-quarters of an inch longer than the circumference of the sphere desired. Mark a point one-half inch from the center of the strip and punch a hole to fit the eyelets available. From the center line mark off on either side a distance equal to half the circumference. Punch a hole at each of these marks and fasten with an cyelet. There will be a piece which overlaps. Punch a hole in the double thickness and fasten with an eyelet. Remove the first eyelet, providing two diametrically opposite holes which will be used to pivot two more circles. These are constructed in a similar fashion except that they are made slightly smaller so that they fit inside the first. To make these, punch a hole threequarters of an inch from the end of a strip and coil it inside the completed circle, punched hole innermost. With a scriber scratch a mark on the other end of the strip to match the punched hole. Remove, punch a hole at the mark, and fasten together to form a second circle. Punch a hole adjaceni to the eyelet in the double thickness and fasten again. The purpose of the two fasteners is to provide a rigid joint which not twist out of the plane.

It is not necessary to mark the two diametrically opposite holes before forming. They can be punched when the iticles ane placed inside the first circle made, using the first holer as guides. Since the overlapping parts are thicker than the rest of the circle, it will not do to let them pile up in one place. They should be staggered, as in Figure 9. Thus only on the first circle will the diametrically opposite pirotal holes coincide with a joint in the strip.

Pisot three circles to form three meridians. Construct a fourth of fit outside the first. Punch two diametrically opposite holes in it. Place the finst inside the fourth, and curn the fourth so that its holes are tumed nincty degrees with respect to the pivotal points of the first. Punch through these holes. thus providing an equa-
torial axis. Fisten the first and fourth at this axis. The result is a sphere defined by four great circles, three of which are pivoted at a common pole; the fourth has its pole at right angles to the

Figure 9
other. This model is collapsible and can be used advantageously in solid geometry, spherical trigonometry, navigation, or astronomy.

A successful teacher can also bre a bit of a showman. There is nothing which impresses a student more than an exhibition of craftsmanship at work. It is ever a source of surprise to find that "teacher" can use his hands as well as his head. The success to be met in the use of these models depends more on careful preparation and proper selection than on any special skill. Materials used in class demonstrations should be within arm's length. A newspaper picked up deliberately and folded along a diagonal in a sure and confident manner is far more valuable in a demonstiation than one put on after fumbling in a lear closet for a few minutes for a readymade model, no matter how perfect and polished the latter may be. A rator blade in a handle, a paper punch, some brass paper fasteners, a supply of shit cardhoards. and strips of wood of tatious length. these are the "stock in trade" of the "temer-modelmaker." It is adsiable to rechease carh demonstation. or at least to have some practice in using the
knife. Unforeseen complications can arise in the execution of some * simple experiment, but these need not be serious; experience is the best teacher.. Provision should, of course, be made to avoid marring the desk; a couple of sheets of cardboard should be placed over the top, or if more protection is desired, a piece of $1 / 4^{\prime \prime}$ fir plywood one foot square.

The value of models lies in their availakility to the teacher and the class at the psychological moment. - model locked in the teacher's drawer or closet is of no use to anyone. Just as important as the development of a permanent collection is the necessity of providing adequate showcases or other facilities for housing it. Demonstration mode's should be so located that the teacher need only reach for them. This does not mean that all the models should be steved around the teacher's desk. Provision may be made to store those in current use within easy. reach.

Certain types of models lend themselves seadily to mounting on the bulletin boird, the wall, or an open ledge around the room. Artistic distribution of posters and models about the room lends a mathematical atmosphere which will serve to stimulate student interest in the subject. ${ }^{9}$

We must not fail to mention the benefits derived by the student in making models. The completion of a model gives a feeling. of satisfaction and accomplishment. The admiration shown by the rest of the class pays for the time spert in its constuction. Often it is the weaker student who makes the best model. Henre, he should be encouraged, for it is he who most needs to "square himself" in the eyes of his fellow students. The use and display of a beautifully made student-model will result in increased appreciation of the mportance of good workmanship, neatness, and arcurary, and will stimulate others to impore existing models or to plan mew ones. A good collection of models is not assembled in a day or a month or a year, but it is amazing how the collection untws and the dividends it pas. ${ }^{\text {t" }}$

[^23]
B.ALSA AND CLAY AS TEACHING AIDS IN

 HiGH SCHOOL MATHEMATICS

Two makerials, not in general use, have been found most helpful in clarifying geometry problens. They are the light balsa sticks used in making model airplands, and commercial modeling clay used with balsa stic!:s or with the "Fiddlesticks" or "Pick-up Sticks" which may be purchased in toy stores.

Figure 1. Allie Phifer and His Regular Solids
Most boys delight in making neat constructions with balsa. They spend hours on a regular dodecahedron or icosahedron, mitering the corners with the aid of a razor blade and patiently applying a bit of aipplate cement at every joint. 'They will also read most carefully the statement of a difficult problem, build a model ac-
cording to its specifications, and gain new understanding for themselves and for their classmates.

My most unusual experiment with a class using balsa has been building the tesseract, $(a+b)^{4}$, an original problem in the fourth dimension.

One day, in listing some twenty suggestions for individual work in my plane geometry class I included on the mimeographed variety program: "Make, a balsa model of $(a+b)^{\text {s }}$ to demonstrate the binomial theorem of algebra," the first steps of which are shown in Figure 2. In presenting this particular suggestion, I reminded the class that, when they 'learned that $(a+b)^{2}=a^{2}+2 a b+b^{2}$, they had probably drawn a square $a+b$ on a side, and easily divided it into a^{2}, a square with side a; $2 a b$, rectangles with sides a and b; and b^{2}, a square with side b. I sketched this square on the board. Anyone who cared to do so was to construct such a square, $(a+b)^{2}$, of sticks; and on that square, divided into $a^{2}, 2 a b$, and b^{2}, to build a cube to show that $(a+b)^{3}$ is composed of $a^{3}, 3 a^{2} b, 3 a b^{2}$. and b^{3}.

Fenate 2. F.xpansion of the Binomial theorem
e)

Next day a ginl brought in the first cube, a good one except for the fact that she had put it together with pins where a boy would have used glue. Then a number of well-made cubes followed. Among these was a large one built on a fourteen-inch edge, with the short a ends of the sticks painted brown and the long b ends green. The boy who made this one hinted that he liked such work with sticks and glue better than writing a paper on Thales, and asked for another job like it. I told him I could think of nothing better than to try to dany out this construction to the fourth dimension.

The fourth dimension was a new idea to all of my classes. The
figure I wished to introduce to them was the tesseract, the name given to the extension of a cube to fourth dimension. Just as a second dimension is added to a line to form a square and a third to a square to form a cube, a fourth is added to a cube to represent a tesseract.

Because we had only three dimensions in which to tepresent a tesseract, we were in the position of a person wishing to draw a cube on paper. Perspective had to be used. The two act epted wais of representing a tesseract follow exactly the two wass of drawing a cube. The slightly sidewise yiew of a cube consists of a foreground square and a background square joined by. shortened oblique parallel lines. The direct view of a cube shows a square within a square, as if one were looking directly into a box or down a well. Sinalarly, the first tesseract in Figure 3 has a foregtound

Figure 3. The Two Views of the Single Tesseract
cube and a backgound cube joined by parallel oblique lines sllghtly shorten than the other lines to give the illusion of per spective, while the second figure is a cube within a cube.

Having learned what a tesseract would look like when represented in threedimensional space, the boys added the fourth dimension to their large cube painted brown and green. The foundation cube being already divided into cubes and rectangular prisms, it remained for us to civide all the newly added lines into $(a+b)$ lengths. To do this completely was acalls compliated in practice, but simple enough in theory. Soon, ereny square on the whok model had become $a^{2}+2 a b+b^{2}$; every cube was $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$; and it was you to be shown that the complete tesseract was $a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$. The direct view of $(a+b)^{4}$, at right in Figure 4 , was made hater.

Figure 4. The Tesseract $(a+b)$
We easily identified a^{4}, a cube with side a being its foupdation cube, with an added dimension of length a. Some of our ant stumdents made diagrams showing the other forms that would be present in $(a+b)^{4}$. Figure 5 shows the effect of adding a dimension to $a^{2} b$ or to $a b^{2}$. Since, at evers rettex of $a^{2} b$, three lines meet, two short a 's and one long h, the resulting figure, after

another dimension is added, will have at each vertex an added a or b, and will thus be either $a^{3} b$ or $a^{2} b^{2}$. Theme are, similarly, two possibilities for $a b^{2}$, which may become either $a^{2} b^{2}$ or $a b^{3}$. We were able to identify and label, not only the two tesseracts, a^{4} and b^{4}, but also the fourteen additional hyperprisms corresponding to the other terms of the expansion, namely, four $a^{3} b^{\prime}$ s, six $a^{2} b^{2}{ }^{2}$ s, and four $a b^{3}$'s.

An interesting feature of this type of geometry-adding dimen-sions-is that still more algebra is involved. Secing that in a square two lines meet in a point, in a cube three, and in a tesseract four, we found the number of sticks needed to make each model, using the thgory of combinations. Also, by counting vertices, edges, faces, and so on, the students discovered that these

I igne G. Counting the Pomes and Lines
numbers ane the binomial coefficients. Figue ${ }^{\circ}$ demonstates the hown theonem for the series, line, squate, cube, and tessemat. In counting the eight cubes of the simple tesseract (see Figure 3), we find six of them distonted, just as tour of the six seluates in the daving of a whe ale distorted. In Figure 3 the six distorted cubes of the fist figme appear as parallelepipeds with rectangular bases, white in the seond figme they ate trmeated pyamids with rectangular bases.

A high school boy easily carried the simple tesseract on to the fifth dimension (see ligute 7). He also built a simplex, a figure founded on the equilateral triangle and regular tetrahedron, and extended it we the sixth dimension (see Figme 8). These two constructions, wither of which could have been carried to still higher dimensions, led us into more geometry to be interpreted
algebraically. The models shown as Figutes 7 and 8 are entirely original. Figure 8 is of colored sticks. It began with a single

Flgure 7. The Fifth Dimensional Analogue of a Cube

Figure 8. The Simplex of the Sixth Dimension
stick of one color. Two, of a new color, were added to make the triangle. Three, of another color, meeting at an outside point, formed the tetrahedron. It will be noted that the number of sticks used to add each dimension is equal to the number of the new dimension.

While the mathematics classes were interested in the building and study of fourth dimensional models including the regular polyhedroids, the art instructor had her classes make original designs suggested by our models of the regular polyhedroids. Some

Fgume 9. Devera Sugucact by Regular lohhedsoid

Jeture lo. Designs from I'olyhedroids Flaborated
of theit denigns are shown in Figures 9 and 10. The students plan further to design wronght-iron gates and, possibly, stained glass windows by modifying these designs and developing others.

Our use of clay, the other material we have brought into the geometry class, involves no stretching of geometry beyond the bounds set for that subject by F.uclid; in fact, it demands no intricate mathematics whatever. On the contrary, to use a clay foundation on which to build a figure of "fiddlesticks" or "pick-up sticks" provides a simple and quick way to get a figure before the class in solving problems for which a drawing seems insufficient.

We knead clay and flatten it into a hose box. In the smooth clay we can actually bisect angles or construct perpendiculars. We use the clay box, however, chictly as a foundation in which to stand sticks forming a pyramid, a parallelepiped, or other figure. The "pick-up sticks" purchased for a game of the same name are very good for this purpose. When sticks are brought together at a point, an extra bit of the clay serves to hold them there. After the proble:n is solved, the sticks are removed, any drawing in the basal clay is crased with the pressure of a finger, and the clay box is ready for the next problem. There is no trouble with leftovers as in the case of candboard and string models, too good to be destroved befone the eyes of their creators, but not worth handing down to posterity.

Figure 11. Clay Boxes with Fiddlesticks
The fins model in Figure 11 should give a clue to the solution of the theorm, The perpendicular from the intersection of the diagonals of a parallelogram upon a plane that does not cut
the parallelogram is equal to one-fourth of the sum of the perben. diculars from the vertices of the parallelogram upon the plane.......

The second model in Figure 11 would help an amateur in solid geometry to see the right triangles involved in the problem: The altitude of a regular quadrangular pyramid is six inches. Each side of the base is four inches long. Find the lateral area.

By the time we get to spherical geometry, the class is usually more independent and less in need of props for its thinking. However, some find it hard to visualize spherical triangles. For these the use of clay may again be helpful. The clay is removed from the box and smoothed over a globular bowl. It is very convincing to make the dawing in the clay, with the help of compasses that have been bent to reach a quadrant's distance and to demonstrate that If one spherical triangle is the polar of a second, then the second is also the polar of the first.

In these days, hundreds of boys and girls are studying mathematics not because they love it or are particularly good at it, but because of the urgency of the demand for many to become expert in some of its applications. Therefore, it seems more necessary than ever that teachers find ways of making mathematics more attractive for them. We may find inspiration almost equal to that in teaching a brilliant student, in having these lesser ones say, "Gee, it's interesting when you really see it!"

HISTORICAL MATERIAL ON MODELS AND OTHER TEACIHNG AIDS IN MATHEMATICS

Lao Cenezra Simons

In ani. works on solid geometry and related subjects, a figure in a plane is made to represent a figure in three-dimensional space. One stumbling block at the beginning of solid geometry has always been the making of the solid emerge from the plane figure, the seeing of a solid in a plane. This was especially true before laws of perspective were followed in the drawings in a book on the subject. This stumbling block may not exist, but there may be the problem of drawing a figure in a plane that shall represent in two dimensions a solid in three. There are students and teachers as well who cim easily see a solid in the air, as it were, and can follow the demonstration of a proposition connec:ed with it, but who cannot make a drawing of it. Both the difficulties suggested tend to make the first lessons in solid geometry critical ones.

Since the solid must be seen either in the imagimation or in .he actual object, the obvious means of smoothing the path is the building up of models. This is a legitimate aid at the outset, although it should be discarded as the course proceeds. As the student advance in his studies, he slowald gow away from depend. ence on the physical and grow into the purely mathematical ex. pression of all geometrical figures.

The recognition of this need of models is found in the first English tamstation of Fuclid's Elements. This work is entitled: The I:lements of Geometric of the most auncient philosopher Euclide of Megarn failhfull; (now first) translated into the Englishe toung. by H. Billingsley, Citiacn of I.ondon. London, 1570 .

An excellent presentation of this wonk by Professor Walter F. Shenton of Amelican Lniversity appared in The American Mathematical Monthly for December, 1928, under the title "The First limglish Fuclid." The article included the following statemem: " The second volume contains the tenth to fifteenth books
of Fuclid, with a sixteenth book added by Flussas. The wood-cuts illustrating the solid figures are most beantiful, but one of the most interesting features of the eleventh book is that many of the figures are made of paper and so pasted in the book that thev

may be opened up to make actual models of the space figures." Then the article gives figures; one "shows the page of defimitions of pyramids, and illustrates with actual models, pyramids with triangular, quadrilateral, and pentagonal bases" (see Figure 1): another "shows similar figures to illustrate the proofs of such theorems as 'From a point geuen on high. to draw smos a ground plaine superficies a perpendicular right line.' ${ }^{\prime}$

Early in the eighteenth century, another English translation of Euclid employed this same device but to a lesser degree. This work was entitled: Euclid's Elements of Coometry from the I.atin translation of Commandinc. To which is added a treatise of the nature and arithmetic of logurithms; likemise another of the elements of plane and spherical trigonometry. By Doctor John Keil, F. R. S. Now done int: Finglish. . . . By Mr. Simuel Cumn. London, 1723.

The first Iatin edition of John Kcil's Elements was printed in 1715. He justifies the appatance of amother edition in print on the ground that attempts have been made to supersede Fuclid's
work bectuse of the detertion of mmerons faults. The maintains among other things that "his Demonstrations [are] elegant, "Rerspicuous and concise, carrying with them such Evidence, and so mach Suength of Reason . . ." To the Elements, Keil adds some trigonometiy with a reason that sounds very modern: "Farther, for the l'se of those who are desirous to apply the Elements of ceometry to l'ses in Life, we have added a Compendium of Plain and Sphenial Trigonomens, he means whereof Geometrical Magnitudes are measured and their Dimensions expressed in Numbers."

The popularity of the Keil work is shown by the fact that it was translated into Finglish and that the English translation ran through at least five editions, the fifth appearing in 1745. Mr. Cumn claims that he has conected some errors, particularly in the solution of certain cases of 'Oblique Sphericks." The geometrical part of the work follows the usual order of Euclid, Books 1 to 6,11 , and 12 , but in a much abbreviated form. The diagrams are found on one sheet at intervals throughont the book. But it is the section on trigonometry which offers special interest from the standpoint of models. At the end of the woik, there is a sheet from which figures can be crected to be used in connection with certain propositions. There are just three of these figures, but each one serwe to illustrate several theorems.

The upper figur \boldsymbol{i} is a separate circle pasted onto the sheet. To it at a diameter is pasted a circle, half of which can be lifted up. The appopriate lines are drawn and letters attached for the several theorems, seven in number. The middle model (see Figure 2) consists of a circle (foreshontened in the figure) pasted to the sheet. Alonis wo badia (1 tand $O H$ are attached two plane rightangled tiangles O. $1 /$ and ()HG which can be made to stand upright for use in two propesitions. These are: "Prop. 23. In spherical tiangles $B . A(C$, , $B H L E$, rightangled at A and H, if the same acute angle B be at the hase $B .4$, or $B H$, then the sines of the hypotemuses shall be proportional to the sines of the perpendicular ars: Prop. 24. The sume things being supposed, $A Q, H K$, the sines of the bases are proportional to $I A, G I I$, the tangents of the perpendicular ans." The lower model serves for two theorems. Its foundation is a circle pasted to the shect. To this is at-
tached a sector pasted along a radius but not on a diameter. This sector can be made to stand up.

In the same gear with the appearance of Cunn's translation of Keil's I:uclid, Fdnund Stone published. The construetion and principal uses of the mathematical instrume'nts. Translated from the French of M. Bion. Iondon. 1723. This work contains plates

Inume 2. "Stame -up" Moole! from Cumns Translation of Keiis l:uclid.
with the unu.al diagrams for making the regular solids and a drawing of the appropriate solid itself to the left of each diagram. While this work purports to be a means of making mathenatics practical and useful in the affairs of life, it does give some sug. gestions for making the theorems in solid geometry clear.

Fubluer evidence that these "stand-up" figures were finding fasor appears in the work: Geometry made easy; or, a new and methodical explanation of the elements of Geometry: to which is addrd a m'w' . . method of exhibiting in miniature the various kinds of solids . . . by schemes cut cul of paste-board. By John I.crles Genwley. I.ondon, [1752].

A copy of this book is in the Bitish Museum, as noted in catalogue of the same. Onc has not yet been located in this country. The contents of the wonk are outlined on page 3 of another work by this author as follows: "The work here alluded to was com-
pleated in the year 1752. and contains a very easy and concise commentary on the first 6, 11, 12 and 15 books of Euclid [books 14 and 15 were added later than the time of Euclid himself]; some material propositions of Archimedes, concerning the cylinder, cone, and sphere; the principles of algebra, with its application in solving geometrical problems; and an introduction to conic sections; together with a method of forming, in miniature, solids and their sections, by schemes cut out of paste-board, which render it useful to those young students for whom it was designed."

The same author published: An appendix to Euclid's Elements. In seven books. Containing forty two copper plates. In which the doctrine of solids, delivered in the eleventh, twelfth, and fifteenth books of Euclid, is illustrated and rendered easy by new-invented schemes cut out of paste-board. London, 1758.

At the outset, the author refers to his earlier work and then adds: "I come now, according to the promise which I made in the preface to that work, to lay before the public a new performance the chief scope of which is to produce mechanical representations of solids and their sections" and much more along this line.

A second edition of An appendix to the Elements of Euclid appeared in $[170-?]$ with a slight variation in the title. "Containing forty-two copper-plates" has been replaced by "forty-two moveable schemes." Cowley justifies his second printing in his preface when he silys: "The approbation shown to the first edition of this work, and the many applications made for it while out of print, are motives that have encouraged me not.only to issue this second edition, intt also to make sundry additions and improvements to it, . . . but as these things would augment the present work too much, and that those who have the first edition hereof may have an opportunity of obtaining these additiors without detriment to their former purchase, they are reserved for a second or supplemental volume to what is herein contained." Such a supplemental volume has not been located in any library or catalogue and so there seems to be no extant volume to show that it ever appeared in print.

The "roweable scheme" employed may be described by taking an ilhustrat:on from the book. To make the Exoctoedron or Canted Cube (see Fgure 3), the outline of the entire figure,

cacept for two sides of the shaded spunte in rut ent. He seremal limes there twelve in momber) which aoss the diagram are so presed that they an be casil? folded. Thus the six equal squares and cight equal copilutal trianges san be placed in such a position that the oolid with the shaded squme as base can be formed
(see Figure 4). In the words of he author, ". . . nothing remains to hinder the reader from a clear sight of the true form of these bodies but the little arouble of raising up the figure, and folding its several parts arc und that particular one which is distinguished from the others by ', ing shaded." This is the familiar means for making a solid. Here it is already at hand in the book. The disadtantage of the scheme appears at once. Only propositions which relate to solids whose entire surface can be flatened intu one con: tinuous figure can be represented. Such propositions as kave been described in the Keil book are not pessible by this scheme.

Hentr 1 Moule of Figute 3 in Upright Position

Neverheless, Cowley does present a number of interesting solids and propesitions. Book 1 whilits the five regular solids; Book II, one negular solid insoribed in another, to be used with Euclid XV, 1.5; booh 1ll. fine of the itacgula solids (these ane five out of thittern of the semitegular polthedra which were investigated by Achimedes. Keplea showed how these figmes san be obtained), ahow whed thombus, solid hombodeds, doderahombus; Book IV, batinu, mots of pioms: Book V : valous ninds of peramids, and
 inemded bs the ambor in these wods: "In the sixth, the proposition of findides elesenth and twelfth books are clearly explained, mad so illatated, as renders them perfectly easy to be comprehended. without perplexing the mind to conceive lines as drawn through such and such points, as raised up and meeting together at such and such points above the plane, having only an imaginary esintence in the mind that conceives them; for the reader has here corh molid really formed, and is at the same time furnished with .un coulat vicw of the sections, justly made and laid open to his sipht: whertone by the peculia contrivance here made use of, thote is no longer any difliculty in perceising in the most clear and consincing manner . . ."; Book VII, the cone and the sevcral sections which result in an isosceles triangle, a circle, an (llipse. a parabolia, and a hyperbola. (See Figure 5 for the very nice derice here employed.)

Willimu Jones. "Mathematical Instument Maker, accidentally purhased the plates" of the Cowley appendix and published: An illustration and mensuration of Solid Geometry; in seiven books: containing forty-two moveable copper-plate schemes for forming the zarious kinds of solids, and their scctions; by which the dor trime of swlids in, general, and those in the eleventh, tuelfth, and fifternth books of E:uclid are elucidated, and rendered more rasy to lenmens timm b: ans arok hitherto published. By the late fohm Iader Cowles. The third cdition. London, 1787. In this whame, Jones dams to have revised, corrected, and augmented the (iwhley work, but the changes do not affect the models in it.

The the edtions of the consley Appendix indicate that it met a teal noct! of the time. Jones might have been writing a preface for a modern eduational work when he introduced the third edi-

 Ellipse as a Sectmo of a Kighe Circotat Cone
tion be saving, "Probably in no branch of the mathematics does the student ancet with mone embarassment than in the stady of the geometry of solids; for most of the authors who have treated thereon have adopted the usual method of copring the abstruse and perplexed lincar schemes of the ancients, which for the greater part are so inconsistenty delineated in perspective as to render it impossible. even to Faclid himself, to divine the bodies
intended to be represented by them. It was, undoubtedly, from a consideration of this kind, that Mr. Cowley was excited to any attempt of exhibiting the various kinds of solids treated of Euclid, and other geometricians, by moveable and folding paper schemes or figures, by which a person of the most slender capacity should at a small, or no expense of time have a clear and rational idea of the several solids, and thereby be able to investigate their prop. erties with more perspicuity and precision."

A note in "A secofd list of books and pamphlets in the Library of the Mathematical Association," I.ondon, 1929, states that ". . . F. C. M. Marie reproduced 24 of Cowley's figures, with 1835." 1835."

Before the appearance of the edition by William Jones, another author adopted the device of "stand-up" figures, and entitled his publication: A Royal Road to Geometry; or an easy and familiar introduction to the mathematics. By Thomas Mahton. Loondon, 1714. An fexcellent and complete article, by L. Leland Locke, on this book appeared in Scripta Mathematica for March, 1941. Mr. L.ocke calls it "A Book Old Enough to Be Considered New" and points out a number of respects in which it anticipates the sod. called "new" approaches in geometry of recent years.

The interest in Maton's work for the subject of models lies in its use of the scheme of Billingsley although on greatly improved lines (for "Malton is the author of a large treatise on perspective in which the same type of figure is utilized.") It is an improsement on Cowley, for we have here only the base of the fignee pasted to the page instead of a part of the figure. Hence "several pieces may he used which wonld overlap if they had to be cut from the page." Malton may have been influenced by Keil as well as by Lillingsley. In his preface, he refers to this author when be says, "Dr. Keil in his Preface to his Translation of Commandine and also Mr. Cumn seems to think it an umpadonable fauth in Tacyuet to omit the demonstrations of the 5th book. . . ."

No real study has been made of extamt matheratical models in wood and brass. In Early Science in Oxford Part II Mathematics (R. T. Gunther, Oxford University Press. Iondon, 1929, p: 36) the author lists the mathematical models at ()xford. This list in-
cludes the following: "Models for demonstrating Propositions in Euclid: Before 1697. Fonnerty in Savile collection, now missing [known ftom a manuscipt of 1697]"; "I'wo 4-inch Demonstration Spheres, bisected on the ediptic. c.l650. These wo small spheres of beechwood are all thai remains of the elaborate instrumental outit of the Savilian Plofessors which was kept in the Cista Mathematica [the great Mathematical Instrument Box of the University]"; "There Demonstration Soheres. ci1700 . . . Marked in ink to illustate propositions in spherical triangles. Two of the spheres are supported in turned wooden pedestal cups." (See Figute 6.)

Figute 0. From Uxipra Collection ot iodels. femmisston of Oxford I !niversity Press
1
Ihere we spheres in use today which resemble the last-named solich. There ate mail shated globes (sphenical blackboards) which rest in a standard of iron and which are to be used by the student in spherical geometry and trigonometry.

Ihis brief historical sketch may serve to show that the use of models as teaching aids in mathematics is mot new. The periodic reviral of any aids and projects seems to indicate that methods move in cyctes and this is no criticism of the individual methods.

Further lines in which mechanical aids appear are color, papercuting and folding, the Chinese puate, and, doubtless, others. The fust mathematies text to use color, and that consistently, was an Finglish publication entitled: The First Six Books of the Ele.

ments of I willil in which coloured diagrams and symbols are used instead of letter for the greater ease of leamers. By Oliver Byme. Smeyor of Ele Maje N'soctlememes in the Falkland Islands. . .

London, 1847. The-name of the printer, William Pickering, indicates that it was regarded as a work of importance, but no evidence can be addured to prove that it influenced later works. In color runs riot and it must be regarded as a freak presentation. the same time, it probably was the first work in print to suggestixat colored ohat or pencil can be really helpful in complicated geometric diagrams.

The line of treatment will be indicated by reference to the diagram for the Pythagenem Theorem (see Figure 7). The colors are emplosed as follows: In the right triangle, shorter side yellow,

* squate on it black; longer side blue, square red; hypotenuse red, square in two rectangles, to left blue to right yellow; continuous lines which cross aiangle black, dotted line red; angles at lower right vertex of triangle, clockwise, blue, black, yellow. Only four colors are used throughout and the color is solid. The proof proceeds by use of coloned diagrams. Here, in words to name the colors, blue angle equals yellow angle. To each add black angle and so forth.

The only books that approach this one are New Plane Geometry b Wehster Wells (Boston, lyox) and Neie Soliul Geometry (same author and date). The fommer rontains thee plates in which the sides of triangles are outlined in color; the latter contains two phates in which planes are shown in solid color. Plate V is for the proposition The zelumer of ans farallelepifered is equal to the poduct of its base and altitude.

It is not the intent of this brief survey to recommend any of these aids fon perent day we. An examination of the books them selves, as uppotumity presents itself, is recommended instead. There can be no more enjoyable and uplifting experience than to see at fins hand the wom white effon of at alent teathe lihe Mr. Coteley to make the subiect of mathematics a sital thing to his students. This is the ambition of a teacher worthy of his calling.

[^24]
THE CONSTRUCTION OF PLAITED CRYSTAL MODELS

Summary by Virgil S. Mallory

An interesting method of constructing models of various polyhedra is explained in a little book now long out of print. The unique method used will undoubtedly have sufficient interest for teachers of mathematics to justify the summary given here.

The title page describes the book as "A System for the Construction of Plaited Crystal Models on the Type of an Ordinary Plait; Exemplified by the Forms Belonging to the Six Axial Systems in Crystallography; by John Gorham, M.R.C.S. Eng., \&c., Tonbridge, Kent; E. and F. N. Spon, London, 1888; IV +28 with 56 Plates 24 pp. Adv."

The author states in the preface: "It is now some forty years since I had the honour of demonstrating before the Royal Society in London A System for the Construction of Crystal Models Projected on Plane Surfaces. These figures folded into the required form, and subsided into a level at pleasure-they were easily moulded into shape by bringing their edges into apposition with the fingers, and were as easily transferred from place to place when flattened in a portfolio-they constituted, in short, an extension of the plan used in modern mathematical treatises for extemporising models of the five regular or Platonic solids. . . . Each [of the six crystalline] systems consists of a skeleton model of three or four rods of wood, wire, or glass; these rods are called axes, round which the forms can be symmetrically built up. Upon these axes it is proposed, in the first place, to find the faces of the required model by direct measurement (or recourse may be had to Spherical Trigonometry, as the case may be), and in the next place, to build them up into a model by a process which it is be-

- lieved has not been hitherto attempted. It consists in taking an ordinary pl- if three or four rushes, defining its intersections in numerical ouver, and thus eliminating the type on which every
model is constuated. By strictly adhering to the type it was found morcover, that those solids which were confessedly irreg. thar antemost difficult to understand--those, for instance, belong. ing to the doubly oblique system--were made with the same facility as the cube itself. . . . On a careful examination of one of these crystals, its faces appeared to be arranged in narrow strips, which could be traced round the form in four different directions, and seemed to cut each other in their course as if they intersected. It became difficult not to realize the practicability of using strips of paper-wof crossing them just as these ones appeared to be crosed in a real erystal, and of intertwining them as in a plait. Four narrow strips of paper were taken accordngly, eac? being composed of similar shombs placed together at their opposite -dges. after crossing and recrossing repeatedly. a rough model of the form was evemtanlly obtained. . . . It hecame evident that the definite arrangement of the pats in a phat could be at once utilised by finding the mumerical order in which its intersections at elured. This formed a chae to the whole."

Since the pimitise forms belonging the six axial sytems in whallomaphy mas all be constructed fom that for the cube. the anthor cmphasim that fond though phates and descoiptions He wiven for other forms. including erystals showing cleavage, wiation and pramidal hollows in the faces, as in crystals of bismuh and of potassinm bomide and iodide.

The cut ip. Usix, hows the hein plats used in fomming the model of a whe. The numbers show the order of plaiting, the face numbered 1 cominaz modn that mathed 1 , etce. Faces mated * are "1. ine whilin w the model, white those marked 0 are base phanes. Dottel linw indicate folding. The resulting whe has each face compenced of four isonecles heght timeles.

Modifontions wholuce other interesting form in crystallog. raphe ate pouluced by effecting changes in the anges of the
 when it is as. a permmid of four lateral faces is mised on each
 . $1^{\prime} 1 t^{\prime \prime}$. the whatime model is that of the rhmabic dodecahedron like s.mate ust.als.

In fromine the model of a rhombic dodecohedon, the plats
shown in the figure the ate modified by replacing each square by a thombus, the shorter diagonal being parallel to the dotted (folded) lines. If the faces are now numbered in the same way, the pattern will plait into a firm model.

In a similar manner the author shows the modifications to the rubic mudel neressmy to produce the other five axial systems. In wery (ase the type of axes tells (1) the form and angles of the fures and ((2) the method of locating the sides. From the cubic phits the mode of adjusting the faces to form a plaited model is obtained.

A high whom mathematios (luh will find the comsturtion of Hese phated osstalline forms an interesting and instuctive projedt pationtan it the whbumetion of the forms is acompanied be an dememben shaty of assal axial sesiems.

COLOR IN GEOMEIRY

L. Leland Locke .

(Ne of ane first books on plane geometry to ase colors in identifying parts of the Euclidean figures was The I irst Six Books of the Eleme'nts of Euclid in Which Coloured Diagrams and Symbols Are Used Instead of Letters for the Greater Ease of Learners, by Oliver By'me, London $18 \not 17$.

The extracts from the Introduction which follow may serve to illustrate the principles set forth by Byrne in his book.
"The plan here adopted forcibly appeals to the eye, the most sensitive and the most comprehensive of our external organs, and its pre-eminence to imprint it subject on the mind is supported by the incontrovertible maxim expressed in the well known words (of Horace:

A fecbler impress through the car is made, 'Ihan what is by the faithful eye conveyed."
"Whe letters ammed to points, lines, or other parts of a diagram ate in fact but arbitrary names, and represent them in the demonstation; instead of these, the parts being differently coloured, are made to mame themselves, for their forms in corre sponding colours represent them in the demonstration."
*In onal demonstations we gain with colous this important advantage, the eve and the ear can be addressed at the same mo. ment. so that for ecaching geometry, and other linear arts and sciences, in chasses, the system is the best ever proposed. Besides the superior simplicity, this system is likewise conspicuous for concentration, and wholly excludes the injurious though prevalent practice of allowing the student to commit the demonstration to memory: motil reason, and fact, and pronf only make impressions on the understanding. Again, if we mention the colour of the pats refened to, as in sating, the red angle, the blue line, or lines, the part or parts thas named will be immediately seen by all the

$*$

(1) 1
(los at the sume instant, not wit we s.ay time .male ABC, the triangle Ple (he tiga a le fik, and so on for the letters must be nued one be one before the utuderits andmed in the ir minds the
 and eltor an well as hoss of time.

