AUTHOR TITIE

GNSTITOTIOA
PUB DATE NOTE
AVAILABLE FRON

Reeve, H. D., Ed.
Arithmetic in Goneral sducation. National council of Teachers of Mathewatice. Yearbook 16 (1941)]. National Council of Teachers of mathenatics, Inc.. Nashington. D.C.
41
345p.
National Council of Teachers of Mathenatics, Inc.. 1906 Assocation Drive Reston, Virginia 22091

EDRS PRICE MF-\$0.75 HC Not Available from EDRS. PLOS POSTAGE
DESCRIPTORS

Arithmetic; *curriculumi Curriculun probleasi - Elementary School Mathematics; Enrichment Activities; valuation; Learning Theories; Whathematics Education; Reference Books; Reports; Research Reviews (Pubilcations): HYearbooks

ABSTRACT

This yearbook is the final report of the National Council Committee on Arithmetic. Having endoreed the "meaning theory" of arithnetic instruction, an attempt is made to develup a position that might serve as basis for improvement of the arithmetic program. After a chapter on the function of subject matter in relation to personality and one on curriculum problems, there follows a chapter on each of the early grades, middle grades, and high school. The next two chapters present discussions of the social phase of arithmetic instruction and enrichment activities, respectively. Chapter 9 presents a discussion of the present status of drill. followed by a chapter on evaluation. New trends in learning theory are applied to arithmetic in chapter 11 . Chapter 12 poses many questions for introspective examination. The yearbook concludes with a chapter on interpretation of research followed by listings of 100 selected studies and 100 selected references. (IS)

The National Council of Teachers of Mathematics SIXTEENTH YEARBOOK

ARITHMETIC
 IN

 GENERAL EDUCATION

 GENERAL EDUCATION}

THE FINAL REPORT
OF THE NATIONAL COUNCII.
COMMITTEE
ON ARITHMETIS:

US DEJARTMENTOFMEALTM GDUCATION WELFADE MAPIONALINSTIPUPR OF EOUCAFION

BUREAU OH IUUBLICATIONS
IEACHERS COLLLEGE, COLUMBIA UNIVERSITY NLW YORK

1941

Copyright 1941 by
 The National Council of Teachern of Malhemation, Inc.

Con'- ppomdente relating to and ordery lor adelitomal copples of the Sistemen Yearbook, and the carlier Yearbooks
should ho :addressed to

NEW York citi

the national cuuncil of teachers of a athematics

offickrs

President-Many A. Poteren, Supervisor of Mathematics, Racine, Wis.
Firse V'ies Prenident-E., R. Bassititin, Department of Education, University of Chicimo, Chicages, III.
Second Vice President-FI, L. When, George Peabody College for l'eachers. Nashville. Teun.
Secreluy-TVersurer-Ebown W. Schabiber, Western Illinois State Jeachers College, Macomb, III.
Chairman, of State Representatives-Kenneth 8., Baown, 525 West 120th Street, New lork City.

EDITOKIAL. COMMIZTEF

Editorin.Chief and Husiness Manager of The Mathematics Tearher and the Vearbooh--W'inam Davio Rewsk, Teachers College, Columbia University. New York City.
 Asmenciale Editors-Vera Sanford, State Normal School, Oneonta, N. Y.; W. S. Simbatia, Schoml of Commerce, Now York University. New York City.

ADDITIONAL MAKMUFKS OF THE BOARD (IF DIRFG:IGRS
One Year $\left\{\begin{array}{l}\text { Katr. Be:l... Spokance, Wash. } \\ \text { M. I. Hartr'Ng, Ghicago, III. }\end{array}\right.$ 1940 1941
R. R. Smith. L.ongmeadow, Mass. 1940
Two Years $\left\{\begin{array}{l}\text { Sibem. S. Mathorry. Montehar, N. J. } \\ \text { A. Brown Mather, Shaker Heights, Ohin }\end{array}\right.$ 1942 1942
Donothe Whesisk. Hartord, Comn 1942
Three Years $\left\{\begin{array}{l}\text { C. M, Ausinn, Oak Mark, Ill. . } \\ \text { Himedind Brek, Detroit, Mich }\end{array}\right.$ 1943 1943
II. W. Charieswokth, Demer, Colo. 1948

The National Council of Teachers of Mathematics is a natonal organization of mathematics teachers whose purpose is to:

1. Greate and maintain interest in the teaching of mathematios.
2. Keep the vahes of mathematios belore the educational world.
3. Help the inexperienced teacher to become a good teacher.
4. Help tearhers in service to become better teachers.
5. Raise the general level of instruction in mathematics.

Anyone interested in mathematics is ellgible to membership in the National Council upon payment of the annual dues of $\$ 9.00$. The dues include subs. seripnion to the official journal of the Council (The Mathemutics Teacher). Correspondence thould be addressed to The Mathematics Trather, bis West 120th Sitreat, New Yoik Cily,

l:DITOR'S PREFACE

This is the sixteenth of a series of Yearbooks which the National Council of Teachers of Mathematios began to publish in $192(6$. The titles of the firse fifteen Yearbooks are as follows:

1. ISurvey of Progress in the Past Twenty-Five Years.
2. Curriculum Problems in Teaching Mathematics.
3. Selected Topics in the Teaching of Mathematics.
4. Significant Changes and Trends in the Tenching of Mathematics Throughout the World Siace 1910.
5. The Teaching of Geometry.
6. Mathematics in Modern Life.
7. The Teaching of Algebra.
8. The Teaching of Mathematics in the Secondary School.
9. Relational and Functional Thinking in Mathematics.
10. The Teaching of Arithmetic.
11. The Place of Mathematics in Modern F.ducation.
12. Approximate Computation.
13. The Nature of Proof.
14. The Training of Mathematics 'Teachers.
15. The Place of Mathematics in Secondary liducation.

The present Yearbook is the final report of "The National Counail Committee on Arithmetic" sponsored and financed by the National Council of Teachers of Mathematics. It should be an excellent companion volume for the Tenth Yearbook on "The Teaching of Arithmetic," which has had a very wide circulation. These two Yearbooks constitute valuable material for teachers of arithmetic and for those who have charge of teacher-training comses.

As eclitor of the Yearbooks, I wish to express my personal appreciation to The National Council of Teachers of Mathematucs and to the members of the Committee for making this Yearbouk possible.
W. D. Reeve.

The National Council
 Committee on Arithmetic

Sponsored by the National Council of Teachers of Mathematics

R. L. Morton, Chairman
()hio University
Athens, Ohio

Harry E. Benz
Ohio University
Athens, Ohio
F.. A. Bond

Western Washington
College of Fducation
Bellingham, Wash.
William A. Brownell
Duke University
Durham, N. C.
I.eo J. Brueckner

University of Minnesota Minneapolis, Minn.

Guy T. Buswell
University of Chicago
Chicago, Ill.

Paul R. Hanna
Stanford University
Stanford University, Calif.
1.orema B. Stretch

Baylor University
Waco, Texas
Ben A. Sueltr
State Normal School
Cortl nd, N. Y.
C. I.. Thiele

Board of Fducation Detroit, Mich.

Harry G. Wheat
West Virginia University
Morgantown, W. Va.

CONTENTS

сиарты pagn
I. Introdiction R. L. Morton 1
il. The Fungtion of Subject Matrer in Reation tos Personal.ity Guy ${ }^{\text {T. Buswell }}$ 8
III. Curricurum Problemas-Grams: Placienimnt
Ben A. Sueliz 20
IV. Artfhmetic in the Eariy (iradis from the Point of View of Interrel.ationsiops in the Number Sys- tem C. L. Thiele 45
V. A Theory of Instruchion foor the Mimbie Grades
Harry G. Wheat 80
Vi. Arithmetic in the Senior Higi Schioh.
Harry E. Benz 110
Vil. The Social. Phase of Arithmetic Instrucition
L.eo J. Brueckner 140
Vill. Ihe Enrichment of the Arithmetic Course: Util- bzing Supphementary Material.s and Deviges
Irene Sauble 157
IX. What becomes of Dring? B. R. Buckingham 196
X. The Evaluation of Learning in Armimietic
William .A. Brownell 225
XI. Regent T'ends in Iearning Theory: Their Appis- cation to the Psychology of Arithmetic
7. R. McConnell 268
Xil. Quesmions for the Teacher of Arithmetic: F. Lynwood Wren 290
XIIL. The Interpretation of ResearchWilliam A. Brownell and Foster E. Grossnickle304
XIV. One Hundred Selecied Research Studies
Lorena B. Stretch 318
XV, One Hundred Selected References E. A. Bond 328

ARITHMETIC
 IN

 GENERAL EDUCATION

 GENERAL EDUCATION}

Chapter I

INTRODUCTION

HY R. L. MORTON OHO UNIVERSTY

AN examination of materials published since the beginning of the twentieth century on arithmetic as a part of the curriculum of the elementary school reveals a variety of points of view but a clearly discernible trend. Many recall a period when the doctrine of faculty psychology and a correlative belief in a large measure of transfer of training found widespread acceptance among teachers. Arithinetic became a difficult and, to many, an uninteresting subject. Failures among pupils were common; indeed, more pupils "failed" in arithmetic than in any uther elementary school subject.
Emphasis upon skill in computation. The advent of standardired tests, some thirty years ago, focused attention upon the elements of computational skill. Pupils and their teachers were judged by the number of examples of a prescribed kind which they could solve in a given number of minutes with a "standard" per cent of accuracy. Drill was the prevailing mode of instruction. A few pupils who discovered for themselves something of the nature of the number system and who found meaning in the operations which they performed became both accurate and rapid in computation. Furthermore, some of them could use with ease the skills which they had acquired. They learned to do quantitative thinking. But the majority did not understand the number system and were unable to apply what arithmetic they had learned to the solutions of everyday problems. Failures continued to be numerous and there was evident a definite dislike for arithmetic.

The flight from arithmeric. Arithmetic had become an important part of the curriculum not only because it was believed
to have disciplinary value but also because it was universally believed to be a subject of great practical worth. However, investigations of the extent to which men and women in vatious walks of life used the arithmetic skills which they had acquired revealed that they used far less than they were supposed to have learned. For the most part, too, only the simpler operations were performed. For example, a few of the more common fractions actomnted for nearly all the ordinary uses of fractions in life activities.

The result was a considerable reduction in the number and variety of examples which children were asked to solve. The program became easier and, presumably, of greater "practical" worth. Unfortunately, however, this reduced program failed to develop a widespread intelligence in the use of number. In out-oh-school and after-school activities arithmetic did not seem to be applied with any greater clegree of success than before. It became apparent that the problem could not be solved merely by reducing the program, although the elimination of unceal and irrelevant material doubtless constituted a forward step.

The Committee's position. Soon after it was organized, the National Coluncil Committee on Arithmetic (as the Committee lesponsible for this Yearbook was named) published in three journals a statement of basic points of view to which it sub. scribed.' This statement denied the validity of both the drill theory and the incidental-learning dheory of arithmetic instruction and endorsed what had been called the "meaning theory." The statement set forth a series of nineteen pronouncements with reference to arithme ic: as a phase of the child's school and out-of. school experience and classitied these under four general headings, namely: (1) selection of content, (2) orgamization and grade placement, (3) methods of teaching, and (4) measurement and evaluation. Readers of the journals in which this statement appeared were invited to submit aiticisms of the Committee's position. No adverse commonts were roceived. In offering this statement and in developing a learbook based thereon, the

[^0]Committee is desirous of reaching a position upon which the teaching profession may agree and which may serve as a basis for a unilicd effort to improve the arithmetic program.

The preparation of this Yearbook. The Tenth Yearbook of the National Council of Teachers of Mathematics was devoted to arithmetic. That Yearbook found ready acceptance with the educational public. The first printing was sold in less than two years and another priming was ordsed. The present Yearbook differs from the Tenth Yearbook in several important respects. It is the work of a Committee, with the assistance of a few additional contributors, rather than the work of scattered individuals working alone. The Committee planned this Yearbook and assigned subjects for chapters in an effort to include the more important topics and to give the Yearbook unity and coherence. Furthermore, each chapter was submitted to every member of the Committee and was then revised and rewritten in the light of the criticisms received. Thus, each chapter, instead of being the brain child of one person, may be said to be the joint product of several persons.

Nevertheless, the point of view expressed in a chapter is primarily the point of siew of the author of the chapter. Naturally, each author reserved the right to accept or reject the suggestions which he received. Hence, each author accepts the responsibility for the statements which his chapter contains. Also, if a chapter makes a worthy contribution, the credit goes to the author.

This means that the different chapters express somewhat dif ferent points of view and give different emphases. The Committee believes that these differences are neither great nor serions. The Committee does not decry the differences which exist. It believes on the other hand, that teachers and other students should consider these various points of view and undertake to evaluate them. For example, the reader who turns to Dr. Brueckner's chapter after having read Dr. Wheat's chapter will gain a somewhat different idea of the nature and function of arithmetic as a phase of elementary school experience. Surely each reader will be interested in and stimulated by both of these contributions.

Those most familiar with the modern progressive movement in American elementary education may conclude, after reading
the Yearbook, that insufficient attention has been given to the opportunities in a l'rogressive program for teaching arithmetic. The Committee has been disappointed in the fact that two persons, both of whom have been mather actively identified with the Progressive movement, were unable to make the contributions which they had intended to make. Dr. C. L. Cushman, then in the Denver Public: Schools and now at the University of Chicago, was a member of the Committee for about a year but felt obliged to resign because of the press of other responsibilities. Dr. Paul R. Hamma, a member of the Committee, fully intended to prepare a chapter on the topic, "drithmetic and the Integrated program," but within two weeks of the date for submitting final drafts of manuscripts, was obliged to write that he would be unable to do so. The Committee deeply regrets its failure to obtain contributions from these two sources.

The topics treated. The order in which the subsequent chapters have been aranged is not a chance one but was deliberately chosen with due consideration of the expressed preferences of all the members of the Committee. It is believed to be a logical one. However, no surious loss will be experienced by the reader who chooses to read the chapters in an order different from that in which they have been presented.

Dr. Buswell's chapter on "The Function of Subject Matter in Relation to Personality' suggests a value for arithmetic which will not have occurred to many acaders. It is a unique contribution and, in the opinion of other members of the Committe, a signilicant one. Dr. Sueltz presents a discussion of curriculam problems and the complex and controversial issues having to do with grade placement. His discassion is timely since there is a widespread interest in these topics. It will be particularly valuable to those engaged in curriculam revision and reorgmization.

The chapters by Dr. Thiele, Dr. Wheat, and Dr. Benz stress aspects of arithmetic teaching which will be of special interest to teachers in the primary grades, the intermediate grades, and the higin school, respectively. Dr. Thiele's extensive experimental work with pupils in the lower grades at Detroit makes him exceptionally well qualified to discuss the role of generalization in the learning of arithmecic fundamentals. Dr. Wheat's well-
known contributions to the psychology of the elementary school subjects, particularly arithmetic, will guarantee special interest in his chapter in which a theory of instruction is developed. Dr. Benz, who has had extensive experience in the theory and practice of secondary education, presents in a challenging manner the contribution which atithnetic may make to the education of secondary school pupils.

The Committee has lirequently stressed what seem to be two outstanding phases of atithmetic, viz., the mathematical phase and the social phase. This does not mean that the Committee conceives of arithmetic as functioning separately and independently in the lives of children as mathematics on the one hand or as a social experience on the other. To insure that the veader will find that the social phase is given proper emphasis, Dr. Brueckner has made it the subject of his chapter. The contribution which the pupil's experiences may be expected to make " vard learning arithmetic as a "system of ideas" is also recognized by Dr. Wheat.

The Committee believed that to be of maximum usefulness to teachers and supervisors the Yearbook should contain a collection of materials and devices which others have found most helpful in enriching the course. Miss Satuble's position at Detroit has given her the experiences which have qualified her to prepare such a chapter. The Committee requested her to assemble this material and she has done it admirably.

Now that the drill theory of arithmetic instruction is in disrepute. there is often expressed concern as to what is to become of drill. At the Committee's request, Dr. Buckingham has discussed drill as a phase of the new type of arithmetic program and has shown that the term "drill" may be invested with a richer meaning than has been associated with it in the past.

Likewise, there is deep concern these days over ways and means of evaluating learning, inasmuch as many if not most of the tests formerly in use were designed to measure the results of learning efforts which wete based upon the drill theory. If the "meaning theory" is to prevail, how shall learning be evaluated? Dr. Brownell has discussed this subject at length and has provided
concrete suggestione for putting into effect a newer type of evaluation program.

In Dr. McConnell's chapter, the reader will find a skillfully organized statement on the subject of recent trends in learning theory. For many, it will throw new light on the psychology of arithmetic. This chapter may be more difficult reading than other chapters for those who have cione little reading on the psychology of learning in recent years, but the mere fact that the reader finds it difficult is in itself evidence that it will be worthwhile to read and reread the chapter until the implications of recent trends in the theory of learning are fully appreciated.

A list of questions. The Committee believes that the teacher will profit from an occasional introspective examination of his own qualifications. To facilitate such a self-examination, Dr. Wren has prepared a list of questions and has organized these questions in two major divisions and ten sub-classes. Many readers will find that these questions point the way toward further professional preparation.

In recent years, arithmetic has been the subject of many research projects. The interpretation of the results of research is often difficult, partly because these results sometimes are at variance with what ordinary observation and common sense seem to indicate, and partly because the results of one study may disagree with those of another. Dr. Brownell and Dr. Grossnickle, both of whom are well known for their own contributions to research in arithmetic, have written a chapter which the reader will find a valuable aid in interpreting research.

The bibliographies. So many books, monographs, and articles on arithmetic have been published that the teacher cannot expect to read more than a minor fraction of the total. In attacking the difficult task of selecting a bibliography, Dr. Stretch and Dr. Bond assembled many hundr-ds of references and, with the help of other members of the Co .nniitee, undertook to choose a list of usable length. Dr. Stretch finally brought together one hundred selected research studies, and Dr. Bond one hundred selected references which are largely non-quantitative in character. These lists are presented in the last two chapters with the hope they will be helpful to teachers who wish to do further reading and study.

Obviously, it is impossible in a single volume to consider all the issues which have to do with arithmetic as a part of the school program. The Committee has undertaken to provide a discussion of those which seem to be the most important. This Yearbook is offered with the hope that it will assist the teacher in planning a beiter program and in providing for pupils richer and more meaningful arithmetic experiences.

Chapter II

THE FUNCTION OF SUBJECT MATTER in Relation to personality

BY GUY T. BUSWELL UNIVERSITY OF CHICAGO

THE teaching of arithmetic has commonly been evaluated in terms of the development of mathematical skills, the ability to think quantitatively, and the ability to apply arithmetic in social situations. Few would deny that these are significant ways of measuring the value of an arithmetic program. On the other hand, the outcomes of arithmetic may also be evaluated in terms of their contribution to the development of personality. This latter basis for evaluating arithmetic has become prominent in the literature only during the last decade, although, in essence, it is not a nev criterion since it is only a particular illustration of one of the aspects of transfer of training. Furthermore, not only arithmetic but all subject matter is equally open to examination in terms of its contribution to the development of a child's personality.

Positive and negative views. One does not need to search far in the educational periodicals to find statements, both positive and negative, relative to the effect of subject matter on personality. For example, in Childhood Education Nina Jacobs ${ }^{1}$ defends the proposal that arithmetic has important and positive values for the development of personality. She gives numerous concrete illustrations from her own classwork to show how an understanding of number contributes to the development of a sense of security, of the idea of responsibility, and of the feeling of necessity for cooperating with others. She defends the position that no subject gives a greater sense of security than does mathematics.

[^1]Quite in contrast with the position defended by Miss Jacobs is that expressed in an article by Professor Lane ${ }^{2}$ published in a later issuc of the same journal. Professor Lane blames the "three R's' for much of the personality maladjustment found in young children. He takes the position that "It seems absolutely essential that reading, writing, and arithmetic shall cease to occupy the center of the attention of primary teachers. These skills are learned through a relatively small number of flashes of insight rather than through careful learning of all the elemental processes involved in them. The good teacher of the skills is one who can help children livn well and richly regardless of skill equipment and who is able to detect in individual children the need for assistance in attaining insight. The good teacher never induces labor leading to the delivery of ideas or insight. . . . To primary teachers I would suggest a few marked changes in procedure: De-emphasize the three R's. From the remotest corner of the subconscious drive out the concept of respectability as related to achievement in the three R's. Make certain that every child is experiencing worthwhile att:tudes and meanings regardless of his skills. Under no circumstances cause a child to lose caste or status, nor to gain it, with you or with his associates, through the skills."
It is obvious from the two preceding illustrations that in this same subject of arithmetic Miss Jacobs sees positive values which can make a marked contribution to personality whereas Professor Lane so fears negative outcomes that he would like to see arithmetic subordinated and "de-emphasized" in the school's program. Other illustrations could be cited showing such opposing points of view related to the arithmetic of the intermediate and upper grades.
Apparently, here is an issue of major importance since the nature of the arithmetic program will depend very much upon which of these two positions is taken. Furthermore, as has been said, the issue is far larger than simply the subject of arithmetic since, in essence, the protiem is the extent to which organized subject matter contributes to or inhibits the development of

[^2]personality. There is also involved the question whether persomality is a direct or an indirect outcome of education and whether the concept of personality is adequate to cover all the desirable objectives of cducation.

The assertion that arithmetic as taught during the past twenty years produces some undesirahle outcomes is not open to dispute. Certainly, the application of the drill theory has produced a meaningless outcome which no c ne can adequately defend. Furthermore, the attempts to introduce the subject by teaching abstract number combinations, without first building up a background of concrete understandings, has separated the arithmetic of the schools from the vivid and genuine number experiences which the child builds up in his out-of-school quantitative experiences. In the middle and upper grades the situation has been little better as the work of the pupils is all too often characterized by a formal manipulation of arithmetical processes devoid of either mathematical meaning or social significance. The need for reform in arithmetic is freely admitted. The question is: What shall be the nature of this reform?

Proposals for reform. Those who have attacked arithmetic from the standpoint of its bad effects on personality development have made three proposals. The first of these, made by only a small minority of the group, is that there be a complete abandonment of systematic school subjects, a proposal which affects not only arithmetic but all organized subject matter. No one has yet worked out a complete program to substitute for organized subject matter and the proposal is often expressed in such loose terms as Professor Lane has used when he urges teachers to "study childhood, have faith in children, provide a wealth of worthwhile child-like experiences and watch 'em grow!" This trustful faith in "watching 'cm grow" (like Topsyl) is worthy of serious consideration only as it is modified by the phrase, "provide a wealth of worthwhile child-like experiences." The whole issue hinges on what should be the nature of these "worthwhile experiences." If they are to be nothing more than the incidental and extemporaneous experiences proposed by teachers and pupils from day to day there is little to look forward to except chaos. On the other hand, if these "worthwhile experiences" are the
product of intelligent and serious study they are bound to eventuate in some kind of organized content which will be available for all teachers. This will still be some sort of organized subject matter and it is quite immaterial whether it is called "arithmetic," or "a school subject," or whether it goes by such names as "activities" or "projects." Abandomment of organized subject matter cannot be defended.

A second proposal for the reform of arithmetic is that the subject be postponed or that some of the content be deferred until children are more mature. There is a great deal of sense to this proposal, provided the school does not simply postpone the subject as it is now taught but rather makes a careful study of the relationship between maturity of children at different ages and the arithmetical concepts and experiences which can be made meaningful to them. The various proposals which have been made for deferring arithmetic have fallen considerably short of this criterion. For example, the widely known proposal of Benezet as described in the N. E. A. Journal ${ }^{3}$ was a postponement in name only. Benezet did not postpone arithmetic to the seventh grade as a reader might infer from his statement, "If I had my way, I would omit arithmetic from the first six grades." Rather he eliminated many of the formal aspects of the subject and substituted in their place some very desirable learning experiences which simply made q different kind of arithmetic.

Certainly, few teachers are so naïve as to believe that number experiences can be postponed completely until the seventh grade or, for that matter, until the third grade. Consequently, the proposal to postpone arithmetic until childten are more mature is very misleading. What the proposal really calls for is an abandonment of formal teaching, with which anyone will agree, and the rearrangement of number experiences to fit the developing maturity of a child, to which, also, no one can take exception. The shallow argument that pupils can learn more arithmetic in the same amount of time if the subject is postponed scarcely needs consideration since, by the same argument, everything could equally well be postponed. It is difficult to name any type of

[^3]learning which cannot be accomplished more readily by an eighteen-year-old person than by one six or nine years of age, but the implication is not that all education be postponed and presented as a lump as soon as maturity is reached.

A third proposal of those who admit the deficiencies of arithmetic as it has been taught, and who are interested in much more than just a school subject and are, consequently, concerned with the effect of arithmetic on personality, is that a major reorganization of subject matter and methods is needed, but that the outcome must be an organized body of number experiences from which both mathematical iusight and social significance may be derived. Furthermore, they maintain that in this type of number experience positive contributions to the development of desirable personality traits can be found. Before analyzing this proposal a brief consideration should be given to the nature of personality development.

The nature of personality development. A personality characteristic is always a generalized rather than a specific form of behavior. For example, being courteous is not a matter of stereotyping specific responses, such as saying "Thank you" or "Excuse me," but is, rather, a generalized form of response which expresses itself in various forms of speech and behavior, and always arises from the recognition of a set of values relating to other people and reflecting attitudes of respect and consideration for them. Personality characteristics grow out of experiences.

A commonly accepted hypothesis holds that personality develops through adjustment to frustrations in experience. The way a person adjusts to being thwarted in obtaining the things which he craves either by nature or by habit makes his personality what it is. If frustrations become too numerous or too severe the individual may develop a feeling of inferiority and a defeatist attitude. If life becomes full of fear the individual may adjust by cringing and hiding or by adopting bullying attitudes to conceal his fear. If life becomes altogether too casy and the child is able to satisfy his cravings with no effort on his own part, there is no basis for developing strength of personality and the individual takes on attitudes of smugness and arrogance which are as socially undesirable as are some of the attitudes which develop
from excessive frustrations at the other end of the scale. Furthermore, experiences which lead one to see hew values, to discover exactness and order in matters which once seemed confusing or which had not been in the ieal'n of one's experience at all, are successes which add positively to personality. A child's personality emerges from his adjustments to the experiences of home and school.

Schools of the past have given altogether too little thought to the nature of this development of personality, and an overbalanced emphasis on subject matter has been the natural outcome of a theory of education which was sometimes expressed by the phrase, "Knowledge is power." An overbalance of emplasis on knowledge as the sole aim of education and subject matter as its sole means of attaimment may, without question, produce maladjusted veisonalities. On the other hand, personality does not develop in a vacuum. Furthermore, if the organized learning experiences oi the school must give way completely to unsystematic, life-like situations, then the school must face the possibility of finding itself outmoded and must be prepared to accept the proposal that life experiences are superior to those of the school and, consequently, our schools are unnecessary. But lack of schooling results in illiteracy, and illiteracy has such marked and well-known effects on personality that no one would pretend to defend it as an alternative. What the school must find is some mode of developing personality and at the same time of retaining some of the other necessary objectives of education, such, for example, as fund of understandings, of knowledge, and of skills required for complete living in such a world as this. If, as stated in our hypothesis, personality is the product of one's habitual method of meeting trustrations and resolving conflicts, how is arithmetic related in any way to such personality development? Or, stated more generally, how can education of any kind contribute to the development of personality?

The development of personality depends upon an individual's modes of control of situations which produce frustration and conflict. If one is helpless in the face of such situations, there is no alternative to feelings of defeat, inferiority, and lack of self reliance; whereas, given a successful method of meeting
frustrations, the individual develops feelings of poise, assurance, and confidence. Education can contribute to these modes of control.

Mathematics and quantitative relationships. One of the large areas of human experience has to do with quantity and with quantitative relationships. It is the function of mathematics to contribute to one's ability to meet situations of this kind. Children who cannot read the clock are frustrated in making adjustments to social practices. Once they learn to read the clock they can avoid many frustrations by arranging their activities in acc srdance with the necessities of a time schedule. Children who inave not learned $t)$ count are excluded from participation in many activities in which other children find much pleasure. Number plays a large part in the activities of even primary grade children. Because of the very basic and permeating character of mathematics it becomes a mode of control of increasing importance as children mature and the frustrations requiring control are as numerous in their thought experiences as in their overt behavior.

The advantages mentioned in the preceding paragraph are seldom pointed out when arithmetic is criticized on the ground that it damages personality. When this criticism is made it is asserted that arithmetic is dull, that it is abstract at too early a level, that it destroys interest, that it produces an aversion for school, and that it sets up habits of intellectual formality instead of vigorous mental responses. There is no doubt that all of these faults may be witnessed in some arithmetic classes. There is also no doubt that they may be found in some classes in any subject. The cause of these undesirable modes of response cannot be laid to arithmetic or to any other particular subject; they are the result of poor selection and organization of content, poor methods of teaching, and poor personality of the teacher. Formality is an attitude of mind; it has no place in any proper scheme of education. Arithmetic, or any other subject, may be taught formally and the outcomes may be damaging or undesirable. On the other hand, arithmetic, or any other subject, may be taught with complete lack of formality when content and method are so planned that understandings are vivid throughout and so that the later abstractions are always the products of earlier concrete experiences.

In considering the relationship between arithmetic and the development of personality, some specific charges should be considered.
Faults attributed to arithmetic. One of the chief objections to arithmetic has been that it is too difficult, that the percentage of failures in the subject is too high, and that because of its difficulty it causes children to dislike school in general. It is true that arithmetic is more dificult than some other more concrete forms of experience. In the very nature of the case arithmetic deals with abstract symbols, and dealing with abstractions is always more citti ult than dealing with concrete experiences. On the other hand, no thinking person would deny that the special values of arithmetic reside in the fact that it does deal with abstract relationships. Quantitative relationships can be handled effectively by using arithmetical processes simply because so handling them makes it possible to abstract the essential quantiative relationships from the great mass of concrete accompaniments and to save much time, effort, and confusion in arriving at the solution. Any good education leads toward abstract concepts no matter what is the field of activity.
It is, of course, more difficult to learn to divide by a fraction than to work out the same problem concretely through the use of sticks or counters, but the reason we develop abstract processes from concrete experiences is simply because, once they are learned, the abstractions furnish a much more economical method of dealing with experience. However, there is no denying the fact that some difficulty is involved in learning any abstraction. Nevertheless, to eliminate anything that is difficult on the ground of such statements as that quoted from Professor Lane, namely, "The good teacher never induces labor leading to the delivery of ideas or insight," is open to direct challenge, and to challenge on the very grounds that a complete elimination of labor trom the process of learning would be damaging in the extreme to personality development.
One of the commonest adjustuments which must be made in all kinds of life experience is the adjustment to work. The necessity of work frustrates individuals in every conceivable kind of experience. A personality that has never learned to adjust to a work
sittation leaves much to be desired. When arithmetic is handled by good teachers, and there are many of them, it furnishes an exceptionally good opportunity to develop personality chanacteristics of persistence, industry, and concentration, because in the very mature of atithanetical operations the results of such activities are so clearly verifiable. The previous sentence is not a revival of a doctrine of formal discipline. The writer is not talking about the development of any hypothetical abilities or "faculties of the mind," but simply about the establishment of generalized habits of reacting to frustrations of difliculty in the ways described. As has been previously pointed out, personality is merely the sum of these generalized habits which are the outcome of experience.

The organization and grade placement of arithmetic may be so poorly managed that the pupil is frustrated by work assignments entirely beyond his stage of maturity; but, on the other hand, number experiences may be properly related to the developing maturity of children in such a mamer that the difficulties imposed are stimulating rather than depressing, and the child may learn the exhilaration of mistering a series of meaningful experiences. It is because arithmetic has often been presented through barren drills tather than through meaningful experiences that criticisms of this type have appeared; but to throw out arithmetic beciluse it is sometimes presented in too difficult a fashion is like "throw. ing out the baby with the bath."

Another criticism of arithmetic is that it often produces formal, meaningless responses from children, leaving them confused and with a feeling of dullness in the face of quantitative situations. There is little doubt that an overemphasis on speed in computation, with the attendant large amounts of drill, may produce such outcomes. This is no particular charge against arithmetic since it is doubtful whether any kind of content could have succeeded under such methods of teaching. The outcome, however, is by no means universal and there are many persons, the products of our schools, for whom number operations are clar and meaningful. Since the year 1930 there has been a most marked improvement in this particular respect and, as noted in the introductory chapter of this Ycarbook, the position of this Committee is completely in accord with emphasis on meaning and understanding, rather
than on speed in computation. There are ample grounds for this kind of criticism of arithmetic but certainly the aitemative for the schools is not an abondomment of the teaching of the subject. Rather, it is the development of a much superior kind of teaching of arithmetic. It is the improvement of teaching, rather than the criticistin of poor teaching, which should receive the attention of school people.

The position taken in this chapter is that arithmetic has decidedly positive values to offer to the school's program of personality development. It can help children adjust to those types of frustrations which deleat all too many adults. Some illustrations may serve to make this point clearer.

Some illustrations. In the writer's dealings with graduate students in education numerous cases have been encountered in which students have deliberately side . H ied worth-while problems because these problems involved some understanding of statistical concepts. They were frightened by any suggestion of the need for statistical understimdings. These cases have exhibited a great range of forms of adjustment, even to some students who have paid sizable sums of money to secure assistance on operations so simple that a few hours of intelligent study would enable any individual to understand them. Yet they expressed a feeling of utter inadequacy in the tace of any mathematical situation. They go through life with feelings of inferiority and dread simply because they have not learned enough mathematics to enable them to behave intelligently in quantitative situations. The damaging results of a lack of arithmetic in these cases are lar more obvious than any damaging results which might accompany a serious attempt to understand the subject.

There are in this country a large number of women who, when they find it necessary to triple a recipe, measure out two-thirds of a cup of flour three times rather than hatard the mental operation of "How much is three times two-thirds:" Fiveryone knows persons who are aftaid to display their lack of ability at adding scores in a card game and are much cmbarassed by the fact that they are afraid to do so. Many otherwise intelligent citizens throw up their hands in survender in the face of trying to understand the financial operations of even local government. Innumerable
people are caught in the trap of installment buying because they do not know how to work out the simple arithmetic of the situation. Short-tem loan agencies flourish on the patronage of people who never realize the exorbitant rates of interest they are paying until they are trapped by the impossibility of keeping pace with the rapidly accumulating size of their loans.

As Prolessor Wheat has pointed out, "One can remain so ignorant of number as to be very complacent in the face of the problems and frustations of modern life. Many people are fairly well-integrated personalities merely because they know so little about the demands which number relations make in a complex world. 'These are the 'Ham-and-Eggers' and 'Thirty-Dollars-Every-Thursday' people. On a low level of thinking, they may be very well integrated; with some understanding they are less so on a higher level; and with more understanding they may become integrated on a higher level."

Thus, one can see in every direction examples of frustrations caused by a lack of genuine understanding of the arithmetic of quantitative experiences. The arithmetic of the elementary schools has been inadequate for these purposes. It inust be improved, not eliminated.

Although the development of personality is an important obligation of the school, it is not an outcome which can be produced by direct attack such, for example, as offering courses in personality, or teaching a person how to be self-relimt, or self-confident, or "how to make friends." This kind of direct teaching involves the clanger of producing introverted prigs. It may result in changes in personality, but changes of an extremely undesirable kind.

Personality adjustment through experience. Personality develops best through an ediucation which gives the child experiences in meeting successfully the many kinds of frustrations which life brings to everyone. Many of these adjustments are of the immediate, personal kind such as are enceuntered on the playground, at home, in life outside the school. These are important kinds of adjustments to which the school can undoubtedly give more intelligent consideration than it has generally given in the past. On the other hand, there are extremely important kinds of
adjustments which can be made only by the mastery of some of the more important kinds of understandings which the race has learned through long ages of experience. These understandings make up the content of the greater part of the school's curriculum. The strategy of education is so to organize anc present these essential concepts that they can be understood in the relatively short number of years that an individual can spend in school.

Schools should differ from life in presenting these important understandings in a way very much superior to that afforded by life outside the school. But these understandings that make up the content of the curriculum are not something apart and separate from the development of personality. They provide the controls of fustrations from which personality characteristics emerge. The mastery of significant content is one of the most direct ways in which one may be aided in his adjustment to frustration. Certainly, the difference between the way a welleducated person reacts to the frustrations of life as compared to the way an uneducated, illiterate person reacts to them needs no emphasis to the readers of this Yearbook. The central issue here is: "Are the kinds of experiences which have been organized into our so-called school subjects the best kinds of experiences which may be presented and is the organization and method of presentation likerise the best?"

In reference to the subject of arithmetic the writer's position is that the mastery of mathematical relationships is essential in making many adjustments which eventuate in desirable personality traits. The arithmetic which the schools have been presenting is admittedly too formal, often poorly graded, often presented by methucls which can be improved. However, the remedy for this situatic., is not to eliminate it, but to experiment with it, to adjust it to the level of maturity of the child being taught, and to make it meaningful in the experiences of children. By so doing the school can make a valuable contribution to the development of essential elements of personality.

Chapter III

CURRICULUM PROBLEMS-GRADE PLACEMENT

BY BEN A. SUELTZ
State normal school, Cortland, n. y.

Anithmetic, because of its service to the individual and to society as well, continues to occupy a significant position in the curriculum of the elementary school. In general, the curricular problems pertaining to arithmetic are similar to those of a decade and a generation ago. They originate with the recognition that arithmetic is important in the lives of intelligent citizens and with the observation that many of our recent graduates from the public schools are not competent in simple mathematical situations.

GENERAL FACTORS IN ARITHMETIC CURRICULA

During the past generation school curricula have become crowded. Schools have experimented with "activity curricula" and with "experience curricula" in an attempt to ease the situation and to make education more meaningful and pleasurable for the child. Since experimental curricula were found readily adaptable to the social studies and to certain phases of the language arts, these areas were frequently emphasized. The net result has been that arithmetic has suffered. Not only has arithmetic suffered in the amount of time devoted to it but also, and much more to be deplored, it has suffered in the mode of instruction and in the appraisal of its nature and function. Too commonly, teachers and school officers have viewed arithmetic as a group of skills which are to be memorized so that having been learned they are useful tools which are always readily available. Several chapters of this Yearbook present a sounder and more rational view of arithmetic and of better methods of teaching and learning.

This chapter will discuss such important questions as arise when a curriculum committee faces the tasks of selection, arrangement, and placement of arithmetic materials in a curriculum for the elementary school. In the main, the discussion will be based upon the implications of the position adopted by the Yearbook Committee. Naturally, however, the personal opinion of the writer cannot be wholly excluded. In order that the reader may better understand later arguments, the breadth of aims in a modern program of arithmetic will be noted.

Types of aims in arithmetic. Curricular problems as well as problems dealing with instruction and evaluation should be viewed in terms of the educational aims which are expected. The school that expects to achieve only temporary mastery of abstract computational problems faces a task different from that of the school that has a much broader vision of the nature and function of arithmetic.

Many different arrangements and descriptions of the aims of arithmetic are possible. The following classification of types and kinds of aims shows briefly the scupe of a modern program.

1. Concepts and Vocabulary. This includes all the vocabulary items ranging alphabetically from add to zero, together with the ideas and concepts associated with these language elements. Concepts, as for example those of measures and fractions, should be rich in associations so that a child may gain ideas and visualizations of size or value and of use.
2. Principles and Relationships. This type of aim includes such principles as the mathematical equality, for example, of ten nickels and two quarters, the principle of place value in writing numbers, and all such relationships as the comparisons of numbers and measures.
3. Social and Economic Information. In this class are found the many items of consumer information, such as "coffee is sold by the pound," the interpretation of statements such as "an 80 ft . lot," and such business forms as receipts and checks.
4. Factual Information and Materials. This includes such items as the identification of geometric forms, the common facts and equalities of measures, and the simple number facts or combinations. This class is distinguished from the preceding one in that
here the information is more definitely in the realm of materials of mathematics, while in the former the information is more in the realm of applications of arithmetic.
5. Processes and Manipulations. This type comprises all the computations ranging from simple addition through percentage and including work with fractions, with decimals, and with standard measures.
6. Problems and Basic Thought Patterns. This group of aims includes the early associations of processes with arithmetical situations, e.g., addition becomes associated with the situation of combining quantities. Common basic types of problems such as those associated with cost, number, and price and with distance, rate, and time, as well as more specialized types of problems such as those occurring in percentage are included.
7. Reflections and Judgments. Many types of reflection which are not always recognized as mathematical are here included. For example, extracting pertinent data from a situation or description, judging whether another's reasoning is correct, drawing inferences from data, comparing similar elements in different expressions, and seeing the relationship of two variables often require mathematical abilities not included in the usual arithmetic program.

It is easily apparent that the above groups of aims are closely interrelated and that attempts to teach any one type will usually foster and extend learning of several other types. Again, each of the above groups is important because it contributes to intelligent participation in social, economic, and cultural affairs. A program or curriculum in arithmetic may be judged in terms of the extent to which it features all the broad aims in such a way that pupils will become able to think and to act intelligently in arithmetical situations.

The aims and expected outcomes of a program of arithmetic should be divided and grouped in terms of the type of learning or the degree of mastery expected from the pupils. Three types or levels of learning may be anticipated by the teacher:

1. For Permanent Mastery-the concepts. ideas, items of information, principles, habits and patterns of thinking, and the computations which all of us need in the conduct of our affairs, e.g., subtraction, comparisons measurements, etc.
2. For Temporary Understanding-a considerable amount of arithmetic which is usually taught and frequently forgoten by the pupils but which may be readily relearned and is available for reference, e.g., lesser used facts of measurement and semitechnical computations.
3. For Partial Understanding and Appreciation-mathematical ideas, principles, information, and processes which the ordinary citizen should know exist and which he should partially understand but the mastery of which is reserved for specialized workers, e.g., foreign currency, "case III" percentage, and finding the rate in an installment-buying problem.
To be sure, curriculum workers will disagree on the content for each of the three groups or types of learning to be expected. Some committees may wish to go much further and designate levels of learning for different groups of pupils. However, having recognized a problem, a curriculum committee should seek an answer. The solution involves such factors as the pattern of education which is dominant in the school, the committee's experience with and insight into arithmetic, the committee's knowledge of the learning activities of boys and girls, and similar elements which affect any phase of learning. During the next decade much progress should be made in the reclassification of aims of arithmetic in ter is of the types and kinds of learning to be expected. Too frequently teachers attempt to teach for permanent mastery all the materials in a textbook. Many textbooks have already adopted plans, such as starred items or sectioned pages, in order to provide different types of materials for different pupil abilities.
Trends in elementary education. Obviously, the organization and the pattern of the elementary school together with the methods of teaching and learning employed therein affect the curriculum. They influence the selection, the organization, and placement of materials as well as the effectiveness of learning. In order to show how the type of school affects the 'earring of arithmetic, three generalized types of school organization will be described briefly.
4. The Traditional School. The traditional school is divided into grades in which children study such subjects as reading,
arithmetic, science, and literature. These school subjects are divided into sections so that in each school grade a pupil is expected to learn certain definite things. The pupil is pr moted from one grade to another in terms of his achievement in the school subjects. The curriculum of this traditional school is organized according to the school subjects.
5. The "Activity-Experience" School. While individual schools of this type differ markedly, they are similar in that school subjects are of importance only as they contribute to the larger activities and experiences in which the pupils engage. Trpically the pupils of a fourth year might be studying transportation or communication and while doing this they learn such reading and arithmetic as are encountered in the investigation of the topic of transportation or communication. Subject matter as conceived in the traditional school is secondary. In the "activity-experience" school the curriculum is usually expressed in terms of experiences rather than achievement in subject fields.
6. The "Combination" or "Fusion" School. Many schools are attempting to combine or fuse the better elements of the traditional school with those of the "activity-experience" school. This is frequently cone by organizing the curriculum in terms of subject-nnatter sequences and goals and adopting "activities" and "experiences" when these contribute toward the achievement of the subject-matter goals. Occasionally the lower grades of an elementary school follow the "activity-experience" pattern, while in the intermediate and upper grades emphasis is shifted gradually toward a more traditional pattern.

The large majority of elementary schools in the United States follow the traditional pattern. A growing minority are of the "combination" or "fusion" type. The general trend is toward humanizing education and making it more meaningful to the pupil. In arithmetic this means a reappraisal of both content and method in terms of their social, economic, and cultural significance.

In the more common traditional school organization, the arithmetic curriculum is built around the logical sequences and mathematical dependencies which characterize the processes of arithmetic. Because these logical relationships are sn evident to
ore who understands arithmetic, they frequently lead a teacher to regard the subject as an abstract science of numbers. As a result teaching may become stereotyped and the aims may be narrowed much more than is desirable. The mathematical relationships of arithmetic aid greatly in the development of meaning in processes and computations, but they alone will not ensure that pupils grasp the social and economic significance of their learning.

In the main, investigations of curriculum problems during the past twenty-five years have dealt with arithmetic in the traditional school. They have dealt with selection, organization, and grade placement of subject matter, and this has usually been a narrow interpretation of subject matter. Curriculum makers are still puzzled over the problem of giving breadth, meaning, and significance to arithmetic teaching. A curriculum may suggest that teachers capitalize upon and enlarge the mathematical experiences of their pupils in order to help them to sense and to resolve mathematical situations in the real world, but it cannot guarantee that these things will be done. That is a responsibility that must be shared by teacher education and by school administration.

In "activity-experience" schools the learning of arithmetic depends in large measure upon the wisdom and judgment of the teacher. Arithmetic becomes a secondary aim and frequently a very casual one. Two weaknesses of this type of school are apparent: first, pupils and teacher alike are likely to miss an important mathematical situation because they are unfamiliar with it and its implications; and second, pupils and teacher are likely to investigate a situation or problem and attempt to master it without regard to its place in a sensible mathematical sequence. Furthermore, the investigation and study of a topic such as transportation in all its aspects does not provide for the intensive study that is needed to learn to master a mathematical process.

The "activity-experience" curriculum may serve very well for the early stages of the development of concepts and for giving social and economic significance to much of arithmetic. However, if fuller comprehension and genuine usefulness of processes is to be achieved, a definite program of instruction in arithmetic is needed. The issue reverts to the aims of the school. In "activity-
experience" schools, if arithmetic is to be learned, the teachers must know when the mathematical element in an "activity" should be assumed or furnished and when it should be thoroughly investigated and studied. Teachers in these schools should possess a broad knowledge of the nature and uses of arithmetic.

In schools that follow a somewhat traditional pattern but also draw freely upon the values of pupil's activities and experiences, a fine type of arithmetic learning may be achieved. This is possible when a good curriculum is being carried out by a well-educated teacher who knows how and when to use the logical relationships of arithmetic and when social experiences should assume dominance. In all types of schools there are many different ways of approaching and achieving learning. Some teachers excel in one approach while others prefer another. One method may appeal to certain children and not to others.

The organization of a school should be sufficiently flexible so that teachers may capitalize upon their own particularly suitable methods of teaching. Similarly, curricula for various subject fields should allow for differences of treatment and modes of learning. Procedures may become quite as stereotyped in an "activityexperience" school as in any traditional school. Both types offer advantages. The future will probably witness a fusion of the two in such a way that each may best contribute toward the education of boys and girls.

QUESTIONS CONFRONTING SCHOOLS

Despite divergence in organization of schools and in philosophy of education, certain questions concerning the nature and place of arithmetic in the whole curriculum arise repeatedly. Most of these problems and questions cannot be answered categorically. At best, any discussion of questions pertaining to the curriculum reflects the ideals and experiences of the writer.

The more commonly asked questions that deal with arithmetic in the school curriculum will be stated and discussed in three groups: (1) those dealing primarily with the selection of content, (2) those dealing with arrangement and placement of materials, and (3) those dealing principally with instructional problems.

Inasmuch as several chapters of the Yearbook deal with instructional problems, the discussion here will be very brief. The general aim is to direct thinking, rather than to offer specific solutions.

Selecting the arithmetic content. In selecting the arithmetic content several questions may be asked:

1. Who should determine the nature and scope of the arithmetic curriculum? What part should the pupils, their parents, the teachers, school officers, and curriculum specialists share in this job?

Perhaps the best answer here is that those who understand most about the job should be entrusted with it. The amount of arithmetic or of any field of study in the whole curriculum is dependent upon its importance in the lives of people. Hence, those who make the decision ought to be qualified to sense and to interpret the mathematical elements in our social, economic, and cultural activities. Building a curriculum in arithmetic is like building a bridge. A specialist may be called in to design a bridge but his utility is slight unless he understands modes of construction and strengths and values of materials. In general it is perhaps best to build a coirriculum through the cooperative efforts of school officers and teachers who understand both children and arithmetic. To date, the problems concerning curriculum making are largely in the realm of personal opinion. It should be an informed opinion.
2. Is there too much arithmetic in the elementary school?

This question has several aspects. Perhaps some of the arithmetic now commonly taught in the elementary school should be shifted to the high school. Such a suggestion is made in Dr. Benz' chapter of the Yearbook. Certain phases of arithmetic, such as the uses of percentage and computations of volumes and capacity, have greater utility for adults than for children. Certain processes, such as some calculations of interest and the indirect cases of areas and volumes, are fairly difficult for elementary school children but not for high school children. Many teachers feel it would be highly desirable to lessen the arithmetic load in the elementary school by transferring some of it to the high school. Arithmetic was at one time taught in the college.

From another point of view several school people have charged that the elementary school is attempting to teach more arithmetic than anyone needs. Certainly, this charge is open to debate. No doubt certain schools are spending too much time on some phases of arithmetic, but the general achievement in a broad program of arithmetic is not satisfactory. This is attested by the cumbersome and frequently erroncous arithmetical procedures used by our public school graduates when they enter a simple vocation. We should not lose sight of the purpose for studying arithmetic, i.e., to educate boys and girls to become more self-reliant and to think and act more surely and correctly when they encounter a mathematical situation.

The amount of time devoted to arithmetic should depend upon the amount of arithmetic to be learned and also upon such psychological factors as the difficulty of learning. These are relative matters and as yet must be determined largely by personal opinion. In general, in conventional schools, the time devoted to arithmetic is approximately 10 per cent of the total school day (including play periods).
3. If a child does not encounter arithmetic or see a need in learning it, then why should he bother to learn it? Should a child learn things in the elementary school when his greatest need or use of them will come in adulthood?

All children encounter arithmetic even though they may not recognize it. Is it not true that we sense and appreciate better the things we have studied and understand? In 1928 when everyone seemed prosperous, a matron said to her child's nursemaid, "Just see that Bobby has the rudiments of walking; he will always have plenty of cars." In 1941 this same Bobby is walking to a public school. We should not be similarly shortsighted in respect to arithmetic.

If education could be continuous, it might be desirable to postpone many things now taught in the elementary school until the social or vocational need for them arose. However, it would seem somewhat unwise to postpone learning to swim until after the boat has capsized. A sensible procedure is followed in many schools in respect to percentage. In the upper elementary school grades the basic concepts, ideas, principles, and computations are
learned in relation to situations that appeal to children of this age level; the more difficult and complex phases are omitted. With this background a pupil is prepared to meet the ordinary simpler uses of percentage and he has a reliable foundation upon which he may, at a later date, build more technical applications.

Society expects intelligent behavior from its members. A part of this behavior is dependent upon mathematical knowledge. When the whims of the individual confict too strongly with the expectations of society, the individual should yield. This is a basic tenet in the compulsory attendance required in our public schools.
4. How should the arithmetic content of the curriculum be selected? Should the content vary for different communities?

A close relationship exists between textbooks âd courses of study in arithmetic. ['ntil about 1900 courses of study or curricula were very brief and frequently merely referied to pages of some particular textbook. Since 1900 a reversal has taken place and now textbooks are presumably based upon well-known courses of study. In fact, however, since the personnel of authorship of textbooks and curricula are frequently the same or at least represent the same point of view, a reciprocal relationship between curricula and textbooks exists. Since both textbooks and curricula are intended for use by teachers. they are usually prepared with a content and treatment with which many teachers will be sympathetic. Occasionally both texts and curricula are prepared in light of information collected from teachers in the field. Directly and indirectly the teacher exerts a considerable influence on both the content and the treatment of materials in a curriculum. He exerts a more individualized influence when he decides how he himself will teach and when he personally emphasizes certain phases of the prescribed content. In some schools the teacher is practically free to determinc his own curriculum.

Several survey techniques have been employed by curriculum committees in an attempt to be more scientific in selecting the content of arithmetic. In general, the earlier surveys tried to discover what arithmetic was most commonly used by adults. More recent survess have tried to classify the activities of children at various age levels. Two weaknesses are likely to appear in the
survey of adult uses of arithmetic. First, both the surveyor and the one whose uses of arithmetic are being surveyed may not recognize all the mathematical situations and uses employed by the subject; and second, the surveyor and the surveyed may not sense all the potential functions of arithmetic that might be used if the person surveyed were better educated in arithmetic. This is apparent when one who knows arithmetic as a broad field observes an ordinary adult in both commonplace and novel situations. The survey of children's activities is subject to the same types of error.

A comprehensive survey of the actual uses and all the potential uses of arithmetic in the lives of people ranging in age from two years through adulthood would offer many suggestions to curriculum makers. Such a survey should include all phases of arithmetic in the cultural as well as the social and economic life of the individual. From the mass of data collected the curriculum worker would seek an organizug principle. The most apparent and probably the most reliable principle for educational purposes would likely be the logical relationships and sequential character of much of the data. Hiving determined what materials are desirable for basic objectives the curriculum worker would next study the functional relationships in order to determine a sensible teaching sequence. Textbook writers and curriculum makers frequently employ the results of informal studies of actual and potential uses of arithmetic.

Although the uses of mathematics may vary somewhat from one community to another, the basic mathematics involved is very similar. Hence, it is doubtful if arithmetic curricula should differ noticeably in content although they may differ considerably in method and in arrangement. Since the same textbook is often used in widely separated communities and since textbooks frequently become the actual curnculum, the same arithmetic content seems to suffice. From another point of view, producing a play on Broadway requires the same basic additions, multiplications, and percentages as producing a crop of wheat in the Dakotas. The mathematical concepts may be different in the two fields of production, but both fields require reasoning and judgment and many other types of mathematical thinking.

The selection of content for "activityexperience" schools is approached somewhat differently from the procedures used in more traditional schools. For the activity-experience school it is particularly important to formulate the aims and objectives in respect to arithmetic even if arithmetic is considered of seco 'ary importance to the "activities" and "experiences." It is not sufficient to sily that a child will learn the arithmetic which he encounters in a study of transportation or some other activity. As has already been pointed out, neither the child nor the teacher may be particularly alert to the arithmetic in the situation. For this type of school a chart of sequential learnings in arithmetic may be prepared so that teachers may know whether or not it is wise to pursue some particular phase of mathematics. Such a chart is useful also when it is found advisable to make an inventory of the pupils' arithmetical learnings. If it is found that the regular "activity-experience" program do . not provide for all the desired learning of arithmetic, then a special program in arithmetic should be provided.

Arranging and placing the arithmetic content. The arranging and planning of the arithmetic content present these problems.

1. Have logical and mathematical considerations played too prominent a role in the organization of arithmetic curricula?

A curriculum that is organized in terms of the computational skills of arithmetic is necessarily a logical one. Most teachers realize that the process of division, for example, depends upon the processes of addition. subtraction, and multiplication. and therefore division is sensibly learned after the other processes. However, it is possible to begin division before all the usual abilities with the other processes have been achieved. The arrangement of a desirable sequence for teaching arithmetic must involve the logical dependencies of one process upon another. Other phases of arithmetic, as for example concepts, information. and principles, are usually related to processes and to that extent they should be studied in their mathematical relationships. Frequently greater meaning and significance are achieved when a phase of arithmetic is studied in relation to the social or economic situation in whi h it commonly occurs.

The topic of percentage will serve to illustrate how and when
logical relationships are useful in developing a new process. To find a per cent of a number, most people convert the per cent rate to a decimal or to a fraction and then proceed to multiply. Hence it is necessary that work with fractions or decimals must have preceded this phase of percentage. Furthermore, since certain exercises dealing with this type of percentage are simpler when done with fractions and others are easier when done with decimals both methods should be learned. Other process phases of percentage illustrate this same mathematical dependence upon fractions and decimals. Computations with decimals follow the same pattern as the corresponding computations with whole numbers. In this way, by tracing the mathematical dependencies, a teaching sequence is developed. On the other har: ${ }^{1}$, the topic of percentage also illustrates how some phases of arithmetic need not follow the same sequence as the process phases. The concept of percentage may be rather well developed with only a small knowledge of fractions and no knowledge of decimals. For example, the fourth grade boy who has learned that 4 per cerit means "four out of a hundred" and who then reasons that this is the same as "two out of fifty" and "one out of twenty-five" and "eight out of two hundred" has grasped the fundamental idea of percentage.

Schools of the "activity-experience" type frequently get into difficulty when they ignore the logical relationships of arithmetic. Consider the predicament of the supervisor from such a school who said, "Of course I would teach long division in the second grade if the pupils encountered a need for it." Planning when to teach a topic is like bidding in contract bridge; one must know when not to bid as well as how and when to bid.

Logical relationships frequently facilit te learning and hence become elements of the methods of teaching. In general, whenever the logical relationships of mathematics aid, better than any other means, in the development of meanings and understandings and in the facilitation of learning, then the logical relationships should be employed. In actual school practice it is found that some teachers prefer and excel in one approach while other teachers prefer another. Most teachers use a combination of methods and devices to ensure that their pupils develop mean-
ings and at the same time grasp the social and economic sig. nificance of their learning. Dr. Thiele states in his chapter dealing with arithmetic in the primary grades that the number system and number meaning are developed by using logical relationships together with concrete experiences with numbers.
2. Are there age levels at which children learn certain types of arithmetic better than at other age levels?

We have no evidence to show that a nine-year-old child will learn, for example, multiplication facts more readily than an eight-year-old child or a ten-year-old chuld, when age alone is considered. Other factors such as previous experiences with numbers and associations with the idea of multiplication are more important. Mental maturity, which is a function of both age and experience, bears some relationship to ease of learning. We have numerous instances to show that a twelve-year-old child can learn a given amount of arithmetic in a fraction of the time that is usually required for an eight- or nine-year-old child. Similarly ten-year-old children who have not previously attended school have learned to read as well in six months as six- and seven-yearold children lean in two years. The implications of these cases are interesting and need to be studied by curriculum makers. So many factors enter into learning that it is difficult to draw valid conclusions in relation to a single factor.
3. Should arithmetic be taught in the kindergarten and in grades one and two?

Whether or not the school plans to teach arithmetic in these grades, the children will learn it. Fiven at the ages of two and three years, normal children are developing ideas of size, amount, and number, and are making vistal and mental as well as manual comparisons. Similarly in the kindergarten concepts of size, of shape, of amount, and of number are being developed in relation to the things which the children see and handle. These conrepts and associations with them precede the stage when it becomes necessary to read and write figures. Opportunities for thinking and for the exercise of judgment frequently occur in the kindergarten. The wise teacher capitalizes these with the pupils. For example. instead of directing several pupils to get one large and two small mats for the playroom, the wise teacher
will let the children experiment with the size and shape of rugs. In that way mathematical ideas of size and shape are fostered.

In many schools number records are started in the first grade and counting with meaning is developed. In many cases the arithmetic is based upon the normal experiences of the children around the school. The role of the teacher is to recognize the uses of numbers and assist his pupils in the formation of concepts and of principles of numbers and the number system. While pupils begin to organize and to systematize their learning at an early age level, mathematical sequence in learning is probably less important here than at later stages. A great deal of information, particularly about measures and their uses, is usually learned in grade one. Definite goals for attainment in this grade need not be set. However, it is desirable to record the arithmetical learning of the pupils at the end of the grade.

Practically all children who enter grade two have already learned a number of addition and subtraction combinations even though none were previously taught. Many teachers chart the addition combinations that have been learned and then proceed to develop new combinations through association with those already learned and with the and of concrete materials. Information, concepts, and mathematical principles are involved in many of the affairs of children in the second grade and hence are available for study. A description of the arithmetic learning of children at this age level is given by Agnes Gunderson in The Mathematics Teacher for January, 1940.

A systematizing of learning appeals to children in the second grade. It appeals to their intelligence and helps them to sense the relationships and importance of what they are doing. A program that begins to organize the learning of arithmetic need not be formally carried out. In fact, the approaches to learning and the methods by which it is achieved may be quite as important as the usual goals. The writer believes that broad and definite goals in arithmetic should be attained in grade two.
4. Is it possible to arrange a curriculum in terms of successive units or activities ruch as the post office, transportation, communication, and providing shelter? Will such a curriculum assure the learning of arithmetic?

Such curricula are in operation in a number of schools and to some school people they are entirely satisfactory. It is a question of aims of education. Whether arithmetic can or should be learned in such a curriculum is another matter. Much depends upon the teacher. He may find it entirely possible and even very favorable to teach arithmetic by such a curriculum in the lower grades.

A topic such as communication may be fitted into a curriculum for five-year-old children or it may be suitable for fifteen-year-old children or twenty-five-year-old adults. Its place in a curriculum sequence depends upon the basic subject matter involved and what is done with it. From the mathematical point of view the topic might be limited to a study of the size, shape, weight, and postage of letters. On the other hand bracket functions, the principles of curve fitting, and diferential and integral calculus may be needed if one wishes to study the more complex phases of communication.

The broad aims of arithmetic as previously described in this chapier cannot be achieved in the "activity-experience" treatment of topics such as transportation unless definite provision is made for systematic instruction in arithmetic. This is true particularly when processes are being learned. It is true also if the modes of learning are considered important in the aims or goals of learning.
5. How should the grade placement of the subject matter of arithmetic be determined?

This question is complicated by many factors which bear upon the curriculum, factors which frequent!y are solely matters of opinion. The nature of the curriculum, of the organization of the school, the scope and function of the curriculum, the methods of teaching, the modes of learning. and the promotional policies of the school, all affect the problem of grade placement. All the factors which influence the efficiency, rate, and amount of learning indirectly affect grade placement. For example, a school that has five twenty-minute periods per week devoted to arithmetic in grades three and four will not normally achiere as much as a school having the same number of thirty-minute periods. This affects grade placement in subsequent grades. Likewise, a school which promotes all its pupils annually on a basis of chronological
age is likely to have an accumulation of difficulty in arithmetic and will need a placement in certain grades different from that of the school that holds its pupils to certain definite standards in each grade. Arithmetic learning accumulates and any force that affects this accumulation in turn affects grade placement. Grade placement is in fact a secondary problem, secondary to the one of discovering a good teaching sequence.

In most cases personal opinion has determined the grade placement of the materials of arithmetic. Personal opinion has value particularly if it is tempered with knowledge and experience and then further tested by the experiences of many other competent workers in the field. That was the procedure used in preparing the chart of grade placements which is found in the New York State Syllabus (1937). Because of the many factors that enter into grade placement, it is doubtful if at the present time opinion should or can be replaced by research. To illustrate, research may determine the lowest age or grade level at which an arithmetic topic can be learned readily, but we may not wish to place the topic at that level. Likewise, research may seek to determine the optimum mental age for learning a topic but that criterion alone is not sulficient. People do not agree on the interpretation of "optimum mental age" nor do they agree on how to use optimum mental age if it were found. This is illustrated by considering division. Simple division problems can be solved informally by pupils who have learned multiplication facts in the third grade. But certain exercises with two-figure divisors prove difficult for seventh and eighth grade pupils. The curricalum maker might wish to spread division over five school years in ordin to adjust the materials to the difficulty of the work, as he interpiets this difficulty, but he soon realizes that other considerations are worth noting. The inherent relationships of division suggest that it is a "unit topic" and perhaps should be so considered in the curriculum. Also, division is a very useful process which if delayed until grade seven would hamper the activities of the learner. Obviously the curriculum maker must weigh factors and use his judgment.

An intriguing approach to the problem of grade placement is through a study of pupils' interests and activities to see whether
certain interests persist for children of a given age. If positive results were obtained in such an inquiry, they would have to be carefully scrutinized by the curriculum maker in order to see if the mathematical content of the successive interests of the pupils was related to the necessary sequential phases of arithmetic. Arithmetic is the one school subject that is full of logical relationships and mathematical dependencies that facilitate learning and give meaning to it.

Researches dealing with phases of the problem of grade placement are not lacking. They have suggestive value for the curriculum maker but none of them have attacked the whole problem. Many of these research studics have been classified by Brueckner in his chapter, "The Development of Ability in Arithmetic," in the Thirty-Fighth Yearbook (1939) of the National Society for the Study of Fducation. Using these studies in part, Brueckner has set up "stages of growth" in arithmetic and the corresponding grade level at which these stages are reached. It is interesting to note that Brueckncr's "stages of growth" are in reasonable agreement with current curriculum practice.

In the same Yearbook, Washburne discusses "The Work of the Committee of Seven on Grade Placement in Arithmetic." The Committee of Seven sought to determine optimum mental ages at which children can learn various arithmetical processes. As pointed out by Washburne the conclusions of the committee should be checked by others. In checking these conclusions with pupils in New York State the writer has found variations as high as one and one-half years from the grade placements suggested by the Committee of Seven. These discrepancies do not invalidate the work reported by Washburne because the two studies differed in scope, in methods of teaching, in tests for evaluation. and probably in many other respects. The important point to note is that any of these research conclusions that are based upon the learning of children are valid only for the specific factors involved in the particular rescarch. Factors which define a sudy of this tupe and which limit its conclusions are: (1) the interpretation of descrip. tive terms such as "optimum mental age," (2) the amount of previous leaming of the pupils. (3) the methods of learning previously used by the pupils. (4) the methods of teaching used in
the research, (5) the avenues and materials of learning employed by the pupils, (6) the amount and distribution of time, (7) the measuring instruments and the way in which they are used, and (8) the interpretation of results. If a curriculum committee wishes to use the results of a study based upon the learning of pupils, it should also expect to use all the factors and interpretations employed in the study.

As stated at the outset, the problem of grade placement is very complex. It involves many factors that operate simultaneously. It would be a mistake to detetmine a grade placement upon any single issue. Curriculum committees should consult the available research but finally they will have to settle by opinion and experience the most important questions involved in grade placement.
6. What factors are important in selecting a desirable arrangement for teaching arithmetic?

The most important factoi to be considered in selecting an arrangement or sequence for teaching arithmetic is the mathematical relationships which when used make it easy to progress from one phase to another. In the main these relationships are found in two categories: (1) those within a topical sequence, and (2) those that join one topical sequence to another. To illustrate the first with the topic of addition, in the early stages a child develops ideas of combining and he learns to combine small amounts by using real objects and by writing numbers and combining the numbers. Based upon these early ideas and abilities it is easy to progress to harder number combinations, to "decade addition," to simple column addition, and finally to the addition of several columns with "carrying." Even within the arrangement given here it is possible to make several slight shifts. But the various abilities or stages of learning addition are functionally related and these relations should be used in teaching because they give meaning to the process. The second type of relationship, that which joins one topical sequence with another, is well illustrated by division. The process of division actually uses addition, subtraction, and multiplication. These three prosesses do not occur in exactly the same way in which they occur in the ordinary exercises of addition, subtraction, and multiplication but, having learned them previously, a child readily uses them in the new
operation of division. It is sensible to use these relationships when planning a sequence for teaching.

The non-process phases of arithmetic are also related but to a much less degree than the processes. Logically one might assume that inch should be learned before foot and yard but this is not necessarily so. Clissification of measures according to use is a more natural learning procedure and teaching sequence than classification in relation to size. The comparison of measures, however, depends upon previously developed concepts of the measures involved and if the comparison is to be an exact one it depends also upon a process with numbers. Teachers who are acquainted with arithmetic reacily distinguish the nacessary dependencies which facilitate the learning of arithmetic.

Studies of relative difficulty of operations have been used to arrange a teaching sequence from the easy exercises to the more difficult. As McComnell points out in his chapter dealing with the psychology of learning arithmetic, these studies of "error" and of "difficulty" are founded upon assumptions and methods of learning that are questionable. In general, if no other factors are involved, a teaching sequence might follow the order of difficulty. Teachers will note, however, that the order of difficulty found in an experimental study represents a statistical average and that many of the pupils in any particular classroom deviate widely from the statistical average.

In arranging the teaching sequence, other factors such as "interest appeal" of materials and "stages of growth" of pupils should be considered, to the extent to which they have been investigated and found reliable. However, if such factors conflict with the necessary mathematical dependencies the latter should be selected as the organizing principle.

Instructional problems that affect the curriculum. Among these pro lems are the following:

1. How do different instructional procedures affect the cur:culum?

Since different instructional procedures result in different kinds, amounts. and rates of learning, they must affect the kind of arithmetic, the amount of arithmetic, and to soine extent the placement of the arithmetic in the curriculum. Because of the
cumulative nature of arithmetic learnings, instructional procedures probably have a greater effect upon the arithmetic in intermediate grades and upper grades than on that in the lower grades.

The job, then, of the curriculum maker is to find the type of teaching procedure that best fits the materials of arithmetic and the age levels of the pupils. Probably rather different procedures should be used in grades two and seven. The whole matter of individual differences in both pupils and teachers enters into the choice of method.
2. What values are attached to the practice of "stretching" topics over several school jears?

Our earlier arithmetics were arranged topically and logically and for many years a topic such as fractions or division constituted the major work for a school year. Two criticisms of this practice were raised: (1) lack of continued work with a topic resulted in forgetting, and (2) while some phases of a topic were casily learnc ' others proved very difficult. In order that the difficulty of learning materials might better fit the abilities of the pupils, schools have gradually spread or stretched the content of topics so that at the present time study of the topic of division is spread over several, ears. This can be done without violating necessary log. ical sequences. Many teachers feel that this practice results in better learning and happier children. Obviously, however, the practice of "stretching" topics should not be carried to extremes. For example, it might be found in an investigation of difficulty that certain division exercises with two-figure divisors proved more difficult than similar exercises with three-figure divisors but that fact alone should not place them in different grades or the one after the other.
3. What curricular arrangements can be made in order to provide for individual differences among pupils?

Ideally, cevery pupil should advance at his own best rate of learning. Practically, however, that is difficult to arrange in a public school when thirty or more pupils may be assembled in a single classroom. Teachers are faniliar with plans for individualizing instruction, as for example the Dalton Plan and the Winnetka Plan. The test of any plan or organization of this type is in the effect it has on the behavior and learning of the pupils.

In larger schools where pupils may be placed in "ability groups" the instructional job of the teacher is somewhat simplified. The pupils in the higher-ability group may progress farther, faster, and by different inethods than the slower pupils. However, within any group of pupils, differences of kind as well as of amount and degree of intelligence will be apparent.

The policy of grouping pupils according to chronological age, together with the practice of promoting all who are socially adjusted within the group, has made it exceedingly difficult for teachers to maintain reasonable levels of achievement in the school subjects. This situation can be resolved only in terms of the aims of education. Teachers should not expect to achieve goals that the school officially neither expects nor provides for. All too often teachers are disheartened when a superintendent desires goals such as cooperation, adjustment, happiness, while the parents expect their children to learn reading, writing, arithmetic. This is a curriculum problem each community must solve.

Some schools are mecting the problem of individual differences through individualized instruction with the aid of printed materials such as workbooks. In the hands of a skillful teacher who has a relatively small number of pupils, this plan is successful. It must be noted that printed materials are not real objects and the situations provided in print are only vicarious. The typical work book is particularl; suitable for the drill and practice phases of learning arithmetic: While the child is in school he has a right to receive the best materials and avenues of instruction that are available. The teacher should assume his role as a guide and teacher and not delegate his greatest opportunities to a workbook. Pupils who progress without frequent guidance by a teacher frequently learn a wrong method instead of a correct one.