Sounds which address the car are lost and die In one short hour, but these which strike the eve Live long upon the mind, the faithlul sight Engraves the knowledge with a beam of light."

Figure 1 is an illustration of a typical page showing the proof of a theorem of plane geometry. In the thiangle shown, the right side and its opposite angle are red; the base and the vertical angle are black; and the exterior angle is shown in yellow. The contrast of these colons is partly emphasied by the reproduced page shown in the figure.

The demonstration reads:
"The red angle plus the yellow angle equals two right angles.
But the vellow angle is greater than the blue angle (pr. 16)
Theefore the red angle plus the blue angle is less than two.. light angles.
Q.E.D."

- Note that Byme omits the customary paticularization of the theorem in the form "Giten" and "To prose."

Both Mr. Monis Cohen of the mathematics department of the Boys Technical High School, Brooklyn, New York, and the writer have found that a class in plane geometry will welcome with zest

1gnte:
an occasional exomsion into eolor, ming oblored halk on the blackbond and obomed pene ils on paper. Mr. Cohen has devised a valiant of the pan ton pintio. punposes wata the expense of enlosed plate. Fon the form of Figute 3 , the designations of
lines and angles might be black, white, dotted, dashed, dot-dash, double dot-dash, or other variations. Figure 3 shows a simplified form, adapted to blackboard and paper use.

Figure 3
The Byrne volume is not only a beautiful addition to the anti, quarian's collection, but it has some pedagogical value. A recent book, "Introduction to Geometry," by A. W. Siddons and K. S. - Sncll, Cambridge University Press, 1939, contains on one of its pages four figures for proofs of the Pethagorean Theorem in color, another figure for parallel lines, and two others on congruent triangles. So the basic pedagogy of Byane, with its combined appeal to the ear and ese, may, under present-day printing methods, soon be used to a greater extent in our plane geometry texts.

1

AN EARLY WORK ON MECHANICAL DEViCES FOR DRAWING THE CONIC SECTIONS

Phillip S. Jones

Althoug mechanical devices for drawing curves date back at least to Nicomedes (270 13.C.), who used one such for drawing the conchoid which he designed to trisect angles, ${ }^{1}$ and although devices for drawing conic sections were first heard of not later than Proclus (d.D. 410-485), who discussed an ellipsograph, ${ }^{2}$ nevertheless the book De Organica Conicarum Segtionum in Plano Descriptione Tractatus (A Treatise on Devices for Drawing the Conic Sections) by Franciscus van Schooten, printed at the Elevevir Press in Leyden, Holland, in 1646, is of much interest both in itself and in relation to the history of mathematics and of mechanical devices in particular. (See Figure 1.)

The first chapter is of some historical importance because of its description c, a mechanical device for drawing a straight line by means of a link and a triangular ruler. The existence of this earlier work is little knownand, as a result, A. Peaucellier is usually given the credit of being the first to construct a straight-line linkage with his inversor of 1864. In van Schooten's device shown in Figure 2, $A B=B C=B D$, with the result that as vertex D of the rigid triangle $B C D$ slid along line $A E$ the other vertex, C, of the thangle would trace the dotted line. For proof tan Schooten shows that angle $C A D==1 / 2$ angle CBD). He notes that if (CBD) is a straight line, ($A \perp$ to $A E$. Peaucellier's device, differing from this, is a trme linkage with no sliding parts and does not involer a previously given straight line.

This book is of further interest because it treats all the conic sections in a umified fashion, lists a varicty of mechanical devices for describing each, and gives several different solutions to many of the construction problems that it sets up. For instance, in Chapter VIII the problem of constructing an ellipse, given the

[^25]
FRANCISCI i SCHOOTEN

L EYDENS1S,

ORGANICA CONICARUM SECTIONLIM

 IN PLANO DESCRIPTIONE, TRACTATUS. GEOMETRIS,OPTICIS;Paxferti.n verò
GNOMONICIS\& MECHANICIS

UTILIS.
Cui fubnexa eft Appendix, de Cubicarum
Eqquationurn rciolutione.

Lved. Batavor. Ex Officinâ Elzeviriorum. A clo locexvi. Figure 1
for: and veltios, is theated. One solution given for this problem is the familin pin and stimg consmm tion which is based on the fine that the sum of the foral radii is comstat. In the following

Figure 2
chapter the same problem for the hyperbola is treated by a similar serics of devices, one of which, as shown in Figute 3, is a pin, ruler. and string constraction (the string is lastened at N and C) based on the fas: that for an haperbola the difference of the foral radia is constamt. I second solution th this poblem for the cllipse was obtained be wing the four bar linkege show in Figure 4 . After

1: はiは 8

| ..:i: ;

discussing this solution, yan Schooten added a scholium showing how this same linkage could be used to detemme the tangent $N E$.

Other problems solved mechanically are these: to construct an ellipse given the axes, given any pair of conjugate diameters, given

Fs,

lygut 7
a latus rectum and the transverse axis; to construct an hyperbola given its axes, given any pair of conjugate diameters, given a lasus rectum and transverse axis, or given a point and the asymp. totes; to draw a parabola, given the axis, vertex, and latus rectum, or given the focus and vertex. Several theorems on the areas of parabolic segments are included at the end.

Figures 5, 6, 7 show what is essentially the same apparatus used to describe in tum an ellipse, an hyperbola, and a parabola, further stressing the family relationship. An additional construction for a parabola is shown iar ligure 8 .

Figute 8

This book was one of the earliest by an author whose works and references span one of the most interesting periods in the history of mathematics. His father, Frans van Schooten, also a mathe: matician, in 1527 published one of the earliest trigonometric tables. The sources cited by van Schooten in this work are chiefly Euclid and Appolonius, with a few references to that forerumner of the calculus, the Methor of Indivisibles of Casalieri. The treatment of the problems in this hook is non-analytic; never-' theless, /an Schooten shows, through references in the introduction, familiarity-with the works of Descartes, Fermat, and Roberval, contemporaries who were working; with the concepts which were soon to lead to the analytic geometry and calculus. That van Schooten was also familiar with analytic methods is evidenced by his Latun translation (1649) of Descartes' La Geometrie with the notes of Florimond de Beaune. The rapid spead of the method of Descartes is in large part due to this translation into the universal language of scholarship of the day and the added explanations accompanying the translation of the sometimes obscure original text. Van Schooten himself applied analytic geometry to the solution of many problems in his chief work Exercitationes Mathematicae (1657$)^{3}$. He also published a paper by Christian Huygens on probability and in the secord edition of the Descartes Geometria papers by John Hudde on the solution of equations and maxima and minima. Van Schooten recommended the use of coordinates in three dimensional space and published treatises on perspective, plane trigonometry, and surveving. ${ }^{4}$

A final look at the title page, shown in Fisure 1. of the work under discussion here reveals a few itemb of imenem. Vin Schooten advertises the conic sections as of use in geometry, optics, gnomonics (the theory of the sun dial). and mechanics. These claims he amplifies somewhat in his preface. telling of the reflecting or focal properties of the conics as studied in optics and of their use in the architecture of vaulted roofs and bridges. The appendix on the solution of the cubic equation is missing from the copy in the author's posscssion. The printer's device is one of several used by the Flowiss. Finally. it may be of interest to note that in the date are used the carlier form of Roman numerals with (I) for 1000 and I) for 500,

1. Hrami. I. I.. A Manual of Greek Mathematics. Oxford, 1931. p. 150.
2. Dyck. Watmar. Katalog Mathematischer und Mathemalich-Physikalischer.
 p. 58. See also p. 68 for a discussion of De Organaca.
3. Cajoki. 1. History of Mathematics. Macmillan Co., New York, 1919, p. 180.
4. Biblintheca Chemico Mathematica. Ienry Sotheran and Co., 1921. Vol. I, p. 32: 「ul. II, p. 337.

$?$

GEOMEIRY WHTH AN OPAQUE PROJECTOR

J. IV. Colliton

For more than ten years I have been using an opaque projector in the teaching of m y classes in plane geometry. The two classes, numbering thirty-five to forty each, are composed of students who have shown above-average ability in their clementary algebra. Their reactions to the use of the projector show how valuable other teachers may find this means of instruction.

This is the plan. I have drawn on $7^{\prime \prime} \times 10^{\prime \prime}$ cards the figures for the textbook theorems and originats that I expect the class to study. These are thrown on a screen, at the fromt of a slightly darkened room, by means of an opaque projector. This practice saves the time required in having students draw the figures on the board and also permits a study of many ligures and originals not found in the textbook in use.

On some cards the theorem is stated, and the students are asked to apply the hypothesis and conclusion to the lettered figure shown on the screen and then find way to prove the theorem. In some cases, various members of the class will find several different meth. ods of proof for one figure. On oher cards the applied hypothesis

Figure 1
280

Given．$\triangle A B C D, B E=D F$ ． －
Prove AECF is a \square ．
If $A E C F$ is $a \square \operatorname{and} B E=D F$ is $A B C D a \square$ frure？

 Lif bevectorg ísil Licuat

rigute 4
 Frove EFGIt is a 0
Supose E．F $\frac{y}{3}$ i are mapoints of $\because D C \cap B \Rightarrow O A$ rexaxtucty？

Figure of

Figure 8

－Given．$O A B C D$ ．＂IGE．F．G．It the mutpoints of $A B . B C, C D=0.4 \mathrm{~m}: \mathrm{p}$ Prove：$A K C L$＇s＂C it

Figure 3

frover nciol a a d
Figute 5

 kume

$$
\begin{aligned}
& \text { - '以 Lflis a }
\end{aligned}
$$

Figure 9

Figure 10

frove torser
ligute 1!
and conclusion are given; on still others only the hypothesis is given, and the class is asked to discover what conclusions, if any, can be drawn and proved. On some cards the figure is given, together with several different hypotheses and conclusions (Fig. 1) which may or may not be provable with the information that the class possesses at that point in its study of geometry.

Many igures may be used to give the class experience in the use of a theorem or a group of theorems. For instance, I have over forty cards with figures requiring the proof that a certain quadrilateral is a parallelogram, a rectangle, a rhombus, or a square. Some of these are shown in Figures 2 to 10. Others use the properties of these figures to prove lines equal or unequal (Fig. 11).

The simpler ideas of solid geometry can be easily introduced at appropriate times (Figs. 12 and 13).

Figure 14 shows how several numerical examples can be made from the same figure. In triangle $A B C,(D)$ bisects angle C. The

Figure 12

Fgue 13
card is cut along the lines $X Y$ and holes are cut through it where the squares are shown. On another card shown in the lower figure, numbers aze placed so that some show through the holes when

 wh phll add th the lett.

Fisure 11
this and is stipped behind the upper card and through the slits X B . When the mombers for the woo blank squates are found, the . Wwer cand is pulled slightly to the right so that a new set of numbets appeas at some of the holes: the values are computed for

Simikn conds com be constanted for various figures showing the othombhip of angles and ans in circles; products of lines from a point and imteroting a circle; the right triangle with ahtume doma to the hapotemse. and the relationship of the a a en lime semolns in it; hemen for areas of plane figures, and mans whens The mombers imole shomid be relatively small but the whle med mon he whice mambers. Famples tequiring the we on :mze mumber, and wonded computaion should be gisen ond tom on of lime wonk.
 be fowed ln wime om of a momber of figures, many an be in-

Figure 15

Figure 17

Figure 16

Figure 18
vestigated by a class if the figures are on cards which have only to be plated in the projector. I have abont twenty different fire, ures from which this theorem can be proved, but I do not use all of thein every year. The number used depends on the irierest the class shows in investigating the various proofs. See ligures 15 to 17.

When time permits, one can go a litule beyond the usual theorems fround in the texthook and bring to the attention of the class the Vine Point Circle, the Theotem of Pappus, Ceva's Theorem, Menelan's Theotem, and others. See Figures 18 to 29.

Figure 19

ryunc:

$$
\begin{aligned}
& \text { 1-... } i j \\
& \text {. } 1, \ldots . \text { - }^{\prime \prime} \\
& \text { 1: - } \\
& i=1
\end{aligned}
$$

Figure 2.3

figure 20

Fgace ai

Fhure 24

Constructions.ate sudied by placing a large number of figures before the class with all constution lines shown (Fig. 23) and having the class discuss the phan for the construction by a study of the figure. In some cascs the same figute is shown constructed by various methods on differem catds. Algebra and geometiy are related by such figures as $24-27$.

Figure 25

Inemas

Shill 1 the use of the tools of constatution camme be qained in this was, but the ideds here gatned om be applied to other conWhetions which the students should be requited to do out of - las. I hane who hate skill in construction or who have origimal

Finue

Weas are ducomedged to make denigns on cards suitable for projection. some pryilmate designs are sho min Figures 28 to 32. some pupila who their dexifins and some make tile or linolemm pattents.

1:1416:

-ight 24
*

He hivam of mathemanis in homeht io the attention of the

 wad a י y

 ! 1 ! 1 ons.

Some theorms, hutcrot, ne not sutable for this projection methor of peremention. When comsiderable manipulation of coputions is moconds. we sometimes sit up the repuired equations on the bhabonad and then complete the poot without

 step. Howser, , ince the bam is pralially dationed, there is not

1gute 3:

TFACHIN(, of M.dTHENATICS

Kiate Bell
Some marir in the visualiation of any poblem is necessary if the : areage student is w, understand the subject presemted. Tewehers
 ships, but they have not paid sufficient attention to pieturing the applications of mathematics in life situations and thus furnishing the link between abstract principles and their function in the enviromment of the student. Δ small percentage of brilliant students in mathematics classes really minoy theory undonned; but the majority, who are to be the womers of the wotd, ank with insistence, "What use is it:" They hase to be answered, if public education is to reach its goals. liven the slowest students experience some ghamer of understanding when they soe pictured the ways in which foresters, aviators, salhote, weather hateran observers, suncoors, and aniom, use piniples henmed hathe. matics.

Motion pictucs and slides ane ideal medi, for illustrating in a rivid :molerstandabe way the practial applications of mathematics. Motion piutates have their mission in picturing any situation which imvolses the element of contimous change. For example, locus situations in geometry fumish a tich field. In these cases nothing can demonstrate the idea as vividlyas a picture in which the points mowe. Many students who have failed to get the slightest conceprion of locus, because they have not enough abt stract imagination wse the points move on the fiomeroyed journevs or berame teathers have failed to all to thede ateftion the multitudinous and intensely interesting practical aphications of the principhes se forth in locus problems, have enthasiastically understood after secing a good expository motion picture.

On the othe hamb, when combutus motion is not an essential factor. metrial provided in the shoulrom itself. in the commu-
nity, and in the immediate tegion will function better than any. thing else can in helping pupils to realize the connection between abstate principles and the wond anomd them. Visual aids of the nill bariety--models, pictures, pupil-drawn diagrans, and'slides - hate an impontant place in the effective teaching of mathematics.

Sets of slides may be developed as a cooperative project in mathemotios denses. Thintelive millimeter stides are derimable bemase the expense is small. student, often hate cametas stitable for this bonk, of the sthon may have one as pat of its equipment.
The theaper cameras produce some excellent results when pictures can be taken at the poper ranges, but for close up copy work more expensive equipment is necessaty.

It is desitable to have a projector of sufficient strength to permit howing pictmes in a room only partially darkened. This can be done with a golewatt pojector if the soreen is set with its bouk to the sonace of the strongest light. A projector designed for harger slides efta be med be haiding a slide holder masked in suth a way as th thow the 35 mon. stide in paper position for projection.

Ihe wo grestions which ahwas anse ane. "Inow is it done?" and "What doce it coste" The tiost an be answered casily. The reond depents on the w.u. and pirce hase incoconed. Slides mas be make in black and white or in color. The finst step in making a slide in black and white is to take a pieture on a 3.5 mm .
 the s.mie proces as then used in the contact piming of pictures. This pasitise in put in a man and hamd between wes thin piecos of alas. Am matube of copies on be mate fown the one nega.

Windex or a similar solution may be used to clean the glass on which the film is to be mounted

Negatives should be kept in glazed paper envelopes and, if positives are not immediately bound in slides, they too should be stored in these envelopes. Positive film is very sensitive and more than usual care is necessary when printing it. Ked light must not be used. Fxposure to print a positipe must be very brief, much shorter that that needed to print pictures, and contact between the positive and negative with emulsion surfaces together must be perfect. Panatomic-X is a good film for black and white work. Many recommend a high contrast film for copy work. If a printing box is used, the light must be weak. Cheap printing frames are entircly adequate. The binding of slides can be done by hand, but a binding machine is a great help. One could cut mats for the sides, but it would be tedions. Because the mats and glass can be re-used when the slides are discarded the expense is slight after the original supply is procured

Making color slides is a much simpler matter. Kodachrome-A can be used for indoor photo flood pictures and with the proper filter will also do for outdoor pictures, making it possible to shift from one type of work to the oher on the same roll of film. One can often take nineteen or twenty exposures on a roll instad of the guaranteed eighteen. These are put in "Ready Mounts" at the processing station. This work is part of the original price of the film. Color slides can be used in this form, but it is better protection to take off the "eReady Mounts" and use glass.

Copy work an be done in both color and black and white. Pictues may be copied from diagrams, photomaphs, pictures from magaines, and esen from newspapers. The last ate not as good, of course, because of the imperfections in the newspuper. For such work, auxiliary lenses must be usde and carcful measurements made. Facellent tables for measurements and settings are furnithed with the lenses. A good puality of camera must be used and great ane must be exocised in following directions for set: tinys and distance.

For dowe up wok a wpind sand should be andmged and

calibated, copy work will go rapidly and be correct all the time. A homemade ropsing stand is adequate. The Fastman Kodak Compuny publishes two helpful booklets, "Copying" and "Slides -nd Transparencies," which can be secured tor esed each. If some r make of camera is used, its manufacturers will furnish yon atmal information if you request it.
Here are some subjects which have been made into a series of slides:
(a) The work of the United States Weather Bureau, with enphasis on the uses of measurement and of right triangle trigonometr $\%$.
(b) The work of the United States Forest Service in locating forest fires and in fighting them.
(c) Geometric design as shown in various forms of art: Indian "basketry and beadwork, textile work, ornamental windows, etc.
(d) Geometric forms illustrated by structures of local interest and importance: bridges, huildings, dams, etc.
(c) The history of the development of the airplane, to be used. in the new preflight acronautics courses. (Copy work in color.)
(f) The history of mathematics, compiled by copying pictures or having original drawings made by students.
(g) Methods of triangulation and the markers used in surveying. (Copies of U. S. Comast and Geodetic Survey pictures and of student diagrams.)
(h) Appliation of geometry to problems arising in the construction of tie Coulce Dam. I
One great adrantage in the use of slides is the amount of stu-dent-participation possible. Students an help make the slides, armane them, run the projector, and assist in giving the explanations, and those who are proficient in mechanical drawing and kettering can prepare phates showing diagrams, formulas, and records. of which photographic copies can be mide in 35 mm . size. Slides can be prepared foom these and interspersed in the proper places in a series of pictures to make clear the applications of mathematios used. Many students know far more about the actual photographic work than does the teacher, and have access to su-
Use of Slides. 293
perior equipment. They an help plan series of slides and do the photographic work.

Any teacher can build a reserve of slide material. Students will contribute a great deal, but the teacher should participate; just secure the minimam equipment, read the manuals, question friendly "p"entography fiends," and experiment. To make early trials more profitable, a record of the range, focus, and exposure for each film should be kept so that the work can be criticized and improwed. Nothing surpasses experience guided by reading and advice from those wiser in the art than the experimenter:

$\Gamma>$

INEXPENSIVE HOMEMADE SLIDES FOR DAYLIGHT PROJECTION

frieda S. Harrell

"Sheligg" Percentage Problems
If A coar is reduced from $\$ 48$ to $\$ 32$, what is the rate of discount? Time after time the pupil's answer, $662 / 3 \%$, had to be marked wrony. Why couldn't pupils be made to "see" a percentage problem? In desperation the problem was "drawn" on the board as follows:

Fgute 1
At finst this visualization was used only for tricky problems, but later it became more and more useful for the initiation of the percentage concept. Fventually simple slides were tried. An India ink reatangle was projected directly on th the hoard. Sections of it were cut off in chalk to illustrate per cents. A fourth of it was "-゙": thece fifths of it was 60%. A rectangle divided into ten equal sections was found to save time. I ater an eight-section diagram wis uned to earh per cents equal to fourths and eighths. A sixwertion figure was used to show per cents equal to thirds and sixths. Pupils had then leanned the cqual parts of 100 . They vied

Figure 2
with one another in "drawing" the per cents we talked about on the three basic slides shown in Figure 2 .

, Slides Are Easy to Make

A slide-making program can be started with a small package of cellophane. Cut the cellophane into $31 / 1^{\prime \prime} \times 4^{\prime \prime}$ slide mats on which to draw the diagrams with lndia ink. ${ }^{1}$ Graph paper, used as guide lines under the cellophane mat, facilitates drawing and also printing in straight lines. Next, cut some frames with half-inch borders to fit the mats. lamdry cardboards are good for this purpose; oaktag is too thin. Glue the mat between two frames, press the slide under a heavy weight until the glue sets, and try it out. It maye projected in davlight diectly on to the beard. If the slide proves useful, it can be strengthened with a binding of one-inch glued brown paper available at five and-ten-cent stores. Figure 3 illustrates simple but complete labeling for rapid selection. The operator's thumbmark at the lefthand side can be easily made with a woindown pencil enaser and a stamp pad.

If a slide proses to be of permanemt value, it can be enclosed between two coner glases and bound. ${ }^{2}$ This binding is narrow and allows exta space for content. I slide holder with an espe-

[^26]cially lange aperture is good. Ftched glass can be used for pencil drawings, but it is expensive and masuccessful for daylight projection. All glass slides require separately applied labels.

riguse $\$$
If studemes ate making slides and the cost of cover glass is an impentant consideration, a douen glasses can be hinged together in pairs with binding along one side only. Two or thee operators, wonking together, can slip the mats between the pairs of cover glass, project the slides, and take the mats from between the glasses before they are needed again. The mats to be projected fon each teport cam be numbered in the order of projection and submited w the operators. The eperators can be placed one on a wh side of the pojector authone or two behind it. The projector an be focused before fre speakers begin. The projection lamp (.m then be extinguidere at the oond switch and the first six mats (.14 be placed between the pairs of cover glass. Two sides can be placed in tio projector before the first speaker begins and the thite operator can pass the succeding ones in mumerical order to the two side operators. The reporter, when he is ready, can say, ".iext slide phene." lo sigmal a pase in projection, he can say, "Thank yon," and the projection lamp an be swithed off until
the next slide is called for. If projection is to be very rapid, the fourth operator can remove projected mats so that he same few pairs of cover glass can be used again. Students quickly learn this operating procedure.

For beghmers or for yom, pupils, slides with cardboard frames anay give less trouble. For them, it is wise to cut the cellophane mats larger than $31 / 4^{\prime \prime} \times 4^{\prime \prime}$. Pupils can then fasten these larger pieces to book pages, drawings, maps, and so on, with smali paper clips. If they fai to center the drawing exactly on the cellophane, the slide can be centered when it is framed. The edges can be cut off after the glue sets and before the slide is bound. For temporary purposes binding is untom assary.
A newer slide material is hmarith, clear or translacent. The diagram is drawn on this celluloid-like base, which can be used without cover. For permanent promection, the slide can be covered with another piece of char lamailla and bound with $1 / 2=1$ Scotch tape. Being thin, these slides are easy to operate quickly. They are mbreakable and scratches which develop with use do not show durirg projection.

More elaborate colored pictures can be made on translucent lumarith or on etched glass to be shown in a dark room, but the advantages of daylight poojection cannot be werestimated. Colored India inks or slide inks can be used for small surfaces on cellophane or for larger surfaces on clear lumarith. These will show in daylight, even on the boatd. All colors used must be transparent. Slides made from cutpaper silhouettes are very effective. especially for anditominm prodams. Finclose them berween lumarith cosers washed wih colated wide inks. Swemb thicknesser of colored cellophane (all atow be wed.

Slides ate superor to mimerghphed material becomse the stadents attemion can be come entated on one paticular problem or parastaph at a time. Win 11 one small area in the rowm is

 plicated demomatation diatams (.10 be hawn to scale and then
taced on slides. Constructions can be conpleted in chalk after the diagram is projected on to the board. Board space can be saved where many classes or many subjects must be taught in the same room. Almost any teaching material worth preserving for successive sections of students or for successive years of teaching justifies the work of putting it on slides.

Contrent Material for Students' Slides

Presentation of informational material by students can be motivated if slides are used. The reporter can print or type his outline on a slide. Unusual or new words can be listed on another slide. Both slides can be left in the slide holder and shown several times during the report. The visual stimulus then supplements the auditory one without the need of the reporter's writing. on the board. Simple illustrations, graphs, maps, or cartoons can be drawn or taaced on cellophane. Tracing papet can be used first when material is being copied from valuable books. For this work teacher and students can collect and preserve slide-size material from magazines and newspapers. Students will make these simple black and white diagrams by the dozen; the difficult task is to encourage then to nake fewer but better ones. Small irregularities ram be erased with dampened cotton twisted over a stick pointed in the pencil sharpener. However, even a rough illustration frequemely dives home a point. A student who has little artistic abilits need not be held to a standard tor :high for him. Anditorium lides, since magnification is high, must be carefully made. These slides rately fail to supply the inarticulate student with plenty to asy. Historical topics take on new interest if the reporter uses himdmade slides. He can make simple pictures of Greek, Hindu, w (hinese mumerals. He can show clocks for a report on the history of time. He can explain Roman addition, adding chalked an-
 be namsommed into a magic square or circle if the i.svestigator ald, dhathed numbers. Any slide which can be completed quickly in chalk is pupular with the audience. Mathematical riddles mean mone if the audionce com study them from a slide. Mathematical wicksand puldes can often be explaned more easily from shides than bo other means.

Sthmes for Driha Work

Slides are particularly useful for drill work, for summaries, or for short, rapid reviews of facts. For example, lines, angles, trinngles, flat figures, and parts of circles can be quickly illustrated, each on a separate slide and each in several positions. The students can number their papers, and as each slide is projected and its namber called, they can name the figure beside its number on their papers. The slides can then be reprojecied in the original order as the stadents correct and discass their errors in recognition and-spelling.

Slider com supplant such taditional mimeographed, testing materiat as the false or completion exercises.

Projfectid Graph "Paper"

Projected graph "paper" has several advantaçes over the familiar squares painted on one section of the blackboard. Board space is released lon other work when graphs are not in use. Several types and sises of square can be employed in the same lesson. Widely differing talues of a variable con be shown in the same amount of pate. Bight vellow chalk on pojected black squares is mote wedily visibte than any other color of chalk on painted squares. The vider an be made wer graph paper by hand. With a fine pen. the haniontal lis. sam be dawn on one side of the cellophome am the vertial lines on the othe. This method allows
 jution

When a unit must he taught year after year, time can be saved by developing it completely on permanent slides. It can be kept up-w-date by the addition of a few slides each year. The topic on percentage, mentioned at the beginning of this article; was so treated.

After practice on the three basic slides, ke semed advisable to we the diagam for ahost all problems. It twas particularly useful whow distinctions like 25% of a number, 25% more $t / 20$
 lems were teped or printed in India ink on the same slide as the appropriats sectioned diagram, as shown in Figure 4.

 to leate a line representiag P, sid ont of 515,10 games out of
 problems cond be manded immediately fom the diagram. Sample diggrams and solutions lollow:
fohn tancel his flock of pigeons with lis bird. Now he has

$$
\begin{aligned}
P & =3 R \\
& =0 \times i!4 \\
& \therefore \text { ce pigeons }
\end{aligned}
$$

1.......

 differen wis.

 wa: incol al

$$
\begin{aligned}
& R= \frac{P}{B} \\
&= \frac{19}{20} \sqrt{1905} \\
& 180 \\
&= 95 \% \\
& 100 \\
& 1 . \text { in. }
\end{aligned}
$$

Prick I me for Simp: Making Materials

Cur glass

Binding

Cellophane vide mats
Plain ready cut cellophane with gabon \$l.i5 per 100
"Radio" mats (cellophane mat folded inside carson anal m..rhced)
I.umath slide mats. the held and mashed $\$$ sigil per 100

Sheets of humuith

```
2(1)}\times161,\mp@code{M
    @:a .. $ we:uh
    Im?m:
    $ si each
```

```Homemade Slides303
```

$20 \cdots 5$
clear $\$ 2.00$ each
Fitched ... $\$ 2.50$ each
$25 " \times 40$
Clear only: $010^{\prime \prime}$ thickness.

```Orders of 200 sheets or more are accepted by the Cel-luloid Corporation, 290 Ferry St., Newark, N. J., at \(\$ .442\)per shect. (Add \(25 \%\) to this price for smaller quantities.Orders amominting to less than \(\$ 10\) not accepted.)
\begin{tabular}{|c|c|}
\hline Separate slide, masks & \$1.00 per 100 \\
\hline Slide ctasons & \$ . 90 for 7 colors \\
\hline Slide inks & \$2.25 for 7 colors \\
\hline Slide ink solvent & \$ 30 per can \\
\hline
\end{tabular}
```

Ordinary colored witing inks ot India inks may also be used if they are transparent.

A LANTERN-SLIDE PROJECTOR AS A CONSTRUCTION PROJECT

Gordon MacLeod Taylor

The average classroom teacher has no time to go to distant parts of the school building to obtain equipment. For that reason, unless a slide projector is grovided for each classroom, ready for use whenever it is needed α is the pencil sharpener, the chances are that very little use weill be made of slides as a teaching aid.

lymul lha luajector
(H) $\begin{gathered}\text { onsly } \\ \text { the cont of the lanterns precludes the possibility of }\end{gathered}$ whaining a barge mumber of machines. If. on the other hand, a remonable sutivatomy desiow could he produced at a nominal wat, there wonld be litter need ton any teather to be deprived of will a moo!.

Io mee these matremers, this antile describes a projector ase Heme ha wath sim berlits be built ha amion or senior
 a :hace wedil: whamate in an commmity, while the design ha betn simplified in ofler to asod compliated measurements

easily justify the expenditue of the less than five dollars which will provide all newded materials．

This projecton lantem will givacasomably satistactory results －in a semidak romm．In a totally diak place the pietures will be surprisingly cleat and brilliant．The machine is planned to be used with cither opague or translusent bereens and，by the sub－ stitution of suitable atachments，varous types of films as well as slides can be shown．The design is such that no extra carrying case is needed when the machinc is not in use，as ihe lens mount can be pushed in far enough to close the operating openings in the sides of the body and leave the form chamber awalable for the storage of slides and attachomens．

Materials

Aphrex．Cost

1 picere：＂white pine． $10^{\prime \prime} \times{ }^{\circ}$＂ 104
$50!$ ！＂bads 104^{2} a gross
50 ！＂beats ： $10 \xi^{\circ}$ a gross

$\because ?^{\prime \prime} \neq 8$ iound head hlued setews 1 \＆

1 that bace ketces portelain moket 10 c
 Ger leagh you need） 406

 trubls？

7 ：ns
Yardかんh made：

Pensil
Cromen＇•・ル
Ripuaw

Coping saw frame and blade
Brace and $3 / 8^{\prime \prime}$ bit 1
Expansion bit, $7 / 8^{\prime \prime}$ to $9^{\prime \prime}$ (Note: If the lens to be used is over $31 / 4^{\prime \prime}$ in diame. ter, this bit will not be needed, as the hole in the lens holder board will have to be cut with the coping saw.)
Hand drill
$1 / 8^{\prime \prime}$ Twist drill (Note: An 8 d. nail with the head cut off will serve as such a drill, and if no hand drill is available, may be used in the brace.)
Plane
Hammer
Screw driver
Penknife
$1 / 8^{\prime \prime}$ Sheet metal punch or 8 d . nail cut off flat
Can opener
Tin snips
\# $1 / 2$ Medium sandpaper
1" Paint brush
Black enamel
Liquid glue

Preparation of the Parts

Step 1. From 3/8" plywood, 'cut the following pieces:
1 piece $331 / 4^{\prime \prime} \times 10^{\prime \prime} \quad$ Base of Machine
2 " $91 / 4^{\prime \prime} \times 81 / 2^{\prime \prime}$ Lamphouse Ends
1 " $85 / 8$ " x $77 / 8^{\prime \prime}$ Lens Holder Board

Figure 2. Parts to Bc Cut from $3 / \mathrm{g}^{\prime \prime}$ Plywood
ligure 2 sugfests a layout which will allow all pieces to be cat from the smallest standard-size panel. Use the crosscut saw and

start by making "Cut A ." Instead of matking out the whole board, measure and mark the line for each cut after you have made the previous cut. When sawing, keep the saw blade on the outside of the line so that the saw cut will not take away from the size of the piece you are preparing.

Step 2. Mark off one of the Lamphouse Finds as shown in Figure 3. I'se a 3 ? $x^{\prime \prime}$ bit in the brace to drill a hole as shown. Insert

the coping saw blade through this hole and attach it to its frame. Saw out the $31 / 4^{\prime \prime} \times 4^{\prime \prime}$ hole as marked out. This piece with the hole in its center will be the Front Iamphouse Fnd.
Step 3. Draw diagonal lines from comer to comer of the I ens Holder Board. Adjust the expansion bit to drill a hole 1 '" smaller in diameter than the diameter of the lens you are going to use in your projector. I.ay the plywod upon a piece of scrap lumber an inch or more thick. Placing the point of the bit on the spot where the diagonal lines cross, drill completely through the plywood. As the center of the bit will gothrough before the extension cutter, it will be necessary to hold the plyword to the scrap lumber at all times in order th have the large hole cut clean.

1 piece	$33^{\prime \prime} \times 193$	Fop of Machine
$\because \quad$ -	$17^{\prime \prime} \times 7!4$	I mophouse Sides
\because		funus (hamber Sides
\because		Iens Monnt Sides
\because	人: $x^{\prime \prime}$ x $q^{\prime \prime}$	I.cos Mormt Top and binten
1	$8^{\prime \prime} \times 1+1$	Slide Iholder liack
\because	12" ${ }_{4}$	Slide llolder latches

Figure 7. Detail of Right Iamphonse Side
Step 8. From $3 / 4^{\prime \prime}$ white pine, cut the following pieces:
1 piece $8^{\prime \prime} \times 2^{\prime \prime}$ scant $\times 3 / 3^{\prime \prime}$ "pper Slide Holder ciuide $1^{\prime \prime} 81 / 2^{\prime \prime} \times 2^{\prime \prime}$ scant $\times 3 / 1^{\prime \prime \prime}$ I.ower Slide Holder Guide 1 " $8.58^{\prime \prime} \times 3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} \quad$ I ens Mount Handle $2{ }^{\prime \prime} \quad 8^{\prime \prime} \times 5 / 10^{\prime \prime} \times 1 / 2^{\prime \prime} \quad$ Slide (iuides (sce note) $2{ }^{\prime \prime} \quad 8^{\prime \prime} \times 1 / 4^{\prime \prime} \times 5 / 18^{\prime \prime} \quad$ Slide Guide Strips (sce note).