The whole matter of individualizing instrurtion might better be viewed as a problem of individualizing leaming. A curriculum might provide for different amounts and different kinds of learning for various types of pupils. The final success of any plan of individualizing leaming depends upon the teacher.
4. The "aclivityexperience" curriculum has proved very valuable in learning the social studies and the lansuage arts so why not adopt it for arithmetic?

Many school people would deny that the "activity-experience" curriculum, as defined in this chapter, is entirely successful in the language arts and in the social str:dies. No doubt this type of curriculum has great value. The big problem today is to discover the types of learning for which it is best suited. Certainly it is very bad reasoning to conclude that if a plan of instruction works well for one field it is equally good for another.

The "activity-experience" curriculum appears to be better adapted to such phases of arithmetic as the development of certain concepts, the appreciation of the uses and significance of mathematics, and for opportunities for reflection, than it is for other phases such as the development and learning of a computational process. This type of curriculum seems also to be better adapted to the kind of arithmetic usually found in lower grades than it does to the typical arithmetic of the intermediate and upper grades. Again, we should seek an adjustment that combines the values of both traditional education and "activity-experience" education.

BULLDING A CURRICUI.U:M IN ARITHMETIC

It is not the purpose here to give detailed steps for developing a curric.lum or course of study in arithmetic. Rather, some of the major implications from the previous discussion will be summarized.

Type of school. First of all the community should decide upon the type of school organization and the basic pattern of learning that are desired. These two elements go hand in hand and should be outgrowths of the basic educational objectives. Because these matters are so important and affect so many perple in different ways it is suggested that the teachers, parents, and school officials share in these basic decisions. Obviously, no school organization will attain a high level of achievement if the teachers are unsympathetic with the aims and procedunes of the school.

Selecting curriculum workers. The personnel of a curriculum committee should be sympathetic with the general aims and with the proposed organization of the school. It should be competent by education and experience to work on an arithmetic curricu-
lum. The two phases of competence that are most desired are (1) an understanding of children and how they learn, and (2) a broad knowledge of arithmetic as a field of learning which functions in social, economic, and cultural affairs. It is also desirable that the persomiel possess a temperament which enables the members to work cooperatively on the various phases of curriculum construction. Previous experience in curriculum making may be valuable but is not necessary. Graduate study in "education" may be either a help or a hindrance. The value of an education derived from experience in the field should not be overlooked.

Form of the curriculum. Farly in the process of curriculum building, it is desirable to visualize the form and the special features desired for the curriculum. Later developments may alter early decisions. Contemporary curricula are of different type and format. There is some evidence of a shift from the outline type of curriculum which features objectives and methods to a curriculum which is a "handbook" for teachers and which is full of suggestions and guidance.

A curriculum committee might study several recent curricula in arithmetic to note the organization and treatment of the content and also to anticipate the many different kinds of questions that arise as work progresses. The recent arithmetic curricula of New York State and of the City of Chicago may be consulted.

Types of questions that arise. As a curriculum committee proceeds, many questions arise. The committee may wish to use the results of research. Eui research conclusions do not agree. Hence someone will need to interpret and evaluate research. The committee may wish to call in "outside experts." Specialists in arithmetic do not agree on many specific matters and hence the committee must select those whose judgment and counsel are trusted.

Many questions dealing with teaching procedures and with methods of learning special topics and processes will arise. These are as varied as, "When and how should we use the experiences of the pupils?'" and "Shall we use additive subtraction?" The matter of method in subtraction is particularly important. In order to save confusion among the children all the teachers in a school and perhaps in a community should use the same method. In relation to division such questions as, "Should the full written
form be used with one-figure divisors?" and "Should division be 'stretched' over four school years?' arise.
A committee working on an arithmetic curriculum may wish to designate types or degrees of mastery to be expected from the pupils. For example, all pupils might be expected to learn to add and to know when to add to a high degree of perfection. On the other hand, only the more able pupils might be expected to learn how to find the rate of interest charged for a purchase on the installment plan. The curriculum maker faces many diffcult but interesting problems.

Chapter IV

ARI'HMETIC IN THE EARLY GRADES

From the Point of View of Interrelationships
 in the Number System

BY C. L. THIELE
detroit public schools

IT is the purpose of this chapter to focus attention upon the idea that a well-rounded program of arithmetic teaching should be concerned with the interrelationships in the number system. Another chapter in this Yearbook (the one written by Brueckner) deals in particular with the social phases of arithmetic teaching.

Since 1920 great stress has been placed :upon the socialization of arithmetic. More recently there has been an observable trend, in both theory and practice, toward the teaching of a meaningful arithmetic which seeks to help children to appreciate and utilize the interrelationships in the number system. In this program the social values of arithmetic have not been disregarded; in fact, they have been selected with greater care than formerly in so far as interest and comprehension of children are concerned. The sig. nificant difference between the program of arithmetic which finds support in this Yearbook and that of a decade ago is in the extent to which children sec meaning in the numbers which they use and operate. The keynote of the new arithmetic is that it should be meaningful rather than mechanical.

In this discussion dealing with the interrelationships in the number system two principles will be used as points of departure. First, children should become acquainted with and use numbers extensively, both as oral and written records, to describe what is done about quantitative situations. Second, successful and efficient extension of number usage from the crude methods of early childhood to those of the competent adult can be facilitated by increased insight into the interrelationships of the number system.

Insight in this connection also implies a method of learning based upon active participation and discovery rather than upon passive acceptance of the skills of arithmetic.

How these principles of social usage and insight into the interrelations of the number system might operate in a program of arithmetic teaching in the lower grades of the elementary school is the text of this chapter. The reader is forewarned not to conclude that the interrelationships which are described are the only ones which children might perceive. Neither is it the aim of the writer to submit an inflexible body of content but rather to demonstrate how certain content may be taught with due consideration given to what Buckingham ${ }^{1}$ termed "social significance," "mathematical meaning," and "individual insight." Arithmetic which is socially significant and mathematically meaningful for the individual student cannot be formalized.

THE CONTENT OF THE ARITHMETIC CURRICULUM

"Content," as here used, has a double meaning. It not only connotes skills and abilities which are selected as goals for arithmetic teaching but refers also to the interrelationships which serve to give the skills and abilities meaning. In the tiscussion which follows, consideration will be given to representative topics, the aim being to present a point of view with respect to arithmetic teaching.
Early grade number experiences. It has become customary to designate the early number experiences of very young school children under the heading of "number readiness." In the strict sense of the word the number learning of five- and six-year-old children cannot be separated from that which is acquired when the ages of seven, eight, and nine are reached. Likewise, the number knowledge of five- and six•year-olds is a refinement of still earlier ideas regarding quantity. Little consideration, however, has been given in our schools to the possibility of developing young children's number ideas in a systematic way. In most schools systematic instruction begins at the age of seven or eight.

[^4]The so-called "readiness" instruction which precedes it is usually unplanned and undirected. Brownell's ${ }^{2}$ study of the development of children's number ideas provides conclusive evidence to support the contention that the number learning of even kindergarten and first grade children should not be left to chance.

A kindergarten teacher was observed who endeavored to direct the development of number ideas of her children in a systematic way. In her room the leader of each table of six children had been in the habit of going to the cupboard within the room for boxes of crayon. In so doing he would look in turn at each child at the table as he selected the box of crayons for that person. The teacher, wanting to lead her children to higher levels of response, placed the crayons out of sight of the children in a small room adjacent to the kindergarten. Although the leaders experienced difficulty at first, they soon learned to count the children at their tables, including themselves, keep the numbers in mind, go to the next room, count out the required number of boxes, and ieturn with them. The teacher varied the experiences of the children by asking them to obtain a given number of sheets of paper, count boys and girls present, set out a certain number of chairs. etc. Thus the development of number ideas was conscinusly directed by the teacher. Children were carried from the simple level of matching objects with children to that of dealing with total groups.

Fiven at this carly stage in the school life of the child the two principles of arithmetic teaching proposed earlier were operative. Numbers were used as records to describe concrete objects and certain relationships between numbers were perceived. Obviously children on the kindergarten level used number names rather than number symbols to describe quantity. The relationships between numbers were those which enabled children to distinguish between groups. i.c., the cardinal number idea. In the operation of the average classroom there are countless opportunities for the development of the number ideas for which young children are reads.

The problem of induction into the use of number symbols

[^5]does, however, seem to be difficult for many teachers and children alike. From the study by Brownell, to which reference has already been made, there is strong support for the contention that much experience with concrete numbers of the type described above should precede any attempt to deal with abstract number symbols. Brownell's conclusion was stated in these words:
"The theory presented and delended in this section is that success in making the transition from concrete number to abstract number is largely conditioned by the stage of development which has been attained in ability to deal with concrete numbers; that is, other things being equal, pupils who thoroughly understand concrete numbers are, because of that fact, unlikely to encounter serious difficulty in learning the additive combinations; conversely, other things being equal, pupils who have not developed very far in the ability to deal with concrete numbers are on that account almost certain to encounter serious difficulty in learning the additive combinations. ${ }^{\text {" }} 3$

Teaching children to use number symbols as means of express. ing ideas is comparable to teaching them to write words. If children put together the symbols of the alphatet to name the things with which they have direct experience, it would seem that number symbols should be used in the same way. Thus the symbol 8 may be recorded to indicate the number of children in a row, the number of books on a table, the number of windows in a room, etc. Fiven a number combination such as $5-2=3$ may serve to describe what happened when 2 of 5 penemes were spent, 2 of 5 cookies were eaten. 2 of 5 marbles were 1 ost, etc. The early study of number symbols is therefore more than an exercise in handwriting and number readiness: more than the repetition of number names in serial order; it is a study of ideas and ways of recording them.

The transition from visual oral to abstract written level of response. In a recent publication Mortont suggests that children pass through four stages of response before they reach the point of being able to deal with abstract number. The siages suggested by Morton and others are:

[^6]1. The object stage: purely concrete number.
2. The picture stage: pietures of familiar objects.
3. The semi-concrete number stage: dots, lines, circles, etc.
f. The abstract number stage: number symbols.

Advantage may be taken of the natural tendency of children to group any given number of objects in different ways to help them make the transition which is described above. Anyone who has watched children playing with blocks, coins, sticks, and other common articles, has observed children arrange and rearrange objects in many ways and groups. A teacher conducted such an activity in the following manner:

Four chairs were paced in a close row before the children. The pupils were asked what number should be written to tell how many chairs were in the row. The children agreed upon the number 4, and a $\frac{1}{}$ was written upon the blackboard by the teacher and by each child upon his paper.

The teacher then asked the children how they could picture the row of chairs with line drawings made like the printed letter h. From among several drawings the class selected one in which the 4 chairs were placed in a line with little space between the chairs. (hhhh)

Next the luacher suggested that the 4 chairs could be arranged in other wans and still be in a straight row. A child voluntecred to place the chains in another way and separated them into two groups with a wide spate between cach group. Following the suggestion of the teather a dawing of the new arrangememt was made upon the blackboard and upon the children's papers. It obviously was hh hh.

Othew was of placing the chairs in two groups were worked out with the chairs and drawings made to indicate arrangements like $h \quad h h h$ and $h h h \quad h$. The activity resulted in a final record such as:

To check the understanding of what had been done, children were asked to move the chairs to show what different parts of the record meant.

$$
\begin{gathered}
4 \\
\text { hhh } \\
h h h h \\
h h h h \\
h h h \quad h
\end{gathered}
$$

This was followed with making arrangements and picture records of other numbers of chairs and of children and of books. Soon the teader raised the problem of making complete records without any manipulations.

When the children understood what was meant by arranging objects into two groups, and could pisture the anangements, the teacher urgested that crosses such as X could be used instead of the drawings of chairs, children, and books. Thus the representation of 5 was changed to:

$\begin{aligned} & \text { XXXXX } \\ & \text { XXXX X } \end{aligned}$

Again children were asked to explain different parts of the pictures. They soon reached the point of being able to describe parts of the " 5 record" with such remarks as: "All five may be close together," or "You may have one out on one side and four on the other side," etc.

Finally the children were led to substitute numerals for crosses. A number such as 6 was then analyzed and the analysis recorded in the following manner:

$$
\begin{gathered}
6 \\
\times \times \times \times \times \times \\
1 \text { and } 5 \\
2 \text { and } 4 \\
3 \text { and } 3 \\
4 \text { and } 2 \\
5 \text { and } 1
\end{gathered}
$$

The activity which has been described terminated when the numbers u_{p} to 9 had been analyed on the abstract level.

In this activity new learning started with real experiences. These were recorded. The activity brought to light many number relationships. Finally the activity ended with a consideration of relationships on an abstract level. From another point of view a transition was effected from a verbal to a symbolic method of describing situations which involve quantity.

Combining and separating numbers. In the normal progress of the child througl. school a point is reached at which his efficiency in arithmetic is impeded if certain number relationships are not understood and known to the point of immediate recall. Reference is here made to what are commonly termed the addition, subtraction, multiplication, and division combinations. The National Council Committee on Arithmetic ${ }^{3}$ took the position in its preliminary report that the school should teach the facts and skills of arithmetic in a systematic way. It recognized the place and value of incidental learning but did not favor programs of teaching which stopped short of fixing for retention what has been learned. The Committee, on the other hand, looked with

[^7]disfavor upon a systematic method of teaching which did not give due consideration to meaning and understanding of what is learned.

Systematic study of the number combinations. The methods advocated for the mastery of the number combinations in a systematic way fall into two general classifications. One of the systematic methods of teaching the number combinations is based upon the theory that after children have become acquainted with them, the single combinations must be repeated over and over again until they are "leamed." Brownel! classified this type of learning under the hading of "Drill Theory." The objectionable features of the "Drill Theory" when exclusively relied apon are too well known to require enumeration.

The second method which has been more recently advocated and used in certain places is in keeping with what Brownell termed the "Meaning Theory." In practice this method features the "cultivation of comprehensive general ideas" in the sense suggested by Judd.: 'Those who are in accord with the "Meaning Theory" have found different wass of applying it to the teaching of the number combinations. The differences are mainly in types of "comprehensive gencial ideas" or generaiazations children are led to mitize. A discussion of representative plans follows.

Gencraliration in teaching number combinations. The gencralization which has been most widely employed in teaching the number combinations is that numbers may be analyzed and synthesized with the aid of tens. Wheat, ${ }^{8}$ Badanes, ${ }^{\circ}$ Morton, ${ }^{10}$ dud others have adrocated the teaching of additions whose sums are larger than ten by teaching children to rearange two numbers into a ten and so many more; for example, $8+5$ may be found by thinking $8+2=10$ and 3 more makes 13 . Thus thirty-six com-

[^8]binations may all be linked up with one generalization, namely, any two numbers the sum of which is greater than 10 may be regrouped as a 10 and so many more. Wheat would apply the method of tens to the learning of the subtraction, multiplication, and division combinations to which the ten's generalization will apply. For example, the child may obtain the product of 6×4 by grouping four 6 's to make two 10 's and 4 . This represents a point of view which utilizes a single generalization very extensively.

In the teaching of the addition combinations other writers advocate a plan of grouping and regrouping the single numbers from 2 through 18 for the purpose of building generalizations about each number. For example, 11 would, according to this plan, be regrouped as $10+1,9+2,8+3,7+4,6+5$, and their reverses. Although in contrast with the idea of emploving the ten's principle, the plan of analyzing and synthesizing each number seems to represent a somewhat restricted use of "comprehensive general ideas." Analyzing and synthesizing are valuable in that pupils learn about groupings of numbers with which they will deal later.

Another method to which approsal has been given is that of teaching related addition and subtraction and corresponding multiplication and division combinations at the same time. Thus $5+3,3+5,8-3$ and $8-5$, as well as $1 \times 2,2 \times 4,8 \div 2$ and $8 \div 4$, would be centered aromed the study of the number 8 . The relationships thus established are of great value.

Thus far the generalizations which have been given consideration include those which
(1) Utilize tens for purposes of analyzing and synthesizing nu nbers.
(-) Indicate relationships anomg the combinations into which single numbers may be aralyed.
(3) Are based upon an awareness of mterrelationships between the processes of arithmetic.

There is little coperimental evidence which indicates the superiority of use of one type of generalization over another. In a study by Thicle ${ }^{11}$ all effort was made to teach the addition
${ }^{11} \mathrm{C}$. L . Thicle, Contribution of Genentistion to the I can ning of the Addition Facts. Contributions to Fiducation, No. $\overline{6} 33$, Bucau of Publisations, Teachers Col. lege, Columbia tinisersity, New York. 1938.
combinations alone according to a plan which aimed to give children experiences with many addition gencralizations. For example, in this study children were directed in their discovery of generalizations with regard to the following:
(1) Adding 1, 2, and 0 to any number within the comprehension of the children.
(2) Combinations related to the same number.
(3) The reversals of combinations.
(4) The relationships existing among the doubles of numbers.
(5) The relationship of certain combinations to the doubles, i.e., $8+7$ to $8+8$.
(6) The relationship of 10 to the teen numbers.
(7) Making tens and so many more.

An organization of the addition combinations was used in this study which directed the pupils in the discovery of useful generalizations. Pupils in turn dealt with situations in which there was a need for adding 1 , adding 2 adding 0 , like numbers, numbers almost alike ($3+4,4+3,4+5,5+4$, etc.), adding to 10 adding to 9 , adding pairs of numbers the sums of which are greater than 10 or less than 10.

The generalizations were not formulated for the pupils but in their own words they indicated such discoveries as-
"When you add 1 to any number the answer is the next higher number."
"You go up two numbers or skip a number when you add 2."
"The number is the same when you add 0."
"You can turn any combination around."
As the consideration of the addition combinations procecded, no attempt was made to cause the children to use specific generali-
ations. The aim of the teachers was to promote the thinking of swers, i.e., seeing relationships rather than counting or guessing.
te combination $8+6$ was met late in the course. Children left
their own resources suggested several ways of obtaining
e sum. For example, they said, " $8+6=14$ because $6+6=12$ and $12+2=14, " \quad " 8+8=16$ and $16-2=14, " \quad " 8 \cdot 2=10$ and $10+4=14$," and " $8+6$ is the same as $7+7$."

Attention should be called to the fact that the teaching procedure was planned in such a way that the pupils first made
records of activities which involved social experiences. They manipulated concrete materials as a means of obtaining sums until they were able, under the direction of the teachers, to discover useful generalizations by means of which the sums could be obtained directly.

It should also be pointed out that the pupils were required to carry their practice with the combinations to the point that they could give answers readily. Timed tests were employed for purposes of increasing the speed of response to the combinations. The remedial work differed from that usually employed in classrooms in that restudy was never on a single combination but for the purpose of recalling a useful gencralization and reviewing it.

The results of the study described were in keeping with a previous study by McConnell. ${ }^{12}$ The children who dealt with interrelationships within the number system in their study of the addition combinations surpassed children who studied the combinations by a method of repetitive drill in which no attention was paid to interre :ionships.

The issue at present is not whether the use of certain interrelationships produces better results than the use of other relationships. The issue is whether schools should continue to neglect relationships or utilize them in their teaching of arithmetic. The evidence seems to be in favor of the latter.

Interrelationships among subtraction, multiplication, and division combinations. Space does not permit a detailed discussion of the teaching of the subtraction, multiplication, and division combinations. At an earlier point subtraction generalizations were described. They included the ideas that certain addition combinations are related to certain subtraction combinations, and that certain numbers can be analyzed into tens and so many more. Illustrations were given of interrelationships between multiplication and division combinations and between all types of combinations into which certain numbers could be amalyed. Among the combinations of each process there are other interrelationships which may be brought into a prosram of teaching.
Subtraction interrelationships. The records of subtraction 1: I . R. McConnell, Disorory is. Authoritatior Idenlifation in the I.crming of Children. Univensity of Iowa Studies in Fiducation, Vol. N., No. 5, September 15, 1931.
situations may also be utilized for the purpose of stimulating children to discover interrelationships between the minuend and difference when the numbers subtracted are either $1,2,0$, a number equal to, one less than, or one-half of the size of the minuend. Reference has already been made to interrelationships between minuends larger than 10 and differences less than 10 which involve the ten's idea. In the use of these interrelationships the difference between two numbers such as 15 and 8 could be found either by first subtracting 5 and then the remaining 3 from 10 , or by thinking 8 and what makes 15 in the form of $8+2=10$, $10+5=15$, therefore $15-8=7$.

The reader is again admonished not to infer that children who "think" answers in the initial stages of learning subtraction combinations. guided by the perception of interrelationships, must of necessity continuc to do so. As in the case of learning the addition combinations, application and practice may be introduced and so directed that automatic response is achieved. The process is a long one requiring judgment on the part of the teacher regarding the progress of children, as well as purpose on the part of children to master subtraction combinations. It is conceivable that some time in the future children will be allowed two or three years rather than a semester or two for the mastery of number combinations. The process of learning, according to this conception, is one of progression from relatively crude but meaningful procedures to a final stage at which a pupil is able to give the answers both readily and accurately.

Generalizations among multiplication facts. Although the multipliation combinations have been taught for many years in the form of "tables" or families, little recognition has been given to the possibility of utilizing the relationships which are inherent in cach so-called "table" among the "tables." It has been common practice to introduce sets of multiplication facts by demonstrating the repetition of equal units. However, this type of insaruction has been and is followed in most schoolrooms by repetitive drill on the tables. In general little time or effort is used to cause children to build up their own "tables" and from examination of each "table" to note useful generalizations about them.

In the teaching of the multiplication combinations which are
necessary for ordinary purposes, two objectives stand out. First, the concept of multiplication as a quick way of grouping equal units must be sensed. Second, the separate combinations must in time be habituated for the sake of efficiency and economy for later computation with numbers. It is in the perception of the multiplication concept that social usage plays a part. However, as is pointed out in the chapter dealing with materials and devices for taching. concreteness of cxperience is an important characteristic of learning situations in which new concepts are formed. Thus the multiplication concept seems to grow out of situations in which equal groups of concrete objects are placed together. The school aids children in making symbolic records ur these regroupings so that they in turn may make symbolic records when situations are described or imagined. The extent to which the regrouping of objects is carried on for real or simulated purposes is determined by the point of view held toward teaching in general. The strengths and weaknesses of tarious programs of education are brie'ly discussed in the chapter on curriculum problems by Sueltz. Regardless of the point of reference, it is commonly agreed that children should know certain multiplication combinations.

The proposal is made that by focusing the attention of children in their earliest multiplication experiences on the social situation in which units of ten are involved, children may be ed to perceive certain principles inherent in all "tables" or sets of related multiplication combinations. For example, there is a sequence of products from decade to decade which most children quickly sense in the table of 10 s. The sequence may be foliowed in a descending, as well as in an ascending, order. It may begin with any combination and move in either direction, i.e., from 50 we may go to 10 which is 10 less, or to 60 which is 10 more than 50 . Fach combination has a reverse. Fach product has a certain ending; in the table of 10 's it is 0 . The relationships between products is the same as between multipliers, i.e., the product of 8×10 is twice as large as that of 4×10. Each of these interrelationships or characteristics may, by direction on the part of the teacher, be brought out in the study of the table of 10 's.

If the teaching of the table of 10 's is approached from the point
of view of having children think rather than memorize by a rote method, some time will be spent in examining the table. Under the guidance of the teacher, deductions such as those listed above may be made by children. The newly discovered interrelationships may in turn be used in other situations in which a knowedge of the table of 10 s is required. They will serve to help children think products if they camot recall them readily. These are not rules which children learn and apply in specific situations but rather interrelationships or generalimtions, which individual children select as a result of their experiences.

Although a high order of difliculty is ascribed to the table of 9 's when taught by rote drill methods, the combinations of this table become comparatively eany to larn when tanght meaningfully. After children have built up the table of 9 's, they may be led to discover the descending order of the one's digits and the ascending order of the ten's digits in $9,18,97,36,45,51,63$, $72,81,90$. In building up the table by successively adding 9 , they utilize the idea that the sum is one less than it would be if 10 were added. Children may be led to observe that the sum of the digits of each product is 9 ; thus 9×6 cannot be 56 . Also the products of 9 and even numbers are even numbines. The first two or three combinations are readily recalled as reverses of easy combinations. Forty-five and !0 serve as reference points when near-by combinations must be "honght out." In fact the table of 9 's contains so man) in onclationships that it may casily be vested with meaning.

The inference should not be made that it should be the purpose of the teacher to teach a set of gemeralizations in a formal manner. The purpose shonld rather be to guide children in the discovery of numerous inicuelationships from anong which individual children may select those which will best help them think answers in the initial stages of leaming maltiplication tables.

The kind of ability which should result from the type of instruction described above is well illustrated in the account of the boy to whom Gladys Risten refers in Pourenover Education, February, 19.40. The article is entitled. "What Price Merhanization?" The bos could mot memoriae the tables of 8 and 9 . In an out-of-school situation he found the products with ease.

When asked how he found that eight 8's are 6.t, he replied:
"I thought that out two ways. Two eights are sixteen, four eights would be two sixteens, and that would be twenty and twelve, and eight eights would be two thirty-twos. and that would be sixty.four, and a quicker way would be just eight less than seventy-two, and ten less would be sixty-(wo, so cight le? would be sixty-four."

There are those who object to teaching which permits such thinking because they fear these roundabout methods will interfere with memorization. There is no evidence to support this contention.

Interrelationships in the processes of arithmetic. As children grow older, situations arise for which more than a knowledge of the simple number combinations of addition, subtraction, multi. plication, and division is required. The characteristics of our number system which may well serve to unlock the mysteries of the processes of arithmetic for children are the following: the significance of ten as a base or as a standard group; the function of zero as a place holder; the principle of position or place value and the principle that groups-tens, hundreds, thousands, etc.may be treated just as ones or units are treated. The importance of each of these concepts and how they may serve to give continuity to the study of the reading and writing of aumbers, and to the study of the facts and the processes, will be discussed.

Number concepts and work in reading and writing numbers may emphasize basic characteristics of the number system. From the earliest work with numbers, the pupils' attention is focused upon the idea of groups. Pupils first become familiar with groups of things ranging from a single thing to a group containing many things. Pupils discover that a group of a given size may be rearranged in several different ways. For example, 8 may be grouped as 8 ones, or it may be separated into gre p ps of $7+1,6+2,5+3$. $4+4,3+3+2$, or as four 2 s , etc. This early work really includes the development of certain easy addition combinations. From it many of the addition combinations may be learned.

When the numbers from 10 through 19 are first met for purposes of systematic teaching, regardless of the program of instruction in rogue, the special significance of the ten group both in writing and thinking these numbers may evell be em-
phasized. When groups containing from 13 through 19 objects are counted. pupils may be directed to listen for familiar names in the numbers they are saying. To exaggerate this similarity the numbers may sometimes be called threeteen, fourteen, fivetren, sixteen, etc. Pupils soon sense the fact that the name of the ten group. changed slightly to say "teen," is heard in each of the numbers from 13 through 19, and that the other part of each word contains one of the familiar words three, four, five, six, etc.

Groups of objects such as tickets, jackstraws, books, or whatever objects are a part of situations under consideration, may next be consciously built up by starting in each case with a group of ten and adding the numblar of ones which is heard in the number name- 18 is a 10 group and 8 ones. In everyday life such grouping is commonplace and therefore should find a place in the classroom even if it were not helpful in arithmetic training. Fien thongh "eleven" and "twelve" do not seem to contain the wotds "one" and "two," it may be shown concretely that 11 equals a 10 group and 1 , and tiat 12 equals a 10 group and 2. Thus advantage may be taken of natural experiences to lead children to make useful deductions about our number system which many of them would not ordinatily perceive. That this is the function of the school is taken for granteci.

It is particularly important that those children who have learned oral rote counting before entering school be given many opportunities to develop an appreciation and understandin; of numbers through a study of number uses and number relationships.

Equally as great importance attaches to 10 when pupils are first taught to w rite the numbers from 10 through 19. To write 10, 'upuils ma; note hat we use two separate symbols-one of which looks exactly like the symbol used to stand for a single object. I.ikewise to write the numbers from 11 through 19 we use the same symbols used before but in a certain definite arrangement. Since pupils have built the numbers concretely to 10 by combining a group of ten with a certain number of ones, they may be guided to see that in writing these numbers the figure 1 in the ten's ${ }_{8}$ lace mans 1 ten group.

When the numbers 20 through 29 representing groups of familiar objects are analyzed and written, it becomes evident that here we use 2 ten's groups in combination with one or more units. As work in building numbers to 99 is continued, the teacher who is alert to the possibilities may continue to emphasize the importance of the ever-present ten's group. Children who have had no instruction have been observed in the act of grouping playthings in trains and piles of 10 and so many more.

A device sometimes ujed when objects grouped in tens are combed is to have pupils say two-ty, thee-ty, four-ty, fivety, etc., to make very evident that these numbers really mean two-tens, three-tens. four-tens, etc. It will be observed that in the consideration of numbers from 1 to 19, the order is objects-language -symbols. while from 20 to 99 the order is symbol- - languageobjects. Thus the ideas all cooperate; only the emphasis shifts.

While children deal concretely with the numbers to 100 , a systematic number chart may be built like the one shown below. The teacher places it on the board and each pupil places a similar chart in the back of his notebook. Again the school is helping to organize learning which might otherwise remain unorganized. The point at which caildren are ready for this is a matter of grade placement.

1	11	91	31	41	51
9	19	99	39	49	59
3	13	93	33	43	59
4	14	94	34	44	54
5	15	95	35	45	55
6	16	96	36	46	56
7	17	27	37	47	57
8	18	29	38	48	58
9	19	99	39	49	59
10	20	30	40	50	$60 \ldots 100$

As pupils are learning to use numbers to 100 in their thinking and writing. and after a number (') it has been assombled, they may be guided to make some generalikations regarding the importance of the place in which a momber symbol is written and regarding the function of zero as a place holder. The path of learning is and should be from experiences with concrete objects to number symbols by which experiences may be represented.

To focus attention upon the concept of place value, the pupiis may be asked to show on the number chart all the numbers for which it was necessary to write the symbol t. Pupils will note that the symbol 4 occurs in $4,14,21.34$, etc.. through 94 , and in all of the numbers from to through 49 . The two different values indicated by 1 may be illustrated through the use of concrete materials. For example, if a situation involving tickets is the point of departure, 4 single tickets may be used to show the meaning of 4 when it is written alone or when it is written to the right of one other symbol. Four bundles of tickets, containing 10 tickets each, may be used to show the meaning of t when it is written to the left of one other mumber or at the left of a zero. Further study will reveal to pupils that the same thing is true of 7 , or 5 , wr any of the other 9 symbols. This early study of place value will lead pupils to realize the difference in value between numbers such as 17 and 71 , between 38 and 83 , etc. Greater discrimination in writing numbers in columns for addition will also be developed. Fexercises in writing and comparing numbers will help pupils to develop the ability to use the terms "one's column" and "ten's column" or "one's place" and "ten's place" with understanding.

To focus upon the use of zero as a place holder, attention may be directed to the numbers $90,80,70$. and to the fact that they mean 9 tens, 8 tens. 7 tens, and not 9.8 , or 7 ones. Reference at this point may be made to the concrete objects grouped into tens. It may also be pointed out that when we write 91,82 , or 73. we have numbers which are made up of both tens and ones, so we write a number in both places. However, if we meant 9 tens, but wrote simply a 9 , it would look as though we meant 9 ones, so we need something to write with 9 to show that it means 9 tens. "This "something" we write is a zero. "Thus zero is r. lly used to indicate an absence of ones when a number is made up only of tens.

Dealing with numbers to 100 by the method suggested above may develop a consciousness of the special signifiance of the ten group. The necessity for thinking carcfully about the relative positions in which the nine numerals are written when they are used to express numbers greater than 9 may also be appreciated
as well as a tendency to regard zero as a symbol which helps the numbers from 1 through 9 to indicate that groups and not ones are meant. In short, such activities as these should disclose the rhythm of our number system.

In the next stage of developing number meanings from 100 to 1,000 these characteristics repeat themselves They lead to a still fuller insight into the number system. When pupils assemble ten groups of ten each, they find that they are not named ten-ty, as might be expected, but are called by a distinct new name of "one hundred." When 10 tens are written, a third place becomes necessary, which is called the hundred place. Thus, 10 tens are grouped together to form a new standard group to help is in understanding all numbers larger than 99 . Just as the group consisting of 10 ones was important as a measure of all numbers from 1 through 99 , we now find that a group consisting of 10 tens is important as a measure for all numbers from 100 through 999.

As pupils develop a number chart by l's from 100 through 900 , the need for a zero to keep figures in their correct positions may again be emphasized. We write 101 which means that we had enough objects to make 1 group of 100 and l object over. However, to separate the 1 meaning hundreds from the 1 meaning "ones," we need a symbol, since we camnot write any of the figures from 1 through 9 in ten's place. A zero is therefore written to keep the ones of 101 in their proper places.

If the work of studying number meanings to 1.000 has been thoroughly done, many of the pupils will have sensed the rhythm and order of the system to the point that they will be able to write the numbers beyond 1,000 with almost no assistance from the teacher. However, the teacher may need to point out the fact that 10 hundreds form a new tandard group and is given the name thousand, and that in the number 1,000 we can always see 10 hundreds or 100 tens. Obviously the extension of number meaning to 1.000 can only occur when children have dealt with numbers sufficiently to form concepts of larger nutu, wers.

Understanding characteristics of number system gives meaning to the processes. Just as the idea of grouping in tens or powers of ten is fundamental to the development of the ability to think and record numbers, we find that it is aiso a basic idea in com-
putation by the different processes, which may all be looked upon as fundamentally rearranging or regrouping procedures.

When the occasion arises requiring the addition of two-place numbers. pupils may be led to perceive that tens may be combined just as ones are combined. However, if combining ones provides enough or more than enough ones for another ten group, then this new ten group is transferred or carried to the ten's column and combined with the other ten's groups. It is this explanation which makes carrying appear as a logical, understandable procedure in contrast to the purely mechanical device which some pupils learn of always writing the right-hand digit of a two-place number in the answer and carrying the left-hand digit. Furthermore, if "carrying situations" are directly related to activities in which objects are actually manipulated, the process of carrying is meaningful rather than mechanical.

A few illustrations may be taken from each process, social settings for the illustrations being omitted.
(1) 48 Combining ones gives 17. This is enough to form another ± 39 ten. and there will be 7 ones left. Write the 7 in the 87 one's column in the answer. Combine the new ten group with the others of its kind and we have 8 tens. Write the 8 in the en's column in the answer. At least during the early leaming period it is advisable to indicate the carrying number. It is a definite part of a number recond representing real experiences. Some children are able to complete the work without it.
(2) $728 \quad 8+4=12$ ones. Change to 1 ten 2 ones. Transfer the +174 ten w the ten's column. Combine tens: $1+2+7=$ 10 tens. This is enough to make one larger group of 1 hundred. Combine the hundreds: $1+7+1=9$. When the given groups are combined and regrouped we have 9 hundreds and 2 once. The varamt ten's column must be filled, so a zero is written in ten's place to keep the ones and hurdreds in their proper places.
To deal meaningfully with the subtraction process pupils need to keep in mind the ten's relationship and to mote that again tens and powers of ten may be treated just as ones are treated.

In addition we combine like groups and seek every opportmity to regroup into a larger group-ones into tens--tens into hundreds, etc. In subtraction it is often necessary to break up large
groups into smaller ones. This is precisely what frequently happens when objective material is manipulated.
(3) 15 To subtract 8 means that we wish to find out how large -8 the other group will be if we separate 1 ten 5 ones into 72 groups-one of which contains 8 ones. We may think 8 from 10 leaves 2. These 2 ones with the other 5 ones make 7 ones, so $15-8$ leaves 7 . It is also possible to think of the 1 ten and 5 ones as 15 ones and subtract directly.
(4) $\quad \$ 9$ From 5 groups of 10 or 50 take 3 tens 8 ones. Regroup - 38 the 5 tens as 4 tens and 10 ones. This may be done con--ii cretely. liom these 10 ones take 8 ones, leaving 2. Only 4 ten groups are left. Take 3 away and 1 will be left.
Several illustrations will serve to indicate how the basic principles enumerated for addition and subtraction apply to multiplication and division.
(5) $48=4$ tens 8 ones

6 times 8 ones are 48 ones. Six groups, each containing 4 tens, make 2.4 tens. 48 ones may be regrouped as 4 tens 8 ones. Then we have $2 t$ tens +4 tens, or 28 tens. 28 tens may be further regrouped and written as 2 hundreds 8 tens and 8 ones, or as 288.
26 . Here we have 1 group of 100.5 groups of 10 and 6 ones. The numbers may represent tikets in bundles of the 12 sizes designated. We wish to put the tickets into 6 equal $\frac{1}{36}$ piles. We cannot put a 1 hundred bundle in each of 36 the 6 piles until we break the 1 hundred bundle up into 10 ten groups. Then we have 15 ten groups. This is enough to put 2 tens in each pile and we use up 12 tens leaving 3 tens. We may emphasize here that nothing need be written above the hundred's place, but 2 may be written over the ten's place of the dividend since we had enough tens to divide into 6 piles. Three tens is the same as 30 ones. $30+6=96$ ones. From 36 ones we can put 6 ones in cach pile, thus using up 36 ones. To regroup, 8 hundreds, 1 ten. 6 oncs, into 4 equal piles, we can put 2 hundreds and 4 ones in cach pile. A zero, however, must be witten in the ten's plate between the hundreds and the ones to keep the hundred's digit in the proper place.
The illustrations thus far have been given to indicate how each process with whole numbers may be shown to be a part of a unified system of ideas. Each phase of a process grows in com-
plexity but the same general principles apply to all phases. When pupils grasp the basic idea of grouping in tens or powers of ten, they should not experience greater difliculty in carrying from tens to hundreds than in carrying from ones to tens. They also have the background of understanding for carrying a number other than one when colum addition and multiplication are taught.

The fundamental processes with whole numbers may be extended meaningfully. In the illustations which have been offered, place value relationships have been limited to those between ones and tens and hundreds. For each illustration it has been suggested that the introduction of a new process should be in the form of a record of what tanspires when concrete materials grouped as hundreds, tens, and ones are manipulated for specific purposes. One may logically ask whether or not this procedure should be continued when pupils first deal with numbers containing thousands. In other words, do children reach a point at which place value has been generalized to the degree that concrete materials are no longer needed:

In that number meaning plays a vital part in a program of arithmetic instruction, which is based upon a knowledge of place ralue, it would seem that first children must form concepts of larger numbers if they are to operate with them. Thus the problem of determining when children may discontinue the use of concrete materials in the learning of new processes raises a double question. Specifically it is--can pupils extend and enlarge the meanings oi numbers from tens and hundreds to thousands, and an they manage numbers with thousands after operating with tens and hundeeds without direct reference to concrete objects? There is no valid answer to this question.

If the descriptions of introductory lessons offered by wheat represent his conchasions on the matter, it would seem that he does not advorate the gromping of concrete objects beyond that of demonstrating the number of tens in one hundred. In his discossions he suggests: "It should not be necessary to explain the meaning of every set of symbols from 20 to 100 or to demonstrate objectively every idea represented by them. It is assumed that the pupils, through various demonstrations and activities previously described, have already developed some fairly delinite
notions of the group of ten and of thinking numbers beyond ten in relation to ten." ${ }^{1 s}$

The same opinion is voiced in another statement by Wheat: "Of necessity, the pupils must rely less and less upon experiences with the concrete and depend more and more apon the system of dealing with tens just like units." ${ }^{14}$ Wheat, then, would extend the processes of addition, subtraction, multiplication, and division to larger numbers by helping children realize that the method of dealing with tens and ones applies also to larger units. Others who have attempted to apply this meaningful approach to the computational phase of arithmetic as it relates to whole numbers agree with this viewpoint.

Whether all pupils are able to transfer the principles learned objectively about ones and tens to larger units is an open question. It is conceivable that many children of the ages at which larger numbers are first introduced may find it difficult to make the necessary transfers of ideas. For example, it may be necessary to employ objective materials for the purpose of leading pupils who have dealt with numbers through 100 meaningfully to perceive that 1,000 is not only 10 hundreds, 100 tens, but also 1,000 ones. The problem of transfer becomes even more serious when children find it necessary to learn how to operate with multipliers and divisors of two or more places.

Place value in long multiplication. In a simple problem such as 2.4×48 the multipliers 4 and 2 have the values of 4 ones and 2 tens. In multiplying by tens, is it sufficient for pupils merely to think, "tens are multiplied just as though they were ones," or should an effort be made to have children rationalize the operation by thinking, " 2 tens times 18 are 96 tens, or $960 "$ Buswell, Brownell, and John's advocate the writing of the second partial product as 960 at arst, thus emphasizing meaning during the carly learning stages.

In preparation for two-place multiplication, Buswell, Brownell, and John, ${ }^{16}$ Wheat, ${ }^{17}$ and others, have children multiply numbers
$1 s$ Whe:t, op. cit., p. 250.
24 lisil., p. 350.
${ }^{15}$ Ciuy 'I. Buwell, W'. A. Bownell, and Ienote John, Daily Life Arilhmetics, Book One, p. 111. Cinn and Compay, Boston. 1939.

2" lhicl., Pp. 439-40.
${ }^{17}$ lbid., p1. 315.316.
by 1 ten, 2 tens, and the like. likewise, by also using 1 hundred, 2 hundreds, 3 hundreds, etc., as single number multipliers, meaning may be given to threeplace multiplication. Obviously there is need for research which will indicate the amount of experience children must have to perceive the place value principles as they apply to number meaning and to the fundamental processes of addition, subtraction, multiplication, and division. Unless children understand what they are doing, they perforce must learn mechanically. It should be noted that this approach to the more advanced forms of multiplication and division probably requires a mental maturity greater than childen may possess when these topics usually are studied.

The meaningful approach to division by tens. The teaching of division by tens has long been a stumbling block for many teachers. Tanght med hanically, it necessanly most be difficult for most children to lean because it requires a complete control of many intriate steps. laught meaningfuliy, children are able to guide their thinking and as a consequence many of the confusing clements are climinated. Tanght meaningfally, division by tens is but inn extension of division with one place divisors. This in itself simphlies the tearhing of long division.

At an can lier point an explanation of division based upon place values was presented. The form of the explanation was:
$21 i$

$12 \quad 1$ goonp of 100 . 5 gronpes of 10 . and is once. There being an
 361 hundred mant be changed to tens. ets.

There would be very little difference between the explanation of this problem and a division problem such as $20 / 180$. The two place divisor presents litle that is new if the multiplication and division table have been extended to include the tens numbers. Viewed as distion by e tens the problem might be that of putting Is tens into piles wilh !2 tens in cadh pile. This brings into play the muhtiplication combination 9×9 tens or 9×20. Very little difliculty is experienced in leading chiden to extend the multiplication combinations to include combinations such as 9×20, $8 \times 40.7 \times 60.5 \times 50.20 \times 9,40 \times 8,60 \times 7,50 \times 5$, etc., which are
very useful in long division. They find use for these combinations in solving such problems as - "If a car which costs $\$ 180$ is to be paid for in 90 equal monthly payments, what will be the amount of each payment:" "How long will it take to drive a truck 180 miles at an average rate of 20 miles per hour?"-and the like.

The purpose of the problem $20 / 180$ might also be to divide $\$ 180$ between 20 people. Obviously no person can receive any $\$ 10$ bills, there being only 18 of them to divide. Hence $\$ 1$ bills must be divided. If the problem were to divide $\$ 18.4$ among 20 people, they would receive only $\$ 1$ bills. The remainder 4 offers no difficulty because it indicates the number of $\$ 1$ bills remaining after each of the 20 people had received the largest number possible. Division with one-place divisors taught meaningfully may give pupils an understanding of all the elements of the above problems.

Progress from problems such as the above to one like $21 / 9{ }^{2}$ represents an easy step. In this case the purpose may be to find the number of sheets of paper which might be given to each of 21 children from 9 packages of paper, with 10 shects in a package, and 2 extra sheets. It is apparent that each pupil could not be given a whole package of 10 sheets, necessitating the breaking of the packages into single sheets. Pupils accustomed to rounding off numbers can be directed in the solution of this problem to think 90 divided by 20 . If there were 90 sheets for 20 children, each could receive $\&$ sheets at the most. This represents the begimning of finding trial quotients. It offers an explanation for use of the ten's figure as a guide in the determination of the trial quotient. In a mechanical plan of instruction usually no explamation is given.

The progress might next be to a problem such as $34 / 110$. Again, if 11 packages of paper of ten sheets each are to be divided among 31 children, 30 children (the round number of chil(ren) could receive only 3 sheets each because $4 \times 30=120$ and $3 \times 30=90$. The proof of this problem would be $3 \times 34=102$ and 8 more makes 110 . This proof is not unlike that of a one-place divisor problem with a remainder.

The long division studies which have been reported do not
provide data with which to judge the efficacy of the meaning method as applied to long division. In particular, finding trial quotients by the mechanical method requires the application of certain steps in a definite order. Finding trial quotients by the meaning method represents the further application of number ideas which have been acquired over a period of time. Children very early may learn to round off numbers and to find approximate answers. Thus finding quotients by first rounding off numbers is not something "extra" which adds to the complications arising in long division problems.

The point in this discussion is that the teaching of any part of a process of arithmetic by the meaning method cannot be evaluated on the basis of the description of that part. Meaningful teaching represents a building-up process in which old ideas work together in new situations; therefore what often appears to be complicated and difficult is in reality very simple for the pupils who possess the proper background of instruction.

The application of place values to decimal fractions. Fmphasis upon the basic principles of the number system throughout the work with whole numbers will pay dividends in the work with decimal fractions. Since pupils already realize that each numeral indicates the she of a group by its position and indicates also the number of such groups, they will be able to apply these basic ideas to a study of decimal fractions.

In the number 111 the first 1 on the left $=100$, the next 1 to the right $=10$, and the 1 on the extreme right means 1 unit. Thus 10 is $1 / 10$ of 100 , and 1 is $1 / 10$ of 10 . When we wish to represent $1 / 10$ of 1 unit, we can do it by using some sign to designate the end of the whole number series, such as a dot which also ends a sentence, and then write a 1 after the dot. Thus we have 111.1, and we call our dot a decimal point.

If we continue our series to the right of the decimal point we see that we can represent $1 / 10$ of $1 / 10$ or $1 / 100$ and so on. Many teachers center these experiences in money values. In every section of the country children are familiar with dimes and penmies. There are certain areas in which mill tokens are in circulation, and there are speed and distance meters on cars.

Computations with decimal fractions are made possible because
of the extension of the same basic principles of the number system as were developed with whole numbers. 「enths, hundredths, thousandths, etc., may be treated just as units ate treated if 10 tenths are regrouped as 1 whole; 10 hundredths as $1: 10 ; 10$ thousandths as $1 / 100$, etc.

The topic of decimal fractions is treated more fully in the next chapter by Wheat. The only purpose of bringing it into this discussion is to indicate briefly how the principles which apply to whole number meanings and operations provide the foundation for more advanced work in arithmetic.

Summary. No attempt has pen made to outline in detail a curriculum for the lower grades. That would involve matters pertaining to the selection of content, social as well as mathematical, grade placement, and other problenss of curriculum making which are treated elsewhere in this volume. The aim of the writer has been to indicate how arithmetic in the lower grades. as it relates to whole numbers, may be taught meaningfully as a closely related system of ide::3. intimations have been made of how even the learning of the number combinations may be made meaningful rather than mechanical through the use of comprehersise general ideas or generalizations.

In the program presented, place value is the key to all operations with numbers. The attention of pupils is focused upon place value when they first deal with numbers larger than ten. It serves to help them think many of the addition and subtraction combinations. All operations with numbers larger than ten are first understood from the point of view of place value. The degree to which this must be carried before children acquire basic principles which will enable them to deal with larger number situations is as yet an unsolver! problem.

Special emphasis has been placed upon the need for concrete material in a meaningful program of arithmetic instruction. This is in keeping with the idea that children should first make number records of situations in which objects are manipulated before moving to described or abstract levels. In short. an cffort has been made to indicate the nature of an arithmetic program which may be termed meaningful.

THE PROLILEA OF CI.ASSROOM METHOD

If we wish pupils to grow in their knowledge and understanding of arithmetic as a closely knit system, it is necessary to point our teaching in that direction. Observation seems to indicate that only a small percentage of pupils gain this basis of understanding unless teachers aim consciously for it.

Teaching which aims merely to tell or to show a pupil "how" to proceed step by step in the mastery of a process, or which merely provides a rule to be memorized and then applied, becomes purely mechanital. Pupils then have no challenge to reason or think out "why" dictated procedures and rules work. On the other hand, pupils who come to understand the reasons for various steps in a process before they are required to use the process have the ability to redevelop it for themselves if memory and habit fail. It is contended further that a type of practice which includes practice in thinking and practice in secing relationships becomes a definite aid in the mastery of facts or in the perfecting of the steps in a process.

In a program of arithmetic teaching which emphasizes relationships and aims to show how certain fundamental ideas bind all the simple processes and extensions of processes into a consistent whole, pupils are encouraged to develop resourcefulness in their attack upon new processes. If given the opportunity, pupils will often be able to discover for themselves the next step in a process. However, if the teaching has been purely mechanical with no attempt to study the characteristics of the number system or to emphasize general modes of attack, it is not likely that pupils will develop this resourcefulness.

The foregoing statements in a eense deal with principles of method. If the principles which have been enunciated are observed in the classroom, the means which are employed to provide children with learning experiences necessarily must possess certain characteristics. The principles to which reference is made were given at the outset in this discussion. They are repeated here for purposes of reference.
(1) Children should become acquainted with numbers and use them extensively dr iecords of quantitative experiences.
(2) Successful and efficient extension of number usage from the early experiences of making number records of quantitative situations can be facilitated by insight into the nature of the number system.

Translated into classioom procedure, the learning of something new in arithmetic will begin with a problem involving concrete objects. Children will cither manipulate objects themselves as a means of solving the problem or observe manipulations made by another. Symbolic number records will be w.de of their observations or of the manipulatory activities.

In accordance with the second principle, the experiences of observation, manipulation, and recording will culminate with the making of deductions or the discovery of generalizations which represent insight into the nature of the number system. For example, the pupil who makes deductions about carrying, in two-place addition, which will enable him to carry in other examples, has gained further insight into the nature of the num. lee system. A very important goal of meaningful teaching, then, is that of guiding children in their discovery of useful generalizations inherent in the number system.

Usually some direction or tuition is required from the teacher to carry children to the point of applying new generalizations successfully. For the sake of brevity the course of events from initial experience to final generalization and application are placed in a step sequence. Briefly the steps suygested are:
(1) Fxperiences of a quantitative nature with concrete objects.
(2) Making number records of the quantitative experiences.
(3) Analysis of number records.
(4) Moving from concrete manipulation as a source of number records to a level of description, thus providing p actice and application.
(5) Working on the abstract level.
(6) Further extension and application into social uses.

This sequence may be followed in the teaching of any new idea or topic of arithmetic, whether it be number meaning, factual learning, or a process of arithnctic. In the chapter by Sauble the use of concrete materials in the teaching process is described
in detail. Therffore only brief descriptions of teaching procedures which employ the sequence listed above will be offered at this point.

How addition doubles may be introduced. It is expected that the setting for all new learning will be in some situation of social, economic, or cultural significance. Whether the situation should be a part of a larger activity or a situation proposed by the teacher or the textbook involves matters beyond the scope of this chapter. For purposes of arithmetic instruction it is important that new learning should have its roots in experiences of social significance.

Usually the addition doubles taught in the early grades include

$$
\begin{array}{rrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
+1 & +2 & +3 & +4 & +5 & +6 & +7 & +8 & +9 \\
\hline-2 & -5 & -10 & -12 & \frac{1}{16} & \frac{18}{18}
\end{array}
$$

In a meangingful program the goal is not to teach a certain number of specific combinations but tather to lead children to acquire generatizations which will enable them to think answers for many related combinations. Thus \because the teaching of the doubles the goal may be to lead childre : to discover some interrelationship among the additio: doubl which will make then more meaningful, as, for example, a doubie succeeding any given double combination is 2 more and the one preceding is 2 less than the sum of the given double.

Experience setting. The problem at hand may be that of buy. ing two articles each costing the same amount. How realistic it will be to a group of children will depend upon the ingenuity of the teacher. Obviously the experiences of the chitaten will be made significamt to them if aticles are properly labeled as to price and coins with which to make parments are at hand. There are some children who have profited educationally from experiences in making purchases to the extent that they ambegin with described situations. Acoout of differences in experience must be taken by each individual tewcher.

In the teaching of the addition doubles there is salue in cor sidering the doubles in ouder. The purchases may berin with a
purchase involving $9+9$. Coins may be laid out for each article and the total fomnd by counting if necessary. The purchase then

$$
9
$$

should be recorded as +20
$\begin{array}{r}+8 \\ +4 \\ \hline\end{array}$
Making purchases and laving out coins may be continued, lead30 l $\%$ 5 $\%$.

ing to the number records: | 36 | 4 | 5% | |
| :--- | :--- | :--- | :--- |
| | 69 | 8% | 10 |
| 6 | | | | These records may be reviewed in the order of the purchases. Following this the children may be challenged to make a record for the purchase of two articles each costing be without refering to the coins as

$$
6 ¢
$$ a means of obtaining the sum. The child who can write +6,

 important discovery if he does not already know these combinations. The doors have been unlocked to many other combinations. Teaching would offer fer problems if children discovered generalizations as roadily as indicated in this acoome.

Tuition is required for children who do not perceive the unifying idea that each succeeding double is wo more than the one preceding it and two less than the succeeding one. In this instance it may be necessary to tepeat the expericnoes of having out coins, finding sums, and making symbolic icoords of each purchase. It may even be necessary to ask children to demonstrate a combina-
tion such as +2 concretely and then change the concrete repre sentation of $\frac{4}{2}+\frac{3}{2}+\frac{3}{4}$ to show +3 and in um $+\frac{1}{6} \frac{5}{8} \frac{5}{-5}$ and $\frac{5}{10}$. Further ditection may be required to the extent of a k ind what is done to cath momber to produce the next higher combination. Obviously the discoveries of some chitden will be few and will come slowly.

Nevertheless pupils derive satisfaction from making discoveries no matter how small they may be.

Once a gencralization has been perceived, it may be applied to described situations, thus providing practice and application. In this manner a double p :- 2 is served; children are provided with opportunities to use a new generalization over and over again and at the same time the ability to apply new knowledge in social situations is developed.

Finally a point is reached at which the number combinations may be dealt with as abstract mumbers. Some children reach this stage much more quickly than others. However, children who have had meaningful experiences with numbers during the learning process do not need to resont to guessing or finger counting when dealing with abstact combinations. They con think answers.

In the program under disenssion there is a plate for drill if it is conceived to be practice in thinking from lower to higher levels. The chapter by Buckingham deals with the drill phase of arithmetic. The writer is in accord with his point of view.

Generalizations, like other types of knowledge, are forgoten and must ie rediscovered. It has already been suggested that it matters not whet her children apply the particular aeneralizations with which sets of combinations were originally comected. Thinking about numbers becomes more important than recalling sperific number facts.

In the brief account of teaching the doubles combinations the following steps appeared in the description:
(1) Concrete objects were manipulated for a definite and worthwhile purpose.
(2) Number records were made of the quantitative experiences.
(3) Provision was made for the discovery of a useful generalization.
(1) Practice and application were provided though described situations.
(:) Children finally dealt with number combinations on an abstract level.

Using tens in subtraction. When using tens in subtaction, is introduced. it is assumed that pupils possess the concept of sub.
traction as it relates to "take-away" comparison and additive types of situations, that they know the simple subtraction facts, and that they have a working knowledge of place value. It is also expected that they can subtract both one-place and two-place numbers from two-place numbers in subtraction problems which do not require adjustments between the one's and ten's places of the minuend.

The procedure for the introduction of using tens in subtraction may follow the course suggested for the teaching of the doubles of addition. The need for subtraction with so-called "borrowing" may be centered in a social situation. Objects may be manipulated and number records made of the activity. Pupils may move to the making of records of described situations. This may be followed by further applications and practice on the abstract number problems.

It is important that the social situation should involve objects which are usually grouped as tens, hundreds, thousands, etc. Our paper currency lends itseif admirably to the purpose at hand. Other objects such as sheets of paper, counters, tickets, and the like. may also serve the purposes of the teacher.

Suppose the social situation under consideration or the activity in which children are engaged required the payment of some such anount as $\$ 38$ from $\$ 56$. Then finding the difference between 56 and 38 becomes a problem. From past experiences children should be able to indicate symbolically the required subtraction in the form of $\$ 56$

$$
-38 .
$$

Meaningful teaching would, in this instance. require a supply of $\$ 1$ and $\$ 10$ bills prepared for classroom use. Six $\$ 1$ and five $\$ 10$ bills would be counted out. The problem then becomes one of removing eight $\$ 1$ and three $\$ 10$ bills from those representing $\$ 56$. Not having a sufficient number of $\$ 1$ bills it becomes necessary to change one $\$ 10$ bill to $\$ 1$ bills. By ingenious methods children can be led to discover this. The possession of sixteen \$1 bills may be indicated by either placing a 1 in frome of the 6 or by striking out the 6 and placing a 16 above it. Only four $\$ 10$ bills remain, necessitating a record of this change, i.e., striking out the 5 and placing a 4 above it. Children with whom number meaning has been emphasized will know from previous experi-
ences that four $\$ 10$ and sixteen $\$ 1$ bills is the same as five $\$ 10$ and

Abstract

| $\$ 3$ |
| :--- | :--- |
| $\$ 8$ |
| 8 | six $\$ 1$ bills. The number record now is -38

The completion of the problem is a simple matter. It is, however, suggested that children should apply their knowledge of the subtraction in giving the difference between 16 and 8 rather than obtaining it by counting. Counting is used for purposes of verification. Occasionally it becomes necessary for teachers following this plan of instruction to ask children who do not readily know that $16-8=8$ how they might think the answer. Replies are obtained such as: $" 8+8=16$, therefore $16-8=8$ "; " $16-6=10$ and $10-9=8 " ;$ and $" 8+2=10$ and $10+6=16$." This probably should not be necessary when this kind of subtraction is encountered.

When the difference of 18 has been found and recorded, it seems reasonable that the number record should be examined for the purpose of identifying the specific activities involved in manipulation of the bills. It is important that children recognize the 16 as the number of $\$ 1$ bills at hand after one $\$ 10$ bill had been changed to bills of the ${ }^{\circ} 1$ denomination, the 4 as the number of $\$ 10$ bills remaining after one has been changed, as well as the 18 as the one $\$ 10$ and eight $\$ 1$ bills remaining after $\$ 38$ has been taken out of the $\$ 56$.

The teacher must decide how many times children must deal airectly with the actual bills before he proposes the finding of a difference without the aid of them. When children are ready for that step the procedure becomes one of challenging children to "show with figures what you would do if you actually counted out the bills." Computational arithmetic deals with records of quantitative experiences on the thought level. Individual differences among children require a repetition of manipulation, recording. and analysis in most classrooms. However, children who understand the neve process may be given the opportuntiy of working on the thought level as soon as they are ready to do so. This is a matter related to tearhing technique.

Mention has already been made of the problem of transfer
from dealing with numbers which represent objects which are usually grouped as ten. . hundreds, thousiuds, etc., to numbers which represent objects $a^{\text {a }}$ tommonly grouped in this manner. Proper attention to the development of number meaning throughout the early grades should carry children to the point where they will deal with all numbers decimally.

Attention is called to three significant points in the application of "meaning theory" of arithmetic instruction to the subtraction process. Finst, children do not use the term "borrow;" which is entirely incorrect. Instead of "borrowing," they change a given number to another form. In the subtataction of 38 from 56 , the 56 is changed to 40 and 16 by converting one of the tens to ones. Second, no rules are tanght. They are derived by the pupils in the form of a descriptien of the sequence of events which takes place when the bills ate ramipulated. Thus whenever rules are formubated, they are in terms of the experiences of indisidual fildren. When subtraction is taught mechanically chideren frequently borrow because the subtahend momber is larger than the minuend number of the same place value. Taught meaningfully they make necessary changes because it would be impossible to perform the operation concretely without doing so. Third, the pupils disoover the methods employed in subtracting from minuends in which there are fewer ones than found in the subtrahend.

Problem solving. In a meaningful program of arithmetic instruction, problem-solving instruction does not assume an independent role. Instead it is intimately bound up with the whole teaching process. The expericuces with concrete settings through which abilities are developed provide experiences in using number for purposes of guantitative thinking. Following this. the applications of these abilities to situations which are described rather th. m "prexent tosonse." contributes to the development of problemsolving ability. The terurmence of the need for certain abilities provides the becessany review.

The important factor in this proman is that of experience. It mans daw omb hildien obtain correct answers by recalling a teol which hos been perionsh ommeted with other problems. I'sually ker words in the prohlem sugest the cue for its solution.

However, if numbers serve at times as records of what actually would transpire if the activities suggested by the described probletn were performed, problem solving requires a background of experfence. For sample, children may mechanically find the average number of miles per hour, the speed of travel, by having learned the rule that the number of miles traveled is divided by the number of hous of travel. Placed upon a meaningful basis children must. among other things. appreciate what it means to travel a certain momber of miles per hour, and that traveling at that rate for several consecutise hours adds a given number of miles per hour. It would seem that dramatization, verbal descrip. tion, and illustation should plav a larger part in the develop. ment of problemsolving ability than has been true in the past. In the chapter be Sauble the use of materials and devices for the purpose of providing experiences is discussed.

(:0.N(:1.1 Slo.

It has not been the purpose of the writer to present in this chapter an instructional progian for the lower grades but rather to present a point of vew. Illustrations have been offered to indicate how generalizations mat be featured in the teathing of momber meaning. number combinations. and operations with nombers. In short, an effort han been made to place before the reader the writer's comeption of a prosam of arthmetic instruction tor which Mcecomell han given the porholouical principles. Several programs embodving these principles have been developed and are now in operation. Further cypremese with them coupled with much needed reseath will bring abont mans refinements. It seoms sate to assert that in there programs mans changes in grade plarement will be made down is well as up, a larger supply of concocte materials than is now foum in most classrooms will be used. new meanere of athmetion leaming will have to be developed new problemo of indisidual differences will be raisel. changes will be made in the methots of teathing and above all there will be a need for a new wpe of teacher training.

Chapter V

A THEORY OF INSTRUCTION FOR THE MIDDLE GRADES

BY HARRY G. WHEAT
west tirginia university

Abstract

Your teaching of arithmetic. . . may merely train your class in a number of processes which will let them pass an examination at the end of the term. That is "uscful." It may also help them manage their savings accounts better or get a job on graduation. That is useful too-and this time without quotation marks. But if you can derelop in them an understanding of number relations, if you can teach them to risualize distancers and quantities, to appreciate imaginatively the mcaning of "ten million" or of "one-thousandth of an inch," then you are training them culturally: they will forever after be more sensitioe, more appreciative, more umderstumling, cuen though they may do no better on a fommal examination. (From Hemy W'. Simot, "Preface to "「eaching," p. 3t. Oxforl University Press, N'u' York, i938.)

Arithmetic is a system of ideas. It is not a collection of objects. It is not a set of signs. It is not a series of physical activities. Arithmetic is a system of ideas. Being ideas, arithmetic exists and grows only in the mind. It does not flourish in the world of things. It does not arise out of sensory impressions. It has nothing to do with the amount of chalk dust forty pupils can raise in a schoolroom in thirty minutes. Arithmetic exists and grows only in the mind. Being a system, arithmetic must be taught as a system. It is not an outgrowth of the individual's everyday ex. periences. It is not learned according as the interests or the whims of pupils may suggest. It is not anyone's personal discovery or invention. Arithmetic must be taught as a system. ${ }^{1}$

Arithmetic, as a responsibility of the school. seems thus to create a kind of paradoxical learning and teaching situation, to furnish two opposing sets of demands. On the one hand, arithmetic cannot 1 'nposed upon the pupil, but must be developed by his own

[^9]individual responses and reactions. On the other hand, arithmetic camot be left to individua! caprice, but must be made the subject of explicit instruction. Putting the two apparently opposing sets of demands together, we seem to avoid our paradox. Thus the pupil learns arithmetic only as he builds up meanings for himself, and thus he learns arithmetic only as he builds up meanings that are consistent with the number system which society through its school impresses upon him. In other words, the pupil must be an active learner, but he must be taught: he must be subjected to instruction, but the instruction must be individualized.

The thesis which it is the purpose of this chapter to present is that the demands of the number system on the one hand and the interests mod experiences of the individual pupil on the other are not necessarily incompatible. The learning and teaching paradox, to which reference has been made, will be presented in a few tepical settings, or in a few of its typical forms; and effort will be made to show how the apparently conflicting demands of the parados may be resolved into a more or less consistent basic theory of instruction. Special reference will be made. wherever possible, to the work of the middle grades; but, for the sake of clearness, and because deficiencies in earlier instruction frequently exist and need to be made up, illustration and application will necessarily be made to reach down at certain points intos the carlier grades. The discussions will develop the following main tupics: I. The Number System versus Pupil Raperiences; II. The Continuity of the Course in Arithmetic: III. The Contimity of Ideas in Ftactions; IV. Individualization of Instruction: and V. Teaching Methods of Thinking.

I. The NiMber system Yerst's pipil experiences

The number system and individual learning. At every point in his administation of the phogram in arithmetic the teachen is confronted bs the contrast between what number thinking has "ome to be as a highly perferted science and the haphazard and unsequential methods be which it is frequently learned in the school. (On the one hand, number as a sience is systematic and
consistent; on the wher hand, mumber as a practical ant is often a series of umelated, medamized, and rule-ot-thamb procedures. The individual pupil is usmally fomed to be far from any very complete ancuisition of the number system which the race through long ages of thal has bought to its presem stage of perfection.

The teacher tends to reat whe contrast in one sometimes both. of two wats. Pedhaps the more ommon reaction is to negle the number shatem and concentrate upon the individual pupil. The tacher moter the wide gap between the completeness of the mumber swtem and the highly incomplete accomplishment of the papil. and. with apparent logic. is impressed with the emomons diflicults, it mot imponsibility, of successtully closing the sap. He thms atway from any thought or suggestion of bringing the number thinking of the pupil into conformity with the number ssotem. and chooses instead to select from the number system these items which seem t" conform to the pupil, to his interests, experiences, and need. or to what the teacher deens bey are or onght to be. We shall consider presently the conseapuces of such reaction.

On the other hand, the tea her may give thonght to the number system and how it has come to be. He notes how the sustem has come out of matial experience, and he is impressed, either through his own thiaking or through the force of traditional practices in the schools, with the final success of the experiential learning of the tace. He draws a paralle between racial development and a possible individual development of the pupil which he perthaps can foster.

It is easy thus to imagine a parallel between racial development and individual development, and to set up an argument that the conditions and situations that were instrmmental in furthering racial progress should be duphicated in order to provide the motises and the settings for the progress of the individual. Indecd. it is always diftioult for the present to break avaly from the inthences of the past and to make adjustments to present conditions. But the attempt to daplicate the sithations that confromed ealier sorieties in order to furnish the motives for leaming in present societs is a distortion both of modern
situations and of the conception of the the motives for leaming. Though the pupil must lean the number system the race has evolved an least something of the system, the conditions that surround him ate radically different. He has to learn in a short time what it tooh the rate a long time to develop. He should be steered clear of the mitaker the rate has made. He should not be allowed the fomp period of exarimentation with inadequate methods of thinking that the rate though accident had to experience. He is sumomaded trom bith by a pertected number sistem in daily use b the ohder generation, and theroghout his fommotive years. if not his whole lifetime he may protit though sum experiente: whemen the s.me enjosed no such adsantige bechuse it was att all peint comhomed with the tank of creating a momber swam and hinging it to perfection.

The only item in the parallel is the manber sotem itself. Throngh blind wiats extendines ore lome commien the race has succeded in aeating and developing at momber whem: it is this same number soten that the pupil shoukd reateate and redevelop ander the swomatic gutance of the shool. The race lached suidhuce and comerguemtly fell into moms difficulties: the efforts of the pupil may be guided in the ditection of the successfal methods of attack that the race though trial and mach ertor finally cance to adopt.

The problem approach. lharking hack watial experience is the presmeday theory that new topies, new procedures, and new lessoms of ans wit should be approathed be way of a problem which is mate to contront the pupil. In racial experiduce erers mumber situation posed a problem and was a sittattion in which doubt was insolsed. How to detemine the sie of a group was onte a problem. beamse then cerly peoples kinew little abom comoting. How to divide a lange gromp into smaller equal aroups was once a problem. because then eaty peoples
 tacked their problems. whe sure and anived at solutions. Fien then, the probleme remained, berame the sohations g.ined were tatomain ones. Finalls. howerer, solutions were gatined and the problemb now no tomger exisi.

It frequemts happors, newotheters. that the show seeks to
introduce the lessons it would teach as problems for the pupil to solve. Thus, a situation that requires addition in order to be grasped is presented as a means of leading the pupil to an understanding of addition; or. thus, the situation of borrowing and lending money which involves percentage is taken up for consideration as a means of making the pupil aware of the significance of percentage. The thought is that the pupil will feel a need for leaming and have a motive for leaming addition or percentage as the case ma; be; and this, of course, before he has any realization of the part either addition or percentage plays in the situation before him. In short, whether consciously or not, the effont is made to reproduce the leaming situations of earlier dass with the thought, no doubt, of immediate results similar to those which in earlier days were finally brought to pass.

There ate at least the obvious fallacies in such procedure. The first is the lallacy of time. The school life of the pupil is too shont to permit the cluplication of the slow progress the race made in the perfection of our number system. A second fallacy at the fallacy of assuming that the pupil's point of view with tespect to starounding situations may be inferred from the adult's point of view. The adult is perfectly clear that the situation of borrowing and lending requites for its complete understanding a homwledge of percentage: the pupil who has never been introduced to percentage does not know this. Moreover, the felt need for the learning of percentage is the teacher's rather than the pupil's. A third fallacy is the fallacy of paralleling the leaning situations of the pupil with the leaming situations of early peoples. The pupil may be a primitive individual but he does not live in a primitive society. Whether the school is ever justified in withholding learning for the sake of creating a problem. or in attempting to duplicate the necessarily inciciental ways of leaming of earlier days, is a matter of serious donbt.

Arithmetic irom the pupil's experiences. The problem approach to the pupil's lessons in arithmetic frequently moves ahead from a method of presentation to a determiner of content. As a consequence. the teacher is confronted with the atparenty conflicting demands of "mathematical" arithmetic-so-called, and
"social" arithmetic--so-called. Here as elsewhere, the teacher does not feel himself to be entirely absolved from some measure of responsibility to the number system; while at the same time he fects impelled wow in the pupil's experiences in various social situations the arithmetic the pupil shall leam. When he is reminded. either by his own forethought or by such experiments as that of Hama." for example, of the inadequacy of pupil contact with social situations as a means of determining and introducing the arithmetic he feels the pupil might learn, the teacher faces the problem of whether to make up the deficiency by what he considers inferior methods or to multiply the experiences set up for the pupil.