Nole: If a power saw or rabheting phane is andable. the Shide Cindes amb theit
 Figare 10 indicates the prostion of the abbet.

In cutting these pieces, use the cross-cut saw when cutting across the grain and the ipsaw when cutting with the grain. To have the pieces exactly the right siec, it would be well, when asing the rip. saw, to cut the pieces somewhat large and then plane them to siae.

Step 9 . Remove both embs of the small tin cati. With the suips cat the cused part of the can along the semu and flumen out the resulting shee of metal. Mark and cot wot the two Slide Holder

Turn the plates upside down and lightly tap the metal around the holes to flatten the burred edges.

Now lay the Upper Slide Holder Guide Plate on the $81 / 2^{\prime \prime}$ long Lower Slide Holder Guide made in Step 8. Put it in such a position that the $3 / 4^{\prime \prime}$ wide portions of the plate project beyond the ends of the wooden guide. Bend these metal tabs down at right angles to the main part of the plate.

Step 10 . lirom the remaining sheet metal, cut four pieces $3 / 4^{\prime \prime}$ $\times 1 / 2^{\prime \prime}$. Punch a hole in each', $1 / 4^{\prime \prime}$ from the end. These pieces are the Lens Clips which will be used to clamp the lens to the Lens Holder Board.

Step 11. Remuve one end of the gallon can and smooth the edges so that there are no sharp parts to cut the hands. This can is to form the Heat Baflte which keeps the hot rays of the bulb from reaching the casing of the projector.

Mark a $31 / 4^{\prime \prime} \times 4^{\prime \prime}$ rectangle in the center of the bottom of the tam. Pierct: the blade of a strong penknife through the metal inside of the rectangle. By pulling the blade neanty out of the hole and then pushing it down again while the cutting edge is being pressed against the metal, the rectangle may gradually be cur. out. the cdges of the metal will be bent inward, but they can easily be straightened out by placing the can upside down over a piece of wood long enough to reach up into the can and press against the inside of the bottom while the outside is lightly tapped with a hammer. White the can is in this position, punch the two screw hole's shown in Figure 9, tapong the edges smooth afterward.

Sefll 12 Win! a pierew smapraper folded wer a block of wood,

 forman their eathets sephate.

Pand all vilesoand ales of the womlen prats. F xeper for the

to dry conipletely. If necessary for a good finish, a second coat of paint may be applied.

Assembling ihe Parts

Step 13. The Slide Holder. Spread a thin coat of glue along one $5 / 10^{\prime \prime}$ wide side of the Slide Guide Strip (from Step 8). Place the glued side down on the $1 / 2^{\prime \prime}$ wide side of one of the Slide Guides in such a position that one edge of the narrow stick is along the edge of the wide one. Be sure the ends are even; then nail down with four $1 / 2$ " brads. In a similar manner, assemble the other Slide Guide Strip and Slide Guide. (See Fig. 10.)

Fguat lo. The Slide Folder
Now apply glue to the $\% / 1 \mathrm{n}^{\prime \prime}$ wide side of the Slide Guides and place then along the edges of the Slide Holder Back (from Step 5). Secure each by driving four $1 / 2^{\prime \prime}$-brads therogh the back into the guide. This completes the Slide Holder.

Step 17. The Lamphouse Front Assemibly. Applyglue w the 2"

sides of the Slide Holder Guides (from Step 8), Lay each with its edge along one of the $91 / 4^{\prime \prime}$ edges of the Lamphouse Front (from Step 2) and ciqually distant from the ends. (See Figure 11.) In this " pusition, the Slide Holder (from Step 13) should slip freely but not loosely between them. Leave the holder in this position while rompleting Step 14. Secure the Slide Ifolder Guides in position by driving four $3 / 4$ " brads through the Lamphouse End into each of them.

Place the L.ower Slide Holder Guide Plate (from Step 9) upon the I ower ($81,6^{\prime \prime}$) Slide Holder Guide with the ends of the plate and the guide even. The ypper edge of the plate must extend $1 / 4$ " beyond the guide to form a lip to hold the Slide Holder in place. (See Figure 11.) Fasten the plate in position with thee $1 / 2 / 2$ screws.
Fit one of the Slide Holder I atches (from Step 6) to the end of the Cpper ($88^{\prime \prime}$) Slide Holder Guide. The hole should be in the end of the latch nearest the Slide Holder. Adjust the latch so it extends ! $f^{\prime \prime}$ below the edge on the Slicie Holder Guide. In this position, when the assembly is complete the latch will prevent the remoral of the Slide Holder. With the latch thes placed, drive a $3 \cdot=$ brad thromeh the hole in the latch, keeping the brad as far away from the Slide Holder as the hole will permit. Pound in the brad until its head is level with the latch. Now the latch can be slipped up until it cleans the edge of the Slide Holder, which may then be pulled endwise from its position between the guides, or the lath mav be stipped down until it overlaps the end of the Slide Holder be ! 1 ". The Uper Slide Holder Gade Plate will hold the latch w the erd of the suide in the completed assembly. Fit the ofher lath to the oppenite end of the Epper Slide Holder Guide in the manner just described.

Witin both lathes in phace over their bads, lav the Epper Slide Hobler (enide Phate unon the I peer Stide Itolder Conde as was dons with the lower suide and plate. The hewe edges of the hem tabs of the plate should be ceren with the bettom of the guide, thus athowing a lip of the phate whoject downwad 1 !" to hold the Slide Ifodere in phese as was the cate with the plate on the lower quide. I wh low sume the pention of the plate is such as to allow the Slide Holder whe whdtawn endwise when the late is raisch. bui whold it in its phoper phace when the latch is down.

If mexsous, the phates may be bent stighty to make the holder natse mone tach. When sume that the pats ane in place, secure the flate breans of ! :" socws.
 Place the Heat Batha fome step) ll! bothom to hamphouse Find, water the hrower the oporing in the plywool, and fasten it in phace with wo 1 !" serews.
supls. The lamphonse Rear Isombly. Datu diagonal lines fommoner wanare of the Rear lamphose Find (From Step 1). l'in, "? "sews, then the poncelain sochet to the plywod. The diagomals will make it posible toge the conter of the socket in the exat wher of the plswood.

Cut a !" leasth tom the lemp (ord. * Separate the two wines it contams for a distance of 2 " from one end. Scrape the insulation from l:2" of the end of cacta of these wires. Sorew each down tighty unde: one of the teminals of the sochet. lie the cord in a knot as dose to the socket as is convonient, and with a piece of string through the kant, tic the lampend to whe of the screws that holds the socket to the boad in sue hat momer that any pull on the lamp? cord will not pull the wires from under the sonket terminal screws.

Separate the wires in the other end of the !" eord for a distance of $12^{\prime \prime}$ and sorape the insutation from $1 i^{\prime \prime}$ of the $\begin{gathered}\text { on ends. Take }\end{gathered}$ apant the half of the tpphame (end (anmetur which has the

- Nire !! :

Scrape the insulation from $1 / 4^{\prime \prime}$ of these cut ends. Open the Feedthrough cond swith. Connect the two bared wire ends to the temmals in the swith and lay the uncut wire in the chame' 1 provided to cany it though the switch. Reasemble the switch.

Step lo. The Lamphouse. The lamp cord leaves the socket on the lower side of the lamphouse Rear Assembly. Apply ghe along this $9!$:" $"$ edge of the plywood. By means of tour 3 ? $\mathbf{f}^{\prime \prime}$ bads diven through the base of the machine (from Step 1) dtath the Lamp. home Rear Asembly to the base, placeing it so that the base extends ! !" behind it and s?"'on cant side of it. Obviousty the sorket is on the side which will be inside the lamphonse.

lestie le 1 he l.allyhome
 an ine hat the whamd bottom of the leftedge of the Redr Lamp.
 sule whe whe whhon holes) tasten it to the glaed edge of the
 -pate betred in lawe edere and the Bane of the Mathine.
 buratils in a smitar manmer. Remember ble Slide Holder

With buth sides in place, the front is now held in true position and way be fastened to the base by means of four $3 / 4^{\prime \prime}$ brads diven up into it. Like the rear of the lamphouse, it is $9 / 8^{\prime \prime}$ from the sides of the base.

Apply glae to the tops of the lamphouse ends and secure the Top of Machine (from Step 4) in place by means of eight $3 / 4^{\prime \prime}$ brads. Whe rear of the top is even with the rear of the lamphouse end, but its sides extend $1 / 4^{\prime \prime}$ beyond the sides of the ends. The 3, "" spaces below and the $1,6^{\prime \prime}$ spaces above the side pancls are to ploside ventilation for the bulb.

Step 17. The I.ens Mount. Apply glue to both ends of the Lens Mount Buttom (fom Step 4). By driving three 3,4 " bads through t'ach of their ends attach the I ens Mount Sides to the glued edges of the bottom to stat forming a boxlike assembly. Since the sides ate wider than the botom, one of their edges will extend beyond the edgee of the botom, but the other edges of all three should be even. This side of the assembly will be the front of the finished I em Momat. (Solis.13.)

Apply giac to beoth cods and one of the şides of the I ens Mount
 tom edge and secute it in position hy me.ms of ? $f^{\prime \prime}$ brads through/ the sides and botwom of the momet.

Place the mome fiont down on the wombench. Remove the teading ghan lens fom it, hame lat the kens on the lems Mount Board. Center it over the hole and, unmy the four Lems Clips (fom Step 10, (lamp, it in pate. The (lipe hould be bent so that when the be" sows through then are tight, there will be pessure enough weep, the lens trom ratting, but not enough to arack it.

Step ls. The focus c:hamber. Apply ghe to the long edges of the loous Chmber Sides, (fom Step t) and place them between the top and bottom of the machine. Their outer sted should be wen with the edges of the wo of the mathere, but t " in from the edge of the sides of the base. Their frome edges set $1 /{ }^{\prime \prime}$ in from the from edge of the top of the machine and $x=$ in from the front of the banc. Sculac them in place by means of twelve brads through the tup and base. Their puition shoud be such that the lens mont mas frecly, wen lonels, mose within the chamber.
 the hulb. Atar h the amsing handle w the top of the machine in vint a ansition that its wews ge down inte the upper slide holder sumf sem the fot the tour eorners of the base, and the :matialle in tende for use.

(Difative mat Projfagor

the matame is operated in the usual maner. Any smooth.

A L.antern-Slide Projector

wide, although, because of the type of lens, its shape will be somewhat "pincushioned."

Because the projector is built without expensive condenser lenses, the screen illumination is not even over the entire surface. However, the dimming-out at the corners is not too objectionable with photugraphic slides, while it is practically absent when ground glass or frosted lumarith is used for homemade slides.

THE GE,METRY IEACHER FXPERIMFNTS WITH MOTION PICTURES

Raçel P. Keniston and Jean Tully

Turee years ago, Professor Ehy of the College of the Pacific in Stockton, California, developed a course in visual aids for the purpose of inspiring classroom teachers to experiment with them and to use them in practical ways. The writens emolled in this course which was composed mainly of teachers. The group were enthusiastic to find the variety of visual aids that could be inexpensively made for all types of classes from the primary grades to college level. Much of the time was spent in considering individual problems; consequently, members of the class were free to concentrate on their own projects.

After considering various projects applicable to mathe:natics, such as slides for projection of special problems or tests and the still filmstrip, we decided to make a geometric moving picture as our project, although neither of us knew anything about taking pictures or developing them. In this anticle we shall relate our experiences in making two films.

We chose as our first subject "Locus in Plane Geometry" because the subject matter seemed particularly fitted for motion pictures. Our second subject was "Concurrency in Triangles."

The locus film begins with six locus theorems, usually considered fundamental. Fach of these we showed first as gecometrically consulucted, and followed by applicationstaken for the most part from some life situation and presented by means of an animated cartoon. Then. to give a glimpse of mote complicated aspects of locus. we pictured some compound loci, the cycloid, and the conic sections. Thus the film is one that can be used with success in a class after their initial work, serving to humanize and clanify the sub. ject, to present a unique review, and to give the students a desire to know more about the topic.

The film on conturiency developed the fom c.ise of the eme
currency of hines in all types of triangles. Questions dcaling with the position of the point of concurrency were presented for the student to consider and were intended to lead him to definite conclusions concerning concurrency and the influence upon it of the type of triangle and lines involved.
These pictures were taken entirely indoors form drawings made on paper $20^{\prime \prime} \times 27^{\prime \prime}$. The drawings were attached to a drawing board of about the same size, which in turn rested on a table that was set in a groove in the floor to prevent change of position. Stand lights may be used, but we used a rectangular frame of photoflood lights around the edge of the table and controlled it by a foot trip. If stand lights with four number? photofloods are used, they can be placed farther away from the board.

The camera was held in place by a frame attached to the wall in such a way that the camera was directly above the drawing. Professor Cox at Oregon State College had originally suggested building such a stand out of an electric drill press, thus making the camera highly adjustable, yet rigid with respect to the drawing board.

When we were shooting titles, the camera was placed fon feet from the boand. Figare 1 shows a title uned in this picture. The lines of the lettering should be about $3,16^{\prime \prime}$ in width. The title shown measures about $7^{\prime \prime} \times 13^{\prime \prime}$, and, when projected, f:lls the same space ths the diagrams.

For shooting diastams, the cancea was placed six feet from the drawings. Thus latger drawings could be used and lines on them could be thick enough to project wall. Main lines on daw. ings were about!!" wide.

Various devices were used to make the animation and explain the continuits. Titles and rumning comments were printed as illustrated in Figuc 1 . We used black dhaine inh on white draw. ing paper. havine fiscovered after experimenting that white paper
 work. the brais limes of aw il setting were drawn first, and the pats that mosed were dded aganst this bak kroumd.

Figure - blows the catoon used wampans the lecus deseribed in the tithe in Figute 1. Hete the house and seenery were

Figure 1
with suggested lines than we could have done by attempting an accurate drawing. The man and the ladder were made on separate pieces of paper. To obtain the motion of the ladder's falling to the ground, the ladder was moved about an eighth of an inch at a time, and about two frames were snapped for each position. The dots were pasted along the locus as the path was made. Then a compars was used to trace the arc in order to point out the locus theorem involved.
There were, we found, many pitfalls in working with anima-

Figure 2
tion. Fore example, we wished to ithsmate the simple cirche locus by shming the beotudary of the atca wer which a cow mey grace if ticd by a me to a stake. Having painted the bategeound, we discosened that it was impossible to mose a toy cow around the locus. as planned for the cancia from above would siow the back of the cow as in an aiplane view, and this woud not coordnate with the dugle at which the scenery was drawn. This problem was solved my mane several cardbourd models of a cow and laying them that on the drawing in many of the progressive positions that she would take b: her trip around the stake. Then, as the locus was thacel bemeans of successiscly added dots, one of these cows was ahays present. The fimal effect was quite satisfucory, excut for the slight leaps of the cow due to the too great distance between the positions of the models.

Another ilhastration of this circle locus was unsuccessful. We aried to show the locus made by the tip of the hour hand of a (lock. We teed an alarm clock placed on a piece of drawirg paper. We smpped two frames, moved the hayd an eighth of an inch, smapped two more frames, and repeated the process until the hand had moned (ompletely atound the dial. It took a lone time to make the picture. C'nfortunately, it was humanly impossibic to set $九$ '.: chock in exactly the same spot cach time the hands were moved; as a result the picture showed a vely lively dancing clock, with the hour hand beaking all speed records on its journey around the dial. It was an excellent illuseration of the way not to show animation.
()ur appliations of !oous weme not alwass outside the field of geomety. Fon example' withstate the theorem The locus of points equadistant fom two points i, the perpendicular bisector of the secment joinnts them, we uscd two purely geometric setting mancly the hors it dia ventices of isoseles triangles on the same !aace and the peppendicular hiseeter of the chord of a cinte.
 Hades wete maned atadnatis into the pitume coming to rest on

 foom the emin of bite chom and dote wete mate with a die to show

locating several points to satisfy the condition and then drawing the locus, which was shown by the motion of the point.

We included in our illustrations touches we hoped the student would find humorous. For example, to illustrate the locus of points midway between two parallel lines, we showed a fly wandering around a room and finally taking a direct path across the wall. The fly, the flit gun which ended his life, when it stealthily appeared in the corner of the picture. and the footprints he left-incidentally recording the locus-were cut from paper and applied to the drawing. Here again, a sufficient number of frames were taken of each position to make the final motion slow enough to follow.

In making purely geometric applications and in showing constructions, particularly in the film on concuisency, more mechanical devices were needed. Figure 3 shows some of the objects used.

Figure 3
The compens was a metal one. The stamp was our most frequently used implement, becanse it made a dot one fourth inch in diameter and all consmuction lites were shown by a succession of such points added manually. All other articles, such as the motractor, bulers, and thangles, wete made of canthond and maked with hat. inh. The protater and the buters were used to show meas.
urements and on give vatiety to the pictures. The anows were very convenient to point out things to be particularly noticed.

Figure 4
Figure 4 shows a simple construction as it is just being completed. The way a compass can be used is especially interesting. The poine of the compass was removed, and the compass sctewed over a common pin which was driven into the board at the center of the circle, the pin allowed the compass to be moved a little at a time. Two fiames were snapped of each position, and dots were added to show the line taced. The effert in tie projected picture is of a magic compass moving without the did of human hands. Of counse, the pin occasionally did not hold; consequently, the difficulty of adjusting the compass again in exatly the same position accounted for strange wobbles.

For all our experiments we used a positive film because it gives a high contrast, thus making sharper titles and drawings. Speeds range fom ${ }^{2}$ tox. Westom. We phetened the faster film because we could ane low ithmination; when stand lights were used, we could place them fathe foom the boadd. Ahoush all leading
 and Dupent berane the hate coperially ened paitive film at 8 sperd.

 sepping. The film wew womd atmond a home made ved $17^{\prime \prime}$ * In", whin wa dipped into thee natow bertial comtain"rs for the the procous of developing, fixinge and wathing. We

 ant mind a law wate poth on orasional flickerings in the finished pictane.

Av we have shmon in this atticte. we were amatems, and of wure the essuln were mot prosenomat. However, the experiance and fan we ohtained wees well woth the time patinto the expriment. In wiblion, .se found the pittures usable and stimulating to war Classes. Perhaps more of such experiments by amate wh will hotp hasten the time when poof ssionals will see that mathematics is a gened licld for colucatimal piatures.

MAK , AND ISIN(; MOIION PICTURES FOR THE: HFACHIN(; OF MATHEMAIICS

He'm! W'. Sjer'

1. Choice: of Subject

Educarman funs ate increasing in number daily, but only a few mathematics films are as yet available. The chief reason for this lack is that the proper use of mathematical movies in the classtoom is not completely understood. Until more commercial films are available, teachers must make their own. This article is intended to show the kind of films that teachers can make for themselves, and to explain the technigue of making them. Many of these films have been completed by the witet; ohers have been partly finished.

The guiding principle in the choice of subject is that time should not be wasted in making or showing movies when a blackboard demonstration or a set of printed illustrations will tell the storv just as well. In all the films listed, motion is :an essential part of the argumem. It would be vers casy to ignore this principle, but such temptation should be put aside. Make films only when motion is an essential pant of the argument. For example, one topic on the oniginal list ha film prodution was "Ceometry in Ans. Niture and fulustr." Ihere wan tw be a pietme of someone taking a pill (with a close up of the pill) to illustrate the ellituside of reteluion, another of a cook opering a can of peas en illustate the slimder, and still amother of a mowstorm and eminded snow flates to illuntate the hexaron. When put toqether , th this took too long to give the simple message: "There are moms seomentic shapes in arr, moture and industre about us evers das." I herefor ondored pojection blides were substituted and these made persible a fievible lecture that could be adjusted to the ruthence and the time avalabte. The oriemal justification for ume motion pietures in this situation was the fart that the
introduction of motion added life and interest and kept attention constant by its novelty.

This aim is important to recognize and to use, but it is not the object of this atticle to diocuss such movies. Their invention is endless-any subject can be dramatized artificially. There is no doubt that a motion picture showing three men (A, B, and C) digging a ditch, or a man rowing up and down a stream, or a swimming pool with water sunning in and out of it, or piles of money growing larger and smaller would pep up the solution of problems in algebra. But this is too long and artificial a method of presenting a problem in which motion is not part of the mathematical argument. Films for mathematics teaching which inject motion into situations only because motion adds interest are explicitly excluded; most of this can be covered better by field trips, printed illustrations, or collections of mathematical models.

There is another principle that should be kept in mind in choosing a subject for a mathematics movie: These movies should teach, not merely illustrate. For example, a I . 'ure of a visit to a bank with close-ups of commercial forms better than never having the class see such forms. But it is usually possible to visit the bank itself or to bring real checks, notes, stocks, and bonds into the classroom. This latter method is much hetter than using films.

How shall we find suitable subjects if the negative rules above are $k e p t$ in mind? The teacher who is alert to such phrases as: "if point l approaches I "," "the area approaches a limit," "the number of divisions hecomes infinite," "place $A B$ on $A^{\prime} B^{\prime}$," "under pescure the dircle becomes an ellipse," or "the angle increases"; will have no somety of subjects. In short, by noting the thousand and once places where change of position (motion), change of Whph inamformuion), correspondence, or limit is implied, topics will be foumd. I he serret is to use motion where it is implied in the m whematical agument. and where the expert and gifted mahnematicien supplies it with his intuition and imagination.

1I. Fgempant That ls Nffeded

In eak of the followitur lists the most important equipment nowded to produce lilms for classroom use is catalogued, with the bert mallibe phaced first on the list. Prices change, and better
buys may appear on the market at any time; but the following are suggestions.

A. Cameras (16 mm .)

1. Eastman Special. Eastman Kodak Co., Rochester, N. Y. ($\$ 417.50$). This camera has the advantage of being the most easily adaptable of all the fine 16 mm . cameras, and of being made by a company that is very helpful in solving adaptation problems. There is a definite disadvantage in the high price and in the use of only two different lenses in the double-lens turret. For other uses, where it is important to shift rapidly from one Iens to another, this limitation would be a handicap, but not for carefully planned mathenatics movies. The high cost of additional equipment is more serious. When investigating this camera, ask about the following features: matched diagonal masks ($\$ 11.50$), matched quarter masks ($\$ 23.00$), Model UA motor drive ($\$ 185$), electric release control ($\$ 125$), and interval timer ($\$ 150$). For simple work in a small school with a meager budget these prices may seem high-and they are. They are presented first to tell the whole stony of the most adaptable 16 mm . camera sold today. Simpler and less expensive equipment will be found in the other rameras listed.

Do not try to tronomize bs buying and using 8 mm . equipment. ?he film (being only hall as wide) is much less expensive, but it (amot be projected before as latge groups as the lif mm.; the projecturs for x mm. projectors a a not so bright and need darker romem than those for 16 mm . and less technical equipment is asalathe for incrasing the flexibility of the apparatus. For some purposes mme cameras, film, and projectors are excellent, but not for ters hing films.
\therefore Buec: M1ti. American Bolex Co., Inc., 155 Fast 4th St., Nien luak (itu S Sos: Dollar for dollar this is the best buy on the for hat it in pared second because the camera and equipment are an we in s. (hwix, Switerland, and there is constantly the danger a) bennas ber wute of supply and major repains discontinued.

syinchonons motors (2.4 fames per second) ($\$ 150$), Cinéfader $(\$ 17.50)$, Cine lransito ($\$ 39.50$), and behind-the turret slot for filters (\$20).
3. Filmo 70-F. Bell and Howell Co., 1801-15 Larchmont Ave., (hicage), Ill. ($3-43.30$) . Good foundation camera that gets into the higher price class when the extra features are added. Standard features indided ther-way turethead; seven speeds; f 1.5 lens. possible addutoms. nund ank ($\$ 1: 5$), external magazines ($\$ 210$), dectuic motor (585), mask slot device with masks ($\$ 160$), single frame exmmo (staj, wipeoff attachment (St2), rewinding

 and blach becomes white an ahantage nometimes in celieving the monotony on in eiving the uperatance of animated blackband drawings.

 velopingi. A panchomatic film that should be Hed whenever

 somewhat fors flan.
5. Panchromatic Retensibli. Fasman Komak (s6i.00 including developing). Same comments as for No. 4.
(i. Wfan R, menible Lofa Anso (S6.0n including devedoping).
 ing:-
 (hudine w-selopinal.
 whpins!

I! !

 eng debehpmesi

(: I i, hang fauipmo:t

 !

in one place. Fiven then, it will be found that the small reflectors with rubler coverecups an very casily be adjusted onto chair bation and easels. To atoid shadows at least two different light wances should be used.

1). Miscellantous Material

The following list includes other material which will be needed or might be added to increase the usefulness of the equipment. The list will meet the seguirements of a teacher who is making silent movies and showing them to single classes. For example, the projectors are not the best for sound projection or for anditoriums that sedt very large ciowds.

1. Projector. Filmo Master (\$139), Film Diplomat (\$198), Kodascope G 5135), and Bolex ($\mathbf{- 1 6}$ (\$210).
2. Screen. For classtoom use the best screens are the rear projection screen (530) or the glass beaded soreen (Model B; 30" x 40"- 59.50). (These quotations are from the Da-lite Screen Co., Chicaus, M11.) If the chassrom teacher can obtain a projector with an atached soren that pulls out on extemsible arms in front of the lens. he will find it the most useful type of all, because it can be used at a moment's notice in broad darlight.
3. Tither. These are alse usefal for inexpensive extemely rlose up views.
4. Fititing equipment, Splicer. "Fdicabinet," , iewer, cement, leds, amb humider cans.
5. Masks. For trick effects.
fi. Fitra chambers. To make it easier to chane fomm one type of fim wanother.
6. Wiperoff athehments. For pofessional mansitions fom weme tose sene.
\therefore Filters. Fin wombllar ligh and colns.
 a used to follow atoms in dramatic shots.
 Flectric's.
7. Fxhm home. For yerind purposes. Iedephom and wide mele should be the first admioms.

1.3. Flectric: molons. "Io make shots longer than 30 seconds without stops.
8. Electric time lapse outfit. For extremely "fist moni .n" photographs. Most useful in biology.
9. Optical finter. For advanced work.
10. Drawing board, black and white cardboard, mar blades, scissors, black poster paint, paint brushes, thin wooden and wetal strips, thumb-tacks. paper lasteners, black and white thoad. etc.

III. Technique

There are four useful techniques for homemade mathematics movies: (1) moving charts, (2) cut-out pictures, (3) individaal drawings, and (4) diect plotography of machines.

A. Mowing Charts

Since stop-photography (i.e., using the individual exposure button) is slower and gives poorer results unless the photographer has had a great deal of experience, the most satisfactory way to produce moving dan: ings is to make cut-out cardboard figures that can be pivoted whern and change shape while thev are being photographed.
"Whs." wou mas ank, "go to the trouble of making large, compliated, and cumbersome animated models and then take motion pictures of them: Why not use the models themselves?". The an swer to this question sums up the advantages of movies over many (not all) models for moving illustations in mathematics teaching. First, films are smaller and therefore easier to transport and store; second. copies can be reporduced more cheaply and in unlimited quantity, be using the same technique of teproduction regardless of the model beine reproduced; ihind, some experiments or illus thatoms are diffinte operate because the appatas is temperamental or meds lone prepataion; fomoth models mas be chaneed
 or huse mathines mas be brought into the rlassome to be matred pat be part: and lifth, scones com be used that are distant from the (lastamm or a a alable mble retain times of the vear. Ihese weacon for producing the films smphasire the supplemen
 hut to enrioh it.
 n) mosing models:

 hoorems.

 - : lini.

I he folloming is sets al dingrams heris the ellects desired on the homitud fulm:

- By placing C on A so that it pivots at point M, and attaching D to C so that it hangs from point K, and then placing B over the Inwer half of the figure, we get the following figure.

Iuming the hambe fom left to right increases the argle povitively through the fist iwo quadrants. To make the figure for the thitdand fouth quadrant, tum B over, covering tie upper h.aff of the figure; let weight if hang over the top of the drawing bond (1) whith the addond is attached so that it can draw the donted lite mpard.
(b) Cor x. The uper phat of B is sliced down onc-half inch at primes l. S : and 7 : on hat a sliding har f s.m be muved h,uh an: fonth thomeh the pmints. Change piece D to a solidy

for the second and third quadrants extend the new dotted line across the circle to make a new solidly colored initial side.

A

Figure 2
(d) Tan x. Similar to the secant.
(e) Csc x. Make piece G, similar to piece F in Figure 2, for a honiontal tangent, thas:

(f) Cot x. Similar to the cosecant.

(i) (ierom.thic Continuity Illustrated by Angle Measurement

B) monipulating the wooden handles of part 1 , above, in front of patt II, wis get the following sequence:

This shows that, with proper regad for the sign of the are length: all these theorems are covered by the single statement: $A n$ angle betueen tuo lines cutting a circle is measured by one-half the sum of the intercepted arss.
(3) (ieneralized Definition of Tangent

Point T is free to turn and to allow the bar B to slide through it. By keeping the $P^{\prime \prime}$ end of the bar on the curve, the secant $P P^{\prime \prime}$ (which rests on a pin projecting upward through bar B) approaches the limiting position of the tangent.

(4) Locus Prablems

The cydoid, epioctoid, and hypocecloid are fairly easy to show. For the cycloid slide B from left to right across A, placing the circle O at the correct spot so that the cirle appears to trace out the crcloid, as in (:

Similar deviors wonk for other low mohlems. Han see sertion

13. (ill wht Mall
(1) The Atra of a Cincle as the limul of a Polyson

First mathe a heavy catboatd (irele about $8^{\prime \prime}$ in diameter, and two sets of regula polsents of the righe sife to be inserted and circumsebbed for the given cirele, the limst set being black and the

each set of 3 to $24,32,40$, and 48 sides. The following sequences are suggested to be photographed:

(2) Line Parallel to One Side of a Triangle

To illustrate the theorem A line parallel to one sici af a triangle divides the other two sides into proportional segments when the "other two sides" are incommensurable, the following series of cutouts is used:

The darkened part of the triangle shows the amount of inaccuracy in the approximation; the inaccuracy decreases as the unit of measurement is made smaller.
(3) Cones, Cylinders, and Spheres as Limits

By making plaster models of cones, cylinders, and spheres and
by gluing together sheets of thansparent plastics to make pyramids. prisms, and polyhedra which will fit over the plaster models, and then proceeding as in the pictures of polygons circumscribed about a circle ($\mathrm{B}^{2} 1$, page 335), we approach the solid figures as limits of circumscribed polyhedra. Reversing the process and making cones, erlinders, and sphenes of thansparent plastic material, and plaster models of inscribed pyramids, prisms, and polyhedra, we get the curvilincar solids as limits of inscribed polyhedra.
(4) Area under a Curve

On Figuse 1 place the series of cutous shown above, to illus. trate the fundamental reasoning of the integral calculus. Be sure to allow enough time in showing each figure so that it can be comprehended. Do not thy to make the picture a gliding progression from one area to the next. The same type of selections should be photographed as suguested in B 1. pape 335.

(. Individual IMmains

If the large amount of chynge in a dagram makes moving models impossible, thy stathdybollywood techmique of making many similar draw自gs and potegraphing them comsecutively wo give the effect of thetion may be used.
(1) Dimensioms- Point 11 I Ime to Plane to Solid

This film is intended for elementur geometry to show the theece dimension ality of semmethe or as a begiming of a discumsion of non Fuelidem sembens, on gementy of more than there dimensons. The sequence low something like this:

(ㄹ) Conic Sections-- Ratio Definitions
Start with a point and a line thus:

Find the locus of a pomt mosing so that the rato of its distance
 fiselv: getting the following results:

(3) Wate Forms.

Arange cut-out letters on a sheet of cardboard with faint vertical and horizontal lines for guidance. By moving the letters up and down, transucrse wave motion is shown; by moviug them sidewass, longitudinal wave motion is shown.

D. Diret Photografo!

(i) Comic Sections-Clay Ciones

With a knife cut four clay concs in this mamer:

and show the results as the four conic sections.
(ㄴ) Conic Sections- Flushlight
The conic sections are illustated by shining a photoflood bulb with a reflector on the wall and taking mosies of the pattern as it changes from one angle to another.
(3) Contic Sections-Mchamical Construction

Actual scenes of the string. I epiane, and triangle consumetions for the cifole, ellipee, panhota, and hapebola are ease to phote: graph.

Fake photegiophe of the osillomope andyang semand wases and of the attion of penduhans simpte and (ompound) tateing out curves.
(5) Statistional conucpos

A. Coloned Slides

A series of projection slides illustrating "Geometric Shapes in Art, Nature, and Indusiry" on Kodachome film has been started. Although this topic was first treated in a motion-picture film, it was found that tathers place the emphasis on a different place in the subject and so resent the automatic control of the tir.. ing that a film demands. As more and more examples are ce. lected, the presemtation of the subject can be adapted to the time of y car, and to the age and interests of the class much better than if a standardized film is used. The chicf difference between this and the preceding topics is that the seronticon slides are intended to increase appreciation of mathematics, the films to inorase understanding and insight.

The solid shapes-triangular prisms (both equilateral and right angled), squate prisms (parallelepiped, square plinth, and cube), hexagonal and octagonal prisms, triangular and square pyramids, complete spheres and hemispheres, regular ellipsoids and ovoids, cylinders and circular plinths, and cones; and the plane figuresciacle and its parts, semicircle, sector, segment, arc and chord, the ellipse, the oval, the parabola, and heperbola, and finally the polygons, the triangle eright-angled scalene, right-angled isosceles, acute angled isosceles whithonght angle, obtuseangled isosceles, obtuseangled scalene). the quadrilateral (rectangle, square, and rhombus). the penagon, the hexagon and the octagon-are illustrated by hundreds of examples of shapes in the world about us. Think of seeing elliptic cogwheels in a mathine, enlargements of hexagomal snowflakes, squate pismatic astals of pyrite being mines. an onod disappearing imb a cake as the familiar egg, the spial putcere of sumber seeds on the phat. or of sea shells, the parabolic Hieht of a temais bath, or catoons of the plancts moving in clliptic onbith all in coloned piotmos. Mom ohere exmples hate been collected fom questionnates ant out whenols.

> N: Popen bor Finss

1. Cownmenar (inmtimats

2 Linat lheoreme :n fecmiters

2. Sha of (inte an Limit of lneribed and Circumscrabed Polygons at. 111 B 1)

- An A. 1 man of Patamich (exe 11113 3)

! Sa!!:a- bi ktvalution

1. 1! !1..:•• W いい

2. \therefore : :... : lamtinn

! (.: 1 :-

!. $\because!$! .. $\operatorname{lli} 11!=$
: ! : : .. 11111 :
$\because \quad 1$..:

f 1 . - . .m..... 111 (:

- !!...: :
! ! ! !: 1.1 !

1: 1 . : . : : : , 1 ! m!
1 ! : •. . . ! ! ... ! ! i ;

18. Man Projections
19. Principle of Duality
20. Symmetry (Axes and Points)
21. Tiandomations of Coordinates

V. Propheches for the Future

(.4) Developments in Sound

Just as creay illustation in a book should have its title, so each of these films should have its own sound track carrying the simplest and shortest explanation. Just as we often look at an illustration and see more than is called to our attention by the sub-title, so these films should be shown again and again with the sound track disconnected, and with the instructor giving newer and deeper interpretations of the illustrations in keeping with the increasing mathematical maturity of the class.

Further developments in sound may lead to increased interpretation of the figure by the accompanying sound. For example, as a figure increases in sire, the volume of the voice describing the action might inctease whih it to suggest its growth. Again, if two figures are being compared alternately, it will bi helpful to have a man's roice and a woman's wice give the alternate descriptions succensively to furthe comban the properties.

A musital acompmiment w d damic mathematical film may serve to strongthen the relationships between its parts and propcrics. but thete is so much room for argument over the proper music for motereting gemmetric melnions that such experiments will be completels accepted only by those who make them. Nevertheless, I should like tio see made a mathematical movie that has its approptiate some wituento develop in music the relationships that are shown in lines and planes. There have been some attempts to use the "prettiness." of geometric forms to accompany standard musical compositions, but this presemt appeal is for music w ich shall be subordinate (w the mathematics of the figures and yet wall stretzthen them.

(Bi Beyelofimernls in Color

Wos mon matios teacher knows the advantage of tracing in ontor semp pat of a figure to make it stand out as a unit without
desthering its ehaiomship the the of the diagram. Imagine the adbantages of having the coloned lines appear, disappear, and (hange colon instantly whout intetering hands, and as quickly as the deroription of the houre pareeds, with as little effort as dawing a point on the blackbond. Again, imagine the advantages of a mabow of colors fading into one another to show changing relations: allowing types of lines, direction of motion, description by woice, description be printed labels, and whor wapplement each other in the desciption. The geateat danger in the use of color is that it will be used to excess fon the pately bermiful effects of colored, mosable geomethic tigures. Beauts in geometry is desirable until it attats so moh attemion that it detracts from the tem hing of facts and welations that the film set on to do.

(i) Theredimensional Movies

There ate two chacf was of mahing thee dimensional mosion at the present tianc: the colonfthe mothod and the pelanized light method. !n the finst, a ted pioture and a blue permee of the same whject ate made on the satme hlm. These views ate tahen
 father. Whoerer views the movien lows thongh colaned glase that athon ade cere to see onls one of the imates on the setern.
 method uncs polatifed light to suphy coll we wiht the wo dat

 the same momer as the whor fatern did betome

 timal film:

In adduon to tue th- life demonstations of solid geometry, it would be interesting wate grater use of the peculiar ad. ramases of moving pictures oner ondinary models. In plane. geomeny floms we used ligules which changed hape, perition, and chlon without distarting pruse of ombede did. This continuous and swite succesion of illustations is kan cmongh w keep up with aspoken description, or even as iast as the thourgt processes that ne developing the idea. Thus no time in lest dasing pictures fom the blackboard, changing lantem slides, or holding up illustations. becatere the illustations and thoment move simblanewals. Keep there adsumages in the dimensional films and also let them dechop imagimaton in their own mediam, For example, try to suggest tour dimensional figures (such as the heper-cube) by moning tho dimemional figures; or use movies to show mbenctions of oulids moving right before gour eyes-the solids posing though one wowher and the interscrion standing out Inightly like a halo.
VI. lif in 1ht. (inaskoma

1.1. Nol a mblitule for a Proof

 him. The ficlute \sin omly allutration, and would be used exatly in the same wos an a picture in a book or a worden model hed up before the dhes the onls new feature is its propenty of

 platem it.

as review this time, the instructor might say. "You remember how the line-s,dues of the six functions look," and then run off all siy parts Gabout 8 minutes ds a quick review. Again, the pats an be used as a test, the class being asked to wite the values of the functions of $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$ as they octur for cath thention.

Each film illustration should be pesented with as he: iletailed eenemons as possible. There should be mo apemone of at show or entertainment; it is just another, new way of getting across a point that is difficult for some to sec. Ideally each classicom should have a permanent projector and screen and libaty of the films that are to be used more than once. It is too murh to expect a teacher to send away for films for teaching weeks ahead and then not to look upon their use as something of a novelty. To speed up the actual projection during the period, a student should be trained in the use of the projector so that the teacher can ask for a certain film, have it shown, and then go on with the class with little interruption. Naturally this ideal plan must be modified as the budget demands, but it should remain the ultimate roal in planning for the classroom use of films.

(R) Not Try to Tell a Story

Too often films are made pretty by using Hollywood techniques of closeups, sumbolic pictures of gears, hands holding money, or meaningle sotating triangles where these have no place. Do not attempt to replace all former mathematical illostrations with metion pictures. Cenless it is impossible to do so movies should not replac a wal models in solid seometre, red trips to the bank to see how our fmanci.l spotem works, actual views through a iclescope to see phats chanaine their positions in their obtits. the owilloscope and perdalum as hammic motion, patems of

(YEOMEIRIC SIEREOGRAMS AND HOW TO MAKE THEM

Walter F. Shenton

The consed expression "geometric stereograms" is used as a name for plane drawings of a space figure produced in two colors and so executed that when viewed through a pair of bi-colored viewing glasses, they give a vivid presentation of a real space figure.

It is rather common knowledge--subject to very simple checking -that the appearance of a near-by object in three-dimensional space depends on the fact that each of our two eyes sees a different picture of this object. One can easily verify this fact by setting a pin veitically it: a drawing board and marking on the board the places where the pinhead seems to be when viewed by the right ere with the left eye closed, and vice versa. The aggregate of points, lines, and planes in a space figure foems with the optical center of each ere a mather complex pencil of rays. The plane figure formed by the lines and points of the intersection of such a pencil with any plane, not too greatly inclined to the general direction of the pencil, will teplace the entire pencil formed by the space figure with respect to the viewing eye. If we can now contrive to get on a single backgoound plane the sections of the two pencils of rays formed at the optical centers of our two eyes and so regulate the drawings that each eye shall see only the section whica belongs to it, the effect will really be the same on the eyes as that aused by viewing the oniginal solid figure. Of the many methods of accomplishing this separation, one of the oldest and simplest produces such excellent assuhts when used to teproduce gromeni figures in space that we explain it ather fully in this artiche. For the readers who may are to follow the historical development of this type of stereosepic representation eference is made bolow to a previous atide by the author [1].

If you look through a red glass at a red drawing on a white sheret. the wed finhere will comptetely disappear in a red back.
ground. This same figure, when viewed through a blue glass, will appear as a vivid black drawing on a blue ground. Similarly, a blue drawing (the shade will have to be chosen catefully to match the bhe glass) will disappear when vewed through the blue glass. but will appear densely black througl, the red glass. A plain white sheet, when viewed through the two almost complementary colored glasses, one over each eye, will assume a light neutral color. This simple color principle makes it possible to draw the sections of the point-projections of a space figure from each of the two eges in a color complementary to the glass used over that eye for viewing the stereogram, As a result, the eyes accept a sharp black space hgure instead of the conglomerate red and blue drawing.

For the past thity years the author has been drawing threedimensional figutes by using some very simple applications of ordinary orthographic projections. In the past five years he has been worting on the idea that these figures could be produced by high school students in connection with their study of solid geometry. Recently a number of tests have been made with such students, and in each instance, after less than an hour's instruction, satisfactoty figutes have been drawn to the accompaniment of the greatest enthusiasm of the young artists themselves.

In onder whate these methods analiable to other teachers and studemts we shatl prexent them here in this order: (1) a résume of the pimiples of othosaphic: pojection-with apologies to the tean hers of mothanisal drawing: (2) the solid geometry validation of the methode need in making the stereograms; and (3) a simple but detailed exphimentom of the methods actually used in mohine the pintace inctuding the layout of the draseing boad and the when mexans fon the ber whlas.

[^27]the projection of the solid on its base-plane, designated as P or T, or on any plane paralled to it , is called the plan or top view; the projection on the plane between the observer and the solid is called the front view (we shall call its plane F): the projegtion on the other plane, called S, is the side view. The actual relationships of this method of projection are shown in an isometric drawing of a regular tetrahedron and its three orthographic projections (Fig. 1). The plane $X O Y$ ' is the "top" of the "box" on which the

Figure 1
tetahedron is projected. Plane $\mathcal{Y}) Z$ lies between the obsenser and the object, and plane XOZ is to the left of the observer, To save confusion in the figure, the projecting planes of the single point B have been drawn in plainly. while the other projecting planes we only faintly natked. The plane $B B_{T} B_{x} B_{8}$ passes through B perpendicular to the planes $X O Y$ and $X O \%$, patlel to YOZ , therefore perpendicular to the line ()X; $B B_{r} B_{\mathrm{y}} B_{F}$ is similaty
 perpenticular to or: white $B B_{p} B_{7} B_{z}$ is perpendicular to XOZ and fo\%, parallel to XOY, therefore perpendicolar to OZ. It will be noted that each of these planes contains the actual point B of the solid and the majertions of B on two of the coordinate phanes and that the six thates of the ere planes !shown in dot-dash
lines) in the coordinate planes are perpendicular to the courdinate axes in pairs.

If now we were to disposc of the tetrahedron, cut this figure along the line OY and lay it out in one plane as in Figure 2, we would have the layout of an ordinary orthographic projection in a single plane. Of course, the line $O Y$ which we have cut apart will occupy two positions 90° apart; but if we join the intersections on one of these $O Y$ lines with those on the other by means

Figure?
of quadrants of (incles with thein cemets at (), we show how the three se:tions are elested when drawn in one plane.

Let us suppose, now, that we wish to make these projections without the intermediary of such a space drawing as we have in Figure 1. For simplicity, let us place one base of the tetrahedron in a plane paralle to XO © ; the projection in that plane will then be the undistorted view of a single face of the tetahedron together with the the e lines which join the bertiees of this equilateral triangle with its centroid. The foont vew and side view will then have the base plane eprescoted as a line parallel to OX and located at a wheniont height: the woltex will be located on a line pandlet to this bere lime and at a distance equal to the altitude of the tethedrom atmse it. (the teather will apperciate the mativation whith this moded (omputation will offer to the
student.) I et us now trate the route of the projection of a single point B_{T} in the top view. Its projections will lie on $B_{T} B_{Y} B_{F}$, on $B_{r} B_{x} B_{s}$; and on $B_{s} B_{z} B_{B^{\prime}}$, and the projections in the side and front views will be $B_{y} B_{F}$ respectively. The other three points are similarly projected by means of lines perpendicular to the three axes; their projections and the lines joining them form the side and front views, You will note that these lines correspond to the similarly marked dot-dash lines in Figure 1. We have arranged our projections so that the top view and side view are placed vertically on the sheet, with the top view above the side view. This plan conserves space in making our commonest stercoscopic projections, as we shall see later.

Drawing a few of these orthographic projections to illustrate the earlier theorems in solid geonatiry will, in itself, foster a correct idea of the meaning of the space relations and will shortly dive the student into wolyntary conference with his teacher of mathematics or mechanicioh drawing to find out how to make various oblique sections of his figures and similar problems of descriptive geometry.

> Mrimons of Drawine, Vahbaten by Solid (Ghometry

Now that we have leaned to make the top and side views of a figure, let us examine and validate the projections necessary to make its stercograms. In Figure 3 we have a sketch of a set of thee planes used to explain this projection. It shows how we make a stereogram of a figure which is to appear as though it were a model standing on our desk. In planes S and P you will see the side view and plan ($p / a n$ is an casier tem to use than top riétr) of a squarebased tight pramid $A B(D) \cdot f$. The observer is supposed to be behind the plane to the right, with his eyes actually in the posititons R (right) and I. (left) in a line $E: R L$ paralled to plane P^{-}and heme to dine ox and perpendicular t" plance S at F. He would then look down wh the projections or on the "model." If we could join the promts R and l. with the point t of the attuat model, the two lines thus obtamed would cut the phane l ' in the two points l_{k} and l^{\prime}, which ane the desired projections of l for the two eges.

model for each picture we wish to make, so we shall have to interpret this space projection in the light of a corresponding plane projection of some sort. The line which joins V with its projection $l^{\prime \prime}$ in P^{\prime} is ohviously perpendicubar to plane l^{\prime}; so also are the lines which join L. and R to their projections L^{\prime} and R^{\prime}. These thre lines are then parallel to each other. A single plane will pass

F口ume 3
 pendiculat on l^{\prime} wh the it pmation on P^{\prime} will be it thace $R^{\prime} l^{\prime \prime}$

 tan popetiom ! : mad $5^{\circ}:$ man lie in thin phate: heme the mas

not in plane P, from the two eye positions L and R onto the plane P may be tound by (1) drawing lines $R^{\prime} V^{\prime}$ and $L^{\prime} V^{\prime}$ in plane P or (2) finding where these two lines are cut by a line perpendicular to OY through the point b_{p}^{\prime} where $E V^{\prime \prime}$ cuts $O Y$. All points which lic in the plane Γ will be projected into themselves; that is, A, B, C, and D will remain A, B, C, and D under the projection. If now the points A, B, C, D, and V_{k}^{\prime} are properly joined mettra blue pencil, and $A, B,\left(2, b\right.$, and I^{\prime} are similarly joined in red, we have made a stereogram of the square-based right pyramid which, when viewed through a pair of glasses, red over the right eye and blue over the left, will give a single black pyramid in space when the spectacled eyes are in positions R and L. This is the type of pojection which Vuiber [? $]$] alls hormontal and marks H in his beautiful brochure.

1 18:nc 4
Hhe whay phofetion is that which is mate aqainst a vertical bukhammi, sulh as woud be needed if the pietmes ate to be thrown ontw a atan and viewed by a class. liginge its a sketch of the bace platme set tup lor the demmothation of the validity of this paijection. In this morled the actand positions of I and R,
the eyes of the observer, are shown vertically above the marks R^{\prime} and L^{\prime} and in a line passing though F : perpendicular to the plane S and therefore parallel to the plane P. The discussion here differs from that of the provious paragraph only to the extent that the plane on which we are projecting is not one of the planes of the orthographic projection and the traces of the projecting planes are therefore a network of lines at right angles to each other in the plane of the screen which is perpendicular to the planes containing the plan and the side view. The figure used for demonstration is that of a regular tetrahedron and the projection for the right ere is shown in dot dash limes, while that for the left eye is shown in solid lines. In this projection the observer is facing the screen and the image will usually lie between him and the screen.

Pracifical. Deralls for Drawing; (immembic: Stereograms
Before we give the actual dimensions and layouts which have been found convenient in making stereograms, let us face a few practical facts. The blue and red glasses of which we speak are made by deing the gelatine film on lantern slide plates after the silver has been removed. The dyes used are those of the Fastman Kodak Comphey marketed under the names "cyan A" and "magenta B." These dyes ate also used in making transparemies for lantern slides and imbibition prints of sterengrams. Those interested in this phase of the work are referece to the proper Kodak mamual :3j. A sot of pieturs for fifieen solid geomets themems have been athened together by Dr. Breslich of the Eniversity of Chicuse. They are fumished with viewing glasses called "()ntho-
 There slawo wevere the ondon we have used and that fact must be taken imis acomo in making the drawings. Making sereos.

a model standing on a desk or suspended above the desk. Figure 5 shows a convenient layout for the upper righthand corner of a drawing board laid out for drawing on ordinary $81 / \underline{2}^{\prime \prime} \times 1.1^{\prime \prime}$ typewriter paper, which is less expensive than drawing paper and serves almost as well. Along the right-hand side about a half inch in from the edge is the eje line. At the very top of the board, drive in a small brad or a phonograph needle at the point marked E. About 7 inches further down on this line, drive in another brad for R and at a pupil-distance (about 2.4 inches) another for L. At about 15 inches below $I:$ draw a horizontal base line across the board. A line parallel to $E R R L$ and about 8 inches to its left makes a good guide line for the front of the drawings. The sheet of paper may now be plared in a position abeut an inch over the guide line and about an inch lower than the base line. The T -square should be long enough to cover the sheet, but it will be more convenient if it is short enough to clear all the brads. With the board laid out in this fashion we commence to draw a stereogram.

1:1:1;
 sight prinm and hase placed the phan with its tront points on or

turned oser will serve-pressed against 'a a a piot, draw lines toward the left fom each of the points of the plan which are to be poojeted, like the solid line A. Kepent, using K for a pivot. getting lines like the doted A.A. Now use l. for a pivot and project the smilats maked points in the side view onto the base line. Draw vental lines from these intersections with the base line. like the dot dioh f. , and the intersections of the three lines deermined by the s.me peint will give the two projections for that point. Proper fuinines of these points will complete the stereogram:. In thin shewh, the righteve figume is dotted in and the leftwe freure in sidid. It wh wish whe your steregram lettered, yon will have in projet the limbere tangles in which you wish to have the letters atedious but not impossible job. In this type of projection, the figure th the base plane forms a part of ead projerem, and shembl thertone be traced with both colors. If you follows the dite dions and then color your two figures to math the shans, wh will see a fime right prism when you place your diaztam on wh deak about cight inches from the celge and fiftern in lue betos your eyes. These dimenions ate somewhat arbithen and mav be changed to suit gour convenaree, but they
 tom themst un a dean shect of paper or card ar : watung the

 -,

around one quadrant so as to be on the right edge of the screen. Horizontal and verricai limes are drawn from these projection marks on the two edges of the sereen, and the intersections of

Figure 6
wh:spmating tines give the points of the stereogram. 'The line $B C$: is a part of each colored figure with d^{\prime} and D^{\prime} the two erojected points for the tigh ere and A and D for the left eve. (of course, this figute will hase (i) be set up vertically to appeat р")

It womed be most enfair th the wenters not tw wan ham that
 intua : :ande: mbe batnus penitoms whatin the hest view of it we

 of the contwek will he intomed when, where and if it appeats.

Refrenci,

1. Surnton, W". F. "Geometric Stereograms--A Itevice for Making Solid Geometry Tangible to the Average Student." The Mathematics Teacher, Vol. VIII, pp. 124-131, March, 1916.
2. Vlibert, H. I os Anaglyphes Giométriques. Pais, Libraire Vuibert, 63. Boulerard Saint (itmain, 1912.
3. Color Printing with Eastman Washoff helief Film. Easman Kodak Company, Gaphic Dis Depatment. Rooheoter, N. V: 1939.
4. Braghich, F. R. Diagrams in Three Dimensions. Newson and Co., New rork. (N.I).)

IHF. SIFRFOGRAPH AS A TEACHING TOOL*

> John T. Rule

A hotgin me powz of the three dimensional photograph as a teaching tool has long been known, its full utilization has awaited an adequate method of projection. Such a method became available with the development of incxpensive mate ials for polarizing light. The full possibilities of the medium, however, are not yet realized by many teathers who will be cager to use stereographs when they realize that the threedimensional picture is a great deal more tham a flat picture with a pleasing sense of depth added.

It is impentant, thenefore, werwe the dief adsantages of surh pietures.

First, the flat picture is heded omly in ditedion. whereas its thee dimensomal combexpent is tived in sice, shape, and direcfons. It is theretore meanmable in thee dimensions. The dimensum of deph in wal and visually obvious and need not be inferred fanm perspertise: 1 his is a great adsantage in teaching such sub. fots is whed geomeny, amalytical geonetuy, astomomy, navigatien, and esptal and atomic struture. The problem of seeing a adt datwing on puture solidly is immediatelve diminated. Three domemomal datwings for solid gememy and photographs of mat whes and mathine path, for pactial mechmies illustate this . d amtase. Futhemore, the accurate mesosurement of deph is ahontume comental on such sciences as atial maphing.
secomet the stereosopic pictuec hes muth ereater sepatation phere than the flat pirture. In the ordinar? photograph of com-

 : manind letween the parts. The the edmemiomal ammerpart of the some pieture will mate the entite patmen chat I think of two

[^28]icosabedom. Fom the flat pieture the student is unable to count the number of taces. hut he (all do so foom the sulid pie ture the whe is a picture taken in a chemial hatensmens where it is important to know the number of glass tubes used in an experimen. The number of tuber an be estity coumed in the solid pioture and not at all in the flat one.

Thim, the prohologital appeal of the steroghaph is inimitio eremendous and has an unanald persistence. It captures the inter

 phenomemon. Smbents will lowh ot the dimemional pictum long aher their imencot whatd othewise hase flaged. Funher
 origimat thenthess.

 stereogaphes mates Now where mather hesh and reat. This is whe
 marker.

 teathing towl.

It somit! be memtomed biat, xiemitmalls. the thace dimen

 ther dimentimat phomequs.
 dusomhisadammere.

AVAIIABLE EQUIPMENT AND PRINCIPIES OF USE OF VISUAL AIDS

M. Richarl Dickter

The perpose of this anticle is to indicate briefly the various types of visual aids in current use, the apparatus necessary for using each one, and a working technique for teaching with visual aids. It will concern itself with visual aids that are comparat'vely new to mathematics in the sense that few of them deal directly with this subject. The development of content material for each of these several aids offers a new and valuable field of endeavor to teachers of mathematics. Once the content is estab. lished-and appropriate content for each of three purposes is necded: to motivate interest in mathematics, to enrich the subject matter of mathematics, and $\cdot a$ provide specific instructional materials-..- it becomes necessary to decide what type of visual aid is best adapted to the particular material. This description of available sisual ads will be helped in clarifying the problem of chovice.

Opaque Pictorial Matrizal.s

Iescription. Opaque pictorial materials, such as photographs and illustrations on post cards, from books, magazines, and simitar sources, are numerous, easily obtained, and relatively inexpersise. A single picture is frequently more effective than a lengthy description. The main limitation of these pictures is that they an be seen by only one student, or a small group of students, at one time. unless thene is a sufficient number for the whole class. Howerer, this diffictity an be overcome by using an opaque projector to throw the pictures, if not too large, onto a screen.

Adiantazes and Disadrantazes. The opaque projector has certain admantares. It will project, by reflect d iight, any opaque flat or nearly flat motterial, such as drawings, graphs, or diagrans, and any writen or teped material, such as lists of examples and prob-
lems. It will reproduce color on the screen. It is extremely simple to operate.

It is possible to buy a combindion projector for opaque materials and $3!:^{\prime \prime} x 4^{\prime \prime}$ standad glass slides. "he change faom one to the othar type of pojection can be made instomty. By means of suitable accesomiss, this combimation projoctor (an also be
 strips.

Beratuse the opaque pojestar, howeser, propects hy weflected rather than tammated light, much of the lisht is lost. It is. therefore, ne cessay to hase the room thomoshly datened.

Am:ther disadsamage in that the opatate phoferm is 1 thhe balke in shape 1 his is mot a sumos comsideration so far as porta-
 dhat the wher ames.

111 (inass Shat

 milled light.

 slide.

 apertare

Sourees. The slides may be made by the individual who wishes to use them, of may be obsaned though loan on sale fom momerwhs distributing agencies.

The Photographic Glass Slide. Photographic glass slides are made from negatives by contact printing or enlarging. "The photographic slide is merely a positive iniage on a piece of glass coated with a light sensitive contalsion, just as a print is a positive inage on a piece of paper coated with a light-sensitive emulsion. The necessary materials for making photographic slides, with instructoms, mat be purchased from any of the several companies producing photogtaphic materials. It is possible to tint these photostaphic: slides by means of water colors.
(ilass stides ate also made from positives on film of the negatives. The pesitite is monnted between two pieces of cover glass for polertions. I he whatigue in the same in both ases: it is omly the type of material used for making the positive that is different.

The' Itamdmade' (;hess Slide. By a handmade glass slide is meant a mon-photogiphic shide. Witing or dramings for projection may be plated en sur h medi.s as clear ghss conted with ckar shellac, vichodghas. or hammith. I.end pencil, whed pencil. India ink, w coloned ink max be used. These slides may be mounted in the whal manner, wit they ate ton tempormy use only, they may be mounted temponaty of mot at all.
(idlophanc will take India ink mod (an also be used for mak.
 witlen shides. Simply phace a hee of cellophane of the proper sue mos a fohked viect of cabon paper and then tye onto the whophate thomat the cabom. Kemmans the ribbon will pro.
 felmanconls a tempromily.

Mremod of l'e. 'I he elass \because (.m be viewed be thanmitted

by 2 " x 2 " projectons. It is possible to adapt the $31 / 4 \times 4$ " projectors for projecting !"" $\times 2$ " slides.

Adrantages and limitations. ©lans slides offer maximum brilliance on the screen. They may be left in the projector for any length of time and may be used in a room not completely darkence. They may be conseniently arranged for use in any desired order.
(ithe slites are casily made by the individual who wishes to use them.

Themede. homerr, , otain limitations. The slides requite conviderable stame space and they are easits broken. They are faink expermioe. althongh not unduly so in relation to the ir value.

The 3: mm. Finmstrip
Dextiption. The filmstrip consists of a sequence of pictures on a stip of : ${ }^{5}$ mom. hlm. cither black-and-white or color, made in ant mintance comera using 3.5 mom. film. The pictures may be either of singleframe sie, $33^{\prime \prime} \times 1^{\prime \prime}$. or doubleframe size, $11 / 2^{\prime \prime}$ $\times 1$ ".

Piomes made on naturatoolen film ane wemmed processed as positives on film. ready for siewing or popertion. Pictures made wh the wath bak and white film ate developedas nesutives, from which as many positive copies on film as desired may be made by comast pinting. These is now asathble a black-and-white reversal fom whi h. when poresed, results in positive mages on the film and the eliminates the ime mediate step of making negatives.

Hethod of \mathscr{C}. Ber.we these 35 mm . pictures are small. it is

 be wed be fatime it withone of these atachments.
somold filmanips. Somod filmonips an be prepacd by taking
 sas ixhlmaton: material on monds. If aceoded and rum at ix
 the pictute olle popertal.
 Thes ne comemment watake on buy or ship from place to place.

They are light in weight, and require very little storage space. A roll of eighteen to seventy-five pictures may be kept in a small can.

Fhere is no danger of getting the pictures out of order, and there is no danger of breakage.

On the other hand, the film is easily damaged because it is unprotected. Furthemore it is impossible to vary the order of presentation of the individual pictures except by skipping back and forth. 'These two limitations can be overcome however, by cutting apart the several frames and mounting the individual transparencies as $\underline{9}^{\prime \prime} \times{ }^{2}$ " glass slides.

Three-mmensional Piciures

Descriftion. The three-dimensional picture, known as a stereograph, has the desitable feature of depth, thus adding reality to the visualiation. This advantage is of importance in any situation, but particularly in solid geometry, where many students find it hard to vistalie there dimencions fom two-dimensional drawings.

Method of Production. There are special two-lens cameras for producing threedimensional pictures. However, these pictures can also be made on regular black and-white or color film, in the same wav and just as casily as. two-dimensional pictures, with any still camena futted with a stereo attachment over the lens to give the neecssary wo images on the same piece of film. The film is processed in the usual manner. The 3.5 mm. miniature still camera is
 shed in this way.

Methed of lise. For indivdual use, the resulting stereographs mas be vewed as positives on films (either in filmstrip form or mounted is slidesi or as pesitises on ghass or paper (either contact

 :momed as $3^{\prime \prime}$ " " 2 " slides. maty be poperted onto a screen by me.on of projectors mate or dapted for the purpose and viewed dhamidh suitable spectacles.

Dionom Pacinemes
Ihe nimion pisme sileat and somod, is so familiar that litule

structional purposes unless motion is essential. Otherwise, the still picture will serve better and is cheaper.

The question of silent versus sound pictures is still a controversial one. Fconomy and ease of production would seem to indicate that the silent film, either with titles or with spoken comment by the teacher, should be used in preference to sound film where the dialogue on the sound taack offers no distinct advantages. Ishould be kept in mind that the comments on the sound track camot be adapted to particular teaching situations, should such adaptation be adrisable.

Techniper of Teachivg with Visual Aids

The technique of teaching with visual aids divides itself naturally into three stages: the teacher's preparation, the presentation, and the follow-up.

The 'leacher's Prefaration. The teacher must consider these steps in prepaing to use visual aids: (a) Familiarize himself with the content of the visual material. (b) Decide upon the purpose or purposes in using the aid-introducing the unit, direct teaching, summarizing or reviewing, entichment, or appreciation. (c) Decide at what point or points in the unit to use the aid. (d) Determine what the students should look for during the showing of the material.

The I'resentation. The presentation may be motivated by one or more devies such as thess: (a) by developing the need for it; (b) be taking advantage of the interest or previous experiences of the students; (c) by advance assignments--individual, group, or class-hased upon what is to be seen.

The students must maderstand clearls exachls what they are to lowk for during the presentation. Whether the points on whish ther are to cons entate theit attention be general or detailed, these peints should be specificillys stated in sentence form on the blackboad or in notebooks. It is adsisable to drill upon difficult and new words that mat be found in the material to be presented. It is also wise mot to list tos many points for obse:vation during any one slawing.

If at all pmable the material hould be prem nted immediately after developing the points to 'ee obselved during the showing.
(a) All apparatus should be seady before the presentation, and arrangements made for opetating it. (b) If the material is to be shown more than once, it is wise not to intermpt by calling attention to special items during the first showing. (c) It is advis. able, if it can be ananged, to preserve nomal conditions by having the dase meet as ustal in the remblan dasorom for the presentation.

The fullonerup, The disenssion of the hhe should be started as soon as posible after the prenemation is completed, preferably the some dase and should be bated upon the points on which the students were to concentrate their attemion. At the same time it will be pasible waswer other questons aning from the discussion and to eliminate any enoneous impressions oreated daring the presentation.

The teacher should eqpitalie upon interents aroused by the sisual material and the disussion to stimmbete the students to further activity associated with the mit under consideration.

If the material is presented for the pupese of impaning information, the sudents should be hedd :esponible for the information gained.

All the material, on oms pentoms of it. mat be shown several times depernding upen the neds of the group. Fach such subseguent , bowing should have for its purpese the settling of sperial
 mot nex cosery to dow all of the material.

The terlmique here peremed in simple and ens on follow, but
 wom,

Appendix

5

ERIC

APPENDIX I

 SHORT DESCRIPTION OF INDIVIDUAL MODELS

 SHORT DESCRIPTION OF INDIVIDUAL MODELS AND DEVICES

ARITHMETIC

fidditun combinations. slots ate cat mito paper pasted on cardboad. Numbers upear abose stons. Coloned slipe ane inserted as soon as the pupil has had the combination. If he tails one w dill, the coloned stip is revensed and the nothed end inserted.
F.BHEL. WR.s.MOUTH
 subtaction, multiplitation, or drisum, a label with the combination wituct on it is paned an a coloned poce of puper about the siac of a regulation totebook. The chatherp the cord in he notebook until someone else misses a combination. A chatd mus gise all the combinations on the cand before hamding it to another child. AILCE M. HACH
simple and - .ampond merent This model, made in the manual training department, shows the difference in the satue of mone: invested at simple interest as comphated to compound intecos. The first column at the extreme left represents $\$ 10$ deposited in a bank. The fiont ro x shows the inciease at simple interest: the back

row: wimpend morest. Fom lefs :o righe each column shows the amotint at five

 karlinkIife rounc:

Appentix I

 maderstanding recabulats. we have attemped to focis attention on word meaning in sevelal wats. We hase fomad the following to be the most effective ones:
(a) 'I using pictutes wis show the meanity of worts. These are selected from satous'sontcés and can be arzanged as a bulletin boatd exhibit of on posters for classuon display.
(b) By using posiers designed to show the root,meaning of the word and its wide use as part of other wonds in the English language. The accompanying illustrations show two such posters.
(c) By printing the vocabulary of each chapter or subject on a roll of paper at. - tached to a wandow shade rollet. This is hung on the watl of the chast rom and cant be relled up out of sight when not in use, Such a list is Ascfal for guick teviews.
haldinint. TOUNG

\because GENERAL MATHEMATICS

Picture frames. Frames for pictures of mathematicians ane made in the shape of triangles or other gemerric figures.

HONANE: E. CONE

Tile designs. A bagful of assorted tiles is kept in the classroom. Tile designs are made by plane geometry pupils and fastened to the cardboart with otdinary glue.

Wh.t.AM! I. SMITH
The circle in airplane markings. The wing markings of the aitplanes of various mations ate paizted on thee-inch squares of balsa wood. The circle appeats to be basic to most of these designs.

WIHAM r. sMITH
 in lengths of the inch, foot, tath, and rot, are hung on the wall at the front of the classroom. Fach piece is hishaly painted and labeled.

AIICE: M! MASH
Measure: fermeter of wometric figures. Fach dild is supphed with a packet of
 the perimeter of various plane figutes. such figures as the thombus. spuate, penta. gont hexagon. and ohlem may be reatile fomed.

H10. M. H.MC.H

 deremine the atco.