Perhaps the teacher should not look upon "social" arithmetic as a particulan "kind" of arithmetic, distinct from other "kinds," such as "compuational" and "informational." Perhaps he should look upon it, if at all, as a method, as a means to an end, as a mose of presentation rather than the thing to be presented. In such atase, his pount of view would be reversed. Instad of determining the arithmetic which the pupil should leam in terms of the pupil's experiences in various social situations, the teacher would find himself making use of the pupil's experiences as a mode of throwing light upon the arithmetic which he sets the pupil wiearn. He would thus avoid the temptation of presenting a hapharard content: moreover. if he found such mode of enlightemment inadequate, he would not thereby be discouraged from varying his methods.

Ifow and when the pupils experiences in various social situations are to be uilized are perhaps the important issues. A choice of answers is offered in the following actonnt of the activity of plaving store that was set up in apparently identical ways in two thitd grade classromms.

Ws ann wes ixe in sural ceperiente a "stme" was set up in each classwom wher the diretion of the teather. 1 commers. wheses. and wond th be "lomght" and "ond" were pmided in eath and the

[^10]to stimulate the leaming of the simple additions and nubtations and a few of the simple multipliations. In the other. it was moderaken to provide one of several means of patacing the meaningfal appliations of the simple processes mentoned, after they had been leamed and moderstood by the pupits. In the one dammom, the anthmetical operations were engaged in as a kind of distratomg ativity that was insisted upon by the teather ats ne essary for the ohtor ativities of stonekepping whide possessed meaning: and when the teacher lessened her insistence the other ativitios went along quite at well without the athometical operations as with them. In the other classoom, the arithmetical operations were not divored by the pupils from the other activites, but were used to give them an exatomes they otherwise did not possess. In both dasimoms, there was manifested considerable interest in the experientes to be hatd. in the sodial sitnations presented, is the "social" arithmetic provided: but there was a difference in the thatater of the interest that was manifented.

The recall of experiences. Something should be said also about the kind of pupil experience that is of value. Again, the issue may be presented by means of an illustration.

A fifth grade teacher: ${ }^{\text {in }}$ the effort to develop a method of teach. ing the ideas of site and momber in the common fiations to his pupils, found onsiderable discopatme between the posiswion of the

 about the relative sides of the simple frations. 'I hey made mans blunders in reogenizing the langer of there writen reprenentations.
 representations, such as

 of a circle and so on. were mot mfaniliar to the pupits. Indect. when he gave the opportunits, mont of the pupils were able w provide
 of the possession of the me:aning of the frations whose witlen wepe sentations had been confusing. The tealher fonmel that he did not hate to teath sice at all at the omber. but tathe the was of weme senting size. He fommd the idea of vice prenem. but that it had whe recalled and concombated epon. He therefore, br werevion and

[^11]wherwive, domentiged the reatl of those experiences which sersed to bring to the fore the desired iden:
Tomerlar: (Dne of two humbers killed a deer. Blow do you think they made ant cynail division? Dide one man take both trone legs and the ather man both hind leysi
M'upit: No, that would give one man more than half. They would "IIt the dere suatigh dewn the middle following the backbone.
Tren :her: llow do you know that would divide the deer imbo halvesp
l'upil: Leranse my father farnished the feed bor a pig. and another minn liminished the pig. They meant to divide the pige egmally when it was killed. Ther took an ase and chopped right dowen the middle following hla backbome.a

Amother illustantion of resiote to a particular eype of pupil experience as mems of revalling ideas already possessed, of conconnating upon such ideiss and of giving them further develop. ment, is drans from the work of a teacher in the sixel grade in introducing percentage."

The work was introduced though recall by the pupils, under the stimalation and guidance of the teather, of expeniences with per cents in comnertion with giadon on their spedling test piperes, with commis. sion received by hair diassomm on a seed-selling project, with the
 in dealing with trations iand derimals were recalled. rhronghous, the ellout was made to lesad up fanibiar meanings wsward a new form ol expression.
One of the puppils had memorize the relation between the expres. sions $\frac{1}{4}$ ind by an incornect shom hamed method of his own: $\$ / 4$ equals 40%; $1 / 3$ equals 30' $i:$ and so omis.

Trucher: If 14 of a dollar is 25 cents, what is i/4 of a dollare
Pupil: io cents, becanse 75 cents is thee times $2: 5$ tents.
Temeler: C:mon you change 3 an a decimal?
pupit: Yos, divite 4 into 3. (The division was performed correctly.)
Terther's: Cam you change your answer to per cent?

Trember: Now change to to per cent.
pupil. I: cymals 30t,
Tritefro: Dee you sume that is comect?
prupil: I ran divide and see. (The pupil divided correctly, and armeted his entor.)

[^12]It should be added to the presentation of the two illustrations which have just been oflered that in each instance the meanings of the pupils were headed up through the recall of experiences suward a unity, which in a sense was a new meaning, a new idea for use both in discussion and in application; and that as the unity took shape the pupils went about their exercises with absorbing intercst.

Number ideas in new sittuations. In the uses of the experiences which we have described, it should be clear that the intention has been to suggest the development of number ideas, and not merely computational activity which may or may not aid in such development. The preceding chapter has suggested activities which lead to generalizations relating to the meanings of addition and the other operations in earlier grades; the mesent discussion has suggested uses of experiences which aid in building up the mennings of the fraction and the per cent. The uses to which the latter number meanings can be put have not as yet been indicated.

The pupil experiences which to this point have been indicated in the illustrations are those which have become familiar, either through out-of-school contacts or through the instruction of the school. But the pupil must gain new experiences. The concept of "social" arithmetic suggests it. The nathre of the world in which the pupil now lives and into which he will shortly be thrust as an individual having responsibilities requires it. What of such new experiences? What part do number ideas play in ganing them? Upon what shall the greater emphasis be placedthe number ideas or the new experiences? Here again the teacher is confronted by the apparently conflicting demands of "mathematical arithmetic: and "social" arithmetic.

Whatever may be the answers that come first to mind, upon one point at least we can be clear. The situations which the teacher sets up for the sake of pupil experience in arithmetic have all within them a number phase or a number clement. Where emphasis shall be put depends upen the relative importance of the number phase or element. It is suggested here that the number clement in number situations is the essential element, and that a subordination of the number clement to
others is comparable to the production of Hamlet with the part of the Prince of Denmark played in a minor role. Let us turn to the work of the upper grades for illustration.
In the upper gracles the pupil is introduced to the persomal and business situations which are common to the everyday activities of people-situations which are everywhere faced by addults and which is an adult he cannot avoid. He is taught about the lending and borrowing of money, and the interest which is charged and paid for the use of money. He is taught about buying and selling, and the profits and losses which are incident to such transictions. He is taught about saving and investing, and the returns which result therefiom. He is taught about insurance, and the obligations and benefits which belong thereto. He is taught about installment buying, and the necessary charges and costs thereof. He is taught about discount, commission, taxation, and other related situations, which are of inmediate interest to older members of his fanily, if not already to him.
In all such personal and business situations, the pupil is required to give attention to a common factor, whether or not he recognizes it as common. The common factor is the factor of quantity, of size, of amount, of magnitude. Thus, he must learn not only that interest is paid, but also how much; not only that money is made and lost, but also how much; not only that an insurance policy requires a premium, but also how much; not only that the installmeat agreement of " a dollar down and a dollar a week" is a convenience with a price upon it. but also how much; in short, that the factor of "how much" is the factor of essential significance and central concern. Moreover, in all such persenal and business situations, the quantitative side is relational in chatacter; and it is this relational characteristic that the pupil must be aware of if he really gains a grasp of the situations. Thus, for example, the "dollar down and dollar a week" for three mondis on a ten-dollar purchase may ap. pear as a small price to pay for the extra convenience provided, but the price assumes its proper proportions only when viewed as a relational immount.
The study of situations in the upper grades appears as a study
of situations per se. It is in reality a series of exemenes in the interpretation of wholes, exercises in which one whole amount is seen as a significant relition to another whole amount. It is in reality the application of the tools of number thinking, which the pupil is supposed to have acpuired in earlier grades, to the simplest and most casily understood situations of the social and business life which survounds him.

Practice in number thinking. If the teacher conclutes from such considerntons as the foregoing that the number lement is a characteristic: and signilicome clement in all mumber situintions, he will find in his conclusions the answer to the question of what to emphasize when number situations are called to the pupil's attention. He will also have a definite purpose in mind when he calls number situations to attention and when he invokes and provides experiences involving number thinking.

At the outset, before any given mumber idea has been arequired or developed or before any given type of number thinking has been engaged in by the pupil, the teacher wild look ahoad to the need of acquainting the pupil with certain personal, business, or social situations which contain the iden or repuive the thinking as a chatacteristic and significant element. The teacher will be aware of other important features in all such situations, features to which the pupil must give attention. He will be aware also of the aid the possession of the number idea or the ability in number thinking will contribute to introducing the other features and to making them clear, and of the difficulty, if not impossibility, of sensing the significance of such other features apart from their quantitative relations or when their quantitative relations are not understood. He will seck, therefore, to introduce the number element in adrance.
Moreover, the teacher will be aware that the number element in situations is not a thing in a vacum, as it were, whatever the importance it may seem to have in its own right. Accordingly, as was suggested in an earlier topic, the number element will be introduced in and clarified by situations which ate already tamiliat. Later, as and when the number element becomes familiar, it will be pat to use to lend familatity to ner and unfamiliar situations.
I.et us ilhustate the procedure fust indicated by reference to the introduction, developurent, and ippliataion of percentage. . Is an enarlier topic has indicated, percentige as a new langugge and as a new mode of expressing relations between quantities is introduced by suggesting past experiences which provide the necessary intorductory memings. As these meanings hadad upinto a maty of meaning, developenent is provided by an abondance of illustrations, suggested and evoked by teather and textbook. 'The illustations are lamiliar sithations which involve and require the thinking of ewo mambers together in tems of their percontage rehationship. The illustations are commonly called "problems," though they we not properly problems at all. Properly chosen, the illustrations do not leave the pupil in doubt, but throw further light upon ant idea which already has been introduced. Sometimes the complete illustration is given, that is, "the problem is worked"; sometimes the illustration is given in part and the pupil is required to supply the missing elements, that is, "work the problen": and sometimes the pupil is required to supply his own ilhustration, that is, "make up his own problem." In any case The "problem" is the presentation of a fanitiar situntion which illustrates the idea of percentage and repuires the consideration of the percentage relationship between two guantities.

Finally, the pupil is prepared for introduction to new situations in which the percentage relations between quantities are involved. first of atl, the pupil needs to be introduced to the general, qualitative feathres of the sithations. Next, he needs to consider special cases, to view the quantitative features.

If the topir is interest. for eximple, the pupil must become informed of the needs of individuals and of businesses for the use of ready money, of the risks of lenders, of the obligations of borrowers, of the adwantages the borrowers gain. of provisions for safety and security, of the similaty betweon using another's money and using another's property. of the methods of reimbursing the lencler for the use of his mones, and of like matters. The pupil needs to gain eleas of what interest is, why it is charged amd paid. the situation that involves it, and the concerns of the people who are involved in it.

As and when the pupil gains the genernl ideas of interest, he can profit from consideration of special canses. Here again, he should have illustration after illustration; not of percentage merely, because the percentage relation has alleady become fairly clear, but of the situation of interest. Here again, he should have "problems" to "solve." The purpose is to throw light upon the situation of interest from vatious angles. To thron light, the illustrations must relate to matters which are as familiar as pos. sible. The situntion of interest is partly familiar through its general introduction. It is highly importamt that the number element be familiar. 'The valut: of the illustrations is determined in the main by the degree of familiarity of the mimber element.

The pupil as an active participant. Our discussion to this point has been devoted in the main to the resolving of the paradox which the apparently conflicting claims of the number sys. tem on the one hand and of pupil experiences on the other seem to present. We find that no paradox need exist, that the development of number ideas and the use and extension of experiences may be brought into relation each with the other. Ori, to state the matter in another way, we find some excuse for a paradox in the thinking of the teacher, but no necessity for one in the developing ideas and experiences of the pupil. We need to give further and somewhat more pointed attention to the part the pupil plays in the learning of arthmetic. We shall do this, first, by indianting the continuity of the ideas which the pupil may gain in the whole course in arithmetic and particularly in the work of the middle grades, and, later, by considering certain general suggestions relating to the individualizing of instruction, and by canvassing the possibilities of teaching the pupil methods of self instruction.

H. THE CONCINEITY OF THE © ©OCRSE IN ARITIMETIC

The study of wholes. At the outset of his work in arithmetic the pupil studies small, easily apprehended groups, either incidentally or systematically. If the latter, he both learns systematic: methods of study and employs sueh methods in his study of groups Ite studies groups by counting them, by comparing one
group with another, and by separating groups anto component smaller groups and combining smaller groups into larger. He learns, by one means or another, to denl with the group of ten as a standard, and to combine and analyee groups in terms of the standard group. As he proceeds, he learns the language of number, both the oral and the written; and he learns to use the written language as ant aid in dealing with groups as well as a means of recording the resules of his thinking. Moreover, he develops certain general ideas of combination, the idens of addition, sub. traction, multiplication, and division. That is to say, he learns not only how to add, or divide, but also when to add, or divide, and why; or, to put the mater in another way, he acquires and develops meanings for the procedures of adding, subtracting, multiplying, and dividing. From first to last, if his studies are systematic, he not only handles groups, but also gives attention to what he is cloing.

As the pupil moves along through the work of the primary grades, he leanins to engage in what are called the more complex processes of the fundamental operations. This is only another way of saying that he gradually leaves the study of small groups which he can handle and study by direct means to engage in the study of groups which are too large to handle and which must be studied by indirect means. He learns, sometimes by rule-of-thumb methods, sometimes by deliberate attention to what he is requirad to do, to relate the combinations of the larger groups to the combinations which he earlier made of the smaller; and occasionally he is made consciously aware of the relatic r'ip, which is by way of the standard group of ten. Thus he learns, consciously and understandingly or otherwise, to group tens, tens of tens, and so on, in addition, subtraction, multiplication, and division, just as he grouped his ones at the outset. Throughout, he learns about whole numbers: first, those which are readily and directly grasped, and, later, those which need to be brought back in proper relationships to smaller and easily apprehended wholes.

The primary grades are the grades in which whole numbers are studied. In the primary grades the method of studying whole numbers is the method of combining and recombining whole numbers. Through the use of such method the pupil is carried
at last to the peint where he needs a new method of study if he is to contimue to entarge and charify his ideas of wholes. The combining of wholes linally introdaces such wholes as cannot be grasped through combinations alone. Then a new method of relating wholes must be leanned if progress in thinking is to continue.

The study of parts. The new intellectual device to which reference has just beea made is the idea of the part. The device is acequired through the study of parts, and the mamer of employing it is leamed through the study of the uses of parts. A double task thas confronts the pupil. He is placed in a situation which is comparable to that of the farmer when he bought has list tractor. The farmer first faced the problem of acopuining the tratctor (of paying for it); he next faced the problem of learning how to run it.

At the outset parts are studied much as wholes were studied in carlier grades. Fitist, each part is studied in is lation as a given sized division of a whole. Next, parts are analyzed into smatle related parts, and the smaller related parts are combined to form the original larger ones. Next, pats are compared as to their relative sizes, and, finally, they are combined and separated in additions, subtaactions, maltiphications and divisions, Throughout, the language of parts is learned and used both to aid thinking and to state the results of thinking. In proper sequence, the various forms are learned and used: the language of common fiactions, the language of decimals, and the language of per cents.

The study of parts. though it begins with evere day uses, quickly moves far beyond any everyday uses the pipil hats or ever will have for parts. He engages in additions, subtractions, multiplications, and divisions of parts which are never employed by the common man outside the schoolroom. The purpose is to give a command of the idea of the part which transeends direct usage in ordinary everyday situations. The purpose is to give wh a command as will enable the pupil to use the idea indirectly.

The part as a relational idea. Through the indirect uses of parts the pupil returns to the study of wholes. He learns to deal
with wholes in a new way and by a new methoed. Now the pupil combines what he has leamed of parts and of wholen, ard employs parts as ideals and statements of relations between wholes. The new method of studying wholes does not substitute for the earlier methods, but supplements them, and thus provides larger and clearer ideas of wholes than were possible through the use of the earlier methods.

The pupil learns to deal with the part as the expression of a relationship between wholes through three kinds of exercises, in one exprcise he learns to find an unknown number that is stated as a given piatt of a known number. In another exercise he leams to express, a given number as a part of another number which is known to him. In a thited exercise he learns how to find an unknown number when a given part of it is known. He engages in these exercises when he has studied common fractions, and again when he has studied decimals, and agnin when he has studied per cents.

In the middle grades the pupil studies parts. Through such study he leams, first, the direct uses of parts in ordinary everyday experiences and situations, and, next, the indirect uses of parts as expressions of relations between wholes. His study of parts thus proceeds to the study of wholes and parts. by means of the latter phase of his study the pupil is prepaned for the study of the practical applications of wholes in succeeding grades.

The interpretation of wholes. When the pupil comes to the upper grades, it is assumed, often quite incorrectly to be sure, that he has leamed how to think of one quantity as a part, or per cent, of another. In the upper grades, he is given epportunity to put what he is supposed to have learned to a rese which can be seen to be of immediately practical importance. The fact that many pupils come to the upper grades not thus prepared merely serves to stress the responsibility which earlier grades are supposed to have met. (On the surface it appears that the pupil is engaged merely in becoming acquainted with practical situations. Actually. however. he may be cloing much more. He may be carrying forward the activities of dealing with parts as interpretitions of wholes, of leaming and using wholes, which had their begimnings in carlier grades.

The activity of interpreting wholes extends through the high school, though arithmetic as one of the common branches of study is discontinued at the level of the upper grades. In the high sehool every pupil must pursue what are known as the social studies. In such studies the pupil has his attention called to the institutions of society and to certain of th ' major problems with which organized socicty has to deal. He must study the activities of organized society in its attacks upon such problems-problems of public education, of poverty, of crime, of housing, of population, of social security, of industiy, of capital and labor, and the like. Each set of activities or each problem is described in the pupil's textbooks and other reading materials. His task is the task of reading the descriptions.

The descriptions which the pupil is called upon to read are of two kinds, presented simultaneonsly. One description deals with the characteristics of a social institution, with the kind of social activity, with the nature of the problem. The other deals with their magnitude. One is a qualitative description; the other is guantitative. The one is printed in the language of the alphabet; the other is printed in the language of the Arabic numerals. Neither can be fully read and understood without the reading of the other. To read one and neglect the other results in a distorted view which misleads the thinking.

The numerals which appear in the descriptions of social insti. tutions, activities, and problems must be more than pronounced. They must be interpreted. They do not impress themselves. They become impressive only as meanings are read into ihem and read out of then. The numerals represent large numbers, numbers which are far beyond clirect apprehension, numbers which touch the individual only in the fractional degree in which he is a part of society, numbers which take on meanings only as they are brought down through many relations to the point where they touch individual lives more or less directly To read such numerals, the pupil must bring to bear upon the activity all the resources of number interpretation which carlicr grades can provide him. Unless he is well equipped, he is in constant danger of getting lost in the maze of relational thinking that is demanded for adequate interpretation.

it. the contineity of dmeas in fractions

The idea of number of parts. What has just been said about the possibility of a sequential and ongoing single program of learning activity for the pupil throughout his whole course in arithmetic applies with equal force to the work that may be laid out for him in his study of fractions. His study of fractions can be made a program of developing ideas, such ideas as gain in clarity as his study proceeds and in turn render his study more and more unified and meaningful. To illustrate, reference will be made to the ideas of mumber and size of parts, to the new application of the decimal form of numeration, to the fraction as an expression of relationship, and to the so-called three kinds of pioblems.

The ideas of numbers which the pupil has developed in earlier grades have general applicability. This fact the pupil has recognized from the outset. For eximple, when he learned to count, he became aware that he could count anything. He counted the buttons on his shoes, the pictures on the vall, the plates on the table, the trees in the yard, and, with equal facility and certainty, the pieces (fractional parts) of an orange on his plate, or the pieces into which a pie, or a cake, or a melon had been cut. Similarly, when he leaned the combinations, he became able to combinc parts as well as wholes. Thus, for example, he could add de 3 preces of orange he had had and the 5 pieces he was yet to have quite as well as he could add 3 oranges and 5 oranges.

The fractional parts which the pupil is thus able to count and to rearrange in various combinations are ench regarded by him as a unity. To each he gives the same type of attention as is commonly given to the standard fractional parts of various measures. Though one may recall, if he is so disposed, that a quart is a fourth part of a gallon. he commonly regards each quart measure as a whole in and of itself. Similarly, he deals with minutes is unities. and with feet as unities, usually without considering them as fractional parts of the hour and the yard. I.ikewise, the pupil counts each piece of his orange as a whole piece;
to him the halr-pint bottle of cream which he brings from the store is a whole botule. as a consequence, the comating and combining of parts are at the outset identical with the counting and combining of wholes.

The school could, it it would, take advantage of the pupil's developed ability to comut and to combine as one means of introducing him to his systematicic study of fractions. While the iden of equality of sizes is being introduced, and is an yet not fully grasped, the pupil might well be directed to the combing of parts and to the combining of parts in additions, subatactions, multiplications, and divisions, teating the parts as he has herecofore treated them, that is, as unities. In such activities, the pupil would find himself on familian gromed while he is aying to gain another view that is as yet relatively unfanilian. He wonld gain confadence in his ability to deal with factions which obherwise are being explaned in terms that temporatily at least seom we lessen his confidence. Morcover, his induction into the computations with fractions that are eventually required would thus be by easy stages.

The idea of size of parts. fust as the pupil's idens of numbers may serve to comeat his catier study of wholes with his new study of parts, so mity the idean of size hecome an unifying ielea as his study of fractions prococeds. At the outset, the siaes of parts are called to attention. The half is introducect, exphatined, and illustated as onse of two equal parts, and the third us one of three equal parts. Moreover, the relations between the hall and the fourth, the third and the sixth, the half and the thited, and so on, are made clear by illowation. Attention wire is the first mental activity set up and directed in the introduction of fiactions.

Somewhere along the line, howerem. the pupil usually fails to continue to hold his attention to size and to relative sizes, and at such point his difficuley begins. Many pupils in the school meet with much difficulty in dealing with the demominaters of frate. tions. Such difficulty is with that feature of the fraction that both historiaally and in the experience of the pupil is the first to strike the attention. The first fratemal mumeration was the form of the unit faction which concentrated attention on size: and the young child without benefit of schooling is never at a
loss to distinguish between the sizes of two pieces of candy when he is offered a choice, But because teachers and textbooks either take an understanding of size for granted, or neglect to stress the importance of size, or mislead the pupil in his consideration of size, much confusion results.

The pupil comes to the study of fractions after learning to deal with numbers. Perhaps, therefore, his understanding of number in the study of parts maty be taken for granted. But not so the feature of siac. He must be tanght to think exactly with regard to this feature. Very commonly the pupil is misled in his consideration of size by mistaken definitions forced upon him by teacher and textbook. It is the common practice to advance such definitions as the following: "The denominator shows the number of parts into which the thing has been divided." "The numerator shows the number of parts to be taken." In short, both denominator and numerator are said to show number of parts, which is hall false and half true; and then, in order to indicate a distinction where none has been made, a misleading phrase, like "to be taken," or "that you have," etc., is added to the definition of the numerator to becloud its meaning. After such definitions. the teacher wonders why the pupil, who at the outset has ${ }^{n}$) trouble distinguishing halves, thirds. fourths, etc., proceeds to add two-thirds and three-fourths as follows:

$$
\frac{2}{3}+\frac{3}{4}=\frac{5}{7}
$$

The pupil, having been confused about sizes, or having no systematic guidance in the recognition of sizes, or having been taught to treat them as numbers, knows sery well that he can add ${ }^{2}$ parts and 3 parts, and the result will be 5 parts. He proceeds so to add, as just indicated. Since the denominators in the addends possess a false meaning, he might just as well set down a false meaning (or any meining) in the denominator in his answer.

The history of fractions reveals that the race made little if any progress in the development of ideas of fractions so long as size was emphasized at the expense of number, or o. ong as humber was emphasized at the expense of size. The same revelation
is to be noted in the case histories of pupils in the school. They make no progress in developing a working understanding of fractions so long is either distingushing leature of the fraction is neglected in their thinking. lupils must be led to study size as well as number. They must not be diverted trom the study of size once such study is begun.

The decimal expression as an extension of decimal numeration. The charateristic feature of the Hindu-Arabic numeration, to which the pupil is introduced in the early grades, is the positional value which attaches to the mumerals. In learming the system thereby representeci, the pupil learns first to deal with groups to ten and next to deal with tens and multiples and powers of ten. He leams to ase the numerals to represent numbers (of individuals to ten, and then of groups), and to use position to represent siae (of groups). Number and size as coordinating ideas thus properly must be encountered, whether intelligently or not, before the pupil is introduced to his stady of fractions. Here, again, we note the possibility of continuity in the idens which the pupil may be led to develop. The continuity that is indicated may extend into the pupils' study of decimals.

If the pupil who is to be introduced to decimals has leaned the decimal notation, that is, has come to an appreciation of the significance of its chatacteristic: feature, and if, in addition, he has been kept alwate of the ideas of number and size in his initial study of fractions he will find in his study of decimals nothing new to learn. In decimals, he needs to deal with only two or three or four standard sized parts (tenths, hundredths, etc.), and these he may represent in the old, familiar way: the numerals are used to represent numbers of parts, and the positions in which they are placed are used to represent sizes.

The fraction as a relational idea. The use of the fraction as an indication of relationship between two numbers begins in the pupil's activities dealing with division of whole numbers. In division, the pupil is frequently required to find one of the equal parts of a quantity be dividing the quantity by the number of parts desired. The answer secured, which is the quotient of the division, is not an absolute result, but one that must be thought of in its relation to the number that has been divided.

The question asked at the outset, and usually repented as part of the description of the quotient, serves to bring the quotient into relation with the original quantity. Thus, when the pupil is asked, "Whatt is one half of 2d?" he finds and gives the answer. "12 is one half of 24." Thus, he uscs the expression, one half, to describe the relation 12 bears to 2.4 .

A preceding discussion has indicated the later uses in the pratetical affairs of life of the fraction as a mode of stating one number in its relation to ancther. The point was impressed that the relational idea of the fraction, which has its begimnings in activities that precede the systematic study of fractions, continues as a useful idea after the systematic: study of fractions has been left behind.
The three kinds of problems. Fiot merely before and following the pupil's study of fractions is to be located a possible emphasis upon the fraction as a relational idea. Much of the study of frace tions is a study which is intended to make clear the family tree of numbers. Thus, the continuity remains unbroken from begin. ning to end.

In the study of fractions, the pupil encounters what we have termed the "three kinds of problems." He nicets the situation that r quires him to find the part of a number; a second situation that requires him to find what part one number is of another number; and a third situation that requires him to find a number when a part of it is given. In decimals, the pupil meets the same three kinds of situations; again in percentage he meets the same three kinds. If no attempt is made to have the pupil make comparisons. he may remomber the situations (if he does succeed in holding them all in mind) as "nine kinds of problems." On the other hand, if comparisons and relations are emphasized from the beginning. he will come to understand then as the "three kinds of problems": and moreover he will understand their relations and distinctions. Studying the "three kinds of problems" in fractions helps in the further study of the same three kinds in decimials and still more in their study later in percentage. As the pupil moves from one chapter in his arithmetic to the next. he is aided in handling the new chapter on a higher level of understanding by the use of what he learned
about the same situations in the preceding chapter. He прproaches the study of the new chapter with some ideas about the new chapter already formed and ready for use. A general method of attack is thus gradually developed.

Moreover, in the later stages of arithmetic, the pupil is required to study what are called the "applications of percentage" -interest, savings, investments, gain and loss, cost and selling price, insurance, taxes, etc. Each topic is new and unknown before it is studied. Fach is in some degree a separate topic. Fach may continue to appear as something entirely new and different. But if the pupil approaches the study of each topic with an understanding of the "three kinds of problems" and of the relations and distinctions between them, he may be led to view the various apparently different topics, like interest, savings, and investments, each as further illustration of the same "three kinds of problems" he already knows about. Thus, in the study of interest, the pupil will learn about certain business practices previously unknown to him, and, what is more to the point, he will at the same time gain a better understanding of the old and familiar "three kinds of problems." Thus his general ideas will develop along with the gaining of new information, and thus his preparation for the study of succeeding topics will be strengthened. Such a procedure in studying brings into a single, unified scheme of thinking or method of attack what otherwise might easily be a dozen separate, distinct, and unrelated "appli. cations" of percentage.

IV. INDIVIDUAJIZATION OF INSTRUCTION

The meaning of individualization. The continuity of ideas which runs through the course in arithmetic may become the pupil's continuity. This is to say that the pupil himself may make the ideas and the thread of their relations his own possessions, or in other words, that the instruction administered must have an individual bearing.

Individualization of instruction has a double meaning. The following excerpts from the re J^{ut} of an elementary school principal on the methods pursuca to develop number ideas among
the pupils of her school give illustration of the double meaning of individualization. ${ }^{\circ}$
(1) Individual Observation. Since meaning and understanding are the main goals, the teachers should not depend too greatly on the results of written and oral cests as evidence of progress in meaning and understanding. Analysis of the daily oral and written work will aid the teacher in locating weaknesses and indicate some of the remedial work required; in addition to this, however, the teacher should make careful observations of the individual pupil while he is doing the work in arithmetic to find out his methods and how he gets his answers. Il there are signs that the pupil is developing poor habits of woraing or thinking, proper remedial methods may be promptly applied. An instance of this observation and aletness on the part of the teacher is in commetion with a girl in the fifth grade who was having difficulty in column addition; occasionally the answers she obtained were correct, but generally they were not. From observation and questioning the teacher discovered that the child always "carried" the larger digit; if the units column totaled 29 , for example, she would write down the " and carry the 9 , because, as she put it, "The tens are larger than the units." Specir.l attention has been given to this child to correct this error, and eliminate the habit.
${ }^{(2)}$) You will note, throughout the activities in these divisions, the unity and simplicity of the method. The children, under the guidance of the teacher, are discovering the number facts for themselves. Naturally practice must be given; the number facts must be rediscovered and reverified again and again, the grouping and the results repeated over and over until mastery is acquired. But the children acquire that mastery through mactice, and, if they do not remember, they can always return to the group and rediscover and reverify the results. As an example of this, in one of our First Grades, a little chap who had developed his ideas through groups, noticed that his companion was in difficulty about the results of an arrangement. "Go back to your group," he said. "Here, I'll show you," and took the material and arranged it from the beginning, sturdily explaining that-"when you take two blocks away from the group, you have three blocks left, and when you put them together again you have the same five blocks."

The first of the foregoing quoted paragraphs illustrates the common and generally accepted meaning of individualization, namely, the application "s remedial instruction according to the special deficiencies and special needs of individual pupils. The second of the paragraphs illustrates individualization in its broader and

[^13]fuller meaning, namely, the stimulation and direction of the learning activities of pupils to the end that each pupil will develop ideas, meanings, understandings. Individualization may or may not be individua' instruction. It may occur in the case of one pupil or in the case of each of several pupils in a group. In at:" case individualization implics that the pupil is made mentally alert to the essentials of the situation before him through the ideas and meanings which he develops and which thus become peculiarly his own. One may observe the process especially well in that type of instruction in the vocabulary of arithmetic in which the pupils learn certain words, not as mere words, but as names for ideas which already have come into their possession.

Learning as an individual matter. Let as take for example the acquisition of the word "division." In the midst of their study of a group of eight, let us say, the teacher raises the question, "How many twos are there in eight?" No one knows, of course, and no one knows how to find out. The teacher sets down before the pupils a group of eight:
or takes charge of the group of eight on a pupil's desk, and demonstrates the arrangement into groups of twos:

The teacher now counts and has each pupil count the twos: "One, two, three, four." "There are four twos in eight" is the answer to which each arrives. As the pupils catch on to what is implied in the question and what the question requires, they each take over the activity of rearranging the group of eight into twos. The question may be asked orally, as indicated above, or in writing thus. $2 / \overline{8}$. In either case, each pupil finds the answer for himself and gives the answer he discovers. Next, similar questions are asked: "How many threes are there in tivelve?" "How many twos are there in ten?" $3 / \overline{12}, 2 / \overline{10}$, etc., and for each question each pupil discovers and gives his own answer: "Four threes are twelve," etc.

The point of the ilhustration thus far is that each pupil is learning the meaning of division. The exercises in division con-
tinue. With each exercise the meaning of division is added to, becomes clearer, becomes more a personal possession. Finally, at some convenient time the teacher supplies the name: "We call this division." "When you do that, you divide."

Similarly, the development of such ideas as "average" and "per cent" is an individual, personal process. First of all, the pupil gains the idea; and, finally, he is supplied the name. Thus, in the case of the former idea, each pupil is stimulated to give his attention to the suppositions: "If he had traveled the same distance each hour." "If everyone had been given the same number." "Supposing he had received the same amount for each evening's work," etc. When each pupil has found the correct answer to a number of such exercises as are iudicated, and more especially, when he has given attention to the supposition which gives meaning to the answer, the teacher supplies the name: "This is called the average." "We call this distance (or number or amount) the average distance." By a similar procedure with percentage, attention of each pupil is directed in a special manner to one of the several parts, or fractions, with which he has already gained some familiarity, namely, the hundredth part. Through discussion and illustrations, which are both supplied by the teacher and drawn from each pupil's experiences, attention is directed to several of the more easily understood special uses of the hundredth part. Finally, as the idea grows, the name per cent is supplied.
Individualization and grade placement. With the suggestion that arithmetic is a system of ideas which the pupil himself must be led to develop, belongs its corollary that arithmetic can be learned only as the conditions of maturation of the pupil provide. In recent years many have become greatly exercised over this matter of maturation, and certain ones have attempted to solve the issue by an external, predetermined scheme of grade placement. Their latest solution is that of meeting the difficulties of instruction in a given grade by passing along the difficulties to the teachers in succeeding grades. One may call to mind the fact that many teachers had been aware of this device of solving their problems long before the Committee of Seven made its original report.

It is the suggestion in this discussion that it is the pupil to whom we should turn for answer to the problem of maturation and grade placement of topics. Each pupil must develop the ideas of arithmetic for himself through methods of thinking which he may learn and use. As a consequence, the ideas in arithmetic develop no more slowly or rapidly than the pupil develops them. To illustrate, the pupils who are ready to learn the meaning and the name of the process of division in the manner which the preceding section has indicated are those who already have been engaged in an intelligent handling of group.s. Similarly, the pupils in the experiment, to which reference will presently be made, will be found to have been ready to undertake the learning activities involved only when their teacher got them ready through preparatory exercises. And similarly, as an earlier section has pointed out, the pupils in the later grades who are ready to study the practical situations of life in which the idea of percentage is a characteristic element are those pupils who through their earlier training have come into possession of a working understanding of the percentage relation between quantities.

In what grade shall the pupil be taught percentage, or in what grade shall he be taught division by two-place nuntbers? The answers cannot be given in advance. The pupil may or may not be ready for the one in the seventh grade or for the other in the fifth. Everything depends upon his previous preparation, upon the extert to which he has been led to develop ideas of arithmetic and to use the methods of thinking in arithmetic in earlier years. There are many pupils in the seventh grade wholly unprepared to give attention to percentage, and there are many pupils in the fifth grade wholly unprepared to undertake division by two-place numbers. On the other hand, many sixth grade pupils can and do develop an understanding of percentage and many fourth grade pupils divide by two-place numbers with good understanding of what they are doing. The answer to the questions in either case is that the pupil is ready when he is ready. In other words, it is the pupil's use of the methods of thinking which he may be taught and required to use which sets the pace of his learning. This is only another way of saying that if we teach arithmetic according to its nature and peculiarities, we shall not need to
worry about the issues of maturation and frade placement of topics; such issues will solve themselves.

If the issues require answers, they require answers which are relative, not absolt:te. The issues are much the same as that which could be raised about one's readiness to take any given step in going upstairs. When is one ready to take the sixth step, for example? The answer cannot be at eight in the morning or at four in the afternoon. He is ready to take the sixth step only when he has mounted without undue haste and with sufficient care to the fifth step of the stairs. In this connection Dantzig's story may be repeated.

Dantzig ${ }^{7}$ tells the story of a German merchant of the fifteenth century who, desiring to give his son an advanced commercial education, appealed to a university professor for advice as to where he should send his son for training. The reply was that if the mathematical curriculum of the young man was to be confined to addition and subtraction, he could obtain such instruction in a German university; but if instruction was desired in the difficult arts of multiplication and division, he would have to go to the universities in Italy for such advanced training. (Fortunately, the grade placement of the four fundamentals did not remain at the university level. Fortunately, no fiat of grade placement kept them there.)

V. TEACHING METHODS OF THINKING

The direct versus the indirect method of instruction. The foregoing paragraphs may be summarized in the statement that the problem of grade placement is the problem of establishing appropriate sequence among the learning activities of pupils. The sequence, as has been implied, is internal in the developing understanding of the pupil, not merely external in the program and plans of the teacher. The sequence, if this is built up, turns out to be more than a mere arrangement of learning activities, primarily a means of guiding them. How internal controls of learning activities may be provided the pupil may very propel!y

[^14]engage our attention at this point. Canvassing the possibilities of teaching pupils methods of self-instruction may help to reveal the part the pupil plays in the learning of arithmetic.

The learning and teaching parados, to which reference has been made from time to time, confronts the thoughtinl teacher as what may be called the basic problem of instruction. The basic problem of instruction is the questio: whether to teach the subject directly to pupils or to teach pupils methods of learning the subject so they can teach it, or much of it, to themselves. Shall the literature teacher teach poetry to his pupils, or shall he teach his pupils how to read poetry? Shall the science teacher teach the products of scientific thinking, or shall he teach his pupils the methods of thinking of science? Shall the arithmetic teacher teach arithmetic, or shall he teach his pupils the ways by which they may build up the ideas of arithmetic for themselves, and, as he does the latter, stimulate his pupils to use the methods to teach to themselves what arithmetic they learn?

The thoughtful teacher must weigh the merits of the direct and the indirect methods of instruction, as they are here defined; indeed, he must make a choice between them. He may not have to choose one method to the neglect of the other, for, as it may readily be seen, the two methods are not mutually exclusive. The literature teacher, for example, must tc.ch some poetry as a means of teaching his pupils how to read poetry, and may very well teach some reading while he is engaged in teaching poetry. Nonetheless, the teacher must choose between the two methods, determining, if nothing more, which method he will emphasize.

At first glance it would seem that the direct method is the better method in the case of arithmetic, at least in the case of reaching the objective goals of arithmetic. The objective goals of arithmetic teaching which are commonly set up as the true goals, and which give the appearance of being the true goals, are no doubt reached more quickly and apparently more surely by the direct approach. But however much and whatever arithmetic pupils do learn under the tuition of the direct method, they learn something else also, something subjective, which is not commonly revealed by the tests and examinations at the end of the term. While they learn arithmetic, or such arithmetic as may be taught
by the direct method. they learn dependence upon the teacher. On the other hand, by the indirect method of learning and using methods of self-instruction, pupils, though they may reach fewer objective goals or reach them le" quackly, likewise learn something else also, something subjective, which is not commonly revealed by tests and examinations. While they learn arithmetic, such arithmetic as they teach to themselves, though under the constant stimulus of the teacher, they learn self-reliance. It is a sad commentary on the methods of teaching arithmetic in common use that the farther most pupils progress in the subject the more dependent upon the teacher and textbook they become. Conversely, it is a surprise and pleasure to behold a pupil who, by accident or in spite of the instruction he has been receiving, has discovered a way of explaining to himself the arithmetic he is learning, and has thus learned to rely more and more upon his own developing ability to understand. The thrill is almost as great as the thrill which such a pupil himself experiences!

Whatever may be the answer to the basic problem of instruction in other fields, in the field of arithmetic there appears to be only one answer. Arithmetic is a system of ideas. Arithmetic exists and grows for the learner only in the mind of the learner. Arithmetic must be learned in understood sequences or relations. The answer to the problem is that the only real way for pupils to learn arithmetic is to learn and use the methods of thinking which slowly and gradually cause the ideas of arithmetic to grow up in their minds.

Self-instruction a possibility. The objection may be raised that it may be very well to suggest methods of self-instruction in the later grades of the school, but that such methods are beyond the abilities of pupils in the elementary school, especially in such a difficult subject as arithmetic. It may be objected that in the earlier grades especially pupils are and must remain dependent, that they can take only such arithmetic as is given to them, and that only in homeopathic doses. To such objection it may be replied that even the beginner in the first grade does not have to be told that two and three are five, for example, provided he has been taught to count as a means of finding out for himself the size of a group. He can count out two, then three, and next he
can put the two groups into one and count the five. Such a pupil is not taught that two and threc are five. His teacher does not tell him. His teacher asks him what the answer is, and he finds it for himself. All that is required is that he he taught counting as a method of thinking and directed in the proper use of such method. Using such method and other somewhat sin iilar methods, such as have been described in the preceding chapter, pupils in the first grade can find the answers, that is, teach themselves the answers, to forty-five additions and forty-five subtractions. Using such methods, they can, if their teacher desires, interpret simple questions in division and discover the multiplication answers.

Moreover, to carry the illustration further, pupils do not need to be taught the thirty-six more difficult additions. Instead, they can be taught a single method of grouping into a ten and so many more, and then they can use this method to teach themselves the thirty-six additions. They do not need to be taught the thirty-six corresponding subtractions as thirty-six separate bits of information to be learned. Instead, they can be taught a single method of subtracting from the ten, and then they can use this method to teach themselves these thirty-six subtractions. They do not need to be taught the simple multiplications, because they can work them out from the actual procedure of dividing larger groups into smaller equal groups and counting the groups. They do not need to be taught the more difficult multiplications and divisions. Instead, they can be taught the oingle method of transforming the groups to nine into groups of ten and counting the tens. They can be taught the simple procedure of reversing the method to determine the related divisions. Then they can use this method and this procedure to teach the maltipliations and divisions to themselves. They do not need to b : taught the complexities of the more difficult operations in the fundamentals. Instead, they can be taught the special sione:ficance of ten, and it special position, and the method of dealing with tens just as though they were ones. Just as soon as the pupil begins to be conscious of the fact that he can and does deal with tens, as he puts it, "just like ones," the complexities of the difficult operations are reduced to a single simplicity. He is in possession of the single key which he himself can use to unlock each successive door as he comes to
it. Besides, as he moves from door to door, he gains greater facility and greater confidence in his use of the key. Finally, the pupils do not have to be taught how to solve problems in arithmetic. Instead, they can be taught the methods of work and the methods of thinking things out for themselves, such as an earlier section has indiated, and their problems turn out to be illustrations of number relations and of practical situations which they already understand in part and are engaged in examining.

What has just been said is that arithmetic is not an encyclopedia of facts and answers which the pupil is given and which he stores away for use, but instead a systematic method of thinhing out number metions which, when employed, provides him with the facts and answers. What has just been said is that this systematic method of thinking is mastered only through use, and that it is the function of the teacher merely to introduce pupils to the method and to direct them in its proper use. From that point or, at every stage of his plugress, the pupil is his own best teacher.

A third grade experiment in self.instruction. At this point evidence will be brought to bear upon the proposition that pupils can be trained in methods of self-instruction. Reference has been made elsewhere ${ }^{8}$ to successful efforts to provide such training:

Pupils can learn self-reliance while they are learning arithmetic. L. A. Gump taught two groups of second grade pupils a methrid of discovering for themselves the answers to the thirty-six more difficult additions, and P. C. Michael taught a third grade group a method of self-instruction in the thirty-nine more difficult multiplications. The plupils were successful in learning and in using the methods of selfinstruction taught them. Every one of the forty-four pupils in the second grade groups succeeded in learning the thirty-six additions in nine trials on the average per pupil per combination. Every one of the forty pupils in the third grade group succeeded in learning the thirty-nine multiplications in twenty-one trials on the average per pupil per combination. Moreover, all the pupils concerned developed a degree of personal pride in their ability to depend upon themselves.
During the school year, 1938.1939 , M. V. Givens ${ }^{0}$ repeated and

[^15]extended Mr. Michacl's study in the case of liftefour third grade pupils in two elementary schoois in Marion County, West Virginia. Mr. Civens tanghe his pupils a melhod of finding the answers to dhe thirtenine multiplications whose products are wentyone of eightyone The method was that of grouping into lens. Thiss. in the mulsiplication, four nines, the process eaught was to group the nincs imte tens and to count the tens. The procedure in thinking wiss: "Four nines ane thre tens and sis. lour aines atre thirty-six." by illustation and explanation the point was made that the muttiplication, four mints, asks, "Four nines are how many tens:"

Following instruction in the method, the pupils were given practice in using the method to determine each for himself the answers to as many of the thirts-nine muthiplications as he had not as ye tearned. The practice was indisidual. Lach multiplication was indicated on the obverse of a smatl cadd, and on the reecrse the grouping into tens was shown by means of dots. The pupil looked at the indicated muttiplication on the frome "f the card and, if he could not give the answer, he looked at the grouping on the back and detenutined the answer, as indicated above, amed gave it thus: "Four niness are three tens and six. Four nines are thirtysix." This he did once each day with each multiplication, cach on its card in a pack, until he had exhausted the pack. Each day the pupil went through the carts of the pack until he had mastered ath the multiplications. The criterion of mastery was the correct answer without looking at the back of the cared on four sutcessive days. Each answer to be comed had to be given in the time the teather took to count one. turo, theres. four to himself. A daily record was kept of eath pupil's answers.

The general chatacter of the responses of the pupils is described by Mr. Givens, as follows:

As the instructor worked with cath pupil individually, it was interesting to note the derelopment of won kinds of compecition. First. the pupil was cager to surpass his word for the preceding practice. Invariably he would ask, "How many did I get righte" when told. he would compare his a checement with that of the day before, and if noticeable improwement had been made he would express satiofaretion. The second kind of comprtition was that between individuals and the group. Often someone would ask. "Who is ahead:" Amether question frequents anked of other prupils was. "How many multiplications do sou knows:"

The attimede of the pupils in general toward the wook was excep. tionally good. This was shown be their cagerness to participate in the learning activits, No mging was neremitly, for the pupils worked diligently at their assignment.

The general reactions of the pupils to the method of self-instruction are indicated by some of their remarks, such as the following:
"No one has to tell me the answer. I can find out for myself."
"Phe fives are casy to change to tens."
"You have more tens when the numbers (the factors) are big."
"Some of them are hard, but you don's have to tell me. I can count the tens and ones."
" 111 forget, 1 can find out on the back."
"The answers atre in dots. They hedp me to remember."
"I wish I could take these rards home. I'd learn them seal quick."
"Dhese are so easy I can learn them by myself."

Certain of the author's conclusions are indicated thus:

The ninety-four pupils in the two groups required a total of seventy thousand three hundred eighty-six $(70,386$) responses to learn the thirty-nine more difficult multiplications, or an average of approximately nineteen and two tenths (19.2) responses per multiplication. However, on the average, approximately thirty and four-tenths practice periods, during cach of which all thirty-nine multiplications were studied, were required to learn satisfactorily the thirty-nine multiplications. Consequently during each of these practice periods an average of approximately one and three-tenths multiplications were learned.
The greatest number of responses required by any pupil on the muhtiplications as a whole was one thousand four hundred eighty-nine (1,489), and the least number of responses necund by any puphe was two hundred thity-seven (233). The least number of practices required by any pupit on any multiplication was four, and the greatest number of practites required by any pupil on any multiplication was sixty-four. The average number of responses by individuals on the multiplications as a whole range from six and one-tenth to thirtycight and two-tenths.
While the disparity in the amounts of practice required by the individuals of the two groups is conceded, in no case does the amount of practice appear indefensible. Instead, it suggests the desirability of methods of learning which can be adapted to individual needs.
It is hughly signifitant that the ninety-four pupils were surcessful in learning the method of self-instruction, and that by this method each pupn taught himself the thirt-nine more difficult multiplications. That the pupils not only learned the multiplications but also enjoyed the leaming activity was manifested by their attitude toward the wnrk.

Many interesting analyses of the responses of pupils were made possible in the course of the experiment, and the experimenter arrived at a number of interesting observations. With all these we have no orcasion here to deal. It will be sufficient merely to repeat a caution of the experimenter in a statement of his purpose. He pointed out that his purpose was not to demonstrate the superionty of his method
of self-instruction over other methocls, nor to offer it in substitution for methods of practice and drill. He merely wished to try out the method to discover if pupils could learn it successfully. He did observe, however, that after his pupils had used the method to discover and verify poduets, they tended to abandon the method as the products began to become habituated.

An experiment with retarded pupils. During the school year of 1939-40, W. P. Cumningham ${ }^{10}$ used the method of self-instruction, just described, with 40 retarded pupils in grades four, five, and six. He reports that the pupils all learned the method without difficulty and used it with interest and success to teach and reteach each to himself the unlearned or forgotten multiplications.

Other illustrations. Following are other illustrations of instruction in methods of thinking.

Reference has been made to the efforts of a teacher in the fifth gradere (0) call w the attention of his pupils the significance of the idea of size in dealing with fractions. The result was that his pupils all became conscious of size in considering the expression of a fraction. How large is cach parte Are the parts in this fraction larger or smaller than the parts in such and such other one: How moch lange: How much maller: Such questions as these became questions which needed answering. Finally, when the pupils moved ahead to the addition of hractions, they were aware of the importance of changing the frations to be added to "parts of the same size." To illustrate, When their tewher suggested proceeding at once to the addition of $3 / 4$ and 23 , he was called to a halt by the admomition, "We have to get thenn to the same size, because you can't add fractions unless they have at denominator of the same size."

In an attempt to develop a method of instructing his pupils in the distinctions between the "three kinds of problems" in fractions and decimals out of their successful and unsuceessful ways of responding (1) such problems, a teacher in the sixth gradere lound that instruction in the computational processes left the pupils dependent upon him to make the dec isioms about what proess to use in a given case. He sat down with cach pupil and tried to encourage him to "think alotad."

[^16]Then in terms of the way the pupil seemed to be thinking, the teacher undertook to point out and describe the distinctions. His pupils had no trouble in distinguishing the "second kind" of problem. Their difficulties in the main were two in number: They were uncertain about the divisor and dividend in the "second kind" of problem, and they had no ready means of distinguishing between the "first kind" and the "third kind" of problem. The distinctions taught were as follows:

1. When you are asked to find what part one number is of another, put the number being asked about in the numerator or the dividend. This is the "second kind" of problem.
2. When a part is given of a number that is given, multiply by the part. This is the "first kind" of problem.
3. When a part is given of a number that is not given, divide by the part. 'This is the "third kind" of problem.

Through individual and group instruction the pupils were made conscious of these distinctions, and they became still more conscious of them as they attempted to note distinctions. In their practice exercises, if the problein was the "second kind," they asked themselves, "What is the number being asked about?" and they looked for this number. If the problem was not the "second kind," they asked themselves, "Is the per cent of a number that is given, or of a number that is not giveni" and they looked to see if the number in question was present or absent. They were not always successful. They made mistakes; that is, they made incorrect decisions. But thinking was present, even when their objective responses counted for nothing. Looking for distinctions was number thinking, when the effort was unsuccessful as well as when it was successful. Having in mind what to look for contributed to appreciation of discovery even wher. they needed help in making it. Over a period of eight weeks the pupils reduced their errors, as indicated by objective tests, 66 per cent. The teacher had cause for thinking that the consciousness of distinctions among his pupils had improved beyond what was indicated by their objective responses.

A somewhat similar study of learning activity was carried on by an elenentary school principal ${ }^{13}$ anong sixty-nine pupils in his eighth grade. Here the effort was made to teach pupils how to look for and to make distinctions between the "three kinds of problems in percentage." The method of instruction was the same as was pursued by the sixth grade teacher in pointing out distinctions between the "three kinds of problems" in fractions and decimals, and the results were much th same.
In his preliminary testing at the outset of his study, the principal

[^17]seemed to find among certain of his pupils evidence of an ability which he later discovered they did no ! possess. For example, he found that certain pupils solved correctly a mamber of examples and problems which reguired the finding of the per cent one number is of another, but were in contasion on oher similar examples and problems. The test seemed to show considerable ability, but not mastery. Upon later inquiry, his pupils revealed the secret of their methods. Some followed the rule: "Always divide the smatler number by the langer," and others followed the rule: "Divide by the number that connes atter of." The fomer group did not understand why their rule which produced the tight answer most of the time did not produce the right answer all the time, and the latter group was alwass in confusion when the statement of a problem made too free a use of the distinguishing preposition, This group, was disconcerted by the of in problems that dealt with flocks of chickens, barrels of apples, and bushels of potatoes. Among both groups, number thinking had lagged lar behind its objective manifestations.
Following instruction in how to look for distinctions, the pupils were given practice in looking for and trying to make distinctions. As was the case with the pupils in the sixth grade whose eftorts have just been described, they too were not always successful in noting distinctions. Nevertheless, their ideas of what they were to look for were sufficiently clear for them to recognize discovery when their teacher or their classmates had to give help in making it. Over a period of nine weeks they redaced their errons 73 per cent. Here again, there was cause for thinking that the consciousness of distinctions had ine. proved bevond what was inclicated in the objective responses which were readily measurable.

Distinguishing between what should be taught and what should

 be self-taught. Ruming through the discussions which have just been concluded is the suggestion of a parados between the instruction of the teacher and the learning of the pupil. On the one hand, the instruction of the teacher may lead to dependence; on the other, the leaming of the pupil may involve much wasteful effort and lead to confusion. liat the teacher must instruct, and the pupil must be much mone than a receptive learner. The systematic chanacter of arthonetic imposes the former requirement, and its subjective chatacter imposes the latter. Yet a paradox need not exist, for in the total make-up of arithnetic are methods of work, which may be learned most expeditionsly through direct instruction, and the products of such methods, which result only from individual usage. The teachers respomsibility is to teach methods of work and guide pupils in their use of methods; the pupil's responsibility is to use the methods and thas to teachhimself their products. The teacher's problem begins with the questions: What are methods? What are products?

Partial answers to these questions have already been given and others may be suggested for illustration. Thus, the teacher should teach counting. but the pupil may use counting to determine for himself the sizes of groups. The teacher should teach the analysis of groups, but the pupil may use analysis to teach himself the various subtractions and divisions. The teacher should teach the synthesis of groups. but the pupil may use symbesis to teach himself the various additions and multiplications. The teacher should teach the special groupings into tens. but the pupil may use these special groupings to teach himself step by step the more complex processes. The teacher should teach the comparison of parts, but the pupil may use comparison to teach himself the sizes of parts and the relations between them. The teacher should teach the distinctions between the so-called three cases of percentage, but the pupil may use these distinctions to teach himself the special use of the idea of per cent in a given situation. The teacher should teach methods of work. but the pupil may become his own best teacher through his use of the methods.

VI. IN SUMMARY: A IHEORY OF INSTRI (OTION

Number thinking is a part of the total experience possible for the individual in many of the situations of his daily living. He must bring the thinking to the sitmations; otherwise the situations are powerless to stimulate the thinking which gives them clarity and exactness. Number thinkise, therefore, must be cultivated in advance

Number thinking is introduced and carried along by reference to personal experiences already gained which give it meaning. Without meaning. the procedure is romtine, and not thinking. Moreover, number thinking is not in isolated bits, however much one may be able to analye it once he has learned to engage in it; it is rather a unity, a system, a series of sequential relations. It is a process which develops through ordered methods.

Teachers may teach the pupil methods: it is a subversion of the purposes of instruction to permit the pupil to develop haphazard,
unproductive, and confusing methods in his own way. The pupil's responsibility is to learn the methods and to use them as means of developing his own number thinking. Teachers cannot do the pupil's thinking for him. The number thinking that the pupil learns, therefore, is in a very real sense the product of his own self-instruction.

Chapter VI

ARITHMETIC IN THE SENIOR HIGH SCHOOL

BY HARRY E. BENZ

OHIO UNIVERSITY

I. A NEW EMPHASIS FOR ARITHMETIC

The purpose of this paper is to explore the possibilities of teaching arithmetic in the senior high school. Some readers will at once recall that this is being done, and may wonder why time and space should be devoted to a discussion of the desirability of a practice which is already accepted. However, the procedure to be recommended is not so commonly followed as some may believe; furthermore, the fact that a proposed educational reform is already established practice in some schools does not argue against advocating the extension of such a reform. This should be continued until the proposed revision of procedure either has been adopted as good practice in a considerable number of school systems with a comprehensive, critical, scientific program of curriculum revision, or has been scientifically evaluated and subsequently rejected by an equally significant number of schools of the same type. It can be a serted with confidence that neither of these two procedures is descriptive of the situation with reference to the proposal herein advanced. This will become more apparent as the thesis is particularized, definitions are advanced, and practice is described in terms of the objectives which the proposed program is supposed to achieve.

More arithmetic. The reader may well be on his guard against whe' may seem to be just another proposal on the part of representatives of subject-matter interests to extend the beneficent influence of their subject by adding a course in that field to the already overcrowded high school curriculum. This charge is frequently made, and it is recognized that the proposal herein made invites this criticism. The situation should be recognized. In the
present instance it may well be admitted that the merit of the proposal should 'se judged by independent curriculum experts who are not especially interested in the subject, but rather in the curriculum as a whole, and in its influence on the development of the child. It is believed that this proposal possesses merits which will make it appeal to critical and informed students of education, regardless of their subject-matter affiliations. If it camot command support from such individuals, it certainly should not become part of the curriculum as a result of either more persistent vocalization or more skillful maneuvering on the part of its proponents.

Varieties of approach. Further disclaimer of the intention on the part of proponents of this material to expand a subject-matter fied still further may be found in the fact that the suggested objectives can be achieved without resort to another course in the high school at all. It seems likely that the probability of securing the desired results would be greater if a new course for the high school could be set up. But a new course is not absolutely necessary. It is simply proposed that certain material, conveniently designated by the word "arithmetic," be taught on the senior high school level. There are at least four ways of accomplishing this. The first is through the medium of a course set up for that purpose. Such a procedure is most likely to be successful in a school with rather definite preferences for the organization of leaming into the usual course classifications, and with the content of these courses well circumseribed by relatively rigid courses of study, custom, or teacher conservatism. A second method of achieving the desired results is to incorporate the material in other courses in mathematics. Such a procedure will necessitate a flexible organization of subject matter and a willingness to make careful comparisons of values. A third possibility is to include the material in other courses in which it might logically fit. It seems a bit difficult to moderstand just where some of the material later to be proposed will fit, but much of it can no doubt be worked into courses in economics, government, home economics. industrial arts, and others. In addition, many high schools are now experimenting with new courses which do not fit into the older categories very well, but which involve
socially useful material which is deemed worth teaching. Many of these subjects have mathematical aspects which could be illuminated by a consideration of some of the topics indicated below. A fourth method of achieving the results intended, available only to those schools which happen to have a curriculum organization which ignores or greatly minimizes the importance of the older subject classification, is to present the material desired through the medium of activities which transcend the usual subject boundaries. Similar adjustments could be made in the use of a core curriculnm or any of the many ariations of the integrated curriculum gradally coming into experimental use in many progressive high schools.

The approach to the problem is theoretical rather than experimental. Very little experimentation has been found, the conchusions of which have implications for the problem at hand, but certain arguments seem to have significance and validity, and these will be examined.

At first thought the proposal advanced above seems to be a suggestion for revision of the grade placement of curriculum material. It is that and more. Since it is that in some measure, the broad problem of grade placement will be incolsed.

II. spfogific siggestions as to types of material.

Attention should be directed at once to samples of the kinds of material which are being suggested for inclusion in the curriculam of the senior high school. Practically none of the material herein suggested is the product of the writer's ingenuity. Most of it is collected from textbooks in arithmetic, textbooks intended for use in other branches of mathematics, books on the teaching of arithmetic or high school mathematics, and miscellaneous discussions of the teaching of arithmetic. Contributions to the development of the point of view underlying the presentation of some of this material have been made by many other writers, as, for example. by Buckingham and Buswell in the Tenth Yearbook of the National Council of Teachers of Mathematics and by these and other individuals in many other writings. too mumerons to mention. It should be noted, howerer, that many of these
discussions have presupposed that the material suggested would be taught in the upper grades of the elementary school, or in the junior high school. No comprehensive survey of practice is available which would indicate the extent to which this is being done. The suggestion that this material should be taught in the senior high school need not deter teachers in the upper grades from making such contributions to the achievement of the objectives as conditions will permit. It should be noted that only "samples" of possible kinds of material are here presented. The classroom teacher reading this Yearbook would no doubt prefer a syllabus, or a comprehensive outline of proposed material. To write such a syllabus at this time would be impossible. and even to attempt it would be presumptuous. To expect such a specific suggestion is to misunderstand the purpose of the chapter. That purpose is to call attention to certain possibilities with reference to the inclusion of material commonly called "arithmetic" in the program of the senior high school and to illustrate the various types of material which are available.

Several types of material may be included in the arithmetic presented in the senior high school. Four of these will be discussed in turn. The first may be called for want of a better term, applied arithmetic. This may emphasize computation, or information, or both. The second type of material will be concerned with arithmetic as a science, as a branch of mathematics, as a system of ideas. Much of this material has values more cultural than practical; but it may w-ll contribute to insight into many of the phenomena of life, as well as insight into the nature of arithmetic. The third type of material really represents a union of the ideas involved in the first two. Some study may be made of the everyday applications of number science-how an understanding of the nature of the number system and of number science meets certain needs of everyday life, and how the nature of the number system conditions the nature of arithmetical processes.

The fourth group of topics includes those which are presented primarily because of their interest values. They will occupy a more prominent place in an elective course than in a required course; they will bulk larger in those curriculums which are not primarily practical than in those which have a vocational em-
phasis. Many of these items should be found in optional, supplementary work of individual pupils.

Applied arithmetic. Consider first the possibilities in the field of informational and social arithmetic.

At this point some explanation may well be made relative to this term "applied arithmetic." Many readers will begin to think in terms of the "application of the four fundamental processes to concrete situations." But it is precisely this somewhat restricted conception of applied arithmetic which has been criticized as being somewhat too narrow to be maximally fruitful. It is erroneous to think that a person is "applying" arithmetic only when he is engaged in performing one of the four fundamental operations with a pencil, or, for that matter, performing it mentally. He is also applying his arithmetic when he selects the process to be used, when he makes rough approximations, or when he simply appreciates the mathematical relationships and mathematical implications in what he experiences or in what he reads.

This is all closely related to the matter of "meaning" in arithmetic, which is given considerable emphasis in this Yearbook. Further elaboration of this viewpoint is not necessary here, but will be found in other chapters. Suffice it to say that only that individual who has learned the meaning of number processes and number relationships is able to make the maximally effective use of "applied" arithmetic.

Consider first, as a sample, the subject of taxation. As pointed out in other chapters in this Yearbook, much of the material now taught in arithmetic is characterized by a type of approach much more characteristic of work in the social studies than in mathematics. The rcader will note that much of the material here suggested fits this description. It is believed that the reader will also see possibilities in this material which can be realized somewhat better if the subject matter is studied in the senior high school than if an effort is made to interest children on the eighth grade level in it. Under the general topic of taxation such matters as the following may be studied:

1. Kinds of taxes.
2. Just what is taxed by each kind.
3. Who finally pays each kind of tax.
4. Passing taxes on to someone else, finally on to the elusive "ultimate consumer."
5. How taxes "pyramid."
6. Taxing various groups: consunners, manufacturers, the rich, the poor, motorists, middlemen, government employees, ctc.
7. The political implications of various kinds of taxes. Why it is relatively easy to tax many people small announts.
8. Tax-collecting machinery: state, federal, local.
9. Tax limitation laws and constitutional provisions: their value, their harm.
10. Taxes as fees for services.
11. Taxing frugality, thrift, enterprise, inventiveness.
12. How tax money is spent: a study of governmental budgets.
13. Taxes which save nooney; e.g., new fire fighting equipment may reduce insurance premiuns.
14. "Hidden" taxes.

A similarly extensive study could be made of the subject of insurance, with attention given to phases of the topic which are now neglected for reasons indicated above. Attention could be given to such matters as the nature of an insurance estate, the disposition of the proceeds from an insurance policy, kinds of insurance suitable for special purposes, and the savings feature of life insurance policies.

As another illustration of a broad topic which might be of interest and value to high school papils, we may consider the arithmetic of leisure. Much has been written on the subject of leisure in recent years, and it is generally believed that people have much more of it than ever before. There is much concern over the apparent disinclination of people to use this time in ways which certain persons consider important. Little attention has been given to the fact that to spend leisure time profitably and "constructively" costs money. Vacations are expensive approximately in proportion to their value in meeting acceptable criteria for the spending of leisure time. The following points are merely suggestive of a vast area which has been quite untouched in our curriculum:

1. Automobile t.aning vacations
a. Planning auto trips
b. Reading and using road maps
c. Selecting routes
d. Computing driving cosis
e. Computing living costs on the road

2. The cost of hobbies

a. Fishing: license, equipment, transportation, etc.
b. Stamp collecting: stimps, equipment, membership in stamp clubs, subscription to a journal, corresponding with others interested in the same thing
c. Attending baschall games: "following the team," admission, transportation, buying a program, buying newspapers to get the news
d. Playing golf: equipment, clothing, green fees, club dues, caddy fees, balls, locker fees, tips, transportation, wagers.

The whole field of consumer cducation has received so much attention recently that no discussion of the possibilities in this area is necessary in this paper. From the standpoint of arithmetic, the topic to be presented would probably be "The Arithmetic of Intelligent Purchasing." This will include such considerations as the purchasing of "dressed" ws. "undressed" chickens, forming accurate judgments relative to the size of containers of various shapes, the purchase of "ready-packed" vs. "counter-packed" ice cream, and a whole host of similar problems. The reader will be left to consider for himself other possibilities in this area. As a sample of an important topic, which some might consider within the area of consumer education, while others would not, we may suggest a topic. "The Arithmetic of Real Estate." Among the topies to be considered would be the following:

1. Factors alfecting the value of land
2. Factors aflecting wie value of a building, especially a house
3. Rates of depreciation of houses
4. Wiays of determining the value of property
5. The relative cost of owning and renting a home
6. Interest on mertgages
7. The legal status of mortgages
8. The resale value of property
9. Taxes and assessments on real estate
10. The arithmetic involved in house building: architect's fees, surveyor's fees. when to pay a contractor, where and how to borrow mones. F.H.A. plim, cost of various plans of houses, planning the most coonomical heating system, etc.
11. How (ity property is surveyed, measured, and destribed.

Sufficient attentioni hau not been given in discussions of the arithmetic curriculum to the cultural possibilities inherent in the study of the arithmetic of specialized vocations. There was much
of that material in the older arithmetics, but most of it has been eliminated. It was originally included because of the prevalence of an economy in which many persons performed for themselves certain tasks which were expedited by a knowledge of the arithmetical topics in question. Papering offers an illustration. Formerly many persons hung their own wallpaper (some still do). In time the topic was eliminated from arithmetic textbooks because of the belief, perhaps correct, that not enough persons still hung their own paper to justify the inclusion of the topic. It was also believed that such of the pupils as did use this ability in liter life would have forgotten what they learned in school by the time they needed it, or would be able to figure the thing out for themselves if they had not had the study, It was alleged that professional paperhangers did not make their computations according to the methods which the book used. The critics usually overlooked the irrelevance of this last point.

Interest here is in the informational values to be derived from the material in question rather than in the contribution which it may make to vocational effectiveness. It is not unthinkable that the items here under discussion may have value from a guidance point of view, and certainly some insight into how people in various occupations perform their duties is part of the equipmont of an intelligent person. Only a lew illustrations can be given. Some insight into the arithmetic which a farmer uses may well be part of the cultural equipment of the urban consumer of farm produce. The computation of butterfat yield by cows, the study of formulas having to do with mixing fertilizer ingredients, and the way various kinds of farm products are measured and weighed when sold, are suitable topics for investigation. At the moment of writing it is reported that the corn-hog ratio has changed so that it is more profitable for farmers to sell corn than to fatten hogs with it. An appreciation on the part of urban dwellers that one of the farmer's problems is to try to predict this ratio a year in advance might contribute to a more sympathetic attitude toward govermment efforts to alleviate the plight of agriculture.

Many occupations have their peculiar computational practices. Many of them offer opportunities to use arithmetical skills which
we try to teach, and arithmetical concepts which we deem important. The motivational values here should not be overlooked. As a final illustration, printers like to use paper of such a shape that the ratio of the lensth to the width is equal to the square root of two. A sheet of this shape may be folded any number of times, and the resulting shape is the same. The values of an item of this kind in developing an appreciation of the mathematical relationship involved are at once apparent.

Another group of problems in the field of social arithnetic of a type beyond the comprehension of elementary school pupils may be found in the field of solid geometry. Most present-da textbooks in that subject contain many computational problems involving the measurement of solids. It is not necessary for the pupil to have memorized the relationships involved, or to be able to demonstrate their truth logically in order for him to make the computations and derive at least some of the appreciational value which the material contains.

Space does not permit more than a passing reference to the whole field of financial arithmetic. The mathematics of finance, of course, can easily go beyond the limits of a course in arithmetic. However, there are important sections of the subjent which are primarily computational in their nature. Much can oe done with the topic by pupils who have made no formal study of algebra; still more can be done by those who have studied the amount of algebra now normally expected as a part of the usual junior high school mathematics program.

Numbers and processes. Much is said in this Yearbook about teaching arithmetic for "meaning." There are many ways in which meaning can be brought into arithmetic teaching. It is especially important, both from the standpoint of broad cultural objectives and from the standpoint of facility in computation, that pupils be brought to a high level of understanding relative to the rationale of the computational processes. Teachers in the grades in which the manipulative skills are taught are now being urged to give the pupil as complete and comprehensive an insight into the nature of these processes as is possible. Many teachers find it very difficult to do this as well as they would like. It may be that insufficient mental maturity is responsible for this difficulty.

If a course in arithmetic is offered in the senior high school, some attention may well be given to this matter of the rationalization of the fundamental processes. First the teacher maty attempt to determine to what extent the pupils possess a respectable comprehension of the reasons for carrying on these processes as they do. If investigation reveals that the pupils do not possess enough insight, some time and attention may woll be given to the problem of remedying the situation. In any case it seems quite reasonable to expect a marked enrichment in the pupils' understanding of arithmetic as a result of giving some attention to this problem.

Much controversy can be stirred up by a suggestion that attention should be given to the general subject of number theory. It is not suggested here that the high school student should be given an introductory course in that diflicult and involved branch of mathematics which is usually designated by that title. But some understanding of the nature of the number system and how it works, its internal structure and its functioning, may well be taught in schools. Some attention will be given to this in the elementary school if suggestions for presenting material which are made in other chapters of this Yearbook are followed. A study of the nature of arithmetical processes, and the numbers and number relationships which are utilized will lead to the objectives here proposed. Some study of a number system on a non-decimal base should be included. W'ays of performing the ordinary computations different from those now usually taught often throw light on mumber relationships. Among these the following may be suggested: adding by writing sums for various columns in their entirety, thus avoiding carrying, then adding the partial sums; dividing fractions by reducing to a common denominator and then dividing the numerators: multiplying by reversing the order in which the digits in the multiplier are used: and performing long division by subtracting. as a calculating machine does it. These and many other variations of computational processes can throw light on the nature of computation and the number system.

Applications of number theory. Perhaps the nature of the number svstem can be better understnod from a study of certain applied topics which have been included in the third classifica-
tion. Certainly a study of logarithms and the slide rule would tind a plate among the topics proposed for study. Interpolation is a more common ativity in everyday life than many realize; it is often necessaly in reading a railuay timetable and is a common mental activity among those who peruse road maps. This would indicate that its study should not be limited to the conrentional uses which are found in the classtoom when using mathematical tables. Attention has been called elsewhere to the understanding of the number system to be derived from a study of the use of letters on automobile license plates, and the various library classification systems. ${ }^{1}$
In this comnection something should be said about the importance of providing some education in the applied mathematics of chance. We seem to be engulfed by a veritable wave of schemes of various kinds which depend for their effectiveness on the average person's ignomance of the most elementary notions of probability. L'mumbered individuals purchase "bank-night" tickets in order to participate in a drawing for a cash prize, who have slight interest in the picture being shown, or indeed do not attend the performance at all. "Pot-os-Gold' schemes of various kinds are rampant. Slot machines take their toll of nickels and dimes from persons who can ill afford to lose the money. Radio programs cater to the public interest in getting something for nothing. It would seem that some actual experience in tossing coins, dealing cards, and studying permutations and combinations might contribute to social welfare by teaching children just how their interests are involved in these schemes. It is not to be hoped that gambling can be eliminated from the world by a revision of the school curriculum. but perhaps people can be educated to protect their own interests even when they somble. A study of the mathematios of chance might also protect people from superctitions. It seems quite probable that one-seventh of all bad luck occurs on Friday, and that about one-thirtieth of it occurs on the thirteenth of the month.

Interest values. Coder the fourth heading we may consider topics which do not classify otherwise, or which are of value

[^18]chiefly for purposes of stimulating interest. Certain historical items having to do with arithmetic and the study of arithmetic may be mentioned; for example, Nicholas Pike's arithmetic included a section dealing with changing the currency of New Hampshire to that of Connecticut. "Foreign Exchange" apparently was closer home in those days than it is today. How the Romans computed with their unwieldly numbers might interest some youngster. A study of the abacus, Napier's rods, and other historical items might be included. Mathematical puzzles and mathematical recreations are available in unlimited numbers. Many pupils will be interested in noting everyday exceptions to the arithmetic taught in school. For example, on the financial pages 106.27 does not mean what it is usually considered to mean in textbooks. The 27 is the mumerator of a fraction whose denominator is 32 . Baseball standings are usually referred to as "percentages" although they are expressed to three places, and many newspapers do not bother to print the decimal point. Finally, is a "batting average" an average or is it a ratio?

Only a few suggestions have been made to indicate the wealth of material which is available to add interest to the study of arithmetic on a higher level than that of the elementary school. Skillful teachers will find many additional items. Other suggestions have been made for the presentation of a large amount of material which will have social value, and which it is believed cannot be adequately treated in the elementary school.

III. THE QIES'SION OF GRADE PLACEMENT

Some may believe that arithmetic is an elementary school subject, and as such has no legitimate place in the high school. Such a position reveals a lack of knowledge of the history of the subject. A brief summary of this history may be appropriate at this point in our discussion.

With due regard for qualifications which are necessary for a complete understanding of the situation it may be pointed out that arithmetic was at one time a respected and honored subject for study in the college. In that famous classic of early American educational history, New England's First Fruits, we find arith-
metic listed among the studies of the third year for Harvard College. Moving from the seventeenth century to the nineteenth, we find arithmetic listed as one of the required branches of study in the freshman year at Ohio University in 1825. Reverting for a moment to the situation in the seventeenth century, it seems quite reasonable that a requirement in arithmetic should have been included in the college curriculum. Not much is known about the secondary school programs of that day, but they contained very little besides the study of the classics. A complete program of the Boston Latin School for 1789 makes no mention of any branch of mathematics; neither is any knowledge of arithmetic assumed for entrance. Inglis says that arithmetic was introduced sometime between 181.4 and 1828. ${ }^{2}$ This statement should not be taken to represent the first appearance of arithmetic on the secondary level. But the conclusion seems justified that arithmetic was taught on the college level because little or none of it was learned before, and that little must have been of a very elementary type. Kandel reports that arithmetic made its first appearance as a college entrance requ rement in 1745^{3} and he refers to it as "common arithmetic." The academies introduced arithmetic as a subject of study somewhat earlier. Certain private tutorial schools seem to have made the study of this subject available as early as 1700 . One description of a school listed among the studies available "Arechmatick, whole Numbers and Fractions. Vulgar and Decimal." "This emphasis is of course entirely understandable in light of the predominating philosophy of the academy.

No definite date can be given for the first appearance of arithmetic in the clementary school, nor for the time when it had come to be established as an elementary school subject. In an age of flexible curriculums, when adaptation to pupil needs was accepted practice rather than defensible theory, there was much sariation in practice. Several brief quotations from Parker's book are instructive. In 1789 "arithmetic. . . was often taught

[^19]in the elementary schools." "Very few teachers were competent to teach more than the fundamental operations." "The arithmetics of Nicholas Pike of Massachusetts were famous. Pike's complete work, containing five hundred twelve pages, with a rule for nearly every page, was used in the grammar schools and universities. An abridged edition issued in 1793 was intended for the elementary schools. . . ." "The curriculum of the American elementary school down to the American Revolution included reading and writing as the fundamental subjects, with perhaps a little arithmetic for the more favored schools." " It may be noted in passing that even in arithmetic an abridged edition of a text intended for college use was considered suitable for use in the elementary school.

Eventually, however, arithmetic came to be stabilized in the elementary school. It became one of the basic subjects of study, ranking with reading and spelling in importance in the minds of teachers and public. It practically disappeared from the high school. At least it ceased to appear in the form in which it had appeared previously, namely, as a first course, involving instruction in the fundamental operations together with their applications, for pupils who had received alnost no previous instruction in the subject.
Division of labor. In the last century or two we have witnessed a curious division within the field of mathematics. Much has been written and much has been said about "correlated mathematics" or "fused mathematics." The division of mathematics into discrete branches, as it has been taught in American high schools for the past one hundred years, is a comparatively new development. Fuclid's "Elements" included much material which we now classify as algebra and arithmetic. But somehow, high walls came to be erected between these branches of the subject, and the typical algebra course of 1900 was about as completely innocent of anything arithmetical as it could be. Many courses did not take up even the most obvious numerical applications of algebra, such as, for example, finding the product of 48 and 52 by the algebraic technique of finding the product of the sum and

[^20]difference of two numbers. Geometry also was purged of all references to other branches of mathematics, and in many courses even numerical applications were ignored. Thus arithmetic came to be overlooked as suitable material for study in the high school, either as a separate subject or as a branch of the subjects of algebra or geometry, and so far as mathematics was concerned the high school devoted itself to the pursuit of these "advanced" subjects, leaving arithmetic to the elementary school. The elementary school, at the turn of the century, was strictly minding its own business, giving its pupils as extensive and comprehensive a mastery of arithmetic as the time available, the intellectual capacities of the students, and the limited knowledge of the dynamics of learning would permit, but carefully protecting them from exposure to those other mathematical studies, the teaching of which had come to be associated with secondary school practice. Thus there grew up the idea that arithmetic was properly an elementary school subject, and that it did not belong in the high school, while algebra and geometry were thought to be more suited to the mental powers of secondary school pupils. This somewhat unfortunate division of labor became accepted and continued to represent common practice until the inception of the junior high school movement made possible a new attack on the problem of the redistribution of subject matter. This, however, was more effective in bringing sniall amounts of algebra and somewhat larger amounts of geometry into the seventh and eighth grades, than in moving arithmetic into grades above these. Up to the present time the general mathematics movement has had relatively little influence on the grades above the eighth grade.

IV. CONSIDERATIONS REIATING TO PROPOSFD MATERIAL

Dichotomy. The title of this paper, and the general trend of the discussion up to this point, would seem to imply a point of view held by many high school pupils, namely, that arithmetic and mathematics are two separate and distinct, even though related, branches of knowledge. The proposal here made is that arithmetic be given more attention as a high school subject. It
har been pointed out how before the beginning of the junior hign school movement the division of labor between the elementary school and the secondary school with reference to work in mathematics was quite definite. Consequently, many pupils overlooked the fact that arithmetic was a branch of mathematics, closely related to these other branches. And an arithmeticmathematics dichotomy arose which was not to be completely dissolved even by the correlation movement of the last troo decades.

It should not be understood that the proposal in this chapter implies any such dichotomy. A suggestion is here made for the inclusion of certain specific subject matter. This material more closely resembles that which has long been taught in the elementary school under the title of arithmetic than anything which has generally been taught in the secondary school. It is believed that anyone after examining the material would classify it as arithmetic. But it dues seem that the division above referred to has done much to prevent the acceptance of the material herein described as appropriate for the consideration of high school pupils.

As any reader will readily recognize, this dichotomy is more apparent than real. It developed as a matter of convenience. But if any consideration of algebra, or geometry, or other branches of mathematics can help in the understanding of the material proposed, certainly such consideration must be given. It happens that in only a few instances is the understanding facilitated by such consideration. Hence the material proposed will generally fall in the field of "arithmetic." And since it does it seems logical to propose the addition to the high school program of studies of a course in this subject.

Requirements. The question arises whether the study of the material herein proposed should be required of all pupils, or whether it should be offered for the benefit of those who elect to study it. That question must find its answer in terms of criteria which are usually applied in other similar situations. One of the difficult problems in the administration of the high school curriculum is that of relative ralues. This has two aspects, that dealing with the values of subject matter for individual pupils, whether strictly as individuals or as curriculum groups. and that
dealing with the secondary school population as a whole. If the material here indicated possesses educational values superior to those possessed by other material which now occupies a place in the program, it should displace the less worthy material. However acceptable the generalization in the last sentence may be on its own merits, only a very naïs practitioner of educational administration would accept it as a solution of the problem. Vested interests, curricular inertia. radition, interests of teachers, availability of instructional materials, theories of the nature of learning, ideas about the relation between education and vocational effectiveness, curious definitions of culture, prestige, college entrance requirements, pupil whims, and many other factors of varying degrees of relevance have their influence on the curriculum. However, a more functionl point of view of the curriculum is gradually gaining acceptance by public, parents, pupils, and school administrators. Some may be so impressed with the importance of the material proposed in this chapter that they will wish to place it among the constants in the curriculum. Others will prefer to permit pupils to make their own judgments about the significance of the material for their educational programs. No suggestion will be forthcoming as to whether the work here suggested should be "required" or "elective." Most of it is not available at all at present. rerhaps the question of prescrip. tion can be left to the future. The material will need to be organized. instructional instruments devised, classroom methods invented and evaluated. and results carefully investigated, before it can be known whether a body of educationally valuable material sufficiently significant to justify its prescription has been proposed.

Grade placement. Can the arithmetic which is here proposed for introduction into the secondary school program be taught in the elementary school, where the subject already has a recognized place, and where the efficiency of its teaching is steadily being improved? This again brings up the whole matter of grade placement. In a sense the proposal to teach arithmetic in the general curriculum of the high school represents a radical departure frum established practice. It is not the purpose here to discuss the problem of grade placement of topics in arithmetic; this question
is thoroughly examined elsewhere in this Yearbook. The reader will do well to evaluate the proposals in this chapter in the light of what is said about grade placement in the discussion in Chapter III. However, since these proposals do in the last analysis constitute recommendations for the assignment of certain subject matter to new locations, responsibility for some discussion of the theoretical basis for such recommendations cannot be evaded at this point.

Careful examination of the concrete suggestions above will indicate that there are important aspects of arithmetic, the complete understanding of which depends to a large extent on the mental maturity of the learner. For example, it is doubtful that typical pupils in the eighth grade would be able to develop any genuine understanding of logarithms, or of some of the other topics suggested, although some superior pupils will. A certain amount of mental maturity seems to be necessary for the intellectual manipulations necessary for the understanding of various kinds of abstractions. Then there are other topics which seem to require social maturity, not only for understanding, but also for that amnunt of genuine interest which is necessary for good learning. An example may be found in the topic of insurance. No one would deny that children in the sixth or seventh grade might be abie to understand some of the fundamental concepts involved in the study of this topic. However, there are other aspects which are sufficiently elusive to tax the powers of comprehension of the typical adult who is attempting to make that delicate balance of factors involved in the setting up of a practicable, and, at the same time, adequate, program of protection for his family. Since this topic is customarily given some attention in those courses in arithmetic which are offered in commercial curriculums in many high schools, it ought to be relatively easy to measure the effect of social maturity upon learning. This, however, has not been done, so we must again run the risk of taking a position based solely on good logic and on what seems reasonable. Consideration of other topics with important merits from the standpoint of social utility leads to a similar conclusion.

Needs. Is there a need for a course of the type under discussion? Before proceeding to a discussion of the ways in which such a
need might be discovered if it exists, we should come to some agreement on what constitutes a need. Needs are relative. And the existence of needs is always a function of the point of view of the individual who is trying to recognize, identify, establish, or satisfy them, and of the educational philosophy against which they are projected. Hence, rather than make an attempt to establish a case in terms of needs, an effort will be made in this section simply to direct attention to certain situations which it is believed point the way to the desirability of the introduction into the high school program of some of the material which has been described.

All this does not mean, however, that such a need cannot be established with some degree of certainty, but rather that it is not convenient to do so at this time. Evidence may already exist which would establish the case; no systematic search for such evidence has been undertaken. It is likely that it does not exist in usable form. But evidence of the need for the introduction of this material into the curriculum will be derived from a comprehensive study of the failure of a large number of persons to make the maximally effective adjustment to their environment because of the absence of that material. Or it will be derived from a collection of instances in which individuals have found use in everyday life for those abilities and that information which the proposed material should provide.

One of the reasons for teaching arithmetic in the elementary school is that people may be able to perform computations which occur in the normal activities of the everyday lives of typical adults. Any reader can supply his own evidence, perhaps anecdotal in nature, to support the generalization that there are many adults in the world today who use their arithmetic with less than maximal efficiencr. They may have learned the fundamental operations with integers, fractions, or decimals, at one time, but they show slight evidence of having done so. They stumble when they find it necessary to perform a simple computation under the observation of others, and frequently retire from the scene in embarrassment. Admitting for the monent that the elementary school is rapidly improving its procedures in the teaching of arithmetic, we must face the question, does
ticohigh school owe anything to the individual typified above? The arithmetic of college students bas been investigated fre quently, but only one sample of the results will be quoted. In one large state university "hall of the students made scores below the eighth grade norms in operations with integers that involved problems in division. In other aspects of arithmetic the percentage below the eighth grade noms varied from 4 to 40 . On one of the tests 1.4 per cent of the college students fell below the fourth grade norms!" Many other instances of similar studies of the arithmetical equipment oi high school pupils, college students, and adults, could be cited. In addition, there is need for further attention to the informational aspects of arithmetical topics. The lack of knowledge on the part of adults along these lines has not been so definitely cstablished, but common observation indicates that it is as significant.

Cautions. Certain cutions may well be presented relative to the proposed material Some of these apply with particular cogency in the case of a specifice course set up for the purpose of achieving the results implied in this paper. In the first place, it is not proposed that the arithmetic of the elementary school simply be given a thorough revien: There are some courses in arithmetic in high schools todiay which do not go beyond that. Sometimes the teacher has higher ambitions, but he seems to think that fi. t things should come first, and that there is no use in attempting to build a superstructure on a shaky foundation. So he tests the pupils, finds them weak in the fundamental operations, and begins by giving a review. Frequently the semester is over before the review is completed. In the second place, the course must not wear itself out in a futile pursuit of " 100% accuracy." I.est these proposals seem to contradict what was said above about the needs of adults for a better command of the fundamentals of arithmetic, let it be said that this contradiction is more apparent than real. Also, the course must not be one in number theory. Certain aspects of number theory are both interesting and useful in the cducation of the average adult. Suggestions were made for the inclusion of certain material along
a Alvin C. Furich, in Gimeral Filumbom in the fmerican College. Thirlv-eighth Yearbook of the . 'alionnl Soriolv for the Sholy of Education, Part II, p. 81. Public School Publishing Co., Blowmington, Ill. 1939.
this line. However, the mathematically trained teacher may be tempted to approach this material from such a highly theoretical point of view as to defeat the purposes intended. This is not so likely to happen if the material is not presented in a special course, but in connection with other courses. In the fourth place, there is some danger that the proposed course may degencrate into a course in "rapid calculation." Such courses used to be taught, especially in commercial schools in the days before bookkecpers had the benefit of adding machines. Drill materials for this type of work are still available, and no doubt are used in some courses in "Commercial Arithmetic." This point of view may be appropriate in its piace, but does not beloug in the treatment of the material assumed in this paper. Finally, the course must not become a series of complicated and difficult verbal problems. dealing with socially unimportant situations, but interesting chiefly because of the demands which they make on the learner for ingenuity and dogged determination in finding a solution. The point of view here referred to was sometimes present in the one-room rural school of the ninetecnth century, when the teacher was possessed of a high intellect and a liking for mathematics, together with a consummate faith in the disciplinary value of the involved arithmetical problems which he assigned such of his advanced pupils as were interested in attempting to do the work. Such a teachcr frequently possessed a private library of pet problems with which he baffed his students and impressed the public, and often embarrassed other teachers who did not possess his interest in that particular form of intellectual activity. Many such problems found their way into early texthooks. An example of such a problem. taken from a book publisheri in 1880, follows: ${ }^{?}$

If 15 men cut 480 sters of wood in 10 days, of 8 hours each, how many boys will it take to cut $11: 2$ sters of wood. only $2 / 5$ as hard, in 16 days. of 6 hours cach. provided that while working a boy can do only $3 / 4$ as much as a man. and that $1 / 3$ of the boys are idle at a time throughout the work? Ans.. 2.4 bows.

[^21]
Chapter VII

THE SOCIAL PHASE OF ARITHMETIC INSTRUCTION

BY LEO J. BRUECKNER

UNIVERSITY OF MINNESOTA

IN the modern school the primary purpose of the curriculum should be the provision of a series of learning experiences that will develop in the learner constantly enriched social insight and understanding. To evaluate a particular learning experience we may apply such criteria as the following: In what ways does this experience make more meaningful to the learner the present social situation and h^{\prime}. him to interpret it? How does the unit lead the individual to see the contrasts between the present status of practices in an important area of human endeavor and conditions in that area in the past? How does it lead the learner to see the part that human intelligence has played in the solution of problems and difficulties that have arisen in the evolution of social institutions? How does the experience bring to the attention of the learner the emerging problems and difficulties in an important area of human affairs and the ways in which it is proposed to solve these questions? Does the experience lead in an increasing degree to the development in the individual of an appreciation of the need of his active participation in the redirection of social affairs through the exercise of intelligent human control?

It is the purpose of the present chapter to consider the implication of these criteria for arithmetical instruction. They reveal the necessity of considering the possible contributions arithmetic can make to the social function of the school. At the same time it will be pointed out that these considerations do not in the least obviate the need of providing fully and adequately for effective training along definitely mathematical lines.

THE RELATION OF THE MATHEMATICAL AND SOCIAr. PHASES OF ARITHMETIC

The importance of the above named criteria in connection with the arithmetic curriculum has been clearly recognized in the preliminary report of the National Council's Committee on Arithmetic. ${ }^{1}$ In this report the Committee took the stand that "the functions of instruction in arithmetic are to teach the nature and use of the number system in the affairs of daily life and to help the learner to utilize quantitative procedures effectively in the achievement of his purposes and those of the social order of which he is a part." This point of view recognizes two major mutually related and interdependent phases of instruction in arithmetic, namely, the mathematical phase and the social phase. Full recognition of both phases is essential. Eimphasis on the social phase to the neglect of the mathematical phase will not develop in the pupils the quantitative concepts, understandings, and insights that should be the outcomes of a well-rounded program of instruction in arithmetic. On the other hand, emphasis on the mathematical phase to the neglect of the social phase will not lead the learner to sense completely the social significance of number in the institutions and affairs of daily life. A balanced, we!l-integrated treatment of both phases is esscintial. Arithmetic should be both mathematically meaningful and socially significant. This is essential if arithmetic is to make its maximum contribution to the development of socially competent individuals.

The evolution of the arithmetic curriculum. Arithmetic was introduced into the schools of this country because of its "practical values in business." The first textbooks contained business applications which represented definite needs of the period, almost always on the adult level. With the passing of time new applications were introduced, but the school, always a conservative institution, retained almost everything that had in the past. been taught. Gradually the arithmetic curriculum developed into an unwieldy mass, containing a body of content, much of which was useless and impractical, and with little meaning to the pupils

[^22]because they never encountered in their daily experiences many of the processes and topics taught. Arithmetic was usually taught by people who had had very little, if any, business experience. Academic-minded persons began to emphasize the historical position that arithmetic is "the science of numbers," and to stress the purely mathematical phase of the subject to the neglect of the social phase. Gradually the possibilities of the science of numbers were developed by those who were in charge of our classrooms and by those who wrote our textbooks. Thus, the purely mathematical phase of the subject became the basis of the major content of the arithmetic curriculum. It was inevitable that arithmetic, which was introduced into our schools because of its practical values, should therefore become more and more academic and unrelated to the affairs of daily life. Its continuance in the curriculum was increasingly justified on the grounds of mental discipline rather than its practical utility. When the theory of mental discipline was exploded, other values such as "cultural" values, "preparatory" values, "conventional" values, and "leisuretime" values were substituted. To a considerable degree these values still dominate the work in arithmetic in many of our schools.

The changing arithmetic curriculum. The present century has been marked by a number of attacks on the arithmetic curriculum which have greatly modified it. In the period from 1910 to 1920 numerous studies were made by various investigators, among them Wilson, Jessup, Bobbitt, Woody, and Charters, to detemine the arithmetic that was useful in the affairs of he daily lives of adults. These studies revealed the fact that actual social usage of number processes included a much narrower and simpler range of skills than those commonly found in current courses of study. Many topics dealing with the applications of number were found to be obsolete and useless. Enfortumately, these studics dealt with adult needs rather than child needs. As a result of this group of investigations, the arithmetic curriculum has been greatly simplified, and much of the accumulated dead wood has been eliminated. Topies such as cube root, surveyor's measure, complex fractions, and many others of no social utility today except for workers in specialized occupations
are no longer found in up-to-date courses of study and textbooks. The place of these obsolete topics is being taken by rich units of social experience in which the pupils may learn about important social institutions, and, at the same time, practice in--reasingly mature and refined mathematical procedures and technics for dealing more effectively with the quantitative aspects of their daily affairs.

Another group of studies dealing with various aspects of child development has also led to significant changes in the arithinetic curriculum. It was early demonstrated that above grade two more pupils failed in the subject of arithmetic than in any other area of the curriculum. Studies of factors thought to be contributing to this situation led to the conclusions that (1) instructional materials were not effectively organized, (2) many of the processes were being taught at levels in the school at which many of the pupils did not have the mental ability needed to master them, and (3) instruction tended to emphasize unduly the computational phase of arithmetic with the result that much of the work in the classroom was without significance to the pupils. The need of more adequate provisions for individual differences in readiness for the learning of various topics, in rates of learning, and in difficulties encomntered was also revealed. As a consequence of these investigations much has been done to improve the quality of instructional materials, to adjust the gradation of topics more nearly to the facts known about child development, and to enrich and socialize instruction so that the work in arithmetic may be made increasingly more significant to the pupils.

The child psychology movement has also led to the recognition of the need of giving more adequate attention to what the National Council Committee has called the "social phase" of the arithnetic curriculum. Undoubtedly one of the chief problems of the school is to determine from the wide range of applications of numbers those that the great majority of people can profitably use in their daily affairs. An important section of these social needs and problems about which our youth should be made intelligent consists of those that appear in the normal, desirable activities of boys and girls both in and out of school,
an area as yet practically unexplored. The writer ${ }^{2}$ has shown that analyses of current social problems as seen by frontier thinkers in the fields of economics, sociology, and political science contain many problems that are closely identified with topics that are now included in the arithmetic course: for example, issues related to taxation, to the consumption of goods, to the distribution of wealth, to wise expenditure of funds, and to the support of the indigent, handicapped, and unemployed. The selection of suitable and significant topics dealing with social processes in which number functions directly as a basis of units of instruction at various levels of the school is strongly recommended by this Committee.

At the same time consideration must be given to the organization and gradation of the basic curriculum material so that the pupils will have the mental ability required to master the units of work at the time they are introduced, and so that the work will be within the range of their experiences and interests. The recognition of the fact of maturation of ideas, skills, and concepts requires that the instructional programs be so organized as to contribute to the continued development of understanding of, and insight into, mathematical relationships as the pupil advances from stage to stage through the school.

Attainment of the mathematical aim of instruction in arithmetic is reararded as possible only if meaning, the fact that the dildhen ere sense in what they learn, is made the central considenation in arithmetic instruction at all stages. As is indicated in the first report of the National Committee. "Arithmetic is conceived as a closely knit system of understandable ideas, principles, and processes, and an important test of arithmetical learn ing is an intelligent grasp of the number relations together with the ability to deal with arithmetical situations with proper conprehension of their mathematical significance." The desired outcomes. related to the mathematical and the social phases. can most likely be secured by making certain that the pupil has vital social experiences in which he is led to see the number involved in situations that are meaningful and significant to him,

[^23]and if at t.e same time the teacher takes the steps needed to make certain that the mathematical meanings of the number elements involved is fully grasped by the learner. The teacher should plan definitely and systematically to develop number meaning by making the pupil conscious of the ways in which number functions in the experience and then seeing to it that insight into the quantitative procedures is developed. The aim of the teacher at all levels should be to develop in the pupils the ability and the disposition to view the affairs of life in orderly, systematic ways, and to use quantitative technics, when feasible, to enable them to see the relationships involved more clearly and exactly. This mode of quantitative thinking can be refined and extended as the learners progress through the school.

THE SIGNIFICANCE OF THE SOCIAL PHASE OF ARITHMETIC

John Dewey has defined education as "that reconstruction or reorganization of experience which adds to the meaning of experience and which increases ability to direct the course of subsequent experience." In this statement there are two important words, namely, "meaning" and "direct." As far as arithmetic is concerned, the word "meaning" has a two-fold connotation. It refers on the one hand to the meaning of number itself, an understanding of the number system and its interrelationships. On the other hand, "meaning" refers to the secial significance which the situations in which number is applied have for the learner. For example, the institution, taxation, involves principles, issues, and practices which do not require the direct manipulation of number processes to grasp their social sig. nificance. A class might debate the issue, "Should Minnesota adopt the sales tax?" without going at all into the actual computation of the taxes, but by weighing carefully the various social considerations involved. On the other hand, a class might devote the whole time allotted to taxation to the actual computation of taxes and tax rates and devote no time whatever to the con-

3 Athometic instution which features the mathematical phase as a means of developins meaning is discused in other chapters, particularly those by Sauble, Thiele, and Wheat. ihese chapters supplement Ir. Brueckner's chapter, which deals specifically with the social phase. (Editorial Roard)
sideration of the social aspects of the topic. If the pupils were not led to consider the social significance of this topic in the broadest sense of the term "meaning," as here presented, it is obvious that they would not become aware of the isstues related to the problems or be made familiar with ways in which they are being dealt with today. As a consequence they would not be prepared in any way to "direct" more effectively the course of their subsequent civic experience involving the consideraticn of issues related to taxation and would not be able to participate intelligently in the solution of the issues involved. If this topic is dealt with by the teacher in such a way as to bring out the implications of the questions listed as criteria in the first paragraph of this chapter, it is obvious that not only will the topic have significance for the learner but that he will also 'ater be able to participate intelligently in the consideration of tace issues involved and in steps leading to their solution. This social approach must, of course, be paralleled by well-planned steps to bring out clearly the mathematical elements and relationships that are involved.

Major points of emphasis in the arithmetic instruction. The topic, taxation, or any similar topic, would, of course, be incompletely treated unless the pupils were led to consider it adequately from both the mathematical and social points of vien. The treatment of such topics, in so far as the mathematical phase is concerned, would include such items as the making of essential computations, the bringing out of the relationships between the quantitative factors concerned, the presentation of the basic symbolism and units of measure involved, the interpretation of necessary or pertinent tabular or graphic data, and a consideration of the validity and limits of existing knowledge about the topic under consideration. In the lower grades the comprehensive study of such a topic, as "What items affect the cost of mailing a letter?" offers ample opportunity to bring out both the ways in which number helps us to manage human affairs and the varied mathematical relationships in a simple social situation. The general information gained by the pupils in the consideration of such a topic is also of undoubted value in helping them to understand some of the aspects of the social
process, communication. It should be clear that in some units of work there may be somewhat more emphasis on the social than on the mathematical phase of arithmetic, while in other units the reverse will be true.
It may be helpful if at this point some of the major ideas that are related more directly to the social phase of arithmetic are more definitely identified. These ideas, sometimes called themes, may all be brought out in some way in any well-selected unit, although this is not essential, since the idea or ideas that may emerge in any unit will be determined to a large extent by the scope of the topic and by the way in which it is explored by the class under the guidance of the teacher.

Social Evolution. To add to richness of mpaning there is no good reason why the pupils should not be led to see that both our present social institutions and also our ways of dealing w.th their quantitative aspects are the more or less perfected end products of a process that is in general evolutionary and progressive. This applies not only to the development of our number system itself, but also to the study of such human institutions as methods of measurement, money and barter, taxation, and insurance. The pupils should be lea to see that these and many other institutions began with crude methods and procedures that have since been improved, refined, and standardized through the application of human intclligence to the task. The study of this evolutionary process will lead the pupil to see the significance of number in human progress and should lead him to see that this developmental process is not completed at the present time.

Such topics as the following are rich in their possibilities for developing the idea of social evolution:

1. Ways of telling time, past and present.
2. The kinds of money that people have used and use today.
3. The development of our units of measure.
4. How our present system of taxation developed.

Cooperation. The pupils should be led to see how effectively number has contributed to the development of inter-cooperation among people. As Dr. Judd has pointed out, if we merely teach the pupils how to tell time by the clock and neglect to point
out at the same time the ways in which the clock has facilitated inter-cooperation among peoples, we have overlooked a very valuable contribution that a consideration of this suciological phase of the topic might make to an understanding of the social process. In the same way the treatment of the topic-moneyshould not be limited to mere computation with money. The topic can be presented in such a way as to show to the pupils its value as a device invented by man as a more manageable way of exchanging and distributing goods and paying for services rendered than the carlier social process of barter and exchange. Lihcwise, the teaching of taxation, insurance, banking, our credit system, and many other topics, should not fail to stress the fact that each of these institutions is an illustration of the ways in which number has facilitated inter-cooperation among people.

The following topics suggest units rich in possibilities of developing the idea of inter-cooperation:

1. How the clock helps us to live together.
2. What is the system of numbering houses used in our community?
3. Where does the money for our schools come from?
4. How are people paid for the work they do?

Invention. The study of the process by which human intelligence has in the past devised inproved procedures for dealing more effectively with quantitative aspects of social affairs should have as its goal an awareness by the pupils that new problems will as surely arise in the future as they have arisen in the past. The pupils should be led to recognize the need of inventing new and improved ways of dealing with those aspects of their lives that can only be managed efficiently through the use of quantititive technics. Ingenuity in dealing with quantitative aspects of situations should be fostered. "The progress of science depends very largely upon the facility with which facts can be recorded and relatic nships between them considered. The notation of the mathematician affords the miximum of precision, simplicity, and conciseness."

The following topics are suggestive:

1. What is the metric system and why was it devised;
2. How do we measure food value?
3. What new forms of taxation are being considered today?
4. Why have consumers' cooperatives been established?

Control over Nature and Natural Processes. Man is constantly engaged ir a struggle to control nature and to direct natural processes to his advantage. Quantitative procedures have been of great assistance to him in this connection. The mariner and the aviator can proceed more safely because of the compass. The thermometer enables man to make necessary adjustments to fluctuations in temperature and to some extent to control it. The precise rigorous tests in experiments which determine courses of action are possible only because of the use of number. The weather bureau uses quantitative methods to predict the climatic conditions. Index numbers of production, distribution, and consumption are increasingly being used to aid in setting up measures to regulate natural processes. Insurance is possible because of the fact that we can predict mortality of individuals on the basis of carefully collected data. These and many other ,imilar illustrations of human efforts to utilize quantitative procedures to direct natural processes to social ends show ways in which the teacher of arithmetic can develop mathematical meaning and ensure at the same time an awareness of the social significance on the part of the pupils of the items being studied.

The following topics are suggestive:

1. In what wias has the thermometer helped the man in the greenhome:
2. How can we masure the difference in plant growth due to the effects of fertilizers?
3. What is being done by our government to control the production
of crops?
4. How does the weather bureau help aviators and mariners?

Economic Literacy. Arithmetic affords a convenient vehicle for teaching the pupils significant facts about the production, distribution, and consumption of goods and about many of the other economic aspect: of life, including insurance, business relations, banking, taxation, and so on. The pupils should be led to see the necessity of accurate, dependable information in the buying and selling of food, clothing, and other necessities of life. and in the management of their daily affairs, including. later on, their occupations. They should be taught about elementary business practices and the economic interdependence of human institutions. Sources of loss. such as fraud, forgery. specin-
lation, damage to property, and bad debts, offer a fertile field for worthwhile discussions. As Dr. Horn has stated, the pupils should be led to "think while reading" and to evaluate the authenticity and dependability of information presented to them in any verbal or visual form. It is an unfortunate fact that in almost none of our present courses for teachers of arithmetic is adequate consideration being given to the need of educating individuals who have genuine economic literacy.

The following topics are suggestive:

1. How is the money we pay for stamps used?
2. Which is the cheaper way in which to buy, in bulk or by the package? Why?
3. Why do prices of commodities usually fluct tate from place to place and from year to year?
4. Is the money raised by taxation being spent economically and to the grestest advantage?
Kinds of units in arithmetic experience. The experiences that can be utilized by the teacher to achieve the purpose of arithmetic instruction are of various sorts. The wise teacher will seize every opportunity that may arise in an incidental way either in the classroom or in fe outside the school to bring to the attention of pupils the social significance and the utility of number and its applications in the affairs of life. However, because of the unpredictable nature of these experiences and because of their unsystematic, disorganized occurrence. the teacher should also actively seek and plan other social situations which will be rich in the use and social application of quantitative procedures, and which at the same time are most likely to contribute to the development of the major ideas described above that are related to the social phase of arithmetic. In selecting these more systematic units of instruction the teacher should consider carefully the stage of the development of the arithnetic ability of the pupils, their mental level, and their needs and interests. It is not essential that these social situations require the use of the computational processes that are being learned by the pupils. However, it is obvious that the most desirable unit of instruction is a rich unit of social experience likely to appeal to the pupils as worth while that gives them contacts not only with applications of numbers in the affairs of life but also with the
elements of computational arithmetic that are most appropriately taught to children at their stage of development. Units selected on this basis not only show the pupils the need for the drill work to be done to ensure mastery of the basic skills, but also vitalize the instruction be revealing the social significance of the processes or topics that are being learned. Insight into the social situation should grow out of a careful consideration of the relationships between the various elements in the experience which can be brought out sharply and definitely by the application of quantitative procedures. At the same time there should develop insight into the mathematical procedures that are being employed.

Sources of units stressing the social phase of arithmetic. Modern textbooks are giving more adequate consideration than in the past to the social phase of the arithmetic curriculum. For example, a recent study of Gustafson' of the amount of space devoted to strictly informational material related to the social phase of arithmetic showed that in two third grade books published in 1893 and 1895 there were only 69 and 7.4 lines respectively of this kind of material. On the other hand, in three third grade books published in 1935 the numbers of lines of informational material were $38.4,593$, and 1,089 respectively. These results are typical for a total of 22 third grade books. The newer books evidently contain much more informational material than the old books, although large differences exist from book to book. It should be emphasized that teachers should always feel free to go beyond the limits of the book for illustrations and applications of number. Well selected experiences that utilize direct contact with local situations are undoubtedly of greater value than those that are presented formally in a textbook.

In another study of similar informational social material, in this case involving no computation, Herrmanns found that in the books for grades four, five, and six, of five modern series,

[^24]the total amount of line space for the books of each series varied from 1,297 lines to 3,536 lines, a ratio of almost one to threc. It seems evident that the amount of assistance the teacher can secure about social applications of arithmetic varies widely with the textbook.

Hermann's analysis of subject matter revealed a wide variety of different topics that deal with the social phases of arithmetic in the books he analyzed. For purposes of illustration the fifty. four topics related to consumer eduration that he listed will indicate the nature and social significance of topics in this field that are now finding their way into textbooks. The list follows:

Buying and Selling Practices

1. Methods used in price labelling
\because. Finding costs in a project
2. Widths in which cloth is sold
3. False bottoms in measures
4. The sales slip
5. Reasons for price changes
6. How to compute real profit
7. Basis of credit
8. Functions of better i.usiness bureaus
9. Farly period prices and why they changed
10. Per capita food costs of countries compared

Using Transportation Facilities

1. Parcel post and express services
2. Parcel post insurance
3. Meaning of C.O.D).
4. Commuter's and round-trip tickets
5. How freight rates are computed

Banking

1. Making deposits and use of bank books
2. Savings account outine
3. Services of banks
4. Thrift by small savings
5. Cherk writing, endoning, and cashing
(i. Cherk stub recorcs

Spending the liamily Dollar

1. Patronizing the rafetenia
2. Choicers in purchases for thift
3. Cost of cut flowers and ported plants
4. Bulk buying advantages
5. Magazine subscription savings
6. Library fines
7. Rent
8. Homemade and commercially made costs compared
9. Grades and price of milk and gasoline
10. Quantity buying savings
11. Saving at sales
12. Advertisements
13. Checking sales slips
14. Accounts of receipts and expenditures
15. Time and cash payment plans
16. Car operation costs
17. Family budgets
18. Monthly bills and forms
19. Receipt forms and uses
20. Cold storage food costs
21. Food container costs
22. Electrical device operation costs
23. Heating costs compared
24. Sizes of cans of preserved foods
25. Large and small package costs compared
26. Water, gas, and electric rates
27. Cash discounts
28. A la carte menus
29. Secondhand buying
30. Charge accounts
31. Out-of-season food costs

Miscellaneous

1. Safety practices
2. Testirg sceds for germination
3. Cost of window glass

An analysis by the reader of the topics listed above should make it clear that there is a definite tendency today to include in arithmetic instruction the kinds of topics that are likely to develop in the pupils an understanding and an appreciation of vital social practices and procedures and of the ways in which number functions in the affairs of daily life. Questions and problems based on such topics as these are certainly more valuable than the isolated problems that in the not distant past were the only kinds included in our textbooks.

Experimental development of curriculum units. Educational literature contains a number of descriptions of units that were taught in such a way that they dealt with both the mathematical
and social phases of arithmetic. For example, Schaeffer described a fourth grade informational unit on time measurement that divided the subject into four main topics as follows:
I. How the cave men told time

1. The shadow on the rock
2. The shadow clock
3. The rope clock
4. The flower clock
II. Clocks from long ago to now
5. The sun dial
6. The water thief
7. The time candle
8. The sand glass
9. Early mechanical clocks
10. Clocks with pendulums
11. Smaller clocks and watches
12. Electricity and clocks
III. How the world gets its time 1. The causes of day and 1 ht
13. I at lines on the globe
14. Setting the clocks
15. Standard time
16. Daylight standard time

IV'. The story of the calendar

1. What the moon told men
2. Calendar from long ago to now
3. Calendar reform

Schaeffer prepared a number of authoritative mimeographed articles covering all the topics which formed the basis of much of the class discussion. Twenty class periods were used to develop the unit. The following list of activities shows the nature of some of the lessons: "Simple discussion of what pupils already knew about the topic; work-type reading lessons, in which the pupils read articles to answer questions, to prove statements, to outline points, etc.; preparation or reports; giving of reports; planning of activities; making of replicas of early time pieces (shadow clock, sundials, water clocks, etc.); coloring maps to show time zones; solving clock problems; and reading timetables."

Tests involving both mathematical and social phases of the subject were administered at the end of each of the four major topics. The reader can easily see from an analysis of the contents of the unit how the major social ideas, evolution, cooperation, invention, and control over nature and natuma processes, as well as the mathematical principles involving precision, computation, functional relationships, and symbolism, were all developed in an intertelated, meaningful way.

Records were also kept of the reactions of the pupils during the

[^25]course of the unit. Schacffer describes the outcomes of this unit as follows: "(1) The subject of time measurement was of genuine interest to this group of pupils during the entire unit. (2) The reading materials of the unit were not too difficult. (3) Illustrative materials, such as odd clocks and pictures of early time pieces and calendars, are available. (4) A large percentage of the pupils were able to understand such terms as 'standard time,' 'calendar reform,' 'daylight-saving,' 'pendulum,' 'rotate,' 'time-recording.' and 'telescope.' (5) Activities of special interest were the making of early time pieces, the giving of reports on materials read, the reading of stories related to the unit. Cramatization of stories. and related art work." Obviously there were many opportunities to utilize quantitative procedures in this unit of work. However, the major emphasis was on outcomes more closely related to the social than to the mathematical phase of the subject.

Harap and Mapes ${ }^{7}$ conducted a group of studies whose primary purpose it was to determine the extent to which children can master arithmetic processes through their use in lifelike activities and social situations so selected that oppe 'unity for the use of number processes was certain to arise in them. One interesting group of units that was selected so as to bring in applications of decima!s was a series dealing with the making of household preparations, such as tooth powder, furniture polish, ink. hand lotion, and paste. The only actual computations performed were those needed to carry on the activity. All work of the pupils was kept in notebooks which were frequently checked by the teacher. All errors had to be corrected. There was no drill as such. These units were taught in such a way as to conaribute to the education of consumers, an important aspect of the social phase of arithmetic. Relative costs of homemade and commercially made products were compared. This led to interesting discussions of some of the social issues that arose, such as reasons for differences in costs. Harap and Mapes report that the processes involving operations with decimals were mastered by the pupils. Unfortunately no detailed data were given in the reports as to the range of socially significant information other than computa-

[^26]tional skills that the pupils actually acquired as a result of this work. The implications of the report of the study are that these informational outcomes were rich and significant. Similar studies involving the use of social experiences were also conducted by Harap and his associates ${ }^{8}$ in grade three and in grade five. In each case it was amply demonstrated that not only were the computational processes ordinarily taught in these grades mastered at least as well as in ordinary classes, but that there were also rich concomitant values in the field of social understanding and insight.

These studies and others that could be listed are indicative of the valuable contributions that can be made by a well-organized program of instruction in which full recognition is given to the need of considering both the mathematical and social phases of arithmetic. There is a great need of further exploration of the possibilities of rich social units of this kind. The teacher in the classroom who has a grasp of the significance of the point of view here presented can make real contributions to the improvement of the arithmetic curriculum.

In his book Mankind in the Making, H. G. Wells made the following statement which summarizes very well the point of view that the chapter has discussed: "The new mathernatics is a sort of supplement to language, affording a means of thought about form and quantity, and a means of expression, more exact, compact, and ready, than ordinary language. The great body of physical science, a great de ${ }^{\text {' }}$ of the essential facts of financial science, and endless social and political problems, are only accessible and only thinkable to those who have had a sound training in mathematical analysis. The time may not be very remote when it will be understood that for complete initiation as an efficient citizen of the new great complex world-wide states that are now developing, it is necessary to be able to compute, to tlink in averages, and in maxima and minima. as it is now understood to be necessary to be able to read and to write."

[^27]
Chapter VIII
 ENRICHMENT OF THE ARITHMETIC COURSE
 Utilizing Supplementary Materials and Devices
 BY IRENE SAUBLE
 DETROIT PLBLIC SCHOOLS

Tmis chapter aims to point out the potentialities that exist for vitalizing and enriching the teaching of arithmetic on all grade levels through the use of a wealth of supplementary instructional materials and devices which may be provided through the initiative of the individual teacher. Suggestions are given to assist the teacher in obtaining and using such materials.

The different types of supplementary materials and devices which will be illustrated and discussed in conjunction with the teaching of definite mathematical and social concepts include the following:
(1) Concrete materiais which may consist of real objects or representations of real objects which pupils may manipulate in gaining first-hand experiences.
(2) Measuring instruments which may be provided for pupils or which may be constructed by pupils.
(3) Pictures-provided for pupils or made by pupils to represent mathematical ideas.
(4) Charts, diagrans, and graphs.
(5) Business forms used in the community-checks, deposit slips, withdrawal slips, monthly statements, bills, insurance policies.
(6) Advertisenments, handbills, clippings, catalogs, pamphlets, which contain information which may be useful in illustrating or formulating current arithmetic problems.
(7) Posters, displays, exhibits, scrapbooks.
(8) Trips, interviews, special reports.
(9) Dramatizations of business procedures.
(10) Analyses of life situations having quantitative aspects.

Supple: entary materials as well as other types of materials contribute to the two aspects of number which Buckingham desig-
nates by the terms significance and meaning. He states: "By the significance of number I mean its value, its importance, its necessity in the modern social order. I mean the role it has played in science, the instrument it has proved to be in ordering the life and enviromment of man. The idea of significance is therefore functional.
"On the other hand, the meaning of number, as I understand it , is mathematical. In pursuit of it we conceive of a closely knit, quantitative system. . . . Under the heading of meaning I include, of course, the rationale of our number system. The teacher who emphasizes the social aspects of arithmetic may say that she is giving meaning to numbers. I prefer to say she is giving them significance. I hasten to say, however, that each idea supports the other."

Although it is impossible to discuss one aspect of aritmonetic teaching without some reference to the other aspect, an attempt will be made to focus attention upon materials and devices which may be employed in the development of meanings of numbers, processes, and measures in part I of this chapter and reserve part II for special emphasis upon the supplementary materials and devices which may be used in giving social significance to numbers, processes, and measures.

1. DEVELOPMENT OF MATHEMATICAL MEANINGS

Developing meanings of whole numbers. Counting objects provides one of the first activities in the development of number meanings. In school and out of school, pupils count real objects for definite social purposes. They count the children on each side in a game, comnt the children present each day, count the scissors, books, chains, and pencils, to see whether these are enough for the class. Howerer, to develop adequate number ideas, pupils need many experiences with groups of objects beyond the activity of counting them in some given arrangement. As the next step. each pupil should be given the opportunity of ex-

[^28]perimenting with groups of objects in making as many different arrangements as possible. A pupil who has eight cardboard pennies may be encouraged to work out for himself and report to the class many arrangements which he will gradually come to generalize as the basic combinations. Fight will mean two t's and four 2 's as well as 6 and 2,5 and 3,7 and 1 .

Pupils need to use groups of objects in making comparisons also. Fight pennies are how many more than 6 pennies? Four chairs are how many less than 7 chairs, etc.

In making provision for this variety of experiences with groups, two types of concrete objects are required-objects small enough for pupils to use individually at their own desks. and objects large enough to be used at the front of the room in carrying through some activity which all pupils are to observe.

Small objects which may easily be provided in a large enough quantity so that each pupil may have a supply to work with include the following:

Play pemies-which may bre pur hased commercially or may be made by cutting out cardheand circles.
Small cardboard tickets about $1^{\prime \prime}$ by $2^{\prime \prime}$.
Milk bottle caps which may be called dollans.
Butons and butcon modds which are that on one side.
Toothpicks or small sticks of any kind which may be imagined to be sticks of candy or candy canes.
Small cut-onts of animals. flowers, fruits, which are often available in packages as stickers.
Sticker- for special dass include witches and pumpkins for Hallowe en: hearts for Yalentine's Day; turkeys for Thanksgiving; tiees, bells, candles, wreaths, ctc.. for Christmas; and chickens, rabbits, eggs, etc., for Easter. Stickers may be used to paste on a large shect of paper to make picture reconds of the various number arrangements.
Small-sized clothespins.
Paper dolls.
Small squares of colored paper to represent postage stamps, Christmas scals, or Easter seals.

If scissors and materials are provided. pupils will often be able to make their own cut-outs, their own tov money. or the cardboard tickets.
large objects which mav be moved about at the front of the
room or used as stage properties in the dramatization of some life activity include the following:

Objects in use in any classroom-chairs, erasers, books, pads, pencils, pencil boxes, large nanila envelopes.
Eimpty candy boxes, cereal boxes, shoe boxes, which may be used to hold quantities of smaller materials when such materials are being divided into equal groups. They may also be used to represent toy banks, cash registers, pocketbooks.
Paper plates, paper bags.
mioks, and other toys.
L.arge clothespins-which are often painted in some color.

Rectangular pieces of cardboard the size of candy bars.
Wooden or paper spoons-which may easily be done up in bundles.
Cardboard tickets about $3^{\prime \prime}$ by $4^{\prime \prime}$.
'Toy money in bills of different denominations- $\$ 1, \$ 10, \$ 100$ bills. These paper bills may be made by the teacher from heavy paper cut into the correct sizes on the paper cutter and the denomina. tions stamped on with a number stamping set and ink pad. It is advisable to make these bills in different colors; for example, $\$ 1$ bills green, $\$ 10$ bills yellow, etc.. since the denomination can then be recognized from the olor. Shoe boxes appropriately and conspicuously labeled may be used at the fromt of the room to hold each denomination of bill.

The purposes served in using small objects for indivicual pupils and in using large objects at the front of the room may differ somewhat. When a pupil uses six of the play pennies on his desk to work out all the possible groupings he can make from six pennies, he is doing his own investigating and making discoveries for himself. The teacher may give him the plus sign as a symbol to use in making number records when he puts his groups together again, but the pupil has worked independently in obtaining the groupings. Likewise, when a teacher asks pupils who need to do so to use pennies to find out how much must be paid altogether for a ball costing 4$\}$ and a book costing $9 \boldsymbol{c}$, each pupil may use his own individual method of obtaining the answer. One pupil may lay out the two groups of pennies and then count $1,2,3,4,5,6,7,8,9,10,11,12.13$. Another may count 10 , 11, 12, 13. Still another pupil may rearrange his pennies in such a way that he has a group of 10 and a group of 3 , and he may then merely think 10 and 3 are 13. Thus materials used individually make it possible for each child to work at his own level of
maturity, and to progress naturally from one level to the next higher level. If a pupil already knows that 4ϕ and 9ϕ are 13ξ, he will not bother to lay out pemies at all, but will be ready immediately with the answer.

While individual differences among pupils make it necessary for pupils to work on different levels, it is the obligation of the teacher to guide pupils toward higher levels of thinking. Sensing just when and how to do this is the essence of skill and artistry in teaching.

If classes could be kept small enough so that the teacher could give adequate attention to each pupil, materials for use at the front of the room might not be necessary. However, with large classes it is often desirable to introduce a new concept to the entire class by means of some activity carried on at the front of the room. It then becomes necessary to utilize objective materials which can readily be seen from all parts of the room. We may take as an illustration the building of the number chart to 100 , in which the teacher wishes to introduce pupils to the characteristics of our number system, with special emphasis upon the ten group as a basis of comparison for all numbers above 10 . Let us suppose that the teacher decides to use clothespins.

The first step is to count out 10 clothespins and record the numbers from 1 through 10 on the board, one number as each clothespin is taken out of a large bos. After the tenth one has been added, the teacher may say that she is going to make the group easier to haudle by putting a rubber band around all ten. The pupils' attention may then be directed to the following ideas:
a. The bundle or group of 10 may be thought of as one 10 as well anten l's.
b. When we urite 10 , we consider it as one 10 because we use a " 1 ." but we give the " 1 " a new position to the left of the one's place.
\therefore To show that the " l " is in ten's place, we fill the one's place with a zero.

When one more clothespin is put with the ten group, 11 may be written at the top of the scoond column. Pointing to the 11 the teacher may ask which 1 indicates the 1 bundle of ten and which 1 stands for the 1 single clothespin. The same procedure
may be followed as the numbers 12, 13, etc., through 19 are written. When there are 10 single clothespins again, another bundle of ten maty be made and the number 20, which shows two 10 's with a zero in the one's place, may be written at the bottom of the second column.

1	11	21	31	41	51	61	71	81	91
2	19	29	39	42	59	62	72	82	92
3	13	23	33	43	53	63	73	83	93
4	14	94	9.4	44	54	64	74	84	94
5	15	25	35	45	55	65	75	85	95
6	16	20	36	46	56	66	76	86	96
1	17	27	37	47	57	67	77	87	97
8	18	28	38	48	58	68	78	88	98
9	19	29	39	49	59	69	79	89	99
10	20	30	40	50	60	70	80	90	100

At a later time, the number chart to 100 may be completed on the board as concrete materials are counted and grouped into tens and ones. As soon as pupils "catch on" to the system of repeating ten groups and combining ones, they may proceed to complete the chart without the use of objective materials.

After the activity of building a number chart through the use of concrete materials, the teacher is able to focus the pupils' attention upon the fact that the chart presents an organized record of all the different sized groups which have been formed and the way they were formed.

The above activity illustrates the use of objective materials for the purpose of developing what may be termed pure mathematical concepts. Catricd through in the manner described, the activity does not serve an immediate social purpose. However, in follow-up activities, the making of ten groups may be shown to have social value. An imas,inary social situation such as the following may be dramatized.

At the shool ententainment last night Bob took tickets at one entrance and Jim at the otner entrance to the auditorium. This is Bobs's box of tickets and this is Jim's. What wonld be the most atcouate way to count the tickets in each box:

Onc box may be counted by ones, and the other by making bundles of tens, then counting by tens and adding the ones.

Pupils will probably recognize the fact that in counting without grouping it is very easy to lose count, particularly when the numbers are large.

A large number of play pemies in a penny bank (an empty cylindrical salt box with a slit cut in the top) may be counted by grouping them into tens. Thus a variety of activities may be used to emphasize the convenience of grouping things into tens when it is necessary to count a large number.

When objective materials are used for demonstration purposes, the teacher always needs to make certain that the pupils go beyond the mere activity and try to sense the idea which is being demonstrated. The teacher may stimulate this type of thinking through his questions and by placing emphasis upon certain points. In the organiation of a number chart to 100 , emphasis is placed upon two points: (1) whenever there are enough ones to group as another ten, this grouping takes place; (${ }^{(2)}$ we use the symbols $1,2,3,4$ etc.. to tell the number of ten groups we have. but we write one of these symbols at the left of another symbol which means ones, and if there are no ones, we use a zero in one's place.

In the same mamer, pupils at work with their own objective materials need skillful teacher direction and guidance to help them to make generalizations and to help them to move from immature to more mature ways of thinking about numbers. It should be recognized that the manipulation of concrete objects represents only the first stage in the development of pupils' number ideas. In the second stage of progress, pupils are able to "think" cortain arrangements when the objects are present only in imagination, and in the third stage, no objects are present or imagined and pupils have developed the ability to use the language of number. As pupils analyee, assemble, and compare groups of objects, the teacher needs to guide their thinking to the point that advancement will be made steadily toward a higher stage.
I.isted among objective materials were bills in denominations of $\$ 1, \$ 10$, and $\$ 100$. When it is necess.ry to extend pupils' number meanings to include numbers from 100 to 1,000 . it is often advantageous to use these bills to help some pupils to visu-
alize large numbers. At first ten $\$ 1$ bills are used together to represent the ten group, then a single $\$ 10$ bill may be substituted. To represent the hundred group, one hundred $\$ 1$ bills grouped as ten 10's may be used at first, with later a single $\$ 100$ bill used. To build the new number group of 1,000 , we may then use ten $\$ 100$ bills since it would be improbable that enough $\$ 1$ bills would be available.

Large amounts of money, such as $\$ 4,235$, may be illustrated visually by using forty-two $\$ 100$ bills, three $\$ 10$ bills, and five $\$ 1$ bills. Pupils often fail to sense the difference in value made by omitting a decimal point from numbers which represent money. It has been found very effective to have pupils use toy money and show visually the bills and coins used to indicate amounts of money. For example, pupils are more impressed with the difference in value between $\$ 132$ and $\$ 1.32$ after they have used toy moncy to count out both amounts. For $\$ 432$, pupils may use four $\$ 100$ bills, three $\$ 10$ bills, and two $\$ 1$ bills, or they may use forty-three $\$ 10$ bills and two $\$ 1$ bills. For $\$ 4.32$, pupils may use four $\$ 1$ bills, 3 dimes, and 2 pennies.

Using concrete materials in developing meanings and symbolism for the four processes. Activities and objective materials, both for individual pupil use and for classroom demonstration, are particularly important in the developmen: of the meanings of the four processes. The same objective materials suggested above for developing number concepts may be used effectively.

Addition and multiplication are dramatized as combining or "putting together" procedures while subtraction and division are shown to be separating or "taking apart" processes. The symbols which facilitate the recording of these arrangements must be linked very closely with the activities and the thinking involved. While concrete objects and pupil activity are important in the introductory phase of each operation, pupils should be encouraged as soon as possible to imagine the activity indicated by the words in a described social situation or by the sign in an abstract problem. Through early work in building and analyzing numbers. pupils will have gained some acquaintance with the addition and subtraction concepts and also with the language associated with these processes.

A new process and its accompanying new sign may well be introduced through the dramatization of a life situation familiar to the children. Several such dramatizations, all of which necessitate the use of individual pupil materials and activities, are outlined below.

Concept to Be Introduced: Addition

Social situation: Bob brought a dime to school for his lunch. He noticed that a sandwich cost 6ϕ and a bottle of milk cost 4ϕ. Did Bob have enough money to pay for these two things:
Objective materials needed: A box of play pennies for each pupil.
Method: Individual pupil manipulatio of play pennies.
I: "Can you show on your desk in one row the number of pen. nies the sandwich costs, then show in another row the num. ber of pennies the milk custs:" The pupils lay out the pennies thus:

```
000000
O O O O
```

T: "Now find out how many pennies you have laid out altogether." Pupils will use different methods to find out the total number in both rows. When pupils obtain answers the teader places a number picture of what they did on the board. using the addition sign to indicate that two numbers were put toge ther.
Symbolic representition:

> | 6¢ for the sandwich |
| :--- |
| $+1 ¢$ for the milk |
| $10 ¢$ for both |

Explanation: We write a plus sign to show that Bob wants to know how much both things cost. The amount both things cost is written under the short line diawn.
I's further emphasie the combining of two groups, pupils may pick up the six pennies and hold them in one hand, then pick up the four and hold them in the other hand. Then the four pennies may be put together with the six pennics, as indicated by the new sign. The number written under the shost line shows how many allogether.

In cliscussion of the activity, pupils learn to use the words both, put ogether, and alengether in conjunction with the asturity and the new symbolism.

Comcept to Be Introduced: The Additive Ide'a of Subtraction*
Suxial situation: Each pupil in the romn was asked whing 15ϕ for bus fare to the Flower show. Jack aheady had 8\% in his pooket. Jack wondered how many more pennies he needed to bing from home.
Objective materials: A box of play pennies for eath child.
Merthod: Individual pupil manipulation of play permies.
1: "Show on your desk the number of penimics Jack needs for bus fare." (The pupils lay out ${ }^{5} 5$ permies in at row.)
I : "Put your hand or a card over the cight of these pennies that "Jack already has."
I: "How many pennies are not corered? Can you tell now how many more pennies Jack needs:"
If it seems necessary, the teadiw may daw pennies on the boad to tepresent the real penmes, then cover up 8.
Symbolic represemation:

$15 ¢$ Jack needs
-8ϕ Jack has
$7 ¢$ more needed by Jack

Explanation: Since the 8 pennics, which cepresent the group that Jack has, may be cosered up or taken away. we may write this as a subtration example.

C:mut'pl to Be Introduced: The Mcasurement Iden of Division

So, ial situation: Marys mother gave her a dime and a nickel and whe her to get 3¢ stamps with it. Many wouders how many samps she should ask for at the pont office.
Objective materials: A box of toy money containing dimes, nickels, and pennies.

Merhod: Individual pupil manipulation of toy moner.
I: "Can you show on your desks the number of pennies for which Mary could exchange !eer dime and nickel:" (It is perupposed that pupils hasw the value of a dime and a nickel so pupils will be able to lay out 15 pennice.)
T: "Can vou make a pile of pennies to buy one stamp?" (Pupils put 3 ;rmics in a picc.)
I: "Xins see how mans piles with 3 in a pile you can make?"
 the board and group them into theres.

- The additive idea of subtraction was whoted as ane illuntration. The take. away and the comparative ideas of subtraction mav aloo be dramatized.

Symbolic representation:

$$
\frac{5}{3 / 15}
$$

Explanation: This frame which we put over 15 means that the number under it is to be separated into groups. The 3 we write outside the frame shows how many are to be put into each group. The 5 we write above the frame shows how many groups we are able to make, or, in this instance, how many stanps we can buy.

Concept to Be Introduced: Borrowing in Subtraction

Social situation: Jane got on the street car with 4 dimes in her pocketbook. The carfare was 6ϕ, which Jane had to put in the box. What did Jane have to ask the conductor to do for her so that she could put the 6ϕ in the box:
Materials: Toy money-dimes and pennies.
Method: Individual pupil manipulation.
I: "Can you all show the money Jane had in her pocketbooki" "The pupils lay out 4 dimes.)
T : "How much moncy is this?" (Teacher writes 40ϕ on board.)
T: "Let's suppose that the conductor changed one of Jane's dimes to pennies. Y'ou may show how her money looked then." (On the board the teacher may change 4) ϕ to appear thus, and the pupils may have on their desks 3 dimes (3)(ii) and 10 pennies.)
T: "Can Jane put $6 \underline{C}$ in the box now? You may all take away 6 penies and put them on the corner of your desk." On the board the teacher may complete the symbolic representation: (3)(10)
$40 \&$ at first

- 6 d for fare
$34 \dot{c}$ left
I: "Suppose Bob had 4 dimes and he owed Tom 13c? How would you write this in numbers: 40ϕ
-136
T : Tell what changing Bob would have to do before he could pay Tom what he owcd him."
Explanation: When Bob had 4 dimes he had enough money to pay out 1 dime and 3 pennies, but he did not have it in tine right coins. He had to change one coin worth 10 pennies into 10 pen-
nies. nies.

In the dramatization of carrying in addition and multiplication, borrowing in subtraction, and in showing the division
process, it is necessary to use money only in denominations which are powers of ten; that is, pennies, dimes, $\$ 1$ bills, $\$ 10$ bills, and $\$ 100$ bills, etc. However, in learning to count money and to make change, pupils need to have available for use toy money in nickels, quarters, half dollars, and $\$ 5$ bills also.

Further illustrations of the use of objective representation of ones, tens, and hundreds will not be given here, since this is adequately covered in the chapter by Thiele.

Using concrete materials in teaching common and decimal fractions and percentage. The teaching of common fractions in a meaningful manner requires the extensive use of concrete and semi-concrete materials. The materials suggested below are grouped according to the phase of the work with fractions for which they scem particularly adapted.

A Fraction a. One or More of the Equal Parts of a Unit. Objective materials which may be tised to develop the idea of a fractional part of a unit include:

Apple, candy bars, oranges, cookies, etc., which children find it necessary to divide into fractional parts in their everyday experiences.
A yard of riblon, lace, tape, string, strip of paper, which may first be folded, then cut into a given number of equal parts.
An cmpty rectangular cereal box or a cylindrical salt box which may be divided horizontally into halves, thirds, or fourths by using a ratere blade and cutting the box into equal sections. These may be taken apart and put together again to show parts of a solid.
A glass measuring cup (the kind without sloping sides is preferable) mat be filled with colored water to show vividly $1 / 3,1 / 4,1 / 2,2 / 3$, or ${ }_{3}^{4}$ of a cup.
paper pie plates may be cut into fourths, sixths, or eighths, to reprecent thece fractional parts of real pies. The circular paper disks on which bakery cakes are sold may be used in a similar manner.
Semi-concrete objects which each pupil may cut into equal parts include rectangular pieces of paper, which may represent candy bars, and circles of tagboard which may represent pies. The parts into which these materials are cut should be appropriately labeled on both sides so that pupils may continually associate the symbol with the size of the piece which is being considered. The circles should all be the same size so that pupils may readily compare the size of certain unit fractions, as $1 / 2,1 / 3,1 / 4$, and
$1 / 8$. However, it is helpful for future work in adding and subtracting fractions to have the circles of different colors. Red circles may be cut into halves, bluc ones into fourths, green ones into eighths, etc.

After concrete and semi-concrete materials have been divided into fractional parts, $[$ ictures showing the various divisions may be placed on the boarc' 'or analysis and study. Fractional parts, such as $1 / 2,1 / 4,1 / 8$, and $1 / 16$, of circles which are the same size may be shaded different colors. As relationships between these parts are discovered by the pupils, the teacher mady use symbols to record these relationships on the board.

As rectangles are folded or cut into equal parts. diagrams showing clearly the equivalence of certain "families" of fractions may be placed on the board and also in pupils' notebooks. Fach part of a diagram should be drawn on the board as pupils perform the action which the diagram pictures.

A ready-made diagram or chart presented to pupils without accompanying activity is not as effective as one which is built up step by step as prupils use concrete materials. However, many teachers make carefully constructed fraction charts to be shown to pupils ajter the development lesson. These charts are put up about the room where pupils may refer io them when necessary. The following are illustrative.

1 whole		
$\frac{1}{2}$		$\frac{1}{2}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4} \frac{1}{4}$
$\frac{1}{8}$!	$\frac{1}{8} \dagger$	$\frac{1}{3} 1$
5	$\Gamma!!$?

A Fraction as One ur More of the E:qual Danu of a Gramp. The objective materials usable before the class include chans, books. pads, pencils, paper plates, which may easily be artanged in equal groups. The materials usable by each individual pupil include play pennies. milk bottle caps, buttors, small cut-outs, small tickets, etc.

Pupils may show with pennies that 1 ' 4 of 12 pennies $=3$ pennies; they may draw 12 pemies in 4 equal groups to picture the activity and they may use only the symbols $1 / 4$ of $12=3$.

When pupils have used concrete materials to show fractional parts of groups, they have a background for the use of partition division as a second way of expressing the division facts.

Pictures of circles, crosses, lines, squares, etc., arranged to show fractional parts of groups, are helpful to pupils after actual experience in using real objects. Pictures such as the following may be placed on the board. Pupils may use coloned chalk and color enough to show each of the relationships given under the picture.

Color:
1.4 of all the circles red
? 2 of all the circles blue

(iolor:
\therefore is of all the squares bluc
\therefore of all the spuares yellow

Color:
1:3 of all the oblongs green
Y: of all the oblongs red

Cosing Finations to fixpess Componions. The objective materials listed perionsly may be used to introduce the idea of using fractions to express comparisons. Situations such as the following may be illustrated with concrete materials.

 as mans reaters an athometics.
 githa, bow of $1^{1}:$ times an mam bow ats gits.
 \because of the jupil ate gith.

It should be noted that the concept of frations represented by the last wo problems is pesented some what later in the pupils shend eperimere dhan the other faction deas.

Illustrating Meaning of Proper Fraction. Improper Fraction, and Mixed Number with Real Objects and Pictures. From the large variety of objects which have been cut into fractional parts and which are available in the room, pupils may be asked to hold before the clas, materials to illustrate the numbers given below. As each is displayed and as the symbols - en studied, the distinction between proper fractions, imprope fractions, and mixed numbers may be pointed out.

$\frac{3}{4}$ of an apple	If a yard of ribbon
$1 \frac{1}{2}$ pies (use paper pie plates)	s yands of ribbon
$\frac{5}{3}$ (akes (use cardboard circles)	$2 \frac{1}{4}$ yards of tape

Pictures may also be employed to illustrate the meaning of proper fractions. improper fractions, and mixed numbers. Cutouts of apples. manges, bananas, or circles may be used. Some teachers paste these cut-outs on cards and make permanent illustrations which pupils refer to when in doubt as to the meaning of any of these terms.

Illustratins Aldellon and Subleaction of Fractions and Mixed Numbers with concrete objecte and lias'rams. The many circles which pupils have cut into halves, "ourths, eighths, thirds. sixths. twelfths. etc., may well be placed in a series of boxes. each labeled to show the frational part it contains. It is sugesested that the circles cut up should all be the same size but of different colors.

Many pupils will require a minimum amount of objective or visual representation of addition and subtraction, while other
pupils will need a great deal of this type of work. Pupils who need to do so may get materials to show combinations such as the following:

$$
\frac{1}{4}+\frac{1}{4} \quad \frac{3}{4}+\frac{1}{2} \quad \frac{3}{4}-\frac{1}{4} \quad 1 \frac{1}{2}-\frac{1}{4} \quad 1-\frac{7}{8}
$$

Pupils may be given directions such as those listed below as an exercise in showing addition and subtraction with diagrams.

Directions to Pupils:
Draw 3 diagrams like the one shown on your papers. On one diagram shade ${ }^{1 /}$ blue. Next to the part you shaded blue, shade $1 / 8$ yellow. What part is shaded altogether: What part is not shaded?

$$
\frac{1}{4}+\frac{1}{8}=8
$$

On another diagram, shade 1,1 green. Next to the part you shaded green. shade is red. What part is shaded altogether? What part is not shaded:

$$
\frac{1}{2}+\frac{3}{8}=?
$$

On another diagram shade 3 orange. Next to the part you shacied orange, shade $1 / 4$ green. What part is shaded altogether? What part is not shaded:

$$
\frac{3}{8}+\frac{1}{4}=?
$$

The addition and subtraction of fractions and mixed numbers which utilize objective and risual aids such as those described above may well be undertaken by children a full year before similar work without such aids is attempted. In whatever grade the operations with fractions are introduced, the first steps should include every opportunity for prpils to use objective materials freely. is pupils gain familiarity and a sense of security in dealing with fractions, they will cease to depend upon risual aids.

Teraching Inecimal Fraction. If pupils have clearly developed concepts of common fractions. it is not necessary to employ con-
crete materials very extensively in introducing the decimal fraction. However, teachers sometimes find it advantageous to continue to use circles and rectangles which may be cut up or pictured to help pupils to visualize tenths and hundredths. The equivalence of certain common and decimal fractions may often be emphasized by the use of diagrams. The following are suggestive:

Figure 1 presents visually the following relationships:

$$
1=\frac{10}{10} \quad \frac{1}{2}=\frac{5}{10} \text { or } .5 \quad \frac{1}{5}=\frac{2}{10} \text { or } .2
$$

Figure 2, alhough not completed, shows that $1=\frac{100}{100}$

$$
\frac{1}{10}=\frac{10}{100} \text { or } .10 \quad \stackrel{3}{10}=\frac{30}{1000} \text { (0r .30 } \quad \frac{5}{10}=\frac{50}{100} \text { or } .50 \text {, etc. }
$$

Figure 3 may be used to explain the following relationships:

$$
\begin{aligned}
& 1=\begin{array}{lll}
100 & 10 \\
1000 & 105 & 10
\end{array} \\
& \frac{1}{x}=\frac{129}{100} \text { or } 129 \frac{1}{2} \\
& \stackrel{1}{2}=\frac{5}{6} \text { or } 5 \\
& \stackrel{1}{2}=\frac{50}{100} \text { or } 80 \\
& \begin{array}{l}
1 \\
7
\end{array}+\frac{1}{8}=\frac{3}{8} \\
& \stackrel{3}{8}=.25+.12 \frac{1}{2}=.37 \frac{1}{2} \\
& \frac{1}{4}=\frac{25}{1060} \text { or } 2.8 \\
& \frac{1}{2}+\frac{1}{8}=\frac{5}{8} \\
& \begin{array}{r}
1 \\
2 \\
2
\end{array}+\frac{3}{4} \\
& \frac{3}{4}=.50+.95=.75 \\
& \stackrel{3}{s}=.50+.12 \frac{1}{2}=62 \frac{1}{2} \\
& \frac{1}{2}+\frac{1}{1}+\frac{1}{8}=\frac{i}{8}
\end{aligned}
$$

Draw a diagram like Figure 4 of a road one mile long. Divide it into eighths. On the upper scale show the divisions by using common fractions. On the lower scale, show the divisions by using decimal fractions. This device often aids pupils in learning the decimal equivalents for halves, fourths, and eighths.