Al:I 1. H. HAC.11

ERIC
ugram ABCD: The area of this parallelogram is the product of the base and the altioude. The triangle is $1 / 2$ the parallelogram, and can be expressed as $\frac{H B}{2}$ or 1418.
(b) "Atea equals the product of the base and $1 / 2$ the altitude." (Fig. 2) Cut out of paper a triangle CED. Cut aloug line $A B$, which bisects the altitude and runs parallel to the base $:=1$. place $A B C$ in position BFD, making a rallelogram $A E D F$ with base equal to the base of the triangle and the altitude equal to $1 / 2$ the altitude of the triangle.
(c) "Areal equals the product of the altitude and $1 / 2$ the base." (Fig. 3) Cut out of piper a triangle EDD. Cut along line $A C$ which bisects the base and runs parallel - © ED. Pace ciba in position FEA, making parallelogran' CPED with aftitude equal te the altitule of the triangle and base equal to $1 / 2$ the base of the triangle,
kathartieg young
lormala for the area of the trapezoid. (Sec page 372.)
(it) "Areit equals the product of the" altitude and $1 / 2$ the sum of the two bases." (Fig. 1) triut trapeenid MNEEB out of paper, Cut along the tine AC which runs throngh the center point of $E B$ and parallel to $M N$. Place triangle $A C B$ in position Del:. The parallelogram NiMAD is formed, whose areal is the product of MA and the altitude of the traperoid. But $M A$ is $1 / 2$ the sum of $M B$ and $N E$.
(b) "Area equals the prochuct of the sum of the two bases and $1 / 2$ of the altimale." (Fik. ©) (iut traperoid $A B C D$ out of paper. Fold so that the two bises $A D$ and $B C$ comente. Cint along line M.V. Place upper part adjacent ${ }^{\circ}$ lower part forming the patallelogram $M f_{r} I P O$. The area of this patallelogram equals the sum of the two bises muleiplied by 1,2 the attitude.
(c) "Area equals $1 / 2$ the product of the altitude and the sum of the two bases." (Fig. 3) Cut two congruent trapezoids out of paper. Place thear adjacent in such a waras to form a parallelogram ABFE. The area of this parallelogram equals the product of the altitude and the sum of the two bases, which makes the traperoid !'2 this paralielogram.
© KATHARINY: YOI'NG
Meaning of the formula for the aren of a circle. A wooden box 2 " deep is covered with glass. A raised partition divides the bottom of the hox through the center. In one side is a depressed circle (Exhibit A, page 374); in the other 7 depressed are: composed of $31 / 7 \mathrm{squares}$ with length of the radius as the side of each square (see Fxhibit B). The surface of the circle (see Exhibit B) is completely covered with shot which can be poured over to the other side and shaken down so that it exic.ly wers the suface of $31 / 7$ squates (see Exhibit A) This shows that the actual surface covered by the circle is equivalent to. that covered by the squares.

KATHARINE YOU:NG:
Folume. A cube whose edges are foot rulers of cut from yardsticks is heps before the class for reference in solving problems and as a means of visurlizing a cubic foot. .

ALICE. M. H.4CH
Geometr project. Facl year we have a patents' night at which time we exhihit work of the pupils One yex. instead of thesustal projects for the geometry exhibia 1 asked pupils to bring fom home artictes in which the could see any geometry. The experiment prowed to be successful beyond my expectations. My walls were

Exhibit A

* K.Nalat B

ERİC
lined with dresses, neckties, shirts, sweaters, and all kinds of wearing apparel; under lock and key in my cupboard were cut glass dishes, silverware, china, jewelry, and many other valuable articles. Some pupils preferred to make scrapbooks. From these they discovered geometry in advertising, in architecture, in the home, in house plans and household applinnees, in the arrangement of foods, in linoleum, silverware, jewelry, bedspreads, clothing, in flags and mapmaking, in tactors, transportation, and in nature.

MaE howell.
Use of lines and angles in cuereday life. After a study of "Geometry in Nature," my classes enjoy several days, with the topic "How Lines Are Used in Everyday Life," In a recent class these suggestions were made: (a) Use of line in car design to give appratance of length. (b) Use of concentric circles on hub caps to give appearance of motion, (c) Use of stripes in clothing design to give illusiou of height. (d) Use of thick glass or false bottoms in bottes of toilet preparations to give the appearance c: large volume. (e) Use of lines and angles to provide optical illusions.
ralidh a. austern ilder
Polygonal forms. The ninety ednuex and concave polygons are made of black plastic. The figures are fastened in a plywood frame about $3^{\prime} \times 4$ and rangs on the wall of the classroom. They are referred to frequently throughout the course in

phane geomety. The order of the linues is that assigned by the formula for aesthetic measure of Professor (eenge D). Biakholf (see Sixth Yearbook, National Council of Teachers of Mathematics, fp. 190-195).

Eighteenth Yearbook

A mathematical Christmas tree. An annual project of the solid geometry classes in the Rapid City, South Dakota, high school has been to make better and more unique solids than those created by previous classes. \because hese included threc penctrating cubes, two penetrating pyramids, fi star at the top of the tree, a cross, a starred dodecahedron and icosahedron, a suub cube, a truncated icosahedron and fourteen cystal solids.

FL.ORENCE: KRIEGER
The spiral. 'I he mathematical "sea shah" is etched on black plastic. One side of each right tiangle is of unit length. Starting with an isosceles right triangle, whose hypotennse is $\sqrt{2}$, the successive hypotenuses become $\sqrt{\overline{3}}, \sqrt{4}, \sqrt{5}, \sqrt{6}$, etc.

WILLIAM J. SMITH

ALGEBRA

signed numbers--addition. Fach pupil makes his own scales of signed numbers and uses them to learn the rules of addition. For example to add +5 and -6 ,

place 0 of sate B below +5 of the A scale. The answer will be for ind immediately ahowe - 6 of the 1 sca' -1 .

KATIIARINE YOUNG:
Model for taching algebruic multiplication. On page 377 is a device which illustates the rules for the sign of the product in algelbaic multiplication. The appalatus consists of a light wooden bar or lever, balanced at M. Small screw hook $\left(r_{1}, r_{2}, \ldots, l_{1}, l_{2}, \ldots\right.$, etc.) are placed at equal distances to the right and leit of M. One cond of the staing over the pulley has a hook (H) attached, and the other end of the string is left free to be atrached to the proper scre v hook when a weight is attached at H.

If a weight is hung on a right hook (r_{1}, r_{1}, etc.), the bar will tun in the satne duection as the hands of a clock, that is, clockwise; a weight hung on a left hook

Before making , the experiments there mast he agreement on thee matters:

1. Distances on the bat to the right of M are positive: distames to the teft of M .ue begative.
2. Weights athached to the sotew hooks (that is. downward pulling weights) are
negative; weights attached to the pultey string at H (that is, upward-pulling weighte) are positive.

3. Counterclockwise rotation of the bar is considered positive; clockwise rotation of the bar is negative.

The following experiments will show how the apparatus works.

1. To find the product of +2 and -4 , hang 4 equal weights on r_{1}. Since the bar. turns clockwise, the product is negative; that is, $(+2)(-4)=-8$.
2. To find the product of -2 and -4 , hang 4 equal weights on l_{2}. Since the bar urns counterclockwise $(-2)(-4)=+8$.
3. To find the product of +2 and +4 , faston the frec end of the pulley string at r_{2} and hang 4 equal weights on the hook H. Since the bar turns counterclockwise, $(+2)(+4)=+8$.
4. To find the product of -2 and +4 , fasten the free end of the string at l_{8} and hang 4 equal weights on the hook H, as in Ex. 3. Since the bar curns clockwise, $(-2)(+4)=-8$.
These experiments show that the rules for the sign of the product in multiplication, stated belov, are reasonable; that is,
If two factors have like signs, their product is positive; if they have unlike signs, their product is negative.
W. D. RERVE

Graph blackboard. A squared area is drawn on a piece of yellow cellophane, $31 / 4 / 1$ $x 4^{\prime \prime}$, with black and red India ink. If placed between two regular-size lantern glasses and lringed with passe-partout, the cross section lines may be projected on a blat :board with the ordinary slide projector. Curves may se sketched readily on the board. In this way, a graph board may be provided for any classroom.

HFNRIETIA TERRY
Graph board. A graph board $5^{5} \times 5^{5}$ is useful when made of wall board which has been painted black and placed in a wooden frame. The squares for the graph are painted with yellow paint. This board is fastened to the wall with wooden pins so that it may ty put up when needed and taken down when not in use.

KATHARINE YOUNG
Graph bourd. One slate of the blackbrati is ruled into two inch squares with the aid of a child's yellow coloring crayo: The cost is relatively little. The lines can be removed at any time, but an eraser does not take them off. If the lines become dim with use, they can easily be retraced.

MARY L. WEBSTER

A g aph bosurd- howe lo produce ome in "Barren BAedget Land." With the aid of a lewher punch, holes ate perforated at one atall intervals on a piece of back obeloth, The wong side of the cloth is pointed with a co wscoss pattern which serves as a guite in kepping the loles equatly spaced. A dowel stick added to the top amd bottom, or two ohl curtan rolles, complete the device. When'it is placed against the hackluand ind a dusty eraser is passe 1 quickly over it, it easily stencils a rectangula system of points.

JAMES R. HAYGEN
Classroom blackboard equipment. The fume here shows a mumber of instru. muts and measuring desices that ane useful in teading mathematics.

Graphs. Hooke's expeniment on elasticity is performed with the aid of a large spring and some weights. A committee of students performs the experiment while the rest of the class records the data. The results are graphed, and the line studied, interpreted, and tested for accuracy of prediction.
Following work on straight line graph, a pan of boiling water is brought into class. At regular intervals a large thermometer is thrust into the cooling water. The temperature drop is recorded and the results are graphed, interpreted, and com. pared with other records.

LAVFRN TRIPP

PLANE GEOMETRY

Use of colored chalk. Relationships in families of theorems may be shown by the use of colured chalk or Ditto ink in marking corresponding parts.

ANICF: SFYBULD
Congruence theorems--using color, Culured paper parts may be use for the st:eperposition of congruence theorems. For s.as. wo equal green strips, two equal yelow strips, and two red angles are first exhibited. One triangle is completed by attaching it to the board with tamsparent tape. The second is completed on top of the first in the otder in which the steps of proof are witten out.

ANICE SEYBOLD

Congruence of triangles. In discussing congruence and inequality theorems a model is used consisting of a black rigid triangle to which is fastened a light colored flexible triangle. The hase of the flexitle triangle is equal to that of the rigid triangle and is fastened t it. The left side of the flexible triangle equals that of the black one. The flexible triangle, hinged at two vertices, may be used to illustrate congruence when three sides are equal respectively, as well as when two sides and the included angle are equal. Inequality theprems may also be illustrated.
H. FFUHRMANN

Congruent triangles (ambigutens case). Two triangles are not afways congruent if two sides and an angle of one are equal to the corresponding fats of the other. The moded shown here is construsted of painted plywood and colored cardhoarcl.

:RANCF.S M. BURNS

- Ihe tyend now is to postulate these henempsemor.

Triangles, Three strips of wood are fastened together by small metal hinges. The sum of the t, 3 shorter strips equals the longest strip. The wooden angle piece is held in place by the weight of the two upper strips. The following may be demon.

strated; (a) The ambiguous case in trigonometry. (b) The sum of the two shorter sides of a triangle must be greater than the longestride. (c) The various kinds of triangles.

WILLIAM P. SMITH
Exterior angle of a triangle. An exterior angle of a triangle is greater than either opposite interior angle.

Tiwo 8" protractors are fastened at each end of the base of a triangle which has been drawn on painted plywood $16^{\prime \prime} \times 27^{\prime \prime}$. Ah elastic cord leading from holes at each end of this base can be looped over pegs which locate the vertices of an equilateral triangle, two right eriangles, ard three obtuse triangles. Readings on the protractors when the vertex is in these various positions show the constant relation between an exterior angle of a triangle and one of its non-adjacent interior angles, and the changing relation between the exterior angle and its adjacent interior angle.

FRANCES M. BURNS

- Sum of the angles of a biangle. The sum of the angles of a triangle is equal to 180°.
The two base angles of a plywod tiangle having a base 17" and an altitude 11" are cut will a jlg san and fastened with Scotch tape, in their original position, or at the vettex of the triangle where their exterior sides form a straight angle.

FRANCEW M. BURNS
Inequalities. If two sides of a triangle are unequal, the angles opposite are unequal in the same order.

0

Take a paper triangle $A B C$ with tinequal sides. Fold one side on another from the common' vertex A. The crease will be the angle bisector $A D$. The side $A B$ is made to fall along $A C, B$ falling on $B^{\prime}, \angle B$ on $\angle B^{\prime}$, and since $\angle B^{\prime}$ is an exterior angle of $\angle B^{\prime} C D$, it is gret.ter than angle C.

HARRY SITOMER ,
The general quadrilateral. Four sticks not equal in length are joined to form a *quadrilateral. The tesulting figure ishot rigid. The diagonals are not equal, and do not bisect each other. The angles are not bisected. However, an elastic cord join-

ung the midpoints of the successive sides forms a parallelogram. The sides of the parallelogram equar one half the lengths of the diagonals. The quadrilateral may be de formed inf two wass to make a triangle in which the elastic cord remains parallel to the bipe. The model may also be used to illustrate a skew quadrilateral.
H. FUHRMANN

Narallelosithels. The following theorems are illustrated by the models shown here:
(1) The diggonals of a parallelogram bisect each other.
(2) If the diagonals of a quadritateral bisect each other, the figure is a paralletogram.
(3) The diagonals of a rhombus are perpendicular to and bisect each other.
(4) The bines joining the successive mid-points of a quadritateral form a parallelograin.
(5) Two points each equidistant from the extremities of a line determine the perpenhicular bisector of the line.

For ench of the preceding the rems the fypothesis is executed by means of wooden strips 1/a" wide joined with round-head stove bolts in such a way that hey pivot at the comers. Small elastic cord tied to screw eyes forms the lines for the conclusion.

In addition to the parallelogram theorems, principles such as these can be demonstrated with these models: "Parallelograms with equal peimeters do not always have equal areas," and "The line of centers of two intersecting circles is" the perpendicular bisector of their common chord."

FRANG:S M. HURNS
Parallel ruler. This parallel ruler for blackboard work is made from the two halves of a yadstick connected by links fastened to the sticks by holluw rivets. It is constructed on the principle, and is a constant reminder of the theorem: If both pairs of opposite sides of a quadrilateral are equal, then it is a parallelogram.

FRANCES M. BI'RNS
The gyroscopic iop. If the top is passed around the class while spinning pupils feel its reactions to turning. It illustrates the parallelogram of forces.

ANICE SFIBOILD

Parallelogisms. It the dugonals ot : quadritateal bised each ohen, the figure is a pramelologram.
Two sticks ate chosed and fastencl at heir mid.point. All elastic corl stretched anom the dods asmats the pesition of a pandelogram. As the angle between the diagonals changes its ponition, the fighe remains a parallelogan. When the diagonals are peopendiculor, a shombus is fomed, and the angles of the thombus are bisected by the diagonals.

Parallolograms. A flexible parallelogiam is constructed from sticks. This iliustrates the theorem: If the opposite sides of a pudrilateral ate equal, the figure is ${ }^{\circ}$ a parallelogram. Flastic cords joining opposite vertices show that the diagonals bisect each other thit that the angles ane not hisected. When the diagomals ate equal, the paatlelogram locomes a rectangle. If another elistic cond is made to pass through sucessive mid-points of the pathelogram, another paralletogram is formed. This second parallelogram becomes a rombus when the original parallelogram becomes arectangle.

> If. FUHRMANN

Parallelogram: rigidity. The parallelogatim is mot a rigid figure. It can change its shape without changing the length of a side. When mails in a crossbar are made to

fit into holes in opposite sules of a paralletomam, the bar temains paraliel to the wher two sides bat the figure is not bigid. When the bar is athached to wo adjacent sules to form ot thate or a tataremid with two of the sides, the parallelogram be comes sigill and com umponi a weight.
H. ITHRMINN

Reetangles. It the diagombe of a quadnatal are equal and bisert each other. the tigue is a retangle
Two equal stiths are fastened at their mid-points. An elastic cord stretched through the ents forms a rectangle. owhen the sticks are at right angles, the rec. fangle beromes a splate.
H. FUHRMANN

Rectangle. If a rectangle varies so as to assume the shape of a squate, the diagonala become perpendicular to each other and resolve into bisectors of the angles of the rectangle.
H. FUHRMANN

Median, The medians of a triangle meet at its "center of gravity." The model here shows how the triangle is in balance.

FRANCFS M, BURNS
Median. Medians of a variable triangle with fixed base.

The basc of a \quad mangle is painted on a pate of plywood $13^{\prime \prime} \times 14^{\prime \prime}$. Holes ane bored at the exnemities of the bate and the ends of an elastic curd are knotted at the back. This elastic cord is strung through a screw eye fastened to a peg. A secoud cond comes from the middpoint of the bise; this is threaded and then knotted though a thole in the peg very close to the serew eye. When the peg is filted into
 fombon of a median in these diangles is shown.
tRANCFS M. HURNS
Mrdians and feeppendicular bisectors. Medians and perpendicular bisectors can be , hown in a flexitile niangle. The perprodicular bisectors of two of the sides may be rephesented bi lised sticks. Thr medhans to these same two sides comsist of elastic
cords fastened th the respective vertices and midepoints. The stick representing the perpendicular bisector to the base and the elastic cond joining the mid-point of the base to the seate of the triange are shifted to the necessary positions by means of a pulle : I cantige anangenemt buil into the base. This keeps the perpendocular bisector in the center as the base changes ia lengeh. As the thangle assumes
 concuntert bequectively.
11. FUHRSIANA

Trianke: altitude medim. petpendicular bisector of side, and angle bisector.
 same vertex, the median to the opposite site, and the perpendicular bistetor of that

side ate not the same line. The illustrations show a thangle with a constam base, the perpendicular bisector of that base, a movable stick which joins the mad-point of the base to the opposite vertex, an altitude repesented by a plumb line, and a bisector of the vertex angle, assuming various or constamt positions as the triangle changes from scalene to isuseales, At least six theremen relating to the isonceles triangle may be demonstrated with this model.
H. LIHMMANN

Important has. Moxdel showing the powition of the altitude, medime and angle bisector of a scalene triangle, base $1 \mathbf{8}^{\prime \prime}$, altitude $1 \mathrm{I}^{\prime \prime}$. The dowels tepresenting these lines are painted in contasting colors.

IRUNCIS M. HURNS

Altitude of a thangle. An ahtitude of a batugle may fall inside the base, colneide bith one side, or lall outside the aiangle, depending on whether the angle at the sight end of the base is actite, tight, of ubtuse.

i

H. FUHRMI ANN

Altitude. l'ositions of the altitude of a satiable tiangle having a fixed base.
The base of a thangle is painted on a prece of plywod $12^{\prime \prime} \times 17^{\prime \prime}$. Narrow round elastic forming the other wo sides feats fom holes at the ends of the base and can the looped over pegs located at the vertices of a right triangle, an isosceles triangle,
\star

Wo atue thangles, and wo obtuse tamgles. When the model is held uphight, a phanb bob suspeoted fom the vertex shows the positaon of the altante of that triangle w th tespeat to the base.

FRANCIS M. BURNS
 The conter and a chond ane mand. A panow dasic leads form the extremities of the choud to pegs at the ventioes of a bigh wingle, two acute triangles, and two whase triangles. When the elastic is stomed wer the pess, the position of the

arner of the cincle in the diflerent kinds uf namgles is shown. This motel will aho demonstrate (a) an angle instribed in a segment whose anc is less thom a semicitcle is obtuse; (b) an angle innctibed in a segment whose ate is more dhan a semieircle is acute: (c) the median to the hypotenne of a right thangle is one-balf the hypotemase; and (i) minges instabed in the sume senment ate cymal.

FRANIFS M. HURNS

Appendix I

Right angles inscribed in a semicircle. A 12 " cincle and its diameter are painted on plywoul. Nintow round elastic leading fom the back though holes at the

©rnd of the diameter can be stacteded around any of the many pegs fastened on the cinfé. An gingle inscabed in a semicincle is a sight angle. 'I he locus of ibe vertice: offine righ angles of right triangles having a given line segment as hwotentuse is a anche whose diameter is the givel hypotemose. '

FRANCLS M. BITRN'
Measurement of angles. Moplels showing the telation between certain kinds o angles in angle degrees and their arcs in are degrees are reproduced below and a the top of p. 388.

Complete 30° bristol boad protactons $14^{\prime \prime}$ in diameter are bound to plawoon with seguth tape. Small tencent protactos ate attached at the vertex of the angle one side of which is a fixed line drawn on the figure and the other an elastic whicl can be hedd at any desited position by a pash pin throngh a small loop at the en of the elastic.

YRUNGIS M. HIRN

Measurement of angles: circle. A circle with its diameter equal to that of a board. protractor is cut from plywood. Its edge is marked at five-degree intervals. Thin steel or copper rods may be placed in such a way as to form central angles, angles formed by two chords of a circle, inscribed angles, and exterior angles. These cases may be shown to merge into one another and hence illustrate continuity. The -necessity of adding atcs or subtracting them fiom each other is also noted.
H. FUHRMANN

Continuity: angle formed by wo straight lines intersecting a circle. Use a piece of cardboa "d, $20^{\prime \prime} \times 50^{\prime \prime}$. Cut a slot from point P to the center of the circle and

rivet two nursow bats at O. Ther: bars slide back and forth in the slot from P to the center and illustrate the seven cases in succession.

EMMA HESSE

Appendix I
380

- Treorems relating to chords, ares, central angles, and inscribed angles of a circle. In model A, a semiciscle is made of a chrominm strip taken from the side of a -wrecked automobile. The full circle in model \mathbf{B} is made from a piece of netal

molding. The edges of the metal molding are bent in such a way as to form a slot in which slides a nail heat? as shown in the black catdboard cross section in the picture for motel A. Dotted construction lines are shown by means of red rubber hands and the usual sides of the figure with black bands. About fifteen theorems telating to chords, ancs, and central and inseribed angles of a circle can be demonstated with the aid of these models.

WILIMAM I' SMITH
1
Tangents to a circle. A circle is drawn on a piece of plywood $15^{\prime \prime} \times 20^{\prime \prime}$. At the center of the circle is fastened a wite which is bent at a right angle at the outet extrmity of the radias to form a tangent. By piveting the wire through the center

this tangent can have lis point of contact at any point on the circle. The movable tangent and a tixed tangerit which is painted on the plywood are scaled in bands of contrasting color one-inch wide. The model is tised for demonstrating the follow. ing relations: (a) Tangents to a circle from the same external point are equal. (b) Tiangents at the extremities of a diameter are parallel. (c) If a line is perpendicular to a radius at its onter extremity, it is a tangent.
frances M. BURNS
Center-square, '5" long, for finding the center of a circle. This is used to help $^{\prime \prime}$ apply the following theorems: (a) Tangents to a circle from the same external point

are equal. (b) The bisector of the vertex angle of an isosceles trangle is the per. pendicular bisector of the base. (c) The perpendicular bisector of a chord passes through the center of the ciucle. The upper edge of the bisector always bisects the angle.

FRANCES M. BURNS
Tangent secant relation. A large circle is drawn on bristol board backed with ply. wood. The tangent is fixed, while the secant, marked in $9 / 4^{\prime \prime}$ units, pivots from an

external polnt. If care is taken in choosing the dimensions, several illustrations of the, tangent-secant propurtion using whole numbers can be obtained.

ERANCES M, BURNS
Secant and external segment. A large circle is drawn on colored showcard board mpunted on plywood. A 21 ", secant marked in inches pivots from an external point. If care is used in choobing the dimensions, several illustrations, involving only iutegers, of the constant relation between the secant and its extemal segment can be shown.

FRANCE:S M. BURNS
Area of a segment of a circle. Colored cardboard with the chord of the seginent scored and taped with Scotch tape so that the triangle will bend out of sight illus. trates the principle that the area of the segment equals the area of the sector,minus the area of the triangle.

FRANCES M. bURNS
Similar triangles (blackboard device). A triangle having a base 14' $^{\prime \prime}$ and an altitude $10^{\prime \prime}$ is cut from plywod. A secerd triangle whose sides ate parallel to and $\mathrm{L} / \mathrm{y}^{\prime \prime}$ " from the larger one is remosed, giving a tool for quickly drawing similar trangles on the blackboard.

Equal segments. A series of parallel lines which cut equal segments on a trans. versa' is painted on a piece of plywod $16^{\prime \prime} \times 20^{\prime \prime}$. The "any othe; transversal" is represented by a dowel which pionts. This can also be used to illustrate the theonem: If a line hisects one side of a triangle and is parallel to a second side, it bisects the tiord side.

FRANCHS M. BURSA

Trangles. The line segment joining the mid-points of two sides of a triangle is parallel to the third side and equal to one-half of it.

0

A flexible wooden triangle is used. The base is marked off in equal divisions. A stick attached to the mid-point of the second side has the same divisions. Whet the triangle changes positions the stick is rotated so that it passes over the mid-point of the third side. It then remains parallel to the third side and equal to one half of it. (Strips of graph paper may be fastened to the base and stick if more accurate readings are desired.)
: H. FUHRMANN
Similar triangles and proportion. A triangle having two of its sides $16^{\prime \prime}$ and 12 " is painted on plywood. Half-inch units are marked on both sides. These are num. bered at intervals of $4^{\prime \prime}$ on the $16^{\prime \prime}$ side and at intervals of $8^{\prime \prime}$ on the $12^{\prime \prime}$ side. Elastic cords attached to push pins can be fastened at any desired points. This model has been used to demonstrate the theorem: If a line divides two sides of a triangle proportionally, it is parallel to the third side. It will also show the converse of this theorem.

FRANCES M. BURNS

Area of triangles. Two parallel lines $71 / 2$ " apart are painted on a piece of ply. wood $12^{\prime \prime} \times 24^{\prime \prime}$. A triangle with its vertex in one of the parallels and its base in the other is drawn. Elastic cord leading from holes at each end of the base can be hooked over any of the six pegs in the parallel through the vertex. The positions. of the pegs show right triangles, acute triangles, and obtuse triangles, all of which are equal in area to the fixed triangle.

FRANGES M. BURNS

Right triangle proportions. These three plywood triangles help to demonstrate the "right triangle proposition." Dimensions of the largest are: base 20 ", altitude $91 / 2^{\prime \prime}$.

Appendix I

FRANCIES M. BURNS
Mid points of triangles. The line joining the mid-pmints of the sides of a triangle is patalle to the third side and equal to one-half of it.
A natrow sttip of wood to represent the base of a triangle is tacked to painted plywood $11^{\prime \prime} \times 16^{\prime \prime}$. A second strip of wood, half the length of the first, is fastened at the mid-points of wo annequal pieces of the: elastic cord which form the other deo sides of the triangle. A push pin through the vertex places the vertex at any desited point. The line joining the mid-points of the two sides remains parallel to , the base, whatever the size or kind of triangle.

FRANCES M. BURNS

- Pythagorean Theorem. The square on the hypotenuse of a right triangle equals the sum of the squates on the other two sides.

Psthagorean Theorem. An wal method of buiding a right angle by "rope stretch. ing." using the 3-4-5 combination, is illustrated here.

Aroas of follsoms. I he atis of similar polygons and circles are to each other as the squates of their corresponding lines.

 live segment $10^{\circ \prime}$ long is drawn hating an $8^{\prime \prime}$ protractor attarhed at one end. Vertice of the equilateral wiangle, spuate, tegular pentagon, and regular hexagon

.1RJC:IS M. Burns

Models for the ponats of prafosilions in solid geometry. Clear celluloid $1 / 16^{\prime \prime}$ thick isemsed for the phanes, printed applicatoms for the lines in space, and narrow colored Scotch cellutore tape for the limes on the planes. Duce cement joins the planes; sealing wax holds line to lifue of line do plathe.

Bialsa wood models mon also be used for poofs of popositions in solid geometry. FRAVI:FS M. BLKAS

(.HElsilint fisciltar
L.ines and flames. If a line is peapemblichla to each of two intestecting lines att. their point of intersection, it is perpendiontar to the plane determined by these lines.

CHMASIASE FISCHIR
Jlanes if two patalle plathes are cut by a himed phate the intersections are paratlel.

GHRISTINF: FsGC:H1R
 wement.at. Hegular piallelepiped.

L.ocus. The locus of points within a dihedial angle and equidistant from the faces is the plane bisecting the dihedral angle.

hertums. The intersection of a plane and a surface is a section.

CHRInINA: flxCHt.k

 v:atl lambes all f!bintmas time
llok 1 MAS: watson

HORF NC. KRIFGIR

Sume composite polyhedrons. The solids shown in the accompanying figures appear in the following order:

Top row: tetrahedton, tethahedtons on eah face of a tetrahedron. octahedrons on each face of a tetrahedron. icos,hedrons on each face of a tetrahedron, tetrahedrons on each face of the tethathonins on each face of a tetahedion.
Middle row: cube, cubes on each face of a cabe, uctahedron, tetrahedrons on each fate of an octabedon, octahedoms on each face of an octahedron.

Botem now: dodecahedron, dodecahedrons on eath fare of a dodecahedron. icesahedon, tetrahedtom on earh face of an icesahedron, oathhedomen eath face of an ionsahetion.

 the come sections a the some is ievolied.

The sections of a cone. 'these onic sections were hand turned on a lathe by a student.
\downarrow

FRANC.ES M. BL:RNG
rolume of a sphere, using Cavalieri's pinatple. The sphere in this model is made of pyex glass and the cylinder of celluloid. The diameter of the base of the cylin. der and of the cone equals that of the sphete. The altitude of the cylinder equals the diameter of the sphere. The section of a sphere parallel to the basic plane equals the sertion of the cylinder minus the section of the cone. The boy who made this wotked on it for two months during his spare time.

WHLLAM r. SMHIH

- spherical angles. Model for proof "A splenical angle is equal in'degrees (1) ———."

A quater cincle of $10^{\prime \prime}$ diameter is glaed to a complete $1 \alpha^{\prime}$ circle. A second quarter circle is hinged to the first in sucat a way that it turns freely through 180°. The circles ane pitwon! painted in different colors. Applicators at the vertex of the angle are used for tangents.

FRANCES M. HURNS

Sides and angles of a stherncal triangle. The sides of a spherical polygon have the same measure as the face angles, and the angles of the polygon have the same measures as the dihedial angles of the corresponding polyhedral angle at the conter. A pherical'quadrihateral is cut from a rubber ball 7 " in diameter. Small wires leading from the vertices are soldered together at the center of the sphere. Applicators are used for the tangents at one vertex and for the perpendiculars to the radias.

FRANCFS M. BIIRNG

- Eighteenth Yearbook

* Spherical triangles. Location of the pole of a great circle. Polar triangles. Congruent and symmetric spherical triangles.

Model of spherical triangle. A is the chtaplete base circle, radius $2 \frac{1}{\prime} 2^{\prime \prime}$. The slotted har through which B turns is formed of two strips of bass, separated, at the eids

by short pins to which they ate sulderet. The tighthand beaning is the saddle shown in the plan in A (p. 402). This bearing is sotered to A. The left bearing is a pair of clips, one on each side of A and soldered to it. Allow just enough space at each end of the bat for play between bearings. For clarity, the cut shows more. B is the second (hall) circle, same ratius as A, turning about a pin in the slotted bar. of A, at the center of circle $A . B$ carries a slotted bar, exacily like that of A, on a radial line of B. Bearings as shown are sollered to $B . C$. 5 the third (half) circle sliding in the slotted bar of B. To holet the parts in any chosen position a small button rivet may be paced on the inside of the bar slot, or the bar slot may be hent together at the middle to. provide friction.
The device may be improved by providing means for measuring arcs and angles. This may be done in any one of three ways: (a) Graduations on edges of circles. (b) Semicircular scale, tadius $21 / 2^{\prime \prime}$, graduations on inner edge of semicircle. (c) Triquadrantal triangle, with graduations on inner edges of quadrants. D is made up of three sections, like E, each soldered to the next by the tal), stiörition E, which has been bent at right angles to E .

The circles should be of tin of sufficieaty heavy guage sto prevent bending.
I.. L.FLAND LOCKE

TRIGONOMITRY

Lariation of trigonometrit ratios. Three 18 " colored denels which pivot illustrate the changes in the trigonometric ratios for angles from 0° to 90°.

IRAN(: SM, BI:RNS
 mahogany boad. A mosabie set menctuther wom has a weighted piece of string fastened the the of it. A the am twata, the functions of angles in the various quadrants are demmatated. Alter the amm haned lan'. the weighted string

must be held up, or a slit must be made along the horizontal diameter of the circle through which the string may be passed.

WILLIAM P. SMITH
Variation of trigonometric functions. On bristol board, bound to plywood by Scotch tape, a $10^{\prime \prime}$ circle is drawn. At the 0° and 90° points tangents scaled in half units are constructed. A metal strip bound with black adhesive pivots at the center.

Io than med stap, at the oute cutamity wh the ratios, a second movable strip is athedicd tath of the whe maked in half units. Special angles are marked on the ciale. Ihe boat halps to demumtate the line values of the trigonometric fanctims, values of these for yorial angles, and changes in the functions as the angle incueaves fiom (i) to 3600. When negative values of the secant and cosecant

Appendix I

- are needed, an elastic cord is pulled flom the back through a hole at the center of the cirçle.

FRANCES M. BURNS

Solution of trimgles-ambiguous case. Fatinted dowels of the desired lengths fit into a hole at the upper end of line segment b. Material used is bristol board backed with plywood. Size $16^{\prime \prime} \times 26^{\prime \prime}$.

Sun dial. Sun dial for month latimde fo for. Hom lines ate located on a copper base. (inomon is aluminum.

Angle mirror. Plywond and ten-cent store mirrors. Lised to estabish a right angle and to lay out a large circle.

FRANCFS M. burns
Sextant mude of plywood.

APPENDIX II

BIBLIOGRAPHY

SPECIAL ARTICLES

ARITHMETIC

A Method of Finger Maltiplication. E. J. Rendtorft. School Science and Mathematics, Yol. 8, pp. 580-581, October, 1908.

A method applicable to the products of any numbers, when these. less 1 , on being divided by 5 give the same whole number as the quotient.
Resourcefulness in Teaching the New Arithmetic. Harriet E. Glazier. School Science and Mathematics. Vol. 10, pp. 777-779, October, 1940.

Why are our cans mude tourd and so much the same shape? Assignment to make a simple paper model to bold a gallon. Various results are listed, leading to the cylinder whose height equals diameter of the base.
The Rhombic Dodecahedron for the Young. W. Hope Jones. Mathematical Gazette, Vol. 20, pR. 254-257. Octoher, 1936.

Junior high school students may constract a rhombic didecahedron as related to beecell. Diagnams alld directions.
A Device as an Atd ${ }^{\prime \prime}$ Traching the Jie'a of Tens. Herbert F. Spitzer. School Science and Mathematics. Vol. 42, pp. 65-68, Janmary, 1942.

Uses unit blocks and bumdles of ten to introduce the child to numbers and their representation.
Construction of a Honevcomb. Louis Vigel. Schonl Science and Mathenatics, Vol. 37. pp. 386 387. April. 1937.

Directions and diagdan for mahing cathoard bee cell to be used at third or fourth grade level.
Methods in Arithmetic ar:d Algebra. R. L. Short. School Science and Mathematics. Vol. 39. pp. 239-200, Mach, 1939.

Suggestions for helps in arithmetic and algebra from second grade through ninth. Multiplication tables for the tens sytem and for fractions, pure decimal fractions, easy proportion, umderstanding easy quadratic methods, easy squares and square roots.

GENERAL MATHEMATiCS

Introducing Mathematical Concepts in the Junior High School. David W. Russell. School Science and Mathematics, Vol. 38, pp. 6-19, January, 1938.

How pictures were used to introduce mathematical concepts of perspective, architecture, and applications in engincering, insurance, mining, oil industry. and safety.

Objectuve Materials in Junior High School ulfathematics. Joy Mahachek. Mathematics Teacher, Vol. 32, lop. 274-275, October, 1939.

Devices for measuring angles and distances.
Classrdom Practice in the Teaching of E:veryday Mathematics 1. Raymond J. Mcjelak. Mathematics Teacher, Vol. 34, pp. 368-369, December, 1941.

Models are used to find meas of solids, to illustrate theory behind equations, and in the study of addition and subtraction of signed numbers.
Suggestions as to a Course in Mathematics for the Entering Class of a High School. J. C. Packard. School Science and Mathematics, Vol. 6, pp. 292-293, April, 1906. Outlines activities to be carried on in arithmetic, algebra, and geonerryexperiments which aid in further study of the subject.
The Supplementary Project in Mathematics. Charles A. Stone. School Science and Mathematics, Vol. 24, pp. 905-912, December, 1924.

Includes a list of twenty topics which may be used as basis for reports, Also bibliography on history, mathematical recreations, fanous mathematical problems, famous inathematicians, books of general interest, surveying, journals.
Correlation of Mathematics with Biography, History, and Literature. Joseph V. Collins. School Science and Mathematics, Vol. 5, pp. 640-645, November, 1905; Vol. 5. pp. 726-730, December, 1903.

Refelences to books dealing with lives of Longfellow. Washington, Lincoln, Napoleon, Grant, Jefferson, Gladstone, Beecher, Franklin, Edison, Wordsworth, Macaulay, and their interest in mathematics. Gives anecdotes which add to class interest.
Mathematics and ciencral Science Cooperate in Junior High School. Jules H. Fraden and Paul M. Tull. School Science and Mathematics, Vol. 4?, pp. 541-544, June, 1940.

A sample unit plan on the metric system is shown. Other units suggested are: How fast does sound travel? Measurements of temperature. Science saves health. Apparatus for Measurement of the Growth of a Plant. George W. Low. Schcol Science and Mathematics, Vol. 5, pp. 27-28, January, 1905.
A simple instrumemt based on the protractor.
Correlation of the Mathematical Subjects Develops Mathematical Power. Charles A. Stone. Mathematics Teacher, Vol. I6, pp. 302-310, May, 1923.

A graphical solution of a puate problem of two candles as solved by a seventh grade student is described and illustrated.
AL.GFBRA
An Algebraic Balance.-F. C. Donecker. School Science and Mathematics, Vol. 5, pp. 411-415. June, 1905.
Describes a piece of apparatus for demonstating laws of positive and negative numbers, inclading laws of signs; commatative, associative and distributive laws; the transfombtions of simple equations; laws of the simple and compound levers; law of equinhium wif fonces tending to rotate a body: law of parallet forcts.
Another Alyehraic Balance. N. J. Iennes. Shool Science and Mathematics. Vol. 5. pp . 602 g fing. Nonember, 1905.
A demonstation model which (an be set. .lp with the aid of stands, metat rod. meter stick. pulleys, and weinhts.
fifometric Aths for filementary Algebra. Albenta S. Wanuemacher. Mathematics racher, vol. 29, pp. 49 37, January, 1929.
(Toothpicks, string, and squared paper are used to study perimeter of regular polygons, draw circles, discover area and volume formulas.
Pictorial Representation of $a^{2}-b^{3}=(a+b)(a-b)$. Franz Denk. School Science and Mathematics, Vol. 38, p. 686, June, 1938.
Draw square side a. In one rorner cut out square with side b. A diagonal cut of remaining piece results in two equal trapeaoids which may be rearranged to give rectangle $(a+b)(a-0)$.
Graphical Algeora. Frances F.. Nipher. Schoul Science anc. Mathematics, Vol. 19. pp. 417-420, May, 1919.
Diagrams show how to represent $(y+x)^{6}$ and $y^{3}-x^{3}$.
Sacrates Teaches Mathematics. Norman. Amning. School Science and Mathematics, Vol. 23. pp. 581-585, June, 1923.
How wooden blocks are used to represent $(x+y)^{3}, x^{3}+y^{3}, x^{3}-y^{3},(x+y+z)^{2}$.
Graphic Methods in Elementary Algebra. William Betz. School Science and Mathematics, Vol. 6, pp. 6883-687, November. 1906.
Lists sequence of topics for introducing graphs and extending their application to algebra and geometry. Bibliography.
Graph Wark in Elementary flgebra. F. C. Touton. School Science and Mathematics, S'ol. 5. pp. 5:57-562. October. 1905.
A Graptucal solution of the Oundratic Equation. Alhertus Darnell. School Science mul Mathematics. Vol. 11. pp. 46-47, January, 1911.
Ciraphical Solution of Quadratic with Complex Ronts. T. M. Blakslee. School Science and Mahematics, Vol. 11, p. 270, March. 1911.
Enrichment Materials for Fir t Scar Algebra. David W. Starr. Mathematics Teacher, Sol. 33. pp. 6k-77. Fehruas. 1939.
Pictures. charts gtaphs, motion picture films, periodicals, and list of books for the mathematios library.
High Schurl Ageha. Hitam B. Iowmiv, School Science and Mathematics, Vol. 7.

 Mrethematos Teacher. Val. Is, pp. 97101 . February, 1925.
A dats of boys amt one of gills consideled the problems related to building
 and information on etors ! hase of its work collectet.
 School scionce ami Mahemats. Vin. 41, pp. 160-170, Februaty, 1941.
Sugeses that prenter we comble mate of eatain tepes of curves which ranch appor in serombers momematios twhows. of calculating charts or nomographs. and os pidtoti.n ghaphs and that a critical attitude toward graphs and their imetpetation hand be cuhtiated.
Biblanemphe live wer wfe bews ond momoraphe on graphical methors, and

 comerpondence in congracat or sinabar figurs: a smati coll"ction of colored
candboard polygons and circles and methods of filing these materials; four rulens bolted together to form a boose jointed panallelogram; teducing the solar sistem to stale by drawings, a cardboad model of an old fgyptian level, angle mintor, pantograph, cuss-staff, slide alde, sumbials. Iachudes references.
The L'se of Eintromem Materials in Seomatary Mathematics. Joseph C. Shuthesworth. Sccombary Fducation, Wol, (i, pp, 910 2pa, December, 1937.

Students construct regular polygins that fill the plane space atound a point and also discover arrangenents tor negular poligons to fit together to make aegular and semi-regular polyhedons. 'Thes a' leath to work with surveying instruments and other appatas. "the unta: sistoom experitence is reversed by proceeding from a conctete and specific phoblem to the more general geometric theorems which explain such problems."
bhe Tedihing of "Hexihle" Giometry. Daniel B. L.hovd. Mathematics Teacher, Vol. 32, pp. 321-323. Nowember, 1939.
t'sing the pantogiaph, parallel ruleis, transia, and linkages in phane geonetry. bitalizing Cicomrens bs the L'se of Pictures. Donowan A. Johnson. School Science and Mathematics. Vol. 3x, pp. .032 103t. Desember, 1938.

Topics which can be albathgeonsty illustanted by pictures: geometry in art, mathematics it nature, the-rase of aimptor, optical illusions, geometric church windows, mahi, multiplication cas, catles. geometry in the home, bridge buidens as mathematicians, parallel lines, stmmetry, mathematios in photog. raphe, wo.tions refu ing a batground of mathematics, objectives of mathe. matics. Bulletin boat display.

- V'talizine cirometry weth linual tids. Rirhard Dake and Donoran Johnson. Mahematics Tearler, Vol. 33. pp, 56 59. Februm, 1940.

Lists pogects for mothematis chases, objectises for using visual material, and equipment fon the mathemates claverm: pienter, hancen slides, motion pic. tares, film shates, steropticon pictures, and thee dimensional pictures. Bibliog. laphy.
 Teather, Vob. ex. pp. 101 llo , Fobman, 1935.
 Bibliography.
 Apil. 192\%

Problems for buad work ate pmed on latge chans of manila cardboard. Two printins sotw ancel in mothen the chars, which are mombered and filed.
 gravis) by botheing biangle on a peatil point. Pexpertise figures ate drawn in solid geomers for eal theorm and mondels male. Fhath cads used for revicw.

"Suh work mat be guch an chling a poper patallehgram along a diagonal amd vowin! be supepmition that the dhemond of a pathellogram divites it itho two whal tiangles A fome mate of form whes jointed at the ends to moserowh will impor the fat that foun sides do mot detemine a quatrilateral. Thaee whes immath jnined will swow the gase of the triangle. The ideas gained b) this himi of work munt be wede be entarge experience. The mind must be alert to apply facts as som at aryalied,"

Populariaing l'lane and Sulid Geome'try. Gertrude V. Pratt. Mathematics Toacher,

L'se of the bulletin board, pictures an the chassroom, a lied trip, style show, slide tule, ant and anchitecture, models.
Fou Can Make Them. Clata O. Larson. Mathematics Ieacher, Vol, 35, pp. 182-183, April, 19f!.

Rigidity of geomethic fi, ores, the isosceles triangle as a device for bisecting an angle, parallel rules and a simple tansit are described, with accompanying illustations.
L'se of Models in Teaciang Mane Geometry. Mamis Charosch. High Points, Vol. 14. pp. 12 14, tobrualy, 1932.
little "Tinkering" in Geometry. W. Knapp. High Points, Vol. 17, pp. 16-20, Apill, 1935.
Mathematical Primeiples Applied tu Mechanical Drawing. Emil E. Shattow. School Science and Mathematics, Vol. 36, pp. 890-896, November, 1936.

On wntering a drawing: (1) graphical method, (2) computative method, (3) meshanical methot which makes use of a proportional triangle-a mechanical device consisting of a 45° celluloid right triangle, the inside edge of the base of which has graduations of $1 / 2,1 / 3,1 / 4,1 / 5,1 / 6,1 / 7,1 / 8,1 / 9,1 / 11$. The thiangle is' plovided with a celluloid handle which is pivoted by means of a riset C.
Optional Tupirs in Plane Gcometry. Clara O. Larson. Mathematics Teacher, Vol. 30, pp. 188-189, April, 1937.

Mentions using pierts foom an erector set to illustrate plane geometry; also student applitations of geometry to art, musje, mechanical drawing, and adberining (geometaic tatederaks).
Our ficometic lintiromment. F. fi, Watson. Sciool Science and Mathematics, Vol.

Ilhathations from astronomy, light, perspective, art, radial symmetry in fowers. finh, and snow athals, and matilus shell, me. cyclone, suspension bridge, mineral (i) stals.

Geometry for tiveme. Kometh S. Davis. Mathematics Teacher, Vol. 35, pp. 6467. Felnuaw, 1942.

A list of fifit illustrations in student's enviromment shows applications of fumbamonal fats of geometiy.
A Number of Things for Reginners in Ceometry. Vesta A. Richmond. Mathematics Teather, Vol. 40 , pe. 142 149. March, 1027.
Student intorst focused on various activities each week: examples of mathemants in antme, combrmetion of regular polyhedrons, siapple transi: instraments, moasming inmgular pices of land and drawing to scale, alum and salt crystals,
 models of locus theotems, propotio: and the pantograph, dynamic symmeiry.
 Finde. Shool Scieme and Mathematios, Vol. 33, pp. 506-510, May, 1933.
masests vendent with a camera can obtain potures illustrating symmetry. cmaln, and Gobhic windows, compound curses, ecentric and roncentric circles,
 For locus publems, time exposutes may be taken at night of a point represented b) a pece of bunimp magnesium or flashlight traveling around a wheel, a cycloid
from a moving wheel, concentric circles shown by stars around north pole star, Students may make slides for classroom use and, using an ordinary camera, make stereoscopic pictures for three dimensional impressions by snapping pictures of the same object in two positions, three inches apart.
Colured Crayons as an did in Teaching Mathematics. Ada M. Parsons. School Science and Mahematics, Vol, 14, pp. 33-35, January, 1914.

Only a few colored crayons are needed in proving the theorems on congruence of triangles, the proposition that angles opposite the equal sides of an isosceles triangle are equal, in locus problems, etc.
A Device to Aid in Generalizing Geometrical Idea. Henry Kemmerling. School Science and Mathematics, Vol. 27, pp. 606-609, June, 1927.
A beard. $21 / 2$ feet square and 9 inch thick, is perforated with $1 / 8$ inch holes, 2 inches apart. No. 14 casing nails fit hodes. Filastic bands are stretched between nails for straight lines.
A circle of variable size is made from an 8 foot saw with the teeth ground off. This strip bends into a nearly perfect circle atid is held in place by small blocks.
Developing a Concept of Proportion before Presenting the Formal Work. T, L. F.ngle. School Science and Mathematics, Vol. 32, pp. 268-271, March, 1932.

Cartoons and pictures are enlarged with the aid of graph paper. Illustrated.
A Geometry Pupll's Brtlliant Work. George iv. Fanns. School Science and Mathe. muttics, Vol. 6. pp. 595-597, Oetoher, 1906.

A mediocre student can be ted to to his cwn thinking in geometry to discover imteresting geometric properties.
A Sugestion for Review in Geometry. C. A. Petterson. School Science and Mathe. matios, Vol. 7. p. 70t, November, 1907.
Illustrates a composite figure to be mimeographed and used to discover geometric properties for teview wom. Other simiar figures will suggest themselves. Hame madt: or Inexpensize Mathematical Apparatus. Joseph V. Collins. School Science and Mathemars, Vol. 7, pp. 52.:2x, Jume, 1907.
Discmses and illustrats an algebraical babace, solid geometry modeling fame. phate table, pamagtaph, bhakbard compass pottactor, slide ates,
 Fiedler. School acience and Mathematios, Vol. 24, pp. 162 Lif7. February, 1924.

 fire chastom ue or for shool ewhbit.

 Normber, 104t.
 $193 \times 3 \times 9$, Nomember, 1999.

 teree materi.us
sOLID (;1:0.M1:7Ri
 Mathematica leacher, Vol. 30, pp. 32t 330, November, 1937.
Mont of the impontant solids in solid geometry were constructed and models were mate of the main propositions. Desagues Theorem and other theorems from nodena pute solid geometiy wete ako included. Two illustrations show models mate of cattons, string, electic wire, hnitting needles, umbrella stays, small thin pieces of wool, colored paper, toothpicks, cardboard, airplane tons, copper wires, tin, steming, a boys buileling set, a satt container, and soldening wite. Pifteen objectives are discussed and fifteen teferences listed,
I Cinlur stheme for Figures in Solid (;emmetry. Mt. C. Spencer. School Science and M.nbematics, Vol. 10, p. 519, Junce, $\{910$.
"(1) A colon is used to outhine the pottion of cath plane used; (2) all lines in a phate. posided the ane not intersections of the plane with another, are drawn in the color thonco for ontining that plane; (3) all lines common to two or more planes ate dama white on the hathboard pal black on paper."
 Pp. 218200, Math, 1912.
(:lay and sticks ate used in flat boxce, or on sphes to help illuatrate many of the theorens of solid geometty.
Golid Geometry Modeling trame. C. E. Comstock. Schopl Science and Mathenatics,
Vol. 4, p. 171, 1904 .
Models in Sulut Geomebr. Miles C. H.ulley. Mathematics Teather, Vol. 35, Pp. 57. Jaluats, 1912.

Suins models ate made to help vianalize theorems.
 !eachet, Vol. 39, pp. 39 f10, Jamamy, 1960.

 Apul, lull.

 צer:us, l! !
In: 以

"Fiom the tos shops on irommongers, sound wooten tods about $5 / 16$ incli in diameter can le obtaned, which are sold in 4 foot lengths. Cut them up into lengths varying by 1 inch, the largest 15 inches, the fimallest 10 inches, and with a twist drill rather smaller than 16 S.W.G. make a hole at each end axially.
"By inserting the legs of the tripods, etc., into these holes atiy framework can quickly be built up.
"By rolling a piece of thin brass round one of the rods a split tube can be made with whinh rods can be joined telescopically and ans length obtained." The Tesseract, $(a+b)^{4}$, a Demonstration of the Binomial Theorem in Fourth Dimensiomal (ieometry. Hartiet 13. Heabert. National Mathematics Magarine, Víl. 15, [p, 97.99, Nowember, 1940.
A Study of the Cultivation of Space Imagery in Solid Geometry through the Use of Models.' Edwin W. Schreiber. Mathematics Teacher, Vol. 16, pp. 102-111, February, 1923.

Discusses arguments against using models. Points out need for developing space imagery in student. Hllustates forty one models and patterns for twelve of these. Bibliography.
Solad (ieomrlry Made More Intcresting. Marvin C. Volpel. School Science and , Mathematics. Vol. 38, pp. 740-742, October, 1938.

A model of the Taj Mahal made of cardboard and ten boxes of matches; domes of plaster of Paris gilded.
The Regular star Solids. Gertrude V. Pratt. School Science and Mathematics, Vol. 28, pp. is-4f7, May, 1928.

A discussion of regular polyhedra, Archimedean solids, and four regular star polyhedia: the small stellated dodecahedron, the great dodecahedron, the great stellated dodecahedion, and the gleat icosahedron, Illustrated.
Construction W'ork in Solid Geometry. Edwin W. Schreiber. School Science and Mathematirs, Vol. 19, pp. 407-413, May, 1919.

IBased on Kipler's "Tos measure is to know." Students in solid geometry cal. ralate dmbmions for polyedroms whose volume is ten cubic inches. Thirty monlels ate allwtated. requinements for fifteen of these are listed.
The Rotostat amd Cioniostat: A Teacher's Classroom Device for Instruction in Pro. jertim. Hemman Hamsein. School Science and Mathematics, Vol. 9, pp. 868.870. beccontra. Ho 4.

A set of matek in sheleton form with which the regular and an endess num-

'ass the mondelnas be reitated in vertical and horizomal revolutions.
lowkit: al wilal feometry thotush berspective. Fucl bpeaman. Mathematics

Fomen fom sohd geometry, including sphesion figutes, ate hawn. using the hisic primiplen ul perspectise.
 Sul li. pr. 31-34, January. 1916.

Fypham a diagram which may be used to obtain a vertical sale for the mumb of infuid present at any time in a horizont.al cylindrical tank.
 Aprlage

I'sul a "dead" temais ball illustated in the solution of ten problems of solid geromen!
 124-123, March, 1938.

Theorem: section of a cone of levolation mate bs plane which does mot pass through the conces velex is an ellipse parabolat, or hyperbola. The foci of the sections ate the points of comtact of the intesecting plane with the spheres in. scribed in the cone: the ditertises of these sections lie in the plathe determined by the circles of contact of the spheres with the conns in which they are inscribed. Bibliographes.
Polar Triangles. William F". Riggs. School Science and Mathematics, Vol. (6, pp. 663 666, November, 190%

Sugheots making a spherieal triangle from condboird and fitting a corresponding polar triangle into it. Another substitute is a cheap six.inch temostaial globe with pias sumek into it and connected by coloned sitings.
A Model of Supplementary Tribedral Angles. R. M. Mathews. School Science and Mathematics, Vol. 1*, plf. 84fi-8ts, Jecember, [9]x.

The model comsints of wo main pirts, one for eath of the tribedal angles.

lisualizing Thememetry. I.. f. Mc: Allister. Shool Science and Mathematics, Vol.

Diann on a piece of white candboand $1 \cdot$ We atach to a flat wooden board
 at the intensetions of the cincle with the persitior X and y axes. A b ary stif wire ${ }^{2}$ lones be" in diancter whate at the senter of eircle: another wire hangs fierely fom this wite at the radins distance fiom center. By rotating the first wire, values of sine and conines may be detemined. Viatation of the trigonometric fanctions in the form guadrants maty alos be shown.

 satiation of thenommettic fanctions of the perneal angle. Negative values are

 each pupil mate one for himbelf? How would he graduate the ciacles? Is this
 in treating vmple hatmone motoma"

 tenths and momdedth N the hos:montal we.te the toment stale appears as a tangent the the perperidualin to the hommatal. the sine seramt, and so thtgem wales ate dixu hown

 69-70, Dmemher. 1938. Revicwed in Mathematios lewher. Val. 31. p. 3\%. Janturs. 1938.

Discusses simple cyperiments fom sound, mertanies, and electricity. Describes a combe device: for dawing a part of a sine cure on paper or on the blachboatd. Cartographncal Projections for Goographical Maps. Alexis m. Ezefovich. School Sctence and Mathematics, Vol. 38, pp. 378-390, April, 1938.

Conformal, equalarei, perspective, atmuthal, conical, and other projections are diasified. Among the projections disomsed and ilhistrated are mollweide's, Mercator's, Lambent's, Goode's, and Bonne's.
Grathical Deteminatum of the Distame beturen Tieo (ii.en Points on or near the Suface of the Eiath. Alexis M. Weforich. School Science and Mathematics, Fol. 28, pp. 9in 9r, December, 1908.

I'sing wo carts, the witer shows how the distance between wo points on the eath's sumface can be uppoximated. Also discosses use of an "airline distance meter" which is illustrated.
A Straght line chant for the solution of spherical Triangles. Journal of the Wiwhington Academy of Sciences, No. 17, October 19, 1924.
The (impheal Sulutum of spherial Triangles. Meron O. Tibpe Shool Ssience and

Elestaldigrams show how sate drangs may be used to solve tight spherical triangles.

JUNIOR COLIAEGE M.4THEMATICS

A Homemade llanimeter for Classroom Ust. I.mest W', Pomer. Schoul Science and Mathematics, Vol. 11, pp. 242.245, Math, 1911. .

Athomben subpested for students in the calculas, the plamimeter destibed
 ate studicel. Ilhushated.
 Vol. 35, pre 993: 911, Dewmber, 1935.
 thening anm, poln am twether with the tracing am, and an aptication of the

 15. p. 802, Decomber, 1915.

Gives directions for mathor the instrumen fom wite one eighth inch in

 hers, the sum of the first n odd mambers. the sman at pulatis of $n, n+1$. the

 deseloping the formulas for these simple seties.

 3. 1 P 2li, Mas, 1!
 (11the withion

The Use of Models while Teaching Triple Integration. E. A. Whitman. Americpn Mathematical Monthly, Vol. 48, pp. 45-43, January, 1941.
Integraphs. Conrad K. Kizer. School Science and Mathematics, Vol. 33, pp. 10091005. December, 1933.

A brief description of eight integraphs. Reviews the literature on integraphs that. have not been placed in the hands of manufacturers to market. In the United States there are integraphs at Cornell University and Massachusetts Institute of Technology. Biali mershy.

CRAPH PAPER

The Cross-Section Papfr as a Mathematical Instrument. Eliakim Hastings Moore. School Science and Mathematics, Vol. 6, pp. 429-450, June, 1906.

Discusses the systematic use of cross-section paper as a unifying element in mathematics. Hllustrates double entry tables-numerical and graphical-and sets up devices or link, ges for graphical computations.
Graphic Ralroad Timie Tables. Florian Cajori. School Science and Mathematics, Vol. 10. pp. 204-205, March, 1910.

- The course of every tran is ploted by oblique lincs. "The diagram shows at a glance when a train arives at each station, also where the trains meet and pass each other. In railroad offices. the graphic time charts are prepared first and the time tables in ordinary use ate copied from them."
Graph Tracing. F. C. Bom. School Science and Mathematics, Vol. 5, pp. 398-401, June: 1905.

Fincomages tracing of curses rather than plotting of points.
An Experiment in the 'se of Goph fapers. Norma Sleight. Niathematics Teacher, Vol. 35, pp. 84-87, Fehmary. 1942.

I'ses make of whious types of paper stadied as part of dese work
Foward Bether cinfis. Edwin Fagle. Mathematics 'reacher, Vol. 35, pl. 127-131, Match, 19f2.

Nine impontint preperties which graphs should possess.
f Practical There Dimensional Gonth. Franklin Miller, Jr Sohon Science and Mathematics, Val. 34, pp. 9ig 9ng, December, 1934.
"(inteur sheets" ate cut out of stiff eardmand shects and inter?ached wit, whers. Slits should be wide conough, ruts staggered. Fith shect shomb be labeled and x and y co-ordinates maked along lower edere. Complede.i graph mat be filled with phaster of Paris of patallin, if a permancme monel is devined.
t lase far the Gaph in Flementary Chemistry, Challes H. Stone Shoml Science and Vathemutics. Vol. 36. Pp 281-289, Match, 1036.
 praphical solntion.
Sce: ation Bowns:


```
THI i/ IDF RIIIE
```


The Stide Rule Constructed without l.ogarithms. A. H. Fensholt. School Science and Mathematics, Vol. 15, pp. 417-421, May, 1915.

Using a unit for the length of the slide rule D scale from 1 to 2, the points 4, 8, 16 are laid off. By means of a graph units for 1 to 3,1 to 5,1 to 7 , etc., are determined. This helps students to understand the subelivisions of the slide rule but does not give an accurate scale.
A Slide Rule for Classroom Use. Ernest W. Ponker. School Science und Mathematics, Vol. 10, pp. 776-779, December, 1910.

Directions for making a classroom slide rule are given. "In tais diay we do not hesitate io use, in fact it is our duty to use, all those aids which. will help round out any course in mathematics from arithmetic up." Illustrated.
Construction of a. Demonstration Slide Rule. Earl C. Rex. School Science and Mathematics, Vol. 40. pp. 161-164, February, 1940.

L'sing student assistance, a $7^{\prime} \times 9^{\prime \prime} \times 2^{\prime \prime}$ ruler for the classtoom is made at a cost of about a dollar.
The Slide Rule as a Subject of Regular Class Instraction in Mathematics. William
E. Breckenridge. Mathematics Teacher, Vol. 14, pp. 342-343, October, 1921.

Advocates teaching the use of slide rule early in the mathematics course.
The shde Rule in Junior High S. hool. Chatles A. Stone. School Science and Mathematics, Vol. 30, pp. 645-650, June, 1930.

Lists topics for eighteen meetings of junior high school slide rule class.
a Slide Rule in Junior an' Senior High School. John F. Barnhill. Mathematics 'Teacher, Vol. 17, pp. 359-364, Octobur, 1924.

Advocates the use of the slide rule in seventh and eighth grade, especially in chr.king calculations. References.
The Slide Rule in Ilane Cieometry. W. W. Gorsline. Mathematics Teacher, Vol. 17. pp. 385-403. November, 1924.

P A detailed accomit of how the slide rule can be used in solving fifty seven problems relating to twenty two theorems of plane geometry.
The Stide R It as a Cher k in Crigonometry. Willian E. Breckenridge. Mahematics Teacher, Vol. 23, pp. 52-59, Januars, 1930.
Multiplication and divison; proportion And simple spuare root; checking right and oblique thangles using the law of sines.
The Stute Rule in the Junior College. W. W. Gorsline. Mathematios Teacher, Vol. 26, pp. 292293, May, 1933.

Outine for temey lesoms: reating of the slide rule, maltiplication using C and D scales, division using C and D) scales, proportion, combined multiplication and division. and additional topics.
Adaphng the slide Rule to Higi. Scherel Chemistry. Hoyt C. Graham and John Huff. School Scieme and Mathematics, Vol. 30, pp. 525-528, June, 1930.

Outines procothes to be followied in triching slide whe to a high schoo: chemistry class.
The Stide Rule in Busmess. s. L. Shelley. Mathematies Teachen, Vol. 1t. ip. ${ }^{n} 61$. 263. M19, 1923.
"If I were to interper fon you the attitude of the aremge business man towats mathematien today, I believe that it would be something as follow; "Teach a) mach mathematus as you can; the: toone the bether. Get the following practical things imo your course as early as you possibls com, ecrainly before the student has smished high school: (1) teach him to atd. (2) teach him to subtract; (3)

Appendix 11

teach him to multiph; (1) teach him to divide; (3) teach him simple equations; (6) teach him mearement of all hims: (7) teach him chathing so that he can both undenstand ad make chants; (8) teath him the slide mine, that he may sate his own time and mine in the numbelens calculatipns that come up in the transaction of busines:."
Helping the student chmose a Slice bule. B. Cecil. Bulletin of the Kansas Association of Titulares of Mathematio, Sol. 15, p. 69, April, 1941,
Time Is Memev. Willinm E. Beckemidge. Mathematics Teacher Vol. 16, pp. 332334. Octurer, 1923.

I von lor hish shool and college students and for all whip ate interested in sating time." One bos tells amother of ases and method of usity slide rule.
A Conernent linle for Ionating the Decimal Point in Slide: Rule Calculations. I.losd C. F.llioth, shool Sience, and Mahematics, Vol. 26, pp. 957-959, December, 1926.

Now Mrethod for Dreimal point on the Slide Rule. I. H. Wade. School Scicvice and Mathematics, Vol. 3!. p. 381, April, 1932.
The stide Rule Whth. Robert L. Bugg and Walter V. Burg. Schood science and Mathematics, 'ol ti? pp. 72-it, Jamary, 1942.
A device domiving of a dial and a pointer which may he used for locating decimal prime in vide tule calculations.
Talk on I.ognithms and Shde Rules. Florian Cajori. School Science and Mathematics, Vol. 20, 1'p. 527-530, Junc, 1920.

Illustrates title prige of the carliest book published on the slide rale.
Solution of Quadratic and Cubic Fiquations on the Slide Rule. R C. Colwell. Mathematis Tenher. Vol. 9. pp. 16i2-165, March. 1926.
shid. Rute Solutans of Gumitatic and Cubic R:quations. T. J. Higgins. nerican Muhematical Monthl. Vol. $41, \mathrm{pp}$. 646-64; , December, 1937.
The shate Rale on the whtum of Cibhic E:quations. L. E. Cumfman. Bultetin of the

liper binat on micle by R. A. Whiteman in Civil Engineering, October, 1934.
The liaht insle Nule Rule. Oscar G. Fiyer. School Science and Math matics, Vol.

sperifitations of a tightangle slide rule for finding all trignomenic functions and for solving an problem invitiong the retation of the vide of a triangle.

A Shate Ru:r far Quathatic Equations. I. (. Barker. Shool Scirme and Mathemulis. Vol. 35, P1, s11-813, Nosember, 1935.
Shows hen the seates for such a slide rale mas be constructed and used to

Sec atso mons:

An mbutution whe thenation and modentanting of this mathine.

Mathematics of the Calculating Macinine. L. Leland Locke. Mathematics Teacher, Vol. 17. pp. 78-86, rebruary, 1924.

Discusses automatic opeations on the calculating machine.
The Use of Calculating Machines in Teaching Arithmetic. W, S. Schlanch. Mathe. matics Teacher, Vol. 33, pp. 35-38, Jamary, 1940.

- Calculaling Machines and the Mathematics Teachers. Evelyn M. Horton. Mathe. matics Teacher, Vol. 30, pp. 271-276, October, 1937.

Discusses the listing machine, bookkeeping machine, key-punch and tabulating machine, and key-itiven and non-key-driven calculating machine.
Abacus. David Eugene Smith. Encyclopradia Brilannica, 14th Edition, 1989, Vol, 1, pp. 603-607.
Calculating Machines. David Baxandall. Encyclopadia Britannica, 14th Edition, 1939. Vol. 4, pp. 588.553.

SURDEMNG INSTRUMENTS

Constructing a Transit as a Project in Geometry. T. L.. Fongle. Mathematics Teacher, Vol. 24, pp. 444-447, November, 1931.
"The only materials that need to be purchased are two protractors, a pocket compass, and three small unmounted spirit levels." Dimensions and directions for constructing a transit for approximately two dollars. Illastratet.
A Few Live Projects in High School Mathematics. Frank M. Rich. School Science and Mathematics, Vol. 20, pp. $34-45$, Jamary, 1990.

Directions for makithon chromatic dilher from a box of thin wood or from tin, a samisen or tope of banjo from a cigar bex, a sylophone irom bars of wood or lengths of pipe, a homemade transit (of interest to beys and pirls) and home. made stadia. All materials are listed.
A Project in Aarigation. Edan Calson. School sience and Mathematics, Vol. So. pp. 580.584, June, 1930.

Fundamentals of the use of the sextant with four simple devicere for illustration. (Constuction of actual sesamt gisen in Popular Science Monthly, p. 34, Septem. ber. 1933.) ('se of the sevtant; simple otsensatomis. An old umbrella is made into a elevice for showing the rehationship of the sum to the celestal equator. References.

Instructions and diagrame for constuating ond withe a sevtant.
 1:3.rs. 1433.

 (m) are atou dixatsed.

Instruments for Topographic Survering. Willand S. Bass. School Science and Mathematics, Vol. 5, pp. 167 122, March, 1905.

Discusses tripent, plane table, alidade, flagpoles, measuing tape, pins, level, leveling tod, and stadia and stadia wod needed for group work.
Early Forms of a Few Common Instruments. Williom F. Stank. Sal:mol Sience and Mathematics, Vol. 9. pp. 871-87t, December, 1909; Vol. 10, pp. 48.67, 126-139, January, 1910.