Figitre 4
Draw a diagram like Figure 5 of a road one mile long. Divide it into tenths. On the upper scale show the divisions by using common fractions. On the lower sale show the divisions by using decimal fractions. This device often aids pupils in learning the decimal equivalents for halves. fifths, and tenths.

Several small pieces of squared paper, each piece contaning 100 squares. may be provided for pupils. Pupils mav paste them in their notehoohs after they have colored parts as directed. Pupils should understand that ach piece of suaned paper repesents one unit.

Pupils may use one piece of squated paper to show the following relationships:
a shade 3 guanco in wow A bluce Write a derimal fration and a common thation to show what pant of the lof squares are shated blue.
i. Shade 10 squares in row 13 brown. Express the part of all the squares which are colored brown decimally in two ways and fractionally in two ways.

1. ('se rows (\because and 1) and shade enough small squares in red to slow that $.11=.1+.01$.
d. Lese rows \mathbf{E}. F, and G, and shade enough small squares in green to show that $.95=9+0.05$.
C. C'ee rows H, I, and J, and shade enough small squares in yellow to show that $.3=.3 r^{\circ}$

Flit Re 6
The teacher may prefer to draw 100 squares on the blackboard and carry through the above exercise with colored chalk at the board before or instead of having each pupil engage in the activity individually.

Pupils may use another piece of squared paper to show the addition of tenths and hundredths.
a. L'se row A. Shade 06 red and 04 blue 10 show that $.06+.04=$. 10 or .1. Express this poblem frate tienally.
b. Lse row (. shate . 07 green and .03 yellow 10 show that $.07+$ $03=10$ or .1. Expres this poblemi fractionally.
c. L'se rows E and F. Shade $C 8$ red and . 06 black to show that $08+065=.11$ or 11 and .04 . To do this you will need to fill all the spuares in row E before you shade any in row F. Ex. press thin problem frationally.
d. Wer wow 11 ind I. Shade it green and og vellow to show that

Representing Mixed Detimula rivuth. Pupils who understand the characteristios of the whole number syom will probably encomater little difficulty in gaining the conceats of pure decimals and mixed decimals. Heweven, tewher, who have found work in picturing pure decimals, as described above helpfal for slow
pupils, often continue the work with concrete materials to show mixed decimals in some such mamer as the following:

One piece of sruared paper. containing 100 small squares, is used to represent a unit: one strip or 10 small squares represents one tenth; and one tiny square represents one hundredth. Boxes, appropriately labeled, are provided to hold a supply of units. tenths, and hundredths.

Exercises in building small mixed decimals concretely are then given. To build 1.23 , the pupil may get 1 large square which represents 1 unit, 2 strips which represent .1 each, and 3 tiny squares which represent .01 each. These parts may be pasted on a piece of paper of another color to represent visually the mixed decimal 1.23 .

Teaching Percentage. Percentage presents no new difficulties for pupils who have a thorough understanding of common and decimal fractions. All the concrete materials and exercises listed for use in teaching hundredths may be applied to the teaching of percentage. if this seems necessary, by merely changing the terminology from hundredths to per cents.

Utilizing objective materials in developing concepts of measures. I'upils develop understandings of units of measure and skill in the techniques of measarement by examining and using meas. ming instruments. Pupils may obtain some general ideas from ohserving the teacher or other pupils carry through measurement activities. but the greatest value comes from the actual use of measuring instruments by each individual pupil. Suggestions for whective materials for the different types of measurement are given below.

I inear Measure

1. Mcanuring instrume t.ts:

Font rulers, yadaticks satd tape measures. if ft. carpenter's

2. Ohjects which mat be meastued by pupils after they hate estimated the meabuements on be taken:
${ }^{2}$. Fon meanditement in inches-
Books. blotters, notchooks, deoks. erasers. pencils. rereal boxers tin atms.
The di nenviom of No. 2 and No. 9 : sized tin cans may he peated.

The dimensions of $1 \mathrm{lb} ., 2 \mathrm{lb}$., and Elb . candy boxes may be compared.
b. For measurement in feet-

Height of pupils in room.
Length and width of blackboards, windows, doors, maps, table tops, bulletin boards.
Height of tables, desks, chairs, window sills, door knob.
Height of shelf from thoor, height pupils can reach.
Measurements in the gymmasitum or outof-doors may include: laying off distances for 50 and 100 yard dash, laying out baseball diamond, tennis court, volleyball court.
c. For measurement in yards-

Materials usually sold by the yard. The pupils and teacher may bring to school actual materials of something to represent the materials sold by the yard:

Used Christmas ribbons.
Used lace.
Cellophane strips, such as new lamp shades are wrapped in.
Shelf paper and edging for shelves.
batl of string. spool of the cad.
Roll of wapping paper.
d. For measurements in miles-the importance of the car speed-ometer-

Fo gain the concept of a mile, pupils need whate a place which is apmoximately a mile from the shool, then cover this distance by walking by riding a biocle or by ading in a car. In a cat the nip specdometer shorild be sed at rero or at an integal number on miles ow that pupits maty note where the ate when they ate. 1.8 . .5. and .9 of a mile from the statime print.

It the lenght of the show wath has been detemmed, pupils may fond wht how matm times this dintame ther would need ") wath ${ }^{\prime \prime}$ gn a mile. Finding the abe age lengel of the howh in the neighbothood. then linding the number of bocks ma mile. is atos helpent.
 : mile. 1 mile 2 mife (inclen. ell.
3. Comatration of fond mens and tape meanme by the pupils:

If it is imposible to poside as mans tone rulers and yard sticks as ate neworas, pupils mas mate their own font raters and tape meanures. I'uphs mas bine fom home dinaded card. board suit boxes or the lase piecon of adthend put in men's shiets by the lamdice. fiom thex the leation mav rut on the paper cotcer stipe 12 inthes long and 1 inch wide. Each pupil mas be powided with a picce of vill paper 1 ind long
 inches. Ihe 1 imh mit mat neve be folded into hates and used to matk off the hatf inther on the mher.

A strip of cloth tape 1 yard long may likewise be marked ont into inches and fractional parts of inches to make a tape measure.

Measures of Weight

1. Measuring instruments:
several pairs of kitchen scales, weighing up to 25 lb .
Postal scales for weighing accurately in ounces and fractions of an ounce.
2. Articles available in the classroom whose weights may be estimated, then checked by weighing: books, notebooks, pencil box, blackboard eraser, box of scissors, flowerpots, etc.
3. Articles which the teachers and pupils may bring in to weigh:

Dry beans which may be sewed into cloth bags in 1 lb . quantitics and used for pupils to lift so they get the "feel" of 1 lb ., and have a basis for entimating other weights.
Foods which are sold by weight-potatoes, appies, squash, etc., which are not too perishable.
Boxed or canned goods, the net weights of which are given on the labels, and the weights of which pupils may check.
Empty boxes and cans which may be weighed.

Measures of Time

An alam clock ir I a stop watch.
A wath or clock with a second hand.
A cardboard clock, consisting of a clock face drawn on ca .avoard and supplied with movable hands.
I series of chock faces printed to show various times to provide pratice in telling the time.
A series of blank clock faces printed on paper. Pupils merely insert the hands to show designated times.
An egg timer pooves interesting to pupils.
Iiquid Mea ure

1. Measuring invoments:
(blass measuring cup marked into thids, fourths, halves. Sepanate measuring cups holding ${ }^{1},{ }_{3}, \frac{1}{4}$, and $1 . \frac{1}{2}$ cup each. Pint, quart, and 2 quart fruit jars. ${ }^{2}$ p pint, pint, and quart glass tuilk bottes. pint and quat milk cartons.
cilass gallon jug. Gallon tin can. 1.2 and 1 gallon paint cans.

Dn Measure
Pint and quant beny box.
Perk, half bushel, and bushel baskets.
Sipuare Me Masure

1. The concept of area-developed through the use of square inches:

Pieces of candboand 1 inch on a side may be provided for each pupil. Small restangular pieces of paper an exact number of inches on a side, a dhterent sied piece lor each row, may also be provided. Row I's pieces may be $3^{\prime \prime} \times \underline{x}$; row ll's $9^{\prime \prime} \times \mathrm{t}^{\prime \prime}$; row 111 's $3^{\prime \prime} \times{ }^{\prime \prime}$, etc. Each pupil may be directed to use his squate of cardboard as a unit of measure and by actually applying it, mak ofl the number of spuate inches along the length of his small rectangular piece of piper. He may then find out how many wos of square inches there are altogether.

If the pupil samot teli the total number of square inches at thin point. lee omtinues to mank ofl all the squates. Following ome of ame experime of this wpe the teacher maty gude the pupils in the fommation of their oren genemalization regarding the method of finding acats in syate inches.

- The come oft of a square foot:

I piece of andborad 1 foot on a side may be used in a similar mamer at the blackband to find the area of a figure 3 ft . by Ift. Thus it mat be demonstamed that the genemaliation ap. phes to finding areas in spate leer as well as in squate ind hes.

It may be demombated that 1 spatae fort a an be divided into

 then apant. Mank ofi one wip into 12 parts, dip together the stips. ind cut oft the 1 inth spataes. One demomstation at the front of the class is ufficient to impress the pupils with the

3. The come pe of a yuare sard:

Pupik mat mak ofl seromal patere on the flome which are 1 sadd on a vide. fath ome may then be divided into 9 spuate feet.

It is wherimes powible whate a piece of omerhing which is
 bomel or ardmond.

1. Finding ateas of rectangles:
()hjerts in tha chanomm having wermentar surface of which the ate mat be fomed tarlude the following:
 Weas of deoks, tablere vertions of the biatkbenad
 Find and compate atern of difterot dawomms.
 triangles:
a. Area of a parallelogram-

Cut a parallelogran out of paper or cardboard such as ABCD (Figure 1). From A, drop a perpendicular to $C D$, Cut off the triangle formed at the left and fit it on to the right side of the figure as in Figure 2. It may be fastened on by using transparent cellulose mending tape.
Since the area of the rectangle formed in Figure 2 is found by multiplying the base by the height, the area of the parallelogram is found by the same rule.

Floitre!

Figire 9

Figitre 3
b. Area of a triangle-

Cut another parallelogram from paper or cardboard such as MNOP (Figure 3). Show the height (h). The area of the parallelogram = bh. Draw the diagonal Mp of the parallelogram and cut along this line. Since the two triangles we have formed can be shown to be equal, the formula for the triangle is one half the base times the height.
i. Lise of squared paper in finding areas:

Figures such as reetangles, parallelograms, triangles, trapezoids, and incegular shaped figures may be drawn to scale on squared pat: \therefore A drawing of this type provides a method of visualizing clearly the number of spuare units in the surface represented and often a close approximation can be obtained fiom the scale drawing.

Cubic Me'asure

In developing the concept of volume as the number of cubic units of a given kind that a solid contains, it is helpful to have available a supply of tiny cubes. Sometimes cubes of loaf sugar are used to build up small solids, which can then be shown to contain as many cubic units as there are units in one laver times the number. of lavers.

Cubes of wood, soap, clay, or paper may be used in a similar mantrer.

In work involving the finding of volumes of different solids, it is important that pupils have clear mental pictures of the solids under consideration. For this purpose a varicty of objective materials may be ued. The following list is metely suggestive:

Models of cubes, p ms, cylinders, concs. pramids, spheres, and homispheres made of wood. soap. dati, or paper.
Familiar objects in the emvonment wheh ane made in the abose shapes and which may be brought into the dassoon for measurement and finding of volmes.

Rectangular solids--candy boxes, ceneal boxes, shoe boxes, butter cartons, boxes froen regetables come in.
Cylindrical solids-in cans used for fruits and vegetables, cylindrical salt boxes, hatboxes, a stove pipe, a water pipe, some wate baskets, pencils, some flower containers, ketles, fruit jans, pans, some cake tins, casseroles, pillars, pails.
cimes-ice acam cones.
spheres-children's rubber balls, baseballs, golf balls, grapes, olanges, grapefruit.

Inluilia'e (icometry

The intuitise geomety work in grades seven and eight includes wonk with lines, angles, plane figures, and solids. In addition to the materials suggented for use in studying areas and volumes, the following maty be listed:

Measuring instruments-
Moter stick
(iompasses
Protractor
Triangles and T squares
Transit
Plumb-bob (:arpenter's level
lintues and illustrative materials-
Pistures which siow geometric forms in architecture and in droign.
bamplen oi limoleum, tapesuics, wallpaper, cloth, which use gomentic formand devigns.
(a)lection of buthos illunciating a vabety of geometric fomms.

There remains another important aspect of measurement which has been merels mentioned in a few instances-the realization of the importance of units of measure in carreing on the business of the community. In the actual teaching of measurement. no separation should exist between the study and use of measuring instruments and the social uses of the various units of measure. For the purposes of this chapter. however. it seemed hetter to discoss these two anpects separatels. The social applications are included in Part II of this chapter.

II. UTIIIZING S'PPI.EMENTARY MATERI.MI.S AND ACTIVITIES IN GIVING SOCIAI. SIG.VIFIC.AN(.F. TO) ARITHMETIC:

「o make arithmetic truly significant for pupils. teachers find it necessary to study carefulls the wass in which arithmetic func-
tions in the home, school, and community, and then devise methods of helping pupils to develop an anareness of the large variety of life situations in which arithmetic is used, and methods of helping pupils to deal successfully with the quantitative aspects of the situations discovered.

The arithmetic textbook sceks to emphasize the significance of numbers by including a great variety of problems to solve, problems of the type that arise in the everyday experiences of the children or their parents, or problems which the children may be called upon to solve in later life. The problems may be of two types: a series of problems all based upon a single social situation, or a group of problems about different social situations, but all emphasizing the uses of some one phase of the work, as, fractions, decimals, or percentage. The success of textbook problems in giving significance to arithmetic depends upon the extent to which pupils recognize them as representative of real life situations.

Teachers often find that added significance may be given to arithmetic if the problems in the textbook are supplemented by certain types of activities which are selected with a view to the opportunities which they provide for understanding and using numbers. Under this classification we may include the following:

Damatiation of life situations and business procedures.
Imericwing experts to obtain information about topics being tudied.
Taking trips.
Preparation of posters. bulletin board displays, and other types of exhibits.
Miking a class scrappook or individual scrapbooks to hold clippings. illustrations. and other supplementary materials.
Plepatation and grsing of ppecial iepons.
Combtrution of measuring instruments, of models. and of various devices.
Analyang imaginary life simations having quantitative aspects about which firsthand informerion may be shataned.
Participating in activitie of the i, ome shool and community which have definte guantitative aysets.
Illustrations of the manner in which some of these activities may be initiated and carried through are given below. It will be noted that often the use of one type of activity leads very naturally to the use of several others.

Using dramatization of store activity in teaching whole num-

 bers and measures. The motivation for the study of the combinations and the four operations with whole numbers is often accomplished by the dramatiation in the chassroom of some kind of store activity. Careful guidance by the teacher is necessinty in helping pupils to decide upon the kind of store they wish to set up. The choice will, of course, depend upon the grade level and the abilities of the pupils, and upon their familiarity with a similat kind of stoce in their out of school experiences. To reproduce in the chassroom any tepe of store activity presents three requirements: (1) Certain materials to serve as stage properties, (2) delinite information obtained from the real situation, (3) certain mathematical abilities.The grocery store is one of the types of stores most commonly selected for dramatization. A corner of the cilasiroom may be transformed into a more or less realistic store, depending upon the number and type of stage properties which children and teacher contribute.

Socially valuable outcomes from the preparation of a grocery store and the dramatization of buying and selling in the store inclade the following:

By reading price lists from different stores, pupils become aware of the bange in price which exists for certain articles.
Pupils realiee that they need to find an average price to charge for the articles included in their store.
pupils find hat fixed prices exist for certain standard brands of goods.
Pupils come to realiee the effect upon prices of large quantity buying, of inhecasom buying of hatis and regetables, of boyng at sperial sales, ett.
Pupils leann the unit in which earh article is sold, leam the meaning of the term "net weight." and come to realiae the importance of studsites the infomation comtained on the label of packaged, camed, in ol wripped gooels.
Pupils leanl how to weigh things.
Pupils realie the neresity for leaning to estimate the: total amome of their bill, or the amomot of change they will reeteive, as well as leaning the method of aseetaining the exato total and the exact amomit of the change.
Pupils lean to count money and become familiar with the procedure of making change.
By sanying on buying and selling mansactions, pupils learn to use the four operations with whole numbers.

Other types rf stores about which pupils may gather information preparatory to carrying on a dramatization include the following:

Cirudes 1.3.3
School supply store
pruit and vegetable stand
Ten-cent store
Fivectent to $\$ 1.00$ stare
Post office Cafeteria A bakery

(irades 7.9 .6

A llorist shop
A jewelry store
A hardware store
An electrical appliance store
A cloching store
A furniture store

As pupils visit stores and read advertisements to obtain exact information, they become aware of the important part played by standard units of measure in the transaction of business. Some teachers have pupils accumalate in their notebooks illustrations of the units of mensure used in each type of store investigated.

The great variety of uses for different measures in a hardware store is easily understood when each pupil assumes the responsibil. ity for making a classified list such as that given below.

Goods Advertised by Hardware Store

Uses for liquid measure:
Howse paint- $\$ 2.39$ a gallem. A gallon covers 600 sq . ft .
One coat enamel-5to per quart
Liquid wix-lit pe. can for s9a; $\frac{1}{2}$ gal. can $\$ 1.29 ; 1$ gal. can $\$ 2.39$
Spiav for shrubs-1 qu. can 65¢; I gal. can $\$ 1.55$
Furniture polish- $\$ 1.29$ per quart
Saucepans with covers, 8 quart size- 79 \&
Uses for measures of weight:
Paint cleaner-4 lb. for $\$ 1.00$
Oil soap and wool spompre- 39 lb . can $\$ 1.10$
Girass seed-29d for 1 lb .; 79 d for $8 \mathrm{lb}, \$ \$ 1,25$ for 5 lb .
Grass seed-40¢ for 1 lb .; $\$ 1.10$ for 3 lb .; $\$ 1.75$ for 5 lb .
Uses for linear measure:
Electric f in. drill- $\$ 7.95$
Window shades $3^{\prime \prime} \times 6^{\prime}$ as low as 796
100% pure manila rope, waterproof, t" thick-10 6 ft. for 45
Clotheslines--size 7 fa" diamcter- 100 ft . for 296
Door mats, 14 by $2 . t^{\circ}$ inches--.. $\$ 1.00$
42" sink, cabine typ - $\$ 2995$
Dish cabinets, white emameled, ti8" high--- $\$ 5.88$
Gas stove, 16 -inch oven fits into spare 36×28 inches- $\$ 36.95$

Refrigerator pan. $14 \times$ \& \times f" size—bes Steplachler, of frize-and
Ciarten hoe, fif inch blacle, it $f 1$ ash handle-004
I, awn mower, 10 inch sheels, 10 inch cut- $\$ 5.55$
Fencing, d20 high, galvanized 11 gauge wite fencing-74 per lineal fecut

Uses of squitre and cubic measures:
V'enetian blinds-3sp per square foot
Inlaid linoleum-..Sl.es per seguare yard
deefrigerator-6 (1). It. size- $\$ 110.98$
Dramatization of the operation of a bank. Pupils in grades seven and eight, as wel. as younger pupils, profit greatly from the dramatization of life situations in the classroom. In preparation for the dramatization of a bank, pupils may visit a bank or interview some one familiar with local banking practices to find out:

The titles and cluties of the men who work in a bank.
The procedure in opening a savings account or a commercial accoumt.
How much money it takes os open a commercial or a savings ancouat.
How to make out deposit slips, withedrawal slips, and requests for cashien's check.
Huw to endorse and cash a check.
Why it is necessatry to be iclentified when asking to have a check eashed.
I'le rate of interest paid on savings accounts.
The method used for computing interest on savings accounts.
The charges made by the bank for earying a commercial account.
The procedure in borrowing money from a bank.
The rate of interest chaged by the bank for the loans it make:-
What is meant by collateral and why it is recpuired.
What goes on in a bank before the opening hour and after the closing hour.
That the bank often acts as collection.agent for gas, telephone, and electric light bills.
That the bank has safety deposit boxes where valuables may be kept.
That the United States insures bank deposits up to $\$ 5,000$.
In the play-bank opened in the classroom, all the activities of a real bank may be carried on if the following materials are provided:

Smal! netebouls to seme as bank books.
deposit and withdrawal slips, which may be mimeographed forms made like those used in the bank visited.
bank statement-at least one which pupily may examine.
blank checks and stubs.
promissory notes.
Toy meney-bohi, coins and bills-wand a cash drawer.
As work with the activity progresses, a bulletin board exhibit may be prepared showing the forms used in a bank; a diagram may be drewn to show the travels of a check from the time it is written until the canceled check is again returned to the one who made it out; an interest table may be exhibited.
'The study of banking maty include the United State Postal Savings System, and the bulletin board exhibit may show samples of postal savings stamps, postal savings certificates, and pamphlets distributed by the post offices which give information about postal savings bonds.

Similar types of material may be collected by each pupil and placed in his notebook.

Organization and operation of a stock company. The following activity was actually carried on very successfully by the eighth grade pupils in one elementary school for several successive semesters.

The pupils decided to organize a company for the purpose of putting out a monthly school paper in mimeographed form. A charter to do business was obtained from the principal. The amount of money required to start the business was determined and was raised through the sale of shares at 10 each to members of the class and to teachers in the school. Stock certificates were mimeographed, filled out, and given to the stockholders of the company.

As the business of mimeographing and selling the papers continued, careful account of the expenses and the income from the sale of papers was kept. When the profits warranted it, a dividend whas declared and distributed.

Using original arithmetic plays. Gifted pupils may often be stimulated to write and produce plays which use information gained in the arthmetic: dass. Opportunties of this type provide for an enriched program for the gifted pupils, and when the
phys are given for the entire class they often serve to clarify concepts for the less gifted pupils. The following titles for plays are suggestive:

When the Life Insurance Salesman Calied
The Adiams Finmily Decides to Budget
To Buy-or Not to Duy-on the Installment Plan

The outline of scenes below indicates how one business tams. action, involving the payment of commissions, may be made the basis for a play.

A Real Estate Salesman Believes in Signs

Scene I-The renl estate man is in his office. He receives several telephone calls from people who ask him on help them temt or sell their property. He writes some ads which he telephones in to the paper.
Scene $11-\mathrm{He}$ drives out to look at the property and phaces "For Rent" signs on some and "For Sale" signs on ohers. He stays at the house having a "For Rent" sign.
Scene III-Several prospective renters come into the house. He tells them the price and shows them around the property, , elling: them the advantages of living there. Finally one of the lookers says that he will remt the house. The real estate man then asks him for referencess and asks him to read and sign a form which shows the conditions under which the place is rented. The renter pays a month's rent in advance and receives a receipt for it.
Sene IV-The owner of the property is in the real exsate office and the real estate man is telling him that he has lowked up the references of the man who wishes to rent his plate shat they are satisfactory, etc. The owner then receives the batance left from the first month's rent after the real estate man takes out 83%, $\%$ for his work.
Using trips and interviews with experts as supplementary activitics. If pupils are to dramatize life situations in the classroom, they need all the up-to-the-minute information about the situation which the community can provide. Trips by individuals, by committees, or by the entire class to certain places in the community provide means of stimulating interest, of giving firsthand experiences, and of obtaining authentic information. Careful preparation should be made by the teacher beloce the trip so that pupils are aware of definite observations to make and of specific types of information to obtain. Places which may be
visited with profit include: stures of different kinds, a wholesale market, a biak, the stock exchange, the post oflice, the oflice of some public utility-gas, clecricity, water, telephone.

Trips anay from the school are sometimes diflicult to arrange. Exact information can often be obtained by pupils by consulting their parents or by interviewing friends of their parents. It is also sometimes possible to arriange to have a merchant, a banker, or a salesman come to the school to diseuss certain aspects of business with the pupils and inswer yuestions. Experts in their fields may also be able to provide pupils with bulletins, booklets, and pamphets which may be studied in the clossroom.

Preparation of posters, bulletin bonrd displays, and exhibits. In many classrooms one bulletin isoind is kept exclusively for clippings, posters, and other types of information related to arthmetic. Duting the study of each topic: pupils display materials which indicate the application of the topic: to as many out-ofschool situations as possible.

Bulledin liond Display Malerials for Decimal Practions

Daily weather reports from the newspaper showing that the rainfall throughout the country is stated to the nearest hundredin of an inch.
Portion of the spont page-showing batting averages as threeplace decimals.
Clippings giving speed records which use one- and two-place decimals in stating parts of a mile, parts of a minute or a second.
Maps and tavel infermation in which distances are given correct (t) the nearest tenth of a mile.

A drawing of a clinical thermometer, showing its gradation into tenths of degrees.
A drawing of an antomobile specedometer showing how tenths of miles are inditated on it.

Bulletin Board Display Materials for Pemerntage

Advertisements showing the per cent of discomint allowed during sales of different kinds.
Schedules showing rate of interest chaged by small loan wompanies, banks, and credit unions.
Newspaper articles which use per cents of indicate comparisons in business conditions, in housing conditions, in health statistics, in records of accidents, in spont wemds. in population trends, etc.
Budget tables showing per ownt of inome to be spent for each item in the budget for different incomes.

School records showing per cent of absence, of tardiness, of illnets, bad also showing per cent of children receiving the different school marks.
T nalysis of the local tax budget showing per cent of income allowed for the different departuents of government-schools, public works, police deparmient, etc.

Cishibits Other than Bulletin: Board Displays

Measuring instrments-which may often be 'ourrowed from various sources, such as a light meter, pedometer or speedometer, transit, micrometer, carpenter's level, a plumb-bob, meter stick, etc.
Collections-coins from different countries; collection of buttons illustrating a waricty of geometric shapes,

Analyzing imaginary life situations which have quantitative aspects. Another type of supplementary activity suggested was that of studying some imaginary life situation for the purpose of answering certain important questions with regard to it in the light of information oltained from the community. Several illustrative situations are discussed below.

Proponents of the "incidental learning" theory would not include in the curriculum any arithmetic except that which occurs naturally in some integrated unit which is being studied. The situations described below may appear similar to the units of work used in an activity curriculum; however, they are suggested here because they provide one of several means of helping pupils to use a definite body of arithmetic knowledge and skills which are to be acquired.

STTUATION

The diams family, which consists of the mother, father, and two children, are plamning a summer vacation trip to San Francisco to visit the World's Fair. They plan to drive out in their Ford car. They wonder how much money they need for the trip.

Questions to Be Decided

What possible routes are there for going out and for returning?
What is the mileage by each route?
What points of interest are there en route which should be visited?
Decide approximate distance to plan to drive each day so that places to stop overnight may be located.
How many days will be taken for the trip out and back, including stop-overs at places en route?
How many days should be allowed in San Francisco and vicinity?

How much will the car expenses be for the trip-cost of gasoline, oil, lubrication?
What will the cost of food and lodging be for the family for the trip
(a) if stops are mide at hotels?
(b) if stops ate nodie at cabins?

What will the expenses be while in San Francisco attending the fair-hotel expenses, food, sight-seeing?
What repairs will the car need before starting out, and what will they coste?
Should extra insurance be carried? What kind? How much will it cost?

Obtaining the Information Needed

Obtain road maps and mileage charts from gas stations or local antomobile clubs.
Obtain books showing cabins and hotel accommodations at the places where overnight or longer stops are to be made.
Obtain booklets and pamphlets deseribing points of interest en route, as well as those describing things to do and see while in San Francisco.
Write for information about prices of gasoline in different parts of the country, and find an average price per gallon.
Obtain infomation from a Ford car owner about the approximate number of miles the Ford car will go on one gallon of gasoline. Also, find ont how often oil will probably have to be added, and how often oil needs to be changed.

Variations of Siluation-Planning a Trip

Taking the train instead of driving. If the trip is to be made by train, pupils will need to get timetables and information about:

Cost of tickets-lirst-class, tourist, and coach rates.
Cost oi adult and children's tickets for each rlass of fare.
Cost of berths and meals for each class of fare.
Time different trains leave and which ones make be t connections if stop-overs are planned.
Traveling out to California by boat through the Panama Canalback by rain:

Information about fares on different steamship lines, about length of time trip would take, etc., will need to be obtained. Plan the trip for 2 people, instead of 4.
Plan to be gone different lengths of time: 2 weeks, 1 month; 6 weeks; 2 months.
Plan the trip to different parts of the country.
Arithmetic included: use of the four operations with whole numbers and decimals.

Axhibit Materials

Pupils may make a map of the United States or use a map obtained from some source and on it trace in blue the route going out and in red the route returning.

Pupils may post on the bulletin board pictures showing inter:sting sights and beautiful stenery which they woukd expent to see on the trip.
Mileage charts, strip maps, timetables, may be displayed.

SITUATION

Cemmunicating with friends while they are away on a trip. If the man is a business man, he may wish people at home to know where he is each night so that he can be renched if it is necessary.

Questions to Pe Decided

How much would it cost to telephone to him each night from Detroit
(a) before 7:00 p.m.?
(b) after 7:00 p.im.?
(c) person to person?
(d) station to station?

How much would different types of telegraphic messages to him each day cost?
(a) 10 -word das message.
(b) 50 -word day letter.
(c) 25 -word night telegram.

How much does an air-mail letter cost? An air-mail special delivery?

Obtaining the Information Needed

Look up long distance telephone rates in fromt of telephone book.
Call telegraph office for rates for telegiams.
Ask at th? post office for the cost of different kinds of stamps.

SITUATION

Jane's family just moved into a new home where Jane can have a room of her own. How much will it cost to furnish Jane's roomi?
Questions to Be Decided
What is the size of Jane's room?
What pieces of furniture does she wam in her room?
What colors does she wish to use in the room?
What will be the cost of furnishings?
Can the furniture be paid for on the installment plan?
How much could be saved if it could be bought for cash?
Are any of the stores advertising sales on furniture:
If so, will it pay to buy at the sale?

Obtaining Data Needed to Answer Quesions

Obtain a blue print of the floor plan of a new house for pupils to study and interpret.
Floor plans may also he obtained from the Sunday paper or from several of the well-known magazines concerned with planning, building, and furnishing homes.

Pupils may select from the foor plans studied a bedroom which they may draw to scale, showing the arrangement of the doors and windows.
Pupils may obtain the actual measurements of the space occupied by a bed, a dresser, a chest, and a chair, and chraw simple plans of them to scale; they may cut them out to use in deciding upon the best arrangement of the furniture in the rooms.
Advertisenments of bedroum furniture in different woods--maple, mahogany, walnut-may be brought to school and prices may be discussed.
If special discounts are advertised, the amount saved may be computed.
The dimensions of the windows may be obtained from the blueprint, or pupils may measure the lengeth of windows at home, in order to decide how many yards of drapery and curtain material to biny. Prices may be found in the newspaper.
Rug dimensions may be investigated and compared with the size of the room to be furnished. When the proper size is decided upon, prices of different types of rugs may be obtained from the newspaper.
Pictures for the wall may be discussed. Jane may have an wiframed picture which she wishes to have framed for her rooun. The price per foot of frame, the cost of the glass, etc., may be investigated.

Variations of the Situation

The cost of furnishing a boy's room may be investigated. Pupils may imagine that a family moved into a new house and wished to refurnish the living room. The information necessary may be obtained and the total cost of furnishing it with inexpensive, medium-priced, and higher-priced furnishings may be computed.

SITUATION

Bob's father has been making out his income tax report. Bob finds that parents are allowed $\$ 400$ exemption for each child under 18 years of age.
Bob is 12 years old. He wonders how much it costs his parents : year (a) for his clothes, (b) for his fond, (c) for amusements, such as shows, ball games, etc., (d) for other expetues, such as dentist, doctor, haircuts.

Questions to Be Decided

Clothing:
What kinds of clothing does he need for the different seasons and for different types of occasions?
What does each article of clothing cost. and approximately how long does each wear?
What does the necessary dry cleaning for a year cost?

Information needed to answer these questions may be obtained from the typical twelve-year-old boy, from his parents, and from clothingestore advertisements.
Food:
What constitutes a balanced menu tor breakfast, lunch, and dinner?
What is the arerage cost of food per day for a family of 4 p
What is the average cost of food per day for 1 person?
What is the average cust of food per year for 1 person?

Obtaining Data Needed to Answer Questions

Balanced breakfast, lunch, and dinner menus may be obtained from the houschold page of the daily newspaper, from recipe books, or from several household magazines, Pupils may obtain some of the necessary information from their mothers.
The recipes for preparing the foods given for each menu are usually given along with the aenu.
Ciurrent pricess of the ingredients needed to prepare each kind of food indluded in the menu may be obtained from the grocery store advertisements in the newspapers, or from the hand bills distributed from door to door.
lrices of foods not nelyertised may be obtained by pupils by visiting local grocery stores.
When pupils have computed the cost per person for a typical breakfast, lunth, and dinner, this cost may be compared with costs reported by certain organizations which make a business of ascertaining what a typical bulanced meal costs at different seasons of the year.

STUUATION

Jack went with his parents to the Flower Show. They saw so many beautiful garden arrangements and so many lovely flowers, that Jack's fathe: decided to lay out a new garden in their back yard. He asked Jack to help him plan it, buy the materials for it, and plant it.

Information Neceded

Approximately how much money can be spent on the garden?
What is the size and shape of the back yard which is to be made into a garden?
What are the soil conditions of the plot to be made into a garden? Is the soil good enough as it is? Does it need fertilizer? Or is it so bad that it needs to be removed and replaced with better soil?
What types of shrubs a:c to be used in the background-evergreen or flowering shrubs?
How do evergreens and flowering shrubs compare in price?
How far apart do shrubs need to be planted?
How many of each kind will be needed?
Wher kiods ot perennials are available for planting in the spring. anu what d es eacin cost?

How far apart should perennials be planted?
How many of each should be ordered?
How much space will remain for annuals?
What annuals shoould be selected?
should they be grown from plants or from seed?
What garclen toois will Jack and his father need, and approximately how much will they cost?

Obtaining Data Needed to Answer Questions

Ideas for gardens may be obtained from plans given away at the Flower show, fiom gaiden magazines, from the daily paper, and from catalogs from nurseries and seed companies.
From the dilterent garden plans studied, the class may select one, and each pupil may draw it to scale.
To bring in the cuestion of soil conditions, the pupils may imagine that the soil in the proposed garden is the same as in the school yard. A sample of the soil may be sent to the state agricultural department for analysis.
Intormation regarding the kinds of fertilizer available, the particular uses of each kind, the quantity in which it may be purchased, the amount recommended for each 100 sy. ft. of area, ma; be obtained from a hardware store or from the garden department of a deparment store.
When a report is received, the cost of the fertilizer needed to put the soil into condition for a successful garden may be computed.
Descriptions and prices of evergreens, flowering shrubs, and perennials may be obtained from the catalogs from murseries, or the class may visit a stand or market where shrubs and plants are sold.
If the garden plan selected specifies each type of shrub and plant, these pricess may be looked up in the catalog.
Comparitive costs of using nursery-grown plants for the annuals, or of planting the seeds, may be obtained by visiting the market or a stand. Plants are sold in large quantities by the "flat" which may contain up (1) 10 dozen plants, or if purchased in smatler quantities they are sold by the dozen or half dozen. plants grown from seed are much less expensive-as packages of seeds usually cost from 5ϕ to 25%.
Information about the kinds of garden tools available from which Jack and his father may anake their choice may be obtained by a visit to a hardware store in the neighborhood, or from a study of a catalog or advertisements from a hardware store.

Pupil participation in school activities having quantitative aspects. Probably one of the most effective methods of making arithmetic: significant for pupils is by capitalizing upon every opportunity which presents itself in the life of the school for the
use of arithmetic. As many pupils as possible should be enabled to participate in activities of the following types:
Taking care of sale of milk.
Taking care of sale of tickets for entertainments.
Counting the lunch mones to check the cashier.
Collecting bus fare for trip, to conce t, museum, flower show, etc.
Keeping attendance records and making attendance charts and graphs.
Keeping records of athletic events in the gymmasium and on the playground.
Taking charge of the expenses of a school picnic, or party.
Planning and buying timmings for the school Chaismas tree.
Taking change of the school bank.
Checking in school supplies and taking care of inventories.
Making out time schedules.
Analyzing school statistics.
Conducting a paper sale to build up the school fund.
Keeping a record of the expenses for the school paper and the receipts from the sale of papers.
Selling Christmas and Easter seals.
Mounting pictures, graphs, and diagrams for the bulletin boardmeisuring margins carefully.

concelesion

This chapter has set forth the viewpoint that both aspects of arithmetic-that which aims to develop mathematical meanings, and that which aims to develop social significance-may be more effectively taught by the utilization of a variety of supplementary materials, devices, and activities which may or may not be suggested by the textbook or workbook in use. The teacher who accepts this viewpoint will realize that the suggestions given here do not nearly represent all the possibilities that exist for the enrichment and vitalization of the arithmetic course. It is this phase of the work that presents a real challenge to the originality and to the initiative of the teacher.

Chapter IX

WHAT BECOMES OF DRILL?

BY B. R. BUCKINGHAM
GINN AND COMPANY, BOSTON

Athe outset let it be said that the writer of this chapter assumes personal responsibility for the views he expresses. He believes himself to be in substantial agreement with the principles held by the Committee under whose auspices the present Yearbook is issued. He has been at some pains to learn what those principles are and has found himself in sympathy with them. He ventures, therefore, to think that most of the views here presented, even though they may not be found in the same phraseology in the Committee's published opinions, are nevertheless either plainly derivable from them or harmonious with them. Doubtless, however, there are in the following paragraphs some proposals on which the Committee has not yet expressed itself. Perhaps, too, some imerences have been erroneously drawn from positions known to have been taken by the Committee. For all such the writer is himself accountable. To him it would be a source of genuine regret if his personal views, by appearing to have the Committec's sanction, should embarrass a group of thinkers for whom he has the highes: respect.

NATURE OF DRILL

Let us start by thinking of drill in its essence without immediate reference to its application. Fundamentally drill is repetition. Its place in learning has been held to rest upon the validity of the Law of Exercise. The current skepticism as to chis law has supported a doubt already long held as to the worthiness of drill in a theory of learning. The common-sense experience of the race, however, will be little affected by the proved lack of
progress of a blindfolded laboratory subject in a thousand attempts to draw a four-inch line. ${ }^{\text {i }}$ This may be sheer repetition, but no such sheer repetition has any practical place where teachers and pupils join forces in the interest of learning. In all these practical situations, repetition-not unvarying iteration but action having elements of identity-has always found an honored place and will probably continue to do so. The theoretical question as to the barrenness of mere repetition has, however, important meanings as a guide in education. Some of these meanings we may examine, but we shall not find among them any principle which bids us abandon drill.
We.can't do it. Even if mere repetition of an act abstracted in the laboratory from all its comnections fails to produce learning, we are still permitted to say that that sort of drill exists nowhere else except in a laboratory and that even there. like a china nest egg, it is as artificial as it is unproductive. If repetition doess 't produce learning effects, then (since learning really does take place) those effects must be produced by something which, though not repetition, is a normal accompaniment of it, such as the sense of familiarity, or the idea of value, or the knowledge of progress, or the stimulus of competition, or the recognition of new uses for old experience, or the onset of deeper insights. In short, it appears that what makes us learn, if it is not repecition, is something inseparably connected with it. Repetition would seem to be a matter of form rather than of substance, something like the schematic arrangement of an outline without reference to the content of the outline, something which is necessary to the result but which isn't active in it-a sort of psychological catalyzer, facilitating the desired reaction while remaining itself inert.
To practical people dealing with classroom matters it may seem unimportant whether children learn by repetition or by something that gues with repetition. The questions at issue, however, are in fact exceedingly important; and they are more important and more challenging than ever before. There has been a shift in emphasis from petty concern with the number of repe-

[^29]titions and the exact .ss with which one item of drill duplicates another to concern for enhancing the effect of those accompaniments of repetition (largely associated with meaning) which turn out to be the true carriers of learning.
For example, we no longer anxiously speculate as to the number of repetitions of $5+7=12$ that are necessary for mastery. If we do not know by personal trial that any such quest is futile, the evidence concerning the Law of Exercise convinces us that it is not the fact but the manner of repetition that counts. We are therefore sure that one occurrence of $5+7=12$ does not equal in learning effect another occurrence of it and that in the absence of meaning some of these occurrences may be useless or even inhibitory.
Again, with better evidence concerning human learning, we are not so painfully concerned that each element in a series shall be of exactly the same kind as every other. In particular we no longer analyze processes into such an appalling number of cate-gories-the division of integers into 34 "unit skills" and the adding of fractions into 42 . The object was to provide under each of these nun erous classifications a series of items of identical type for use in drilling the pupil on that type. The items, being so closely alike, were admirably repetitive but were deficient in the learning overtones which we now regard as indispensable. Moreover, it was neither necessary nor expected that the pupil would understand what he was doing. It was the drill, the repetition, that counted.
Change in concept of drill. To describe these matters is to realize that a real change has taken place in our theory of learn-ing-a change which is already begimning profoundly to affect practice. In respect to drill, the cruly important problem for us is not to banish it but to give it a new meaning by loading it with the elements which make \leq effective. Those who have been disappointed with drill and the pitiful results of it are foolishly saying "let us have none of it," just as those who have (for curiously identical reasons) been disappointed with primary grade anithmetic have demanded that it be thrown out. This is too simple a solution. Progress does not take place in that manner. Old ways have lessons for us; and this way certainly has. Drill should
not be dropped or decried. To do so would be to handicap the schools with a new fad.

Rather let us, first, seek new ways of making drill do a better job. In the light of our present knowledge, we may be assured that the more nearly drill approaches sheer repetition the more barren it will be, while, on the other hand, the more it involves the accompanying conditions already mentioned the more fruitful it will be. If, therefore, we ask ourselves what place drill may properly have in a theory of learning, we shall find that the answer, though much more difficult than used to be supposed, is nevertheless more vital and satisfactory. A study of this aspect of drill will lead us into a territory rather different from that which has hitherto been explored.

Secondly, let us apply the concept of drill to kinds of learning with which it has not usually been identified. It is now several years since the basis of the usual conception of drill was knocked from under it. It is time for the necessary conclusions to be drawn. The deprecatory way in which many of us think about drill would disappear if we gave it a truer and more liberal meaning. And this we certainly have a right to do now that we put our faith more in the meaningful accompaniment of drill than in the repetition as such which was so long held to be its productive characteristic.

Drill in thinking. Success in thinking is facilitated by taking thought on numerous occasions, i.e., by drill in thinking, ${ }^{2}$ The mastery of a generalization is won by frequent experience to which the generalization applies, and frequency of experience is a form of drill. The love of learning, the scientific attitude, and the ability to get on with people are products of learning in which drill plays a part. Perhaps "drill" with its bleak connotation should be replaced by another word, perhaps by "practice"

[^30]or by "recurrent experience." Dewey's concept of growth through reconstruction of experience is impossible without the idea of recurrence. The things we most value in life are maintained by action-and best maintained by repeated action. Lurking in the distinction that we too often make between drill on the one hand and ideational learning on the other, there is something of the dualism in philosophy against which Dewey has fought so valiantly. In his Quest for Certainty he argues against the age-old separation between theory and practice. In doing so he says, "We should regard practice as the only means (other than accident) by which whatever is judged to be honorable, admirable, approvable can be kept in concrete experienceable existence." Of course, Dewey's term "practice" is not quite our term "practice" and the quotation may seem on that account less appropriate than it really is. For what is the practice that we oppose to theory? Is it not action evolving out of action, and forming itself into patterns, all with highly repetitive parts and processes? It is difficult to maintain any other position.

Two preliminary points regarding drill have now been made: first, that the efficacy of drill lies in something other than its repetitive nature; and, secondly, that we are therefore justified in apply. ing the concept of drill (as recurrent experience) far more widely than has hitherto been the case. Our position is not that drill should be avoided but rather that it should be made more intelligent in the fields to which it is now applied and that it should be applied still more widely. Indeed it is doubtful if those who vigorously denounce drill are wholly sincere. It is possible to take the view that this present widespread deprecation of drill is a sort of psychological revenge whereby the case is overstated, not calmly nor entirely in the interest of truth, but rather with the purpose of utterly extirpating a hated doctrine.
Application of principles to arithmetic. Let us now apply our two principles to the ficld of arithmetic. The first principle will bid us seek out the active, energizing, vital aspects of drill-the concomitants of repetition which make the repetition effective. The second principle will carry us into fields of arithmetic or, in some cases, into kinds of arithmetic which are not ordinarily associated with drill techniques.

For the sake of brevity it may be well to eliminate from this chapter much that might be said about drill, first, because it has already been said a hundred times, and, second'y, because we shall here be concerned with many other things. Accordingly this chapter will avoid discussing the following points copied from Burton who quoted them from Parker who got them from . . .?
(1) A correct start followed by correct practice must be ensured. Speed should be subordinated to accuracy.
(2) Zeal, interest, and concentration of attention must be secured and maintained.
(3) Feelings of satisfaction and dissatisfaction must be considered, as they vitally condition the results of a drill lesson.
(4) Avoid wastes of time on accessory and nonessential processes. Drill must be on the association or skill involved.
(5) The facts drilled on in games and devices must be applied in real situations.
(6) The drill periods should be short and distributed over a considerable length of time.
(7) L.earn under some pressure.
(8) Use ready-made drill systems.
(9) In memorization there should be an analysis of the thought content first. Correct recall slould be the principal method used; the whole instead of the part method.

SOME VITAL ASPECTS OF DRILI

Reference has already been made to the ineffectiveness of sheer repetition. The evidence on this point is conclusive and its acceptance, especially on the part of those who adopt an organismic psychology, has been all but universal. Thorndike himself has furnished impressive experimental proof. On the other hand, Koffka, Kühler, Hartman, Perkins, and Wheeler-the whole Gestalt group--seem to unite in emphasis upon the barrenness of mere iteration. They note the deadening effect of bald repetition when they attribute plateaus and recessions in the learning curve to what they call "irradiation"-an influence which exerts a sort of paralysis upon the learner. It is not difficult for anyone who has taught arithmetic to recognize the onset at various times of this so-called irradiation. Children who knew (or at least could say) $5+7=12$ and $8+6=14$ yesterday do not know these facts today. Those who were apparently coming along nicely with their long division go all to pieces. One cause of this is sheer unvarying
drill, and too often the remedy applied is more drill of the same kind.

The bad effects of unvarying drill, however, are by no means confined to immediately observable errors in the process which is being repeated. If our drill is devoid of intellectual content, if it is merely repetitive, it is an encouragement to divided attention or double-mindedness. Thus we may find ourselves drilling on nothing so effectively as on the double standard, the loss of energy, and the habit of self-deception which Dewey brings forcibly to our attention in Democracy and Education (page 209). He speaks of the seriousness of "exaggerated emphasis upon drill exercises designed to produce skill in action, independent of any engagement of thought-exercises having no purpose but the production of automatic skill." Continuing, he says, "Nature abhors a mental vacuum. What do teachers imagine is happening to thought and imagination when the latter get no outlet in the things of immediate activity? . . . They follow their own chaotic and undisciplined course. What is native, spontaneous, and vital reaction goes unused and untested, and the habits formed are such that these qualitics become less and less available for public and avowed ends."

Since this passage was written, some twenty-five years ago, thousands of educators have no doubt read it. What do they make of it? Very little it seems. A reasonable search conducted in the interest of this chapter in the literature of drill and allied subjects has failed to reveal any clearly marked effect of Dewey's grave warning. Yet the effect lies all about us in the product of the teaching of arithmetic in the schools.

Observe the child when he enters the first grade. He knows more than many of us think he does about number. Moreover his knowledge is remarkably functional. He can use it; he can apply it in concrete situations. For example, give him this problem: "If you had five cents and Father gave you three cents, how many cents would you have then?" This situation is fully understood by him and he can react intelligently to it. He will probably reply, "Eight cents." On the other hand, if you ask him, "How many are five and threc?" he will be likely to disappoint you.

Now consider the same child, or another one like him, after he
has had a few years of schooling. What does his teacher say of him now? The following is taken from a number of questions asked by teachers of arithmetic in a certain city: "My children can do abstract work but they cannot solve problems; what can I do?" Those who have taught arithmetic recognize in this question a typical difficulty. Cornputational skill, no matter how highly developed, is unsatisfactory. In described situations involving number relations the pupil is at sea in spite of his skill in computation.

You will recognize the contrast between the child entering school and the child who has received the benefit of schooling. You observe the complete reversal: on the one hand, the ability to sense the described situation and to act intelligently in reference to it; on the other hand, nothing but a useless skill-useless because in life no one computes except for the purpose of solving a problem. It appears therefore that we have done something to the child, and that what we have done is not good. Our drill has been without intellectual content and has produce 1 in too many instances a purely formal ability.

The permanent effect of the school's devotion to a barren type of drill-to a drill limited almost exclusively to abstract compu-tation-is evident in the arithmetical illiteracy of our people. Everywhere we meet adults of otherwise reasonable training who are almost helpless in the presence of numbers. They are unwilling to read books and articles which present quantitative ideas. They will not listen to an address which makes similar demands upon their thinking. They blandly tell us that they are "no good at figures," in spite of the fact that persistent drill in figures formed much of their schooling. As we know, however, it was the kind of drill which Dewey again vigorously denounces: "a drill which hardly touches mind at all-or touches it for the worse-since it is wholly taken up with training skill in external execution." In this connection Dewey does not fail to invoke one of his favorite principles when he continues: "Practical skill, modes of effective technique, can be intelligently, non-mechanically used only when intelligence has played a part in their acquisition."s

[^31]One is reminded in this connection of the doctrire of "traces" in organismic psychology. Experience produces traces, and one of their characteristics is availability for new purposes. How the traces thus become available is still obscure. "However," says Koffka, "one conclusion seems fairly safe: conditions which make a trace more and more available for mere repetition of one process will often make it at the same time less available for other processes. Thus the educator should be very conscious of his aims when he decides whether to apply drill or 'ot. Drill will no doubt make the traces more and more available for one kind of activity, but it may at the same time narrow down the range of availability." ${ }^{4}$

From this we readily conclude that "range of availability" is of the utmost importance in connection with the activity we call drill. Actually, however, if we may judge from published drill materials and from observation in the classroom, this characteristic of desirable drill is entirely disregarded. The crux of the question is the old and ever-true idea of function, of the use you make of a thing Let it be understood, however, that in deprecating a certain prevalent kind of drill we must not fall into the error of trying to get rid of drill. We must rather improve it and make it useful.

It is important to be sure, first, when (that is, at what times and under what circumstances) we want to use drill and, secondiy, to what fields we wish to apply it. Two aspects of the first pari of our problem seem to present themselves, namely, readiness on the part of the pupil, and the organization of the drill material itself.

READINESS FOR DRIII.

The time has probably gone by when anyone would support a drill theory which proceeded on the assumption that the child can profitably be subjected to drill without being prepared for

[^32]it. Here, as elsewhere, his readiness, his receptivity and sensitivity to what is about to take place, must be provic.ed for.

In the first place, the dynamic force of purpose should be invoked. Drill without purpose is likely to be empty. As everybody knows, the presence of purpose insures an effective organization of action. All the parts of the action take on unity and meaning through their relevance to a larger objective.

How shall the appeal of purpose be secured in the administration of drill? By many means, no doubt; but mainly by making the practice a part of something the pupil recognizes as useful. Most potent will be the problem which arises naturally in the child's life. Would that there were more of these and that we had better means of capturing them. They are not, however, available in sufficient quantity and variety to serve our need. We shall therefore be obliged to fall back upon the described situation; that is, upon the well-known verbal problem. At its best this is not to be despised. Indeed, under present school conditions, it is more than likely that the body of verbal problems offered in an arithmetic course can become the most significant part of it. By no means all of these problems will involve computation. All of them, however, should relate directly or indirectly to the pupil's interests. Their solution should appeal to him as worth while. The abstract drill needed to insure solution then becomes significant. This drill, however, may involve many steps. In order that these steps may be seen to have bearing upon the larger purpose, the drill should not only be preceded by problems but also be paralleled by them.

Larger purposes than those supported by verbal problems must, of course, be entertained; but we shall drop the matter here lest we develop an excursus on this attractive subject. We shall content ourselves by repeating that in the matter of readiness for drill the child's sense of purpose takes first place.

In the second place, readiness for drill is enhanced if the child has a sense of the value of what he does. This is closely related to purpose. Indeed if we accept "fitness for a purpose" as a definition of value, the child's awareness of the relation of his task to his purpose is his sense of value. As a matter of theory, however, it is worth mentioning that whereas personal aims may have
no ethical reference, the value of an action cannot escape such reference. Thus a pickpocket has base purposes and makes efforts (including drill) to attain them. But his practice cannot in any general sense be said to have value. Purpose then is personal; value may not be. Accordingly when we say that the child should have a sense of the value of any drill which he is required to undertake, we provide for something beyond his self-regarding purposes. At any rate, if the pupil has not reached the point where he sees value in a particular type of drill, then he is to that extent unready for it.

In the third place, readiness depends upon the confidence of thee pupil in his ability to do the task in question. He should have the habit and expectation of success-a condition brought about by a sustained policy of always preparing him adequately for the drill he is to undertake.

In the fourth place, if the drill is not so linked to previous experience as to arouse a feeling of familiarity, then the child is not yet fully ready for the drill in that form. This principle is evidently useful in organizing drill, but it is also a principle of readiness. Not only should we arrange drill units so that familiar elements appear as linkages, but we should also endeavor to prepare the pupil for the recognition, emotionally as well as intellectually, of these linkages. Our drill should be progressive in range and difficulty, but it should never be really new. If it is, the's (according to our point of view) either it is bad drill or the child is not ready for it.

In the fifth place, if the pupil is not prepared to some extent to take charge of his own drill-the material, if necessary, being provided for him-he is not yet fully ready for it. His ur readiness may be due to lack of experience in taking responsibility or it may be due to a lack of understanding of the field covered by the drill in? question. In either case, since the objectives of drill are personal, and since therefore they will he best assured when the person most concerned takes an active part in attaining them, readiness implies the ability to see the need and to help in applying the remedy. The best drill has large clements of self-direction.

With all the skill at our disposal in organizing drill, there
will be times in actual practice when the ideals and motives above referred to will be insufficient to carry the work forward and when effort must be brought to bear. In the sixth place, therefore, readiness implies that the pupil have at his command habits of attention adequate in the requirements. At the same time, it should be noted that attention, though an item in readiness, is also, like several items already mentioned, an item to be considered in organizing a drill procedure. It is for the purpose, among other things, of reducing the demands upon attention that short prectice periods, time limits, distributed practice, and perhaps learniag by wholes, are favored. But when all proper arrangements of this sort are made, a certain span of attention is still required. The ability to bestow, under the conditions present, the degree of attention required is obviously an item in the pupil's readiness.

The things we offer our pupils for practice cannot, therefore, be considered apart from the readiness of the learner for them. We have noted six aspects of readiness: a purpose in harmony with the material, a sense of its value, self-confidence in undertaking it, a feeling of tamiliarity with it, ability to take some personal responsibility in reference to it , and habits of attention adequate to meet its demands. Each of these, though viewed here as a matter personal to the child, has perhaps equal bearing upon the character of practice and its organization. Thus drill material should have purpose and value for the learner; it should inspire confidence and a sense of familiarity; it should provide in some degree for self-direction; and it should be reasonable in its demands upon attention.

THE ADVANTAGES OF ORGANIZED DRILI,

To the writer, the advantages of an orderly arrangement of learning activities are unquestionable. He cannot subscribe to the doctrine that makes education a succession of improvisations. To him "the basic material of study cannot be picked up in a cursory manner." It is true that occasions which cannot be foreseen arise, and always will arise as long as men are free to think and act; and it is equally true that these occasions should be
utilized. No theory of education which recognizes its experiential character will deny the vigor and propulsion of such occasions. The point, however, is that the dynamics of the unexpected incident should be used in the service of developing a continuing line of activity. This is far different from trusting to a series of fortuitous occasions to provide the material of learning. The point of view of the writer, therefore, is that which Dewey expresses in his Experience and Education (see especially pages 95-103). According to that view, the truly underlying ideal in education-whether we are talking about drill or any other aspect of education-is not merely, nor even predominantly, a series of discrete contacts with reality, however vivid, but rather the progressive organization of knowledge. Dewey is no doubt thinking of many a mistaken follower of his when he remarks: "In practice, if not in so many words, it is often held that since traditional education rested upon a conception of organization of knowledge that was almost completely sontemptuous of living, present experience, therefore education based upon living experience should be contemptuous of the organization of facts and idens."

When experience is repeated we have drill in the conception of the term employed in this chapter. If organized materialsnot necessarily as the starting point but as an objective-are desirable, then organized drill is desirable. The very doctrine of the continuity of experience as a moving force implies not only development, not only novelty, but also repetition.

We must use the occasions of the living present; we must recognize the ongoing character of experience: we must invoke repetition as well as insight; we must look toward a reorganiza-tion-which, in spite of the prefix, does mean organization-of experience; and we must seek, if men are to rise above the fortuitous and the occasional, the orderly arrangement of knowledge.

These things simply cannot be had without exercise, without practice, withrut drill; and every argument for the organization of educational efforts toward the accomplishment of purposes bids us likewise organize our drill for the same ends. This demand will play down rather than play up the virtues of improvisa-
tion and will declare with emphasis and clarity that improvisation is at once the bete noire of progressivism and the resort of the lazy teacher.

THE INCIDENGE AND ORGANIZATION OF DRILL

The question of when to use drill involves, among other things, the question of its incidence. One general rule can be laid down. It is that drill should follow a certain degree of understanding on the part of the pupil and should be designed to increase that understanding as well as to impart such qualities as ease, fluency, speed, and skill.

The more nearly formal the drill, the more complete the understanding of the pupil should be before he is subjected to it. It is too olten assumed that subject matter is understood when it has merely been memorized in a formal way and can be reproduced. A better doctrine will assert that nothing is really known unless it is understood. If, then, understanding is essential, the less we are able to provide for it during drill, the more carefully we must provide for it before drill.

Two procedures, therefore, are open to us and both of them nust be employed, although the emphasis on the one or the other will differ according to circumstances. The first procedure is to develop carefully and concretely the meaning of the material which is going to be used in a repetitive way. The second procedure is to provide meaning during the course of the practice itself-a procedure the details of which need not delay us at this point. The character of these two procedures-both being in the interest of understanding-may be illustrated by reference to the number combinations. Our objective when we include these combinations in our course of study is their automatic mastery. Our approach, however, to practice in the combinations may well involve a far longer and more inventive treatment of them, using concrete detail and manipulation with much thought as to the nature of the processes involved, than has hitherto been expected.

The practice itself, should be less abstract and more clearly in
the service of meaning. ${ }^{5}$ Relationships among the items of drill should be eagerly exploited. Perhips even more important is the utilization of meaninglul material to supplement the abstract material. It is entirely likely that the solution of meaningful problems is itself a powerful type of drill, even with reference to number combinations and processes, to say nothing of the benefits of such drill in increased ability to solve problems. We are not without evidence that one of the best ways to develop among pupils the ability to solve problems is to practice problem solving.

The configurationists are especially strong in their emphasis upon insight. Summing up this matte, Hartmamn goes so far as to say: "Insight, then, takes the place of practice or repetition as the key word in a configurationist picture of learning." ${ }^{\circ}$ This does not deny the value of practice. It merely puts insight in the more important position. Incidentally it would seem that this question of priority is rather futile, like the fabled quarrel between the mouth and stomach as to which is the more important organ of the body. The frequency with which acts are performed unquestionably aflects progress in any performance. At the same time, the protest of the configurationists, while it may by its vigor fail to present a balanced judgment, is nevertheless wholesome. Something like it had to come. The thousands of teachers and millions of pupils who have been disappointed by misplaced confidence in drill and especially by a use of drill at the wrong tine are entitled to a vigorous corrective. The insight or, in Gestalt language, the configuration is the important thing. "Repetitions without the achievement of a configuration," says Koffka, "remain ineffective whenever they are not positively harmful."

In atithmetic the extent to which the school went in robbing $\mathrm{i}^{\text {t : }}$ offerings of meaning-even claiming this as a virtue-can be inferred both from the lieerature of ten or fifteen years ago (to

[^33]which, alas! the writer contributed) and from observation in many a classroom today. Repetition, in theory and in practice, has been held to be the "key word" in learning. As a consequence, meaningful relationships within the material to be learned have been considered not only useless but probably harmful (through "interference"). For example, in antanging the number combinations for leaming purposes, it has been regarded as good practice to keep apart those in which the same number appeared. According to this doctrine, $4+5=9$ could be followed by $8+3=11$, or by $6+6=12$, but not by any combination containing 4,5 , or 9 , because (to be specific) it was held that $4+5$ might later turn out to be 7 instead of 9 if it were immediately followed by $4+3=7$. With the present organization by relationships, common elements are sought rather than avoided, and a number of helpful groupings of number facts are suggested.

Drill on wholes. In the interest of putting meaning into our drill procedure, let us deal with wholes as far as the child's experience permits rather than with minute parts. The extreme subdivision of topics is contrary to every modern conception of learning. Indeed, it would seem highly desirable that, for example, each operation in arithmetic should be begun and for some time practiced as a manipulative and as a thinking process. Each operation (division, for example) would then come into view as a u'hole and in its essential operational meaning. Thus approached, it would be far better understood, with the result that its application in concrete situations and in the semi-concrete situations of verbal problems would be more successfinl. Then the fifth grade teacher would not ie so likely to find that her pupils could "do absuact examples but not concrete problems." Fach abstract process, as a process corresponding to a way of thinking, would have its or on inescapable meaning.
This is not the same as the proposal, sometimes made, that all processes and procedures should be explained. There are many ways of using numbers which some children camot understand (at least at their present level of maturity) no matter how well they are explained. These ways sometimes depend upon the number system or upon ideas of a generality quite too advanced. Nevertheless the processes themselves are needed. Moreover, the
meaning of these processes as such can be understood as ways of thinking about numbers and can be practiced as ways of handling counted or measured things long before the manipulation of digits (as in carrying or borrowing or finding the common denominator or inverting the divisor) can be understood at all.

Overorganization. Are we not in some respects going too far in organizing our drill materials? Do we not spend too much time getting ready to do something important without actually doing it? To many thinkers it seems that the school, long under the dominance of atomistic ideas, has developed a passion for petty detail. There arn those who say that the school gives most of its attention to the background of thought while "thinking practice is always just around the corner." ${ }^{8}$ Backgrounds of thought are needed; but a school geared to the "stuffing idea" will seldom get past them. A little less meticulousness in our drill organization and a little more largeness of view will be helpful.

For example, we do not need to lay so much groundwork for remote and contingent uses. The next move in the arithmetic curriculum-next, we mean, after the current tendency to transfer the completion of certain topics to higher grades-may very well be the ousting of some of the present "business practice" from the seventh and eighth grades. This present trend to defer the completion of topics hitherto taught in the lower grades is already congesting the upper grades, and we are soon going to ask ourselves whether we want to teach taxation, banking. and investment to boys and girls of fourteen and fifteen. It hapiened (by an odd coincidence) that the reductionists who worked over our arithmetic course in the "teens" and twenties of this century were themselves especially interested in business as a source of subject matter. They therefore held it to be a sufficient reason for retaining a given topic that it was good business practice. Many years must elapse between the study of it and any possible use of it; but it was "business usage" and that was, and has long remained, a sufficient justification. This maladjustment can easily be taken care of in the high school course in arithmetic which is now developing. Meanwhile it is pertinent to raise the question

[^34]of whether we do not spend too much effort getting ready to teach and then actually teaching things which the child will not have use for until after he has forgotten them.

The idea of thoroughness. The limitation of practice to symbols and tools and the consequent neglect of practice in higher processes is closely related to the conception of thoroughness which the school has long entertained. According to that conception, a teacher camnot conscientiously allow a pupil to move from one topic to the next until the first topic has been completely mastered. There is good reason to suppose that this idea is responsible for much loss of time and morale. Yet anyone rash enough to hold a contrary view risks the scorn of the doughty advocates of thoroughness.

Do you remember the accuracy standard proposed some years ago by Thorndike for the number combinations? He said: "An ability of 199 out of 200 , or 995 out of 1000 , seems likely to save much more time than would be taken to acquire it, and a reasonable defense could be made for requiring 996 or 997 out of 1000." " The more severe standard, namely 996 or 997 per 1000, was quoted with approval by Brown and Coffman, coupled with the admonition that only when responses to the combinations possess a high degree of accuracy : will the pupil be "ready to take up successfully the more difficult operations. ${ }^{10}$ There is a whole philosophy of education in this idea. It is the philosophy of 100 per cent accuracy in the "fundamentals" of arithmetic. It is the philosophy which forgives an error of statement but not a misspelled word in a letter. It is a philosophy which would keep the school grinding away at petty tasks without coming to grips with things of greater importance. And it is a philosophy which is passing and deserves to pass.

In arithmetic, with particular reference to the idea of "a high degree of accuracy" at each step before the next step is taken, it is clear that this common concept of thoroughness quite disregards the value of drill in application. To a greater degree than

[^35]is allowed for in this type of thinking, $7+5$ and $16-9$ and 8×4 and $42 \div 7$ are learned in use-for example, the addition facts in column addition and in carrying in multiplying, the subtraction, multiplication, and division facts in long division, and all the facts and processes in problems.

Good drill involves change. All drill if it is effective must, to a greater or less degree, be progressive. It must tolerate change and in many kinds of drill consciously provide for it. Some of the change is, of course, in the learner. He progresses, increasing his skill and his awareness of his skill. When he ceases to improve he is likely to lose interest and to remain stationary for a considerable period, thus entering upon a plateau during which he frequently quits altogether. We say he has lost morale.

Another type of change is in the goal to which the drill is directed. Normally, at least as long as progress is made, the goal entertained by the learner is growing and developing. It becomes more advanced, more mature, more difficult-more, more, more, including more firmly entertained. Drill, then, is not well organized unless it is motivated by increasingly better and more fully accepted goals. This is one antidote to the monotony of unvarying repetition. In some case. it is enough to have repeated effort to attain or move toward a goal, allowing the content of the effort to change. In such case it may be the change (which. however, could not have taken place without the repetition of effort) that accounts for most of the learning.

A third type of change is in the events themselves. They should not be all alike. Theoretically, of course, they never are in all their details and circumstances, but they can be sufficiently alike to deaden the learning. This matter of providing in our drill for steady progress is a major problem in learning. It may be met by changes in the learner or by changes in the goal as already suggested. But a change in the material itself is desirable. Moreover, when made it reacts on the other two - the morale of the learner and the goals he entertains.

Change in the material, however, is not enough. The change should be progressive; it should have direction. Such a type of change has been called "pacing." It ralls for presentation to the learner of tasks which increase with his ability. The increase
will usually be in point of difficulty, but it may also be an increase in range, varicty, or importance.

We have already noted in this discussion that in its incidence drill in arithmetic must follow understanding; that an appeal to understanding should also be made throughout its course; that whole ideas rather than parts of ideas and petty details should be practiced; that in this latter sense our drill is often overorganized in the interest of a rigid and too literal idea of thoroughness; and that, finally, chill must be progressive as to (a) the learner, (b) the goal, and (c) the task.

External organization. A higher type of organization concerns the external articulation of one drill unit with another. Here we find reasons for the disrepute into which drill has fallen. The external organization of learning units has been based upon the plan known as the "drill theory" whereby parts are divided into parts and these in turn into still smaller parts and so on until "unit skills" or some irreducible item is supposed to be reached. These items so highly fragmented can have little meaning because each is so far removed from the whole which alone can give it meaning. The pupil is to be drilled on these items separately and then is to build up for himself the larger parts of wholes. This scheme is discredited by most of those who have recently expressed themselves on the su''ject. It is apparently the least promising type of organizing a series of drills.

The reverse process of beginning with the largest possible wholes-these wholes, of course, being necessarily rudimentaryhas already been suggested. Another process which bids fair to give good results is that which resorts to the purpose of the learner and his goal-seeking activity rather than to the logic of subject matter as a principle of organization.

A QUESTION OF TERMINOLOGY

In the foregoing pages of the discoussion an attempt hats been made to look more closely than is customary into the nature of the repetitive procedure which, at least when narrowly applied, has been called drill. It has been shown that this repetitive pro cedure, if it is to serve well even its conventional purposes. should not be the mechanical grind that many have made it. In
our few remaining pages we shall show that when regarded in this more humanistic way, the procedure at once becomes serviceable for purposes not usually associated with it.

Meanwhile what term shall we employ to cover this wider field? Shall we narrowly restrict the term drill while thus extending its basic idea? If so, what other name shall we give to the extension? Shall we call it practice? This term would serve well enough if it were not already used to mean the same as drill in the narrower sense. We constantly use the expressions practice material and drill material to mean the same body of exercises. Concerning a textbook or a workbook, we ask how much practice or how much drill it offers on long division; and in either case we mean the same thing. If, therefore, we decide to call the wider uses of a repetitive procedure practice and the narrower uses drill, we make a distinction between terms which have hitherto covered the same ground. In answer to "What becomes of drill?" it is hardly satisfactory to say, "It becomes practice."

Shall we apply a wholly different term to the broader idea which we have in mind? The writer admits his unwillingness to do so. Educational terminology is already too elaborate; and those who are engaged in extending it are of doubtful service to the cause they represent. Their thoughts would be better understood if put in plainer words.

It is therefore proposed that we keep the word drill, allowing it to take on wider meaning as the objectives of arithmetic themselves widen. The writer sees, for example, no disadvantage and some advantage in the expression "drill in thinking." Moreover, he suggests that it is a commentary on our exclusive concern with intelligence if we cannot accept "drill in tolerance of-" or "drill in appreciation of-." These things are as surely products of learning as knowledge of the interest formula or the ability to write a check. They are likewise improvable, as other learnings are, by recurrence of appropriate experiences, that is, by drill.

THE FIELD OF DRIII,

The reduction in the arithmetic course during the last thirty years has been mainly a reduction in computation. In grades one
and two the entire subject has either been omitted or devoted to the development of concepts and number relations by concrete methods. In all the grades some topics (mostly computational) have been dropped and others have been postponed. Still other topics-as common fractions, measurement (denominate numbers), insurance, taxation-although retained, have been changed so as to represent ideas rather than mere figuring.

What is taking the place of computation? What should take its place?

For one thing, we are replacing computation from arbitrarily given data with activities in which pupils obtain the data as well as the answers. Instead of giving the shadow length of a tree and the height and shadow length of a post, in order to find the height of the tree, we send a group out to make the measurements and then do the computing. The latter becomes an interesting climax; but, as far as time and effort are concerned, it is distinctly subordinate. Of course, on this expedition pupils will make repeated measurements and computations of shadows and heights. Even the expedition will be repeated. Thus drill will be provided fordrill in the whole activity, not just in the figuring. A committee may make a crude transit out of a camera tripod, a protractor, and a clock hand. Then data may be gathered for still further indirect measurements. (N.B. Similar triangles will be better understood.)

Other ways in which, by getting the data as well as the answer, a superior type of drill may be applied are: finding circle graphs in newspapers or magazines and interpreting them; making out applications for money orders (or, better still, sending the money); finding distances in miles on a map and using the distances for some purpose; getting averages by first making the needed measurements; opening a postal savings account; working out problems after making weather observations; finding areas of figures drawn to scale; finding the value of π by measuring round objects such as a wastebasket, tin can, lamp shade, water glass, etc.; reading gas, electric, and water meters to find the amount of the bill; window shopping (or newspaper reading) to collect discount data for use in problems. If, with the progressive variation already referred to, these and similar activities are
done several times, in other words, if they become the subject of drill, the learning effect will be greater than a single experience will permit. Moreover, with the reduction in computation which characterizes the present arithmetic course, there is room for this sort of thing though perhaps the full fruitage of such work cannot be had until the course becomes more definitely a secondary school subject than it now is.

QUANTITATIVE THINKING

Another type of work which is taking the place of computation in arithmetic, and to which drill ought to be applied, is quantitative thinking, that is, thinking in which the data for thought are numerical. One type of thinking (not necessarily quantitative) is comparing, another is arranging, a third is classifying. We may compare the French and British governments, or Washington and Iincoln. or liberty and equality. We may arrange events in the order of their occurrence. We may classify vegetable foods as roots, flowers, bark, fruit, seeds, etc. But if we compare, arrange, or classify on a numerical basis such as weight or money value, the thinking which our action involves or sets going is quantitative thinking.

One is tempted at this point to say more than should be said about comparison as a type of quantitative thinking. Much important arithmetic gathers about it. First, we have comparison by subtraction-the idea of more and, contrariwise, of less. Secondly, we have comparison by division or ratio-the times and the part idea. And thirdly, we have a combination of these two in virtue of which we find the difference between two magnitudes and express the ratio of the difference to one or the other original magnitude, e.g., from the facts that the population of Seattle in 1910 was 237,000 and in 1930 was 366,000 , we may say that the increase in population was $5 t$ per cent. At any rate, a great deal of the practical arithmetic of life comes under the heading of comparison. Various ways of expressing comparison are constantly found in periodicals. In order that pupils may understand them. drill in this form of thought should be provided.

As to arrangement, suppose we have a table of measurements
just as they were made. In order to understand them, we must first bring them into some sort of order. The obvious one is arrangement from smallest to largest (or vice versa) according to size. This is, perhaps, not so much a matter of thought as it is a basis of thought. From this arrangement we may select (selection is another thought type) the middle measure as a very good expression of the general weight or central tendency of the series.

Again, arrangement of data often leads to classification, the third of the shought types above mentioned. Measures may be grouped as more or less than a critical measure. Fhey may be put into a series of consecutive groups. as those between 20 and 29 , those between 30 and 39 , etc. Sometimes classifications become stereotyped and thus provide a ready-made instrument which then becomes widely used and on the basis of which valid comparisons can be made, for example, the census bureau's classification of cities according to population.

The types of thinking, quantitative or otherwise, are numerous, and during the arithmetic course drill should be had on all of them. In addition to the three already mentioned, the following list may be suggestive: giving examples or instances like, emphasizing, judging or evaluating, adapting (to a related purpose), discriminating, approximating, inferring, defining, planning, choosing, summarizing, reproducing (acting under the guidance of a number idea), identifying (recognizing and naming the number idea when its objective conditions are presented), generalizing, applying, analyzing, choosing, explaining, illustrating, synthesizing. Of course the four processes of arithmetic, as well as proportion, are likewise thought types. Children are drilled enough on them in all conscience (except on proportion), but the drill is not on the thought which they represent but on a par ticular arrangement of the digits of the Hindu-Arabic system which happened to prevail after the sixteenth century and which gets the answer.

ATTITYDF. TOW'ARD NI'MBER

As long as the greater part of the time and effort of the pupil is devoted to the trivialities of arithmetic, a large and generous
attitude toward the subject cannot be expected. If his days are spent in a purposeless round of drill in computation, if the chief motive offered him is the far-off and uncertain prospect of going into business, of buying insurance, of paying taxes, and of investing money, he will have as little to do with arithmetic as he can. It will seem to him an especially dreary subject and his attitude toward it, not only in school but afterward, will be one of aversion.

Attitude, however, is a by-product. One does not, except in a bad sense, practice an attitude. Yet attitudes are acquired or learned; we are not born with them. They are, in Kilpatrick's phrase, "concomitant learnings." This means, not that we practice or drill on desirable attitudes directly, but rather that our drill, though otherwise directed, must bring repeatedly into play these desirable attitudes.

This is part of the reason why drill should as often as possible be general rather than specific, and thoughtful rather than mechanistic. For example, children are drilled on interest problems using the formula $i=p r t$, but dew of them either see or use the indirect cases or the corresponding formulae for p, r, and t. Are we told that in business, principal, rate, and time are seldom computed? True enough. but there is a good answer to all that if there were time to give it.

Children work upon specific numerical ratios, yet they fall far short of sensing the idea of a ratio. They shift decimal points in specific cases without knowing why. They multiply particular figures without thinking about multiplication as a process. They have been too much concerncd with small skills to see relationships.

And they are what we make them. As adults, many of them shrink from number and avoid as far as possible all situations involving number. Their drill in school produced no favorable attitude toward it.

The meaning of number is a mathematical question. Our drill theory should certainly embrace this field. It begins when the child enters school and it ought to continue as long as he attends. First we have the concepts of small numbers and at the other end of a long course we have the Theory of Number.

In the primary grades it is all but fatal not to spend time in drilling upon the two aspects of number concepts-their reproduction and identification. Enough has been written elsewhere on this aspect of the question. Then, too, the different ways of knowing a number must be cared for-the series idea, the component idea, and the ratio idea.

As a rule the children of the primary grades will be working on the meaning of numbers at three levels simultaneously. The first level will be the one-place numbers, and these will be treated according to the suggestions contained in the last paragraph. The second level will be the numbers from 10 to 19 , or the teens numbers. Thesc will 1 eceive (in theory) all the treatment that was used on the first level plus the new ideas which have to do with these two-place numbers-the one 10 with or without accompanying units. (The zero will require some consideration.) The third level runs from 20 to 100 and utilizes (again in theory) all the earlier procedures. It permits some generalization as to the number system.

Throughout the middle grades the number system will be carried far enoresh-probably to billions to permit a general conception of the decimal system of whole numbers to be formed. Meanvihile decimals, beginning as money numbers perhaps as low as grade three, will be introducing a still wider generalization as the system is extended to the right of the one's place.

All this time a system of numbers not very closely related. the decimal system has heen under development, namely, our system of common fractions. At this point most teachers and most courses give up the notion of imparting meaning-and this in spite of the fact that common fractions are older in the development of the race than decimals and are better known to children from their life experience. Many a child on entering school knows something about $\frac{1}{2}, \frac{4}{2}, \frac{3}{2}, \frac{1}{3}$, and $3 ;$ but no such child knows anything about $0.5,0.25,0.75 .0 .33_{3}$ or $0.66 \frac{2}{3}$. While confining computational practice for the most part to fractions of small denominators, the meaning of fractions-which also requires practice-should suffer no such limitations. Within the scope of the system there should be the fullest opportunity to reach generalizations.

THE SOCLAL SIGNIFIGANCE OF ARITHMETIC

There are some who seem to believe that if we instruct and drill on number in its mathematical meaning we shall have little else to do. For example, it is held that we shall thus fully reveal the meaning of the four fundumental processes. This theory is attractive but it is only partly true. Its truth lies in the fact that our present algorisms are all of a piece with our Hindu-Arabic system and are therefore explained by it. If the system is well learned, the algorism is half learned before it is begun.

This, however, is not the whole story. The algorism which we now use in multiplying is not multiplication; for other and quite different algorisms not now in vogue are also multiplication. The rest of the truth is that the essence of multiplication is outside our number system and thet it existed before our number system was known.

What then will contribute to additional understanding of arithmetic? Undoubtedly its social significance. As for multiplication, it is all about us. It confionts us in tile and brick and glass. It is wherever there are rows and columns. It is found in every multiple purchase and wherever numbers are repeated. It is implicit in every rectangle and in every three-dimensional container. We live in a world of multiplication.

To bring this and similar significancies in arithmetic to the consciousness of the child and to do so frequently (the drill idea) is to contribute to his sense of the value of the subject, to the uses that he will make of $1 t$, to his favorable attitude toward it, and to his understanding even of its mathematical meaning.

There are so many social uses of arithmetic that one cannot name them. They are often institutional; for society, having uses for number in certain special ways, has slowly created the necessary orgamizations. The insurance company is a good example. In that case number is used to create and riaintain a collective effort where small satrifices are pooled to prevent large losses or to afford one large benefit at a time of crisis. The social significance of insurance is the important matter, not the computation involved in it.

Other aspects of the social significance of number are not so sharply institutionaliad. loor example, we have an arithnetic of production, of distribution, and (quite conscionsly) of consumption, yet we should hardly sity that production, distribution, or consumption are orgmized to the point where we can , If them institutions quite as we can our system of bataks or our system of insurance companies. Among these quasi-institutionalized areas, that of comsumption is espectially attactive, partly because we are all consumers and partly because the fied of consumer arithmetic has alteady been worked to some extent.

Finally, the social signiticance of arithmetic concerns the indi-vidual-as a member of society. Daily, almost homrly, we need arithmetic in the reading of newspapers, magarines, and books. We hear arithmetic and we alk arthmetic. Aithmetic is our daily need-and not ours alone. It is also the need of young children. How is it that they have leamed so mu a of this highly artiticial system in the shont six years before they enter school? They have had mo humam instruction, except perhaps in rote counting. because the home. if it teaches the child any school subject, teaches him reading. Yet careful insestigators such as Nila B. Smith and Marion J. Wesley report an amaring use of number on the part of six and seven-yearold children. They count; they add and subtatet; they multiply and divide; they use fractions; they measure and compare. They have actually begun nearly all the things they will ever do in arithmetic.

If the lives of first grade children are so full of number, then the lives of older children and of adults are of course, still more so. In this world of science, of the machine, and of instruments of precision those who are quantitatively intelligent find large and aried uses for arthmetic in achiering their many purposes. All of this points to the social significance of number and to the need for its recognition in our educational program.

It is worth while as we bring to a close this tratment of the fied of drill.fos say that not meagerly, nor grudgingly, nom merely on the occasion of an "activity," but fully, frecly, and systematically, the social signifieance of arithonetic should find a place in our program. The aspects of it will vary more than those of any other topic we have discussed. We are now, therefore, upon the
outer edges of the field of drill. Our repetition has more variety and less identity than ever before. If it were worth while to arrange the types of material to w': ich drill may be applied from those in which repetition was most obvious to those in which it was least obvious, the first types of material would be computitional and the last would be social.

Yet, though near the boundary, we are still within our proper area. Repetitive elements may be subtle, but they are nevertheless real. It is still true that recurrence of experience fosters leaming. There is still a place for drill.

The title of this chapter poses the question "What Becomes of Drill?" To which one may reply, "Why should anythin, 5 become of it? Why is the question raised?" It is raised because of the rapid change in the curriculum and the objectives of arithmetic during recent years. In fact, as the reader of this Yearbook will readily infer, arithmetic is on the march. It is plainly evolving from a narrow computational subject to a subject of broad social and mathematical import. The great incentive that used to be offered to boys to do their "sums" was that business needed fast and accurate computers, and that jobs would await them if they could qualify. Much of this has passed. Fast and accurate computers are no longer men but machines. Meanwhile-partly because of the machines-the use of numbers in social ways has been enormously increased. The youngster of today must know what these numbers mean--their mathematics. He must also know what they signify as indicators of social conditions. Arith-metic-that is, arithmetic as used in the modern world-has spread from the counting house into the general life of the people. What then becomes of drill? If arithmetic is indeed "on the march," then drill should follow the flag. If in the long fight against ignorance it has served well, it must not remain in the old camp with the rear guard.

Chapter X

THE EVALUATION OF LEARNING IN ARITHMETIC

BY WILLIAM A. BROWNELL dUKE UNIVERSITY

FOR the best interests of both, we have sometimes been told, instruction and measurement must be kept apart. Considerations involving measurement are held to impede the solution of problems of measurement; and, conversely, the task of measurement is thought to require time and energy which teachers might more properly give to instruction. Some test technicians have not felt particularly handicapped by their ignorance of the purposes of arithmetic instruction. On the other hand, teachers, who supposedly know the nature and purposes of their subject matter, are regarded as unable to evaluate the learning they have directed.

This separation between measurement and instruction presents a curious anomaly. It exists only in theory; it cannot actually be maintained in practice; hence it is wholly artificial. Nevertheless, the attempt to establish the separation has been made, and the effects upon classroom evaluation and teaching alike have been most unfortunate. Let us start with these unfortunate effects, reserving for a moment consideration of the artificiality of the separation.

Effects of attempted separation of measurement and teaching. One effect of the attempted separation has been to remove measurement further and further from the immediate learning situation. Tests to be used for diagnosis and the evaluation of achievement have been standardized, and in the process of standardization have lost touch with the features peculiar to the local classroom. Indeed, it is the very essence of standardization as a process to disregard local variations and to strive for a "national average" of subject content and teaching practice. For certain
purposes, such as are comprehencled in the survey function of measurement, for example, this averaging and this disregard for local conditions are precisely what is needed. For other purposes, however, especially for those purposes which relate most closely to the organization and direction of learning, it is the local conditions, lost in standardization, which are most crucial.

A second effect of trying to keep measurement and teaching apart has been to limit measurement to outcomes that can be most readily assessed. In arithmetic this has meant concern almost exclusively with "facts," with computational skills, and with "problem-solving" of the traditional sort. The necessity for developing proficiency in these areas is obvious. Furthermore, measurement of these outcomes (or at least partial measurement) can be managed by objective techniques. As a result, many experts in test construction have confined themselves for the most part to these outcomes, as have also teachers who have followed their lead. But, as will be made clear below, there are other arithmetic outcomes, fully as important if not so obvious as mose commonly attended to, and these outcones under present practice are neglected.

A third ill effect of the effort to separate measurement from teaching has been to limit unduly the techniques which are serviccable for evaluation. It is not far from the truth to say that evaluation in the broad sense has been narrowed to measurement in the narrow sense, that such measurement has been made virtually equivalent to testing, and that testing has become the administration of paper-and-pencil tests, usually of an objective character. Valuable as are such objective tests, whether commercial or local products, they camnot readily carry the full burden of caluation. There are other procedures which are now ignored. These other procedures, to be described below, are easily managed by teachers and, what is more important, they uncover kinds of learning processes and products which at present clude paper-and-pencil tests.

The fourth harmful effect of the desire to separate measurement and teaching, ad the last one here to be considered, has been to create confusion with respect to the purposes of evaluation. Learning may be evaluated for a number of reasons. One
may be the diagnosis of failure; another, the measurement of progress over short units or sections of content; yet another, the pre-testing of abilities before starting a new topic, as a means of "establishing a base line" or determining a common ground for instruction in a given grade. Tests, commercial or otherwise, which are suited to one purpose are not thereby suited equally well to other purposes. Indeed, it might even be argued that the better a test serves one function, the less well it can serve others. For illustration, the better a test "surveys" (e.g., permits comparisons of a school system with other school systems or with national norms) the less effectively it "diagnoses." Yet, several survey tests in arithmetic incorrectly bear the label "achievement test" and are improperly used for the latter purpose, as well as for other purposes even more remote from the function for which they were devised.

The four consequences of the attempt to divorce measurement from instruction which have been mentioned reveal the essential artificiality and impracticability of the attempted separation. The fac: of the matter is that, despite the effort to do so, measurement and teaching have not been kept apart. Classroom instruction has emphasized the outcomes and only the outcomes with which measurement technicians and some measurement theorists have worked, and it has used the evaluation procedures and only the evaluation procedures favored by them. ${ }^{1}$ The poverty of the results of arithmetic teaching under this scheme of things has been all too well ex; osed. It has been exposed in the fact that children are not able to use the arithmetic they are taught in dealing with the simple personal quantitative problems of the adult world into which they are presently to enter; indeed they are not even sensitive to the quantitative aspects of their own daily lives. The poverty of our teaching has been exposed, too, in the arithmetical deficiencies of adults who have been

[^36]subjected to eight or more years of school arithmetic. Witness the typical adult's efforts to evade the quantitative demands of his life and his embarrassment and uncertainty when there is no escape from them.

To some readers the foregoing discussion may appear to be somewhat academic and unreal. Among these readers will be the many excellent teachers who never have thought of separating measurement from teaching but have steadfastly cvaluated learning in order to improve the effectiveness of their teaching. Admittedly, the past few pages have not been written for such persons. Instead, they have been intended for persons who have not yet accepted the full import of modern conceptions of education according to which children and the problems relating to their learning are the central consideration in the classroom.

The purposes of this chapter. The purposes of this chapter are two in number, the first of which has been already foreshadowed in the criticisms offered in the paragraphs above. The purposes are: (l) to outline a point of view with respect to evaluation (a) which relates evaluation to tcaching, and (b) which makes evaluation comprehensive enough to include all objectives or aims of arithmetic instruction; and (2) to illustrate as far as possible concrete procedures for evaluating outcomes now too often overlooked. In order to save space for the second and more obviously practical purpose, the statements to be made with regard to the first purpose must be held to what is essentially an outline.

A point of view with respect to evaluation

As has already been suggested, the thesis of this chapter is that instruction and the evaluation of learning cannot be kept apart in theory and should not be kept apart in practice. Instruction and evaluation go hand in hand. As teachers develop new insights into learning-its difficulties, its stages or phases of development, the basic understandings required for each advance step in learning-as teachers acquire these insights, they will employ them in improved evaluation. And as they correct or modify their evaluations and devise procedures which are more comprehensive and more penctrating, they should come upon new data
of great significance for the better guidance of learning. Viewed thus, instruction and evaluation are inseparable and mutually interdependent.

If the recommendations to be made in this chapter were accepted and practiced, certain values would accrue. In the first place, evaluation (the broader term will henceforth be used in place of measurement) and teaching would both start with arithmetic outcomes-with all the arithmetic outcomes which are deemed worthy of attainment. ${ }^{2}$ F.vidences would then be obtained, so far as can reasonably be done, on all types of growth and at all stages in this growth. In the second place, any procedure whatsoever which might shed light on learning would be accepted and utilized. Wider recognition would be given to observation, to the interview and conference, and to other techniques which can yield information on the progress of learning. In the third place, the various purposes for which evaluation is undertaken would be recognized in the kinds of procedures which would be used. In other words, evaluation procedures would be adapted to the ends for which they are best fitted. In the fourth place, evaluation would be continuous with teaching and learning. F.vidence on learning would be collected daily (occasionally by tests, more often by informal procedures), instead of irregularly and spasmodically. In the fifth place, e'raluations would be immediate and intimate; they would reflect the unique

[^37]conditions, emphases, and factors affecting learning in particular classrooms. And for this reason they wor'd provide teachers with the kinds of information which they most need in order to direct learning.

These gains are not to be won by wishful thinking. Admittedly, they represent an ideal state of affairs which now can be no more than approximated. But even so, the approximation in itself will mean important progress away from present practice in evaluating outcomes.

Comprehensive and functional evaluation in arithmetic is dependent upon the effective relating of a number of factors. We need, first of all, an adequate statement of arithmetic outcomes. Second, we need to recognize the peculiar demands of different purposes in evaluating learning as these demands affect evaluation procedures a ad ins+"uments. And, third, we need to have a practicable program for evaluation. This third requirement involves (a) knowledge of effective procedures and their limitations, (b) a realistic understanding of what can and cannot be done by the classroom teacher, and (c) the actual planning and designing of evaluation procedures. This last named item (c), is reserved to the last part of this chapter. The other items listed above will now be considered in order.

Acceptable outcomes. There are dangers in setting arithmetic outcomes. In the first place, there is the danger that the mere listing of outcomes separately may for some carry the implication that these outcomes are isolated from each other and are to be achieved independently of each other, one at a time. But outcomes are not thus distinct; rather they overlap in meaning, and they are probably best achicved when they are achieved more or less together in their functional relationships. In the second place. there is the danger that outcomes may be regarded as ends to be attained once and for all, the quicker the better. But outcomes are not so to be conceived; they really stand for directions of growth. In the third place, there is the danger that from a list of outcomes questionable tcaching practices and forms of curriculum organization may be inferred. Not always should particular outcomes be at the immediate forefront of thinking when learning activities are being considered. After all, as we
have been told almost ioo often, we teach "the whole child." Outcomes function best in teaching when they constitute the background of thinking, against which may be projected possible teaching plans. When, however, evaluation rather than teaching is the major concern, outcomes as suth become more immediately impertant. In the fourth place, there is the danger of a suggestion of finality in any fomal statement of outcomes. These outcomes work their way into educational thought; they come to be accepted as definitive, and they are modified only with great effort.

In full awareness of these dangers a list of arithmetic outcomes is given below. This list is not the result of Committee action; it does not bear the label of the C.mmittee's authority. Instead, it is offered purely as the writer's own formulation. After all, if evaluation must start with outcomes, we must know what the desired outcomes are, and the list below seems to the writer to be adequate at present as a working basis.
(1) Computational skill:

Facility and accuracy in operations with whole numbers, common fractions, decimals, and per cents. (This group of outcomes is here seprated from the second and third groups which follow becatue it con be isolated for measurement. In this sepanation muth is lost, for computation without understanding when as well as how to compute is a rather empty skil. Actually, computation is importam only as it concributes to sorial ends.)
(́) Mathematioal understandings:
a. Meaningful conceptions of quantity, of the number system, of whole numbers. of common fractions, of decimals, of per cents, of measures, etr.
b. A meaningful vorabulary of the useful technical terms of arithmetic which devignate quantitative ideas and the eclationships between them.
r. Grasp of important arithmetioal generalizations.
d. Understanding of the meanings and mathematical functions 0° the fundamental operations.
e. Understanding of the meanings of measures and of measurement as a prosess.
f. Understanding of important arithunetical relationships, such as those which funt iom in reasonably sound estimations and appoximations. in acturate checking, and in ingenious and recerate clul solutions.
g. Some understandeng of the rational principles which govern number relations and computational procedures.
(3) Sensitiveness to number in social situations and the habit of using number effectively in such situations:
a. Vocabulary of selected quantitative terms of common usage (such as kilowatt hour, miles per hour, decrease and increase, and terms important in insurance, investments, business practices, etc.).
b. Knowledge of selected business practices and other economic applications of number.
c. Ability to use and interpret graphs, simple statistics, and tabula: presentations of quantitative data (as in study in school and in practical activities outside of school).
d. Awareness of the uefulness of quantity and number in dealing with many aspects of life. Here belongs some understanding of social institutions in which the quantitative aspect is prominent, as well as some understanding of the important contribution of number in their evolution.
e. Tendency to sense the quantitative as part of normal experience, including vicarious experience, as in reading, in observation, and in projected activity and imaginative thinking.
f. Ability to make (and the habit of making) sound judgments with respect to practical quantitative problems.
g. Disposition to extend one's sensitiveness to the quantitative as this occurs socially and to improve and extend one's ability to deal effectively with the quantitative when so encountered or discovered.

Purposes of evaluation. Evaluations of learning are undertaken, or should be undertaken, for several different reasons. These differing purposes introduce variations into the procedures and instruments to be used. For example, as the learning area which is sampled is extended, the thoroughness of the sampling diminishes. What seem to the writer to be the five chief plaposes of evaluation are listed below. ${ }^{\text {a }}$ In each instance both the maning of the purpose and the significance of that purpose for the kind of evaluation procedure to be used are illustrated in terms of paper-and-pencil tests. Tests are employed in this connection because teachers are more familiar with them than with some of

[^38]the other procedures. Illustrations of other evaluation procedures will be given later with greater emphasis.
The chief purposes of evaluation are:

1. To Diagnose Class and Individual Diffirulty. Effectiveness of diagnosis is dependent upon the intensity or depth of evaluation. That is to say, diagnostic data increase in value as they pass from a mere locating of the places of difficulty to an analysis of the causes of difficulty. On this account, special care must be exercised not only to include (a) all critical steps, processes, uses, opportunities, and so on, and (b) enough samples of each to yield reliable measures, but also (c) to discover insofar as is possible the thought processes which children employ in dealing therewith. Diagnostic tests must usually be restricted in their range of coverage in order to insure such depth and intensity.
2. To Inventory Knowledge and Abilities. Inventories are made, for example, to determine "readiness" for a new topic or for the start of instruction in a grade. The usefulness of this kind of evaluation has been made steadily more apparent as we have sought better to adapt the pace of instruction to level of pupil ability. The inventory test resembles the diagnostic test in that it includes samples of all levels of thinking which are achieved in the critical aspects, or skills, etc. Its range, obviously, varies with the area under examinaticn from a relatively few constituent abilities, thought processes, and evidences of social awareness with respect to basic skills and concepts (when "readiness" for a new topic is under consideration) to the many such aspects of skills and concepts of a whole year's work (when, for example, the "base line" for class instruction in grade four is being established). Usually the depth of evaluation is much less in an inventory test than in a diagnostic test, or it may justifiably be made less.
3. To Determine the Extent of Learning over a Limited Period. An example is the measurement of learning over a month's unit of work. When tests are used for this purpose, they may be called "instructional" or "progress" tests. They are commonly short enough to be given in one class period or less, and their content is restricted to what has been but recently taught. In this respect they tend to differ from inventory tests. They differ from diagnostic tests in that usually but comparatively little effort is expended
to get at the source of difficulty, But, as is also true in the case of the first tivo purposes, this third purpose of evaluation does not necessarily require a test at all. Indeed, in the case of some kinds of learning other procedures are much more suitable.
4. To Measure Learning over a Relatively Long Period. One use of evaluation for this purpose is to secure a basis for pupil classification; another, to get a general view of achievement for a semester or year to be used in making up the term "mark." Usually paper-and-pencil tests are employed exclusively for this purpose. Such tests are certainly valuable, but evaluation should not be limited to them since probably not all outcomes will be represented in them. Here, that is for evaluating learning over fairly long periods of time, the extent of the area is relatively much larger than in "progress" tests, and thoroughness of sampling must be sacrificed to some degree. As in the case of progress tests (Purpose 3) test content should be restricted to what has been taught in the period covered, except of course as skills, concepts, etc., taught earlier are indirectly involved. The purpose of "achievement" testing almost necessarily precludes diagnosis, save in the shallowest sense of finding places of difficulty, and by the same token it cannot, unless the test is unusually comprehensive, well serve the purpose of inventorying.
5. To OLiain Rough Measures for Comparative Purposes. Reference here is to the survey function of evaluation, as this is illustrated in comparisons between schools within a system or between school systems. Because of the purpose for which the measures are to be used, these measures must almost necessarily be obtained from paper-and-pencil tests. Objectivity in scoring and the reliability f measures are especially important. Unless comparisons are to be made grade for grade and on the subject matter of those grades, a single test for all grades is commonly used. This means that the learning area is very extensive, and that the sampling is correspondingly very crude. To use a test designed for the survey function for the purpose of achievement testing (Purpose 4), or for progress testing (Purpose 3), or for inventorying (Purpose 2), or for diagnosing (Purpose 1), is almost certain to introduce crrors and to lead to misinterpretation of test results. Yet, precisely this practice frequently obtains in testing programs.

These five purposes of evaluation have been discussed in terms of tests and apparently in terms only of computational skills. But actually the points made apply equally well to other evaluation procedures and to all outcomes. The nature of other evaluation procedures is treated in the next section. Emphasis needs now to be given to the fact that in evaluating growth or learning toward all objectives, and not merely toward computational proficiency, one must keep in mind the purposes for which evaluation is undertaken. Thus, one needs to diagnose, to inventory, to note progress, etc., in the case of mathematical understandings and of sensitiveness to the quantitative in life, just as fully as in the case of computational skills. Growth takes place in understandings and in quantitative sensitiveness as truly as in computation, and just as truly learning in these areas needs to be assessed for difficulties, for status. for progress, etc.

Evaluation procedures. Four general classes of evaluation techniques will be briefly considered, namely, (1) paper-and-pencil tests (or simply tests), (2) teacher observation, (3) individual interviews and conferences with pupils, and (4) pupil reports, projects, and the like.

1. Tests. Though much of the preceding section has been devoted to the use of tests in evaluation, actually far more space than this whole chapter affords could be taken for this purpose. Of all the possible evaluation procedures no other has received the research and theoretical attention given to tests. With the limited space here available, only a few suggestions can be offered.

Valuable as tests are, they are subject to certain limitations: (a) Tests are essentially artificial: they are convenient sub):titutes for the ultimately valid trial by functional usc. This is but another way of saying that the true measure of learning is the ability to use what has been learned in practical life situations. (b) Tests yield scores which are susceptible to errors of interpretation. We may infer. for example, that the score is a measure of the total ability tested, whereas it is but a description of a particular performance in a particular situation. Obviously, the more comprehensive our testing and the nearer our testing situation approximates functional use, the fewer will be the crrors of interpretation. (c) Tests may be used too exclusively. We may rely on
tests to furnish indirectly evidence of growth in areas to which tests are not very sensitive. It is exceedingly difficult to prepare tests (other than essay tests) to measure certain arithmetic outcomes. If tests alone are used, these other outcomes will almost certainly be excluded from evaluation. (d) In the attempt to secure reliable measures from tests, we may pay too high a price for objectivity in scoring. Consideration of such a factor as correct principle, or evident understanding, introduces variation in judgment and so makes for unreliable measures. If we hold to the superior value of reliable measures, we may lose much that we need in order to understand children's work habits and thought processes. If we hold to the superior value of these evidences of learning we tend to lose objectivity and reliability.

Another series of cautions relates to standard tests and the use of norms for such tests. It cannot be assumed that mere standardization of a test makes it a good test, even for the purpose for which it is designed:) The content may be quite different from what has been loca., taught, ${ }^{4}$ and the norms may therefore be useless in the local situation (except for the purposes of the survey). (b) It has been shown that the arithmetical content of such tests varies considerably. ${ }^{\text {b }}$ (c) It is not unlikely that many, or most, standard tests measure effects of arithmetical learning different from the achievement and abilities with which teachers are primarily concerned. (d) Moreover, norms on supposedly comparable tests have been found not to be equivalent. ${ }^{\circ}$ (e) Still again,

[^39]nation-wide noms are apt to be misleading. Thus, nation-wide norms are worse than useless in diagnostic tests. They are of little or no service in inventory tests, except possibly to ascertain "readiness" for some topic. Certainly when we seek to determine where to start instruction in a grade, what we need to know is not how our pupils compare with other pupils but precisely what they can do about the items of skill, knowledge, and understanding which are regarded as prerequisites. And last of all, norms are of little value in progress or achievement tests unless we follow slavishly the instructional organization in terms of which the test has been standardized. Norms come into their largest and most legitimate field of usefulness in comection with the survey function of testing.

What has been said about tests is deliberately negative. These negative comments imply no doubt of the values of tests for evaluating learning. The shortcomings and limitations of tests have not been stressed in any attempt to get rid of them. We should be in a sad state indeed if tests, local, commercial, or both, were abolished. To say that tests will not do the whole job of evaluation, and to say that tests need to be constructed and test scores interpreted with reasonable caution is far from saying that tests should be abandoned. Rather, they should be retained and improved, and they should be supplemented by other evaluation procedures. The import of this whole section may be summarized in the statement that tests usually indicate the outward, objective, quantitative results of leanning, not the inward, subjective, qualitative results; yet these latter both transcend and include the former.
2. Teacher Obserration. The type of evaluation meant here is the type which the intelligent and alert teacher uses daily in analyzing and assessing the written and oral work of his arithmetic pupils. The observation referred to may be informal, as just described, or it may be more closely controlled. as when special settings are arranged in order to note children's behavior with respect to the quantitative aspects of their experience. An excellent example of informal observation will be found in Professor Wheat's chapter (pages $80-118$). Other examples will be found on pages 259 and 260 which follow.

The possibilities of evaluating through observation are wellnigh limitless. That these possibilities have not been realized is explicable on two grounds. In the first place, teachers have had their confidence in their own judgment undermined by certain research which purportedly has demonstrated its unreliability. The implications of this research are that tearhers' estimates and opinions are of doubtful worth and that they must give way to more trustworthy (that is, more objective and reliable) evaluation techniques. Some of the dangers inherent in this view have been pointed out, ${ }^{\text {r }}$ and eventually the artificiality of the techniques in this research will be disclosed. In the meanwhile evidence is accumulating that teachers' judgments (in the form of scores on essay tests, of marks. and the like) need not be as unreliable as had been supposed. ${ }^{8}$ But the reaction against the extreme position of the objectivists has not yet affected teachers to any large extent. Under the influence of the objectivists teachers tend to doubt the validity and reliability of their own observations and to minimize the usefulness of observational data for the purposes of evaluation. Nevertheless, it is probable that 90 per cent of teachers' (good teachers) activities in teaching and evaluating are still subjective and must remain so. If this be true, the wise course would seem to be to help teahers to get the most from their obsel ations, rather than to continue to discourage their use.

A second obstacle to confident use of observation is of a different character. To observe accurately one must know what to look for. Teachers who regard arithmetic purely as a skill subject are hardly equipped to make usefu! observations of growth in arithmetical insight and quantitative sensitiveness. (On the other hand, teachers who are committed to a more modern conception of arithmetic are handicapped by our general ignorance concerning learning. We do not yet know with certainty all that we

* W. A. Bownell. "The lise of Objective Measures in Evaluating Instuction," Edatiatiomal Method, 13:401-108. May, 1934.
a The following studics are illustrative:
How:rd fanley. "On the Limits of Predicting Scholantic Succos," Iommal of Exterimental Filuration, 1:272.276. Nosember. 1939.

James B. Shouse. "College Citales Mean Something," Joumal of f:durational Psychologn, $30: 510.51 \mathrm{R}$, October, 1939.
 spling. Poychologiral Monegraph. No. 227. American Psuchological Asociation, Inc., Columbus, Ohio, 1039.
need to know about growth :oward the non-computational aims of arithmetic. As new information of this kind is acquired, and as teachers regain confidence in the value of observational procedures and in their ability to use this method, cvaluation by observation will become more precise and more comprehensive.

The advantages of cualuation by observation (only skillful observation, of conrse) are several in number: (a) Observation has few of the limitations of testing as to time and place. Informal observation requires no special planning and no special arrangements: onc can seize each instance of significant behavior as it occurs. (b) Observation "catches" behavior in all its functional relationships. One sees not only the error, for example, but also the prior and the accompanying behavior which may account for the crror. (c) Evidence for evaluation is obtained when it can be used. This is particularly true in the case of diagnosis. (d) Ob servation imposes no unusual restrictions and exposes children to no unnatural tensions. (e) Fivaluation by observation enables teachers to secure evidence with respect to many arithmetic outcomes to which testing is ill adapted. Reference here is to the outcomes listed especially under mathematical understandings and quantitative sensitiveness on pages 232-233.
3. Individual Intervipat's and Conference. As its name implies. this exaluation procedure, unlike observation, is limited to contacts with individual children. The teacher not only observes what the child does, but has him "talk out loud" as he works and questions him whenever the oral report is interrupted, is incomplete, or is ambiguous. The purpose is primarily to get at the way in which the child thinks about the gi en quantitative situation, be it a computation, a verbal problem, the use of technical terns, the interpretation of the number relations, etc. The usefulness of the conference for probing undesirable attitudes (indifference or open dislike) toward arithmetic, for finding out how extensively a child really uses arithmetic, and the like, should be apparent. Fxamples of the interview will be formed on pages 259 and 260 .

[^40]Readers of research are already familiar with the use of the interview for discovering children's work habits in dealing with number combinations and computation. ${ }^{10}$ Good teachers have always employed the interview and conference to some extent, chiefly for purposes of diagnosis. No other procedure equals the interview in disclosing the nature of disability and thus in providing data for remedial instruction. If this procedure were used more commonly in connection with initial instruction. later diagnosis and remediation would be greatly reduced in amount.

Perhaps the chief reason why the interview is not more generally used is the fact that it is time-consuming. To take a fourth grade child through the whole addition section of the BuswellJohn Diagnostic Test requires between twenty-five and forty-five minutes. It is only rarely, however, that such extensive interviewing is necessary. Five or ten minutes can hardly be spent more profitably than in interviewing a child who is having trouble at some point.

The interview and conference should be kept flexible. Questions cannot be standardized, but must be worded and reworded until the child knows precisely what is required of him. At the same time the interviewer must avoid giving cues and must not ask leading questions. The child who is in difficulty gropes for reasons and explanations and is especially likely to seize upon any suggestion from the interviewer which may even temporarily rescue hin from his predicament.
4. Pupil Reports, Projects, and the Like. Under this heading belong a large variety of pupil activities which are useful for teaching, as Miss Sauble points out (pages 181-195), but equally useful for evaluation. Individual children or groups of children can prepare reports on such topics as: How Number Is Used in the

Bank, How We Got Our Figure 7, Lucky Numbers. The Arithmetic I U'se on My Paper Route. Where Our Measures Came Froin, How Much Our Automobile Costs Us a Month,

[^41]Shortcuts in Addition, The Budget for Our Camp Last Summer, and Number Tricks. Such reports are teaching devices, to be sure, but they also reveal uamistakably how sensitive children have become to the mathematics of number and to the quantitative aspects of life about them.

Trips and excursions to various points of interest offer other occasions for detecting awareness of the quantitative. Children whe during the trip note and afterward can describe many uses of arithmetic are clearly more advanced in their appreciation of the social significance of number than are others who are less successful. Events in the history of number (e.g., the derivation of a standard unit for "foot") can be dramatized in such a way as to permit evaluation of the level of quantitative thinking which has been attained. In the primary grades the ability to act out or to picture the events in verbal problems reveals understanding ol process meanings. The preparation of scrapbooks, models, posters, and special exhibits, all of them involving number and quantity, may be used as much to reveal the level which children have achieved in knowledge, understanding, and quantitative sensitivencss as to teach them new concepts, new skills, etc.

It is precisely the meanings, understandings, and appreciations of arithmetic that are the most difficult to evaluate objectively, reliably, and validly by means of tests. However, these outcomes become more susceptible to caluation, evaluation that is none too objective and none too reliable, it is true, but nevertheless valid-when evaluation escapes the limits of testing and takes the form of one or another of the procedures described above. The peculiar advantage of special reports, dramatization, picturization, and so on is that they instigate behavior in which these outcones appear in natural relations and functional reality. The loss in objectivity need not be serious. In the first place, it is better to have some evaluation, even if somewhat unreliable, than to have none at all. In the second place, the reliability of the final evaluation by these subjective procedures increases materially and attains a respectable figure if enough observations are made. ${ }^{11}$

[^42]One last word should be said about the opportunities for evaluation afforded by activity units and pupil projects in which number and quantity are involved. Too often the arithmetical aspects of these units are overlooked both by tearhers and in pupils. The alert teacher, however, can detect these arithmetical aspects of units and projects, can direct the pupils' attention to them, and eventually can lead pupils to discover them for themselves. When this has been done, many occasions will arise when children will be able to use number in units and projects. Whether they do so or not, the chance for evaluatio 1 in either case is present and should be fully utilized. That this chance is not generally so utilized is regrettable, for units and projects afford splendid opportunities to observe children thinking mathematically when the stage has not been deliberately set, as it is in the arithmetic period.

Evaluation and the classroom teacher. The program of evaluation outlined in this chapter is obviously impracticable if it is inferred that every classroom teacher must find or devise and use procedures for all the purposes of evaluation and for evaluating growth toward all outcomes. Under this assumption the teacher would be so busy evaluating that he could never get around to teaching. It follows that judgment must be exercised in deciding the extent to which evaluation is to be undertaken and the manner in which it is to be carried out. In this comnection the following steps may be sugeestive.

1. The first step toward effective evaluation is to know and understand the outcomes set for instruction. In a given situation these outcomes may or may not be those listed previously on pages $931-232$, but whatever they are, teachers, supervisors, and principals should know what the outcomes mean.

2 . The second step for the classroom teacher is tn know the various kinds of behavior which evidence growth toward these objectives and to train himself to detect this evidence. Reference here is primarily to kinds of growth which cannot be evaluated by means of tests (chiefly the outcomes listed under mathematical

[^43]understandings and sensitiveness to the quantitative). Admittedly, research has not yet identified all the significant evidences of growth which are needed for ideal evaluation, but this lack of research data should not greatly impede the teacher who understands what he is to teach in arithmetic and how his pupils learn.
3. Perhaps the third step is for the teacher to re-establish confidence in his ability to assess growth toward the more "intangible" outcomes. The values of observational procedures in the hands of the intelligent teacher have not been fully realized.
4. Closely related to the third step is the fourth: to take advantage of the close relation between teaching and evaluation and to seize every opportunity offered by everyday instrution to secure evidence of growth.
5. The fifth step, or anothe: step, is to realize that evaluation for certain purposes (especially for purposes of measuring longtime achievenemt and of survey comparisons) is required rather seldom, and then may be managed by others than the individual teacher. This means that the teacher can concentrate on diagnosis, inventorying, and measures of short-time learning-on evaluation for those purposes, in other words, which bear most directly upon the major concems of his papils.

The values of observational procedures are emphasized in

 I few momerns, devoted to areful observation at the critical time are woth mone than an hour of less intimate diagnosis at a later date. The more observational procedures are used, the less is the need for more time-omsuming procedures (interviews, tests, and the like). As has been stated betore, observation "catches" the belatior which is signficant for directing learning at the crucial instant, and so (an, obviate or at least greatly lessen the necessity for more elatomate evalation procedures later on.

PRAC:IICAL SLGGESIIONS FOR EVALUATION

The plan of treatment in this section is to consider the possible means of evaluation for each group of outcomes in the order
in which they are listed earlier in this chapter, and then to supply samples of procedures in the case of less easily measured outcomes.

Computational proficiency. Insofar as computation is interpreted to mean the mechanical manipulation of numbers in solving abstract examples and verbal problems of the traditional kind, the outcomes in this area are probably the most amenable to evaluation. For this reason, and also because both testing in--r ruments and critical discussions': are generally available, the problems of evaluation in this area are passed over briefly, and no sample procedures are given.

The fact that most computational outcomes seemingly can be evaluated so readily by means of tests has given rise to certain unwise practices. Perhaps chief among these is that of using local uniform supervisory tests and commercial standard tests to coach children. it is not unusual for teachers and administrative officers to purchase all forms of a given standard test (or for teachers to maintain a library of all supervisory examinations over a period of years) to train children systematically on the content and skills involved in taking these tests. ${ }^{13}$ It should be obvious that under such conditions the test scores later obtained are practically useless for purposes of evaluation. Other evil consequences of this practice should be equally apparent.

1. Diagnosis. For the purposes of group diagnosis on particular arithmetic skills (a) some standard tests are useful. Here may be mentioned the Brueckner Diagnostic Tests (Whole Num-

[^44]bers, Fractions, Decimals) and the Compass Diagnostic Tests (twenty forms). These tests show the places of difficulty, but not the reason for difficulty or even at times the specific nature of difficulties. The same tests may be used with the same limitations for individual diagnosis. Similar statements may be made (b) about the group diagnostic tests sometimes provided in textbooks and manuals by textbook atithors and (c) about group diagnostic tests constructed by the teacher or the supervisor. (In this connection attention is directed to the earlier discussion, page 233. of diagnostic tests.) Diagnosis is better, the closer it cones to the inmediate learning situation. On this account more crucial data than those obtainable from group tests are to be secured (d) from observation and, in the case of individual children, (e) from personal interviews. The Brueckner Diagnostic Tests, mentioned above as useful for group diagnosis, may also be used for interviewing individual children, and the Buswell-John Diagnostic Tests for Fundan.ental Processes in Arithmetic has been especially devised for interviewing in connection with the addition, subtraction, multiplication, and division of whole numbers only. In the latter, the test for each operation requires an average of more than a half-hour per child. Since the content in each case includes the whole range of skills taught, the first and easiest items may safely be omined in the higher grades, and the later and harder items, in the lower grades. Or, following the model set by the Brueckner and the Buswell-John tests, the teacher can prepare his own test for interviewing. But tests as such are not indispensable to diagnosis. (On the contrary, from watching his pupils day-by-day as they are busy with their arithmetic work the teacher may gain his most valuable insights. The daily lesson provides the ideal time and place both for diagnosis and for remedial teaching. As has been repeatedly emphasiaed, the practice of careful and contimous observation makes not only for help at the critical time, but also for economy of effort.
2. Inventorting. 'T'o determine "readiness" for the work of a grade or for some particular arithmetic topic. class er duation is most practicably undertaken (a) through the testing programs provided in certain textbooks and teachers' manuals. (b) through specially prepared tests constructed according to the local course
of study, and (c) through observation, particularly if cumulative records are kept. The last named, (c), does not, however, give an adequately general picture of the situation to aid in determining what should be done for the class as a whole. To the degree that instruction is individualized, however, evaluation should include observation (c) as well as (d) interviews whenever possible.*
3. Short-Time Achievement. For measuring attainment over a limited period of time or a single unit of work (a) textbook or manual tests, insofar as they fit the immediate situation, and (b) specially constructed local tests are to be preferred. The latter need to be carefully prepared; otherwise, important steps may be omitted. (c) Observation and (d) interviers serve supplementary purposes, which is to say that they are useful chiefly for evaluating outcomes which are important in the unit as a whole but are essentially non-computational. (e) Standard tests are of slight value, since rarely does their content agree with the local course of study.
4. Long-Time Achievement. For semester or yearly measures, the suggestions nade with re pect to short-time measures hold with equal force. The content of tests is chosen, of course, from a wider range than in the case of "progress" tests, since the learnings are wider in scope. Mistakes of interpretation are frequently made by obtaining measures of long-time achievement ("long-time" in the sense here used) from commercial standard tests which cover the arithmetic content of a series of grades.
5. Surveys. For comparisons between schools within the same system local instruments which are uniform in content may be used. These instruments, when intended for grade-by-grade comparisons, should probably contain only the content (skills, facts, etc.) taught in the given grade and in grades below that point. In this case as many separate tests may be needed as there are grades tested. Standard survey instruments are useful, particularly when the standings of school systems art to be compared with one another. In such cases the test contains a rough sampling of all skills. facts, etc., taught through grade three. grade six, grade eight, or some such point. Among the better known tests of this last

[^45]kind are: Analytical Scales of Attainment in Arithmetic (grades three and four, five and six, seven and eight), Compass Survey Test (elementary and advanced), Metropolitan Achievement Test (primary, intermediate, and advanced forms), New Stanford Achievement Test (primary and advanced forms), Progressive Arithmetic Tests (primary, elementary, and intermediate forms), Public School Achievement 'Tests (Computation and Reasoning), and Unit Scales of Attainment in Arithmetic. For critical comments on these and other standard tests, the reader is advised to consult the various annual volumes under the general title The Mental Measurements Yearbook, edited by Professor Oscar K. Buros of Rutgers University. The non-equivalence of norms on survey tests, mentioned on page 236 above as invalidating comparison of scores for individual pupils, does not seriously affect the comparisons of large numbers of children or of schools as wholes. Nevertheless, the interpretation of test results should always include appropriate recognition of the implications of differences in aims and objectives among the schools concerned.

Mathematical understanding. This section presents illustrations of evaluation devices useful in connection with the less commonly assessed outcomes of arithmetic.

1. Purposes of Livaluation. So far as csaluation for differing purposes is concerned, outcomes which can be classified under the term "mathematical understanding" can be discussed together, since the problems relating to evaluation procedures are much alike for all of them. Fxceedingly little has been done either informally or systematically to find practicable and valid procedures for evaluating the outcomes under the heading above. There are, for example, no standard tests available, except (a) two sections of the Analytical Scales of Attainment, one devoted to forty items testing "Quantitative Relationships," and the other to forty items testing "Arithmetic Vocabulary" (these sections being available in the tests for grades three and four, five and six. and seven: and eight), and (b) a shorter section in the Iowa Fvery-Pupil Test. But these sections do not evaluate learning with respect to all the outcomes listed here under Mathematical understanding: they do not evaluate fully or for all different purposes with respect to any one outcome listed: nor do high scores on these tests guarantee
that the knowledge revealed will actually function to affect conduct. They are, however, to be recommended to anyone interested in objective means of evaluating in this area.

For diagnosis, the best procedures in the order of their present practicability are: (a) observation (both of oral and of written work), of which samples are given below, (b) the interview and conference, also illustrated below, and (c) specially constructed tests. The last-named are hard!y practicable for the average teacher, for the preparation of such tests is as yet highly technical. Few ventures would, however, pay larger returns on effort than the cooperative work of a group of teachers in attempting to devise testing instruments. For their benefit what seem iu be promising devices are illustrated below. Procedures (a) and (b) are entirely practicable for the teacher who knows what to look for. The present methods of preparing arithmetic teachers, however, hardly equip teachers with this kind of knowledge.

Inventorying to determine "reauiness" is likewise handicapped at present because of inadequate knowledge of the stages of development which chatacterize growth toward the various objectives. All understandings are matters of experience, but the essential experiences cannot all be had at once. Rather, learning activities must be arranged so as to encourage growth from stage to stage, or from level of meaning to level of meaning. In tin, e, tests should be available to identify these stages of developi at. In the meantime, the situation is not hopeless. Teachers (a) by observations and (b) by interviews can determine whether pupils have attained requisite degrees of understanding, and have or have not carried a given generalization far enough to warrant either its use in a new context or its extension through new activities. It is not impossible that (c) tests can be worked out experimentally and improved with trial. In this case, the sample items below can be adapted to the special purpose of inventorying.

Evaluation of learning over short periods of time is subject to the same limitations as have been mentioned for the other two purpcses of evaluation which have been discussed-restricted knowledge and lack of procedures which are certainly reliable and valid. Reliance for the time must be placed upon subjective judgment, that is, on (a) observation and (b) interviews, chiefly
the former. Fiventually (c) tests may be available, and groups of teachers may want to try their hand in this direction.

What has just been said applies also to evaluation of learning over longer periods of time.

For surver purposes, survey tests are required. The only ones to be had have been mentioned in the first paragraph above under Purperses of livaluation.
2. Samples of Exaluation Procedures. ${ }^{14}$ Below are given samples of procedures (test itcms, observation, interview) which can be used for ewaluating growth in mathematical understanding. Space limitations forbid unse than a few samples in each case. The same limitations make it necessiny to present each item as briefly as possible, without indication of its grade level and frequently without its being cast into proper form for testing.

Trsting Devicis

The following testing devices are presented in the hope that teachers may be able to recognize the usefulness of the items and adapt them to their own needs and purposes.
(1) The Meraning of the Number System:
a. Write the latgest five place number you can.
b. Write the smallest fiverlote number you can without using 0 .
\therefore Suppose that the figures 3 and 8 are interchanged in the numher s3. Whan the new number be larger, or smaller, or the same sime:
d. Reartange the figues in the number 51,937 to make the smallest posibible number.
e. Rearange the figures in the number 436,852 to make the largest possible number.
f. As compared with five-place numbers, are six-place numbers (always, or ustally, or sometimes, or never) smaller?
g. In the number 7,463 what is the largest possible number of hundreds?
h. Among the numbers 56, 93 408, and 273 the one that has the largest possible number ef tens is, and the one with the smallest possible number of tens is

[^46]
j. Using the figures $7,0,6,3,5$ write a number with 0 in ten's place, 3 in one's place, 6 in hundred's place, 5 in ten-thousand's place, and 7 in thousand's place.
k. Write the four numbers that come a it when you count by l's: 28 169 396 8857 99998 L'sing these symbols draw

1. Suppose that:
\checkmark means one 1
O means one 10
means one 100
pictures for the numbers:
means one 1000

$$
\begin{array}{r}
36=\ldots \ldots \ldots \ldots \\
245=\ldots \ldots \ldots \\
406=\cdots \cdots \cdots \cdots \\
2310=\cdots \cdots \cdots \cdots \\
3005=\ldots \ldots \ldots
\end{array}
$$.

$270 \quad 1500 \quad 2700 \quad 15,000$
f. About how many 3 s-stamps could you paste side by side on a sheet of paper like this? $\begin{array}{llll}2.5 & 50 & 100 & 500\end{array}$
g. About how many pennies could you hold in both of your hands at the same time?
$20 \quad 200 \quad 2000 \quad 20,000$
h. If you walked steadily for about an hour, about how many steps would you take?
$100 \quad 10,000 \quad 100,000 \quad 1,000,000$
i. In the number 9.037 , the figure 9 represents how many times as much value as the figure 3 ?
(3) The Meanings of Fraclions. Decimals, and Per cents
(The reader is referred to the excellent teaching and evaluation devices which are suggested by Miss fauble on pages 157-19\%. In view of the number of examples these given, but a few supplementary ones are offered here. It should be clear that since common fractions, decimal fractions, and per cents are but three different ways ot expressing pats ur relationships between parts. the same device may frequently be used now to measure fraction meanings. at another tine to measure decimal meanings, at still another the e to measure per cent meanings.)
a. Study the lines below. Then b is \because i as long as a. answer the questions at the a is \ldots. ${ }^{\prime}$ is long as b right.

c is '"; as long as a.
a is'" as long as c.
r is $\ldots . . c$ as long as d.
d is'; as long as a.
r is ... r ! as long as a.
e ise'; as long as d.
b. Blacken lines b, c, d, e, and f to make them as long in coms. parison with line a as you are told to make them.

Make b or as long as Make $c \mathbb{R}_{6}^{\prime}$ as long as Make $d \frac{2}{2}$ as long as Make p as as as as

c. Study the number of dots in the following boxes and wite your answers as decimals (per cents, fatactios).
are absuract, ate maderstood though computation, and hence tonting insolse more than knowledge of momber sies. If lager mumbers ane prewoned in concrete settings, as in (f, then lack of experience with wome aroct of the setting may interfere with evaluation of number meanines. In all such items. too. the alternatives must be selected to suit the ages of the pupils teved, or better, their level of understanding.
Box b has $\ldots \ldots$ as many dots as box a.
Box b has $\ldots \ldots$ as many dots as box d.
Box b has $\ldots \ldots$ as many dots as box $c \cdot$
Box a has $\ldots \ldots$ as many dots as box $b(c, d, e)$.
Box c has $\ldots \ldots$ as many dots as box $a(d)$.
Box d has $\ldots \ldots$ as many dots as box $a(b . e)$.
Box e has $\ldots \ldots$ as many dots as box $b(a)$.
Box f has $\ldots .$. as many dots as box $a(b)$.

d. Box a has 8 dots. Put as many dots in the other boxes as you are told to put in them.
In box b put 5 as many dots as ate in box a. In box c put 3 as many dots as are in box a. In box d put 75% as many dots as are in box a. In box e put $87 \% \%$ as many dots as are in box a. In box f put 1.25 as many dots as are in box a. In box g put .50 as many dots as are in box a.

$$
\cdots
$$

e. Express the idea " 3 out of 6" as a fraction
cent

		$96, \mathrm{R} 1$	
463	41.4	6/577	
79	$\times 37$	$5 \cdot 1$	563
5	3ivis	37	-475
$+8713$	139!	36	88
9290	27168	1	

a multiplia and
a dividend
a subtraction remainder
a quotient
a multiplier ...
b. Copy the example in which you must borrow a thousand; a hundred; a ten.
6. Copy the example in which you must tary a ten; a thousand; a hundred.
an addend
a partal proc!at
a stum
a divinor. ...

60.	1816	239	-1147	7195
-703	-3.37	-18	-936	-6133

336	35	4380	14362	3.43
$+13 i$	+12	-1810	+3114	+285

d. Copy from box A all the proper fractions; all the mixed numbers; all the improper fractions.
e. Copy from box B the fraction that has 6 for a numerator; 3 for a numerator.
f. Copy from bow 13 the frac-

A| $5 \frac{7}{6}$ | $\frac{7}{4}$ | $\frac{2}{3}$ | $3 \frac{7}{3}$ |
| ---: | ---: | ---: | ---: |
| $4 \frac{\pi}{8}$ | 9 | $2 \frac{7}{3}$ | | tion that has 12 for a denominator; 2 for a denominator.

g. Suppose you divided each of 3 apples into fourths, and you and your fiends ate 7 pieces. The fraction showing how much wats caten would have the figure for the numerator and the figure for the denominator.
h. Five boys average 98 lb . in weight. The average (98) means (1) that all the boys weigh this much or more; (2) that none of the boys weigh this much; (3) that all the boys weigh exactiy 98 lb .; (t) that all the boys would weigh 98 lb . if they weighed the same. Whichì
(5) Important Mat!ematical Generalizations
a. Write the word increased or larger, or the word decreased or smaller, or the wod unchanged or same in the blank space in each sentence. Write only one of these words.
If a number is multiplied by 0 , that number is
When numbers other than 0 are added, the sum is than any addend.
When whole numbers are divided by whole numbers other than 1 , the quotient is than the number divided. Except when 0 is subtracted, differences or remainders are than the numbers subtracted from.
If a number is multiplied by 1 , that number is
In the division of whole numbers, divisors are usually than the numbers divided.
If 0 is subtracted from a number, that number is
If a fraction or whole number is multiplied by fractions greater than 1, that fraction or whole number is
If you add the same number to both terns of a fraction, the value of the fration is
b. To reduce a fraction to lower terms one must divide both numerator and denominator by
c. To change a fraction to a decimal you divide by
d. Fractions cammot be added muless
e. Decimals can be changed to per cents by
f. Areas should alwat be expressed in terms of linear, square, cubic units. Which:
g. To divide 5.6 by 0.5 yields the same answer as to divide by 5.0 .
h. To multiply by per cents, one changes the per cents to or to
(6) Process Meanings
a. Write M after the examples below in which the answers couid be found by multiplying instead of by adding:

$4+4=\ldots$.	$75+46+98=\ldots \ldots$
$7+7+7+7+7=\ldots$.	$49+49+49+49=\ldots$.
$3+5+7+9+2=\ldots$.	$18+108+76+23=\ldots$

b. $4 \times 9=36$. What other multiplication fact goes with this fact? What two division facts go with it:
c. $37 \times 26=962$. Write three other relationships between these numbers which you know because $37 \times 26=962$.
d. Write the idea of $24 \div 6=4$ as a subtraction example.
e. How many seats has a room that has 5 rows of 14 seats each? Write first as an addition example; then as a multiplication example.
f. Write add, or subtract, or multiply, or divide in cach statement.
To find the total of several unequal numbers, you If you know how much one article costs and you know how many articles there are, you in order to find how much they will all cost.
You know how much you had to start with and how much you have now. To find how much is gone, you
You want to give each of 6 boys an equal shate of a number of marbles. To find how many eath will get, you To get the total of several numbers of the same size, the quickest way is to
You know how many sheets of paper you must have and how many you do have. To find how many more you must get, you
You know how much you spent and how many articles of the same kind you bought. To find how much each cost you
g. Draw dot pictures to show that the following answers are right or wrong. In subtraction you can coss out dots: : n multiplication and division you can draw rings around groups of dots.

$$
\begin{array}{rrr}
12-8=3 & 5+6=13 & 7 \times 4=28 \\
16-4=4 & -4 \div 3=9 & 17-9=8 \\
3 \times 6=21 & 15-8=7 & 12 \div 6=3
\end{array}
$$

h. Write the number that completes each example:
$10+6=8 \times \ldots .$.
$23-7=4 \times \ldots$.
$63 \div 9=9-\ldots$.
$7-0=8-\ldots$.
$8+7=3 \times \ldots$.
$10-6=24 \div$
i. Write the signs to complete the following examples:

(Simple verbal problems provide excellent test material for evaluating the understanding of the fundamental operations, as well as their significance or usefulness. Provided (1) that the computations are kept casy and (2) that unfamiliar terms and problem seitings are avoided, surcess or failure in problem solving is pretty much confined to identifying the correct process to be used.)
(7) Measurement as a Process, Plus the Meaning of Measures
a. Write the word more or the word feuper in the blanks.

To change potatoes from peck measures to bushel measures you would need measures.
You can get dimes than nickels for a dollar.
You can get 8-inch than 6 -inch badges from a yard of ribbon.
If you change milk from gallon containers to pint bottles you will need bottles than containers.
If you measure the length of a room with a foot ruler, you will need to lay it down times than if you use a yardstick.
The larger the measure you use, the times you use it in finding the amount of water in a barrel.
l. If one inch on a map means 25 mi ., a distance of 150 mi . on the map would take of space on the map.
c. Write the correct words in the blanks-square inch, square
foot, square yinrd, acre, square mile:
The area of this classroom is about 1050
The top of our automobile is $2 \frac{1}{2} \ldots .$. . in area.
Mother used 64 of cloth for a Christmas handkerchief.
The area of the Fair Grounds is 60
My arithmetic book, when opened up, covers an area of 70
Our country has an area of 6500
d. Write the correct words in the blanks-ounces, pounds, or tons:

Our kitten weighs 15
Fourteen men together weigh about 1
My candy :ar weighs 3
A kitchen chair weighs about 12
Six pencils together weigh about $4 \ldots .$.
A large coal truck can carry $6 \ldots .$.
(8) Mathe'matical Relationships, Etc.
a. None of the answers for any example is right, but one of the answers is nearer right than any of the others. Draw a ring around this number. Do not work the examples with paper and pencil.
In the first example you think, " 88 is nearly $90 ; 7 \times 90=630$; 600 is nearest the ambwer, so I draw a ring around it."
In the second example, you think, " 970 is nearly tens; 98 tems divided by is tens; is nearest the right answer, so I draw a ring around it."
In the third example, you think, " 1960 is almost... . hundreds, and 3120 is a little more than hundreds; when I subtract I get hundreds. So is nearest the right answer, and I draw a ring around it." Do the other examples in the same way.

$7 \times 88=$	175	1500	98	(600)
$970 \div 8=$	115	280	878	1750
$4960-3120=$	7000	10.000	2000	700
$788+110=$	650	900	1308	4600
$3012 \div 9=$	27,500	350	750	110
$9 \times .89=$	8	72	1.6	800
$13 \div 78=$	112	15	43	200
$4263+41 \% 8=$	140	90	10	380

b. Write the next two numbers in the incomplete series:

c. By studying the first thrce examples worked out for you in each set below, see if you can tell what the missing number in the fourth example in each set should be. Do not work out the fourth example; just sudy the first three.

$18 \times 37=666$	$1 \times 9+2=11$
$21 \times 37=777$	$12 \times 9+3=111$
$2.4 \times 37=888$	$123 \times 9+4=1111$
$27 \times 37=$	$. \times 9+5=11,111$
$1 \times 8+1=9$	$98 \times 15,873=444,44$
$12 \times 8+2=98$	$35 \times 15.873=555.55$
$123 \times 8+3=987$	$42 \times 15.873=$ Eitif. 6 6ifi
$1234 \times 8+1=$	$\ldots \times 15,873=777,777$
$9 \times 9+7=88$	$1 \times 7+1=8$
$98 \times 9+6=888$	$18 \times 7+2=80$
$987 \times 9+5=8888$	$123 \times 7+3=86.4$
. . . $\times 9+4=88,888$	$123.4 \times 7+4=$

d. If the answers for the following problems are silly, write the correst answers.

A rooster standing on one leg weighs $61 / 2 \mathrm{lb}$. When he stands on both legs he weighs 13 lb .
If it takes 3 min. to boil an egg, then it takes 18 min . to boil 6 eggs together.
If a minn eans $\$ 5.00$ a day, he carns $\$ 30.00$ in 6 days.
'I'o give each of his : friends a piece of pie and to keep a piece of the same size for himself, Henry cut a pie into 5 pieces.
Mary needed 18 in . of cloth to finish a diess, so she bought half a yard.
June who is very greedy took is of a stick of candy instead of $3 . j$, so as to get mone.
e. Dr: A. Y. Otis has suggested the need for problems which can be solved by ingenious or resourceful procedures. One example is as follows:
How many badges $3!\frac{1}{2}$. long can be cut from a ribbon Le: in. long, and how muh ribbom would be left?
The usual solution is:

The resourcelal solution is:
for the first part
for the second part
Think that if onc badge takes $3 \frac{2}{2}$ in., 2 of them will take 7 in. Then there will be as many pairs of badges as there ale 7 's in 20 in.
There are obviously 3 pairs (21 $-7=3$). or 6 badges, and
(without writing)
there will be lisin. of ribbon left (292-21-25)

It is Otis belief, whith the witer shares, that this kind of resourceluhters an and should be taught.
(9) Rationale of Computation
(Some students of arthmetic would not teach all of these logical relationships to diildocu. 'The witer would, but he offers the testing devices below winh full awareness that many would not favor them. It should be molerionod that the writer here seeks
to test understanding and not the thought processes actually to be used by children. These thought processes are of course much shorter and more direct.)
a. Study the work at the right. Then write the missing $\frac{2}{7 / 169}$
numbers or pords.

The dividend is It contains only 1 hundred, so that it camot be divided by the divisor, which is The dividend has tens (+9 ones). 16 tens $\div 7=2$

The quotient figure is written above the 6 of the dividend to show that 2 means 2
b. In the example $5 / \sqrt{960}$ the first quotient figure is 9 ; it is written above the figure in the dividend, to show it means 9
c. In the example $3 / \overline{862}$ the first quotient figure is It is
writena above the figure of the dividend, so as to show
that it meems so many
d. Study the example at the right. Then write the $\quad 4876$
numbers or words that are called for.
$6+7=\ldots \ldots$; write $\ldots \ldots$, and carry 1
Add the tems: $1+7+1=\ldots$. . (tens) Write 9 in place. Add the hundreds: ... $+\ldots . .=\ldots$. . (hundreds). Write in the hundred's place, and carry 1
Add the thousands: $1+\ldots \ldots+\ldots \ldots=8 \ldots$. Write 8 in the place.
e. In the subtraction example at the right, you can- 4364
not subtract the ones, 9 from 4 , so you borrow - 2919
1 from $1: 1-9=\ldots$. ; write the
figure in place.
Subtract the tens: $\ldots \ldots-1=\ldots$. tens. Write the figure in place.
Subtract the: 3-9 $=$: You must borrow $1 \ldots$. . from 13 (hundreds) -9 (hundreds) $=\ldots .$. Write the figure in plate.
Subtract the thousands:-2 $=\ldots$. . (theousands). Write the figure in place.
f. In the multiplication example at the right the mul. $\quad 12$
tiplice, contains 3 and $\ldots .$. ones. $\times 34$
When you multiply by 4 , you multipls by $4 . .$. ; 48
when you multiply by 3 you multiply by $3 \ldots$.
$4 \times 2=8 \ldots$. Wite 8 in \ldots place under 2 and 4. 4×1 (ten) $=4 \ldots$. Wite 4 under 1 and 3 in place. 3 (tens) $\times 9=6 \ldots$. Write 6 in place, under 1 and 3 . 3 (tens)×1 (ten) $=3 \ldots$. White 3 in place.

EXAMPLES OF OBSERVATION AND INIERVIEW

The few examples given below relate, for the most part, to computational difliculties. Nevertheless, they are described here under mathematical understandings, since the computational difficulties seem to have arisen from ignorance of principles, inaderguate concepts. and the like.

Miss Thelma 「ew, " in a fairly well-controlled experiment in which she undertook to teach children the division of fractions by the Common Denominator Method, noted two faulty procedures which were peculiar to this method. One procedure ivas to reverse the positions of dividend and divisor. as in solution (a). The other procedure was similar; it consisted in reversing the positions of the two mumerators. the fractions, however, being retained in their correct positions. This procedure is illustrated in (b):

$$
\begin{aligned}
& \text { (a) } \frac{3}{8} \div \frac{3}{1}=\frac{10}{8} \div \frac{2}{8}=3 \\
& \text { (b) } \frac{2}{8} \div \frac{3}{4}=\frac{9}{8} \div \frac{6}{8}=3
\end{aligned}
$$

Both errors arose from the expectation of a whole number as the answer and the unwillingness to accept a fraction (1/3). The exar: ples used to introduce the Common Denomiator Method had all had whole numbers as answers. Once the nature of the error had been determined by observation of the pupils' written and oral work, the necessary remedial instruction was at once apparent.

Miss Hilda Briemson ${ }^{10}$ interviewed children, using the Compass Survey Test for this purpose and reporting on their work habits with decimals, per cents. and common fractions. Four pupils arrived at the answer 1.75% for the example: 13 of $N=\ldots . .!$ of \mathcal{F} Their explanation was, "Change the threefourths to seventr-five hundredths. I knew that three-fourths is

[^47]the same as seventy-five hundredths. One would be one humdred." The element of complete meaning is clearly lacking in this instance.

Miss Briemson, whose whole thesis is filled with excellent illustrations of the value of the interview, also found four pupils giving the answer $50 / 100 \%$ for the example: .55 of $\mathrm{N}=\ldots . . \%$ of $ㅅ:$: On being questioned they stated their procedure as, "I changed fifty-five hundredths, a decimal, to fifty-five one hundredhs." Again, a very serious deficiency in meaning is revealed. ${ }^{18}$

Miss Edwina Deans, a second grade teacher in the Evanston, Ill., schools, has supplied in personal correspondence the following examples of observation and interview:
"I ashed one child how he knew $8+1$ so well. (He didn't have a pood madenstanding of other combinations with sums of 11 and 12.) He said, 'l always temember the egg box you showed us.' We had used the egg box lon linding the t's and 3 's in 12.
". 1 (ouple of dass ago Richard was reporting on some reading he had beent doing. He satid, i stage coath could go a thousand miles an hour!" It was interesting to hear the children's amazed comments. . . "Hhe "100" (a Northwestern train) goes only 117 miles an hour. I tain goes much faster than horses. 'A horse can't run as fast as a cal (an go, and a tain goes faster than most cars. A car goes only aj or (i0) miles an hour:' The conclusion was obvious: Richard was adsised (w) look up his information again.
"I wamed to see whether children who had been taught the meaning and composition of mumbers could learn to borrow in subtraction. (Ihis bhill was not in the course of sudy; I was merely curious to see what whe childen could do with a minimum of instruction (on thin will.) I wote the example $62-37$ on the blackboard in vertial lomm. Ihis is what jimmy sated, alter Ruby had beco 'stumped' in fanding that we could not make the first subtraction (2-7) at

 fond that he had goten st by thinking 7 from 10 is 3 , and 2 more

"When me radishes ame up |this ohsionsly was in connersion with a gaden mit or project] we had to derde how to think about them.

[^48]Our phoblens were: (1) How many shall we leave in each row? (2) If we leave t in each row, shall we have enough for 2 radishes apiece? (We have 28 childen in our room, and there were 10 rows of radishes.) (3) If we leave 5 in each row, shall we have enough for 2 radishes apiece: (4) What if we leave 6 in each row?
"I had the children make dot pictures for counting by 4 's, 5 's, and 6 s . No attempt was made to have the children learn the multiplication and division facts they discovered. I merely was trying to see how they could think in terms of these processes. Their work, as I observed them doing :t, and also as I saw the results on their papers, gave me just the information I needed."

Pupil Reports, Projects, etc.

No samples of evaluation by means of pupil reports, etc., are given here. The chief reason is that they consume a great deal of space. If the reader will refer to the discussion of this procedure on pages $2 \cdot 10-241$ preceding, he should be able to understand how number and quantity could appear in tunits, projects, and reports in ways which would reveal the presence or absence of mathematical understandings.

The writer has before him a second grade unit on the Post Office and the Mail, through which the teacher (Miss F.dwina Deans) has been able to provide many experiences with number in circumstances which are as suitable for evaluation as for teaching. Such experiences are particularly helpful for disclosing the level of children's thinking. Thus, in comparing the cost of an ordinary $3 \dot{q}$ stamp and of an airmail stamp, the teacher can see whether they count, or use concrete objects (like marks or pennies), or can find the answer by the use of meaningful abstractions.