Illustates patallel rulers dited dosti and 1723, a pantograph used in copping pictures in 1645 , and a semi circular slide tule of 1696 , instruments for measur. ing distances and angles, the geometic squate, the coosstaff, sector compasses, map making instuments, tereling instruments, and atillet:st's instruments. Thinty.eight figues, mamy of which could be tepreduced by stude:ts.
The Cross Staf. W. E. Shimptf, Mathemaics Teadier, Vol. 24, 1p. 320-321, Novem. ber, 1911.
Describes its comstruction and discuses problems which it helps to solve. Ref. erences.
Plane Table and Accimpanying Apparatus. Willard S. Bass. School Science and Mathematics, Vol. 4, p. 207, Math, 1904.
A Simple \boldsymbol{H}) prometer. K. N. Tialusean. School Science and Mathematics, Vol. 7. pp. 114-117. February, 1907.
Directinus for constructing a simple hypometer and its use in finding heights of trees a dd in topogtaphic survejing.

Sec also monks:

-Fucld Wut in Mathematios. Cand N. Shuster and Fied L. Bedford.
Mathemathes of Luterday Life, Geometry L'mit. Geonge A. Buyce and W. W. Beatle. l^{\prime} p. 4-7 (the range finder), 37-41 (the tramis). 19 52 (the cross stalf), 6063 (drmmead surveving and map making). In 116 wall and mange fimber and isosceles wiangle), 148 1.ff (quadramt and sum (ial).
Sureoting for schools and Stouts. W. A. Ridhatson. Ep. 3t-38, 47-49. 88 94.
Enriched Teachang of Mathematics. M. Woohing :and V. Sanfond. Ip. 46 . 0 .

ALIC.N:MENT CHARTS

 1921.

Solutions of problems taten from indunts. peremage problems, findug graphathy the aosts of ams quadratic equation Buhling a graphical (hath for maluphication and disision. Keferences.

 December, lat?
Domgraphy. J. S. Ceorges and W. W. (eonvine Showl stience and Mathematios,

 $z=x$) ; (ii) $a=-\begin{gathered}=(b, i,\end{gathered}$,

 485-484.

THE SUN DIAL
The Mathematics of the Sun Dial. Lal'ergne Wood and Fances Mack Lewis. Mathe matics Teacher, Vol. 29, pp. 295-303. Octolser, 1935.

A unit on the sun dial based on solid geometry and spherical trigonometry. Theory and construction of the horizontal sun dial, and setting the dial, are included. References.
The Sun-Path Dial. Joseph F. Morse. School Science and Mathematics, Vol. 8. p. 561, October, 1908.

An adjustable device for demonstrating the counse of the sun above and below the horion of different latitudes at different times of the pear.
A Method of Finding the Meridian by Shatou's and Mechanicilly Graduating a Sun Dial. Edison Pettit. School Science and Mahematics, Vol. 10, pp. 483-486, June, 1910.

Five figures show how to mark the sun dial.
An Adjustable Sun Dial. J. F. Morse. School Science and M.thematics, Vol. 15, pp. 740-741, November, 1915.

- Describes an invention of Mr. Leinert on which necess:HLadjustments are madr for latitudes $30^{\circ} 1045^{\circ} \mathrm{N}$.

HOMEM.ADE INSTRUMENTS FOR DR.HWING CURIFS

Blackboard Compass. Perry Ross. School Science and Mathematics, Vol. 2i, p. 542, May, 1925.

On one side of a wouden slat, !!" thich aind 1 ti" wide. ate cut a semes of V notches. A crayon is held in place b! a mbber band. The device may be made in a few minutes and is serviceable where an inexpensise compass is wanted for blackboard use.
The Conic Compass. John L. C. Löf. School Science and Mathematics, Vol, 38, pp. 842-84tj, Vosember, 1938.
llea of this compass based on that of the elliptic compars (Mathematioal Dic. tionary. Daties and Peek, 18%, p. 113). Point motes on the intersection of a right ciacular cone and a plane. Mechanical construction, theory, and operation are explained.
A Simple Blackboard I:llipsograph. Hasm Kruglak. Mathematics Peacher, Vol. 39, p. 179, April, 1940 .

Tiwo diagrams and directions for constaction of instrument which requires inexpemive suction cups mounted n a sheet metal fame.
An E:llifsegrath. Roberi C. Yates. Natiunal Mathematics Magazine, Vol. 12, pp. 21g21\%. Fehrlaty, 193A.

A linhage for drawing ellipse is exphined and ilhastrated.
A Acu fllifeoraph. J. A. Vangroos. Sch: I Science and Mathematics, Vol, 22, np. 47142, Mat, 1902

- Ino ams are mute to rotite about a point. The midde point of the line join. inf the ends of the arms will genende an ellipse. Suggested by watching the opening and closing of satces at a datrond coossing a city stace
 [1]. 3:0 3:1.

 pp. 5it 558. Junc. 1921.

Ten linkege are terathed 'These motels are very suggestive cientific toys for mechanicallv mindect boss.
Linkages. Joseph Hihenrath. Mathematics Teacher, Vol. 30, pp. 277-284, October, 1937.

Watts approvimate staight line mution; Tschehicheffs and Robeat's approximate straght-line-motion linkages; l'auceliet's cell and Bricard's exact straight. line motion; feancellier's and Rohera's conicographs; and Kempe's angle trisector, discussed and illustrated.
The Story of the Parallelogham, R. C. Yates. Mathematics Teacher, Vol, 33, pp. 301310, November. 1940 .

Parallelogams ate dinceled with staight lines to form a triangle and a squate. If the triangles fommed hy joining the mid poins of the sides of any guadribateral are rearanged, thes will comeide with the semaining parallelogram. Parallelo. grams in motion are illustrated with various linkage ststems. The partograph and las tongs are shown to be illustrations. Other lankges are also explained. Biblingtaphs.
Linkages. R: I.. Hlipmestey. Encyclopaedia Britamica. Ith Edition, 1939, Vol. 14. pp. 183-164.

TEIESCOPIS

Telescope Making in the West .this High Sthagl. Harold R. Stamm. School Science and Mathematics. Vol. 37. pr G13-6:0). June, 1937.
birections ate given, on how to gimb the disk and to make a telescope mounting. Inexperasive materials.
Amateur Telescopr Makme. Wilhad (icer. Scheol Scicnce and Mathematics, Vol. 3t. oppi 76-テr. . nuary, 1934.
A Skeletor, :'iscoper. F. (:. Woochuif. School Science and Mathematics, Vol. 2, pp. $340341,1902$.

Descabes and illustates a simple working model.
Amatrur Telescrife Making. Jame I. Rumell. School Science and Mathematics, Vol. 41. pp 63 68. Jamiats, 1941.
 the mirtor, grinting. polishing, the Foucault test, parabolizing, aluminizing, the
 Amateur lelexope Vhhing. ticumfic American lablishing Company, New York. as the relescope maters "Bible."

* Practical Adeice amd Ant in Telesofer Daking. Menry L. Yeagley. Sky Magame
 18., Ma. 1938.
 Magarine. Vol. 2. 1f). I: ff., June. I938.

ISMI:RIMR.N/S
 2.4. October. 1939.

Discusce propects desires and conseructions to motiate herh school mathe matios instumetion.

 32. pp 129.133, Marth, 1939

Finetiments which can be canied out in finding the maximum area for a given
 tin. minimal sufaces of wions soap films, and other activities for an eighth grade wurse Thintern acfermes.

 b, chillan action, Eleven tizure.

Fprommes with wite fomes und wip solution. Indude, formula for making a sumfutw wop film whtum.

A dixtroind of anis ats behatat to athomoms.

The , ate ind yhere in mane: patablas fomed by projectiles: photugaphs

1-: :

 pp. 95tj.9.8. Wecomber, 1933.

An experiment bsing a statan. f water to show pojectilés path.
A Short Foucaull lemblum. I.. S. Welty and I. D. Strong. School Science and Mathematics, Vol. ex. pp. ast 2bs, Mach, 192x.

Discusses Encors of this pemdulmm and gives dimetion on how to make a work. ing model with a surponion wire a litte over nine feet in length and a forty. pound canmon ball for a boh. Fight figutes.

Descobles at simple appatan far ter reting lissajons' figures.

 Shows adsamtares of spank ieonded tigures over those usually traced with samd.
 E. G. Plasterer. School Scictuce and Mathematien, Vol. 37, pp. 424-426, April. 1931 fuctures a homemate piece of uphatas to demonstrate the componition ${ }^{\text {b }}$? two simple hamonic motions two wats -at theht angles and at paratlels. Fwo

 sine athd combe curse.

 Of intrial in than :

Fibection by means of an anxiliay curve: the "Fokale." References.
Trisecting Any Angle by Means of a Moprobola. W. A. Knight. School Science and Mathematis s, Vol. 10. [1]. 5x: is?, October, 1910.
Another Tusection lalloy Kohert. F. Monit. School Science and Mathematics, Vol.

Descusses errors in article by C. S. Floyd, see above.
The Trisption of an Angle ly Means of a Gaduated Ruler and Compasses. Clar. ence Ohlendonf. Sthoul Science and Mathematics, Vol. 13, p. 516 , June, 1913.
Craphical Triscction of ant Angle. F. W. Pickering. whon Sience and Makematics, Vol. 22. p. 5ta, Junc, leme.
A Machine for Trisecting Aneles. Alfred II. Thisencm. School Science and Math. cmatics, Vol. 14, p. 936, March, 1914.
I.ime Motion and Trisetion. Robest C. Yites. Nitional Mathematics Magazine, Vol. 13. pp. 6366 , Nowember, 1938.

A linkage for trisection of angle as well as bibliography and the diagrams.
The Trisection Problem. Robett C. Sates. National Mathematics Magazine, I: Vol. 15. 1p. 199-142, December, 1940; II: Vol. 15, pp. 191-202, Jamary, 1941; III. Vol. 15. pp. 278-293, March, 1911; IV. Vol. 16, pp. 20-28, Octoher, 1941; V. Vol. 16, pp.

I and II: Titsection using the following curves: the quadratix, the conchoid, the hopentobs, and the cocloid of Ceva. III: Fifieen mechanical trisectors are desctibed.
 Science and Mathematics, Vol. 39. pp. xi0 s7: December, 1939.

I he linkige trace a four leased rose and acts an an angle trisector.
Tha Thisertion Prohlem. Jumes H. Weater. Shool wisuce and Mathematics, Vol. F. pp. $590 \cdot 595$, Octoler, 1995.
beruses the solution of Arhimate and me of Pappus.
See alus mowns:
Plane Cicometry. Mirick. Newoth, anl Haper. Pp 1j1113. Trisection. Robert C. Yates.

PablR FOIDMN(;
 स户
 citcle whane atc is gucn.

4er also nown.

Hondimi's Papery Mager. Homlini. Pp. 117-140.
Procridis Originaus de Conshmotions Giomilriques. l.. Fourrey. Pp. 115-139.

गMMA:COMON

Addilm, by Mavclam. Robert C. Yates. School Science and Mathematics, Vol. 40. PJ. Bal -807. December, 1940.

Suggests comstacting cathanal models (colored poster board-about $14 \cdot p l y-$. is recommented) to dissect geometaic figures and rearrange parts into others: tramso. mation of a given tiangle to one having a specified shape; transformation of a giosn parallelogam to amother having a specified shape; tamsformation of a quadilatial to a tatagle. References.
See also moons:
Mathematial Recreations and lissays. Ball and Coxeter. I'p. 87-94, 100.
A Companion lo IVmentary School Mathemahics. Boon. Pp. 100-111.
The Pythararat laporosition. Lemmis. Many figures used in the geomettic proofs may be shown readily by dissection.
Introduction to Geometry. Sidhons and Suell. Appendix. Shows fiythgotean Theorem in! colored sections.

MLIU.IC.tTION OF THE CUBB:

An Approvimate solution of the froblem of the Duplicaton of the Ciube. A. A. Dmitrowhs. Schonl Scicnce and Mathematies, Vol. 13. pp. 311-312. Apill, 1913. Destiber a (onstlmetion which giver the edice of a double cothe with 1 12500 as the dentee of acturacs.

 comber. 1914.

 4 4.1 ,

Cimmbuthins with Lamited Menns. Maion ri. Stak. American Mathematical

The Angle Ruler, the Murked Ruder, and the Capenter's Square. Robent C. Yates. Notional Mothomats Magante. Vol. 15, pp. it 73. Norember, 1940.

Theon! of thene mommembs is considentel. The angle tuler and maked square tre shown to be elated be the pionciple of dadits. References.
A!l Geomethal Comatution May Be Made : with Compasses. Michael Goldberg.

Ste .ato mems:
 1916
 sums. 1939. $\mathrm{P}^{2} \mathrm{p}$ 132135.

 :

and ohservatho: in mathanics, physits, chemistry, metcorulugh, surveying, and astronomy. . . .
"5. The accurate constuction of graphs might be considered an important poblem of the mathematical libomatusy. . .
"f. The prepantion of geometicat models is impotamt. . .
" 7 . In the tomhers' hbans spectal attention should be given to the literature of appliad manematies. . ."
Experimental cicumetry. H. J. Chase. School science and : fathematics, Vol. 8, pp sai-579, Octuber, 1908.
Muthematios. William I. Camphell. Shool Science and Mathematics, Vol. 9, pp. $355-3 \mathrm{~d} 7$. April, 1009.
"Indications seem to point to the need of a more practical basis for both algebra and geoneth: than we are now attempting-perhaps to a kind of mathematical habotator. . . If, howerer, the mathematical babotatury comes, tet it come, not as an aldition to what we ate now doing, but as a s.e..-titute for pats of it. . . ."
Mathematicai labomatory. School Science and invonmatics, Vol. 13, pp. 544-545, Junc, 1913.

In October, 1913, E'niversity of Fimburgh opened a laboritory for practical insthution :n mumencal, ghphical, and mechanical calculation and analysis, as wematel an the applied mathematical sciemes, and for research in comection with the manematical dentment. The pactical wonk in the laboratory involves such thpion en chate fitting; consurution of emses and sufaces; linkages; ronleters. phortions; phomgameth; map makine; use of instruments employed ith t.iculan-n. - per iaths dule wies, arithmometess, planimeters, integraphs, and

Dewthe davowims which have been equipped as hatatories for plane geomtr, the hatomon procdures ased, and the quantity of work accomplished. Illus. Hinted
 Manh, 19:-

 A.

 い品:

…".
the dinec:ons in the mamal and perform geometaic experiments and wite up the notes wh what ate salled phitei. Single perioh thee days pea week ane used for tecitatoon work." Illathations of work.

A eriticinm of Wilham A. Ameitis paper in Sehool Science and Mathematics.

 (an: ht the ert.

 :
expresses it, 'you can teach all the physics you want in algebra and geometry and then there will be plenty left for us'."
An Alteriapt to Correlate Algebra and Physics. Willard S. Bass. School Science and Mathematics, Vol. 6, pp. 495-500, June, 1906.

Gives a proposed outline of course in physics and algebra.
${ }^{1}$ A General Science Course of Elementary Physics and Mathematics Combined. J. C. Gray. School Science and Mathematics, Vol. 12, p. 377, May, 1912.

Work in physics and mathematics combined in experiments and problems.

THE: M.fTHEM.fTICS CL.ASSROOM AND ITS I:QUIIMENT
A Mathematical Atmosphere. W. D. Reeve. Mathematics Teacher, Vol. 31, p. 387, December, 1938.

Editorial discusses picfures and equipment for every mathematics classroom.
Planning the Mathematics Classrobm. Fred L. Bedford. The School Executive, pp. 290-292. April, 1936.

List of suggested equipment includes chatt files, shelves and table drawers, bulletin board, blackboard tools, teacher's file, museum case and show case, models, instruments, and other eguipment. Architects' sketches for a mathematics laboratory are includnd.
A Mathematics Room That Spraks for Itsflf. Edith L. Mossman, School Science and Mathematics, Vol. 33, pp. 423-430. April, 1933.

Wall charts made by students inchude one listing seven requirements for "An Excellent Paper," sine "Desimble Habits to Be Furmed or Strengthencd in a Mathematics Course," another on "Earliest Mathematics, r-1700 3.C." List of 24 other student-made posters is included.
Stimulating Interest in Mathematics by Creating a Mathematical Almosphere, Mary Ruth Cook. Mathematics Teacher. Vol. 24. pp. 248-254, April, 1931.

This article gives suggestions on how a mathematical atmonphere can be created. Some means are the use of mathematical models. pictures, proverbs, reading room, posters, exhibits.
The Bulletin Board as a Teaching Aid. G. I. Cahom. School Science and Mathematics. Vol. 28, pp. 867-873, Nowemher, 1928.

Checking and clipping aticles, filing clippings, the filing boxes, folders, back. ground for mounting, attaching clippings to background. titles, a "wire" bulletin hoard, potable bulletin boards, time hetween changes, wing the bulletin board, type of questions, periodicals and sources of material, outcomes.
Fugitive Materials. Frances A. Mullen. Mathematics Teather, Vol. 31, pp. 205-208, May, 1938.

Establishing a vertical file with majom hedings: biogaphies, other historical notes. pumbes, wher tecications, pictutes, phas, club prograns, humor, impor. tance-general, telution to other fields, miscellaneous, to be filed. Sources given. Students contribute and matintain file.
Mathematical Fiquifont and lis Uses. M. C. Wright. School sience and Mathe. matics. Vol. 15. ipp. 500-504, Junc, 1915.

At Luine $:$: y of Chicago High School each mathematirs room contained two large wooden photmetors, two wooden $90^{\circ}-60^{\circ}$ right triangles, two isosceles right triangles, five wooden straightedges, mine biackboard compasses, fourteen footrulers. ten lead pencils, two mall brass plotactors, a spherical blackboard, a
five foot slide make, a cork bulletin boand. giass doored cases for storing of mechanical devices and models. A case containing twenty five revolving panels, -a section of symared blackboard, and a supply of crayons; scissors and string alse a wailable. Survering equipment included two transits. level, leveling rod, sted chain, several steel tupes, wite pins, ted and white sight rods, and engineer's notehooks for field work.
The Primary Purfose of Training in Mathematics-Not a Kit of Tools but a Way of Thinking. Fidith L. Mosmman. School Science and Mathematics, Vol, 38, pp. 992-1002, December, 1938.

Discusies well equipped dassoom: plenty of blackboard space, a library, pic. tures of mathematicims, slide mes. transit, models, charts and posters, etc.
A Method of Making Wall Chats. N. A. Harvey. School Science and Mathematics, Vol. 14, p. 516, June, 1914.

A negative is made of pictute or chant desincd, and enlarged to a convenient size-eg., $20^{\prime \prime} \times 20^{\circ}$; this is atached to a mounting board $22^{\prime \prime} \times 28$ ".
see also books:
Enriched Teaching of Mathematios. M. Woodning and V. Sanford. Pp. 104-112.

MATHEMATICS cIULBS

A High Schoal Mathematios chut. Chale's We. Newhall. School Science and Mathe. matics, Vol. 5. pp. 303 330, Man, 190 .

Deacibes actitities of one of the finst secomban! school clabs in the United States; that at Shathek School, Fuibult, Minu. Comtans outine of several topiss and sugeretions for meetings.
Sources of Probiam Material and Some Types of Irogram Work Which Might Be L'ndertaken by High sheol Mathematics 'eluhs. Ruth Hoag. Mathematics

Projects include compithtion of dutionan of tems and s!mbels nsed in hign
 fied work, whiting of a hiveots of methemation for high school students, construction of a sut of mondels for sold geometh dasers. preparation of mathematics paper. Dumbanioms and everimems imelude soap bubbers and mathe matios, finding of pi h chance, poper fobling and phane geometry, slide tule demonstation, the sted upate. Aho includes a lise of phas, shits, and dialogues,

Mathematues c:lut promoms. A. Hat! Whelet. Mathematios Teacher, Vol. 16,

 arithnetic, ohd anthmetics, wome remahable numbers, comous properties and behefs, and geometry.
Making Mathematiss Interovieg Auguta Banues. Mathematios Teacher, Vol. 17. pp. 901 f10, Normber, IME 4

Jumur High School Mathematus Cluts. Ruth Peosm. Mathematics Teacher, Vul 84. pp. we 299, May, 1911.
 etences.

A Mathematus Club, Mary Caroline Hatton, Mathematics Tacher, Vol. 20, pp. 39-45. Jайи: 1 y, 1927.

Activitues include a slide whe pabeot, a sutveging study, celebration of Mathe. matios Week, tamsit operation, and films melating to mathematics and its appli. cations.
High Schoad Mathrmaties Chuhs. Zult Ked. Mathematics Veacher, Vol. 18, pp. 3.1-3i22, Octolser, 192.

Disensses a phogiam on the slide tule, inturling instuctions for constracting a rule; trichs and puate poblems smeh as tuitks with cands and numbers; eight number thates; songs, comests, and games inchating puns foom geometry; a shont plat. "The Math gutot"; a hithe into the woods to study mathematics in matme; a debate on the metaic statm. Ametated bibliogtaphy.
Mathematurs Chubs. Helen Rusell. Minerat Duncan, Rebeca Symes, and Mary Deth!. Mathematios Jeacher, Voh. 17, Pp. 2×3.285, May, 1924; 1p. 350-358, Octubes, 1924.

How to organize a club; such committes as entertamment, libary, history, vocationat, prohlem, "student help," a atest, piac. Severil plograms are out. lined. Bibliography.
Mathematics Clubs in the High School. Sophia Refior. Mathematics Feather, Vol. 15. pp. 431-435. November 1922.

Discusses a few lypital progroms.
Mathematirs Chahs. Lousis. M. Wehster. Mathematićs Ieacher, Vul. 10, pp. 203-208, Jume, 1917.

Actisities of Hmater College ehob ate repoted. Topics include anagyphs, Lincon's debt tomathematies, the wath ats a compats, alligation, use of imagina. tion in mathema mathematiaians fammes in other fieds, the meaning of a billion, mathematis a nature.
Mathematics Chubs in the lligh Shoml. G: A. Snell. Mathematics Teacher, Vol. 8 , pp. 73-7
Mathematics Chabs. Frank C. Gegenheimer. Sihool Science and Mathematics, Vol. 16. pp. 791-732, December, 1516.

W'eekly meetings at which members proposed problems for solution and read articles in magazines etating to mathematics. Answers the question, "What shall we do for the brighe pupili"
Wathematres (:luhs. H. Vemon Paibe. Mahematics Teather, Vol. 3a, p. 324, Nosember, 1939

Actisities ramble for it chab with lamited membervhap hased on homon grades.
 Mathematas. Vol. Hi. ph. IOti 113. Februats, IClis.

 fí lit. Fehtuat, 193?.

Studying survering as atr anty of the mathenatios vab.

The Mathematics Clu! 1 -Streamlined. Max F. Weiss High Points. Vol. 21. pp. 74-77, October, 1939.
Students sponsored a Math Information Please program, math scavenger hunt, a program on logical analysis, mathematical guggenheim (a parlor game called 20 questions of "guggenheim"), math bingo, topolunacies, mathematical charades, mathematical Professor Quiz.
High School Mathematics Club. Radid talk by Norman Anning. Mathematics Teacher, Vol. 26, pp. 70-76. February, 1933.
Hints about organization: Start a club library.-Put on-an assembly program. Try problems in problem departments of mathematics magazines. Models for the school display cabinet.
Monroe Surveyors Club. Morris Kaplan. High Points, Vol. 22, pp. 55-56, June, 1940.

Recreational Values Achieved through Mathematics Clubs in Secondary Schools. Marie Gugle. Mathematics Teacher, Vol. 19, pp. 214-218, April, 1926.
Recreations for the Mathematics Club. Bryon Bentley. Mathematics Teacher, Vol. 23, pp. 95-103, February, 1930.
Dis-usses several which can be used as stimulus to class discussion or at club meetings. Thisty recreations chosen from algebra, geometry, and trigonometry.
A Christmas Project. Muriel Batz. Mathematics Teacher, Vol. 30, pp. 376-377, December, 1997.
A Chrinmas tree was decorated with geometrical figures and solids as ornaments. Sugests a tree which is entitely geometrical: the hase a cylinder, the stem a very narrow rectangular patallelepiped. the main part of the tree consisting of several tiers of gradtated trapezoids sumounted at the top by an isosceles triangle.
The Christmas Paty. Phyllis A. Holroyd. Mathematics Teacher. Vol. 32, pp. 352353. December, 1939.

Includes picture of a mathematical Christmas tree decorated with various starpolyhedrons.
A Mathemalical Christmas Tree-a Picture. The Mathematics Teacher, Vol. 33, p. 337, December, 1940

The Math Star. Frances A. Mullen. Chisigo Schools Journal. Vol. 19, pp. 169-172, March-April. 1938.
idecribes math magarine published by sudents, methods of organization, types of articles and problems, and other topics.
see also books:
Mathematical Clubs and Recreations. S. I. Jones.
Fintiched Teaching of Mathematies, M. Woodring and V. Smford. Pp. 85-100.

THI: MATHEMATICS LIBRARY

The Mathematics Labrary and Recreational Programs. Helen Taylor. School Science and Mathematics, Vol. 30, pp. 626.694, June, 1930.

Contains list of thirty tittes of books with short description of each, a description of thtee high school assembly programs, including an assembly sketch and song.
I I int of Reference Books and Magazines for Teathers of Mathematirs. W. D. Reeve. Mathematios Teacher, Vol. 15, pp. 303-907, September, 1922.

Refencone books and magaines listed by topics: books of a pedagogical nature:

- howh on teweling of mathematics: books relating to mathematical topics; booh. comathing terestomal materish; books of a historical natme.
Bibhografiny of Popular Mathrmatios. D. B. L.loyd. School sicience and Mathe. 'malics, Vol. 38, pp. 186-193, Felnuary, 1938.
llooks on history, biography, recreations, emichment, and some material. feriodicals on appeciation of mathematics, relation of mathematics $t 0$ other fields, histoly, mathematicians, atithmetic, mumbers, algebra, geometry, trigonom. ctry, phobability, measurement, physics and astronomy and the fourth dimension, recteations and problems, devices and equipment, programs and contests, plas.
Neid Materials and Equipment in the Teaching of Mathematics. B. K. Ullsvik. School Science and Mathematics, Vol. 39, pp, 432-442, May, 1939.

Disutusses and lists books and magazine articles, motion pictures, persters, purfes, equipment, evahation instruments, reotor, and commission repors.
A Scleted list of Mathematios Books for Cobleses. Filton J. Monton, American Mathematical Monthly, Vol, 48. Pp. 600 609. . November, 1941.

FHIMS, SLIDES, AND PROJECTION E:QUIPMENT
lilms
The Plav of tmagination in Geometry. Film produced by David Eugene Smith and Aaron bahst Resiew by W. S. Schlatuch. Mathematics Ieacher, Vol. 24, pp. 55-56, January, 1931.
Mathematics Films. Margate' Pumett. The Mathematical Gazette, Vol. 21, pp. 1491:11. May, 1937.
E:xhhithon of Mathematical Films. The Mathematical Gazette, Vol. 20, pp. 110-114. Mav, 1936.

Describes mathematical films exhibited at a mecting in England in 1436 .
Mathecine'mathes. Grace M. Hopper. American Mathematical Monthiy, Vol. 47, pp . 695 : 368 , Octoher, 19%.

Animbited catoon technique is used to produce film showing limacons.
Mathematics Films. F. EI. C. Mihlebrandt. Mathematics Teacher, Vol. 34. pp. 26.34, January, 1941.

Films are listed under headings: goometry, adyat mathematics, teaching of mathematics. mathematics and art. mathematics and architecture, mathematics and nature, weights and measmes moner, mathematios and phasics. optical instruments, enginecring and industry, m.uhematics and astronomy.
A Scerne Teurher looks at the Classromm Film. H Emmett Brown. School Science an I Mathematics, Vol. 39, pu. $3\{2$ 30, April, 1930.
 picture in tine bastom and embrace the now in sisual educacion too eagerb. foo in.me fitms fal te tcognis that the unique function of film is to show motion: the coser wo much ground, are too inclusive, tex general, and often

 some.

The Classroom Film. K. F. Dwis. School Science and Mathematics. Vol, 39, pp. 697-630, October, 1939.

Replies by a chemistry temcher to criticisins of II. Emintat brown in School Science and Mathematics, Apnil. 1939. Impossible to produce a picture that will please every teacher. Film cannot take the place of a teacher. Filn can show certain lypes of experiments which the busy teaciner camot prepare. Visits to industrial plants are semetimes impossible becanse of large classes. The classroom film has its limitations. 'The use of tilms will not lessen the teacher's load.
shiders
L.antern Stides. Fred L. Hultz. School Science and Mathematics, Vol. 6, pp. 262-267, April, 1906.
A Small Size Lantein Slide. Clatence R. Smith. Sehool Science and Mathematics, Vol. 29. pp. 530-532. June, 192!.

Suge'stigns for Making 2×2 Inch lantern slides with Incxpensive Fquipment. Victor E. Schmide. Schaol Science and Mahematics, Vol. 40, pp. 165-169, Februaty, 1940.

Lists equipment and materials needed, discusses method of making slides and construction of the camera and holder.
Ilomemade lantem Slides in the Tearhing of Plane Getmetry. N. L. Martitn. Educational Screen. Vol, 13, Januaty, 193 F.

Sixty slides an conghency of trianges, patallel lines, and other straight-line figures were made, together with sixty on circles and loch. Some slides were cellophane and others were etched on glass. Slides were used to introduce a new unit, as well as to show its deselopment and to cans on the review. Anthor's con-
 effectiseness of the pesentation of phane geonets. s. The whe of tantern slides appears to vary insersely with the native capacin of the individual child. \mathcal{Z}. Thete is a high degree of conremion between achiesement and the use of the slides."
The Stereoption as an dal to lhases Tearhing. Charles F. Valentine. School Gience and Mathematics. Vol. 28. 11?. 78-80. Jaman!. 1028.
"Only wo or thace shifes ane selected for an! chas discussion period. The sides mant be selected with pationlat atemion to their we in the lesson plan: fite slides mus hase a diont forms and thow a billint imbue on a blackboard. \because Ge stereopticon must hase a shont focus and throw a billiant image on a black.

 prenented."

sharamerns

 . Match, lolis.

Scientific Use.for the Stereoscope. Aid to the Imagination in Picturing Stacie Modets. Scientific American Supplement, Vol. 72, p. 117, August, 1911.
See also всокs:
ch ${ }^{3}$
Excursion in Mfathematics, E. R. Breslich.
Basic Principles of Analytic Geometry. W. A. Spencer.
Diagłams in Three Dimensions for Solid Geometry. E. R. Bresiich.
Mathernatical Snapshots. H. Steinhaus. Pp. 42, 44, 68, 72, 73, 77, 79, 84, 85, 89-92. 94, 100, 102, 105.
Les Araglyphes Geomerriques. H. Vuibert.

tquipment

A Universal Projection Lantern. F J. Remdonif. School. Science and Mathematics. Vol. 9, pp. 299-298, Mirch, 1909
Directions for constructing a lansern which projects photugtaphic slides, microscopic slides, apparatus both transparent and opaque by either horizontal or vertical projection, and printed diagrams.
A Reader for Microfilm. Hermanl Bansun. Schowl Science and Mathematics, Vol. 40, pr. 411-412. April. 1910.

A visual magnifier made flom a commencial binocular siewer kor 35 mm . film strips at a total cost of about cights cents. Photograph shows vewer in use.
Microfim Equitment for the Indieidual IVorker. Hemman Bramon. Sthonl Science and Mathematics. Vol. 41, pp. 140-143. February, 1911.
A microfilm camera apparaths is assembled from a 35 mm . camera and an en. larger stand. Focusing. choice of speeds, and film stock needed are discussed. Two illustrations show the completed microfitm cutuena and the pojector ready for use. Ficturols are being mate at a cost of about do a frame.
A Pupil Operator Sernice for the Projection of Visual, Ahds. Wallet W. Bemett and Lewis S. Edgarton. School Science and Mathematics, Vol. 36, pp. 8:6-363. April. 1936.

Description of a visual aid system, of a Rochester, New York. high school which miakes use of student senice in operating the projection machine and keeping it in repair, and employs students for the cletical wotk of assigning the machine to teaehers and procuing films requested. A chare shows telationships of the Visual Aids Corps to other groups whereb it beromes a contehted extracurricilar activity.
See also воокs:
Enriched Teaching of Afathematics. M. Wimitring and V. Sanford. Pp. 89-95.

coNTE:SS

1 Mathematurs Contest-Its Relation to the Cieneral Problem of Inturidual Differ. ences. Kaleigh Schotling. School Science and Mathematios. Vol. E. pp. 994 -i97. December, 1915 .
Rules agred : 1 poin for a conters between two high school teams of six students cach chosen fiom first-year classes. A written and an oral contest were held.
Mathematus Reiays for High Schools. I lest H. Koch. Jr. and Thomas H. McCormick. Mathematics Teacher, Vol. 8, pp. 116-123, March, 1916; also in School Science ath Mahematics. Vol. 16, pp. 530-59f, June. 1916.

Class dhided inter teams of four members eath. All teams wark simultaneouslv. Practire is gisen in the four arithmetic procestes. In addition. for example, the teacher will dict:ate two fise digit mumbers. The first member finds their sum,
the second member adds tite sum and the second number. the third member adds the first and second sums, the fourth member adds the second and thid sum, the first memher adds the thind and fourth sum, etc., for 'en cases or so. Similar problems are worked in subtiaction, maltiplication, and division. All. school teams are chosen and these may compete in interscoool contents.
A Wathermatical Contest. Edgar T. Boughn. School Science and Mathemarics, Vol. 17. pp. 399-330, April. 1917.

Rules and type problems used in a contest between Manual Arts Kigh School in I.os Angeles and the Pasadena High Shool.
A New Form of School Contest. J. 「. Rurer. Fiducational Review, V'ol. 57. pp. 339345. Apeil, 1919.

A track mest in mathematics.
Mathematics I'rams to Mutivate Drill W'ork in Junior Hegh Shonls. K. V. Kessler. Mathematics Teacher, Vol. 27, P1. 25-29, Jamary, 1939

Includes a hist of contest rules for a toumamemt and suggestions fon . mbluting competitions.
A Computing Club. School Science and Mathematics. Vol. 31, p. 1037, December, 1931.
R.ditorial suggests organizing a rapid calculating clab in schools, "lt may pre. vent a "ailure in college thathemtatics or science."
 June, 191^{7}.

Discusses nathre of contests and desctibes a relay competition in algebna and a "crisscross" relay in addition.
A Cieomelric Recreation. Is.abel Harris. School Science and Mathematics, Vol. 20, pp. 731-733, November, 1920.