Sensitiveness to the quantitative in social relations, etc. The various outcomes within the third group of arithmetic outcomes (see page 232) lend themselves; with differing degrees of success to measurement by means of tests. There are no standard tests w evaluate growth toward all these outcomes or toward any one fully. The nearest approaches are mentioned below. The first two outcomes in this group can probably be subjected to formal written testing better than can the others. Samples are given in the following pages.

For the evaluation of the other outcomes, the most fruitful
procedures are (a) observation and (b) pupil reports, projects, and the like. With regard to observation, the teacher (1) may proceed informally, noting the extent to which pupils habitually describe personal uses of number in and outside the classtoom, voluntarily bring matter from magazines and newspapers which contains quantitative data or accounts of business or engineering events in which number plays a large part, etc. Or, (2) he may arrange ahead of time situations which permit better controlled observations of children's use of number, if such is their habit. Perhaps no other classroom device offers more opportunities for either type of observation (if the opportu'ities are but grasped as they usually are not) than does the activity-unit, in which number occurs in a truly functional way.

As for pupil reports, projects, and the like, reference is to special pupil projects, reports, excursions, readings, dramatizations, picturizations, tabular presentations, billboard exhibits, scrapbooks, homemade models, etc., which reveal number in its historical and in its current social applications.

Neither (a) nor (b) has been exploited to anything like its possibilities. The close relation between teaching and evaluation is here clearly apparent. Children become sensitive to number and come to use number as they experience it in useful ways and are encouraged actually to use it; and these same conditions of use constitute the best basis for evaluation. Also, they help to insure that the habits of using number acquired in school will be available for use outside of school and later in adult life.

Varying purposes of evaluation. No value attaches to a discussion of the separate outcomes in terms of the purposes of evaluation (diagnosis, inventorying, etc.). While development in these areas of growth resembles growth in mathematical understanding in being gradual, about all that can be hoped for now is that teachers shall be aware of the need of providing opportunities for children to see the applications and the uscfulness of number, that they shall actually provide them. and that they shall regularly observe the nature of their pupils' behavior in social situations involving number. Here again evaluation is subjective, but none the less valuable than if it were objective in the strictest sense.

「esting Devices

Vocabulary, Knotuledge of Business Practices, etc. Grossnickle ${ }^{10}$ prepared a vocabulary test of sixty-eight business and social terms dealing with taxation, stocks and bonds, banking, insurance, merchandising, building and loan associations, and installment buying (only one item each for the last two). His test consists of multiplechoice items but has never been published or, to the writer's knowledge, standardized. The reference does, however, contain a useful list of important terms.

Part of the terms in the Vocabulary part of the Analytical Scales of Attaimment (stades three and four, five and six, seven and eight) are such as fit in the present category-for example, exchange, withdraw, ducs, overduc, wages, discount, cargo, profit, etc.

It is not particularly difficult to frame test items for such terms. (To make them good items is another matter.) Below in a-h are given samples in the multiple-choice and the Yes-No forms. In i is given another form of testing, which would seem to make the evaluation somewhat more functional.
a. The money one pays for protection on an insurance policy is called the (1) premium; (2) the dividend; (3) the discount; (4) the commission.
b. Or, the premiun on an insurance policy is (1) the amount of the policy; (2) the money remined at the end of the year; (3) the length of the term of protection; (1) the payment made regularly for protection.
c. To receive money on a check made to our order we must (1) pay a tax on it; (2) indone it; (3) discount it; (4) make out a note for it.
d. Or, when one indonses a check, one (1) writes his name on the back; (2) puts a date on it; (3) signs the note as maker; (4) deposits the money at the bank.
e. A mortgage on a property is one form of security of a loan.

Yes No
f. Dividends from a companys carnings are paid on common stock befone they ure paid on preferred stock. Yes No
g. By the face of a note is meant the side of the note which contains the maker's name.

Y'es No

[^49]h. Customers receive a commission when they purchase goods of agents.

Yes No
i. Winte the conrect word or words in each blank space. The words to be used are listed at the right.

The P and G G Grocery Co . regularly takes its money to the bank every morning. Last Tuesday Mr. Black had this responsibility. Of comse, he had to make out a showing all the canh and checks he was putting into the bank. Each check he had to for the compamy. The of one note was for $\$ 120.00$. It was to draw at the rate of $5 \%, \ldots$, for 90 days, and the was Ot tober 1. The grocery company, however, wanted the money at onee, so Mr. Black asked the bank to the note. This the bank was glacl to do, and gave credit to the grosely company for the which amomed to \$1s.20.
interest
face discount deposit slip date of maturity inderse proceeds

Graphs, Tobular Material, Statistics, etc. No samples are given uncer this heading. for the reason that many are to be found in texthooks and workbooks. It is rather easy to devise adequate test items of an objective character both in the way of constructing and in the way of interpreting statistical, graphical, and tabular data. In the interpretation of such data, pupils can be called upon, by means of multiple-choice, matching. and true-false techniques, to identify items, answer questions of fact, trace relationships, and the like.
diuareness of the Usefulness of Number, etc. The most valid evaluation is made by means of observation, pupil reports, projects, etc. An indirect means of measuring the outcomes under this heading is offered through objective test items which cover a great variety of social situations in which number is used. These situations for the purposes of evaluation must, of course, be selected with proper regard for the experiences normally to be expected of children of the given age. Samples are:

a. Is a city block oftern a mile long?	Yes	No
b. Do guns used in war sometimes shoot 10 mi.?	Yes	No
	Yes	No
d. Would 20 gal. of lememade be needed for 30 children at a pionit?	Yes	No
e. Can you throw a baseball 500 ft .?	Y'es	No

Observaton, Interview, Pepif Projpcers, Reports, Ficc.

As has been stated repeated'y, formal tests have relatively little value for evaluating growth towarc' the objectives subsumed under quantitative sensitiveness. The reason is that eveil if testing devices ean be constrected, the still are artificial. The essence of evaluation in this atea is to "catch" the iehavior in a functional setting, and tests are not functional so far as the uses. appreciations. etc.. in this group of outcomes are concemed.

On the otter hand, obstration and the use of punil projects. reports, and the like can be n st effective for conluation. The reader is again referred to M : s ":uble"s chapter, espectiallv pares 181-195. where are presented יmbles of units and projects which contain. or may be made to contain. many upportunities for evaluation.

(:)N(:I.DDN(; STITFMIFMT

The conception of catuation which has been advanced in the foregoing pages obviously phaces a heaty responsibilits upon the dhassoom teacher. Standard tess, when properly selected and property used are of some service in mectints this responsibitity. More helpfal, when evaluation is undertaken for the direction of learning, are locally prepared paperand-pencil tests. Xeventheless, throughout this discussion far the greater emphasis has been phaced upon the insights which are to be had from the continuous and enlightened questioning and observation of children while they are engaged with their daily work in arthmetic and
with their projects, units, and the like, in which arithmetic plays an important part.

If it be granted that the purposes and means of evaluation here outlined are valid, we face the rask of implementing this conception. Certain obstacles which at present hinder progress must be eliminated. In the first place, teachers of arithmetic must receive a different kind of training from that to which they are usually subjected. Their training must be made functional. This is but another way of saying that they m .1 st be prepared for their teaching duties in a way which reveals to them the peculiar nature of those duties. Among other things, they must examine the subject matter they are to teach in the light of modern theory, which stresses, besides computational efficiency, both the mathematics and the social applications of arithmetic. Too, they must view the subject matter as the learner views it, and not merely as does the adult who has completed his learning. Otherwise, teachers can hardly appraise correctly and s.mpathetically the difficulties children meet in developing skill in quantitative thinking. The child-view of arithmetic is best attained by working directly with individual children and by interpreting what is obscreed in terms of growth toward this ultimate objective. Fren so, programs of teacher training (and so also of classoom teaching and evaluation) will be handicapped until the second and third obstacles to progress have been removed.

The second obstacle is our ignorance of the characteristics and nature of sound arithmetical learning. As is pointed out elsewhere in this volume. little research relating to arithmetic has been oriented with respect to the chiid and his problems in learning. Compared with the large amount of eesearch on other phases of arithmetic, the amome devoted to careful investigations of learning as such has been smoll indeed. This weneral neglect of the child and his learning is reflected also in the measures which have been used for evaluating teaching methods and devices, for example. Seldom inded does one encometer evidence that research workers have been concerned witn the qualitative or subjective phases of learning. If teachers are to have the information they sorely need to improse their instruction and their evaluation, research must be given a new direction, a direction
which is well indicated at the of Professor McConnell's chapter.

The third obstacle which prevents the implementation of evaluation of the kind here ad ${ }^{\circ}$ ated resides in current materials of instructions. Many of our arithmetic textbooks are still little more than outlines of the subject in terms of the skills to be taught, and most workbooks still deserve the designation of drill pads and practice booklets. In textbooks and workbooks alike, explanations of operations and computational activities are commonly restricted to directions of what to do and how to do it. The underlying mathematical principles are not consistently called to the attention of pupils (or of teachers). Again with the exception of verbal problems, which after all contain few social applications that represent vital and real needs on the part of children, textbooks and workbooks do relatively little to instill an awareness of the significance of arithmetic and to develop habits of using arithmetic. And still again, textbooks and workbooks are commonly almost silent on surgestions for evaluating the degree to which children understand what they learn and are sensitive to the quantitative asperts of their lives. The improvement of texts and workbooks is one of the surest and most im. mediate means of redirecting teaching and evaluation in the way described in the foregoing pages.

None of the three obstacles here discussed is insummountable. l.ikewise, none of them will be removed merels by pious hopes. If these obstacles are to be eliminated, they will be eliminated only by diligent and enligh ened effort.

Chapter XI

Regent trends in learning theory

Their Appleation to the Psychology of Arithmetic

bY T'. R. McCONNELL
university of minnesota

hearving is a change in the organization OF BFHATIOR

Organization a primary aspect of behavior. Newer trends in the psychology of learning emphasize the primacy of organization. This principle can be illustrated in a variety of ways. For example, human beings-and animals for that matter-respond to relations among stimulus objects. This characteristic of behavior was clearly shown in a series of experiments on "equivalent stimulation." designed to permit variation in details of the stimulus situations to which the subjects reacted, while the general pattern in the situations was held constant. Among the several experimental tasks were (1) a difficult number maze in which all the numbers on the sheet were changed by certain sums in the several variations, and (${ }^{(}$) a complex pencil maze in which variations were secured by printing the maze in different scales. The experiments demonstrated, first of all, that when stimuli were varied within certain rather wide limits as far as their absolute characteristics were concerned, leaming did not suffer provided the intemal organization of the stimuli remained constant. The results indicated. furthemore, that what the sabjects learned in these experiments was not a loosely connected series of specific reactions but a highly organized response. In the pencil maze task, for example, the group which practiced with a maze of the same pattern but of different size on each repetition learned as efficiently as the group which practiced with mates identical in
both size and pattern. The former group could not have practiced the same movements each time. They learned, not a chain of specific responses, but an organized reaction pattern in which the particular movements were subordinate to the general configuration. ${ }^{\text {b }}$ Such data as the results of these experiments emphasize the principle that leaming is not the acquisition of items of information or stifll, or of a multitude of discrete reactions, but is a change in the organization of belaatior which gives the individual more effective control over the conditions of experience.

Form or plan facilitates memorization. Research on human learning has also shown that the presence of form or plan in material to be leamed greaty facilitates memoriation if one discerns the pattern. Thus, a list of numbers arranged according to a definite scheme can be leaned much more casily than an "unformed" series of the same length." Recent studies have revealed that some kinds of grouping. or organiation, are more effective than others in leaning. In one of the experiments, four comparable groups of subjects were required to learn the bollowing serics of mumbers in tour different ways.

$$
\begin{array}{cccccccccccc}
\because & 9 & 3 & 3 & 3 & 1 & 4 & 0 & 4 & 3 & 4 & 7 \\
5 & 6 & 1 & 2 & 1 & 5 & 1 & 9 & 2 & 1 & 2 & 6
\end{array}
$$

Group I was whe that the mumbers were armonged acooding to a principle. and that both rows were built according to the same rule. For (iroup Il the mumbers were presented in the following way: 2933336404347 . To Group II the numbers were given as amomets of govemment expenditures, that is, as
 IV was given a lexture on govemnem expenditures in which the following numbers were presented and refered to with the proper experimental frequency.

$$
\begin{array}{ll}
\$ 2.93: 8 \text { million } & \$ 15.192,296,000 \\
S ., 512 \text { million } & \$ 36.404,347.000
\end{array}
$$

The results greaty favored the fist of the four teper of arrange ment on both immediate and delased reproduction tests. The

[^50]investigator concluded that various types of grouping may aid learning, but that some foras of organization are more "adequate" than others. The most adeq.ate, he concluded, were those based upon intrinsic relations. The organization of a series of numbers according to a principle is an example of the kind of grouping which seems most effective for learning and delayed recall. ${ }^{3}$

Intrinsic relations in number system. In arithmetic, the number swtem provides the intrinsic relations which constitute the basis for understanding and organizing the multitude of specific skills and abilities which are included in it and controlled by it. This closely knit system of ideas, principles, and processes has a meaning which will not be revealed by dealing with the elements alone. By failing to teach the basic principles of the decimal system, and by requiring the pupil merely to memorize a host of discrete number facts, we deprive him of the only effective means of gencralizing his number experience. and of applying his learning intelligently in new situations. Unfortunately, arithmetic has been analyecd, as Wheat explains, "into a multitude of combinations, processes, formulas, rules, types of problems, etc., and the pupil is taught each in turn as a separate item of experience. Often, when he has completed the course, he knows only those parts that he can still remember, and they all seem to him as separate and unrelated combinations, processes, formulas, rules, and types of problems to be solved. Finally, when his memory for these separate items fails him, he has nothing left to carry into his adult world but the meaningless, uninteresting, and unpleasant experiences that his classes in arithmetic sem to have provided for him." "The purpose of systematic learning in arthmetic, on the other hand, is to provide pupils "with methodis of thinking, with ideas of procedure, with meanings inherent in number relations. with general principles of combination and arrangement, in order that the quantitative situations of life may be handled intelligently. . . ."s

Learning as differentiation. The principle that organization

[^51]is a primary aspect of human behavior is also illustrated by the fact that the most elementary adjustments involve highly structured activity. The first efforts of the child to manage the quantitative anperts of sperience provide evidence that ahthough his behavior is relatively undifferentiated, or unparticulariaed, it is none the less organized. The counse of development in behation is often from the whole to the part, fiom the general to the specific. This process of growth is called differentiation, which has been defined as "the emergence of a feature or detail of the original pattem out of its setting to become a new and particularized whole." ${ }^{6}$ The phenomenon of the differentiation of specific details fom a more generalized response is evident in the waty in which the child leams to coumt. Contrary to the ustal assumptions. the child's number ideas do not begin with comenting. A recent stady indicates, on the contrary, that "i group of objects meaning "many" to the child is not differentiated first into a multitude of ones. A gross differentation precedes this mone omple differntiation: the division of the gooup is made into mone of lens mequal subgroups. . . "T The child does non need to comm to comper hend the meaning of mone or less. The idea of equal is somewhat more difficult. but can ahos be graped without omomers. The study just quoted revealed thent it was only at a late weme that a group was divided into homogeneous path on the banis of number. The data also showed that the cardinal and ordinal ideas of number emerge together. Counting acompanies tha process as a relatively late phase of differmtiation. Coumting is a particularied specific, refmed method of dealing with aroups of objects. But it is also mportant to note that comatine posides a systematic, organized means of dealing with the discriminated indisidual members of a group. It intohes a perseption of the relationship of the part to the whole. Conmting is a meme of discriminating the members of a whon!. It is ator the means of grouping or organizing individual in ans.

Differentiation has also be en detmed as "the progressive expli

[^52]cation of detail in an implicitly apprehended whole." Beginning with a relatively undifferentiated pattern, the structure or the significance of the whole may become more explicit and the details which are relevant may become more distinguishable. This continuous differentiation of an idea or process occurs constantly in meaningful leaming in arithmetic. Wheat points ont that the idea of ten and the idea of position are two of the core ideas which run throughout arithmetic, systematically taught and learned. from beginning to end. He explains the development of these ideas as follows:

Evell a glimmering of these icteas at the beginning helps the pupil (1) beognite and ocly upon them in the adding and subtracting of twoplitice numbers. "Cansing" tens in addition, subtraction, and multiplication, and division by twoplate numbers gives opportunity fiof comphong the ideas. . It ceres siep. to and throughout decimals and percontage, hece same ideas continue to appar. Every step may provide the octavion both of illustrating and extending these ideas in the pupil's mind and of giting him an oppontmite to use what little he may prevond have leaned of them as an aid in his atack ирип пен риемея to be lanned. . .
Related to the ideas of ten and position-rally a part of themane the ideas of size and of number (whether of pats or of groups). Adhough these may be mon crident in fratiom, ther may be understow the better it one can discover them rumbins thongth the whole of arithenetic. Ind fumbamental the whole ... withenetic are the ideas of combination of uncyual and equal grompe in addition and multiplication and of cepration into nuequal and cyual groups in subtation and division trepertisely."

These comments are excellent illustations of the way in which ideas incompletely understood in the beqiming acguive more signifiance through experience and abimately cmbace a much mote extensive set of patioulars ima applicatoms. They also illustate the principle that howerer impertect or vague the pattern and the denals mat be in the beximming however well rounded out the pattom, and hoteser spectioc and distinguishable the detaik man become as leaning ano un. mine chatacterizes the leamine pones throwhot.

Lea ug as integration. I comine of coure is more than a proses of differmintion. It is one of interation and reonemi. ration as well. Shternion octus when one dixaters the relations

[^53]between things which were learned at different times and in different contexts. Mce hamistic theories of learning of necessity have had to make provision for some kind of association of "unit skills" and "lesser abilities" into an operating hierarchy. But the assembling of parts was primarily in terms of relatively selfcontained or discrete processes such as addition of whole numbers, long division, and case I of percentage. This form of integration was little more than summing, resulting ordinarily in a series of procedures conducted by rule-of-thumb methods. Understanding the mathematics, or logic, of a process, and relating one process to another and to basic number ideas, was not only not recommended but was very frequently distouraged.

Integration, rightly conceived, involves a highly coherent organization. It is essentially a meaningful rather than a mechanical process. This comotation of "integration" is clearly implicit in the following detimition of the term:

Abstract

- whencer a number of more or less discrete objects or "ideas" enter intu a configuation of behasor, they become joined by virtue of their membenship in the whole; the members ane thereafter held ",gether, not by the external ageney of an asonciatise "glue," but by the umn fon mation they have untergone in losing something of theit individuality and becoming the nembers of a single pattern of behavior. ${ }^{10}$

There are many orgmizations of lesser or greater degree in arithmetical processes. For example, one may think of a sys tematic arrangement of the addition facts or of the subtraction facts. One may also consider the relationships between addition and subtraction, not only of spectice "facts," but of the processes themselves. The four fundamental processes -addition, subtraction, multiplication, and division- may be conceived as differem but related ways of reproupind involving combination and separation of mequal and equal sub-groups. Regrouping by tens is another means of utilizing rehtionhions. .ts leaming procects. one should construct more inclunice and witematic ornamiations of ideas and processes gowernd be the fimblamental structure of the number system. Thus it is not ont devitable to see the corred tion of the "thee cases" in peremtage and a gencratiation
 Brate und Comy.m. Now fonk. lasis.
of the underlying number relationships, but also to understand the relations between fractions, decimals, and per cent. As the pupil studies the applications of percentage, such as interest, savings, investments, gain and loss, cost and selling price, insurance, taxes, etc., he should not only secure training in practical activities but also a better understanding of percentage. "Such a procedure." writes Wheat, "brings into a single, unified scheme of thinking or method of attack what otherwise might easily be a dozen separate, distinct, and unrelated 'applications' of percentage." $"$ The process of integration, or reorganization of experience in more mature, effective, and systmatic form, is but another recognition of the movement to make telatedness and organization the central concept in the psychology of learning.

The mechanization of arithmetic. "(On the one hand," says Wheat, "number as a science is systematic and consistent; on the other hand, number as a practical art is often a series of rule-ofthumb procedures.": This observation is only too true. Why has instruction in arithmetic disregarded and obseured the inherently sensible and understandable structure of the subject?

One of the principal reasons for the mechanization of arithmetic is that it has been caught in the toils of the connectionist theory of learning. Mathematics, particularly arithmetic. has been easy prey for analysis into elements. bonds. connections. The most influential person in the movement to psychologize arithmetic in conformity with comectionist principles, has, of course, been Thorndike. Linder his leadership. psichologists have prepared the arithmetic for leaming by analyang it into hosts of specilic items. This followed naturally from the habit of brcaking behavior into small units. and attempting to describe the most complex processes by listing their constituent parts. The detailed items into which subject matter could be dissected corresponded nicely to the specific $S-R$ connections of which any mental function supposedly was composed. These psychologists conceived of learning as the process of forming specific bonds and gradually seriating or combining them until the function as a whole had been constructed. Correspondingly. one memorited the items of

[^54]subject matter piecemeal and ultimately collected them into more or less compact hierarchies best described in many instances as a connected series of rontine procedures. Under this kind of learning, there was no need to establish a scheme, a fundamental idea, or a basic pattern of responses when begiming to acquire a skill or ability. Neither was there any assurance that generalized control of the process would emerge in the end.

Much has been said in discussions both of learning and curriculum construction about the differences between the psychology and the logic of a school subject. In many instances, there is far more relation between the two than superficial considerations would suggest. In the case of arithmetic, attempts to psychologize the subject appear to have damaged it booh logically and psychologically. By decomposing it into a multitude of relatively umelated comnections or facts, psychologists have mutilated it mathematically, and, at the same time, by emphasizing or encouraging discreteness and specificity rather than relatedness and generalization, they have distorted it psychologically. They have obscured the systematic character of the subject, and have created a doubtinl conception of how children leam it. Furthermore. the practice of connectionism in arithmetic leads almost inevitably to immediate emphasis on rapid and acourate computation rather than on the development of the ability to think quantitatively. Computation is easily segmented into constituent units, while quantitative thinking, because it rests upon generalized understanding, is not susceptible to amalysis into specific elements.

A recent writer calls the meticulous analvsis of arithmetical processes into detailed elements. or even into thpe examples. "academic insanity." That seems a little over-severe. However one leams arithmetic. he must ultimately be able to respond correctly and efficiently to a considerable number of variants of any process. Inventories of the characteristic forms which a process may take are useful in the construction of diagnostic examinations and in the preparation of varied experiences with which to attain basic understandings and procelures. However, one can no longer defend the iearning of a large number of relatively independent items within a process as a substitute for
understanding the process mathematically. Evidence is accumulating slowly but surely which reveals that when the leamer understands the number system and the operations which its structure permits, he has developed insight into arithmetical processes which makes instruction and drill on each variant or every specific "fact" unnecessary.

Social utility related to excessive analysis. The reduction of arithmetic to the specific abilitios which have social utility has played handmaiden to the con..nectionist theory of learning. Is Wheat has pointed out, when social usefulness determines entirely what arithmetic one should learn, ". . . any idea of a relation between topics and processes must be abandoned. When topies and processes may be included or excluded at will, any relationship among them must be decidedy unimportant. ${ }^{13}$ However. if one is as seriously concerned with understanding arithmetical processes as with using them in practical situatoons (this writer believes that the one is in fact the most effective means of achiering the other), he will include in the learning sequence whatever is necessary to give mathematical significance and logical structure eve. if some of it has no immediate social utility. The science of number provides a rationale for the meaningful organization of experience, a scheme which the leamer can use to systematize his ideas and his computational skills. This point of view has littic affinity for connectionist dogma with its emphasis on blind repetition and its wamess of mational procedures. On the contrary, i, is part and parcel of a theory of leaning which stresses orgmization rather than discreteness understanding rather than memorization, the exercise of the hipher mental processes rather than dependence upon lower-order habits. "The psschology of the higher mental processes." Judd insists, "teaches that the end and goal of all education is the development of sytems of ideas which can be carried over foom the situations in which they wee acquired to other situations. Sistems of general ideas illuminate and clarify human experiences by raising them to the level of athstract, gencralized. conceptual understandinq.". ${ }^{\prime}$

[^55]
I.EARNING IS A IOEVEIOPMENIML IROCESS

Confusion of product and process of learning. That learning

 is a process of development is a second principle of far-reaching importance for education. Association theories confused the end or the product of leaming with the process; they treated learning ats the fixation of responses. In spite of all the revisions which Thomdike has mate in his statement of the principles of learning. his interpetation of the business of teaching simmers down to this: Identify de stmation for the leamer; identify the response, and make sure that the learner can make it: then pat him repeatedy throwin the reaction and make the practice satisfing. Combectionism comes perilously close to treating "situations." "responses," and "bonds" as entitios in themselves. as flems which have ind! ; : adent existence. The litembess with which some associationists speak of these elements is little short of the idea of cords of different degrees of strength actually tied at cither end to definite objects.To the commectionist, the only differences between responses at the inception and at the completion, or fixation, of a raction pattern are the speed of reaction and the variabilisy of the response. In fact, the boud psuchologist looks with suspicion upon any attempt to invest a task with meaning, or to approach the final stege of habituation through intermediate or developmental reactions. Thorndike insisted, for example, that "time spent in undertanding facts and thinking about them is almost aloays saved doubly be the greater ease of memorizing them." Again. he declared:

The dostane that the antomaty dedutive explanation of whe we invert and moliply. or place the partial products as we do before addinge mas be allowed to be forgotern onte the atoal habits are in
 that on math the and ellont were repuited to keep the deductive ephanatons in memons. . . The fat was that the pupil learned
 wow ond an akled boden. Ifis indative leaminer that the prod
 wf the what haten of fats athout the comequemes of the nature of a fatetion on the place salues of wur derimal motation. The bonds weakened beatuse ther wete not used. They were not used because
they were not uscful in the shape and at the time that they were tomed, or because the pupil was unable to understand the explanations so as to form them at all.

The criticism was valid and should have been met in part by mplacing the deductive explanations by inductive verifications, and in part by using the deductive reasoning as a check after the process itself is mastered. . . . What is learned (i.e., the deductive theory of arithmetic) should be leamed much later than now, as a synthesis and rationale of habits, not as their creator. ${ }^{15}$

In another instance. Thonndike said that "if an arithmetic: process seems to require accessory bonds which are to be forgotten. once the procedure is mastered, we should be suspicions of the value of the procedure itself. ${ }^{10}$

The same attitude toward arithmetic seems to be behind an unfortumate statement in the recent yarbook on (hild Development and the Curriculum which divided the school curriculum into two broad classes of material, the one involving processes of development and reorganization. the other inchuding "skills and knowledge that are acquired through specific foactice, such as reading. ariblometical compulation, plaving the piano. the facts of history, and so forth. . . ." ${ }^{-17}$ on the contraty, there is now evidence that even skill in arithmeticai computation involves a proces of growth. and that the purpose of teaching is we give constructive guidance to this couse of development. This view. instead of confusing process and product. emphasizes the progressive chames in the leamers behavior, and recognizes that each stage in the development of behavior is an ontgrowth of a pre vious one.

Developmental studies in arithmetic. There are at least three studics which have demonstrated the distinction between process and product in the leaning of arithmetic. These investigations have shown that the acquisition of arithmetical abilities involves developmental sequences at continuous reorganimation of behavior in which more mature forms of response are substituted

[^56]for less mature but nevertheless essential or uneful steps in understanding and skill." These studies indicate clently the following siguificant facts:
(1) Abstract ideas of number develop sut of a great amount of concrete, meaningful expericnce; mature apprehension of number relhtionships can he attained in no other way. Furthermore, the adequate developmont of number ideas calls for systematic teaching and learning.
(2) Drill deess not guarantee that children will be able immediately to recall combinations as such.
(8) Habituation of number combinations is a final stage in learning which is preceded by progressively more mature ways of handling number relationships.
(4) Repeating the final form of a respunse from the very beginning may actually encourage the habituation of immature procedures and seriously impede necessiry growth.
(5) Drill as such makes litule if any contribution to growth in quantitative thinking by supplying mathrer ways of deating with number.
(6) Intermediate steps, such as the use of the "crutch" in subtrattion, aid the learner looth to understand the process and to compute accurately. With proper guidance, these empomary reactions may be expected to give wiy to more direct responses in the later stages of learning.
(7) Reorganization of behavior orcurs as the child's understanding grows, and results in the energence of more precise, complex, and economical patteras of behavior.
(8) Understanding the number system and the methods of operation it makes possible facilitates both quantitative thinking and, ultimately, rapid and accurate computation.

Most of the investigations of methods of instruction in arithmetic have measured only computational abilities. When we extend the measurement program to evaluate instruction in terms

[^57]of outcomes in quanti ative thinking, the importance of meaninglul and develepmental activitics will probably prove even greater.

l.earning in a meaningfut, process

The discussion of the primacy of organization nad the developmental character of learning has already indicated, by implication at leass, the thited principle of learning for which there is now a substantial body of evidence: Ledarning is a neaning/ul rather than a mechanical procerss. Fundamentally, meaning inheres in relationships. Relationships are established by the control which some organiation or system exercises over the parts. The "meaning theory" of arthmetic instruction, therefore, emphasizes the importance of teaching chiddren to understand our decimal number system and the ways of manipulating it. ${ }^{10}$ 'This system provides the basic pattern for understanding and relating the many specifice items which are included in it and controlled by it.

Those who really believe that learning is a meaninglul process, instead of merely making a verbal concession to what they suspect is a passing fad, will insist that a general halo of meaning is not enough. There is in certain quarters a lingering desiro to present a few of the number combinations meaningfully, and then, in this atmosphere of reasomableness, to resort to formal drill for the remainder of the combinations. On the contrary, learning should be meaningtul throughout, not merely during the first few steps. Organiation, meaning, and development are essential chanacteristics of the learning process, not incidents, nor elective devices. It is surprising how learful of meaning some persons are. It has been suggested, for example, that athough it might be defensible to use the subtraction "crutch" in order to explain the process, it should then be immediately discarded for drill in the most mature form. This proposal, however, is based upon the assump. tion that "understanding" and "fixation" are distinctly separable functions, a presupposition which the theory of learning as development cannot sustain.

[^58]
Distinction between social and meaningful arithmetic. There

 has been a tenclency to assume that leanoing athithentic in social situations and for social purposes makes it menningful arithmetic. But a moment's rellection will lead to the realization that specitic training in the employment of an arithmetical procedure in a social situtation may make no contribution whatever to the understanding of that process as such. The mere fact that the words "marbles" or "pennies" are attached to formal repetition of $9+8$, for example, mity have litule to to with the child's insight into the mamber relation behind the verbalization. It is important, of course, to learr the arthmetic whish is useful in daily life, and to apply arithmetical processes in as many social sithations as possible. Using these operations as social tools undoubte!ly invests them with meaning in a very restricted sense. limedamentally, however, to leam arithmetic meaningfully it is neressany to understand it systematically,Buckingham hats supplied a terminology to cover the social phases of arithmetic and to restrict the use of "memang" to its mathematical relerence. For the social impliations of arthmetic, he proposes the term "significance." By the :ignilicance of number he means "its value, its importance, its necessity in the modern social order . . . the role it has played in science, the instroment it has proved to be in ordering the life and enviromment of man." He continues:

Under the head of meaning I include, of course, the rationale of out bumber ststem. The teather who emphasizes the social aspects of arithmetio may saty that she is giving meming to mumbers, 1 prefer to say that she is giving them significance. In my view, the only way (o) give numbers meaning is to treat them mathematically. . . . 1 hasten to saty, however, that earth ideal supports the other. . . . The one emphasis will exalt athmetio as a great and benchent haman instibution. the supporter of a fine humanistic andition. 'Ih? other emphasis, the mathematical one, will lite arithmetic, even in the primary grades, from a fommalied symbolism to the dignity of a quantitatioc spstem. In shom, when arithmence is tatug with meaning, it (bises to be a bag of tricks and becomes, as it shouke be, a recogniaed banch ol mathematics. . . .

When we confromt childen with a signifiant and menningfal experience, when they make the expenience theins, they argure insight, eath to the degne that he is able. Mone spectile ally, and in particular relation to mumber, they gain in two ways: they understand number
as such, and they also understand when and how to use it to serve their purposes. . . . 0
The probiem of curriculum organization. The problem of menningful learning in arithnotic, as buckingham defines it, has extremely important bearing upon the nature of curriculum organization. Shall arthmetic be taug't as a systomatic subject, or should the pupil acquire arithmetical abilities incidentally, i.e., in connection with other subjects, or only as they become a part of purposeful life activities? The issue in arithmetic, of course, is only one aspect of the broider problem. 'This problem is olten stated as follows: Should the curritulum be composed of systematic bodics of subject matter, logically organized o" should it be composed of life experiences or activities in which subject matter is utilized and orgmized without respect to conventional academic sequences? The latter altemative may be illustrated by Harap's study, in which pupils leamed decimals by using the processes in practical activities which made the computatuons necessary. ${ }^{24}$ In apprasing the outcomes of learning in arithmetic under this scheme, the ability of the pupil to make the neressany computations in the particular situations in which practice is secured is not the most important outcome. The essmutial abilities are those which enable the individual to discern the ghantitative aspects of a great variety of specific situations, to choose the proper procedures in the light of this anderstanding, and to perform the relevant operations efficiently. There is very good reason to believe that this kind of quantitative thinking depends upon a mathematical understanding of arithonetic, upon a systematic study of the science of number. The issues stated ahove were conched in the usual "either-or" dichotomy, Actually, we should not be choosing between mutually exclusive alternatives. We should cultivate two fundamentally important types of relationships. We should have a wealth of experience, on the one hand, in bringing understandings, information, abilities, and skills from many sources-from many subjects, so to speak-to bear in unified fashion upon significant problems of adjustment. We

[^59]need, on the other hand, to organize our tearnings in the highly systematic form which tields and subjects of knowledge make available. Dewey has pointed out that "to grasp the meaning of a thing, an event, or a situation, is to see it in its relations to olher things; to note huw it operites or functions, what consequences follow upon it, what caluses it, what uses it can be put co," "y 'Io use a mathemati al process in proper coordination with other factors in the solution of a practical problem gives it sig. nificance; to see it in relation to other processes in its oun highly organied system endows it with meaning. Broadly speaking, gencralized ideas with which to interpret and control new situations are the means of continuous adjustment, or of the utilization of previous experience under different conditions. To acyuire these generalizations meaningfully, it is very often necessary to leann them in the context of the closely integrated logical system to which they belong. Arithmetic is un exception. To disregard the mathematical relations of number processes means a reversion to a form of teaching, the outcomes of which were described several years ago as follows:

There are many pupils in school who sucted in learning their arithmetic only as a mass of isolated and uncelated number facts. . . . Through constant drill and persistent effort, hey sucteed in acquiring skill in the operations, but fail to recognize withal the nature and the meaning of the operations. As a result they learn to add, suberact, multiply, and divide with a fair degree of mechanical precision; they learn to perform such operations as they may be directed to perform: but they do not develop the ability to recognize the presence of these operations in the simplest practical situations in which they may be found. In the counse of time. however, they succeed in remembering that a statemem which inchucles such terms as "how many," "altogether," "total," "sum." etc.. requires addition. . . . It other words they learn to remember the various compurations: they come to regard them as so many mechanical and meaningless perfomances; and, finally, they leam such of their applications as can be remembered be fombla and rule?

Using arithmetic in practical affairs and leaming it as a system of thought aboth essential to the development of the ability to think quatatatively.

22 fohn Dewey, Huw Wr Think, p. 137. U. C. Ileath and Company, Boston 1093.
 Burdett Compialy, New Yoik. 1931.

Learning is thinking. Meaningful learning emphasizes discovery and problem solving. In fact, from this point of view, learning is thinking Insteidd of tearning "facts" and then using them in thinking, we can leam "facts" by thinking. This doctrine means that learning should be characterized by insight, and it sharply condemns the traditional practice in arithmetic of having children memorize certain operations in abstract form, in order to apply them in verbal problems afterwards. This practice is probiably in considerable part responsible for the difficulty children have in determining what process, or combination of processes, they should use in problem situations.

Instend of authoritatively identifying correct responses for children, courageons teachers are now encouraging active exploration and discovery and self-directed learning. They do so, however, in direct definuce of comnectionist ciogmia. Self-nctivity may produce errors, and the bond psychologist wants the child to avoid error, for Thorndike has found that (contrary to his earlier statement of the law of effect) the occurence of a wrong response, even followed by punishment, mikes the probability of its occurrence greater, rather than less. So Thorndike admonishes that "the attainment of active rather than passive learning at the cost of practice in error may often be a bad bargain. . . . The almost universal tolerance of imperfect learning in the early treatatent of a topic, leaving it to be improved by the gradual elimination of errors in later treatments is probably unsound and certainly risky. ${ }^{\text {2 }}{ }^{24}$ This pronouncement places a premian on instruction rather than pupil activity, and stresses authoritative identification by the teacher rather than active discovery by the learner.

Before acrepting this advice, however, one should remember that Thorndike's subjects were adults rather than children, and that there was mo possibility of learning the tasks in the experiment meaningfully. The correct choices were always arbitarily determined by the observer, Furthermore, the studies of McCinnnell, ${ }^{25}$ Thiele, ${ }^{28}$ and Brownell, all of which stressed pupil discovery and meaningful gencralization, gave results which either

[^60]indicated that active learning produced no undesirable effects or showed that it was decidedly advantageous.
Meaniaci the basis of transfer. Finally, meaningful learning is the key to the ctruster of training. A theory of learning as formation of specific bonds with its accompanying dectrine of transfer through identical elements is utterly inadequate to explain how one applies old laitning to new conditions, or how he reorganizes experiences creat vely. There is a growing body of evidence, on the other hand, which indicates the : it is generalization of ideas and processes which facilitates tramsfer; in fact, it is generaliazation whicin makes tramsict possible in any importame degree. After pointing out the limitations of the doctrine of identical elements, Mursell contends that "in sceking for the true and authentic similarities between :wo interactive pitterns we must look not to their constituent siements but to their central meanings." For the greatest tramsier to occur, he declares, "a hierachy of learnings . . . should grow out of one another so that, as the pupil moves along, meanings become more precise, more articulate, more highly differentiated, and at the same time more genenalized." $"$
The contribution of meating and generalization to transfer in arithmetic has been studied by McComell and Thiele, among others. In McComnell's investigation, one large group of second grade pupils learned the addition and subtraction, ', binations by procedures which emplasized discovery, organization, and generalization. Another group engaged in activities which stressed authoritative identification, mised practice, and specific drill. The experiment :asted approximately eight months. During this period, three tests of transfer to untaught processes were administered, and a fourth was included in the final battery. The differences on all four tests favored the meaningful procedures. although only one was statistically significant. ${ }^{27}$
Thicle's results were more conclusive. He compared the learning of 100 aldition facts by the methods of specific repetition and

[^61]meaningful generalization. At the end of the experiment, Thiele administered a transfer test composed of 90 addition examples each of which contained one addend larger than 10. The results showed a mean difference of four examples in favor of the pupils who had used the generalization method. The critical ratio of this difference was 7.4. One must agree with Thiele that "strong evidence is presented by this study to support the faitio of those who would make arithmetic less a challenge to the pupil's memory and more a challenge to his intelligence.' ${ }^{1 /}$ The importance of gencralization for learning, retention, and transfer is so great that an entise chapter of this Yearbook is devoted to it.

There was a time when we looked upon transfer of training as nice to have but so extremely difficult to get that the school should rest its cise upon the pupils' acquisition of specific adjustments to specific situations. Now we are recognizing the force cia Judd's statement that the "end and goal of all eduation is the development of systems of ideas which can be carried over from the situations in which they were acquired to other situations." In fact, we now realize that transfer provides the only indubitable evidence that learning actually has taken place.

MMPLICATIONS FOR EXPERIMENTATION

Relation of learning theory to experimental design. The principles of learning discussed above should activate an entirely new experimental program in the psychology of arithnetic. They should also prompt a critical scrutiny of previous investigations. Such an examination would reveal, first of all, that experinental results are functions of the theory of learning which dictated the instructional procedures and the learning activities of pupils. Research on the difficulty of the number facts illustates this relationehip excellently. In the Knight-Behrens study, for example, pupils supmosedly learned the number facts by sheer repetition. ${ }^{30}$ Furthermore, the facts were presented in mixed
$2 x^{C .}$. Thicle, The Comtribution of Cieneralizalion to the Learning of the Addition Farts. Comtributions io Education, vo. 763. Bureatl of Publications, 'leachers Colloge Columbia l:niversity, New York. 1938.

2 aF . B. Knight and M. S. Beltrens. The Learning of the 100 Addition Combi. nations and the 100 Subtraction Combinations. Longmans, Green and Company, Nicw York. 1928.
order, and only one arrangement was used, Both recent theory and recent research have indicated that the relative dificulty of number relationships is influenced, first, by the order in which they are presented; second, by the way in which they are grouped for instruction; and third, by the method by which pupils learn them. Eatly difliculty and error studies ranked the zero facts rather high in difficulty. Meaningful methods of leaning have demonstrated that they ate not especially difficult, and that with the aid of proper generalization, they can be learned as a group without extended drill on the individual items.

A very recent investigation on the comparative difficulty of number facts made repetition the maid-of-all-work in learning.s The children learned the combinations by playing the game of Add. 0 , in which, according to the author, "the correct combinations and answers are always before the children, minimizing the possibilities of establishing incorrect responses. Accuracy is checked and speed is regulated in an effort to control undesirable habits of computation." In the light of his findings, the author advised that "the teacher should not assume that the zero combinations will be learned by inference; they should be taught as any of the other 100 combinations." Of course, the method of instruction did nothing whatever to facilitate inferential and generalized behavior, and probably since Add-0 regulated speed "in an effort to control undesitable habits of computation," the teaching actually frustrated the pupils' own attempts at intelligent apprehension.

How orthodox connectionist principles thoroughly dominated this investigator's thinking and procedure and influenced his results is revealed by his final words of advice to teachers:

As the size of the addend seems to be the general factor in causing differences in the diffoculty ranking. we wonder if the children are not computing the sums by physical or mental counting, a crutch which is probably developed in the child while building the number concepts. D'sychologically, the child should be able to lean $5+4=9$ as easily as $2+3=5$, but this is not the case according is the investigations of combination difficulties. It might be more eronomirnl first to teach the child to memorize the combimations, and liter deirelop the number concepts. (laalies are the present writer's.)

[^62]Results of investigations of the level of mental maturity necessary for the economical learning of arithmetical processes (such as the widely discussed findings of the Committee of Seven) are probably also functionally relited to the method by which the subjects learned these processes. It is conceivable that new studies in which meaningful teaching and learning activities were emphasized would yield substantially different findings. ${ }^{\text {a }}$

Need for new types of research. As Brownell has suggested, we need a whole new series of studies to explore the problem of how pupils actually learn. Much of our instructional research, while useful, fails to get at that fundamental problem. Statistical differences between end tests, accompanied by descriptions of intervening overt responses of teachers and pupils, do not reveal the critical aspects of the learners' behavior. Brownell's studies have produced ample evidence that what passes for repetition of the same thing disguises an underlying process which is the real cue to the nature and maturity of the pupis's learning.

We also need a new type of error study which is not content with the tabulation of incorrect responses, but which attempts to relate the nature of error to the way in which pupils have learned and to the fashion in which they might learn most economically.

Finally, we must recognize that skill in computation is not the only or even the most important outcome of learning in arithmetic, but that growth in the ability to think quantitatively is a primary objective. Accepting this point of view means devising new instructional activities and also developing new methods of measurement or appraisal.

SUMMARY

Those who are conducting reseatch in arithmetic should realize how vigorously many psychologists are disputing the ve lidity of the principal connectionist maxims. The issues are clear-cut. The newer point of view emphasizes relatedness rather than itemization. It stresses generalization instead of extreme specificity. It conceives of learning as a meaningful, not a mech mical process. It

[^63]considers understanding more important than mere repetition or drill. It looks upon learring as a developmental process, not one of fixation oi stereotyped reactions. It encourages discovery and problem solving tather than rowe learning and parrot-like repetition. It is within the matrix of these issues chat the new research in arithmetic should be conducted.

Chapter XII

QUESTIONS FOR THE TEACHER OF ARITHMETIC

BY F. LYNWOOD WREN4
ugorge peahody college for teachens

THus chapter contains questions which, the writer hopes, teachers of arithunctic will ask themselves. It is not the purpose of this proposed self.questioning to yield a rating or an appraisal of one's fitness for tenching arithmetic. As a matter of fact, many excellent teachers of arithmetic may score relatively low on these questions, and many poor teachers may score high, since no evidence is avaitable that any of the items of knowledge are functionally related to success in the classroom.

These questions are designed then, not for self-evaluation. Rather, they are intended as "shockers." Teachers, even good teachers, can become complacent about their professional equipment. Some teachers may find in their inability to answer the questions a stimulus and a guide for the reading and study which they may have neglected.

There is another kind of reader who can profit from the self. examination provided in this chapter. This is the person who is in charge of courses on the teaching of arithmetic. Such a person might well check the content of his course against these questions: not with the idea of including in his course all or even most of the items in this list, but with the iden, as in the case of the teachers just mentioned, of stimulating himself to think through again the purposes and the content of his course.

Two important limitations should be recognized with respect to this list of questions. The first is that these questions represent an analysis of the complicated total act that we know as teaching. No one, least of all the writer, likes to think that any list of

[^64]sprecific items of knowledge or of specific teacher activities can be regarded as equivalent to the complete act of teaching. In a real sense the break-down of teaching into specifics destroys the thing which is analyred. Yet, on the other hand, values can accrue from lists of specifics. The danger in dealing with them lies in tailure to recognize that they are specifics. Once one recognizes this fact, one can deal with them without fear of distorted empharis.

The second limitation is one of scope. The questions relate only to the teacher's academic and professional knowledge of arithmetic. All those important human elements, such as the teacher-pupil relationship, emotion, attitudes and appreciations, and personality growth, white present in all school wo.tk, have not been included in this seties of questions. Good teachers not only recognize their import but are alert to situations which may build desimble persomality and emotional traits as well as to those situations that have a derogatory effect.

ACADEMIC BACKGROUND

History of arithmetic. Historical perspective enriches the contemplation of current conditions and the possibilities of future clevelopment. A study of the evolution of arithmetic as a field of knowledge and as an integral part of the modern school curriculum should prepare the teacher for more intelligent interpretation of the present arithmetical program and for more critical appraisal of any suggestions for future revision of this program.
(1) Am I acquainted witi the language and limitations of some of the more significant primitive methods of counting?
(2) Ain I acquainted with the relation between the evolution of number systems and the evolution of race culture?
(3) Do I know how the concept of number became abstract through being separated from counted objects?
(4) Do I know the distinguishing characteristics of the Egyptian, Babylonian, Roman, and Greek number systems?
(5) Do I fully appreciate the advantages of our number system over each system listed in (4) above?
(6) Do I understand why our numbers are most properly called Hindu-Arabic numerals?
(7) Do I have a clear understanding of why calculation could not show muth progress with the early number systems?
(8) Am I familiar with the differences that exist today in the numeration of large numbersi For example, what is the distinction in meaning of one billion in England and in the United States?
(9) Am I acquainted with the evolution of the modern methods of the processes of addition, subtraction, multiplication, and division?
(10) Do I appreciate the significance of the printing press in the stabilization of number symbols?
(11) Do I know the origin of fractional numbers and the different types of sitaations they describe?
(12) Am I acquainted with the evolution of modern fractions and the difficultics intrinsic in different ancient symbolisms?
(13) Am I familiar with the evolution of the modern notation for decimal fractions?
(14) Do I know the historical relation of denominate numbers and fractions?
(15) Am I familiar with the history of our calendar as a measure of time?
(16) Do I know the names, contributions, and approximate periods of at least ten contributors to arithmetic lore?
(17) Do I know something of the origin and development of the Fnglish system of weights and neasures?
(18) Do I know something of the origin and development of the metric system of weights and measures?
(19) Do I know something of the history and development of calculating machines from the abacus to the slide rule and modern calculating machines?

Rationale of arithmetic. One of the most important of all instructional responsibilities is that of making the learning process meaningful to the pupil. The why of any process or technique is most frequently of just as great significance as the how. Every teacher of arithmetic should thoroughly understand the rationale of at least that arithmetical content with which he must deal in his teaching.
(1) Have I an appreciation of number as a symbolic language?
(2) Do I have an appreciation of the significance and limitations of counting?
(3) Do I know the distinction between cardinal and ordinal numbers and the function of each in our scheme of numeration?
(4) Have it clear understanding of the implications of such classificaticus of number as prime, even, odd, real, complex, etc.?
(5) Do I understand the use of zero as a number symbol, as in $6-6=0,3 \times 0=0$?
(6) Do I have an appreciation of zero as a symbol to indicate the empty columm, as in 506?
(7) Do I understand the full significance of the use of zero as a point on a number scale; for example, as the zero point of a thermometer or as the zero line (base line) of a bar graph?
(8) Do I fully appreciate the importance of place value?
(9) Do I know the significant characteristics of a decimal system of nume tion?
(10) Do I fully appreciate the advantages and disadvantages of a decimal system of numeration?
(11) Do I appreciate the significance of the statement: "That mankind adopted the decimal system was a physiological accident?" 2
(12) Do I fully understand the technique of the numeration of large numbers?
(13) Do I understand the principles of scientific notation used in the writing of very large numbers or very small numbers?
(14) Do I know the distinguishing characteristics of other systems of numeration (duodecimal, vigesimal, sexagesimal, etc.)?
(15) Do I appreciate the compactness and simplicity of numerical calculation made possible through the use of the fundamental processes?
(16) Do I have a clear understanding of the fundamental principles which govern carrying, borrowing, and the placement of figures in quotients and partial products?
(17) Do I appreciate the full significance of the etymological meaning of "fraction"?

[^65](18) Do I know the modrn uses and limitations of common fatactions in both descriptive and computational situations?
(19) Do I have an understanding of decimal fractions as an extension of the decimal system of numeration?
(20) Do I know the comparative superiority and inferiority of common fractions versus decimal fractions in both descriptive and computational situations?
(21) Do I know the relations that exist between the fundainental principles and processes of percentage and those of common and decimal fractions?
(22) Do I have an intelligent understanding of the nature and significance of denominate numbers?
(23) Do I know the distinction between arithmetic, numerology, and the theory of numbers?

Social importance of anthmetic. One of the major responsibilities of arithmetical instruction is the use of number concepts and arithmetical techniques in social situations so that the pupil may have the opportunity to appreciate the contribution arithmetic may make to enriched environmental experience.
(1) Do I know any of the evidences that the evolution of number and the accompanying methods of calculation are related to commercial and social progress?
(2) Am I familiar with any of the social demands which produced integers, fractions, negative numbers, etc.?
(3) Am I familiar with any vestiges of number systems, other than the decimal system, in social use today?
(4) Do I understand the social significance of each of the fundamental arithmetical processes?
(5) Do I appreciate the social signiicance of common and decimal fractions?
(6) Do I appreciate the social signi ${ }^{2}$ cance of percentage?
(7) Do I know the evolution and .ucasl backgrounds of computing simple and compound interest?
(8) Do I have the ability to analyze life situations such as banking, farming, sewing, cooking, keeping house, playing games, investments. insurance, etc., for their arithmetical content, and to adapt this content to the grade level at which I teach?
(9) Do I have a satisfactory understanding of the monetary system of the United States?
(10) Am I familiar with the monetary systems of some of the more important foreign countries?
(11) Do I understand the full significance of "standard time" and its applications?
(12) Do I have the ability to sense my own individual needs, direct and indirect, for arithmetic; as in the construction of a personal or business budget, in problems of wise buying, etc.?
(13) Do I have an appreciation of the social importance of the graph as a means for the presentation of numerical information?
(14) Do I have the ability to make applications of arithmetic to other school subjects, such as science, history, geography, health work, etc.?
(15) Do I appreciate the significance of number as an aid to scientific investigation and experimental procedure?
(16) Have I during the past year grown increas: ngly sensitive to the usefulness of number and to the quantitative element in my own life?

Command of the subject matter of arithmetic. A sine qua non of all effective instruction is a thorough knowledge of the subject matter to be taught. For the teacher of arithmetic this implies a familiarity with arithmetical concepts and a proficiency in arithmetical processes which will guarantee a range of arithmetical ability extending above the level at which the teacher is to teach. The teacher should have adequate comprehension of techniques in order that rationalization and generalization of processes will be both natural and intelligible. His informational background should be such as to ensure self-confidence and to supplement well-planned units of instruction with that spontaneity of instruction which is both enlightening and challenging.
(1) Am I able to think in number symbolism?
(2) Am I fully aware of the one-to-one correspondence between objects and positive integers which gives rise to counting?
(3) Am I conscious of the distinction that exists between the process of counting and the actual notation used to record the results of counting?
(4) Am I proficient in the use of the fundamental arithmetical processes?
(5) Have I a command of arithmetical concepts and processes beyond the demands of my immediate grade?
(6) Do I know how to use Roman numerals?
(7) Do I appreciate the efficiency of modern fractional notation?
(8) Do I have a significant understanding of the use of the fundamental processes with common fractions?
(9) Do I have a satisfactory proficiency in working with common fractions?
(10) Am I able to use decimal fractions with ease and intelligence?
(11) Am I able to use decimal fractions as an aid in indicating precision of measurement?
(12) Do I understand the basic vocabulary, principles, and skills of percentage?
(13) Am I able to compute with denominate numbers?
(1.4) Do I have a satisfactory understanding of the more important tables of weights and measures?
(15) Do I have an appreciation of the relative merits, advantages, and disadvantages of the English and metric systems of weights and measures?
(16) Do I understand the fundamental principles of direct measurement?
(17) Do I understand the fundamental formulas for measurement of distance, area, volume, and capacity from the points of view of derivation and use?
(18) Do I know the fundamentals of scale drawing?
(19) Do I understand the fundamental principles of indirect measurement?
(20) Do I know the fundamentals of ratio and proportion?
(21) Do I know the significant differences between similarity, congruency, and equality of geometric figures?
(22) Do I understand the approximate nature of measurement and the types of errors that are involved?
(23) Do I have an understanding of precision and accuracy of measurement?
(24) Do I understand the use of rounded numbers and how to compute with them?
(25) Do I know how to organize data into a frequency distribution?
(26) Do I have a knowledge of the meaning of the more inportant statistical terms and how to use them?
(27) Do I know the distinguishing characteristics of the broken line, bar, and circle graphs?
(28) Do I know the fundamental principles that need to be observed and the precautions that should be taken in the construction of these graphs?
(29) Do I know how to interpret each type of graph intelligently?
(30) Am I familiar with the advantages, the disadvantages, and the dangers of misinterpretation of the picture graph?
(31) Do I have sufficient mathematical background to enable me to recognize readily and develop intelligently the mathematical situations that arise extemporaneously in my classroom?
(32) Do I have the informational back r round necessary to be able to provide opportunities for individual pupils to explore special mathematical interests, and to guide them intelligently in this exploration?
(33) Do I have the ability to recognize relationships that exist in problem situations?
(34) Do I have a clear understanding of the relationships that exist between the fundamental processes?

PROFESSIONAI PREPARATION

Methods of teaching. Teaching arithmetic is a task which will challenge the best efforts of teachers. The efficient teacher must have a thorough knowledge of the subject matter of arithmetic, and skill in the techniques of teaching and in guiding the learning of pupils.
(1) Am I able to recognize and to capitalize upon the many social and economic arithmetical experiences that children have in the home, school, and community?
(2) Am I able to inspire interested students to pursue the study of arithmetic and mathematics to the greatest extent of their ability?
(3) Do I have the inclination and ability to attempt to encourage students to have an interest in the study of arithmetic and mathematics?
(4) Do I have a clear understunding of the reciprocal relationships between arithmetical situations and the fundamental processes of arithmetic?
(5) Do I have a clear-cut idea concerning when, why, and how to rationalize significant arithmetical processes?
(6) Do I have a clear understanding of the functions of practice in teaching arithmetic?
(7) Do I have a sound philosophy concerning the use of "crutches" in learning arithmetic?
(8) Do I know how to encourage original applications of arithmetical processes?
(9) Do I know how to use pupil reports to the best advantage in the teaching of arithmetic?
(10) Do I know how the uses of number and arithmetic may be dramatized?
(ll) Do I know the sources of illustrative materials which can be used effectively for motivation purposes?
(12) Do I know how to use a course of study intelligently?
(13) Do I know how to organize large units of instruction?
(14) Do I know how to anticipate and plan the details of learning inherent in large units of instruction?
(15) Do I have sufficient understanding of arithmetic and its implications to be able to lead my pupils to make significant integrations in their thinking?
(16) Do I know how and when to use concrete illustrations as an aid to effective learning?
(17) Do I have an appreciation of the value of objectives to efficient instruction?
(18) Do I know how to make pupils conscious of definite objectives of instruction?
(19) Do I know how to help pupils to distinguish between essential and nonessential data in a problem situation?
(20) Do I know how to teach pubils to estimate and check answers to problems?
(21) Do I have an appreciation of the value of the story element in the presentation of problem material?

Individual differences. Any instruction that is to be effective must reach the individual pupil. Individuals differ in their interests, abilities, and aptitudes. These differences demand an adaptation of instruction designed to discover and provide for individual pupil difficulties. During recent years this adaptation of instruction to individual differences of pupils has been recognized as among the most important of all educational problems.
(1) Do I recognize that pupils differ in rate of learning, in kind and type of learning, in degree of learning, and in interests and aptitudes?
(2) Do I know how to encourage individual initiative on the part of pupils in the study of arithmetic?
(3) Do I know how to develop a feeling of individual responsibility through the use of arithmetic materials?
(4) Do I know how to use the more important recommendations for taking care of individual differences in arithmetic?
(5) Do I know how to locate the specific needs of individual pupils?
(6) Do I know how to lead pupils to develop techniques of self-diagnosis and remedial procedures?
(7) Do I know how to use the best recommended practices for diagnostic and remedial teaching?
(8) Do I know how to eliminate faulty habits and correct inefficient methods of study?
(9) Do I know the recognized areas of special arithmetical difficulty at the grade level on which I teach?

Arithmetic as a school subject. Through the years arithmetic has occupied an important place in the curriculum. In the present era of curriculum change, arithmetic, as an integral part of the school program, has been able to stand successfully against severe critical challenge only through reorganization and new adapta-
tions of its content and revision of many instructional procedures. Such modifications, however, have served to give increased emphasis to the significance of arithmetic as a school subject to the extent that it has lost but little of its previous prestige and has promise of the gain of much future prominence.
(1) Do I have a personal interest in arithmetic in a wellintegrated educational program?
(2) Do I have an intelligent understanding and appreciation of the nature and importance of quantitative thinking?
(3) Do I have sufficient informational background to enable me to recognize algebra as a generalization of arithmetic?
(4) Do I have sufficient informational background to enable me to recognize the relationships existing between arithmetic and geometry?
(5) Do I understand how to assist pupils to make the generalizations from arithmetical concepts and techniqu:es to those of algebra and geometry?
(6) Do I have an appreciation of number as an aid to precise and accurate thinking?
(7) Do I have an appreciation of the informational function of arithmetic?
(s) Do I have an appreciation of the distinction between functional arithmetic and mere computational arithmetic?

Measuring the results of instruction. Efficient evaluation of student progress no longer consists merely in measuring achievement. There must be a continual program for the appraisal of the progress of each individual pupil toward pre-established objectives of instruction. Such a program demands that the efficient teacher be well informed in the techniques, advantages. and disadvantages of various forms of evaluation; the fundamentals of test construction; and the methods of recording and interpreting the results obtained from any technique that may be used to secure a check on pupil progress.
(1) Do I know the fundamental principles of evaluation?
(2) Do I know how to interpret and use intelligently tests of scholastic aptitude and achievement:
(3) Do I have a familiarity with the advantages and disadvantages of the different types of testing?
(4) Am I able to evaluate the strengths and weaknesses of standardized tests in arithmetic?
(5) Do I know the distinguishing characteristics of diagnostic, prognostic, inventory, readiness, and achievement testing?
(6) Do I have an appreciation of the importance of diag. nostic, prognostic, inventory, readiness, and achievement testing in an effective instructional program?
(7) Do I know how to use measures of central tendency and of dispersion in analyzing pupil and class progress?
(8) Do I know how to keep accurate records of pupil progress?
(9) Do I know how to use charts and graphs to the best advantage in keeping class and pupil records?
(10) Do I know effective methods of informal evaluation?

Literature on the teaching of arithmetic. In recent years much has been written concerning the improvement of instruction in arithmetic. The teacher of arithmetic should keep conversant with thai material which is relevant to his teaching situation. He should know where to find this material and how to evaluate it. He should keep in mind that not all that is published is worthy of serious consideration, but that it is his responsibility to seek that which is of greatest value.
(1) Do I know how and where to find information concerning instructiontal aids in the teaching of arithmetic?
(2) Am I familiar with recent studies and recommendations with respuct to the curriculum content of arithmetic?
(3) Am 1 familiar with recent studies and recommendations with respect to the grade placement of arithmetic topics?
(4) Am I familiar with the more important current theories of arithmetical instruction?
(5) Do I know where to find digests of experimentation in the teaching of arithmetic?
(6) Ain I familiar with the most recent texts, workbooks, tests, and courses of study in arithmetic?
(7) Am I familiar with the most recent books on the teaching of arithmetic?
(8) Do I know the implications of the most significant experiments in the teaching of arithmetic?
(9) Do I know where to find reports on important studies dealing with the teaching of arithmetic?
(10) Do I have access to any of the more important journals that carry discussions of instructional problems in arithmetic?
(11) Am I familiar with the more important movements in elementary education and their significant implications to the better teaching of arithmetic?

Modern psychology of arithmetic. No single formula can be given for the guarantee of efficient instruction in arithmetic. Modern psychology emphasizes the importance of understanding and motivation in learning. Instruction must be meaningful and subject matter must be made interesting. This implies that careful attention must be given to individual interests, abilities, and aptitudes. Furthermore, skills and concepts once developed must be maintained. For widest possible use, the material of instruction must be framed, wherever possible, in the context of the experience of the pupils. There must be careful planning for developmental teaching, maintenance of learning, and expansion of usage.
(1) Do I have a clear understanding of the relationships between concepts, skills, and facts?
(2) Do I know how to judge proçress in learning arithmetic?
(3) Do I appreciate the importance of proper grade placement of instructional material?
(4) Do I know how to combine intelligently those learning activities described in the text and those growing out of life experiences?
(5) Do I know how to analyze a class situation to detect the most effective techniques for providing learning experiences?
(6) Do I know how to relate new material to familiar experiences of children?
(7) Do I know how to assist children in relating instructional material to its most pertinent applications?
(8) Do I have a justifiable point of view on the relative value of speed versus accuracy in arithmetical computation?
(9) Do I have the ability to distinguish between the weak points and strong points of recommendations for the improvement of arithmetical instruction?
(10) Do I know the importance of significance, meaning, and insight to intelligent instruction in arithmetic?
(11) Do I know the meaning and implications of arithmetic readiness?
(12) Do I know the most important implications of the theory of transfer of training to the arithmetic curriculum?
(13) Do I kncis the more important implications of the modern theory of trans.' . of training to instruction in arithmetic?
(14) Do I know the significance of practice as a factor in leaming?
(15) Do I appreciate the importance of interest as a factor in learning?
(16) Do I understand the function of review as an aid to effective learning?
(17) Do I know the distinguishing features and the important values of oral and written exercises as an aid to effective learning?

It is believed that answers to the above questions will aid the conscientious teacher of arithmetic in acquiring a broad perspective of arithmetic in its relation to the educational program of the individual and the instructional techniques of the classroom. Such a perspective should give that teacher a more significant appreciation of the importance of arithmetic as a school subject and aid him as he earnestly strives to meet the challenges of the varied responsibilities of his profession.

Chapter XIII

THE INTERPRETATION OF RESEARCH

BY WILLIAM A. BROWNELL
and
FOSTER F. GROSSNICKLE

Not all research relating to arithmetic is trustworthy. Sometimes factors which influence learning have not been identified and as a consequence have not been controlled. Sometimes the experimental problem has been viewed too narrowly; vital relationships have not been recognized; and the significance of the findings is correspondingly restricted. Sometimes important phases of growth and learning have not been included in the evi:'..ration, and the superiority shown for this or that teaching prucedure, for example, is much less real than it appears to be. Son.etimes technical crrors in the prosecution of the study (too few subjects, too short a period of instruction, unsuited learning materials, and the like), and sometimes inadequa ee or invalid forms of statistical analysis render questionable the conclusions which are drawn. And sometimes bias on the part of the investigator unintentionally determines crucial aspects of the research technique and colors the interpretation of the results which are obtained.

These limitations of rescalcil and other limitations which might be mentioned are not new, nor are they confined to rescarch in the field of arithmetic. They are referred to here because they need to be kept continually in mind as one reads the large and growing research literature. With regard to all research two extreme and equally objectionable attitudes are sometimes encountered. On the one hand is the attitude of those individuals who tend to magnify the limitations which attach to much arithmetic research and accordingly to reject the whole of it as inconclusive or even misleadng. For such persons this chapter can
obviously serve no useful end; what they need is not warnings but constactive evidence of the values of research, and there is no space for the presentation of this evidence.

This chapter is, rather, intended to combat the second attitude alluded to just above, namely, the attitude of extreme readiness to accept anything which is published as a report of research. The number of such uncritical readers of research is by no meams small, and the number of errors which, in their eagerness to "apply" research findings, they can introduce into schoolroom practice is certainly not negligible. The writers of this chapter would not lessen anyone's conviction that research must provide us the final answers to the many questions relating to the teaching of arithmetic. (They would not do so, for they themselves share this conviction.) (On the other hand, such faith in the ultimate contribution of reasearch must not blind us to the imperfections of research which is not competently done and not wisely interpreted.

Were it practicable and desirable to do so, this chapter would contain a brief list of criteria for evaluating research. Attempts have been made to fommatate such criteria, and various lists are arailable in print. To be manageable, such a list must be short, consisting in perhaps five or six criteria but certainly no more than ten. A list that is too long and detailed defeats its own purpos" The application of each criterion in a long list constitutes no mean research investigation in itself, and may well carry the critic far atield from the study at hand. The situation in this calse does not differ materially from that of the high school or college student who tries to study by "applying" some list of thirty or forty principles on "how to study," and becomes so busy in the "applying" that he never gets around to studying. On the other hand, if the number of criteria is held to a few, the criteria become either trite and obvious or involved and obscure. In either case the problem of identifying each particular criterion with all the relevant phases of the research is no easy one.
Rather than undertaking to list criteria, whether few or many, the writers have chosen to illustrate in two ways the need for care in reading resfach. The section which immediately follows shows how the peculiar point of view one entertains with respect
to arithmetic affects both the prosecution and the interpretation of research. The last section of the chapter is, as it were, a "case study" of the research on division. It is designed to show how research findings and recommendations are conditioned by the technical aspects of experimentation.

POINT OF VIEW and ITS RELATION TO RESEARCH

It is possible to hold one of several views with regard to arithmetic. One may argue that the purpose of arithmetic is to develop efficiency in computation or to develop expertness in quantitative thinking. One may view arithmetic as a drill subject or as a logical system which must be understood. One may regard arithmetic as a form of pure mathematics or as a practical means of improving our adjustument to a quantitative culture. Or, one may reject these dichotomies and, refusing to think in terms of "either" and "or," one may arrive at some eclectic position, such as that sponsored by this Yearbook Committee.

Effect produced by conception of arithmetic. Now the conception which one entertains with respect to the function of elementary arithmetic influences research at many points. In the first place, it predisposcs one to attack some problems and to disregard uthers. In the second place, it largely predetermines the technical procedure which one organizes and more especially the kinds of measures employed. In the third place, it may prejudice the investigator in the interpretation he places upon his data and the reader in the significance which he attaches to the research report he is analyzing. These three statements will be clarified by the examples offered below.

It is safe to say that the dominant conception up to some fifteen or twenty years ago was that of arithmetic as a drill subject, and this conception is reflected in the problems then undertaken for rescarch study. Fully three-fourths of research studies prior to 1920 or 1925 dealt with computation. Such studies as dealt with "problem solving" virtually reduced this process to an extension or an "application" of computational skill. Little if any research was concerned with the leaming process as such or with securing evidence that children did or did not see sense and value
in what they acquired. And the research measures collected in these studies were restricted to those of efficiency, which is to say, measures of rate and accuracy of work.

Consider, for example, the research on drill as a method of teaching (or on repetition as a method of learning). Three-minute periods were compared with longer and shorter periods, and the crucial data were based not on measures of understanding by the child, but on speed and correctness of answer. Or, consider the research on methods of teaching subtraction, whether by equal additions or by decomposition. Here again the data were based upon the comparative merits of the two methods, in increasing the number of correct answers and the quickness with which they were obtained.' Such questions as the following were seldom asked, and if they were asked no answers could be determined from the collected data: Which method appears to be more sensible to children, that is, which method is more readily understood? Which method develops more completely the meaning of subtraction as a process? Which method has the greater possibilities for fruitful transler to later learning, as in complicated subtraction and problem solving of a functional sort? ${ }^{2}$
The criticism here is not that measures of rate and accuracy are valucless nor yet that drill is umnecessary. The point to be observed is that a particular conception of arithmetic dictated the selection of the research problem and the kinds of measure obtained. And, in the opinion of this Committee, this conception of arithmetic is inadequate: It omits any consideration either of greater comprehension of what is learned or of enhanced appreciation of its worth. Accordingly, this early work on drill and on methods of subtraction is variously to be assessed. It is important according to the weight attached to computational efficiency as an arithmetical outcome.

The preceding pages have presented one aspect of the relation-

[^66]ship which obtains between point of view with respect to arithmetic on the one hand and arithmetic research on the other, namely, that one's conception of arithmetic as a school subject tends to predetermine the problems one will investigate and the measures one will obtain. A second aspect of this relationship is found in the area of learning.

Effect produced by conception of learning. The arithmetic research of twenty and even fifteen years ago reveals very little attention to learning, apart, as has been mentioned, from measures of rate and accuracy of work. The principal task of research was to "identiify the bon is which are to be formed," and the task of teaching, to see that these bonds were established. Following this lead, research gave us elaborate analyses of facts to be acquired, unit skills and steps to be mastered, types of problems to be solved, and specific cues to be learned. Rese:rch did not tell us how children gain control over the multitudinous elements resulting from these analyses, for research was not concerned with these matters. Learning was thought of as an exccedingly simple process of making connections, or bonds, or associations. If one learned, one showed thereby that one had formed the needed connections, and vice versa. The tendency was to think of learning as an all-or-none affair; it was as if children learned at once what they were supposed to learn, apart from drill, or they did not learn at all.

The research engaged in under this conception of learning did not prove very helpful to teachers. Even the many error studies fell short: they pointed out the places where children encountered difficulty and something of the form of the difficulty, but they did not show teachers (or pupils) why the errors were made. Nor indeed could they do so, so long as learning was conceived in such simple, uncomplicated terms, so long as it was measured as it was measured, and so long as important individual variations in learning were hidden in the statistical averages of group trends.

However, the reports of this comparatively old research survive in the literature and they must be interpreted in the light of some conception of learning. If one accepts the conception of learning which prevailed a quarter of a century ago, his evaluation of the
early "learning" studies will be of one sort; if, however, he accepts the conception which now seems to be more adequate and fruitful, his evaluation will be something quite different. ${ }^{9}$

In this connection certain guides to thinking may be suggestive, as one reads reports of learning studies in arithmetic, one may well keep in mind such questions as the following, questions which, incidentally, relate not to the technicalities but to the "common sense" of research: (1) What is the writer's point of view with respect to arithmetic? Does it agree with modern conceptions of the purposes of the subject? (2) What program of instruction and of learning activities was adopted? Was it conducive to or subversive of sound, intelligent, and economical learning? (3) Were the measures which were used for evaluation relevant and adequate? (4) Do the conclusions follow from the data, and are they in line with the best in thought and experience? The answers to these questions will generally be found to be most illuminating.

Point of view and interpretation of research. There is space for but two more examples of the way in which point of view influences the interpretation of research. A few years ago a new monograph reporting a research study in arithmetic was reviewed by two different persons. The one person commented favorably but not enthusiastically upon the study itself, which showed quantitatively the superiority of a certain instructional device over instruction without the device. When, however, he came to the last chapter, in which the investigator discussed the impli. cations of his study for arithmetic teaching and learning in gen-
${ }^{3}$ The very cilltions and warnings which are the subjects of this chapter need themselves to be titien with some reservations. For example, the criticisms of the research of a quarter-century ago, particularly of the drill and error studies, should not be imterpreted as implying that this research was valueless and served no end. Such is not the case, even though these investigations contribute little to our thinking abolit arithmetic in the 1940 's. Certainly they made important contributions historically both to the evolution of our view of arithmetic today and to the procedures which we employ with new confidence. The following quotation from a letter from Professor Brueckner brings out this point very well indeed: "The cumulative and developmental nature of research should be recognized. The error studics revealed a condition that shocked many of us. They led to studies of method, reliability, diagnosis, methods of learning, etc. The fact that these early studies did lead to this important series of developments which are even now being extended needs to loe emphasized. Studies now being made of learning are developing new techniss in this field which vield prohlems that will instigate new studies. Research is a continuing process."
eral, this reviewer became more enthusiastic. The other reviewer bestowed his approval in quite a different manner. To him the contribution was the evidence of the value of the particular device, and the last chapter "should never have been written." The same dissimilarity of evaluation characterized the reception accorded an earlier study, in which the drill provisions in several arithmetic textbook series were compared. The sponsor of this study referred to it as a "brilliant piece of scholarly research"; another student of arithmetic described the study as a "laborious effort to no end, a monument to futility."

In both instances the differing evaluations sprang from unlike conceptions of the function of arithmetic in the elementary school, and the two evaluations are equally valid, once one grants validity to each basic conception. The appraised worth of the two studies, as of research in general, is not exclusively determined by purely intrinsic features of merit or of weakness, bat by the point of view with which the reader approaches his evaluation.

Enough has been said, it is hoped, to justify the statement that conceptions of arithmetic and of the learning process have important bearings upon the research thit is done and upon the interpretation that is given research findings. The implications of this statement are not confined to the producer of research, though it is chiefly these implications which may seem to have been stressed; its implications are no less vital and far-reaching for the consumer of research. As he reads research reports, the latter needs always to note the conceptions which have controlled the investigator; and he needs also to have a clear formulation of his own conceptions. He must know what he himself thinks about the function of arithmetic in the elementary school and about the way children learn most soundly, and he must be on the alert to see wherein the research in question confirms and implements his conception and wherein it requires modifications in his conception. A clear-cut view of the purposes of arithmetic and yet a view which is amenable to change as change is called for-such a view enables one to detect both the strengths and weaknesses of research and to distinguish between what is sound and what is erroneous and misleading.

THE RESEARCH ON DIVISION

It was stated that in this chapter two illustrations of the need for care in interpreting research were to be given. The first, already discussed, has to do with the effect of point of view. The second illustration relates to the research on a particular topic, namely, division. This research is selected as exemplifying particularly well the contingent character of research findings, their dependence upon the special technical aspects of investigation, and their tentativeness because of untested hypotheses and uncontrolled factors. Not all the research within even this narrow field can be canvassed. That, for example, on the errors made by children, on the relative merits of different methods of teaching, and on the comparative values of different procedures for estimating quotient figures must be omitted because of space limitations. Attention here is confined to two questions: first, the form to be used at the outset in teaching division and, second, the grade placement of "long" division.

Research on the form used in division. "Form" refers to the "long" (that is, division completely worked out) or the "short" algorism in division when the divisor is a one-figure number. John ${ }^{4}$ showed that the lony form is superior to the short form for accuracy but not for speed. The published report does not state whether the numerical difference found between the two experimental groups in each of these traits is statistically reliable. Regardless of this omission, the esults are open to question because only fourteen pairs of subjects took part in the experiment. John further showed that after division with a twofigure divisor has been taught, then division with a one-figure divisor is learned in the long form with still greater accuracy and speed than in the short form. If the groups used in the study had been large enough, this last finding would have been extremely significant because, unlike other studies, this one in rolved a comparatively long range of time in the learning of division. The relation between division with one- and two-figure

[^67]divisors deserves serious consideration, something which it has not yet received elsewhere.

Olander and Sharps reported an investigation which included an adequate sampling of subjects (1,265 pupils) to warrant reliable measures. They concluded that, on the whole, the long form is superior to the short form of division, but that the latter is preferable (a) for easy examples and (b) for bright pupils. These last conclusions may be challenged on the grounds, first, that the length of the experiment (apparently it was of short duration) is not reported and, second, that no criteria for "easy" as contrasted with "difficult" examples are offered. These investigators did, however, advance our understanding by calling attention to possibly important factors (quality of pupil, ease or difficulty of example) which theretofore had been neglected.

Grossnickle ${ }^{6}$ showed that the results obtained by the long form of division were signiticantly superior to those obtained by the short form for difficult examples. A total of $\mathbf{2}, 365$ pupils in eight different grades were used in this study. For easy examples (defined as those in which there is no borrowing in subtraction and the remainder is not in excess of 3), less time is needed to find the answer by the short form, but greater accuracy always results with the long form. (The difference in time was not statistically reliable; that in accuracy was.) Since the elements of time available for work, of accuracy, and of degree of difficulty of the example were all considered, and since an adequate number of subjects were used, the fundings of this investigation should probably be accepted as valid and reliable.

John and Olander and Sharp (in the references cited) recommended teaching the short form of division later and as a shortcut procedure, but Grossnickle recommended that only the long form should be taught. There is io experimental evidence to justify either proposal. In each case the investigator injected his own opinion as to the value of the shorter procedure. The true worth of a short cut in division with a one-figure divisor represents an unexplored question in the teaching of arithmetic.

[^68]The relative merits of the two forms of division will be known only when investigation reveals a real difference between groups of pupils thoroughly taught division by the two forms. None of the studies thus far reported, with the exception of that by John, is a learning study, that is to say, in all but this one study the experimental subjects had been taught to divide by a onefigure number before the investigation as such was undertaken. In the case of the one learning reseath (John) the period of study for both the long-form and the short-form groups lasted but a week. Unless both groups had earlier received some instruction in division, it is hardly possible that they could have carried their learning to anything like the reguired degree of mastery. There is great need for a comprehensive and long-range study, in which a serious attempt will be nade to determine, not only which form yields greater efficiency, but also which form results in greater insight. In the end, it is not at all mulikely one form may be found superior for some pupils, and the other form superior for other pupils.

Research on grade placement. The second area of division research to be considered here deals with the grade placement of the topic. Not much scientific work has been done in this connection. One of the first and most widely known investigations was conducted by the Committee of Seven under the chairmanship of Washburne. This Committee determined placement of topics in terms (a) of foundations tests. which supposedly comtained samples of all prerequisite skills and concepts, and (b) in terms of Mental Age. A Mental Age of twelve years seven months or more was set as the minimum maturity level for the learning of division with a two-figure divisor, at least of the more difficult kinds. In other words, long division according to the Committec of Seven belongs in the latter part of grade five or the first part of grade six.

[^69]The findings of the Committee of Seven are open to question and must be modified in the light of experimental evidence. Brownell ${ }^{8}$ showed points of weakness in the research of this Committee, and both Brownell ${ }^{10}$ and Dickey ${ }^{10}$ have emphasized the point that readiness for the topics of arithmetic is not solely or perhaps even largely dependent upon Mental Age as measured by intelligence tests. This view has been confirmed by Grossnickle's study. ${ }^{11}$ In the first named investigation, pupils were subjected to a program of instruction which was characterized by unusually careful diagnosis and corrective practice, and under these conditions pupils with a Mental Age about two years less than the standard of the Committee of Seven learned to divide by a two-digit divisor and attained a higher degree of accuracy than that employed by the Committee.

Division is a complex process because it is a synthesis of many factors. Hence, the placement of division as a whole in this or that grade or at this or that age or at this or that maturity level is impossible. The example, $9 / 2112$, because of the difficulty in estimation and in subtraction, is more difficult than the example, $21 / \overline{672}$, in spite of the fact that in the former the divisor is a single digit instead of a two-place number. The example, $16 / \overline{912}$, is very much more difficult than the example, 203/8729, because corrections of estimation are needed in the first example but not in the second example. These examples illustrate why it is impossible to assign division to any point in the grades or to any maturity level merely in terms of the number of figures in the divisor. If it is stated that a Mental Age of about thirteen years is needed to learn to divide with a two-tugure divisor, this statement must be qualified by specifications as to the kind of example referred to.

[^70]Consider in this connection the range in difficulty between the following examples with two-digit divisors: $21 / 672$ and $16 / 912$.

Brueckner and Melbye ${ }^{14}$ have shown that the degree of accomplishment in division is dependent upon the difficulty of finding the true quotient figure, a point made more or less incidentally in the preceding paragraph. If the estimated quotient figure is the true one, the accomplishment of a class in division is much greater than when the cstimated figure has to be corrected, a finding which led them to conclude that the grade placement of division should be partially governed by the difficulty of the example in this respect. And difficulty of examples is in turn dependent not only, as they have shown, upon the number of corrections needed to find the true quotient figure, but also upon the number of figures in the divisor, the number in the quotient, and the size of the guide figure of divisors involving more than one digit.

The finality of these results may be questioned when compared with those of another study. Bruecknci and Melbye report that "the data for the zero-in-quotient type show that the index of 25 per cent error, or 75 per cent accuracy. on the whole is not reached before the mental age of 168 months, the same point as for the one-figure quotient examples in which the apparent quotient must be corrected to find the true quotient." On the other hand, Grossnickle ${ }^{18}$ analyard crrors made with one-figure divisors and with two figure divisors. ${ }^{14}$ In the first case, the pupils had already learned the process, and the test given was intended to measure their accomplishments, but in the latter case the pupils were just learning the process. When the divisor was a one-figure number, about 13 per cent of all crrors in each grade from grades 5-15, inclusive, was due to the use of zero. However, when the divisor was a two-figure number. the per cent of errors resulting from the use of zero was 0.3. The zero-type of example was among the easiest which this group encountered

[^71]in division, and the reason probably lay in the way in which the function of zero was taught and in the way in which the examples containing zero were graded for instructional purposes. The function concept of zero as a place holder in the quotient had been stressed with these pupils; as a consequence they did not merely juggle zeros, but rather understood why zero must be used to give place value to quotient figures. Therefore, to the factors already mentioned as affecting grade placement must be added the method of teaching employed and the degree of understanding of the process attained.

All the factors have not yet been named which must be taken into account experimentally in deciding the grade in which division is to be taught. Research, chiefly that of Grossnickle, has shown that children can learn division in the fourth grade, but this does not mean that the topic should be taught in that grade. Another factor which still further complicates the placement of the topic is its social significance for the pupil. If the social significance of division is slight for pupils in the fourth grade but greater for pupils in the sixth grade, other things being equal, the topic may well be reserved for the later grade. The social significance of division as a phase of grade placement is as yet undetermined ths jugh research.

A valid answer to the question of the grade placement of division must therefore be based upon consideration of many factors, such as the inherent structure of examples in the process. the method employed for teaching it incaningfully, and the social significance of the topic. There is no evidence to indicate that many of these factors were experimentally considered in the Committee of Seven's placement of division at Mental Age twelve years seven months. Nor have all these factors been duly weighed by other investigators, with the result that as yet we do not confidently know on the basis of research just when the topic (or some part of it) should first be introduced.
IN concirision

This chapter has been devoted to catutions to be observed in the reading of research. It has been pointed out that investigators
are influenced in the selection of their problems, in the organization of their experimental procedures, and in the interpretation of their dita, by the views they entertain with respect to the nature of learning and with respect to the purposes of arithmetic in the elementary curriculum. And it has been stated that these conceptions are no less inlluential in the case of the consumer of research; they determine largely the evaluation he assigns to the research he analyzes. Furthermore, in this chapter part of the research on division has been analyzed to reveal the many facets of the problems which relate to the form in which division is first to be introduced and to the determination of the grade in which the topic is first to be tanght.

What has been said in these connections is largely negative, and intentionally so. The writers of the chapter have felt it necessary to stress the dangers inherent in the superficial interpretation of research rather than to stress the values of research. It was assumed that these values would be conceded. But such concessions may go too far, and the potential values of research may be allowed to conceat the weaknesses present in much arithmetic research. The cause of research is not advanced, but rather hindered, by uncritical acceptance of questionable data and doubth.l conclusions. Low standards of evaluation can only encourage the production of more mediocre studies. When readers of research recognize the complexity of the problems involved in the teaching of arithmetic and when they refuse to countenance unsound findings, the quality of research must inevitably be improved. Negative comments made now may in the end lead to higher standards of research and to markedly improved research investigations.

Chapter XIV

(ONE HUNDRED SELECTED RESEARCH STUDIES BY LORENA B. STRETCH
 BAYL.OR LNIVERSITX

TO make this yearbook more serviceable to the teachers, supervisors, and others for whom it has been prepared, a selected list of research studies in arithmetic has been compiled and is presented herewith. In selecting research studies, various criteria may be employed, among which are (1) validity of conclusions, (2) excellence of technique employed, and (3) effects of the findings on educational practice. There are few research studies which rank high in all three of these respects.

It should be understood that neither the writer nor the other members of the Committee can guarantee the soundness of the conclusions which have been reached in these researches. Some are doubtless more valid than others but, on the whole, the conclusions presented in the studies listed are probably more valid than are the conclusions reached in the average tesearch study in arithmetic. However, the reader will have to form his own conclusion as to the validity of each.

A major value of some researches lies in the fact that they illustrate the use of desirable techmiques. The researches in the following list employ various different techniques which may well be used by students who wish to make studies of their own.

The critical reader may contend that some of the studies listed were made so long ago that their present usefulness is doubtful. The writer has deliberately included in the list a few studies which have an important historical value even though they no fonger influence educational practice as much as they did in the years immediately following their publication. They are landmarks of educational progress, as it were, and are known to thorough students of the teaching of arithmetic.

1. Bond, Elias A. A Brofessional Treatment of the Subject Matter

 of Arithmetic, New York: Bureau of Publications, T'eachers College, Columbia C'niversity, 1934.2. Bowman, Herbert Lloyd. The Relation of Reporicd Preference to l'evformance in Problem Solving. University of Missouri Bulletin, Vol. 30. No. 36, Fducation Series, No. 29. Columbia, Mo.: University of Missouri, 1929.
3. Breed, Frederick S. and Kilston, Alice L. "The Direct and Indirect Methods of Teaching the Adetition Combinations." Elementay School Journal, $37: 983.295$, December, 1936.
4. Brownell, William A. "An Evaluation of an Arithmetic Crutch." Journal of Experimental E:ducation, 2 : 5.34, September, $19: 3$.
5. Brownell, William A. The Development of Children's N'umber ldeas in the Primary Grodes. Supplementary Educational Monographs, No. 35. Chicago: Department of Education, University of Chicago, 1928.
6. Brownell, William A. and Chazal, Charlotte B. "Tb Effects of Pramature Drill in Third-Grade Arithmetic." Journal of Educalional Research, 29:17-28, September, 1935.
7. Brownell, William A. and Stretch, L. B. The Effect of Unfamiliar Setlings on Problem-Solving. Durham, N. C.: Duke University P'ress, 1931.
8. Brownell, William A. and Watson, Brantles. "The Comparative Worth of Two Diagnostic I'chniques in Arithmetic." Journal of Eelucational Researh, 29: 601-676. Mas, 1936.
9. Brownell, William A. with the assistance of Kuehmer, Kenneth G. and Rein, Willian C. Leaming as Reorganization. Duke University Research Studics in Education, No. 3. Durham, N. C.: Duke University Press, 1939.
10. Brucckner, Leo J. "in Analysis of the Instructional Practices in Typical Classes in Schools of the U'nited States." The Teaching of Arithmelic. Tenth Yearbook of the National Council of Teachers of Mathematics, pp. 32-50. New York: Bureau of Publications, Teachers College. Columbia University, 1935.
11. Brueckner, Leo J. "Analysis of Difficulties in Decimals." Elementary School foumal, $29: 3241$. September, 1928.
12. Brueckner, Leo J. "Analysis of Errors in Fractions." Elementary School Journal, 28: 760.770, June, 1928.
13. Brueckner, Leo J. and Elwell, Mary. "Reliability of Diagnosis of Error in Multiplication of Fractions." Journal of Educational Research, 26 : 175-185, November, 1932.

If. Bunckner, L.eo J. and Melbye, Harvey O. "Relative Difficulty of Types of Examples in Division with Two-Figure Divisors." Journal of Educational Research, 33:401-414, February, 1940.
15. Buikingham, B. R. "The Additive versus the Take-away Method of Teaching the Subtraction Facts." Liducational Research Bulletin (Ohio State University), $0: 205$-2ti9, September, 1927.
16. Buckinghan, B. R. "Upward versus Downward Addition." Journal of Educational Research, 16:315-322, December, 1927.
17. Buckingham, B. K. and MacLatchy; Josephine. "The Number Abilities of Children When They Enter Grade One." Report of the Society's Committee on Ari'hmetic. Twenty ninth Yearbook of the National Society for the Study of Education, Part Il, pp. 473-524. Bloomington, Illinois: Public School Publishing Company, 1930.
18. Burge, Lofton V. "Types of Errons and Questionable Habits of Work in Multiplication," Elementary School Journal, 33 : 185-194, November, 1932.
19. Buswell, G. T. and John, Lenore, The Vocabulary of Arithmetic. Chicago: The University of Chicago, 1931.
20 Buswell, G. T. with the cooperation of John. Lenore. Diagnostic Studies in Arithmetic. Supplementary Educational Monographs, No. 30. Chicago: Department of Fducation, University of Chicago, 1926.
21. Clapp, Frank L. The Number Combinations: Their Relative Difficully and the Frequency of Their Appearance in Textbooks. Bureau of Educational Research, Bulletin, No. 2. Madison, Wisconsin: University of Wisconsin, 1924.
29. Clark, J. R. and Vincent, E. L. "A Study of the Effect of Checking upnn Accuracy in Addition." Mathematics Teacher, 19 : 65-71, February. 1926.
23. Connor, Willian L. and Hawkins, Gertrude C. "What Materials Are Most Useful to Children in Learning to Sc Ive Problems?" Educational Method, 16: 21-29, October, 1936.
21. Dickey, John W. "The Value of Estimating Answers to Arithmetic Problems and Examples." Elementary School Journal, $35:$: $24-31$, September, 1934.
2.5. Edwards, Arthur. "A Study of Etrors in Percentage." Report of the Society's Committee on Arithmetic. Twenty-ninth Yearbook of the National Society for the Study of Education. Part II, pp. 621-640. Bloomington. Illinois: Public School Publishing Company, 1930.
26. Engellart. Max D. "The Relative Contribution of Certain Factors to Individual Differences in Problem Solving Ability." Journal of Experimental Education, 1:19-27, September, 1933.
27. Foran, I'. G. "The Reading of Problems in Arithmetic" and "Methods of Teaching l'roblem Solving in Arithmetic." Catholir Liducational Reviero, 31 and 32: 601-612; 154-16.1; 269.28 .2. December, 1933, March and May, 1934.
28. Fowlkes, John Guy. "A Report of A Controlled Study of the Learning of isultiplication by Third-Grade Children." Journal of Educational Rescarch, 15: 181-189, March, 1927.
29. Grant, Albert. "An Analysis of the Number Knowledge of FirstGrade l'upils According to Levels of Intelligence." Journal of Experimental Education, 7:63-66, September, 1938.
30. Grossnickle, Foster E. "An Experiment with Two Methods of Estimation of the Quotient." Llementary Schoel Jou-aal, 37:668-677, May, 1937.
31. Grossinickle, Foster E. "Concepts in Social Arithmetic for the Eighth Grade Level." Journal of Educational Research, $30: 475-188$, March, 1937.
32. Gronsmickle, Foster E. "The Effectiveness of Checking Subracting by Addition." I:lementary School Journal, $38: 436-441$, Februay, 1938.
33. Grossnickle, Foster E. "Mechods of Estimating the Quotient in Iomg Division U'sed by Teacher-Training Students." Elcmentary School Journal, 35: 4.48-453, February, 1935.
34. Grossnickle, Foster E. "Transfer of Knowledge of Multiplication Facts to Their Use in Long Division." Journal of Edurational Research, 29:677-68ti, May, 1936.
35. Grosunckle, Foster E. and Snyder, John H. "Constancy of Errors (1) Banic Facts in the Fundanental () perations in . Drithmetic." Iomonal of Riducational Rescrach, 32: 336-344, January, 1939.
36. Gunderson, Agnes (i. "Mature and Amount of Arithnetic in Readens for Grades I and II." Elementary School Journal, $36: 527.540$. March. 19336.
37. Gundenson. Lgines (i. "Number Concepts Hedd by Seven Year Olds." The Malhematies Tacher, 33:18.21, January, 1910.
38. Haniton, Dwight. ". In lixperiment with an Individual Technique in Sisth Grade Arithmetic." Iourmal of Eiducational Restarch. 18: 339931. Nownmer, 1928.
39. Hanna, Paul R Arithmetic Problem Solving: A Study of the

Relative Effectiveness of Three Methods of Problem Solving. New York: Burcau of Publications, Teachers College, CoIumbia University, 1929.
40. Hama, Paul K. el al. "Opportunitics for the Use of Arithmetic in an Activity Program." The Teaching of Arithmetic. Tenth rearbook of the National Council of Teachers of Mathemalics, pp. 85-120. New York: Burcau of Publications, Ieachers College, Columbia University, 1935.
41. Harap, Henry and Barrett, Ursula. "Experimenting with Real Situations in Third Grade Arithmetic." Educational Method, 16:188-192, January, 1937.
42. Harap, Henry and Mapes, Charlotte E. "The Learning of Decimals in an Arithmetic Activity Program." Journal of Educational Research, 29 : 6s6-693, May, 1936.
43. Holloway, Harry Vance. An Experimental Study to Determine the Relative Difficully of the Elementary Number Combinations in dddition and Multiplication. Philadelphia: University of Pennsylvania, 1914.
4. Howell, Heny Budd. A lioundation Study in the Pedagogy of drithmetic. New York: The Macmillan Company, 1914.
4亏. Hydlc, L. L. and Clapp, Frank L.. Elements of Difficulty in the Interpretation of Concrele Problems in Arithmetic. Bureau of Educational Research Bulletin, No. 9. Madison, Wisconsin: University of Wisconsin, 1927.
4i. John, Lenore. "Difficulties in Solving Problems in Arithmetic:" Elementary School Journal, 31 : 202-21:5, November, 1930.
47. John, Lenore. "The Effect of Using the Long Division Form in Teaching Division by One-Digit Numbers." Elementary School Journal, 30:672-692, May, 1930.
48. Johnson, J. T. "A Survey of the Use of Metric Measures." The Role of Rescarch in Educational Progress, pp. 230-234. Official Report of the American Educational Research Association, 1937. Washington: American Educational Research Association of National Education Association, 1937.
49. Johnson, J. 1. "Economy in Teaching Arithnetic." The Teaching of drithmetic. Tenth Vearhook of the National Council of Terchers of Mathematics, pp. 121-156. New York: Bureau of Publications, Teachers College, Columbia University, 1935.
00. Johnson. J. I'. The Rel ive Merits of the Three Mehods of Sublraction. New York: Burcau of Publications, Teachers College, Columbia University, 1938.
51. Judd, Charles Hubbard. Psychological Analysis of the Fundamentals of Avithmetic. Supplementary Educational Monographs, No. 32. Chicago: Department of Education, University of Chicago, 1927.
52. Judd, Romic Dustin and Morton, R. L. "Current Practices in Teacher Training Courses in Arithmetic." The Teaching of Arithmetic. Tenth Yearbook of the National Council of Teachers of Mathematics, pp. 157-172. New York: Bureau of Publications, Teachers College, Columbia University, 1935.
53. Knight, F. B. and Behrens, Minnie S. The Learning of the 100 Addition Combinations and the 100 Subtraction Combinations. New York: Longmans, Green and Co., 1928.
54. Knight, F. B. and Setzafandt, A. O. H. "「ransfer within a Narrow Mental Function." Elementary School Journal, 24 : 780787, June, 1924.
55. Kramer, Grace A. The Effect of Certai Factors in the Verbal Arithmetic Problem upon Children's Success in the Solution. Johns Hopkins University Studies in Education, No. 20. Baltimore: Johns Hopkins Press, 1933.
56. Lazar, May. Diagnostic and Remedial Work in Arithmetic Fundamenta's for Intermediate Grades. New York: Board of Education, 1928.
57. Lazerte, M. E. The Development of Problem Solving Ability in Arithmetic. Toronto: Clarke, Irwin and Company, Ltd., 1933.
58. MacGregor, Gregor. Achievement Tests in the Primary School. Publications of the Scottish Council for Research in Education, VI. London: University of London Press, Led., 1934.
59. McComell, T. Raymond. Discovery vs. Authoritative Identification in the Learning of Children. Studies in Psychology of Learning, II. Studies in Education, Vol. 9, No. 5, pp. 11-62. Itwa City: University of Iowa Press, 1934.
60. McLaughlin, Katherine. "Number Ability of Pre-school Children." Childhood Education, $11: 348-353$, May, 1935.
til. Metter, Harry L. "Trends in the Emphasis on Various Topics since 1860." Elementary School Journal, 34:767-775, June. 1934.
62. Morroe, Walter S. How Pupils Solve Problems in Arithmetic. Bureau of Educational Research Rulletin, Vol. 26, No. 23. Urbana, Illinois: University of Illinois, 1929.
63. Monroe, Walter S. and Engelhart. M. D. "The Effectiveness of

Systematic Instruction in Reading Verbal Problems in Arithmetic." Elementary School Journal, 33:377-381, January, 1933.
64. Morton, R. L. "An Analysis of Pupils' Errors in Fractions." Journal of Educational Research, $9: 117-125$, February, 1924.
65. Morton, R. L. "Pupils' Errors in Solving Arithmetic Problems." Educational Research Bulletin (Ohio State University), $4: 155-$ 158, April, 1925.
66. Morfitt, Margaret D. K. "Comparison of Individual Concrete Methods and Class Methods in the Teaching of Arithmetic." British Journal of Educational Psychology, 7: 196-203, June, 1937, Part II.
67. Neulen, Leon Nelson. Problem Solving in Arithmetic. Contributions to Education, No. 483. New York: Bureau of Publications, Teachers College, Columbia University, 1931.
68. Norem, G. M. and Knight, F. B. "The Learning of the One Hundred Multiplication Combinations." Report of the Society's Committee on Arithmetic. Twenty-ninth Yearbook of the National Society for the Study of Education, Part II, pp. 551-588. Bloomington, Illinois: Public School Publishing Company, 1930.
69. Olander, H «rbert T. "Transfer of Learning in Simple Addition and Subtraction." Elementary School Journal, 31: 358-369 and 427-437, January and February, 1931.
70. Olander, Herbert T. and Sharp, E. Preston. "Long Division versus Short Division." Journal of Educational Research, 26: 6-11, September, 1932.
71. Overman, James R. An Experimental Study of Certain Factors Affecting Transfer of Training in Arithnetic. Baltimore: Warwick and York, 1931.
72. Polkinghorne, Ada R. "Young Children and Fractions." Childhood Education. 11: 354-358, May, 1935.
73. Pressey, L. C. and Elam, M. K. "The Fundamental Vocabulary of Elementary School Arithmetic." Elementary School Journal, 33 : 46-50, September, 1932.
74. Reid, Florence E. "Incidental Number Situations in First Grade." Journal of Educational Research, $30: 36-43$, September, 1936.
75. Repp, Austin C. "Mixeci versus I. olated Drill Organization." Report of the Sociely's Committee on Arithmetic. Twentyninth Yearbook of the National Society for the Study of Edu-
cation, lart 11, pp. 535-5.49. Bloomington, Illinois: Public School Publishing Company, 1930.
76. Robinson, Arthur E. The Professional Education of Elementary Teachers in the Field of Arithmetic. Contributions to Education, No. 672. New York: Bureau of Publications, Teachers College, Columbia University, 1936.
77. Russell, Ned M. "Arithmetical Concepts of Children." Journal of Educational Research, 24:647-663, May, 1936.
78. Scarf, R. C. "Special Disability in Reading and Arithmetic." Twentieth Annual Conference on Educational Measurements. Bulletin of the School of Education, Indiana University, Vol. X, No. 1, pp. 70-8.4. Bloomington, Indiana: Bureau of Cooperative Research, Indiana University School of Education, 1933.
79. Sister Mary Immaculata. "Permanence of Improvenient and the Distribution of Learning in Addition and Subtraction." Educational Research Bulletin. Catholic University of America, Vol. 5, Nos. 9 and 10, 1939.
80. Stone, Cliff W. "Standardized Reasoning Tests in Arithmetic and How 'Io Use Them." Contributions to Education, No. 38. Bureau of l'ublications, Teachers College, Columbia University, 1916.
81. Stretch, Lorena B. "The Value and Limitations of Drill in Arithmetic." Childhood Education, 11:413-416, June, 1935.
8!. Studies in Arithmetic. Vol. 1. Fublications of the Scottish Council for Research in Education, XIII. London: University of London Press, Led., 1939.
83. Ierry, Paul W. How Numerals Are Read: An Experimental Study of the Reading of Isolated Numerals and Numerals in Arithmetic Problems. Supplementary Educational Monographs, No. 18. Chicago: Department of Education, University of Chicago, 1922.
84. Thiele, C. L. The Contribution of Generalization to the Learning of the Addition Facts. New York Bureay of Publications. Teachers College, Columbia University, 1938.
85. Thiele, C. L. "The Mathematical Viewpoint Applied to the 'reaching of Elementary School Arithmetic." The Teaching of Arithmetic. Tenth Yearbook of the National Council of Tcachers of Mathematics, pp. 212-232. New York: Bureau of Publications, Teachers College, Columbia University, 1935.
86. Thorndike, E. L. "The l'sychology of Drill in Arithmetic: The

Amount of Practice." Journal of Educational Psychology, 12: 183-194, April, 1921.
87. Wahlstrom, E. L. "Computational Arithmistic of Social Experiences of Third Grade Children." Journai of Educational Research, 31 :124-129, October, 1936.
88. Washburne, C. W. "When Should We Teach Arithmetic?" Elementary School Journal, 28:659-665, May, 1928.
89. Washburne, C. W. "The Work of the Committee of Seven on Grade Placement in Arithmetic." Child Development and the Curriculum. Thirty-eighth Yearbook of the National Society for the Study of Education, Part I, pp. 299-324. Bloomington, Illinois: Public School Publishing Company, 1939.
90. Wetherington, Julia. "Grade Placement of the Content of Arithmetic." Elementary School Journal, 37:41-46, September, 1936.
91. Wheat, H. G. The Relative Merits of Conventional and Imaginative Types of Problems in Arithmetic. Contributions to Education, No. 359. Bureau of Publications, 「eachers College, Columbia University, 1929.
92. White, Helen M. "Does Experience in the Situation Involved Affect the Solving of a Problm?" Education, 54:451-455, April, 1934.
93. Wilson, Guy M. "For 100% Subtraction What Method? A New Approach." Journal of Educational Research, 27:503-508, March, 1934.
94. Wilson, Guy M. What Arithmetic Shall We Teach? Boston: Houghton Mifflin Company, 1926.
95. Wilson, Guy M. and Dalrymple, Charles O. "Useful Fractions." Journal of Educational Research, 30 : 3.11-347, January, 1937.
96. Winch, W. H. "Equal Additions' versus 'Decomposition' in Teaching Subtraction: An Experimental Research." Journal of Experimental Pedagogy, 5:207-220 and 261-270, June 5 and December 6, 1920.
97. Woody, Clifford. "Achievement in Counting by Children in Primary Grades." Childhood Education, 7:339-345, March, 1931.
98. Woody, Clifford. "The Arithmetical Backgrounds of Young Children." Joumal of Fducational Research, $24: 188-201$, October, 1931.
99. W'oody, Clifford. "Knowledge of Arithmetic Possessed by Young

Children," Bulletin of the School of Education (Indiana Universíy), 6:50-85, July, 1930.
100. Woody, Clifford. Nature and Amount of Arithmetic in Types of Reading Material for Elementary Schools. Ann Arbor: Bureau of Educational Reference and Research, University of Michigan, 1932.

Chapter XV
 ONE HUNDRED SELECTED REFERENCES

BY E. A. BOND
WESIERN WASHINGTON COLIEGE OF EDUCATION

Each day as a part of the daily work of a class, the wise teacher sees to it that the goal is st tor the next day. To accord with this plan, the following list of publications has been compiled for the convenience of those teachers in service and in training who desire to extend still further their knowledge of arithmetic and to improve their ability to teach this subject.

The list is not complete. Many other writings could have been listed. Under each heading into which the bibliography has been subdivided the studies which have been included are for the most part the more recent publications which the writer believes will best supplement the content of this Yearbook.

This bibliography has been classificd into nine subdivisions as follows:
I. Purposes of Arithmetic Instruction
II. Methods of Teaching

III. Curriculum Studies

IV'. The History of Arithmetic and of Mathematics
I. The Psychology of Arithmetic

V'I. Diagnosis and Remedial Work
VII. Yearbooks in Arithmetic
VIII. Research Summaries
IX. The Preparation of Teachers
I. PURPOSES OF ARITHMETIC INSTRUCTION

1. Brownell, W. A. "Trends in Primary Arithmetic." Childhood Education, 13: 419421, May, 1937.
2. Brueckner, Leo J. "The Functions of Instruction in Arithmetic." Journal of the National Education Association, 20:239.241, October, 1931.
3. Buckingham, B. R. "Arithmetic as a Contribution to a Liberal Education." Elementary School Journal, $39: 577-583$, April, 1939.
4. Buckingham. B. R. "Significance, Meaning and Insight-These Three." Malhematics Teacher, $31: 2 \mathrm{t}-30$, January, 1938.
5. Buswell, G. I. "Deferred Arithmetic." Mathematics Teacher, 31 : 195-200, May, 1938.
6. Griffin, F. L. "Mathematics: A Tool Subject or a System of Thought?" Mathematics Teacher, $30: 223-228$, May, 1937.
7. Grimes, Ruby M. "Why Mathematics?" School Science and Mathematics, 36 : 426-437, April, 1936.
8. Jacob, Nina. "Personality Adjustment and Development Through Number." Childhood Education, 13 : 258-2011, February, 1937.
9. Mossman, E. L. "The Primary Purpose of Training in Mathe-matics-Not a Kit of Tools but a Way of Thinking." School Science and Mathematics, $38: 992-1002$, December, 1938.
10. Potter, M. A. "The Human Side of Mathematics." Mathematios Teacher, 29: 123-128, March, 1936.
11, Robinson, A. E. "Are We Teaching Arithmetic Effectively?" Mathematics Teacher, 28: 215-222, April, 1935.
11. Sister Mary Marguerite. "Aims in Arithmetic." Catholic Education Revieu, 35 : 284-293, May, 1937.
12. Smith, E. R. "Mathemation in the School of the Future." Teachers College Record, 30 : 795-807, May, 1929.

II. METHODS OF TEACHINC;

14. Buckingham, B. R. "Trends and Policies in Arithmetic Curricula.' Mathematics Teacher, 31: 330-335. November, 1938.
15. Buckingham, B. R. "When to Begin the Teaching of Arithmetic." Childhood Education, $11: 339-343$, May, ! 935.
16. Clapp, F. I.. "Developmental Versus the Informational Type of Material in Teaching Arithmetic." Reconstructing Education through Research. Washington: American Educational Research Association. 1936.
17. Deans. E. "Materials and Methods." Childhood Education, 11 : 359-366, May, 1935.
18. Dickey. J. W. "Why Invert the Divisor and Multiply?" School Science and Mathematics, 36: 299-302, March, 1936.
19. Foran, T. G. "Methods of Teaching Problem Solving in Arithmetic." Catholic Education Review, 32 : 269-282, May, 1934.
20. Harap, H. and Barrett, U. "Experimenting with Real Situations in Third Grade Arithmetic." Educational Method, 16: 188-192, January, 1937.
21. Hedrick, E. R. "Teaching for Transfer of Training in Mathematics." Mathematics Teacher, $30: 51-55$, February, 1937.
22. Hooper, L. and Stratton, B. "Developing Number Concepts with Young Children." E:lucational Method, 16:193-198, January, 1986.
23. Hughes, H. F. "Character Training from the Arithmetic Lesson." Educational Method, 14:93.96, November, 1934.
24. Jablonower, J. "Mathenatics in a Program of Progressive Education." Mathematics Teacher, 31:365-367, December, 1938.
25. James, G. "Number and the Four Fundamental Operations of Arithmetic." School S-ience and Mathematics, 37 : 1025-1028, December, 1937.
26. Ligda, P. "The Systematic Solution of Arithmetic Problems." School Science and Mathematics, 28:24.33. January, 1928; $28: 172$-180, February, 1928.
27. McMurray, F. M. "What is the Matter with Arithmetic?" Education, $54: 449-451$, Apmil, 1934.
28. Mitchell, C. "The Specific Type of Problem in Arithmetic Versus the General Type of Problem." Elementary School Journal, $29: 594-596$. April, 1929.
29. Morton, R. L. "Higher Derade Addition in Some Recent Drill Devices." Journal of E.ducational Research, 15:104-110, Feb. ruary, 1927.
30. Nygaard, P. H. "Accuracy in Addition." Mathematics Teacher, 27: 152-155, March. 1934.
31. Ramseyer, J. A. "The Mathematics Laboratory--A Device for Vitalizing Mathematics." Mathematics Teacher, $28: 2 _8-233$, April, 1935.
32. Russell, M. J. "Student Participation in Arithmetic: Studies." Progressive Fiducation, 15:58-64, January, 1938.
33. Thiele. C. L. "Incidental or an Organized Program of Number Teaching:" Mathematios Tearher, 31:63-67, February, 1938.
3.4. Voorhees, Margaretta. "New Methods in Arithmetic." Progressive Educarion, 5: 125-130, April, May, June, 1928.
34. Washburne. C. W. "Onc Reason Children Fail in Arithmetic," Progressive Education, 9:215-223, March, 1932.
35. Washburne, C. W. "Teachung of Linear Measure, Square Measure and Time." Elementary School Journal, 39:509-523, March, 1939.
36. Wilson, G. M. "The Challenge of One Hundred Per Cent Accuracy in the Fundamentals in Arithmetic." Educational Method, 15:92-96, November, 1935.
37. Woody, C. L. "A General Educator Looks at Arithmetic Readiness." Mathematics Teacher, $30: 314-391$, November, 1937.

III. CLIRRICULUM STUDIES

39. Benezet, L. P. "Story of an Experiment." National Education Association Journal, $24: 241-244$, November, 1935; $25: 7.8$, January, 1936.
40. Bond, E. A. "Recent Changes in Point-of-View Relating to the Teaching of Arithmetic." Mathematics Teather, 30 : 175-179, April, 1937.
41. Bond, E. A. "Significant Digits in Computation with Approximate Numbers." Mathematics Teacher, 24:208-212, April, 1931.
42. Boyce, G. A. "A New loeal for Mathematis." Progressive Education, 10 : 280-282, March, 1933.
43. Breslich, E. R. "Mathematios for Grades Seven, Eight, and Ninc." School Science and Mathematios, 35:526-536, May, 1935.
44. Brogan, W. "Science and Arithmetic in the Elementary School Curriculum." School Science and Mnthematics, 39: 149-155. February, 1939.
45. Brownell, W. A. "Critique of the Committee of Seven's Investigations on the Grade Placement of Arithmetic Topics." File. mentary School Joumal, 38:405-507, February, 1938.
46. Browncll, W. A. "Place of Crutches in Instruction." Elementary School Journal, $34: 607$-619, April, 193.4.
47. Brownell, W. A. "Readiness and the Irithmetic Curriculum." Elementary School Iournal, $38: 3+4-354$, January, 1938.
48. Brownell. W'. A. "Two Kinds of Learning in Arithmetic." Journal of Eiducatiomal Research. $31: 656-664$. May. 1938.
49. Brueckner. I. J. "Deferred Arithmetic." Mrthermatios Teacher, 31 : 287-299. Ot toler, 1938.
50. Buswell. C. T. "Relation of Social Arithmetic to Computational Arithmetic." The Teaching of Arithmetic. Tenth Yearbook of the National Conuncil of Teachers of Mathematics, pp. 74 -
8.t. New York: Bureau of Publications, Teachers College, Columbia University, 1935.
51. Lankford, l". G. "Organization of a Course in General Mathematics tor Seventh Grade." Mathematics Teacher, 29 : 57.60, lebruary, 1936.
5!. MacLatchy, J. H. "Reclaiming the Counter." Educational Research Bulletin, 16:85-90, April, 1937.
52. Spencer. P. L. "Arithmetic: A Basic Social Study." Californin Journal of Elementary Education, $5: 144-152$, February, 1937.
53. Thiele, C. L. "Mathematical Viewpoint Applied to the Teaching of Elementary School Arithmetic." The Teaching of Arithmetic. Tenth Yearbook of the National Council of Teachers of Mathematics, pp. 251-289. New York: Bureau of Publications, Tcachers College, Columbia University, 1935.
54. Upton, C. B. "Making Long Division Autumatic." The Teaching of Arithmetic. Tenth Yearbook of the National Council of Teachers of Mathematics, pp. 251-289. New York: Bureau of Publications, Tead rs College, Columbia University, 1935.
55. Washburne, C. W. 'unctional Aithmetic." Educational Method, 16:167-170, January, 1937.
56. Washburne, C. W. "Reply to Brownell's Critique of the Committee of Seven Experiments." Elementary School Journal, 39 : 417-430. February, 1939.
57. Washburne, C. W. "Values, Limitations and Applications of the Findings of the Committee of Seven." Journal of Educational Research, 29:694-707, May, 1936.
58. Woody, Clifford. "When Shall Systematic instruction in Arithmetic Begin?" Educational Method, 16:165-166, Jan:ary, 1987.
IV. THE HISTORY OF ARITHMETIC AND OF MATHEMATICS
59. Karpinski, L. C. The IIistory of Arithmetic. Chicago: Rand McNally and Company, 1943.
60. Sanford, Vera. A Short History of Mathematics. Boston: Houghton Mifflin Company. 1930.
61. Smith, D. E. The History of Mathematics. Boston: Ginn and Company, 1911.
62. Sinith. 1). E. and (inshurg, Jekuthiel. Numbers and Numerals. New York: Bureau of Publications, Teachers College, Columbia University, 1937.

V. THE PSYCHOLOGY' OF ARITHMETIC'

(it, Breed, F. S. "Our General Outhook on Arithmetic." Journal of Ridurational Rese'urch, $32: 241.254$, December, 1938.
65. Brueckner, I. J. "Development of Ability in Arithmetic." Child Le'belopment and the Curviculum. Thirty-eighth Yearbook of the National Socirty for the Stucly of Educetion, Part I, pp. $975998 . P^{2} u b l i c$ School l'ublishing Company, 1939.
66. Brueckner, L. J. "Diagnosis in . Dithmetic." Educational Diag. nosis. Thirty-fourth Vearhook of the National Soriety for the Study of Education, Sec: III, pp. 269-302. Bloomington, Illinois: Public School l'ublishing Company, 1935.
67. Bruekner, L. J. "Vitalized Arithmetic Curriculum." Joumal of Experimental I:ducation, 1:390-392. June, 1933.
68. Dickey. J. W. "Arithmetic and (;estalt Psychology." Elementory School Jnumal, 39:4b-:33, September, 9938.
69. Dickey, J. W. "Readiness for . Arithmetic." Lilementary School Joumal, $40: 59959$. April, 1940.
70. Foran, T: G. "Pupils' Difficulties in Problem Solving." Catholic Educution Rewieu, 32:34!-3:38, June, 1934.
71. Foran, 'T. G. "Pupils' Methods of Solving Problems in Arithmetic." Catholic Iiclucalion Rerif'u, 39: 154-164. March. 1934.
72. Judd, C. W'. "Arithmetic in the Elementary School." International Understanding though thr l'ublic-School Curviculum. Thirty-sixth Yeabook of the Notional Society for the Study of Ecluration, Sec. III. pp. 79.8.4. Bloomington, Illinois: Public School I u blishing Company, 1937.
73. Shome. J. B. "IDificulties of the Conorete." School Sciance and Mathe matios, 37 : 937-945. Nowember, 1937.
74. Snedden. I). S. "Proposed Fumotiomal Approaches to Improvements of Problem Work in Arithmetic." Fiducation, 54: 461. 46.4, April, 1931.
75. Spear, J. "Mathematios-To Reason Not Just to Do." School Science and Mathematics. $38: 102 \cdot 410$. April. 1938.
76. Tompkins. J. B. and Stokes, C. N. "Eight-Year-Olds Use Arithmetic." Childhood Educntion. 16: 319-321. March. 1940.

VI. DISGN(SHIS AND REMEIDIM. WORK

77. Buterkner. I. I. "Significant Trends in Kesearch in Diagnosis in Arithmetic." /ourmul of Liduratiomal Reseomeh, $33: 400-462$, February, 1940.
78. Morrison, J. C. "Can We Adapt Arithmetic Instruction to the Needs of All the Children?" Mathematics Teacher, 31 : 373378, December, 1938.
79. Olander, H. T. "The Need for Diagnostic Testing." Elementary School Journal, 33:736-745, June, 1933.
80. Washburne, C. W. "Primary Grade Origins of Later Remedial Cases." Childhood Education, 16 : 29-33, Scptember, 1939.
81. Willians, C. L. "Diagnosis of Arithmetic Difficulties." Elementary School Journal, 37 : 592-600, April, 1937.

VII. YEARBOOKS IN ARITHMETIC

82. Department of Superintendence. Research in Constructing the Elementay School Curriculum. Third Yearbook, pp. 35-109. G. M. Wilson, Chairman. Washington: Department of Superintendence of the National Education Association of the United States, 1925.
83. Department of Superintendence. The Nation at Work on the Public School Curriculum. Fourth Yearbook, pp. 173-320. Washington: Department of Superintendence of the National Education Association of the United States, 1926.
84. Department of Superintendence. The Superintendent Survey:s Supervision. Lighth Yearbook, pp. 157-16!, 302. Washington: Department of Superintendence of the National Education Association of the United States, 1930.
85. Department of Superintendence. Fite Unifying Factors in American Education. Ninth Yearbook, pp. 136-143. Washington: Department of Superintendence of the National Education Association of the United States, 1931.
86. National Council of Teachers of Mathematiss. The Teaching of Arithmetic. Tenth Yearbook of the National Council of Teachers of Mathematics. Nev. York: Bureau of Publications, Teachers Collcge, Columbia University, 1935.
87. National Society for the Study of Education. Report of the Society's Committee on Arithmetic. Tuenty-ninth Yearhook of the National Socirty for the Study of Eduration. Bloomington, Illinois: Public School Publishing Company, 1930.

VIII. RF.SF.iRCH SIMMARIES

88. Brown, J. C. "A Summary of Some Significant Conclusions Reached by Investigators Relative to Arithmetic." Elementary Schonl Journul. 25: 346-357. January, 1925.
89. Buswell, G. T. Annual Summaties and Selected References in the Elementary School Journal after 1925.
90. Buswell, G. T. and Judd, C. H. Summary of Educational Intestigations Relating to Arithmetic. Chicago: L'niversity of Chicago Press, 1925.
91. Review of Educational Research. Washington: American Educational Research Association. 1931, 354-360; 1932, 1.40-143; 1933, 11-30; 1937, 160-162 and 453-463.
9‥ Washburne. C. W. "Work of the Committee of Seven on Grade Placement in Arithmetic." Child Development and the Curriculum. Thirly-eighth Yearbook of the National Society for the Study of Education, Part I, pp. 299-32 1 . Bloomington, Illinois: Public School Publishing Company. 1939.

IX. THE PREPARATION OF TEACHERS

93. Bagley, W. C. "The Teachers Professional Study of Subject Matter in Mathematics." Mathematics Teather. 31 : 273-276, Octuher, 1938.
94. Bond, E. A. The Professional Treatment of the Subject Matter of drithnetuc, Grades One to Six. New Lionk: Bureau of Publications, Teachers College, Columbia University, 1934.
95. Buckingham, B. K. "The Training of Teachers of Arithmetic." Report of the Socicty's Committre on Arithmetic. Twentyninth Yorathook of the Vational Society for the Study of Edu(alish. l'ant I. Chap. (i. Blommington. Mlanus: Public School Publivhine (:mpant. 1930 .
 Viol. I. l'amme Girndes: Vinl. II, Intermedinle (irades: Vol. III, Cpher ciunde. New Yonk: Silver Burdell Compan:, 1939.
96. Roantuce, William F. and Taylor, Mary S. An Arithmetic: for Teachers. New Sork: The Macmillan Company, 1932
97. Robinson, A. E. "Training of Elementary Shool Teachers in the Field of Aithmetic." ("nited Stater Office of Education, Bulletin 10, pp. 474477, 1933.
98. Wheat, H. G. Psychology' and Teaching of Arithmetic. Boston: D. C. Heath and Company, 1937.
99. Wilson. G. M., Stone. M., and Datrymple. (. O. Teaching the New Arilhmatie. New Yiok: Mocire whill Book Company, 1939.

[^0]: ${ }^{1}$ Curiculum Journal, $9: 290905$, Nowember, 1998: The Mathematios Teacher, 31 : 267.272, October, 1938; The Jownal of the Natiomal Eiducution Asoriution, 27: 205.206, October, 1038.

[^1]: ${ }^{1}$ Nina Jacobs, "Personality Development and Adjustment through Number," Childhood Education, 13:258-261, February, 1937.

[^2]: 2 Howard A. I.ane, "Child Development and the Three R's," Childhood Education, $16: 101-104$, November, 1939.

[^3]: ${ }^{3}$ L. P. Benezet, "The Story of an F.veriment." Jourmal of the National Educa. tion Association, 24:211-244, November, 1935.

[^4]: 1B. R. Buckingham. "Significance, Meaning, Invight-Thesc Three," The Mathematics Teacher, 31:330.335, January, 1938.

[^5]: 2 W. A. Buownell. The Droelopme'יt of Childien': Number Iteas. L'niversity of Chicagu: Fiens, Chicago. 1928.

[^6]: ${ }^{3}$ lbich., p. 125. 4 R. I.. Morton, Truming dithmetic in th. Elementary School, I, Primary Grades, p. 12. Silver Bundett Compant, . New York. 1937.

[^7]: ${ }^{\circ}$ R. L. Morton, "The National Council Committee on Arithmetic," The Mathe. matics Teacher, 31:267.272, Octoher, 1938.

[^8]: 6 W. A. Bownell, "Psthongital Considerations in the Learning and Teaching of Aithmotis." The Traching of dithmetic, Chap. I, Ienth learbook of the Natomal Commil of Icocher, of Mathematics. 1935.

 7 Challer H. Juld. Eiducation as Cuiaration of the Higher Mental Processes. The M.smillan Comp:ans, New Yotk. 1936.

 8 It. (; Wheat, Pychology and Teaching of Arithmatic. D. C. Heath and Com. pant. Bostom. 1997.

 - Juide E. Badmes and Salul Badanes. A Child's Number Primer. The Macmillan Comprany, Now losk. 1929.

 11) R. I. Montom, Trarhing Arithmetic in the Elementary School, I, Primary Graders Silser liardett Company, New York, 1937.
[^9]: ${ }^{1}$ In this chapter, arithmetic in considered as a shem to be acquired by a study of number telatiomhips. Different pints of ven wh when whes in which
 and others.-(Editorral Board)

[^10]:
 the Nimonal commel of lawhers of Vathematice. 1935.

[^11]:

 amid the busy activities of the classroom

[^12]: I Ihich. p. is.

[^13]: © Fithel L. Nicholson, "Studying Groups as an Approach to the Development of Number Ideat in the Primatry Grades," Unitersity of Pennsyluania Bulletin, 89 : 296.297, June 26, 1939.

[^14]: ${ }^{7}$ Tobias Dantzig, Number, the Language of Science, p. 26. The Macmillan Company, New `ork. 1930.

[^15]: sh. G. Wheat. "Qualitative Amalysis of Certain Imponderable Outcomes of Arithmetic "Taaching." Abstract in Resparch on the Foundations of American Eiclucation. P1. 15-16. American E.ducational Research, Association, Washington. D. C. 1939.
 o M. V. Givens, Using a Method of Self-Instruction in the Third Grade in Learn. ing the Thirty-nine Mare Difficull Mullipliations. Masters' thesis on file in the office of the Graduate Council, West Virginia University, Morgantown. 1939.

[^16]: 10 W . I. Cumningh:mm, Teaching Retarded Pupils a Melhod of Self.Instruction in Mallipliation. Misters problem on file in the office of the ciraduate Council, West Vinginia Iniversity, Morgantown. 1910.
 \therefore Detson, of. cil., p. 42.
 12 Rex M. Smith, Mrehoels of J.caming lo Make Divinctions Befuren the Three Einds of Pobhlems in Fiactions and Derimals in Sivil Garle Arilhmelic. Master's problem on hle in the oflice of the ciaduste Combil, West Virginia University, Mons:mown. 1937.

[^17]: ${ }^{13}$ I. . D. Robinsoil, Learning to Make Distinctions Among the Three Types of Problems in l'ercentage. Master's problem on file in the office of the Graduate Council, W'est Virginia liniversity, Morgantown. 1939.

[^18]: Mas, lgix.

[^19]: Boaton. 191s.
 31. I.. Kimilel, History of Stromlary E:duration, p. 122. Houghton Miffin, Boston. 918.
 +Ibicl. 1. 169.

[^20]: ${ }^{5}$ S. C. Parker, The IIstory of Modern Elementary Education, pp. 83 ff. Ginn and Co., Boston. 1912.

[^21]: ${ }^{7}$ Joseph Ray, Rav's New Higher Arithmetic, p. 187. Van , Intwerp, Bragg, and Co., New York. 1880.

[^22]: ${ }^{1}$ R. L. Morton, "Ihe Sitional Council Committce on Arithnetic," The Mathematics Tearher, 31:267-272. Octoher, 1938.

[^23]: 2 I.eo J. Batueckner, "Social Problems as a Basis for a Vitalized Curriculum in Arithmetic." Journal of Experimental Eeluration, 1:320-822, June, 1933.

[^24]: * Anne Contalion. ". I Comparison of Activities Presented in Third Grade Arith. metic Texthooks for Developins the Informational and Sociological Functions ot Anithmetic." Cupuhblad secolds on fite at the l'nisersity of Minnesota, Minne:tpolis.
 s J. M. Hermam, ". A Study of Activities in Mose Recent Arithmetic Textbooks, Intermediate (itales, for Iteveloping Informatomal and Sociological Functions of the Subject." I'nuthlinhed Master's thesis, Lniversity of Minnesota, Minmeapolis.

[^25]: "Grace Schatifer, ". In Infumational l'nit in lime." E:lementary School Journal, $38: 114 \cdot 117$. Octulyer, 1937.

[^26]: gam," Joumal of Educational Researh, 29: 6i6.693, May, 1936.

[^27]: s If. L. Hanap and F. Mapes, "The L.caming of Fundamentals in an Aclivity Plogram," Elimentary School Journal, 3.4:515.525. Marh, 1931.

[^28]: : B. R. Buchingham, "Signiliomere, Mcaning. Insight-These Thee," The Mathe. matics Ticacher, 31: 26. Jannaly, 1938.

[^29]: ${ }^{1}$ E. L. Thorndike, Human Learning, pp. 8-10. D. Appleton-Century Company, New York. 1991.

[^30]: 2 The reader should note carefully that beginning at this point the word "drill" is given an unusually extended meaning. In its traditional sense, which is to say, in the sense of practice with as little variation as possible, "drill" could not properl; be used in these sentences. The essence of the word as it is employed in this chapter is that not one experience, but several different experiences are requisite to thorough learning. whether the thing learned be the richness of an important understanding or efficient use of a more or less mechanical skill. See the writer's clear statement of the meaning of drill on pages 196-197. (Editorial Board)

[^31]: a John Dewey, Hou I'e Think, p. 63. D. C.. Heath Co., Boston. 1939.

[^32]: 4K. Koffka, Principles of Gestalt Psychology, p. 547. Harcourt, Brace and Company, New York. 1935. Koffka is here using the term "drill" in its narrower sense, as a procedure applicable to mechanical matters. He does not touch the question of whether repetition of experience may not be actually planned to give a wider "range of availability."

[^33]: ${ }^{5}$ Emphasis upon relationships is scarcely characteristic of the traditional meaning of dill. In his advocacy of more (and better) drill the writer leaves small comfort for those who have relied upon sheer repetitive , ractice to accomplish ends which as the writer elsewhere shows (e.g., page 197) cannot possibly be so achieved. (Fditorial Board)

 - Gicorge W. Hartmann, Gestalt Psycholngy, p. 171. The Ronald Press Co., New Yolk. 1935.
 7 K. Koffki, Grouth of the Mind, p. 234. Harcourt, Brace and Company, New York. 1925.

[^34]: A Robert W'. Frederick et al., Direcling l.earning, p. 481. D. Appleton-Century Company, New York. 1938.

[^35]: 9 E. I.. Thorndike. The Psychology of Alithmelic. p. 108. The Macmillan Company. New York. 1022.

 10 Joseph C. Brown and Iotus D. Coffman. The Teaching of Arithmetic, p. 77. Row, Peterson and Company, Evanston, Ill. 1924.

[^36]: 1 There are of comse occ:aions when measurement and instruction must be separated. This is true when tests ane correctly wed in some kinds of research and for survey pupowes. It is the at times when pupils are to be elassified for certain reasons, as, for example, in making up ections in a cosmopolitan junior high school which draws from many lower schools. But this chapter deals with the evaluation of learning: in other wotds, with esaluation as it relates to the improvement of teaching. On this account the consequences of separating measurement from instruc. tion, helpful in non-inseructional situations, are here viewed as harmful.

[^37]: 2 It is no longer possible to assume that a test of computational or problem. solving ability measures all arithmetical outcomes-if indeed this assumption ever was tomable on logical grounds. Brueckner, using Vocabulary and Quantitative Relationships sections of the t'nit Scales of Altainment with 453 children in grades fout A to five 13, obtained coeflicients of correlation of .361 between "vocabur. lary" and "computation," and of .522 between the former and "problem solving." forser on the Quantitative Relationships test correl:ted .576 and .661 with "com. putation" and "problem solving," respectively, (See Leo J. Brucekner, "Intercorrelations of Arithmetical Abilities." Journal of Experimental Erducalion, $3: 42-4.4$, September, 193.4.) Since that date. Spainhour's investigation has confirmed these revilts. Spainhour devised special tests of "mathematical understanding" (reliability coefficients of .901 for grade four and of .933 for gracle six), and administered them along with the New Stanford Reasoning Arithmetic Test and the New Stanford Computation Arithmetic Test to 143 children in grade four and 136 in grate six. In grade four the "understanding" test scores correlated .665 and .751 with "problem solving" and "computation," respectively. In grade six the corresponding r's were .7.1 and .756. (Richard F.. Spainhour. "The Relatinmship Between Arithmetical I'nderstanding and Abilite in Problem Solving and Computation." ('npublished Master's thesis in education. Duke University, 1936.)

[^38]: ${ }^{3}$ Evaluation is also used to motivate leaning, and this purpose of evaluation might have been included as the sixth discussed. This purpose was, however, omitted, first, because motivation is : general effect of evaluation regardless of the particular purpose for which it is used, and second, because abuses easily arise from this use of evaluation. For instance. when tests are used for this purpose, the motivation is likely to be evtrinsic and harmful to sound learning, rather than intrinsic and beneficial.

[^39]: -Guy M. Wilson. "Choosing and Cosing Standardized Tests in Arithmetic," Education, 40:177-179, .iovember. 1939.
 "I.onise Beallir. "Standardized Tests in Arihmetic," Eductltional Method, 16: 175.176, January. 1937.
 ${ }^{\text {a }}$ Stokes and Finch in 1932 reported a difference amounting to .77 grade between the medians of 65 pupils in grades seven to nine on the New Stimford Computation Arithmetic Test and the Van Wigenen Revision of the Woody Arithmetic Scales of Fundamental Operations in Arithmetic. and a difference of .74 grade in class medians on the New Stanford Reasoning Arithmetic Test and the Buckingham Scale for Problems in Arithmetic. (C.. N. Stokes and F. H. Finch. "A Comparison of Norms on Certain Stundardized Tests in Arithmetic," Filementary School Journal, $32: 785 ; 87$. June, 1932.)

 The results of this study have since been confirmed by Foran and loves (Thomas G. Foran and Sister Mury Fdmund Iones. "Relative Difficulty of Three Achieve. ment Eximinations." Journal of Filucational Psscholagi, 26: 218.222. March, 1935), and by Pullias (\&arl V. Pullias, l'ariability in Results from Neu.Type Achierement Tests, Duke I'niversity Research Studies in Fiduation, No. 2, Duke C'niversity Press. 1937. See especially Chapters VII and VIII.)

[^40]: 0 Obsembation and the intemiew ate not of courve as untelated as may be sug. gested from the sepanate tioatment usorded them heve. As a matter of fact, the interview multiplies opportunities for sharsation and mates these observations more intibate and penctrating.

[^41]: in For evimple: Guy T. Buswedl and I.enore John, Diagnostic Studies in Arith. metic, Supplementary Edurational Monograph. No. 30, Department of Eduration. I'nisersity of Chicago, 1926: Iofton V. Burge. "Tipes of Frrors and Questionable Hahits of Work in Multiplication," Elementary School Joumal, 33: 185-194, November. 1992: Lenore John, "Difficulties in Solving Problems in Arithmetic," Elementary School Journal, 30:675692. May. 1930.

[^42]: 12 This last fact is not sulferenty teromited. . Wame that the teliability eo. efficient of a single observation is only. An. If the same kind of obsemation of the same performance and yieldine the some revult is made ten imes. the reliability coefficient (Spearman-lhown formula) becomes .83. Fousteen obervations would

[^43]: yield a reliability coefficient of 90 . The witer tecogni/es at least some of the dangers in this statistical approath. but believes that the argument is nevertheless essentially sound.

[^44]: 12 In the writer's opinion the best reference relating diaectly to arithmetic is the chapter by Greene and Buswell in the Tuenty-Ninth Yearbsok of the National Society, for the Study of Education. These author employ a terminology somewhat differe: foom that in this chapter, but the reader should encomenter no difficulty in transbiting the one vocabulary into the chacr. See: Challes F.. Greene and Guy 1. Buswell. "lesting. Diagnosis, and Remedial Work in Atithmetic," Report of the Commillee on arithmetic, Tuen'yninth Yearbook of the National Society for the Study of Education, Parl I, Chapter V. Public School Publishing Co., Bloomington, III. 1930.
 ${ }^{13}$ A letter from the publisher of many educational tests, who must remain anonymous, states: "I cuald gise you the names of several school systems in which cumblative files are kept of all forms of our tests. We have standing orders from these sysems to supply them with each new form as it appears. Our agents tell us that in these systems the tests are available to all teachers who, if not encouraged to do so, are certainly not prevented from duplicating these tests and drilling their pupils in taking them. Then some form or other of these tests is used at the end of the year to measure achievement and to make comparisons between classes within the same system!"

[^45]: - Since this hapter was wilten. Piofessor Brueckiner him ammounced the publication of standard readiness tests for all phoresses with whole numbers, fractions, decimals and percentage. These tects are published by the John C. Winston Co.

[^46]: 14 The writer is grateful to the following persons. in addition to those mentioned in the text. For assistance in mirgesting sample items: Mr. I.ester Anderson, of the University of Minnevota, Dr. Arthur S. Otis. and Poffesor I.en J. Bructhner, Professor Ben A. Suelt, and Profewor Harry G. Wheat, the tast three being members of this Committee.

[^47]: ${ }^{18}$ Thelma Tew. "Icaching Divivion of Fibtions be the Common Denominator
 ‥ c. 193N.
 ${ }^{17}$ Hilda May Briemson, "Some Causes of Frrors in Percentage." Inpublished

[^48]: 1* An excellent use of observation ama! wis of witten woth) in thi same ale of

 A:'mintum. J'urt II, Chipter Xll. I'ublic Schosl Publishing Co., Bloomington. Ill. 1!930.

[^49]: ${ }^{19}$ Foster F. Groswichle. "Coneprs in Sucial . Arithmetic for the Fighth Grade," Journal of Educatimal Recturh, $30: 475488$, Manch, 1937.

[^50]:

[^51]: 1910.
 18. (i. Whest. The Phonher amb Tenthng of Arithmetic. p. 157. D. C. Heath ami Comprom. Banton. 1937.
 shid. [. 110.

[^52]: Co. 1937.
 Reserith. 29: 6ft 6f9. Mat: 103t.
 a Wheat, op. rit., p. 20.

[^53]: - : : i.. 1p 16.15

[^54]: 11 Whent, op. cil. p. 1:0.
 12 lbid., p. 153.

[^55]: : M Midl. p. 12.5.
 I'he Mamill." Complow, Vew Vonk. I936.

[^56]: Compans. Xew luh. 1025.
 : A lina! pr 114.
 :- F. E. Inderan. "Problems of Method in Maturits and Curricular Studies." Child Deselnpment and the Curriculam. Tirentr-mithth Yearbonk of the Vational Snciest for the Sudy of E.tucat.on. Parl I. Chapter XX. pp. 400. 401. Public School Publishing Compans. Bloomington. 111. 1929.

[^57]: 18 IV. A. Brownell. The Detrlopment of Children's Number Ideas in the Primay Grales. Coniversity of Chimago Press, Chicago. 1928.
 W. A. Brownell, and ©. 13. Chital, "fhe liffects of Premiture Drill in Thitd©irade Arillmedtr," Jombal of Eilurational Researeh, 29:17.28. September, 1935.
 W. A. Brownoll, Léarning us Reorgnnizalion. Duke liniversity Press, Durhath, N. C. $10,90$.

[^58]: 19 W. A. Brownell, "Psehological Considetallons it the Learning and the Teach. ing of Arithmetic." The Tenching of drillmetic, pp. 1.91. Tenth Yearbook of the Natonal Commil of Teachets of Mathematics. 1935.

[^59]: s0 13. R. Buckinghan, "Significance, Mcaning. Insight-These I'luee," The Mathematics Treacher. $1: \mathbf{2 1 - 3 0}$, Janlamy, 103s.
 a1 11 . I. Manap and li. Napes. "Ihe learning of Decimals in an Arithonetic Activity Progrimi" Journal of tiducational Research, 29:086.698, May, 1986.

[^60]: 24 F. I. Thorndike, The Psychology of Wants, Interests and Attitudes, p. 147. 1). Appleton Century Co., New York. 1935.
 25^{\prime} 'Io be considered below.

[^61]: 2; 1. I. Mursell, Erlumational l'sychology, Pp. 251.252. W. W, Norton and Compallw. New York. 1930.

 2: 11. R. McComell, Divorery I'ersus Authoviative Identificalion in the Learning of c:hilhe'n. 1p, 13.62. University of Iowa Studies in Fiducation, Vol. IX, No. 5, September 15, 1934.

[^62]: ${ }^{\circ} \mathrm{F}$ I.. R. Wheeler. " A Comparative Studle of the Diffictils of the 100 Addition Combinations." Journal of Gentic Psychology. 54:295-312. June 1939.

[^63]: 31 W'. . . Brownell, "Readiness and the Arithmetic Curriculum," Elementary School Joumal, $38: 344 \cdot 354$, January, 1938.

[^64]: ${ }^{1}$ With the collahoration of J. T. Johnson and B. A. Sueltz.

[^65]: = 「obias Dantig. Number. The Ianguage of Srience. p. 15. The Macmillan Companv, New York. 1933.

[^66]: 1 ()if course other measmes were sometimes secumed, such as the persistence of the method tanglit, and the preferences of teachers for one or the other of the methods; but the lact remains that the ancial measmes were usually regarded as those of rate and acomacy of pupils' work.

 2 Ihese questions, asked in the midst of a controversy by Kinght, et al, have never bean made the ambject of dircetly related research. Sec: F. B. Knight, G. M. Ruch, and O. S. lintes, "How Shall Subtraction Be Titughtr" Journal of Educational Reverarth, 11:1:5-168, March. 1925.

[^67]: * Lenore John, "Ihe Fifect of Cising the Long-Division Form in Teaching Divi sion by One-Digit Nimbers." Elementary School Journal, $30: 675-692$, May, 1990

[^68]: 3 Herbert I'. Olander and F.. Preston Sharp. "Long Division Versus Short Divi. ion," Journal of Educational Research, $26: 6 \cdot 11$, Septeniber, 1932.
 ${ }^{6}$ Foster F. Grossnickle. "In Fixpetiment with a One.Figure Divisor in thort and Long Division," I:lemeniay 'ichool Journal, 3. : 496.506, 590.599, Maich, April, 193.4.

[^69]: 7 Carleton Washburne. "Mental Age and the Drithmetic Curriculum: A Summary of the Committee of Seven ciande pacement Investigations to Dite, Journal of Eilucational Research. 93:210.231. March. 1931. Aho. by the same author: "The Values, limitatinm and . P plications of the Findings of the Committee of Seven." Jommal of Eichomiomal Research. 29: 69t.707. Miv. 1936. "The Work of the Committer of Sewen in citale Platement in Arithmetic." Thint-righth Year. book of the Natiomal Socirts fon the Stuls of Eiluration. P'ut I. Chapter XVI. 1939. This lat teferonce contains the last of this Commitlee's several summaries.

[^70]: ${ }^{2}$ William A. Brownell, "A Critique of the Committee of Seven's Investigatons on the chate Placement of Arilhnetic Topics," Elementary School Journal, $38: 495-508$. Marth, 1938.

 - Willian A. Brownell, "Readiness and the Arithmetic Curriculum," Elementary School Journal. 38: 314.354, Januany. 1938.

 1" John W. Dickey. "Readiness lior Arithmetic," Eleme'ntary School Journal, $40: 50 ? 598$, April. 1940.
 11 Foster I:. Grossnickle. "An Fipperiment with Two Methods of Estimation of the Quoticm." Elementary School Journal, 37: 668-677, May, 1937: also "How the Method of Scoing a Test in Division Alfects the Score," Elementary School Journal, 10: 366.970, January. 1940.

[^71]: in Disision with 'liwo-Figuse Divinos." Jommal of E:tucalimal Revernch, 33: 10111 f. Febmuma, 1910.
 13 foner li. (iosunichle. "Encos ansl Questionable Habits of Work in Long Divisi..: with a Onc-Figule Inivor." fommal of Eilucational Resrarrh, 29:355368. Jamuan, 1933;
 :4 Fonter f.. Gersmichle, "Comstancy of Frror in Idenning Division with a Two. Figure Diviou." Jownal of Educational Revearch, 33:189-190, November, 1939.