Rules set up for six contests in a class in geontens.
 274-279, May, 1927.

At a meeting of mathematios teachers; foll wo aticles wore placed on exhihit and those present were requited to identifs a tom fomm etmentan mathemaite. Can be used by a high school or college mathematios clab. for a whon exhbit or a mecting of teachers.
 Kules ate given for a "clansoom" game
see also mons:
finnched Fearhing of Mathematurs. M. Wombins and V. Sumfond. P. Si.

I:XHHBITS

Axhibit of Hish School Wathemutios-lis Matom and Riductumal lalue W'. D.

 a centell theme. I'ublicit given thongh daily papers and other mediums. List of thente whth as diplitatiom of high school mathematigs to games of chance. multiphatom willomt thinhing. mang mathematics to deceive, how mathem.tics is uned in chanches. how the designer of dresses uses mathematics.

Dincures mathematios exthits prepared by Chicago high schools and held at the Wher Planetainm. Morlel hidges were mate by students showing how matlecmatics was used in their comsmation. Interest in making models can be aromed thonbh pirit of comperition. Reading material in exhibit should be in letters hage enough to be wead ten feet away by person wearing bifocal ghones. Monteh shombl be plandy maked and, as far as possible in words of one whable. (ienemous we shombl be made of colors. "Gorgeous beds. otanges, bhes
 mone of a sincowful evhbit are simplicity. ease of whemation and atract emess."
 Iol. O, ple 2.1253, Februaty, 1939.

Livin evhih:ts in arithmedic and algebra; applied mathematics; abalssis; geom-
 Nimblo Mahbue whish ohbined an unknown mumber through the applioution of matic apmats: Polloks, Models-ating figures ontrames; skew curve projec. (Ion; watipetal fone: applied centopetal force; Galton quincunx; computation

 peates. , isodnamics, pantogtapher.
 fombs. Vat. H. P1. 30-31. Derember, 1934.

 atitur pi, ellyweraph, a slite male exhibit, a Michelson hatmonic amalyer of

 mated surfices, a mating come in a plame beam of lipht to wow the emic ser.

 3x2-3x1. Octoher 1430.

Gidphs insolsing lural statistics; designs for linoleum, wallpaper, doors, and wmions; polytedoms; a solid geometry chinch with hexagonal pramid tower

A C'mque Mathematics Laxhbut. Ruth Wilson. Mathematios 'eacher, Vol. 30, pp. 19x-199, Math, 1937.
 fations and Industaies," the mathematics depatment heid an exhibit based "Hy lexal uso. Ihe chomas and ponet company conperated in making several chats. as did the mepheme comprom, life insumance compans, city engineering depatuments baltoad, and lomal anchitect.
Brme made Mathomatus l:xhibit. William sell. dmetican Mathematical Monthly, Vol. 40. 1p. 52; :5.5t, Nosember, 1933.
Rikhht lour Muthemates. L. M. Montis. High Pomas, ; vi. 16, pp. 29 2j. December, $1!331$.
 ! $193!$.

- The takibut as a suiplementar Melhod. Cigstallography. Harold J. Abahams.

Exhbit in which chemical and minctal croshat ate gronped, accorling to for
 all (b)hals maty be danded. Dine boms lor making the models and preparing the crustals.

Whaten for a sitace exhath, there ate many suggestions which can be used

 standate ste fecommended is wo feet squate and not over thee feet high.
 before the exlabit. Explaman! pestern shatil serve as guide.
Mathematical lmataments. Whad Banadiall. Enciclophedia Britamica, Ifth Edition, 193!. Vol. 1.5, pp. 69. - 2 .

* Vol. L5, pp. ī--
bec aloo moosh:
 108, 110-111.

PI.11S

 Smi. Octulect $1!11$.

 33. pe 535-53, M.5, 1933.

A plan bixal on aloras pohlam.

 1!

 3 3. Dewmer. 1935.

 V1: 1 :
1.: , :

Sece also meshs:
Einnched Teuching of Mathematics in the Junior amd Senior High School. M. Woodithy and V. Sanford. I'p. 87-89.

RECREATIONS

Rerrational Aspects of Mathematies in the Junior High School. Amea R. Meeks. Muhematios 7 cather. Vol. $29, \mathrm{pp}$. 20 , Jamany, 1936.

The use of mathematical puates mad games in the class periond, mathematics chab, the mathematios newopaper.
Mathematical Recreations. Martha Picte Mathemiatics 'Ieacher, Voh, 19, pp. 132.4, January, 1926.

Recreations in Seconday Mathematics. Ghalos W. Newhall. Shool Science and Mathematics, Vol. 15, pp, 277-293, Apil, 191.

Methods of using recreations in mathematios clubs; in informal meetings de. voted to games. puales, tichs; in migneed tendings; in debates; in the clans. room. References include oner fift! boohs andesives magazine atieles.
Misplaced Mathematical her rations. M. C. Betgen. School Scieme and Mathematics, Vol. 39, pp. Fibio-768, Nowmber, 1939.

Conclusion: "pactice in puate solving makes for poficiency in puriè solving, but in nothing else."
From Interest to Imarest. M. Weiner. Mathematics Tracher, Voi, 30, pp, 23-26. January, 1937.

Mathenatical recocations book anakencel intecet in a boy and he became one of the outstanding stadents in the shool.
Arithmetic tuzzes for jumor Grades. E. W'. Montemet!. Show (Flementar) Fdition), Vol. 29, pp. 800, Mas, 1911.
Proving a Geometrical fallacy by Trigonometr). Willian W. Juhnson. School Sci-

 be cut into fom pirces which will fom an aphenem rectange 5×13. The diller. ence may be shown to be a paralletoriam of nea one "fune mite.
Mathematual Lallaties. Cecil B. Read. Shool Science and Mathematios, Vol, 33, p. $580-549$. June, 1933.
Dicusses sesernl common algetmic and geometric fallacies.
 33. pp. 9\%7-9n:3. मe centur, 1:333.

Mone interewing fallacies which an be wal in mathematics chases. Reforences. see aho moohs:

(i.1.17.)
 |14.

Mathematical Games. Alfreda Raster. Mathematics Teacher, Vol. 17, Pp. 422.-425, November, 1924.

Describes a version of "Old Maid in Algeura," a blackboard relay, crossed words, $2 \mathrm{i} p \cdot / \mathrm{ip}$, "bimon sajs, B uzz," and the game of math shark.
A Mathematial crossuord Puzele. H. C. Cozard. School Science and Mathematics, Vol. 2t, pp. 31ti, 318, M.arch, 1926.

Imolves such mathematical terms as sum, limit, number, problem, theorem, degree, circles, log, factor, spliere, polygon. Solution included.

BOOKS

MUDE:LS

Anfertigung Mathematischer Modelle. K. Giebel. Leipzig: B. G. Teubner, 192j. 52 pages.
Elementary survejing instruments, model for bisecting an angle, variation of parts of right triangle, measurement of angles related to circles, pantographs, similar triangle figures, binomial theorem cuhe, polyhedrons, slide tules. Also discussions on how to use wood, paper, cardboard, glass, celluloid, clay, lead, and brass.
Early Science in Oxford. Iart II: Mathematics. R. T. Gunther. New York: Oxford University Press, 1922.101 pages.
Descriptions of early scales and protractors, spherical blackboards, mathematical models, geometric solids, calculating appatatus, drawing instruments, propor. tional compasses, parallel rulers, parabolic compasses, elliptical trammels, sectors, slide alles, stand,rd measures. gatuging imstruments, weights, quadrants, transvelabls, and mictometers. Well illustrated.
General flastics. Kaymond Chery. Bloonington, Ilh.: McKnight and McKnight, 19 1. 128 pages.

Lise of plastics in making models.
Katalug Mathematischer und Mathematisch-physikalischer Modelle, Apparate und Instriments. Walther Dyck. Munich, 1892. Vol. 1, 430 pages: Vol. II, 135 pages.
shide rules, calculating machines, devices for drawing various curves, quin. cumx of Gitton, imstuments for liarmonic analysis and advanced mathematics.
Mathematica! Models. Amold Emeh. Urbana: University of Illinois Yress. Four pamphiets.

Siring models of surfaces of higher mathematics.
Mathematual Snaphots If. Steinhaus. New Yosk: G. E. Stechert and Company, 1039. 195 pages.

 Phatur an the whol and hame Warkhoft. A. J. I.ockrey. New York: D. Van Nos. stimd and (ompant. 1910.933 pauges.
 !.は采

Dinecton ficules, shulle puades, Tower of Itanoi puzle, cross and wedge puales.

Solid Geometry．L．I．ines．Lomdon：Mamillan and Company，1935． 292 pages．
Chapters on prịhedons，semi－regular and star poly hedrons，and crystal forms． The Fifteman Losahodra．II．S．M．Coxeter，P．Dub＇al，H．T．Father，dad J．F． Petrie．Fonongu：Inicersity of Totomon Press， 1938.20 pages， 20 plates．
Inclecke und lidhuche．M．Buackucr．Leeipeig：Tembuer， 1900.207 pages， 12 tables． A classic on all fomm of polshedrons，including semi－tegular and star polyhe． drons．Iff imasmations and momerous diagrams．

TOOL．S A．V＇D NSTRE．MIN＇TS

Adler I＇hnetarimm and Astrommmical Musenm．Philip Fox．Chicago：Adler Plane． tarium． 63 pages．

Descoibes the uptical phmetarimm installed in Chicago．Also discusses and pic－ tures sarious histoical mechanical planctainms，astolabes，nocturnals，quadrants， octants and sextants，smodials，calendars，circunferenter，graphometer，mathe－ matical and diawing instuments，and telescopes．
Rultr and Compasses．IIIda l．Hudson．London：Lomgmais，Gicen and Company， 14］6．143 mages．
lossible construs：ions．buler consuructions，ruler and compass constructions， standad methods，one fived circle，and compasses only．Bibliography．
The Strel Square．Hou＇to L＇se Its Scale＇s，Mou lo Make Braces，Ronf Construction， and Other Lises．（；Townemal．Chicago：Amesicin Technical Society，1940． 06 pages．
Fouls－A Mathematioal Sketh and Model hook．Robert C．Yates．Baton Rouge： L．misiana State I＇nivensity Poms，1941．194 pages， 79 plates．

Sections on the staightedge and modern compasses，dissection of plane poly． goms．peper folding，linkages．panallel and angle rulers，and other tool：and link：iges．

sl．IDE：RITI：

Theons and operatom of the male and modified foms of the Mannein Rule－

A hivemie．al ne umatht of the viale tule．
 19：リ以心

 リバン。

sURTFYING

Field Work in Mathematies. C. N. Shuster and F. L. Bedford. New York: Ameican Book Compans: 1935. 168 pages.

Fanly instruments, scale dawing, apposimate data, slide rate, angle minor, hopsometer and clinometer, plane table, vemier, sevtimt, tansit, pantograph.
Mathematics of Euergay Life, Gometry linit. Geonge A. Boyce and Willatd W. Beath. New York: laor Publnhing Compathy, 1936. leb pages.
Eaperments with elementaty smbering devices at early high sohool level.
Sume'ger for shoms and Souts. W'. A. Richadson. Lomdon: Cocorge Philip and Son, l.4h. 193i, 110 pages.
 stolments.

STEMEOCRAMMS

Impmtant solids of solid anslytic geonem? are shown.
 son aml (iompans, 1934. l: phates

Figures fon theotems in whed geoment illustated b means of stereographs.
 17 pages, 21 plates.

Csing red and hlac coloned vewers, illustrations show cubc, parallelepiped,

 in space, whme of patallelepupeds, pinms, pyamids, star dodecahedion, cylin. dens. comes pheres, athel untils.
 1938. 6\% pros's, al plates.

 Fxcellent biblographs.

(iom:ethral Dmaing and lessen. J. Humphosy Spanto: I modon: Macmillan and

Ceometrical Drawing for Art Stuedents. I. H. Mornis. London: I,ongmans, Green and Company, 1941. 228 pages.

Fundimental properties of designs and drawings.
Meytr's Handbook of Ornament-Geometrical and Floral. F. S. Meyer. Pelham, N. Y:: Bridgman, Publishers, 1928. 64 pages.

Source Book of Problems for Geometry. Mabel Sykes. Boston: Allyn and Bacon, 1912. 380 pages.

Tile and parquet floor designs. Gothic tracery based on forms in circles and on pointed forms, trusses, and arches. Diagrams, pictures, and exercises based on famous art and architectural designs of the world. Extensive bibliography.
Geometric Design. A. Bruce Ewer. Denver: Smith-Brooks Company, 1935. 28 pages.

TE.4CHNG OF MATHEMATICS

Craftsmanship in the Teaching of Elementary Mathematics. F. W. Westaway. London: Blackie and Son. 1931. Available through Kyerson Press, Toronto. 665 pages. Chapters on polyhedra, proportion and symmetry in art, the matheme ical library and equipment, harmonic motion, map projection, orthographic projection: many teaching aids for the secondary school and junior college courses. Mathemalics for Junior High School Teachers. William L. Schaaf. Richmond: Johnson Publisting Company, 1931. 439 pages.
Problems in 'reaching Secondary School Mathematics. E. R. Breslich. Chicago: Uni. versity of Chicago Press, 1931. 318 pages.

The teaching of furetions, formulas, and graphs; intuitive, demonstrative, and three dimensional feometry. Illustrates various form: of teaching aids.
「caching Mathematic' in the Secondary Schools. J. H. Mranick. New York: Prentice. Hall, 1939. 336 pages.

Applications of mathematics and mathematics clubs are topics treated in two of the chapters.
The Case Against drithmetic. E. M. Renwick. London: Simpkin Marshall, Lid., 1933. 167 pages.

Chapters entitled "Misconceptions Relating to Measurement," "First Notions of Fractions," "The Fraction as Multiplier," "Difficulry in Finding Approximate Answers" discuss typical errors and the student comme引ts experienced by every teacher of mathematics; also chapter on "Some Suggestions for Refgrm in the 'leaching of Number."
The Teaching of Lilementary Mathematics. Charles Godfrey and A. W. Siddons. Cambridge University Press, 1937. Available thtough Macnillan Company, New York, 320 pages.

Pythagorean Theorem by dissection. Three•dimensional work discussed under headings "Secing a Solid Figure." "Driwing a Solid Figure."
The Teaching of Junior High School Mathematics. David Eugene Smith and Wil. liam D. Kecve. Boston: Gian and Company, 1927. 411 pages.

Homemade instruments discussed are those measuring distances and angles, those for drawings and constructions. including the T'square and carpenter's "squate." and a circular harkboard. A device for illustrating the multiplication law of diected numbers is mate: from a light bar, small screw hooks, and weights. Chapters also on mathematics clubs and contests and mathematical recreations.
The Teaching of Mathematics. J. O. Hassler and R. R. Smich. New York: Mac. millan Company. 1930. 405 pages.

The Trathan of Senodary Mathematios. Chatles II. Butlen and F. Ly nwood Wren. Sew York: Mciraw. Hill Book Company, 194. 5l.4 pages

Materials of instanction-aids to teaching inclade textbooks and workbooks, eguipment of the individual student and the classtoom, instraments for field woik, instaments for the classom, such as models, spherical blackbord, diaw, ing instrmments, homemble equipment. stimnlating and maintaining interest in mathematics by notitation throngh intellertual curiosity, applications to other fields of study, mathematical clubs and re reations. Extemsive bibliography.
The Technique of Teaching Secondary School Mathematics. Frnst K. Breslich. (hicago: Liniversity of Chicago Press, 1930. 239 pages.

Effective procednres and devices in teaching mathematics. aronsing and main. taining interest; the mathematical equipment-its use and care (includes slide rule, blackboards, protractors and rulers, filing case', homemade instrmments-a tansit made from erector set pieces is illustrated) mathematical library.

ARY, ARCMTEC:TCRE, AND DSNAMESYMMETRY
A Rhathmic Atproarh to Mathematics. Edith L. Somemedl. Kejrints abatable fiom Miss L. F. Chrisman, 1217 Elmdale Avenue, Chicagn, 1906. 67 pages.

Introduces student to various geometric carves by means of sewing cards; e. h. the parabola as the pursuit curve of dog chasing a mbhit, the spinal of Archi. meders, and many interesting designs.
Dynamarhthnic Desugn. Fiward B. Edwards. New Yonk: D. Appleton Century Company. 1938. 122 pages.
Dymmic Symmetry-The Gieek lase. Jay Hambidge. Nuw Haven: Yale Univer. sity l'ress. 1920.161 page's.

Analyses of ancient (ireek bises based on the ptoperties of ratos in rectangles.
Estheitique des Proportions dons lu Nature et dans les Arts. Matilą C. Chyka. Paris: Gallitnard, 1927. 459 pages.

Form in nature and art as related to mathematics. A valabile collection of material.
Ninture's Jarmonic Unity. Samuel Colman and C. Alhur Coan. New York: (B. 1 . Puman's Sons, 1912. 397 pages.
On Growth and Form. D'Arcy W. Thompson. Second Fdition. Cambridge Univer. sity Press, 1912. 1116 pages.

One of the best treatments of applications of mathematios in nature, inchoding theory discussion, and illustations. Tieats suth bupies as gowth, soap fitms. capillarity, hexagonal symmetty, hees cell. snow crystals, zadiolarians, spider's wel), spiat of Archimedes, mathtilas shell, phollotavis.
Jerspectue Made Liass. Enest R. Norling. New Sonh: Mamillan Company, 1939 $20: 3$ pages.

An elementary, step by step introduction to the sobject.
 nam's Sons. 1920. 265 pages.

 foh and ammals. the haman figute ant amd athotecture.
r

The Eiement of Dynumu symine (1). Jay Hambidge. New Sork: Btentano's, 1926. 140 pages.

The logathmic spital is shown to give the approah to this fom of design. Theory discansed in a seates of wenty one lewoms.
The Fiozen Iomatan. Glawde Bagdon. New Jonk: Afied A. Knopf, 1932. 125 p,nges.
Theon of onament and arhitother shated to the five wegular solids and exgular polyhedons of the fouth dimension.

fun whild laper. Joseph leeming. New tork: Stukes, 1939. 152 pages.
fucludes the pentagon, chinese tangrams, and mious dissection purfes.
(i, omethic li sencise's in Paper tolding. I'. S. Row. Laballe, Ill.: Open Cout Publish. ing Compans, 1941. 1 is pages.

How to form the squate, equilatend tiangle, pentagon, hexagon, octagon. mangon. decaron and dodecagon, and pentadecagon. Anso the conic sections.
Hondmis l'uper Masic. Houdini. New ronk: E. D. Duton and Compra. 1922. 206 pues.
baper folding and paper pazales form two interesting chapters.
Sudp Buthles. C. B. Buys. I. ondun: Suciety for Pomoting Christian Knowledge. f!ne. Aathble though Macmillan Compang, New totk. lïs pares.

- Stay interesting eaperiments with somp solation teralting in minimal surfaces of interest to wern! high sthool stadent.
 M,umillm Company, New Youk. 155 pages.

Thon! and wperiment with the gnoscope.
 mad soms. 1921. 69 pages.
sumg designs. many originating with pimitive people.

Amastments in Mathematics. Hemy F. Dadeney. Now York: Lhman Nehon and Soms. 1940. 250 pages.

Repimed as pat of Nelson Black Out I than!.
 ise pages.

 moluding anwens.
 1936. 116 pages.

 $2 \div$ pacs.
 1935.153 pares.

 kames.

Easy Number Tricks. Josph C. Broum. Polham, N. Y.: The author, 53 pages.
Fun with Figures. A. Ficdeaik Collins. New Yoik: D. Appleton-Century Company, 1948.253 priges.

Mathemas'e. R. V. Hcath. New Yoth: Simon and Schuster, 1933.' 138 pages.
Mathemathal (.habs amd Rechatmons. S. I. Junes. Nashville, Tenn.: S. I. Jones Compans, 1900.250 pagen
Matherathal Vuts. A. 1. Jones, Nashwille, Tenna: S. I. Jones Company, 1936. 340 pager.
Mathematual liräatwons amd fisays. W. W. Rouse Ball and H. S, M. Coxeter. Fle emoh Falfiont I modon: Mamillan and Compaqy, 1939, 418 pages.
(icomeniosl dixections; wselation, color cubes. tangrams; polyhedra, including
 cellent refermoes induled in all chapters.
Mathematiol Hrmkles. S. I. Jones. Nashrille, Tema.: S. I. Jones Company; 1930. 361 pages.
Modern Pu:zles. Hemr F. Dudeney. New lonk: F. A. Stokes, 1926.190 pages.
Numbergrams, N. Spahtawk. Boston: Van Puss, 1932.
Puzzles and Curious Proble'is. Hemry E. Duleney, New lork: Thomas Nelson and Sons, 1910. 195 pages.
Puzzle Papers in Anthmetic. F. C. Bown. I.oudon: G. Bell and Sons, 1937. 64 pages, including answors.
Recreations in Mathematics. H. E. Licks. New fork: D. Van . Vustrand Company, 1916. 155 pages.

The Book of P'u:irs. A. Frederick Collins. New York: D. Appleton and Company. 1927. 190 радеs.

Tangrams and the loculas of Archimedes, a few geopmenical dissections.
There is fun in Cioometry, Louis Kuper. New York: Fortums's, 1937. 135 pages.
Winter Nights Entertainmonts. R. M. Abraham. New York: E. P. Duton añd Com. pany, 1993. 1 stipages.

Paper folding; stoing tricks and tigutes; knots. bomis, and splices.

NUMBERS

New Numbers-moat Arcoftance of a Duraderomal Rase Winuld Simplij) Mathe. matics. F. Fmersoll Audiens, New lotk: Hincourt, Brace and Compans, 1935 168 pases.
Numbers and Numprais. David Eugene Smith and Jekuthed Ginaburg. New York: Bureau of Publications. Teachers College, Columbia Liniversits, 1037, iti pages.

Roman, Chince. and Japanese abous and the development of numbers.
Dumber Storie's of I whg Ago. D.wid Fugone Smith. Bospon: Cima and Compams. 1919. 150 pages.

 102n. los pases.

SOURCE BOOKS FOR FURTHER STUDY, AND MISCELLANEOUS
A Companion to Elementary School Mathemalics. F. C. Boon. Lopdon: Longmans, Gicen and Company, 1924. 302 pages.

Mechanical construction of curves, including linkages; Pythagoras' theorem; 5y numetry; continuity; paradoxes and fallacies.
Algebra, an Interesting Language. E. R. Breslich. New Yoak: Newson and Company, 1939. 70 piges.

Illustrates and discusses applications of algebra and arithmetic in life around us.
A Scrapbook of I:lementary Mathematics. William F. White. I. aSalle, lllinois: Open Court Publishing Company, 1910. 248 pages. (Out of print.) •

Napier's rods and other mechanical aids to calculation, geometric puzzes, a home-made leveling device, "rope stretchers," the three famous problems of antiquity, linkages and straight line motion, paper folding, apparatus to. illustrate line values of trigorometric functions. Extensive bibliographic index.
Curiosités Geometriques. F. Fourrey. Paris: Librairie Vuibert, 1938. 431 pages. Pythagorean Theorem, dissection figures, surveying instruments.
Flatland-a Romance in Many Dimensions "A Square." (E. A. Abhotl) Rev. Ed. Boston: Little, Brown and Company, 1926. 155 pages:
Fundamental Mathematics. Duncan Harkin. New Yurk: Prentice-Hall, Inc., 1941. 426 pages.
Mathematics and the Imagination. Edward Kasner and James New an. New York: Simon and Schuster, 1940. 380 pages.
Mathematics for the Million. Lancelot Hogben. New York: W. W. Norton, Inc., 1937. 647 pages.

Mathematics, lts Magic and Mastery. Aaron Bakst. New York: D. Van Nostrand Company, 1941. 790 pages.

Abacus. Napier's rods; also modification of Napier's rods in the form of a calculating apparatus using ten sets of Napier's rods.
Procedés Originaux de Constructions Géomériques. E. Fourrey. Paris: Librairie luibert, 1924. 142 pages.

Constructions with compasses alone, and ruler alone. Paper folding.
The Pythagorean l'oposition. Elisha S. Loomis. Second Edition, Berea, Ohio: Professor O. L. Dustheimer, 1940. 214 pages. $\$ 2.00$.

Two hundred and fifty six proofs of this famous theorem.
Trisection. Robert C. Y'ates. Baton Rouge, Louisiana: Franklin Press, 1941. \$1.00. A therough treatment of the subject.
What Is Malhematics? Richard Courant and Herbert Robbins. New York: Oxford U'niversity Press, 1941. 521 pages.

Includes soup firm experiments; an instrument for doubling the cube; linkages.

history of mithelficttics

A Primer of the Fistory of Mathemalics. W. W. R. Ball. New York: Macmillan Company, lase 149 pages.
A Shorl Histurg of Mathematirs. Veat Sanforn. Bontoin: Houghton Miftin Company, 1930. 384 page's.

Many instruments and devices are discussed and illustated.
History of Mathematirs. David Fugene Smith. Volume 1. 1925. 5\%0 jages; Volume 2, 1925, 703 pages. Boston: Gimn and Company.

Number, the Language of Sicience. Iobias Dantaig. Ihird.Edition. New York: Macmillan Compant, 1939. 320 pages.
The History of Aribhmetic. Luuis C. Karpinski. Chicago: Rand, Mc.Vally Company, 1925: 207 pages.

A Bibhografhy of Mathematical l:ducation. Willian L. Schata. Forest Hills, N. Y.: Stevimas Press, 1941. 144 pages.

A classified index of periodical titeature since 1920, containing over 4,000

- references Section on audio-visual aids indates mathematical models, exhibits, films and slides as well as general aids. Also references on mathematical plays and dialogues, clubs and recreations, general exira-class activities, use of histotical material, graphs, slide tule, and logarithms.
I:nriched Teaching of Mathematios in the Junio: and Senior Hish School. A source book of illustrative and suphementary materials fer teathes of mathematics. Maxic N. Woodring and Vera Smfond. Kevised 'ation. New fonh: Bureau of
- I'ublications, Teachers College, Culumbia Coiversity, 193s. 133 pages.

Materiats for units in arithmetic, algelna, geometry, and tigonometry, as well as tests amel workbooks, are fisted. Also references to anticles, books, and mames of equipment deales for lantem slides, motion pictutes, slide rules, surveying instruments, pietures, bulletin boats and exhibits, assembiles, chbs, plays, contests, and recreations.
Handbook of Mathemalocal Tables and Formalas. R. S. Burington. Second Edition. Sandusk!. Ohio: Handbook Pablishers. Inc., 1940.275 pages.
I.fox. A pochet-size s!stem' of loose ledf data sheets and hank forms. Philadelphia: I.efax, lic.
I.oose leal veres listing fommas for varions lumehes of mathematics, engeneering. and buniness, as well as all fotms of tables. Sheets ate sold individually or in groups and mas be inserted in notehook.
Mathematical Talles from Handhook of Chemistry and fhrsios. C. D. Ifodgman. Revised Ed. Cleveland: Chemical Ruhber Publishing Company. 1941. 178 pages.

Formulas for algebra, geometry, trigononetry, and hioher mathematics. Fableq for tigomometio functions, logarohms, radians, componmed interest and anmities, and higher mathe matios.
Mathematios Dutionary. Glemn James and Robert C. Jumes. Van Nubs, Calif.: The Disent Pess, 1942. 259 pages.

Basic words and topic phrases used in arithmetic, elementuy algehat. plane and solid geometre, tigemontery, and jumor college mothematics. Appendix gives formalas and tables.
Sonaries of rixtal deds for Instructional Use in Schools. l'amphlet No. Bn, Revised. Federal Sennity Agency. V. S. Office of Fidncation. W:ashington, D. Ci: Superintombent of lowments. 1911. 91 pages.
linds somes of vismal aibls for all departments under the headimes chants and
 pietures, ohiects, specimem and models, pictures amb photogaphs, posters and

 pojectors and athahments, hatern projectoss, micmpojectors. motion-pictare projectors, opique projectors.

The Audio lisual Handhook. Fllsworth C. Det... Fouth Edition. Chicago: Society for Visual Fiducation, Inc., 1912. 997 pages.
 blackboard demonstations, plas and pigeanes, models, somon maselim. graphs, maps and ghobes. photographs, ophape pajedton of pictutes, stecograph and sterosogife various lypen of slides how they are made. how they are usedequipment. threedimemsomal popertion, silent and found pictures. Sothece of infommation, materials, and equipment ate also gisen under man of the headings listed above, as well as somets lor pamphlets and bulletins, and organimations from whom intormation may be obtained.
Visual Aids in I:ducation. A Syblabus for lise in Clases in Schools ant Colleges of Fducation. C. W". Ieman. Pablished is State 'reather, College. Paterson, N. J. 71 pazes.
 graphic lantern slise, the blorkboard and bulletin board, flat pictures, other graphic aids, the sterembaph and teacosope, opoune pojection, the filmalide and the stilfilm, the molion piotore.

H:INS AND FH.MSTRISS

FIIMけ

 photogruphu methot, have moponed comaletably since the film was produed in last. Silent, : IWh. '3ell and Howell (ompan!, 1801-1815 Latchmont Ase.

 wh.uncol.

 for theve fitils
 tert. Sli;
 $\$ 1!1 \cdot$

111Mルに!!


```
411!6%
```


Euch film (no manual) \$2.00, from Suciety fot Visual Education, Inc., 100 F. Ohio St., Chicago, Ill.

```
gifo: 'ky
Intr. :etiun to Plane Girometry
Rectalmear Figures-Triangle's
Rectilunear Figures--Triangles and Parallel l.ame's
roclilinear figures--.tngles and Triangles
<eclilantar fluures-()uachilaterals and l'olugons
Rectilinear figures--Pol)gons and locus of a l'aint
Thre Circle---hords and .lrcs
The. Circle--Tangents and Secamts
Whe' Cucle-Measurement of Angles
```



```
    St., Chicago, IH.
```

hight on mithemathes
ふil l: drillmetic
Finc Kess to Mathematics
Adtit:on and Subtattion
Multiplication and Division
Fractions, Decimak, and percentage
Addition and Subtraction of Factions
Multiplication and Division of Fractions
Squatre and Cube Ront
Kit 11: (ieometry and Trigomometry
Addtaion and Subtanction in Citontedy
Mfultiplication and Disision in feometty
Angula Measurement
fombructions
Scales and Mordels
Vectors
Tisgominetiy
kit III. flgrelra
foratere and Xecatine Vimblers
R.ato amal lopention

Plotimer 6.aphas
Bralvac (ecomextr

tral. Mirh

GFOMITRIC DEAWIMG ANU BLAT: PRIST RF ADIMG:

Geometric Canstruction, P'arts I and ?
T Square and Triangles. Porls l and 2
Fach film (with manmal) \$.00. from Ihe Jam Handy Otganiation, Detovit, Mich. Blue Print Reading

- Film (with mamail) \$1.00, from Castle Films, Ine, New York, N. Y.

se:rrne:

Optical lllusions

Timukepers Through tha dges (cilacks)
Mechanics I (l.cyers)
.Mechanics II (Inclined Plane)
Wrchanirs III (Julleys.-Whrel and Axte)

MIAStraf:

The Sterl Rule

Ther Mirrome'ter
Fixed (iages
J'ermier lis ale
Hrieht Cinges and sumbard linelirators
F.,


```
SW16.1/16>
```



```
        t").lll.anute wr .Wai-iner Rase
```


(1FHRER M.1]/RI.115

[^0]: ${ }^{1}$ Slaught, H. E., "Greetings to My Friends of the National Council." Mathematics Teacher, Vol. XXX, pp. 186-187, April, 1937.

[^1]: 'Somewell, Edith L. A Rhythmic Approach to Mathematics. George Philip \& Son, Lid., London, 1906.

[^2]: ${ }^{3}$ Planographed copies are amalable at fif'y cents each foom Miss L. E.. Chistman, 1217 Fhmdale Avenue, Chicago. Illinois.

[^3]: ${ }^{2}$ Reference numbers 1 to 32 refer to notes at the end of this articte.

[^4]: - Numbers in buncts tefer to refemenes on page 129

[^5]:

 (pp. 211 -11)

[^6]: - An intinitule, in f.nt.

[^7]: ${ }^{1}$ We assume the print and line ane so situated hat his mat be acomptished.

[^8]: "This implies the construction of all those curves known as "podoidal."

[^9]: - An alignoment chart is a particular wpe of nomugaphic chat. The generat term "nomographic chat" is :more widel known atud the wo ate frepuently. though improperts. used interthomeshm. In thin artiole onts the alignment chate will be discussed.

[^10]: b) permission of the puhlisher. Benj. H. Smboun and Co.

[^11]: 'Taken from Wallors. V. S. Mathematirs for Fieryday Afairs, by pemission of the publiner. Beni. H. Sanhorn and Co.

[^12]: ${ }^{\prime}$ a See Mallory. V. S. New Plane Geomet (New I:dition), pp. 330-330. Benj. 11. Salnorn and Co., Chicago. 1943.

 - See Schustei. C.' N. and Bedford, F. 1. Fielt! Work in Mathematics. American Book Co., New York. 1935.
 ${ }^{6}$ Ibid., pp. 59.64; or Mallory. V. S., New Ilane (ieometry (Neu' Edition). pp. 372. 3is. Benj. H. Sanborn and Co., Chicago. 1943.

[^13]: ${ }^{1}$ The notation $P(Q)$ signifies the circle though Q with cente, P.

[^14]: 'With the exception of the formation of a continuous staght lite.

[^15]: - The selected references at the end of this section are classified to follow the order of development in the boxly of the paper and therefore will not be referred to for each individual topic.

[^16]: - See the following prer fat her th latlon

[^17]:

 two for 10 c .
 from one vivernth inch wher eftater inth. If a momber of sizes of hole is devired. a langer pumh with replacenble diex sells for abent $\$ 1.00$ or $s i m$. Fither of these will cut a hate in a pieve of muth me eighth inch thick.

[^18]:

[^19]: 16. pp. 323 332. Aphl. 1912

[^20]: 1e日, 10?

[^21]: Wanle Wiaba. New Butain. (.rmm

[^22]:

 be wed in onder wand ermor cansed by patallax.

[^23]:

 Ifathemaths. Val th, Apil. luod

[^24]:

 the librars of this ralleson of geme homes.

[^25]:

[^26]: slit?

[^27]:
 I he whamentio propubima of a sold consist of the three pro-

 1.0.:

[^28]:

