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Jn the first chapter Brownell critically examines the

psychological bases of the three most common theories of arithmetic
instruction: drill, incidental learning, and meaning., In chapter 2
the resul.s of a nation-wide survey of actual teaching practices are
reported, Chapter 3 presents a contrast between "informational
arithmetic" and "computational arithmetic." In chapter 4 "social
utility" is defined much more broadly than just “computationally
useful," and implications for arithmetic instruction are discussed.
Pollowing this is a survey of opportunities for use of arithmetic in
an activity program, with specific examples. Chapter 6 discusses
practices in the teaching of fractions and decimals, followed by the
report of a study on transfer by Overman., Reported in chapter 7 are
the results of a survey on current practices in teacher-training

courses

in arithmetic,

Two chapters are devoted to transrfer of

training in arithmetic and types of arill; using these as a basis,
David %ugene Smith expounds on the past, present, and future of
instruction ‘n arithmetic, In chapter 11 aritvhmetic is considered
from a mathematical viewpoint as contrasted to a pedagogical
viewpoint, Next Gestalt psychology is discussed, with implications
for mathematics teaching., The last chapter compares the cfficiency of

different methods for Jdivision.
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EDITOR'S PREFACE

Tais is the tenth of a series of Yearbooks which the National
Council of Teachers of Mathematics began to publish in 1926. The
titles of the preceding Yearbooks are as follows:

1. A Survey of Progress in the Past Twenty-five Years.

2. Curriculum Problems in Teaching Mathematics.

3. Selected Topics in the Teaching of Mathematics.

4. Significant Changes and Trends in the Teaching of Mathe-
matics Throughout the World Since :gzo.

$. The Teaching of Geometry,

6. Mathematics in Modern Life.

7. The Teaching of Algebra.

8. The Teaching of Mathematics in the Secondary School,

9. Relational and Functional Thinking in Mathematics.

Bound coples of all except the first two Yearbooks can be secured
from the Bureau of Publications, Teachers College, Columbia Uni-
versity, New York, N. Y, for $1.75 each postpaid. The first Year-
book is now ont of print and the second is obtainable only in paper
covers ($1.25 postpaid). A complete set of Yearbooks (Numbers
2 to 1o inclusive) will be sent postpaid for $12.50, a saving of
practically 20 per cent.

The purpose of the Tenth Yearbook is to present some of the
most important ideas and proposals concerning the teaching of
arithmetic in the schools. Through this Yearbook the National
Council of Teachers of Mathematics wishes to express its interest
in the more elementary phases of mathematics and in the teachers
who present it in the classroom.

I wish to express my personal appreciation as well as that of the
Nationa) Council of Teachers of Mathematics to all of the contribu-
tors to this volume who have given so freely of their time and
interest in helping to make this YVearbook worthwhile.

W. D. Reeve
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PSYCHOLOGICAL CONSIDERATIONS IN THE
LEARNING AND THE TEACHING
OF ARITHMETIC

By WILLIAM A. BROWNELL
Duke University

Amriueric s singularly unfortunate in the language which has
come to be used to describe the processes by which its subject mat-
ter is to be learned and to be taught. One continually encounters
such terms as “the number facts,” “skllls,” “consumers’ arithmetic,”
“incidental learning,” “automatic associations” “fixed habits,”
“bonds,” “100% accuracy,” “crutches,” “meaningful experiences,”
“drills,” etc., etc. These terms have a significance which is seldom
sufficiently recognized, for in one way or another they imply certain
theories regarding the psychology and pedagogy of arithmetic.
More important, perhaps, they lead directly to the adoption of in.
structional practices of varying degrees of merit.

Analysis of ambiguous and misleading terms would repay the time
required. Since space limitations forbid, however, another method
is employed to get before the reader some of the crucial psycho-
logical aspects of learning and teaching arithmetic. This method
consists in examining critically the psychological bases of the three
commonest theories with respect to arithmetic instruction, To this
examination the remainder of this chapter is devoted. The reader
should be warned that a theory of arithmetic instruction is rarely,
if cver, practiced in pure form. The theory held to predominantly
by a teacher will determine the points of emphasis in her teaching
practice, but the practice itself will reveal the influence of other and
perhaps conflicting theories. The three theories, as they are here
isolated for analysis, are not so isolated in practice. While it is
probable that a particular teacher can be classified as adhering in
general to one theory, she will not be found to be a one-hundred-
per-cent practitioner of that theory. Rather, she tends, wittingly
or unwittingly, to employ various features of two or even three of

1
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the theories. To examine the peychological foundation of the three
theorles, however, it is necessary to consider these theories sepa-
rately—Iin purest state, as it were,

L Taxz Dmics! Turory or Amrruzric

Exposition of the theory, The drill conception of arithmatic
may be outlined as follows: Arithmetic consists of a vast host of
unrelated facts and relatively independent skills. The pupll acquires
the facts by repeating them over and over again until he is able to
recall them immediately and correctly, He develops the skills by
going through the processes in question until he can perform the
required operations automatically and accurately, The teacher
need give little time to Instructing the pupil In the meaning of what
he Is learning: the Ideas and skills involved are either 5o simple
as to be obvious even to the beginner, or else they are 30 abstruse as
to suggest the postponement of explanations until the child is older
and Is bett.. able to grasp their meaning. The main points in the
theory are: (1) arithmetic, for the purposes of learning and teach.
ing, may be analyzed into a great many units or elements of knowl-
edge and skill which are comparatively separate and unconnected;
(2) the pupil is to master these almost innumerable elements
whether he understands them or not; (3) the pupil is to learn these
elements in the form in which he will subsequently use them; and
(4) the pupil will attain these ends most economically and most
completely through formal repetition. -

Example of drill organization. The nature of the driil theory
and of the four component aspects of the theory which have just
been outlined may be made clearer by means of an illustration. The
following section occurs in a textbook fr the third grade. It was
intended apparently to supply the chi'd all he would need In order
to learn the new topic, “Written Subtraction with Carrying.” Fol-
lowing the section quoted from this ook is a page of problems, none
of which is analyzed, designed to provide drill on the new process,

! The term “drill” is loosely used in discussion relating to arithmetic instruc-
tion. Scmetimes it is employed in & sense which makes it cover all forms of
instruction. Sometimes it refers on'y to practice and the maintenance exercises
which follow initial instruction. And at still other times it signifies onl, ruainte.
nance activities. The reader should note carefully that in this chapter the term
“drill” is used to characterize a theory of arithmetic instruction which makes
repetition on the part of the pupil the essential feature of learning. In other
chapters of the Yearbook the word “drlll” will probably be used with a different
signification.
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1. Mary wants a doil that costs 48 cents. She has 28 cents. How
much more does she need?

42 Think, “8 and 4 are 12.” Write ¢. Carry 1t to 2.
88 Think, “3 and 1 are 4" Write 1,
14
Prove the answer by finding the sum of 14 and 28.
Think, “4 and 8 are 12.”” Carry 1 to 1,
Think, “2 and 2 are 4." 42 is the sum of 14 and 28.

When the number In any column is less than the one below it, think
what added to the lower number will make a sum that ends in the
number above, and carry 1,

It will be observed (1) that the process of carrying in subtrac-
tion has been isolated as one of the elements to be learned; (2) that
meaning and understanding are neglected (with respect both to the
problem as requiring subtraction and to the method of the process
by which the subtraction is to be performed); (3) that the pupil
Is expected at once, without question, to take on a type of thinking
characteristic of the expert adult who in meeting his practical need
for subtraction performs the operation without thought of its un-
derlying logic; and (4) that the pupll is to acquire the new skills by
repetition—by working the examples and problems which follow
without any assistance other than that provided by the mechanical
model in the above quotation.

Popularity of the drill theory. Of the three conceptions of
arithmetic instruction which will receive attention in this chapter
the drill theory is by far the most popular. In the classroum its
popularity is manifest in the common extreme reliance upon flash
cards and other types of rapid drill exercises, in the widespread use
of workbooks and other forms of unsupervised practice, and in the
greater concern of the teacher with the pupil's speedy computation
and correct answer than with the procesees which lead to that com-
putation and that answer,

But the popularity of the drill theory is uy no means revealed only
by the prevalence of certain practices in classroom instruction. On
the contrary, its popularity is evident, as well, in the organization
of arithmetic textbooks, in much of 1:: rescarch in arithmetic, in
current practices in measuring achie ‘ricat in arithmetic, and in
treatises on the teaching of arithmetic.
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The makers and publishers of arithmetic textbooks are prone to
direct attention to the extraordinary care they have exercised with
respect to drill provisions, as if the provision of adequate drill (that
is, adequate according to certain criteria) were the crucial prob-
lem in the preparation of basic instructional matter. Research
workers report laborious “evaluations” of textbooks in which, too
frequently, differences in drill organization are divorced from dif-
ferences in instructional theory which give significance to discovered
variations in drill provisions. In commercial arithmetic tests and
in treatises on educational rieasurement importance is given to set
standards in terms of rate and of accuracy of computation, at the
expense of growth in fundamental understanding, in orderly quanti-
tative thinking, and the like. Last of all, few textbooks on methods
of teaching arithmetic treat such matters as how children develop
their number concepts or how they come to apprehend the rationale
of the number system and the arithmetical processes it makes pos.
sible, preferring rather to deal with the selection of instructional
items, the distribution of practice thereon, and the like.

Reason for popularity. The popularity of the drill theory is
by no means to be understood as the result of a careful and intel-
ligent judgment between the merits of the possible types of arith-
metic instrucc.on. More commonly the dril) theory is adopted and
practiced, one may conjecture, without any clear cn.iprehension of
its assumptions and implications. Wide acceptance of the theory
seems to be due to two misleading approaches to a definition of
arithmetic ability: (a) analysis of adults’ uses of arithmetic and
(6) the “bond” theory of learning,

(a) The theory draws support (or seems at first glance to draw
support) from the adult’s everyday use of arithmetic. Thus, in
making a purchase of a loaf of bread for six cents and of five pounds
of sugar for twenty-five cents, an adult seldom, if ever, hesitates
in finding the total, Much less does he inquire into the reason why
6 and 25 are 3r, or into the methods of the thinking by which he
secures the sum. The arithmetic teacher, performing daily many
such computations, is struck by the automatic, the instantaneous
quality of her reactions, From this observation of her own con-
duct it is but a step to the conclusion that since she uses number
s0, 50 the child should learn it. She has quite forgotten her own
trials in learning arithmetic. She probably does not even realize
that she never did learn “25 and 6 are 31” as a number fact.
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(5) Nor does the teacher who looks beyond her own present num-
ber experience find much assistance in the typical psychological
treatments of arithmetic instruction. As a matter of fact, the drill
theory of arithmetic has become popular largely because of the
popularity of that system of psychology which has been most influ-
ential in education in the last two decades. According to this
school of psychology all learning consists in the establishment of
connections or bonds Letween specific stimuli and specific responses.
This view of learning in general seems to be of particular value in
describing the learning process in the case of number. Thus, one
connects the response “6" with the stimuli “4 and 2,” the response
“9" with stimuli “3 XX 3,” and so on. Each arithmetic fact repre-
sents such a bond, and all skills likewise are reducible in last analy-
sis to similar bonds. It seems to follow, therefore, that the way to
teach arithmetic is to teach immediately and directly the bonds
which are to be established. Drill then becomes the instructional
method best adapted to this end, and repetition becomes the essen-
tial mode of learning.

In view of the prominent place given to repetition by the drill
theory, the rest of this section is given over to a consideration of
the rdle of repetition, first, in learning in general and, second, in
arithmetical learning.

Repetition in learning in general. As contained in certain
formulations and interpretations of the Law of Exercise, repetition
was for many years regarded not cnly as a factor but as the im-
portant factor in promoting learning. To repeat a reaction was to
learn it. To acquire a form of behavior, one had to repeat it. To
the extent that one repeated, one learned. More recently, under
pressure alike from critical theoretical discussion and from research
findings, the Law of Exercise has been restated by many psycholo-
gists and has been entirely discarded by others. Now other factors
than repetition have come to be viewed as the vital determinants
of learning.

An example frora ordinary experience will reveal the place and
function of repetition in learning. Suppose Mr. B. undertakes to
improve his “drive” in golf. He is obseved to set up his ball, to
grasp his club, to take a position with respect to ball and line of
flight, and to swing. Suppose further that the result of the first
swing is not very successful. Does Mr. B. “repeat” his first per-
formance on his second try? Does he set up the ball exactly the




6 THE TENTH YEARBOOK

same height, does he stand the same distance from the ball, does
he place his hands precisely as he did the first time, and 80 on?
Hardly: certainly not if he can help it. Instead of attempting to
“repeat,” he does his best to avoid repetition. He varles, changes,
modifies—all with a view to securing a new combination of reactions
which wi'l produce more satisfactory results. Suppose, however, he
does repeat his first unsuccessful performance. He stands, holds the
club, and swings exactly as before. The result is the same poor shot,
but made a little more proficiently. If he continues to repeat, he
becomes steadily more expert in poor golf. If he would improve his
game, he must cease repetition and adopt variation. The point of
the illustration is that repetition can at most increase only the
speed and the accuracy of a reaction, good or poor; it cannot furnish
a new way, a better way, of doing anything,

Criticism of the drill theory in arithmetic. Three major ob-
jections may be raised to drill as the sole, or even the principal,
method of arithmetic instruction. The first objection is that the
drill theory sets for the child a learning task the magnitude of which
predetermines him to failure. The second objection is that drill
does not generally produce in children the kinds of reaction it is
supposed to produce. The third objection is that, even if under
conditions of drill the proposed kinds of reaction were implanted,
these reactions would constitute an inadequate basis for later arith-
metical learning.

(a) Magnitude of the task. No one can define the limits of the
learning task in arithmetic when that task is described in terms
of the drill theory. Each item of knowledge or skill must, according
to the theory, be isolated and specifically taught. The objectives of
arithmetic set by this theory become utterly unattainable. Con-
sider, as a case in point, the situation with regard to the number of
addition combinations which must be taught. Years ago there were
assumed to be 45 simple addition facts, the mastery of which, ac-
companied by an understanding of addition by endings, was re-
garded as sufficient preparation for all phases of this process. Later,
research established the fact that children who knew 4+ 5 = ¢, for
example, might not know 5-4 =9 equally well. The reverse
combinations had, therefore, to be taught, and 36 new combina-
tions were added to give a total of 81 facts. Investigation then
demonstrated peculiar difficulties in the zero-combinations, and the
addition combinations to be taught grew from 81 to 100 to accom-

/
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modate the nineteen zero-facts. More recently it has been shown
that the knowledge of § -4 = 9 does not guarantee the knowledge
of 15+ 4 = 19, 2§ + 4 = 29, OF 45 -+ 4 = 49, etc. To the 100 simple
addition combinations there now have been added, at Osburn’s? sug-.
gestion, the 225 combinations required by higher-decade addition
with sums to 39 and the 87 combinations required for carrying in
multiplication. The ouiginal 45 addition combinations have now
become 412.

Similar analyses of other phases of arithmetic have resulted in
item-totals equally staggering. Thus, Knight demonstrates the
presence of §5 “unit skills” in the one process of division of common
fractions, and Brueckner finds 53 “types” of examples (exclusive of
“freak types’) in the subtraction of common fractions alone. In
problem-solving Judd reports, on the basis of an examination of
only three sets of textbooks, approximately 1,900 different ways of
expressing the fundamental operations in one-step verbal problems,
and Monroe and Clark are able to differentiate 333 kinds of verbal
problems (52 kinds of “operative problems” and 281 kinds of
“activity problems”) with which children must eventually be able
to deal. These figures, large as they are, can be regarded only as
typical of what would be found if the many other aspects of arith-
metic were dissected as have been the relatively few reviewed above.

I'he statemenrt that the drill theory in its extreme form sets an
impossible learming task for the child would seem to be justified by
the results of the analyses mentioned above. If the child must learn
separately and independently, through repetition, in the form in
which he is later to use them, all these items of knowledge and
skill (and tens of thousands as yet untabulated), what are his
chances of success in arithmetic? Suppose the reader were faced
by the necessity of mastering an equivalent number of unrelated
meaningless items—not only to master them, but to remember them,
to retain order among them, and to use them intelligently when and
as they should be used. Assume such a condition —what chance of
success would the reader have in this learning? \Would he even be
willing knowingly to undertake the task?

Now manifestly, no one actually carries the drill theory to the
extremes suggested in the foregoing paragraphs. The teacher, with
or without aid from textbook and manual, ‘ces supply something

*The reader will understand, of course, that the citation of these analyses does
not classify their makers as exponents of the drill theory.
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of a sensible basis for learning, and thereby breaks with the logical
quirements of the drill theory® Even the theoretical writer on
Althmetlc, who advocates repetition as the basis of arithmetic
learning, Is in the end forced to be inconsistent with his own view.
Soon or late he must call to his assistance the factor in learning
which his theory in effect denies. At the last he too recognizes the
impossibility of training children in all the separate skills required
in the total which he knows as arithmetical ability. In his dilemma
the theorist finally finds himself invoking transfer of training to
guarantee that children will be able to deal adequately with skills
they have had no time to learn as such.

(8) Reactions produced by drill. When the teacher provides
drill in arithmetical skills, she does so on the assumption that pupils
will exactly practice certain prescribed reactions. Thus, for exam-
ple, when she administers flash-card drill on such number com-
binations as 4+ 3 =79, 8 — 6= 2, etc., she expects all pupils to
think silently or to say aloud, “4 and 3 are 7,” “8 less 6 are 2,” and
so on. It is her belief that by such repetition the children will
come eventually to respond only and always “3,” “2,” etc., on pres-
entation of the corresponding combination items. To express the
idea differently, the administration of drill by the teacher presup-
poses repetition by the pupil. That this presupposition, this as-
sumption, is not warranted by the facts is well shown by the results
secured in a recent investigation.*

About a week after the beginning of the school year fifty-seven
third grade children were given a written test in the 100 simple
addition combinations. They had been taught these combinations
in Grades 1 and 2 by methods which agree closely with the drill
theory of instruction.® On the basis of their showing on this group

* Here is, by the way, a good example of the distortion against which a warning
was given on page 1. Such a discussion as this must exaggerate conditions in
order to make clear important differences.

¢ Chazal, Charlotte B., “The Effects of Premature Drill in Third-Grade Arith-
metic.” Unpublished A.M. thesis, Department of Education, Duke University,
1935. An abstract of the thesis under the same title is to appear shortly in the
Journal of Educational Research.

*Specifically, the facts were taught as facts from the outset. Experience with
concrete numbers was kept at a minimum, The facts were not developed for the
child or discovered by him. They were given to him, that is to say, he was told
that 3 + 4 are 7, and was then drilled on this fact along with similarly presented
facts. The usual variety of drill activities was provided: there was repetition by

the class as a whole, and repetition by individual children. There were oral
drills and silent drills and written drills. Packs of cards were handled, the one side
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test thirty-two children were selected for individual study. Those
chosen were ten who had the highest scores, thirteen who had aver-
age scores, and nine who had very poor scores. An interview was
held privately with each child. In these interviews an attempt was
made to discover how each child secured his sums, that is, how he
thought of the numbers, what processes he emnployed. For the in-
terview sixteen combinations were used. These sixteen consisted
of the ten of greatest difficulty and the six of average difficulty on
the group test. There were, therefore, a total of §ta responses in
the interviews—the responses of each of the thirty-two children to
sixteen combinations,

The interview revealed that 116 combinations (22.7% of the §12)
were counted; that 72 (14.1%) were solved indirectly (e.g, “6 and
4 are 1o because 5and 5 are 10") ; that 122 (23.855) were incorrectly
guessed; and that only 202 {39.55%) were known as memorized
associations, These facts can be interpreted only as meaning that
the instructional procedure of drill had missed its mark in Grades
1 and 2. Tt had utterly failed to produce the 100% of “automatic
responses” for which it was designed, and it had failed by the
wide margin of 60%. After two years of drill these pupils counted
and solved nearly as many combinations (36.7%) as they knew
dircctly as combinations (39.5%). The evidence is that, expected
to repeat the formulas, these pupils had not repeated at all. Un-
known to the teacher who assumed they were repeating, they
had trained themselves in other ways of thinking of combinations.
Drill by the teacher had not resulted in repetition by the pupils.

The investigation did not stop here. In the month following
the first group test and the first interview five minutes of the arith-
metic period were each day set aside for drill on the addition com-
binations. The drill, which called for oral, silent, and written
practice, was so organized that, on the average, each combination
was presented at least twice a day. Then came the second admin-
istration of the group test on the roo addition combinations and the
second interview with the same thirty-two children on the same
sixteen combinations. At this time 48.8%, of the combinations, as

containing the combinations, the other side, to be consulted only if the sum was
unknown, containing the answer. There were games to motivate drill, etc., etc.
In all the activities, be it noted, the essential requirement on the part of the
child was that of repetition, however much variation there may have been in the
form of the response or in the number presentations which evoked that response.
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compared with 39.5% on the first interview, were known, that is to
say, were responded to as they are supposed to be responded to
under drill conditions. On the other hand, counting and indirect
solution still accounted for 37% of the answers (as compared with
36.77 on the first interview)., The evidence from the second phase
of the investigation agrees closely with that from the first phase:
drill was provided by the teacher, but repetition was not provided by
the children. Instead, the children continued throughout the month
of drill to employ substantially the same procedures in thinking of
the combinations as they had developed in Grades 1 and 2 and as
they brought with them into Grade 3. If at the time of the first
interview they counted their combinations they persisted in count-
ing a month later, in spite of the daily drill which was designed to
recuire repetition. If at the time of the first interview, they solved
the combinations, they solved them a month later. Drill failed
signally to produce in these children the desired types of mastery.

The study just described deals, it is truc, with drill in connection
with but a single phase of primary grade arithmetic. There is,
however, no reason to doubt that the weakness here ascribed to repe-
tition as a method of learning and to drill as a method of teaching
holds with any less validity for more advanced phases of arithmetic.

(c) Preparation through drill inadequate. The third criticism of
the drill theory arises from a consideration of the nature of arith-
metic itself. Arithmetic is best viewed as a system of quantitative
thinking. To describe arithmetic in this way is to set up a criterion
by which to judge the adequacy of any system of arithmetic in-
struction. If tried by this criterion, the 4rill theory is found want-
ing: instruction through drill does not prepare children for quanti-
tative thinking.

If one is to be successful in quantitative thinking one needs a
fund of meanings, not a myriad of “automatic responses.” If one
is to adjust economically and satisfactorily to quantitative situa-
tions, one must be equipped to understand these situations and to
react to them rationally. Specific responses to equally specific
stimuli will not serve one’s ends. It may be granted (in spite of the
evidence to the contrary in the preceding section of this chapter)
that drill may furnish to the child 2 number of fixed modes of re-
sponse. Even so, its claim to preéminence as a method of instruc-
tion in arithmetic would have to be denied. Drill does not develop
meanings. Repetition does not lead to understandings.
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This limitation of drill may be illustrated by citing again the
learning of the number combinations. Suppose that a pupil, through
repeating the formula, has memorized “12” as the answer to “How
many are 7 and §?" Suppose, further, that in the absence of other
types of experience than repetition, the pupil is asked, “What does
it mean to say that 7 and § are 12?" His reply must be, “I don't
know—just that 1> is the answer to 7 and 5.” The meaning of “7
and § are 12" is for him restricted to merely making the appropriate
noises and to reading and writing the symbols which stand for the
combination.

The psychological fact is that meanings are dependent upon re-
actions. It is not too much to say that the meanings are the reac-
tions. Meanings are therefore rich and full and useful to the degree
to which the corresponding reactions have been numerous and varied.
To repeat “7 and 5 are 12" is to practice but a single reaction. No
matter how long continued or how frequent the repetition the effect
is only to increase the efficiency (the rate and the accuracy) with
which that reaction is made. Increased efiiciency in making a small
number of reactions is no substitute for rich meanings. If there are
to he meanings and understandings (and there must be these if
children are to be capable of quantitative thinking), there is but one
way to engender them. That way is to lead clildren to veact vari-
ously and often to the item of knowledge or skill which is to be
acquired.

As stated above, drill and repetition are ill-adapted to the building
of meanings. In them the pupil finds no suggestion of a variety of
reactions, no help and no encouragement to discard primitive and
clumsy ways of thinking (immature reactions) for steadily more
refined and efficient thought processes (mature reactions). On oc-
casion, drill may, it is true, be given credit for accomplishing just
this end. Such seemed to be the case, for example, in the investiga-
tion referred to in the foregoing section.® The month of drill on the
combinations which followed the first group test brought a reduction
of approximately 359% in the amount of time required to write the
sums for the 100 addition combinations and a reduction of 75% in
the number of errors made. The interview data, however, contained
the real explanation. Drill had not developed improved procedures:
it had merely afforded opportunity for practice and increased effi-
ciency with undesirable procedures. Under other circumstances,

¢ Chazal, op. cit.
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too, drill may be given undeserved credit for a different reason.
Children may despair of ever mastering by repetition all the subject
matter of arithmetic. In the end, quite without the knowledge of
the teacher who continues to prescribe drill, they may desert the
repetition of verbalisms in the effort to put order and sense into
what they are learning. They may discover or adopt from others
modes of response which actually do increase the number of ways
in which they may react to the items to be learned. Under such
conditions if arithmetic becomes meaningful, it is absurd to assign
the credit to drill. It is much nearer the truth to say that if under
these conditions arithmetic becomes meaningful, it becomes so in
spite of drill,

II. THE INCIDENTAL LEARNING THEORY

Nature of the theory. At least partly as a reaction against the
forcing and driving classroom tactics of teachers who are zealous
advocates of the drill theory, a second theory, or group of theories,
has become increasingly popular in the last fifteen years or more.
According to these theories, which differ chiefly in detail, children
will learn as much arithmetic as they need, and will learn it better,
if they are not systematically taught arithmetic. The assumption is
that children will themselves, through “natural” behavior in situa-
tions which are only in part arithmetical, develop adequate number
concepts, achieve respectable skill in the fundamental operations,
discover vital uses for the arithmetic they learn, and attain real
proficiency in adjusting to quantitative situations. The learning
is through incidental experience. The theory is accordingly here
designated the “incidental learning theory.”

Some who hold to the theory of incidental learning would postpone
systematic arithmetic instruction until the third or fourth grade
and would concern themselves not at all with the kind of number
usages, if any, which children encounter before that time. Others
differ from this position only in that they would postpone aritnmetic
instruction much longer (one investigator reports the omission of
“formal” arithmetic through the seventh grade without “harmful”
consequences in the eighth grade). And stiil others, distrusting
somewhat the wholly hit-or-miss number contacts which would re-
sult from the first two variations of the theory, would select arith-
metical activities for children, but would arrange them in such a
way that the arithmetic is only a minor part of the total situations
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in which children might find themselves. Exponents of this .ast
plan are those who prepare “integrated units” of activity, in which
the different subject-matter fields, including arithmetic, of course,
lose their identity.

Criticism of the theory. Critical comment here must be con-
fined to two points which are common to the difierent vatiants of
the theory of incidental learning. The first of these points involves
the place of interest in learning. The second involves the assump-
tion that children will themselves isolate the arithmetical aspects
in general situations and that through purely incidental number ex-
pericnces will attain whatever arithmetic ends and outcomes are set
for them.

(a) Place of interest in learning arithmetic. The theory of edu-
cation through the process of incidental learning probably had its
origin in the discussion attendant upon the emergence of the “child-
centered school.” Some years ago the more radical leaders in this
reform movement did not hesitate to insist that all education must
be derived from, and must be organized and directed with respect
to, children’s self-determined interests and needs. This extreme po-
sition, which is held less widely now than formerly, rested upun a
faulty psychological basis. Interests and needs were supposed to
arise spontaneously, as the product of some kind of inner compulsion
which made their appearance more or less automatic at a predictable
time. Viewed thus, interests are sacred; they are not to be altered,
for alteration amounts to profanation. To disregard these natively
fixed indices of growth, or, worse yet, to go against them, is to
“violate the child’s nature.”

It is now rather generally recognized as a fact that children’s
interests are socially determined. The reason why children of a
given age manifest certain interests is found, not in heredity, but
in growth under conditions which are relatively alike for all chil-
dren. Stated differently, children’s interests and needs are but the
products of experience. As such they reflect the useful, the value-
less, and the harmful in that experience. Viewed thus, interests
and needs lose much of their sacred quality. Modification and
direction are no longer to be denied. On the contrary, they must
be exercised if growth and development are to be sound and
healthful.

The foregoing paragraphs may seem to dispose of a still debatable
issue in a manner which is overly abrupt and summary. If so, this
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has been done only to clear the way for a more fundamental criti-
cism of the place accorded interest by the incidental theory of
arithmetic instruction.

Probably no one today doubts the virtues of interest as a factor
which facilitates learning. On the contrary, all agree that children
learn best when they want to learn. So far as effects on learning
are concerned, the source of that interest, whether it be heredity or
society, is of little consequence. Even the ardent practitioner of tle
drill theory seeks to have his pupils interested. (Witness his at-
tempt to discover races, games, and other means for motivation.)
Be that as it may, it is to the credit of those who have expounded the
theory of incidental learning that the importance of interest in
learning is now more generally recognized. These theorists have
consistently and vigorously preached that pupils should want to
learn what they are given to learn. And they have made real
headway with their gospel.

Two objections may be entered, however, to the part assigned to
interest by the incidental theory of teaching arithmetic. The first
objection is that from the standpoint of learning arithmetic the
pupil’s interest is apt to be in the wrong place. When number is
observed only as it functions in situations which are predominantly
non-arithmetical, there is little likelihood of the child’s being inter-
ested in number. That is to say, he is interested in the learning
situation, but, for the purpose of arithmetic learning, he is interested
in the unimportant part of it. He is primarily concerned with the
successful completion of his unit of activity or of his project. If he
is interested in the arithmetic at all, the interest is secondary and
derived. He gives his attention to the arithmetic only because of
the extrinsic motivation furnished by the situation. Under these
conditions his interest in arithmetic as such is apt to be as superficial
as is his interest when it is stimulated in drill through games and
similar devices. The pupil learns as the adult learns—where his
interest lies. His interest lies in the larger activity as such, and
consequently he acquires, first of all, types of behavior which relate
most closely to that activity., Whe interest is left over may or may
not attach itself to arithmetic.

The second objection to the pla:e of drill in the incidental theory
is the implication that interest aroused in any way other than
through large units of purposefi! activity is somehow unworthy,
There seems to be the notion that the desire to learn arithmetic for
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its own sake, that is, through intrinsic motivation, is somehow un-
natural and something to be discouraged as being in some way
undesirable. Admittedly, such an interest is hardly apt to appear
under conditions of incidental learning, but this fact cannot be
argued to mean that the interest is, on that account, unfortunate or
any the less effective as a factor in learning. The contrary is the
truth. It is a wholesome situation, if not a common one, for children
to want to learn arithmetic because they like it. Under the stimula-
tion of such a motive, moreover, it is highly probable that the
learning will be economical and thorough. And, last of all, this
happy state of affairs can be brought about through a direct instruc-
tional attack upon arithmetic as a subject for learning, fully as
well, if not better, than by the indirect and uncertain experiences
prescribed by the incidental theory.

(b) The product of incidental experience. When an individual
reacts to some general situation in which there is a quantitative
element, the form of his response to that quantitative element will
depend upon many things. Chiefly, perhaps, it will depend (1) up :n
his preparation for reacting to such elements and (2) upon his dis-
position with regard to the element at that time. In the case of the
educated adult, who has learned his arithmetic, the quantitative
element may be readily isolated, correctly apprehended, and
promptly dealt with. The adult is only momentarily distracted
from his major objective, to which he returns at once upon solution
of the quantitative problem. He has learned no new mathematical
ideas or operations; he has merely applied previously acquired abil-
ity in a new connection.

The experience of the child as he engages in an assigned “inte-
grated unit” or in his self-chosen and self-controlled activities may
be quite different from that of the adult. If the general situation
which he faces requires no new arithmetical skill or knowledge, his
experience may be quite like that of the adult. Like the adult, too,
he will apply to the situation only what he has already learned;
he will learn nothing new in arithmetic from his experience. If, on
the other hand, the situation involves some unknown arithmetical
skill or knowledge his experience will be quite unlike that of the
adult. The child’s concern is with the attainment of some end
beyond the intermediate arithmetical task. Too long delay in
mastering the novel arithmetical skill is to him unthinkable—it may
be ruinous to his plans. At best he gives to the arithmetical aspect
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of the situation only enough attention to remove it as an obstacle to
the realization of his purpose, Furthermore, he deals with that
quantitative element with whatever habitual response he may pos-
sess or with a response altered as little as may be.

It is at this point that the teacher who relies upon the incidental
theory comes, curiously enough, very close to one of the fallacies of
the drill theory which, as part of that theory, she would oppose.
That is to say, she is very apt to make the error of assuming that
mere contact with number teaches all that the child needs to know
about number. She may easily overlook the fact that the quantita-
icva aspects of general situations represent only possibilities for
l...ning but not guarantees of learning. The child in the first
three of four grades has few “natural” needs for arithmetic which
he cannot meet by counting. Left to himself he will solve his prob-
lem by counting. Consider, for example, the following situation:
the child is constructing a boat. He must fasten an irrcgularly
shaped board to the side of the boat. He needs four nails for one
end and three nails for the other end. To the adult the situation
calls for the use of the fact “4 and 3 are 7. ‘To the child the situa-
tion merely calls for 4, s, 6, 7,” or even “1, 1, 3, 4, 5,6, 7. He
does not see the situation as involving “4 4 3" at all. Counting is
to him a wholly satisfactory method of dealing with the number
necd. So he counts, regardless of what his teacher thinks he
should do.

Unquestionably, opportunities for arithmetical learning abound
Loth in the practical affairs of children and in “integrated units,”
just as the supporters of the theory of incidental learning insist.
If, however, these opportunities are to be utilized for the develop-
ment of sound skill and knowledge, the new arithmetical elements
must be abstracted from general situations and must become the
objects of direct teaching. In this way provision can be made for
supplementary experiences which, by introducing variety and num-
ber of reactions, guarantee the meaningful concepts and the intelli-
gent skills requisite to real arithmetical ability.

There is a second way in which instruction based upon the inci-
dental theory is likely to disregard the peculiar nature of arithmetic
learning. To a far greater extent than is true in the case of any of
the other school subjects (at least as these subjects are now known)
arithmetic must be taught with due regard to its logic, its internal
order and organization, By contrast, there seems to be no compelling



PSYCHOLOGICAL CONSIDERATIONS 17

reason why in history, for example, Topic A must be taught before
‘Topic B, Justifiable (iulaiions even of chronological sequence are
frequent, and events and personages n:y be omitted or treated in
detail without serlous consequences which are discernible. Similar
illustrations could be drawn from geography and others of the
content subjects, But in the case of arithmetic the number of
changes which can safely be made are comparatively few. Integers
must be taught before fractions, and the combinations must be
taught before complicaied operations which make use of them. This
internal organization must be observed not merely with respect to
the relatively fixed order of topics but also with respect to the
sequence within the topics. Thus, ‘within the process of addition
the various skills and sub-skills must be arranged so that mastery
of a late step is made possible by mastery of preliminary steps.
This internal coherence and organization are determined on the
one hand by the nature of the subject matter and on the other hand
by the psychology of the learner.

It is just this organization which is difiicult to maintain when the
learning of arithmetic is left t~ the incidental experiences of chil-
dren. This statement holds ¢ - when these experiences are pre-
scribed in “integrated units.”? \When, however, there is no attempt
thus to select number experience, the likelihood that children will
learn in what is psychologically and logically the most economical
fashion is extremely small. As a consequence, arithmetic can hardly
be learned as it should be learned; relationships, dependencies,
mathematical principles may easily escape the notice of the teacher,
and so of the learner.

Impracticability of the theory. All that has been said in the
above section helps to explain why arithmetic instruction based
upon the incidental theory of learning is impracticable. Incidental
learning, whether through “units” or through unrestricted experi-
ences, is slow and time-consuming. Interest of teacher and pupil
alike in the non-arithmetical aspects of general situations tends to
reduce the occasions on which the arithmetical aspects are called to
the learner’s attention. Such arithmetic ability as may be developed

T This statement does not imply that number needs appear in the life of chil-
dren with due respect to the order prescribed by mathematical logic. Such is not
the case. The statement applies to learning. Even though a desirable mathemati-
cal sequence is disregarded in the time when number uses appear, that mathe-

matical sequence must be, in large mwasure, honored in the instruction given in
connection with these uses,
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in these circumstances is apt to be fragmentary, superficial, and
mechanical,

However successful an occasional teacher may be in teaching
arithmetic through incidental experience, general attainment of this
success is not possible, The discriminating selection and orderly
arrangement of vital and helpful learning situations involving num-
ber is no simple task. On the contrary, it calls for unusual insight
into the mathematical and psychulogical nature of arithmetic on
the one hand and into the psychology of childhood and of the
learning process on the other hand. In a word, it calls for a degree
and kind of insight which is, without aspersion of teachers as indi-
viduals, quite outside the equipment of the average teacher. Until
teachers are differently selected and differently trained, it is fruitless
to expect them adequately to teach children arithmetic through in-
cidental experience. In the meantime it is far safer to base arith-
metic instruction upon a judicious use of textbooks in the prepara-
tion of which the kind of insight just described has been exercised.

Values of the theory. Like the drill theory of arithmetic in-
struction, the theory of incidental learning is not without certain
advantages and merits which should be recognized and utilized to
the full. These special values are at least three in number.

In the first place, the experiences of children in situations which
are only incidentally arithmetical (whether in “units” or otherwise)
may serve as powerful motives for the learning of new arithmetical
ideas and processes by revealing the need for such abilities. In the
second place, the opportunities for practice afforded in the general
situations which children face both in and out of school may have
the effect of increasing the meaning of number ideas and skills which
have already been acquired and of maintaining them at a high level
of efficiency. In the third place, perhaps the most important con-
tribution of the theory of incidental learning has been to oppose
the common practice of teaching arithmetic narrowly as an isolated
subject. The incidentalists have rightly argued that arithmetic so
taught cannot perform its full or, indeed, its most valuable function,
for number is a real socializing agency.® Arithmetic provides an
exact method of interpreting practical quantitative problems which

* That this view of arithmetic is by no means original with the advocat:s of
incidental learning is clear fram a perusal of the writings of Charles H, Judd who,
as long ago as 1903 in his Genetic Psychology for Teachers (Chapter IX, espe-
cially) was expounding this wider interpretation of arithmetic,
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otherwise are confused and unintelligible. On this account instruc-
tion in arithmetic must lead children to discover and to use the
number they learn, not merely in order that they may know it better
but in order that they may attain ends which are largely outside of
arithmetic. It is at least an implication of the theory of incidental
learning that children do not know arithmetic as they should until
they are better able to prosecute their own designs and to understand
the quantitative aspects of the society in which they live?

ITI. THE “MEANING” THEORY OF ARITHMETIC INSTRUCTION

The third theory of arithmetic is not readily named. It can
hardly be termed the “eclectic” theory because, while it does con-
tain features of other theories, it also contains features which are
peculiarly its own, Furthermore, this third theory is too coherent
and unified to justify the implication of looseness and forced re-
lationships which is associated with the word “eclec.ic.” With this
acknowledgment that no name would be without objectionable con-
notations, the third theory is here designated as the “meaning”
theory. This name is selected for the reason that, more than any
other, this theory makes meaning, the fact that children shall see
sense in what they learn, the central issue in the arithmetic
instruction.

Relation to other theories. Within the “meaning” theory the
virtues of drill are frankly recognized. There is no hesitation to
recommend drill when those virtues are the ones needed in in-
struction. Thus, drill is recommended when ideas and processes,
already understood, are to be practiced to increase proficiency, to be
fixed for retention, or to be rehabilitated after disuse. But within
the “meaning” theory there is absolutely no place for the view of
arithmetic as a heterogeneous mass of unrelated elements to be
trained through repetition. The “meaning” theory conceives of
arithmetic as a closely knit system of understandable ideas, prin-
ciples, and processes. According to this theory, the test of learning
is not mere mechanical facility in “figuring.” The true test is an
intelligent grasp upon number relations and the ability to deal with
arithmetical -ituations with proper comprehension of their mathe-
matical as well as their practical significance,

*In this chapter not much attention is given to the social phases of arithmetic.
The brevity of this treatment does not imply any doubt as to their importance,
which cannot be quertioned. Fuller discussions will be found in the third and
fourth articles, the presence of which in this Yearbook constitut's the reason for
omission in this article.
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There is room, also, in the “meaning” theory for certain features
of the theory of incidental learning. The ‘“meaning” theory allows
full recognition of the value of children’s experiences as means of
erriching number ideas, of motivating the learning of new arith-
metical abilities, and especially of extending the application of
number knowledge and skill beyond the confines of the textbook.
But the efficacy of incidental learning for developing all the types
of ability which should be developed in arithmetic is held to be
highly doubtful by advocates of the “meaning” theory,10

Encouragement of understanding. It has been said that the
“meaning” theory is designed especially to encourage the under-
standing of arithmetic. It does this in at least three ways.

(a) Complexity of arithmetical learning. First of all, it takes
full account of the complexity of arithmetical learning. The sig-
nificance of this statement may best be appreciated by contrasting
various ways in which certain arithmetical ideas and skills may be
taught. In the following paragraphs the “meaning” approach to
number concepts and to the number combinations is presented in
some detail.

Arithmetic, when viewed as a system of quantitative thinking, is
probably the most complicated subject children face in the elemen-
tary school. Number is hard to understand because it is abstract.
No special “arithmetic instinct” fits the child directly to learn
arithmetic. Neither does nature provide the child with tangible
evidence of number which he can apprehend immediately and thus
come easily to know through sense perception. There is no con-
crete quality of “five-ness” in five dogs which may be seen, heard,
and handled. Color, barking, weight. and shape may be grasped
through the senses, but the “five-ness” is not thus open to imme-
diate observation. Neither is there ary “five-ness” in W, or in
“five,” or in “5.” In each case the “fiva-ness” is the creation of the
observer; it is a concept or an idea which the observer imposes
upon the objective data. Furtherraore, it should be clear that the
observer cannot impose the number idea “five” upon objects unless
he has that idea—unless he has acquired the thought pattern
which stands for “five.” Such considerations as these with regard

1 These statements should make it clear that the “meaning” theory is no com-
promise. It does not represent an attempt to harmonize differences in the drill
and the incidental theorics. The “meaning” theory is a separate theory, which
stands or falls on its own merits or weaknesses.
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to the nature of arithmetic reveal the fact that from the very start,
in the earliest as well as the later grades, number is complex.

One way of putting “five-ness,” “seven-ness,” “ten-ness,” etc.,
into objective representations of number is to enumerate. The
ability to count objects the school does develop, but it does little
more than this by way of providing children with other, and more
advanced, ways of thinking of concrete numbers. Too commonly
instruction in counting is immediately followed by drill on the addi-
tion and subtraction combinatious.

This approach to primary number almost totally neglects the
element of meaning and the complexity of the first stages in arith-
metical learning. It even disregards the evidence provided by chil-
dren themseives that they do not understand what they are learning
and that they are in trouble. When children know a combination
one day and do not know it th2 next, there is something wrong in
the learning. So is there something wrong when, told that their
sums and remainders are wrong, children complacently make other
errors. Likewise, there is evidence of difficulty and of faulty learn-
ing when children’s written responses reveal such situations as this
+j :i* , and when their oral responses are delayed while resort
is made to counting and to other undesirable procedures. According
to the “meaning” theory these evidences of difficulty must not go
unheeded.

The truth is that training in counting alone is insufficient to
develop number ideas. Assume that the child has correctly counted
five given objects. What has he found out? Perhaps very little
indeed. It is true that he has employed the sequence of number
names accurately in a one-to-one correspondence with the objects,
but the “five” he announces at the end may mean merely that he
has run out of objects and that consequently he has no more verbal
responses to make. There is no quantitative significance in such
counting; the child might as well be saying, “a, b, c, d, e,” as “I,
2, 3,4, 5" Or the child may mean by the “five,” not the group but
the last object, the fifth one. Or again, if he means by “five” to
indicate a total, that total is constituted only of discrete ones; “five”
is thus one, and one more, and one more, and one more, and one
more. The “five” in such a case stands for no group, for no unit,
for no single pattern in his thinking. It is but a conglomeration, a
loose organization, of ones. Before this child is ready to deal
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understandingly with situations involving grouping, he must learn
to see numbers as groups,

Accordingly, the “meaning” theory interposes a definite period of

instruction between counting and the number combinations, The
purpose of this period of instruction is to provide for the child
activities and experiences which will carry him by easy stages from
enumeration to meaningful ideas of numbers as groups, The child
begins with concrete number—with objects which he can see and
handle. He makes groups of objects, compares groups of objects,
estimates the total in given groups of objects, learns to recognize
at a glance the number of objects in small groups and in larger
groups when the latter are in regular patterns.!! Eventually he
comes to think of concrete numbers in terms which are essentially
abstract. At the conclusion of this period of learning, “s” is as
much a unit in his thought processes as is “1.” The “s5” does not
need to be broken down into five 1's. It is a meaningful concept
and is available for use as such in new relationships, Equipped
with this and other like number concepts, the child is ready for
the number combinations.
« If the number combinations were “number facts” as they are
frequent'y said to be, children would encounter little difficulty in
learning them. They can easily learn “two dogs and three dogs
are five dogs,” for this is a fact. But “2 and 3 are 5” is not a fact;
it is a generalization. If it were a fact, children could, as drill advo-
cates desire them to o, memorize it as they would a fact in history.
Since, however, it is a generalization, the learning is much more
arduous and much more time-consuming. One learns the number
combinations as he learns other generalizations, not all at once by
some stroke of will or mind, but slowly, by abstracting likenesses
and differences in many situations, by reacting to the number aspects
of situations in steadily more mature ways.

As stated in the criticism of the incidental theory, the presence
of three objects and of five other objects in the same situation does
not automatically suggest to the child 3+ 5= 8. If the child is
to think of the “3” and the “s” in the form of an abstract combina-
tion, he must be taught to see it so. It does little good to tell him

YFor an example of the kind of primary number instruction which is here
described in general terms, see: Deans, Edwina, “The Effect of the Meaning
Method of Instruction on the Teaching of Second-Grade Number.” Unpublished
AM. thesis, Department of Education, Duke University, 1934.
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that 3 and s are 8. He will have to be told the same thing again
the next time the situation, or one like it, occurs, or else he will
memorize the statement. Memorization at this time should by all
means be prevented. Instead of telling the child “3 - 5 = 8" and
of urging him to memorize it, the teacher should lead the child to
discover it. Furthermore, one discovery is not enough. He must
discover it many times and in connection with many situations,
At the beginning he will need to make the discovery with concrete
materials. Eventually he will rediscover the same relation in ab-
stract numbers. Too, his method of discovering the fact will change.
He may have to count at first, This type of reaction should not
be forbidden if it is necessary to the child, for it may be his only
means of relating the numbers, As fast as may be, however, he
should be helped to eliminate counting in favor of some more mature
method of dealing with the numbers. Thus, he may see that 3 and
5 are 8 because the objects may be repatterned as 4+ 4, or as 2 -
6, or what not. Finally, he should come (and under skillful teaching
he will come) to the point where he reaches the generalization,
3-+5=8. Now is the time for him to memorize the fact, if,
indeed, he needs to memorize it. It is far more likely that his
numerous and varying experiences with these number relations
will have been enough to fix the fact for him without memorization.
Drill will, however, be of service in increasing facility of recall
and in assuring permanence to the learned fact.

(8) Pace of instruction. In the second place, nnderstanding of
arithmetic is encouraged, in the “meaning” theory, through adapting
the pace of instruction to the difficulty of the learning. At first
when the new ideas and processes are unfamiliar the pace is kept
slow. Time is allowed for meanings to develop before children are
expected to employ the given item of knowledge or skill as a highly
habituated reaction. To some extent this feature (adaptation of
instructional pace to learning difficulty) has been illustrated in the
case of the simple number combinations. It may be further illus-
trated by considering instruction in the case of the addition combi-
nations with sums above 10.

The common practice in teaching 7 4 5 = 12, for example, is to
provide the child with a single picture of two groups of objects,
seven and five in number. He is then asked how many objects
there are in all. Not being given any way of securing the total, he
prohably counts the parts. He is then informed that his answer
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“twelve” is correct, and the fact is written for him as :_{-__5 or as
: 12

7+ 5= 12. He then proceeds to “learn” it, that is, to repeat it,

until it has taken its place among the dozens of similarly memorized

items,

The “meaning” theory outlines quite a different kind and pace
of instruction. The child’s difficulty in attempting finally to habitu-
ate the combination is recognized as due to causes which relate to
the initial stages of learning. Accordingly, the rate of instruction
at first is kept slow. Activities and experiences containing the new
fact 74 5 = 12 are multiplied. Furthermore, the child is not left
at the primitive level of counting as his only means of understanding
the relationship. Instead, he is soon shown how to complete the
first number (7) to 10 by aking from the second number (5), and
thus to translate the new fact into a familiar one (1042 = 12),
He first discovers the identity of 745 and 10+ 2 by using con-
crete objects. He rediscovers them with other concrete objects
and later with pictures, with semi-concrete objects (such as pencil
marks), and with easily imagined objects in described situations.
Ultimately he comes to a confident knowledge of 7-+5=12, a
knowledge full of meaning because of its frequent verification. By
this time, the difficult stages of learning will long since have been
passed, and habituation occurs rapidly and easily.

It is impossible to illustrate at such length all the implications
of the “meaning” theory for relating instructional pace to learning
difficulty. It will be possible here only to refer to one type of
change in practice which has possibilities not yet fully appreciated.
This change is to “spread” instruction in various arithmetic topics
over a wider span of the grades than is now the custom. Material
progress along this line has been made in recent years, but much
more can be done. To illustrate, many of the characteristics of
common fractions are well within the intellectual grasp of primary
grade children and are properly taught in these grades. Others of
the easier learned aspects of fractions may well be “teased out” and
taught through Grades 2 and 4, and the most difficult ones, when
located, could be left for Grade 6, and even 7. There would seem
to be little justification for the common instructional organization
which concentrates so much of teaching of fractions into a single
grade. The proposed changes would utilize the earlier years for a
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slow, painstaking development of the basic meanings of fractions,
The child would thus be prepared to understand better the sys-
tematic treatment of fractions assigned to Grade 5 and the more
difficult features of the topic reserved for Grades 6 and 7.

Experience in the attempt to make arithmetic meaningful to
children may some day demonstrate the wisdom of “spreading” in
a similar manner instruction on other topics. Thus, some of the
simplest multiplications and division combinations may well be
learned in Grades 1 and 2, and the most difficult of these combina-
tions (with 8 and 9 as multiplier and divisor) may be postponed
to Grade 4. The division of integers by a digit may be introduced
through the long division form, which would be employed in Grade
4 to teach as many as possible of the difficult features of the proc-
ess; two-digit divisors could then be withheld until Grade 5, and
some of the most difficult (and most unusual) types of division,
until Grade 6. Decimals, denominate numbers and measurement,
and even per cent and ratio might readily be made more intelligible
and significant by adapting instructional pace to learning rate
through “spreading” the teaching of these topics., Not the least
of the advantages of these changes is that “spreading” would help
to remove a large part of the burden of uninspired “maintenance
drill” which now seems to have made itself an integral part of
arithmetic instruction.

(¢) Emphasis upon relationships)? The third way in which
arithmetic instruction according to the “meaning” theory helps to
make number sensible is by emphasizing relationships within the
subject. Five illustrations are all that can be offered at this
point.

According to the drill theory “6 and 5 are r1” should not be
taught in close temporal proximity to “7 and 4 are 11,” for fear
that children will use the one to solve the other instead of estab-

¥ Let the reader not be disturbed by what may seem to be the resurrcction
of a well-laid ghost. It is true that nearly a half-century ago (following Grube)
the attempt to systematize arithmetic instruction came to grief and was abandoned
in favor of what has become, in some instances, almost an absence of logical or-
ganization. The “meaning” theory is no revival of the Grube ideas. If the em-
phasis here given to meanings, understandings, and rationalizations seems to bear
a close resemblance to discarded practices, a closer scrutiny will reveal the resem-
blance to be less real than fancied. The mere fact that failure attended one plan of
teaching which, though it did aim at understanding, was nevertheless psychologically
and socially unsound, is slight reason to disapprove all other such instructional
plans,
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lishing independent bonds for the two. According to the “mean-
ing” theory, children’s recognition of the relation between the two
statements not only is not harmful—it is a distinct gain. In fact,
it could even be insisted that unless the relationships were under-
stood neither fact would be adequately learned. After all, the num-
ber system §s a system, a fact which for some curious reason is
withheld from children when they study arithmetic. As a system
it contains relationships and connections which, if mastered, should
enable children to make progress much more readily in their
learning.

It has been said that the number system is a system. Our num-
ber system is a decimal system; its unit is 10. That is to say, our
system is organized around 10.'® A second way, then, in which the
“meaning” theory would emphasize relationships is to make much
more use of the unit 10 than is common—for example, in teaching
children the meaning of numbers above 10, in teaching them to
read and write such numbers, and in teaching them the addition
and subtraction combinations with sums and minuends of 11-18.
The principle of adding and subtracting by endings and the pro-
cedure in higher-decade addition and subtraction would be far more
intelligible to children if developed in terms of the basic unit 10.
The unit 10 also could he employed not merely to explain “carry-
ing” in addition and in subtraction but also to introduce some of
the earlier types of multiplication and division. Decimal fractions,
their notation, and operations with decimals should be much more
easily understood if familiarity has been acquired with 10 as the
unit in whole numbers.

A third illustration of the way in which the “meaning” theory
emphasizes relationships is found in connection with the topics,
common fractions, decimal fractions, and per cent. As these topics
are now taught, they commonly impress the child as three essen-
tially unlike mathematical forms, which can, by certain mechanical
methods, be changed back and forth as required by the textbook.
Actually these mathematical forms are but three different ways of
expressing the same ideas. It may be inferred that they will be
better understood if their relationships rather than their differences
are stressed in teaching.

1 For a valuable and stimulating discussion of certain ones of the points made in
this section see: Wheat, Harry C, The Psvchology of the Elementary School,
Silver Burdett Co., 1931, pp. 135-142, or, better vet, all of Chapter 1V.
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A fourth place in which the “meaning” theory requires attention
to relationships is in the matter of the mathematical operations
themselves—-addition, subtraction, multiplication, and division.
Each of these processes stands for a special type of relationship:
in addition, that of “putting together”; in subtraction, that of “tak-
ing away”; etc. That children do not understand the meaning
of the relationships thus contained in these operations is only too
frequently demonstrated in problem-solving. Children add when
they should subtract, multiply when they should add, and so on.
There is little reason why they should not be expected to make
these errors. What is done in instruction to forestall the errors?
A child learns “2 ’n 3 ’re 5" and is supposed to understand that he
has added. He learns “8 take away 2 ’re 6” and is supposed to
know that he has subtracted. The nature of the operation is hardly
indicated by these verbal statements. Even if it were, the use
would be associated only with the signs “add,” “,” “sum,” etc.;
understanding would not be complete enough to set off the appro-
priate activity in verbal problems in which, in place of a few spe-
cific symbols, hundreds of language forms are employed to express
it. If the operations are to be understood properly, the mathe-
matical relationships for which the operations stand must be defi-
nitely taught.

The fifth illustration of relationships which would be stressed
in instruction according to the “meaning” theory is that of the
forms used in arithmetic—the column in addition and subtraction,
the placement of partial products in multiplication, the method of
writing the quotient figures in division with respect to the figures
in the dividend, and so on. These forms are frequently taught as
tools, only the mechanics of which need to be known; and yet each
one of these forms contains its own logic which adapts it perfectly
to its function. This purpose can be taught to children. If chil-
dren understand it, they will have acquired another valuable rela-
tionship, namely, the relationship of form of expression to the
thought to be expressed. The need of keeping numbers in their
proper order place (1’s at the right, 10’s next, etc.) is usually dem-
onstrated in the case of column addition, too often, however, with
the hope merely of securing thereby a greater number of correct
answers. The form used in multiplication can likewise be explained.
Consider the series of teaching steps given on the following

page.
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Example: 42

X 2
(1) 42=g4tens,20nes (2) 2 (3) 4 tens 40
X 2 X 2 or X 2
4 8 tens 8o
(4) answer = (5) 42 (6) 42 () 42
Bot4=8 Xz X2 xz
4 4 84
8o 8
84 84

Steps (1) to (4) offer no difficulty to the child, for he has long
since learned the ideas and procedures involved. They are included
in the presentation, however, because they review the multiplication
of 10’s and of 1’s and, more important, they yield the answer of
the new example before the new form is to be taught. Steps (s),
(6), and (7) simply translate the known operations and answers
into the new form, which then takes on the meaning which is asso-
ciated with steps (1) to (4). Thereafter, the form is not a sense-
less device—it is an intelligible instrument for expressing a relation,

Development of quantitative thinking. According to the
“meaning” theory the ultimate purpose of arithmetic instruction is
the development of the ability to tkink in quantitative situations.
The word “think” js used advisedly: the ability merely to perform
certain operations mechanically and automatically is not enough.
Children must be able to analyze real or described quantitative
situations, to isolate and to treat adequately the arithmetical ele-
ments therein, and to make whatever adjustments are required by
their solutions. When the purpose of arithmetic instruction is de-
fined in the above terms, true arithmetical learning is seen to be a
matter of growth which needs to be carefully checked, controlled,
and guided at every stage. It cannot safely be presumed that
children can themselves find and follow the most advantageous
course of development. On the contrary, the responsibility for
sound and economical growth rests squarely upon the teacher.

In meeting this responsibility the teacher is unwise who measures
progress purely in terms of the rate and accuracy with which the
child secures his answers, These are measures of efficiency alone,
not of growth. It is possible for the child to furnish correct
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answers quickly, but to do so by undesirable processes. The true
measure of status and of development is therefore to be found in
the level of the thought process employed. 1f the teacher is to
check, control, and direct growth, she must do so in terms of the
child’s methods of thinking. If the child tends to rest content with
a type of process which is low in the scale of meaning, she will lead
him to discover and adopt more mature processes. If she asks him
to “explain” an exercise written on the blackboard or on his paper,
she will not be satisfied merely to have him read what he has writ-
ten; she will insist upon an interpretation and upon a defense of
his solution. She will make the question, “Why did you do that ?”
her commonest one in the arithmetic period. Exposed repeatedly
to this searching question, the child will come soon to appreciate
arithmetic as a mode of precise thinking which derives its rules
from the principles of the number system.

Possible criticism of the “meaning” theory. Those who sub-
scribe to the “meaning” theory must expect criticism. The objec-
tions of the exponents of the drill theory and of the theory of
incidental learning may be easily imagined. But there is another
type of criticism which comes from a different quarter. To some
writers in the field of arithmetic the “meaning” theory is but an
attempt to restore dignity to the discredited faculty psychology
and to revive the dead issue of formal discipline. These writers
insist that the term “quantitative thinking” is but a vague if lovely
phrase—gibberish—which, if it makes sense at all, is misleading in
these practical days when teachers need to think concretely and
specifically about arithmetic instruction.

There are two answers to this criticism. The first is to show
that “quantitative thinking” is not pure fiction, but an actuality
commonly within the experience of those who understand number
—even of those who maintain that there is no such thing as “quan-
titative thinking.” The lecturer who has strayed somewhat from
his prepared remarks happens to draw out his watch. His response
comes almost immediately: “Here! Here! I must hurry.” An
artificial analysis of his behavior would reveal the following reac-
tions to have taken place: telling the time, noting the amount of
time left in the hour, estimating the ratio of elapsed to available
time, determining the amount of the lecture already given, the
same for the amount yet to be given, computing the ratio between
the two, comparing the two ratios, and arriving at a judgment.
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Only, of course, the lecturer experiences nothing whatsoever of this
sort. The numerous complicated computations isolated above never
take place at all—certainly the lecturer is unaware of any such
operations, Instead of making this analysis and this series of
separate computations, the lecturer engages in a bit of instantaneous
“quantitative thinking,” and his adjustment following upon the
thinking is as real and as adaptive as any other activity in his life.
His behavior is inexplicable except as the result of a highly organ-
ized system of thought processes. It resembles the operation of a
group of mechanical units only in that the individual does not
seem to be actively the director of the behavior, as certainly he is,
however. His behavior is purposive and extraordinarily intelligent.
It would be impossible to an individual who had not developed the
most mature types of quantitative thought processes, To say that
the lecturer engaged in a skillful bit of “quantitative thinking” is,
then, merely to describe his behavior—it is not to explain it ; least
of all is it to ascribe that behavior to the operation of some obscure
“faculty.” Mental organization does not imply “faculties.”

The criticism of the “meaning” theory as requiring impossible
mental feats and nonexistent mental faculties is, in the second place,
founded upon an inadequate conception of the learning process and
of trancfer of training in particular. To set as the end of arith-
metic instruction the development of the ability to think precisely
in quantitative situations is not to call upon magic; it is simply
to insist that the greatest possible advantage be taken of the
capacity of mind to generalize. It is incorrect to say (though the
statement is still frequently enough made) that experimental re-
search has disproved the fact of transfer of experience. Research
has done nothing of the kind. It has, however, demonstrated that
if transfer is desired from one learning situation to another, then
the training must be such as to assure transfer. No one who writes
about “quantitative thinking” assumes that transfer is to be assured
in any way except through arithmetic instruction designed to secure
it. The nature of this instruction has already been described in
the foregoing pages.

IV. CoNCLUDING STATEMENT

The record of arithmetic in the school is an unenviable one.
The position taken in this chapter is that the fault lies in the type
of instruciion generally given. Arithmetic instruction has for a
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number of years inclined much too far in the direction of the drill
theory of teaching. The trend now seems to be in the direction
of the incidental theory of instruction. While this change in in-
structional theory represents distinct improvement, it does not, for
reasons given in the foregoing pages, promise the kind and amount
of reform needed. An attempt has been made in this chapter!¢ to
out'ine a general shift in instructional emphasis and an altered view
of the nature and purpose of arithmetical learning which may bring
about the desired consequences, The basic tenet in the proposed
instructional reorganization is to make arithmetic less a challenge
to the pupil’s memory and more a challenge to his intelligence.

*Most of the illustrations of, and arguments for, the “meaning"” theory have
been drawn from the field of primary number. This fact should not, however, be
interpreted to mean that the theory holds only for the frst three grades. On the
contrary, meaning affords the soundest foundation for arithmetical learning
throughout the elementary school. Primary number has been most often cited
for arother reason. Almost everyone agrees that children in Grades $ 6,7 and 8
have to be able to “think” in arithmetic. That ability ~ “think” in these grades
is conditioned by “thinking® in the primary graces is a fact which is much less
commonly recognized. No one has shown how it is possible for children suddenly
to become intelligent in upper-grade arithmetic when they have been allowed no
exercise of intelligence in lower-grade arithmetic. In spite of the unreasonable-
ness of such an expectation, primary number is taught as if skills acquired
mechanically would later surely take on meaning, and verbalizations memorized
unintelligently would Iater inevitably become well-rounded concepts. It is the
thesis of the “meaning” theory that children must from the start sse arithmetic
as an intelligible system if they are ever to be intelligent in arithmetic. Hence,
in this chapter, the implications of the “meaning” theory for the primary number
have beeu especially stressed.




AN ANALYSIS OF INSTRUCTIONAL PRACTICES
IN TYPICAL CLASSES IN SCHOOLS OF
THE UNITED STATES

By LEO J. BRUECKNER
University of Minnesota

ANYONE who has kept abreast of the rapidly growing body of re-
search in arithmetic knows that many investigations have been made
of such aspects of instruction as the grade placement of topics in
courses of study, time allotments, pupil achievement as measured
by standard tests, and the analysis of materials of instruction. The
interesting thing is that there is very little information available as
to actual teaching practices used by instructors in classrooms.
There have been published brief reports of instruction in general
in school surveys but practically none of these have emphasized
arithmetic, It is the purpose of this chapter tc present some of the
results of a codperative survey of actual teaching practices in ele-
mentary schools in which cities in all parts of the country par-
ticipated. It is hoped that the information in the following pages
will serve as a basis of action for those who are interested in the
problem of improving arithmetic instruction.

The procedure used. The procedure used in making the survey
was very simple. First, a blank was developed (see Figure 1) con-
taining a series of items grouped under various major headings.
Each of the items on the blank represents either a judgment of an
observer of a lesson or a specific activity which might be observed
as the lesson proceeded. The list grew out of many observations of
lessons in arithmetic by students in courses in the supervision and
teaching of arithmetic at the University of Minnesota. By means
of this blank it was a very simple matter for an observer to record
various types of information concerning a class, which would be
useful in analyzing and evaluating the instruction. By consolidating
the information for a large number of lessons a vivid picture of
current practice would be readily available.

32
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Letters were written to superintendents of the larger school sys-
tems throughout the country asking them to assist in the survey by
naming principals or supervisors who would be willing to coiiperate
by reporting observations for two classes apiece. A copy of the
blank was included in each letter. The response was prompt and
generous, Requests for approximately 1,200 blanks were received.

Full directions for making the survey were tken sent with the
blanks. The classes were to be observed, if possible, in the first
two weeks in May, 1933. No special preparation for the observa-
tion was to be made by the teacher. In so far as possible typical
day-to-day lessons were to be reported. The observer was to be in
the class throughout the whole lesson. The blank to be used for
recording the observation was not to be discussed beforehand with
the teacher.

Data regarding the classes. In Table I are given various data
concerning the classes included in this report.

TABLE 1
GENERAL DATA REGARDING CLAssES INCLUDED IN THE REDORT

Median Median Media:

Grade Number of Class Length Experience
Classes Size of of Teachers
Period {Years)
Gradeq4 . .....oovvvvinnnt 153 43 40 9
Grade 5. .............. .00 170 39 40 16
Grade6..............c0v0 182 40 40 16
Allclasses. .......oovvvenes, 505 40 40 14

In all there were reports for 5035 observed lessons, the data from
which were received in time to be included in the tabulations (June
1, 1933). There were 153 classes in Grade 4, 170 classes in Grade
5, and 182 classes in Grade 6. These classes were divided between
traditional schools and platoon schools in the ratio of approxi-
mately six to one. Because of the relatively small number of classes
of the platoon-school type, data for all classes were consolidated.
Results from very few experimental classes were received. Geo-
graphically the classes were distributed throughout the country
from New England to California. The cities that assisted in the
survey were all large. No data are included for small towns and
rural communities. The median length of the class period in all
grades was 40 minutes. A few classes had periods of 60 minutes
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FIGURE :

SURrVEY OF SELECTED INSTRUCTIONAL PRACTICES IN OBSERVED LESSONS IN ARITHMETIC IN GrADE
4, 5, AND 6 CoxNprcreD UNDER THE AUSPICES OF THE N ATIONAL COUNCIL oF TEACHERS OF MATHEMATICS

School.................... ...... . City State............. . Grade. ...... .
Lengthof Perivd.................... s TimeofDay................... + Numberof Pupils. .......
Platoon ...............

Experience of Teachers (in Years)....................... « Typeof School ) Traditional .., ... .. .. .
Experimental ..........

. ..

TraNNG:  Grade 9, 10, t1, 12 Normal or Teachers College 1, 2, 3, 4 Universityor 1, 2 3, 4
(Encircle highest year attended) e College e

Directions: Thisblank is to be used to record certain observed facts in one typical lesson in arithmetic, in a room
having only one full classin it. Split classes should not be included. The observer will check the jtems below

applying to this one lesson alone, Space is provided in each group of items for additional facts that may
appear to be vital.

t. The apparent major objective of the lesson. (Check not more than two, preferably only one unless
two are very evident.)

...& To develop skill in computation,
+++.b. To develop skill in solving problems stressing Yrocesses rather than social applications of number.
«v..C¢ To develop an understanding of the socia! applications and uses of number in life.
«++.d. To develop interest in number through various types of projects, rreative a-.ivities, and the like, planne¢
by the pupils, under the guidance of the teacher.
++..€ Others,suchas ..............

2. Types of instructional activities occurring. (Check all those observed.)

«+..8, Development of new process by direct teaching
++..b. Practice on the new process
..C. Review of previous work through discussion and questions
-»d. Formal written drill on previously acquired skills
voeo (1) With standard drill materials
++++ (2) With teacher prepared materials
o8 Games
««+.f. Test not including practice tests listed in d.
«vvs (1) With test prepated by the teacher
vooo (2) With astandardized test in arithmetic
++..E. Pupils give original problems illustrating topic under consideration
«++.h. Teaching pupils how to solve problems using prepared problem solving helps
««..i. Practice in solving problems dealing with social applications of number
vee L Practice solving problems to illustrate some computationai ;.rocess
++..X. Discussion of historical aspects of number
.+..1.  Discussion of present day social applications and uses of number
..m. Planning and executing class project involving practical application of number
.«+v.n, Reports on assigned topics, assigned reading, etc.
+++.0. Worthwhile voluntary independent contributions made by individual pupils
++..p. Dramatizations of applications of number
.»..q. Systematic diagnostic work with individuals by the teacher
.+..T. Pupils taught how to diagnose their own difficulties
«++.8. Pu,ils diagnose their own difficulties
«+..t. Systematic remedial work adapted to individual needs
-+..u. Oral practice exercises for speed work
»++.v. Independent group work by some pupils
++.. W, Completely individualized work (Winnetka plan)
....X, Presentation of uses of number in other subjects, as geography, health, etc.
+++.¥. Construction of graphs and other types of geometric design
ess.2. Others,suchas ............
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FIGURE 1 (Conlinued)
. Instructional materials used. (Check all those used.)

s. Books

.+o (1) No books used

<o« (2) Basic text in hands of pupils

.o {3) Supplementary textbooks

««. (4) Reference books, encyclopedias, etc.

«.+ (5) Pamphlets, bulletins, magazines, etc.

v (6; Selections found in readers, geography texts, history texts, etc.

wee (7)) Others, SUCH A8 voveiiutieiaanteiesontuunossserssesssressostassonesnsssasoansassineresns

b. Practice exercises

Ve (x; Excrcises in textbook

... {(2) Standardized drill cards adapted for individual progress

... (3) Unstandardized materials on cards prepared by the teacher

.v+  (4) Mimeographed materials

cee (sg Workbooks

... (6) Materials on blackboard to be copied by pupils

eee  (7) Dictated materials to be copied by pupils

‘e (8} Problems or examples given orally to be solved mentally

««. (o) Flash cards

.ee (10) Others,such as .coviviviiiiiiiiiiiiiians Ceririeeaeees et e ettt eee et

¢. Other equipment

.vo (1) Blackboard used by teacher
.+.  (2) Blackboard used by pupils
.o (3) Slides, films, etc.
vess (4) Class pmrm graph (in use or on wall)
.o+ (5) Individual progress graph
<o+ (6) Charts, diagrams, pictures, etc., not in texthook
... (2) Objects, such as cubes, measures, sticks, rulers, instruments, etc.
.o (8) Tllustrative materials collected from the community
.+ (9) Bulletin board display of current applications of number
vee s:o; Prepared exhibits of materials supplied by commercial houses
.+ (11) Neatness scales to set standards
veee (22) Others, such B8 .o ittt ietiiiaeaeiotiesosessosaoosesssssensssernresisssosnsstsonsss

4. The organization of the room for work.

-+ +.(a) The entire class does the same work on processes

..+ .(b) The entire class does the same work on problems

.+..(c) Pupils are divided into two or more groups according to progress made

gdg There are independent groups working on various group projects

..+.(¢) There is completely individualized instruction on number processes

voo (D) Others, SUCK 88 t4eiivierinntiiioeineinnsuietnssueasseetnosassstetssaatsssssssasas ereeaas

s. Basis uf the class work., (Check one.)

vee o) 'I}‘leaslheﬁ directed activities limited almost wholly to the orgamzarion and content of a single textbook or of
the drill exercises

....(b) Varlety of materials is introduced by the teacher to supplement the textbook to enrich instruction and to
develop interest 3{ the pupils . .

..+.(c) Work is organized in large units of subject matter devised by the teacher and cxecuted by the pupils

: (Contracts, Morrison unita. etc.) .

.. .{d) The class work is organized in the form of activities planned and executed by the pupils under the guidance

of teacher. (Projects, creative activities, etc.)

Person making He 0DSerralion. ... . v.vuu e ventniiiii ettt ot iiistiiitiiiatitirtitriiioiiinseaes

Please return all blanks when completed lo

PROFESSOR LEO J. BRUECKNER,
University of Minnesota,
Minneapolis, Minnesota
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in length, while a few were less than 30 minutes. The median size
of all classes was 40 pupils. Classes for Grade 4 were slightly larger
than for the other two grades. The median experience of the
teachers for all grades combined was 14 years. Teachers in Grade
4 had a median of only g years’ experience, 5 years less than for
the teachers in Grades 5 and 6. The teachers whose work was ob-
served by those who filled in the report blank were undoubtedly
a selected group of mature, experienced teachers of ability. Table
11 shows the training of the teachers. Data on training were given

TABLE II

YEARS OF TRAINING OF TEACHERS OF ARITHMETIC
{450 blanks included data)

Number of Years

Place of Training

t 2 3 4 Tot;l
Teacherscolleges................ ... 20 160 76 34 200
Universities......................... 6 9 19 58 92
Combinations. . ................ 68 (30 ~fless than s years; 29 of 5 yearsor more)

on only 450 of the report blanks. It can be seen from Table II
that very few of the teachers had had less than two years of col-
12ge work, while a large number had had as much as four or even
five years of college education, either in normal schools or in uni-
versities, or both. This level of education is on the whole consider-
ably higher than is usually found in a group of five hundred ele-
mentary school teachers. It is, therefore, clear that the summaries
that follow are based on consolidations of observed lessons taught
by mature. selected individuals of training considerably above the
average.

Apparent major objectires of lessons observed. The first
item that the observer was asked to record about a lesson was its
apparent major objective. Extensive preliminary observations of
typical lessons had revealed the fact that these objectives could
conveniently be stated under four heads, as given in Table TII.

In Table IIT are given data showing how frequently each objec-
tive was checked as an apparent major objective of a class. The
directions to observers were that not more than two objectives were
to be checked for a lesson, preferably only one, unless two were
very evident. The purpose of this plan was to try to get a picture
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TABLE III

NuMBER oF TiMEs EAcH OBjJrcTivE Was RePORTED* As Turg ArpAreNT MAJOR
OBJECTIVE OF THE LESSON

Grade
Objective . 5 6 All of

Na. %% No. % No. %

a. To develop skill in computation 86 56 96 56 87 48 2069 53
b. To develop skill in solving prob-

lems stressing processes rather

than social applications of num-

ber .0 e 56 37 74 44 76 42 206 41
¢. To develop an understanding of

the social applications and uses

of numberinlife............. 24 16 33 19 65 36 122 24
d. To develop interest in number

through various types of proj-

ects, creative activities, and the

like, planned by the pupils under

the guidance of the teacher.... § 3 8 3 7 4 20 4
e. Others,suchas— ......... 9 6 11 6 4 2 24 [
Number of classes ......... 153 170 182 505

* Note: The directions for reporting apparent major objectives of lessons were: (Check not more than
two, preferably only one unless two are very evident.)

of what in the judgment of the observer was ike best statement
of the major objective of the lesson. Data are given for each grade,
and for all grades comwined.

It is obvious frem Table III that the apparent major objectives
of the great majority of the observed lessons were to develop skill
in computation and in solving verbal problems, stressing the various
processes rather than the social applications. In §3% of all classes
observed, “To develop skill in computation” was checked as the
major objective and in 41% of all classes, “To develop skill in
solving problems stressing processes rather than social application
of numbers” was checked as the major objective. In only 24% of
the classes was the third objective, “To develop an understanding
of the social applications and uses of number in life,” judged by the
observer to be the major one. In only 4% of the classes was the
major objective the development of interest in number through
various types of projects, creative activities, and the like, planned
by the pupils under the guidance of the teacher. In about 30% of
the cases more than one objective was checked, usually a combina-
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tion of a and b, or a and ¢. Tt is worth pointing out that the em-
phasis on the objective, “The understanding of social application and
uses of number,” increases considerably from Grade 4 to Grade 6,
while the emphasis on developing skill in computation is less in
Grade 6 than in Grade 4. In only 24 cases, or 4%, of the total did
observers list objectives other than those given; most of them
were in fact only minor variations of the four used in the blank,

The evaluation of the facts presented in Table III depends largely
on one’s conception of what the functions of instruction in arith-
metic are. Elsewhere an attempt has been made to state what in
the opinion of progressive curriculum workers in arithmetic these
functions are or should be! Briefly stated, they are as follows:
(1) the computational function, which includes instruction in the
arithmetic processes useful in everyday life; (2) the informational
function, which emphasizes the belief that instruction in arithmetic
should include the presentation of significant information concern-
ing the development and application of number in the affairs of
daily life; (3) the sociological function which emphasizes the so-
ciology of number and the understanding of the ways in which
number has facilitated social intercodperation; and (4) the psycho-
logical function which emphasizes what Dr. Judd has well described
as “number as a mode of thought,” that is, the ability to think pre-
cisely and accurately by means of quantitative techniques that have
been or are being developed by man.

In a well-balanced course in arithmetic each of these four func-
tions should be stressed. In the opinion of many competent per-
sons the informational, sociological, and psychological functions
are of greater significance and value than the computational. When
teachers emphasize the development of skill in computation they
tend to neglect the other functions. Judging from the returns
received from the sos classes taught by selected teachers it is
obvious that in this country teachers have as their major objective
the development of skill in computation. This conclusion is similar
to that of Steel who found that teachers in Grades 4 to 6 in the
schools of Minnesota devoted approximately 84% of the class time
to drill on computational processes. The result must undoubtedly
be that arithmetic is in danger of becoming a formal, devitalized
subject instead of the rich social study it could so easily be.

! See the “Critique” in The Twenty Ninth Yearbook of the National Society on
the Study of Education. Public School Publishing Company, Bloomington, 1.,
1930,
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The explanation for this emphasis on skill in computation is
quite simple. At the present time the achievement of pupils in
arithmetic is measured by the scores they make on the various
standard tests so widely used throughout the country. Practically
all of these tests contain only examples to be solved by computa-
tion. Since in many quarters undue weight is given to the results
of these tests, teachers stress the work which will enable their
pupils to make high test scores, regardless of the social value of
the processes presented. Likewise our courses of study and most
of our textbooks stress the computational aspects of the subject.
The solution of this difficulty does not necessitate the elimination
of all tests but rather the development of new tests which will
enable the teacher to determine the extent to which the pupils
have mastered the essentials included under the other three func-
tions of the subject.? Tests which measure the extent to which all
of the desired objectives are being achieved are one of the most
valuable professional too's the teucher has available.

The organization of the classwork. Class work in any sub-
ject may be narrow and limited to a textbook, or it may be organ-
ized into large, rich units or activities. In recent years there has
been much discussion of the theory of the activity curriculum and
methods of organizing the work in various subjects into units, such
as contracts, understanding units, Morrison units, and the like. In
Table IV data are presented which show what the basis of the
class work in arithmetic in the 505 observed classes was in each
case judged by the observer to be.

The data in Table IV show conclusively how great an inJluence
the textbook has on the kind of instruction pupils receive in arith-
metic, In Grade 4 in 53 classes, or 34% of the total for the grade,
the basis of the class work was teacher-directed activities Iimited
almost wholly to the organization and content of a single textbook
or of the drill exercises used; in Grade 5 the per cent of all classes
having the textbook as the basis of class work was 41; in Grade 6
the per cent was 41; the textbook or drill materials was the basis
of the class work in 397 of all classes. When modern, scientifically
constructed textbooks which present a balanced treatment of the
four functions of arithmetic are being used, these facts are not

*The writer has made a preliminary attempt to measure these functions in a
series of tests, entitled Analytical Scales of Attainment in Arithmetic, published
by the Educational Test Bureau, Inc., Minneapolis, Minn,
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TABLE IV
Basis or THE Crass Work*

Grade
%
Class Work 4 $ 6 All of
All

a. Teacher directed activities limited
wholly to the organization and content
of a single textbook or of the drill exer-
CISBS .. vivvirrniroreitonennnoanns $3 34 69 41 7T 41 193 39

b. Variety of materials is introduced by
the teacher to supplement the textbook
to enrich instruction and to develop
interest by the pupils............. 68 44 78 46 87 48 233 47

¢. Work is organized in large units of
subject matter devised by the teacher
and executed by the pupils (Contracts, :

Morrison units,etc.) .............. T 1 6 4 4 2 I 2

d. Theclass work is organized in the form
of activities planned and executed by
the pupils under the guidance of
teacher. (Projects, creative activities,

L3 2 1

9 5 7 4 18 3

e.Others ............covvvninnnnt, 2 1 I b S ¢ 4 I

f. Notreported........ovvvvvnnnn.n, 27 18 7 4 12 7 46 8
Number of classes ..... ........ 152 170 182 508

* Note: Observers were asked to check one item.

alarming. However, when one realizes the limitations of some of
the older books that are now in the hands of the pupils, it is appar-
ent that a very meager type of subject matter is taught in many
arithmetic classes.

That teachers recognize the limitations of instructional materials
and realize the neccssity of methods of supplementing the textbooks
as a basis for enriching the class work is shown by the data in
Table IV. In 47% of all classes the teacher introduced a variety
of materials to supplement the textbook so as to enrich the instruc-
tion and to develop the pupil’s interest. This is a very satisfying
situation.

In very few classes was there evidence that the new progressive
theories of education have influenced instruction in arithmetic.
In only 2% of all classes was the work organized in large subject-
matter units. In only four classes was the class work organized
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In the form of activities, such as projects, excursions, creative activi-
ties, and the like. This condition is undoubtedly largely due to the
fact that instruction in arithmetic is at present limited chiefly to
the computational function and since this results in a great amount
of formal drill work very little use is made of the various types of
socializing experiences which have done so much to vitalize in-
struction in the other subjects of the curriculum. That much can
be done to enrich the teaching of arithmetic is being demonstrated
in many schools, some of which have published descriptions of the
units® they have developed.

Provision for individual differences. In these days when edu-
cational literature abounds with evidence of the fact of individual
differences it is interesting to note what is being done by teachers
of arithmetic to adjust instruction to tke differences in ability, rate
of learning, and progress of pupils in their classes. All pupils in
a class may be required to do the same work, or they may be
divided into groups according to their needs; or the work may be
individualized, as is done in Winnetka, Ill., and Detroit, Mich.
Data on these points are given in Table V.

TABLE V
ORGANIZATION oF THE RoosM ror WORK

Grade
- %
Organization 4 s 6 All of
All
No. ¢ No. 9% No. %%

a. The entire class does the same work
ONPIOCESSES .. \vv'vrviernnnnnnnss 69 45 70 46 77 42 225 45

b. The entire class does the same work
onproblems ..................... 43 28 §3 31 66 36 162 32

¢. Pupils are divided into two or more
groups according to progress made... 64 42 96 56 93 &1 253 50
d. There are independent groups working

on various group projects . ........ 14 9 17 10 22 12 53 10
e. There is completely individualized in-
struction on number processes .. ... 9 6 12y 8 4 29 6
f. Others,suchas—— .. ............ 6 4 5 3 7 3 18 3
Number of classes............... 153 170 182 505

*See, for example, the bulletin, Arithmetic Activities, by Alma B. Caldwell,
published by the Board of Education, Cleveland, Ohio: also, the South Dakola
Course of Study in Arithmetic, published by State Department of Education,
Pierre, S. D.
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Data in Table V show that in approximately 45% of all classes
the entire class did the same work on processes and in 32% the
entire class did the same work on problems. There was not much
variation in the per cents in each grade. In these classes the fact
of individual differences was apparently ignored. On the other
hand, in approximately 50% of the classes the pupils were divided
into two or more groups according to the progress made, while
in 10% of all classes there were independent groups working on
various group projects. In only 6% of all classes was the work on
number processes completely individualized. In view of the excel-
lent types of instructional materials in arithmetic intended for the
purpose of individualizing instruction in arithmetic processes that
can easily be secured the small proportion of classes which used
this fact is surprising. The fact that in so many classes pupils
were divided into groups according to ability shows that definite
attacks are being made on the problem of individual differences.
The procedures used vary from city to city. As far as increasing
the efficacy of drill work on computation is concerned, the solution
seems clearly to be the development of a type of class organization
which completely individualizes the work. Present practices in
many classes should be radically changed. As far as the socializing
aspects of the subject as emphasized by the informational, socio-
logical, and psychological functions are concerned, it seems reason-
able to maintain that a wide variety of types of activities in which
the pupils may all work as a single class group on one problem,
or in smaller groups nn various subtopics is desirable. These activi-
ties could be quite similar to those that have been found worthwhile
in the social studies, namely, discussions of present-day problems,
assignments of special topics for investigation and report, continua-
tion projects, excursions, dramatizations, and other types of social-
izing group experiences.

Types of instru-tional activities. The types of instructional
activities engaged in by the class give a good picture of the methods
and procedures that are being used by the teacher to vitalize the
subject, or to devitalize it, as the case may be. In order to secure
data on this point a list of twenty-seven widely varied types of
activities that might take place in arithmetic classes was prepared.
Observers were asked to check on the list those activities that
actually occurred during the lessons observed. The consolidated
data for each grade and for all combined are given in Table VI.
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TABLE VI
TYPES OF INSTRUCTIONAL ACTIVITIES IN OBSERVED CLASSES IN ORDER OF FREQUENCY

Grade

~ %
. Instructional Activity 4 [3 6 All o;:
No No. No. A
a. Review of previous work through discussion and
QUESLIONS ...t e 03 92 110 267 83
b. Practice on the new process ................... 71 8o 70 221 44
c. Development of new process by direct teaching .. 6o 72 66 198 39
d. Practice solving problems toillustrate some compu-
tational process ............................. 45 69 71 185 37
e. F rmal written drill on previously acquired skills
with teacher prepared materials ............... 49 60 59 168 34
f. Pupils taught how to diagnose their own difficulties 48 6o 58 166 33
g. Systematic remedial work adapted to iidividual
needs ... e e 47 s4 64 165 33
h. Pupils diagnose their own difficulties ... ....... 44 52 68 164 33
i. Practice in solving problems dealing with sucial ap-
plications of number ......................... 39 49 71 159 32
j. Systematic diagnostic work with individuals by
teacher ......... ... ... 43 54 47 144 29
k. Oral practice exercises for speed work .......... 390 5§52 40 131 26
1. Formai written drill on previously acquired skills . 31 41 43 115 23
m. Independent group work by some pupils ........ 28 38 40 106 21
n. Worthwhile voluntary independent contributions
made by individual pupils .................... 18 31 41 o0 18
o. Teaching pupils how to solve problems using pre-
pared problem solving helpe ................... 27 30 28 8s 17
p. Pupils give original probluns illustrating topic
under consideration .......................... 17 40 27 84 17
q. Discussion of present day social applications and
uses of number ......... ... oL, 19 18 45 82 16
r. Formal written drill on previously acquired skills
witk standard drill materials .................. 19 20 26 62 12
8. Test prepared by the teacher .................. 9 19 18 46 9
e GameS L. i e 9 14 4 27 5
u. Dramatizations of applications of number ... ... 9 6 1 26 5
v. Presentation of uses of number in other subjects, as
geography, health,etc. ....................... 3 4 13 20 4
w. Construction of graphs and other types of geomet-
ricdesign ... i 2 10 8 20 4
x. A standardized test in arithmetic .............. 3 6 7 16 3
y. Planning and executing class project involving
practical application of number ................ 3 12 18 3
z. Reports on assigned topics, assigned reading, etc. . o 2 7 9 2
a’ Discussion of historical aspects of number ...... 1 ° 4 3 1
b’ Completely individualized work (Winnetka plan). 1 1 1 3 1
¢’ Others,suchas~—— ...........0vivievnnnnnn, 5 14 16 35 7

Numberof classes ...........covvvvnennn.s. 153 170 182 503
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In Table VI the activities are listed in the order of the frequency
with which they were checked for all classes combined. The activity
given first in the table occurred most frequently, the one given last
occurred least often.

The data in Table VI merely show in detail what has been pre-
viously reported. The five activities checked most frequently were:
(1) review of previous work through discussion and questions, §3%
of all classes; (2) practice on new process, 44% of all classes; (3)
development of a new process by direct teaching, 305 of all classes;
(4) practice in solving problems to illustrate some computational
process, 37% of all classes; and (5) formal written drill on pre-
viously acquired skills with teacher-prepared materials, 34% of all
classes. These data show the extent to which the computational
function was stressed in the classes included in this report. In
view of the fact that the number of lessons is quite large, that no
special preparation was made by the teachers for the observations,
and that the lessons were to be typical ones, the conclusions based
on another similar set of observations would probably not differ
widely from those herein presented.

Almost all types of activities that would be expected to occur in
classes in which an effort was being made to socialize and to vitalize
the work in arithmetic appear far down in the list in Table VI.
For example, dramatization of applications of number ranks twenty-
first, presentation of uses of number in other subjects ranks
twenty-second, planning and executing class project involving prac-
tical application of number ranks twenty-fourth, reports on assigned
topics, assigned readings, etc., ranks twenty-fifth, discussion of his-
torical aspects of number ranks twenty-sixth. Not only do these
activities rank low in the list but they are also reported as occur-
ring in very few classes. It is interesting to note that in approxi-
mately one-third of all classes diagnostic and remedial work of
various kinds was being done. This shows that teachers are making
definite efforts to apply the techniques that have been devised by
various investigators to aid teachers to determine the reasons why
many pupils fail to make satisfactory progress in arithmetic. This
is undoubtedly one factor that has led to the grouping of pupils
according to their needs which has been shown to be characteristic
of approximately half or the classes included in this report.

Instructional materials used. Another angle of the teaching of
arithmetic is revealed by an analysis of the various kinds of instruc-
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tional materials that were used by the teachers. At the present
time one finds a wide variety of materials available—textbooks,
workbooks, standard drill cards, such objects as cubes, measures,
and the like—to aid in making the work concrete, progress graphs,
and printed bulletins dealing with special topics. Likewise teachers
often find it helpful to bring in displays of local materials, com-
mercial exhibits, and other items that illustrate local applications
of number. Data on the extent to which the different kinds of
instructional materials were used in the classes included in this
report are given in Table VII.

The data in Table VII are grouped under the three heads, books,
practice exercises, and other equipment, The number of times each
type of material was reported for each grade and for all grades com-
bined is given. In 2§7 classes, or 51% of the total number, a basic
textbook was used by the pupils. This shows the extent to which
teachers rely on textbooks in teaching arithmetic, On the other
hand, in 181 classes, or 36% of the total, no books were used at
all. Are present-day textbooks i: «‘:quate? Where do pupils find
the materials for the lesson? Uuder the heading “practice exer-
cises” we find that in 197 classes, or 37% of the total, the pupils
copied materials placed on the blackboard; in 15% of the classes
the pupils copied dictated materials. Both of these practices are
very inefficient. The danger of error in copying long examples, the
difficulty of seeing materials written on the blackboard, and the
time consumed in copying are all strong arguments against these
practices. Furthermore, it is practically impossible to provide for
individual differences when the teacher attempts to place the exer-
cises for the lesson on the blackboard. Invariably all pupils do the
same work. The teacher simply cannot prepare assignments for
the various individuals in the class. This condition is not helped
much when practice exercises given in textbooss are used, as is done
in 39% of all classes. Textbooks as they are now constructed
usually make no provision for assignments adapted to the needs
of individual pupils, although an examination of some of the more
recent textbooks shows that definite steps are being taken to in-
prove this condition by means of inventory tests to locate specific
needs of pupils, diagnostic tests to determine specific weaknesses,
study helps for self-help by pupils, and practice tests for remedying
deficiencies.

At present probably the most effective type of drill materials
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TABLE VII

NuMBeR or Tiues EACH TYPE oF INSTRUCTIONAL MATERIALS WAs OBSERVED

Grade

— %
Instructional Material n 3 6 Al :{:
No. No. No.
a. Books
1. No books used ........... e 48 62 71 181 36
2. Basic text in hands of the pupils ............ 71 8 100 287 &I
3. Supplementary textbooks .......... e 18 13 11 42 8
4. Reference books, encyclopedias, etc. ......... o o 4 4 1
§. Pamphlets, bulletins, magazines, etc. ........ 1 4 10 1§ 3
6. Selections found in readers, geography texts, his-
tory texts,etc, ............oc0viiiininn, o 4 +] 13 2
7. Others,suchas—— .. .................. .7 14 9 3 6
b. Practice exercises
1, Exercises in textbook ...... e tiiieene 83 70 78 198 390
2. Standardized drill cards adapted for individual-
ized progress ........... R e 16 13 14 43 8
3. Unstandardized materials on cards prepared by
teacher ........ ...t 20 28 11 50 12
4. Mimeographed materials .................. 20 38 26 84 17
S« Workbooks. .......covvviiin i 22 18 22 §9 12
6. Materials on blackboard to be copied by pupils 54 74 68 196 37
7. Dictated materials to be copied by pupils. .. . . 17 32 28 77 1§
8. Problems or examples given orally to be solved
mentally ....... i e e e 26 44 33 103 21
o Flashecards ...................c0ovuiul, 18 11 12 41 8
to. Others,suchas—— .. ... ................ 6 9 8 23 8
¢. Other equipment
1. Blackboard used by teacher ................ 107 138 137 382 96
2. Blackboard used by pupils ................. 96 131 133 360 72
3. Slides, films, etc. .......ovvviiiiiininin o o 1 1 1
4. Class progress graph (in use oron wall) ...... 9 27 40 06 19
§. Individual progress graph .................. 26 31 47 104 21
6. Charts, diagrams, pictures, etc., not in textbook 22 20 24 66 13
7. Objects, such as cubes, measures, sticks, rulers,
instruments, etc. ........................ 16 15 22 53 11
8. Illustrative materials collected from the com-
MUNity .. e e 4 4 10 18 4
9. Bulletin board display of current applications of
number ... 2 6 7 15 3
to. Prepared exhibits of materiul supplied by com-
mercial houses . ..., o o 2 2 1
11, Neatness scales to set standards............. 6 4 1 11 2
12. Others,suchas—— ... .................. 3 [ 7 15 3
Numberofclasses .............o.c0vnnes 153 . 170 182 505
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is to be found in the standardized drill cards or workbooks which
make possible individualized progress, Table VII shows that in
only 8% of all classes were such drill cards used and that in only
12% were workbooks used. In 12% of all classes the pupils used
unstandardized drill materials on cards prepared by the teacher.
When one appreciates the difficulties involved in preparing adequate
standardized drill exercises, one wonders whether or not these exer-
cises prepared by the busy teacher are efficiently constructed. It
must be recognized that the picture here presented is undoubtedly
affected to some extent by the lack of funds available for the pur-
chase of important and necessary kinds of instructional materials.

Because of the need of supplementing textbooks teachers also
make extensive use of the blackboard. This is shown by the fact
that in 764c of the classes the teachers used the blackboard. In
72% of the classes pupils used the blackboard for part of the class
work. In 17% of all classes mimeographed materials of various
kinds were used. Lantern slides which enable the teacher to project
on a screen various types of instructional materials, such as explana-
tions, illustrations, or drill exercises, were used in only one of the
505 classes observed.

Methods of enriching and vitalizing instruction. Instruc-
tional materials of various kinds are used to enrich and vitalize
class work. Table VII shows the extent to which they were used
by the teachers in this survey. Under the heading of books we
find that reference books, encyclopedias, etc., were used in less
than 1% of the classes; pamphlets, bulletins, magazines, etc., which
abound in illustrative materials in only 3% of the classes; and
materials in readers, geography, and history textbooks in only 2%
of all classes.

Here we have evidence that teachers of arithmetic do not regard
it as their function to enrich and to socialize the subject. It is, of
course, true that number is used incidentally in some of the other
subjects, such as geography, history, and reading. It should be
emphasized, on the other hand, that arithmetic itself offers so many
possibilities of enrichment that definite provisicn for such enrich-
ment should be made in the arithmetic class. There is no reason
at all why the work in arithmetic should be limited to the compu-
tational function, At the present time textbooks do stress this
function. One way to overcome this deficiency would be to supple-
ment them with arithmetic readers containing informational mate-
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rial related to the topics being studied, short pamphlets on special
topics, such as the inexpensive series of booklets on the “Achieve-
ment of Civilization,” prepared by the American Council on Edu-
cation, references to current periodical literature, and the like.
Many of the lessons in the Teachers’ Lesson Unit Series, edited by
Professor W. A. McCall, contain excellent descriptions of enriched
units in arithmetic emphasizing its social values. They usually
give numerous reférences to suitable supplementary materials in
books on the child level. Many of the reading textbooks contain
interesting accounts of the history of time-pieces, the development
of various kinds of money, the story of how people earn money,
measurement, and other topics which can easily be integrated with
the work in arithmetic. The maps, charts, tables, graphs, and
other types of quantitative materials in social studies textbooks
offer abundant opportunity for rich, meaningful instructional units
in arithmetic. Instead of limiting the study of number to com-
putation every effort should be made to vitalize it by giving the
pupil the opportunity to discover the many ways in which number
has enabled man to deal efficiently and simply with the many
aspects of the environment which must be dealt with quantitatively
if they are to be understood.

Use of progress graphs., Experiments on the motivation of
learning have conclusively demonstrated the value of class or indi-
vidual progress charts which enable the pupil to determine his prog-
ress from time to time. The pupil is thereby stimulated to work
for his own improvement. It is interesting to note that in 19%
of all classes class progress graphs were in use or on the wall; in
2150 of the classes individual progress graphs were used. They
should be used in all classes. There are available several series
cf standardized tests which enable the teacher to measure pupil
progress at regular intervals throughout the year. The informa-
tion supplied by the results of these tests makes it possible for
the teacher to adjust her instruction to the needs of the pupils in
an intelligent manner.

Use of illustrative materials. The more use the teacher can
make of various kinds of concrete illustrative material, the richer
and more vital the subject matter being studied is likely to be. In

/53 classes, or 119 of all, such objects as cubes, measures, or instru-
. ments were used; in only 4%% of the classes were illustrative mate-
rials collected from the community used; in only 3% of the Jasses
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were bulletin-board displays of current applications of number
used; in only two classes was any use made of prepared exhibits
of materials supplied by commercial houses. It seems obvious that
much more use can be made of such types of illustrative materials
than was made by teachers of the classes included in this survey.

Felt needs of teachers compared with current practices. It
is very helpful to compare the inadequacies of arithmetic instruc-
tion as revealed by a survey of teaching practices with the points
on which teachers feel the need of help. This is possible by using
the results of an earlier survey* involving a large number of teach-
ers of Grades 3 to 6 in schools of the Middle West, few of whom
are included in the present survey. These teachers were asked to
indicate on a check list of 128 items related to the teaching of arith-
metic the degree to which they felt the need of assistance on the
several items included in the list. The following twenty-five items
include those on which the highest per cents of teachers indicated
a felt need of help. It will be observed that the activities involved
in these items correspond quite closely to the inadequacies of in-
struction revealed by the present survey.

1. Showing how number has aided in the systematizing of the quan-
titative aspects of the environment.

2. Knowing the historical «evelopment and significance of the im-
portant applications of number,

Using excursions, projects, and exhibits.

Showing the social significance of quantitative concepts.
Providing opportunities for exploring topics of special interest.
Keeping notebooks on topics being studied.

Assigning topics for special reports.

Providing for group or committee work on spec1al topics.

9. Providing opportunities for pupils to assist in the organizing and
planning of class activities and discussions.

10. Assigning special topics for independent research.

11. Organizing the aspects of the school bank, milk supply, and
similar activities in which arithmetic is used in a practical way so that
pupils participate in various phases of the activities.

12. Arousing interest and developing the habit of extensive reading
on topics being considered by the class, such as banking, the history
of number, etc.

13. Developing an appreciation of the social significance of quantita-
tive relations.

PN R

¢ Brueckner, L. J., White, L., and Dickeman, F., 4 Curriculum Study in Teacher
Training in Arithmetic. University of Minnesota Press, 1932,
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14. Training pupils in the use of reference materials.
15. Securing a learning situation in which motives of a relatively

high order are present.

16. Providing intercorrelations between subjects in situations in
which number functions.

17. Preparing informal diagnostic exercises.

18. Providing for variations in rates of pupil progress.

19. Using a socialized form of recitation.

20. Utilizing provisions that enable the teacher to secure test ma-
terials.

21. Filing informal tests for future use.

22, Using the school equipment such as mimeograph, etc., in pre-
paring tests.

23. Cobperating with other teachers in the preparation of tests.

24. Preparing improved types of supplementary materials.

25. Reading new scientific contributions on aspects of arithmetic
instruction.

CoNcLUSIONS

It is recognized that the results of this survey are based on only
a small sampling of classes. They were carefully selected, however,
and probably the work in them represeuts a cross section of what
may be regarded as better practices in the teaching of arithmetic
in this country. It is suggested that similar surveys should be
conducted in various schools to get a more complete picture of
what local practices are. Such information could well be made the
basis of a direct attack on the improvement of the teaching of
arithmetic. It might also be one source of suggestions as to how
our present courses in normal schools in the teaching of arithmetic
might be revised in order to adapt them more closely to conditions
as they exist in our schools. Certainly they should make some
provision for remedying conditions which have resulted in the rela-
tively narrow type of instruction which now so commonly charac-
terizes instruction in arithmetic.



INFORMATIONAL ARITHMETIC
By B. R. BUCKINGHAM

IN THIS chapter the term “informational arithmetic” will be con-
trasted with computational arithmetic. It will be taken to refer to
understanding, interpretation, and use rather than to processes and
skills. Interpreted in this way, it involves partly a difference in
subject matter, partly a difference in method, and altogether a dif-
ference in purpose. It is not always easy or practicable to de-
termine whether a given item in the course of study, the textbook,
or the classroom procedure is informational or whether it is com-
putational. Of course, extremes are readily identified. Drill in
column addition or in long division or in finding interest at 6% is
clearly computational. Instruction in our number system or in the
meaning of a fraction or in the principles of investment is clearly
informational. In many instances, however, a decision merely on
the basis of subject matter is impossible. Much depends upon the
way in which the subject matter is approached and the outcome
which is sought in handling it.

1t is also true that each of the two types of arithmetic serves the
other. Practice in computation serves the purposes of information,
for example, through the gradual engendering of a sense of the
meaning of numbers. It does not do this for all pupils. Even those
pupils who do grasp meanings in this way are likely to do so rather
superficially. Nevertheless, it is a matter of common observation
that number sense of some sort often arises from what appears to
be the mere manipulation of digits.

On the other hand it is equally certain that informational arith-
metic serves the purposes of calculation. Strong and vivid number
concepts are a safeguard against absurdities in computation, while
a vital sense of the meaning of each number process goes far to as-
sure its successful execution.

Too much of the literature regarding arithmetic has exalted com-
putation. The purpose of an arithmetic course has been taken to be
the speed and accuracy with which one can add, subtract, multi-
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ply, and divide whole numbers and fractions and use the speed and
accuracy thus attained in certain business applications. Endless
articles and books have been written in accordance with this com-
putational purpose. The analysis of processes, the identification of
types of errors, the maintenance of skills, the distribution of practice
—~these and scores of other topics and expressions constitute the
chapter titles and topical headings of these books and articles.
Games, charts, flash cards, tests, practice pads, and remedial in-
struction are all pretty much in the service of computation. The
writer would be the last to say that computation is not important.
An arithmetic course which does not have as a very definite objective
the development of ability to compute with accuracy and facility is
wholly inadequate. However, the curriculum which tries to accom-
plish nothing but accuracy and facility in figuring is woefully one-
sided. Moreover, a curriculum which sets out to do that and that
only will not even serve its owa purpose satisfactorily. The child
who merely puts down 2 and carries 1, as a dog does a trick, who
borrows merely according to rule, who inverts the divisor because
the teacher says so, who places the decimal point in multiplication
in unquestioning compliance with a device in the book, will not, in
the long run, be so good a computer as the child to whom these
acts have meaning. An arithmetic program which enthrones drill
and thereby engages to secure “100% accuracy” not only offers a
threadbare course but also defaults in the one thing it promises.

I. ConcEPTS

A program of informational arithmetic will naturally include as
one of its objectives the development of useful number ideas. It
will seriously question the value of the number fact “9 and 5 are 12”
unless all three of the numbers involved in the fact, as well as the
fact itself, have real meaning. Accordingly, a program of primary
arithmetic may well devote far more than passing attention to the
learning of small numbers.

This is no slight achievement. It is easy to assume that when a
child can say 7, write 7. ard read 7, he offers sufficient evidence that
he knows 7. This is by an means true.

In the first place, the use of the verb “know” in this case is mis-
leading. A child does not at some moment of revelation suddenly
come into full possession of the meaning of 7. His knowledge of 7
will grow with his growth and it is doubtful if this knowledge will
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ever be perfect. Moreover, there are many ways in which 7 may
be known. Each of these ways is important, but no one of them
necessarily implies the other.

For example, 7 may be known merely as an item in a series. As
such, it lies between two other items called 6 and 8. Such an idea
of 7 may be quite without number meaning. A child may know 7
in this sense without knowing that it is one more than 6 or one
less than 8, He may not know that 7 is more than 4. At a certain
stagc he counts by rote. On that basis alone, the number names
which he proncrinces have no quantitative meaning. Why, then,
should 7 be apprehended as greater than 4 merely because it is said
later? The alphabet is a similar series. It never occurs to us to
expect the child to think g is greater than d.

Seven may also be known as the sum of two smaller numbers.
This is an important advance, its importance being based upon the
assumption of a relatively vivid concept of each of the two smaller
numbers. Seven may come to have still greater meaning when
thought of for other purposes, for example, when thought of as com-
posed of more than two small numbers, such as 3 and 2 and 2.

The idea of 7 is further enriched as it is apprehended through
operations other than addition—as 1 less than 8, or 3 less than
10, as two 3’s and a 1, as two 4’s less 1, and so on. Somewhere
in the development of the concept of 7 arises the idea that 7 is seven
's. The full possession of this notion leads to the ratio concept,
the wide application of which will engage attention over a long
period of time. Each of these ways of thinking of 7 has its peculiar
uses. Each contributes to the child’s versatility.

The foregoing statements about the concept 7 have sole reference
to the mathematics of the question—the way in which 7 is known
as a number. Another element in the conception is the idea of
universality. It is not difficult to believe that we are here at the
very heart of the matter. Seven is something that does not inhere in
the blocks or splints or buttons. It is much more widely ap-
plicable. Moreover, it is not something which the mind extracts
from objects, but rather something which the mind puts into objects
as it works with them, 1t does not exist in nature. Tt is man-made.
In the case of each individual child it has to be made by him
and for him. Tt is not made when we present him with the symbol 7.
It is not made when we throw down 7 beads before him. It is made
through his own activity. It arises as he is occupied in the manipu-
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lation of things for purposes which may have nothing to do with
learning number., Here the doctrine of progressive education is
profoundly right. The child must do his own work and it must be
his work. No one can do it for him. The stage may be set by the
teacher and, indeed, it must be if ground is to be covered. But the
activity must receive the inner acceptance of the pupil.

‘The ways in which 7 may be known are capable of being con-
sidered functionally. Here the question is, What does the knowl-
edge of 7 permit one to do? Broadly speaking, there are only two
ways in which 7 may operate functionally—through ceproduction
and through identification. Either the idea of 7 is presented to
consciousness and action takes place in accordance with the jdea
(reproduction), or else the situation is presented and the idea of 4
emerges (identification). This emergent idea may or may not be
named. In either case it. may provide the stimulus for a new activity
of a reproductive nature.

Laying down a quantity of pennies, we say to the child, “Give
me seven.” If he does this successfully he reproduces 7. Simi-
larly, if a girl when setting the table knows she needs to provide for
seven persons she is reproducing 7 when she lays that number of
places. If you tell the saleslady you want seven yards of gingham,
she reproduces 7 when she measures it. It is not even necessary
that the presentation should involve a number symbol. It may
consist of a group of things and the reproduction may then be a
matching process.! So in life children, youths, and adults go about
reproducing 7, or 10, or 27, or one Cozen, or %. They do all this
in response to the number idea externally or internally presented.
Their behavior, if it is correct, may then be said to be number-wise.

On the other hand, we identify numbers. The teacher lays down
seven pennies and asks the pupil, “How many pennies are here ?”
The correct answer is an identification of 7. Similarly the child
(and the adul* too) establishes in all sorts of activities the fact that
here are 7, or 1o, or 614, or 3.1416. Generally speaking, as soon as
the identification is made some reaction appropriate to the number
in question takes place. This reaction may be either external or
internal, a physical or mental adjustment. It may be emotional

! Matching which is carried out purely on the basis of one-to-one correspond-
ence is not number reproduction. The child mayv set the table by laying one
place for father, one place for mother, one place for sister Jane, and so on until
the seven members of the family are provided for. In this oper: ‘on, however,
the number 7 is not reproduced because the idea of it is never entertained.
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—a sense of familiarity or strangeness, of wonder or indifference, of
exultation or remorse. The identification of number may be exact
or it may be a mere estimate. The recognition of the approximate
number of items presented for consideration may be all that intelli-
gent action requires.

Informational arithmetic requires with respect to concepts that
much more of the child’s own activity be invoked than is expected
where computational arithmetic helds sway. It likewise requires a
much more careful and prolonged attention to these concepts—to the
reproduction and identification of small numbers in a great variety
of ways. One of the most ingenious ways of handling the transi-
tion between the use of objects and the use of number symbols is
provided by number patterns. These may be dot patterns on cards.
Because the dots may stand for anything—houses, people, dolls,
jackknives—they are abstract. Because they may be seen as
separate units they are concrete. This semi-concrete material has
received considerable attention in the literature of arithmetic, Lay2
Freeman,® Howell,* and Brownell® come at once to mind, and there
are a vast number of other investigators, mostly German, who have
devoted attention to number patterns. Natwr ‘ly much ingenuity
has been expended upon the minutiae. Brownell’s treatment, how-
ever, will be found to be especially helpful.

I1. NuMBER FacTs

The number facts are themselves informational. Indeed, they are
the informational basis of computation. All examples may be re-
solved into them. They are the alphabet of the number operations.

An arithmetic program which is dominated by the idea of com-
putation is likely to offer the number facts as so many abstractions
to be learned. The favorite method is to pound away at these by
sheer repetition. Whether the pupil afterward invests these ab-
stractions with meaning depends pretty largely upon the kind of
pupil he is. Such a program leaves this to the individual as if it
were relatively unimportant.

*Lay, W. A, Fiihrer durch den Rechenunterricht, Leipzig, 190%.
* Freeman, F. N, “Grouped Objects as a Concrete Basis for the Number Idea.”

Elementary School Teacher, 12:306-14, 1911,
¢ Howell, Henry Budd, 4 Foundational Study in the Pedagogy of Arithmetic.

The Macmillan Company, 1914.
® Brownell, W. A., “The Development of Children’s Number Ideas in the Pri-

mary Grades.” Supplementary Educational Monograph, No. 35. University of
Chicago, 1928.
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Informationai arithmetic, however, by building up rich number
concepts over a considerable period and stressing the relations
of these numbers among themselves, succeeds in establishing the
number facts in concrete form before they are elevated into con-
sciousness as abstract facts. It is well known that in this manner
the child comes to possess many number facts before he enters
school. How did he learn them? Not by repeating “five and two
are seven,” but by vividly and actively knowing the meaning of s
and 2 and 7. Confronted by a concrete problem calling for the
adding of 5 and 2, he performs the addition as a mere expression
of his competence with respect to the numbers involved.

The school can draw a lesson from the way the child learns out-
side the classroom. This does not mean that no numbers should be
taught in the first grade. It means quite the reverse. The astonish-
ing amount of number knowledge which children possess when they
enter the first grade indicates the real situation. The debate as to
whether number is too hard for first grade children or too uninterest-
ing or too unimportant is futile. There was a point to the debate
when the supposition was that children should begin with the num-
ber symbols and drill upon the number facts. But when we have in
mind the developing of number ideas and relationships through
motivated experience, the question of first grade number is not
debatable.

Doubtless if rich number experiences could be carried far enough
it would be unnecessary to resort to formal teaching and learning of
number facts. Unfortunately, however, there is a definite job here
to be done. The best activity program is likely to be relatively
unsystematic. There comes a time when it is necessary to pick up
the loose ends. Let there be no misunderstanding as to the ob-
jective at this point. The number facts must be learned.

When we take up the direct teaching of those number facts that
need to be taught as number facts, let us proceed meaningfully.
Let us relate the new facts to those already known—35 and 6 to §
and 5 (assuming the latter to be already known), 9 and 7 to 10 and
6 (known), 12 less 7 to 12 less 6 (known); all subtraction facts to
their corresponding addition facts; and all higher-decade facts to
the parent basic facts.

Let us also adopt forms of expression which have meaning to
children rather than forms handed down from the Middle Ages.
For example, in multiplying, instead of adopting the phrase “seven
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times five” we may use the similar and more easily understood
phrase, “seven fives”; in division instead of saying “thirty-five
divided by five are seven,” we may well prefer to say, “the number
of fives in thirty-five is seven,” or more briefly, “fives in thirty-five
are seven,” or (with a difference in meaning) “one-fifth of thirty-five
is seven.” In multiplication and division we also have an oppor-
tunity to extend that ratio idea of number to which reference has
already been made. If 7 is “seven times whatever 1 is,” it may be
observed that 1 is now a group of ss such as [] [] 00O 0, and
that 35 s seven of these new 1’s or seven §'s such as:

O 0O 0 a o
O o O o I o A
O 0 o g g
O 0 oogonno
O 0o g g
0 0O 0 g g

[ 0 S o R o R |

In the teaching of number facts let us not neglect to use verbal
problems. Many children on entering school can give the right
answer to such a problem as “If you have five cents and your father
gives you three cents more, how many cents will you have then?”
Yet these children will generally be unable to answer the abstract
question, “Five and th-ee are how many?” The point is that the
problem has more reality. With the material which it names and
the scene which it evokes, the pupil is familiar. He identifies him-
self with it. He is the hero of the story, the fortunate possessor of
five cents and the still more fortunate recipient of three cents more.
The resulting inventory of his wealth is natural and inevitable, It
is also correct. Good problems are an important aid in making
number facts significant,

The doctrine, then, which the spirit of informational arithmetic
enforces with respect to the number facts is that, in the first instance,
they be developed informally through the development of number
ideas and that, in the second instance, they be taught systematically
so far as such teaching is required and that when so taught they
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be presented with the maximum of meaning. This meaning will
be heightened by relating unknown to known facts, by employing
significant forms of expression, and by using many interesting and
lifelike verbal problems.

III. Tue NUMBER SYSTEM

Informational crithmetic takes the decimal system of notation
seriously. It develops the idea of higher units, each being ten times
its predecessor. The nature of the decimal system determines the
way we express the number facts and the rules we apply in the
operations. In reality when we say that eight and seven are fifteen,
we are merely regrouping the objects into the two given groups in
accordance with the particular number system with which we are
concerned. In other words, the two groups of 8 things and 7 things
do not serve our purpose. That purpose is better served by the
two gioups 10 and 5 which we then write as 15. By putting the 1
in the second position and the 5 in the first position we agree that
this shall mean one 10 and five 1’s. If we used an octonary sys-
tem we should seldom need to recombine 8 and 7. We should write
the result as 17, where 1 written in the second position would
mean one 8 and 7 written in the first position would mean seven 1’s.

It is a real difficulty in teaching children the rationale of the
number system that we have only one scale of notation to present,
namely, the decimal scale. Indeed, we do not present that scale in
any form except the one now in vogue—a form which even among
decimal systems is a recent and highly artificial development. The
real fact is that the notation now accepted by the modern world,
while it is a marvel of simplicity, has attained this simplicity as a
hard-won achievement of persistent human thinking. The doctrines
of place value, with the use of zero as a place holder and the so-
called Hindu-Arabic numerals, did not win complete acceptance in
the western world until the sixteenth century.

No one can contemplate the meaning and scope of the number
system which we daily employ without realizing that the under-
standing of it by the oncoming generation demands something more
than the turning aside for a day or two from the serious business of
drilling on facts and processes. It demands something more in our
textbooks than a few paragraphs—generally regarded as an in-
trusion upon the real business in hand—entitled “The Reading and
Writing of Numbers.” A just estimate of the importance of the
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numerical language in which all our quantitative ideas now find
expression will associate that language with every phase of the
learning of arithmetic. The forms of computation, for example,
which we teach to school children are not the forms which were
employed before the Hindu-Arabic system came into r-neral use,
Indeed, after that system was well known, many forn.. of com-
putation were employed and struggled for survival. The rules of
the game depend upon the structure of our number system. This
relationship should be constantly in evidence. If it were constantly
in evidence, less drill would be needed and more meaning would
be achieved in our teaching of arithmetic.
The fact that we teach only one number system is a handicap
just as it is a handicap in literary expression to employ only one
“anguage. Whether or not the theory of place value would be better
understood by pupils if we gave them a glimpse of it as it applies to
theoretical numbey systems, such as the binary, the quinary, the
octonary, and the duodecimal, is a moot question. Perhaps in intro-
ducing systems which correspond to no human usage we should lose
more than we should gain. We can, however, use some of our tables
of measurement with good effect. The table of circular measure is
really a sexagesimal number system—that is, a number system in
which 6o is the base, just as ro is the base of the decimal system.
Suppose we write 5° 6’ 8”, the 5 in the third place means 5 X 60 X 60
seconds. The 6 in the second place means 6 X 6o scconds. The 8
in the first place means eight 1s, ie., 8 of whatever 1 is. In this
case, of course, 1 is a second. :
Again, our table of things—great gross, gross, dozen, and units—
is a duodecimal system or a system to the base 12, When we write
5 G. 6 gr. 8 doz. 4, the 5 means g X 12%; the 6 means 6 X 122; the
8 means 8 X 12; and the 4 means four 1's or four things. Notice
that in writing the quantity 5° 6’ 8” or the quantity s G. 6 gr. 8 doz.
4, we name each place. We do not do this in our decimal syste:n of
numbers. It is part of the marvelous economy of the de.imal
system that the place occupied by a digit indicates jts name and
value. Nevertheless when we say decimal numbers we name the
Places as we do when we say denominate numbers. For example,
when we read 5684, we say the word “thousand” in connection with
the 5, we say the word “hundred” in connection with the 6, and we
say a bioken-down “ten”(ty) in connection with the 8.9
*When a number is used for identification—as in telephone numbers—instead of
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In pointing out the analogy between tables of measurement and
our number system we do not need to limit ourselves to tables in
which a constant factor appears—as 6o does in the table of circular
measure. Consider the notation “4 yd. 2 ft. 7 in.” This, of course,
means (4 X 3 X124 2 X 124 7) inches. Here we are dealing with
groups of groups just as we do in our number system. Instead of
the group at the left being tens of tens of units, it is threes of
twelves of inches. It has been pointed out that even in geography
we have a vague scale of notation—hamlet, village, town, county,
state, country, continent.

These ratt .r obvious statements are made here not because they
express anything which may not have occurred to the reader before,
but as an instance of the way in which matters which are usually
kept apart may be brought together because of their basic relation-
ships. If this is done, not only are all the parts of arithmetic welded
together in support of each other but the whole subject takes on new
meaning and dignity.

The number system, like the number concepts which it so admi-
rably expresses, is entirely man-made. It is a hard-won achievement
of the race. To thrust it upon pupils and demand that they use it
in calculation befcre they know what it means is to place ourselves
in an awkward position. In no other type of school work do we
countenance mere verbalism; yet here we feel obliged to do so. We
cease to evpect thinking and are willing to accept ready-made
formulas.

We say to the pupil, “Put down the 3 and carry the 2 to the next
coiumn,” or “Add 1 to the figure in the next order of the subtra-
hend,” or “Wiite the first figure of the partial product under the
digit by which ycu are multiplying.” In long division we say,
“Notice that the steps are always ‘divide, multiply, subtract, bring
down.” What are ihe steps in long division, Henry? Jane? Clara?
Class? Now you all know how to do long division.” These sum-
maries of procedure are admirable if they are understood. But if
our object is to produce a thinking citizenry in a free community,
then this blind impc.ition is an insult to intelligence. It is pathetic
too that a child should be led to believe that because he is mechani-
cally able to solve certain problems he therefore understands them.

for expressing quantity we leave out the names of the orders. There is also a
tendency to do this in other connections, e.g., one forty-seven, instead of one hun-
dred forty-seven.
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The practical teacher will ask, “Do you mean that the rules of
long division should be explained?” This question is asked in the
belief that no one will dare maintain that such rules can be under-
stood to any useful degree by any but the brightest children. If the
question is propounded with sole reference, let us say, to long divi-
sion in Grade 4, then anyone who knows fourth grade children and
school conditions will admit that understanding long division is im-
possible for most children. But if this is the case, one ought to
inquire whether or not such a condition is inevitable. In the first
place we should consider the grade-placement of long division.
Washburne? gives evidence for putting it in the sixth grade, and
recent trends in making courses of study seem to indicate that it
will probably go over into the fifth grade.

Again, consider the background and insight which might be built
up for a child by emphasizing understanding from the very begin-
ning o{ his course in number. The point here is that the question
whether to explain or not to explain should not first arise in a
complex matter such as long division. It should arise as a question
of policy with respect to the entire course in arithmetic.

It is not my intention here to contend that all pupils can under-
stand the rules of computation. A protest, however, is entered
against the defeatist policy of assuming that practically no children
can really understand number and that therefore the only way to
proceed is to state each rule and to drill in their application,

This defeatist attitude is back of the movement to postpone
arithmetic until late in the school course. Some would begin it as
a subject in the third grade, others would defer it still longer. Two
observations may be made in this connection, First, the child has
need for number and number operations long before he reaches the
age to which these plans would postpene the consideration of
arithmetic. Numerous investigations attest the fact that without
instruction he acquires and uses number for his own purposes.?
The doctrine, accepted without question in other subjects, that in-

* Washburne, Carleton W... “The Grade Placement of Arithmetic Topics.” Twenty-
ninth Yearbook, National Suciety for the Study of Education, 1930, pp. 641-670.

® Polkinghorn, Ada, “The Concepts of Fractions of Children in the Primary
School.” Master's thesis, University of Chicago, 1929.

Buckingham, B. R. and MacLatchy, Josephine, “The Number Abilities of Chil-
dren When They Enter Grade One.” Tuwenty-Ninth Yearbook, National Society
for the Study of Education, 1930, pp. 473-524.

Connor, W. L.; sce Buckingham and MacLatchy, loc. cit., pp. 509 ff.

Woody, Clifford, unpublished manuscript.
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struction should correspond to need and readiness, might be ex-
pected to apply in arithmetic, Second, if arithmetic as taught
demands abilities which children do not possess and if children
nevertheless manifest an early need for arithmetic in carrying out
their own purposes, then it is more reasonable to change our pro-

gram than it is to postpone it.

IV. LARGE NUMBERS

A course of study in arithmetic which confines its attention to
computation is likely to belittle the importance of large numbers.
The daily press is full of them. The huge operations of the govern-
ment in connection with the N.R.A. and similar measures are
front-page stuff. So also are, from time to time, values of building
operations, losses sustained by fire, customs, receipts, foreign debts,
populations, production figures of all sorts, unemployment, car
loadings, and the like. The course of study which does not familiar-
ize pupils with large numbers fails to meet their needs. It is not
claimed that children can acquire concepts of these large numbers
which will be so vivid and accurate as their concepts of small
numbers. This is humanly impossible. But we do owe it to our
pupils, as to ourselves, to take some pains to provide for them an
approximate idea of such a number as a million. Galton did this
in a notable passage in Hereditary Genius. He says:

Permit me to add a word upon the meaning of a million, being an
number so enormous as to be difficult to conceive. It is well to have a
standard by which to realize it. Mine will be understood by many
Londoners; it is as follows: One summer day I passed the afternoon
in Bushey Park to see the magnificent spectacle of its avenue of horse-
chestnut trees, a mile long, in full flower. As the hours passed by, it
occurred to me to try to count the number of spikes of flowers facing
the drive on one side of the long avenue—I mean all the spikes that
were visible in full sunshine on one side of the road. Accordingly, I
fixed upon a tree of average bulk and flower, and drew imaginary lines,
first halving the tree, then quartering, and so on, until I arrived at a
subdivision that was not too large to allow of my counting the spikes
of flowers it included. I did this with three different trees, and arrived
at pretty much the same result: as well as I recollect, the three esti-
mates were as nine, ten, and eleven. Then I counted the trees in the
a» nue, and, multiplying all together, I found the spikes to be just
about 100,000 in number. KEver since then, whenever a million is
mentioned, I recall the long perspective of the avenue of Bushey Park,
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with its stately chestnuts clothed from top to bottom with spikes of
flowers, bright in the sunshine, and I imagine a similar continuous
floral band, of ten miles in length.

This whole question of the presentation of large numbers in our
arithmetic course is related to the problem of reading and thinking
numerically. As has already been suggested not a little of the
reading matter with which people are persistently confronted in-
volves large numbers. To get the meaning of the passages in which
these numbers occur it is not only necessary to have some idea of
the meaning of each number but also to be able in some degree to
compute with these numbers. If we read that the municipal budget
for next year is $12,587,000 and that the budget for this year has
been $14,440,000, it is not enough for us to apprehend even with
considerable clarity the meaning of twelve million and of fourteen
million. We must be able to represent to ourselves to a satisfactory
degree the difference between these two budgets. If we are tax-
payers, a sufficient approximation may be two million dollars.
If we are officials in the city government, we shall want a more
exact representation of the diiference. Again, we are likely to
want a more or less accurate understanding of the relative de-
crease of next year’s budget from the budget of the present year.
The general reader will note that the decrease is about 14, or 14%.
Of course, the reporter may furnish the very figures which the reader
wishes, that is, the difference between the two budgets and the per
cent of decrease. On the other hand, he may not. Many writers,
especially newspaper writers, have neither the time nor the inclina-
tion to embellish their statements with the results of computation.
Even if they do this, the reader may well wish to verify roughly
the computations—a procedure which sometimes discloses an error.

The common mian needs to read quantitatively and to think quitn-
titatively and, contrary to general opinion, his needs in this respect
are by no .neans confined to small numbers, It is not enough that
he should be able to compute with both large and small numbers.
He should also be able to follow a line of reasoning, to detect fal-
lacies, and to select pertinent data.

Joseph P. Day, writing on “More and Better Mort .ges.” in the
Saturday Evening Post for February 6, 1932, showed that in spite of
laws against usury, means are continually deviseu for charging
exorbitant prices for the use of money. If, for example, a man
wants a second mortgage, a certain organization will first charge him
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28% in advance for costs. This means that if the face of the mort-
gage is $5,000 the borrower will get only $3,600. He then pays
interest at 6% (the legal rate and the only one that appears in the
transaction) on $5,000. Of course, he has to pay the entire $5,000
at the expiration date. The house owner may be able to compute—
add, subtract, multiply, and divide—but can he think his way
through a problem of this kind? Can he figure the real rate of
interest to be paid in such a transaction? In this country millions
of peuple, many of them unemployed, are paying vastly more than
the legal rate of interest without knowing that they are doing so.
This is notoriously true of those who buy on the installment plan.

With reference to the millions of people who are paying this high
interest, E. R. Hedrick® says,

ihe one thing they need to know is that compound interest works
like geometric progression. Do they realize this? Doubtless every one
of these millions had had geometric progression. Do they recognize it?
Can they control the problems of their lives? Do you, for that matter,
know the ruinous rates which are being paid by those women and men
who have been told that their mathematical problems would be done
for them by ‘experts’? Well, they have been done by ‘experts’.

V. Fracrions

Children come to school with some knowledge of fractions. Gen-
erally they have some notion of one half and many of them have a
working knowledge for their own purposes of thirds and of fourths.
The school, however, tends to begin work with fractions three or
four years after the child has entered school. It then plunges di-
rectly into reduction and into the fundamental operations, The
bulk of the course is on a computational basis. In reduction, you
divide both terms of the fraction by the same number; in addition,
you cross multiply ; in multiplication, you multiply the numerators
for the new numerator and the denominators for the new denomi-
nator; and in division, you invert the divisor and proceed as in mul-
tiplication. The children seldom know why these things are done,
and in high quarters it is held to be useless to tell them.

Far more time should be spent on the concepts of fractional
numbers. Moreover, this work should begin not long after similar
work with whole numbers is begun. It should always be kept in
mind that fractions are numbers just as truly as integers are. In

® Mathematics Teacher, 25:259, May, 1932,
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fact, we have here the first of a long series of steps each of which
enlarges the pupil's idea of number. In the first instance, number
is merely the natural series of integers. Now the broken numbers
or fractions enormously enlarge the number realm. The next great
step is going to be taken when directed numbers are introduced.
The incommensurables will then follow, then the imaginaries, then
the transcendentals. Each of these steps enormously enlarges and
generalizes the domain of number,

Like whole numbers, fractions should be considered functionally.
The two great wings of functional treatment are reproduction and
identification. Reproduction is action according to the idea of a
number—in this case fractional. For instance, cutting the melon
in half when one wishes to do so or when one is told to do so, is a
case reproducing one half. Finding a stick 3% inches long, eating
one-third of a chocolate bar, drawing a line one-fourth as long as a
given line, filling a drinking glass three-fourths full of orange juice,
tying two-thirds of the apples on the Christmas tree—these are
cases of reproduction, that is, of carrying out one’s own or another’s
idea expressed in fractional form.

Also, it is important that the pupil should recognize a situation
as exhibiting a certain fractional number. In other words identifica-
tion is needed. One sees a pie which has been cut and recognizes
that one fourth of it is gone. The shorter of two pencils is seen
to be two thirds as long as the longer. In reading a passage in
geography one recognizes from the population figures that Milwau-
kee is one-fourth as large as Philadelphia. A picture of six dough-
nuts is shown to a child and he is asked, “If you had four of them
what part would you have?” George measures Ann's height and
reports it as 48% inches.

These and thousands of other activities are more or less available
for school use. The purpose of them is to set the child to behaving
number-wise with respect to fractions.

In all this it will be recognized that, just as in the case of whole
numbers, so in the case of fractions a vast range of applications is
possible, Part of the reason investigators find among adults so
limited a use of fractions is that the application is so dimly seen.
Among children the functional activities connected with fractions
always imply material to work with, a medium through which the
fraction idea arises or in which it is acted out.

Fractions should Le used in connection with standard units of




66 THE TENTH YEARBOOK

weight and measure, in connection with single objects which are
divided or parted, in connection with groups of objects, and in
connection with both concrete and abstract numbers. In short,
fractions should receive a breadth of application to the end that
children may regard them as easy and natural in all the media
to which they belong,

No treatment of the concept of a fraction will be complete with-
out referring to the new mathematics involved. Just as there are
several ways in which a whole number may be known in a mathe-
matical sense, so there are several ways of regarding a fraction.
First, it may be regarded as one or more of the equal parts of a unit.
According to this meaning, % is two of the three equal parts of
one. Second, it may be regarded as one (always one) of the equal
parts of one or more units. According to this meaning, 24 is one
of the three equal parts of two, 3 is one of the four equal parts of
three, and so on. Third, a fraction may be thought of as division,
its value being the result of the division. Here 24 means two divided
by three, and in expressing the value of 2 decimally we actually
carry out the division., Fourth, a fraction may be thought of as a
ratio. As such it is not primarily a number but an expression of
relationship. For example, 24 expresses the relationship of two to
three. Where this relationship holds, two numbers are, or may be,
involved; and if they are involved, one of them will be two-thirds
of the other.

How many of these meanings of a fraction should be introduced,
and how early, depends upon circumstances. As matters stand
today the first meaning receives a disproportionate amount of at-
tention,

Throughout the entire elementary school the pupils’ concepts of
fractions should be slowly maturing. This growth should be ac-
companied by much activity and manipulation. Varied units and
materials should be employed. Gradually the various mathematical
meanings of a fraction should be introduced through constructive
work. Pupils may be enabled to acquire the notion of the fraction
form as a more general expression of number than the whole number
itself, that is, that every whole number is capable of being expressed
as any one of an indefinite number of fractions.

Again, the pupil may win the fruitful mathematical idea of the
enlargement of the number realm through the introduction of frac-
tions. How many fractions are there? Or in a more restricted
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sense, how many proper fractions are there? The idea of the in-
finite number of proper fractions in relation to the infinite number
of integers (there is no last number) ; the realization that all these
new numbers lie between two of the integers already known, namely,
between zero and one; the conception of a similar infinite number
of mixed numbers between one and two, between two and three,
and so on without end—such notions are stimulating. Nor does
there seem to be anything difficult about them. After all, arithmetic
is a mathematical subject. Why should it not be taught and learned
as mathematics?

VI. MEASUREMENT

How many days are there in a week ? How many pounds are there
ina ton? How does a sea mile compare with a statute mile? What
is the difference between a dry quart and a liquid quart? What is
the unit for measuring energy? What is the official tolerance for a
foot rule? What constant is used in converting metric units of
length into English units of length? These are matters of informa-
tion. They cannot be derived by logic nor computed by numbers.
They exist by agreement; one either knows them or does not.

We use information of this sort in countless ways, frequently
without being conscious of doing so. Our knowledge that there are
seven days in a week colors our thinking, modifies our behavior, and
influences our plans. Moreover it enables us to accommodate our-
selves to the plans, behavior, and thinking of others who have the
same information. It guides us in judging events in the recent past
and enables us to set them in order. It gives meaning to daily affairs
through placing them in sequence with related occurrences which
have already taken place or are soon to take place.

The act of measurement yields information or the data for in-
formation. A woman, interested in renting an apartment, measures
the length and the width of the living room. The result is informa-
tion which she can use according to her experience of rooms and her
knowledge of her needs. A physician measures one’s blood-pressure
and gets information. A surveyor measures angular magnitude and
gets information. A fisherman weighs his catch and gets informa-
tion. By direct measurement we are continually answering the in-
sistent modern question, “How much?”

In respect to measurement, informational arithmetic may thus
be separated in thought from computational arithmetic. Yet it
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would be a childish mistake to suppose that such a separation exists
in actual practice.

In the first place, computation contributes to information by
affording practice. Our psychology—no matter what brand we
favor —tells us that we know best what we use most. A child may
be told that there are 231 cubic inches in a gallon, or he may read
this fact in an arithmetic book. In either case the experience may
be of little importance. What really matters is the use he subse-
quently makes of this equivalence, and among these uses probably
none are so frequent as the ones which involve figuring. Thus this
item of information is made his largely through computation. The
scores of equivalences included, many of them in the form of tables,
in our arithmetic courses, are items of information, but as personal
possessions they vanish unless they are used. Much of this use is
in the form of computation.

In the second place, computation may aid one in getting new
information, that is, information new to the learner. The writer has
lately been interested in studying certain features of the printed
page, such as size of type and interlinear space. The printer’s unit
of measure for these matters is the point. The research literature,
however, was not written by printers, and it does not use the point
as a unit. It uses the millimeter. This literature cannot be used
for practical purposes unless one knows the relation of a point to
a millimeter. Finding no statement of the relationship, one has to
compute it. Now a printer’s point is %, (or 0.01389) of an inch,
The familiar fact that a meter is equal to 39.37 inches furnishes
the further fact that a millimeter is 0.03937 of an inch. Hence, by
dividing, one finds that a millimeter is 2.83 points, correct to three
significant figures. To the writer this was information, and compu-
tation based upon facts easily available had furnished it.

In the third place, not only does computation foster and even
produce information, but information also serves the purpose of
computation. The fact that the first four significant figures of the
metric-to-English conversion factor for linear measure are 3-9-3-7
sets the whole world to multiplying or dividing. Meters are changed
to inches by multiplying by 39.37: centimeters, by multiplying by
0.3937; and millimeters, by multiplying by c.03937. If, however, the
given data are in inches and metric equivalents are needed, we
divide by the same significant figures, adjusting the decimal point
according to the particular metric units we desire.
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Thus the close relationship between informational and computa-
tional arithmetic is illustrated. We use the information in a great
many ways, some of them subtle and unconscious. But one very
definite use is for purposes of computation. This computation itself
is a process involving certain facts, rules, and skills.

On the other hand, computation, as has been abundantly shown,
also serves the purposes of information. While the inter-relationship
between the two aspects of arithmetic has here been illustrated with
reference to measurement, the relationship is likewise evident
throughout the entire field of arithmetic.

There are, however, many aspects of measurement which are
peculiarly informational, that is, informational in a sense in which
the other topics of arithmetic are not. Indeed, it is not too much to
say that in the direct and obvious sense of the term, information is
provided in greater degree with reference to measurement than it is
in any other aspect of the arithmetic course. Much of this in-
formation we try to impart to children as a permanent possession.
There are 12 inches in a foot. This item of knowledge is so com-
monly required that one would be at a disadvantage without having
it. On the other hand, many of the facts of measurement are
properly to be regarded as reference material. It is desirable that
much of this material should be presented and used in the arithmetic
course for the broadening effect which may thus be secured. The
bulk of our population will never use any units of money except dol-
lars and cents. Yet it is a threadbare sort of course which would give
no acquaintance with the English, French, and German units, to
say nothing of rubles, lire, and gulden.

On the side of information, then, arithmetic may be expected to
use a great many facts of measurement for broadening purposes with-
out carrying the treatment of these facts to the point where their
permanent personal possession may be expected.

Sr.. e in textbooks—until fashions change and larger books are
demaiided—can hardly be devoted to a treatment of the many so-
cially valuable items of measurement information. This does not,
however, mean that the course as administered reed omit them.
Individual and group projects, for example;may deal with shopping
in Paris, London, or Berlin, The appropriate money can be em-
ployed. Prices may easily be secured from foreign catalogues or
newspapers. Judgment as to the value of the goods offered or pur-
chased will require approximate conversion inta United States
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money—say a shilling at 25 cents, a franc at 614 cents or 15 to the
dollar, a mark at 30 cents.’® A rudimentary notion of exchange and
its fluctuations, and perhaps of import duties, naturally arises in
this connection.

Few children will ever use units of weight other than those of the
avoirdupois system. Yet the course should not neglect, for informa-
tional purposes, either the apothecaries’ system or the Troy system.
A committee of the class may report on each of these matters, not
forgetting to interview druggists and jewelers.

Similarly, the cultural value of finding out how the druggist
measures fluids, how the sailor measures, how the lumberman meas-
ures, how the printer measures, how the paper industry measures
ought to be recognized. Tables should not be memorized, nor should
computations be made, except as they help in arriving at the cultural
values.

Children will be interested in certain measures which are very
commonly employed but whose units are seldom undersivod, e.g.,
the units used in measuring hats, collars, gloves, and shoes, to men-
tion only articles of clothing.

The importance, from an informational point of view, of the
metric system needs no emphasis. The fact that it is the legal sys-
tem in practically all European countries indicates that it cannot
be neglected.

The sense of long development is one of the evidences of culture.
Measurement has a history and children should not be denied access
toit. One of the ideas which they will find interesting in this con-
nection is the way early man used parts of his body as units. They
will find, upnn investigation, that some of these units with or with-
out change of name have been standardized, e.g.. the foot and the el
(yard) ; while others, as the pace, the hand, and the finger, are still
used very much as they were in primitive times. Some children
may be interested, perhaps at the time they study “European Back-
grounds of American History,” to find out how people of other
times measured and what sort of money they used.

Certain equivalences have grown up in the processes of trade
and commerce which may properly engage the attention of pupils.
They need not be memorized but their existence and general mean-

" These equivalents are the rourh ones used by tourists in the summer of 1934.
They served at that time every practical purpose. The German equivalent as-
sumes the use of the “registered” mark, otherwise the equivalent would be about
40 cents,
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ing should be known. Moreover, pupils should know where they
may find, when they need them, these and other measurement facts—
such equivalences as 231 cubic inches in a gallon, 6214 pounds in a
cubic foot of water, 196 pounds in a barrel of flour, 6o pounds in a
bushel of wheat, 500 pounds in a bale of cotton, 714 gallons to a
cubic foot of water, and so on. How far material of this kind is
used depends upon the interests of the children. So far, however,
as such facts are required in solving problems they should, in gen-
eral, be given as part of the data.

It is evident that in the field of measurement informational arith-
metic has much to offer. Indeed, it would be possible to write this
paper entirely with reference to that aspect of infc' mation. One
would begin by showing how small children in the primary grades
can and should measure not only to serve the purposes of their
activities but also to serve the purposes of computation. For ex-
ample, the teacher who neglects the foot-rule as a means of vitalizing
the notion that 2 and 3 are 3, or the fraction ideas %, 1, 3, and so
on, is leaving out of account a powerful instrument of instruction.

The treatment of measurement in our arithmetic courses falls far
short of accomplishing the broadening effect which might be secured.
In textbooks the treatment is usually uninteresting. Such a quan-
tity of exercises in computation must be included that there is no
room for the fascinating story of man’s adventures in measuring.
Moreover, the entire course from the third to the eighth grade must,
as a rule, be offered in three books, each of which can be sold for
less than a dollar.

The result is that only the barest and most rudimentary treat-
ment is offered. Within the scope which the course usually
contemplates, the presentation is sketchy and even erroneous. For
example, there is no distinction between a dry quart and a liquid
quart, although the former is about 914 cubic inches larger than
the latter. No adequate distinction is made between the pound
troy and the pound avoirdupois. The fact that the one has 12 and
the other 16 ounces does not dispose of the matter since their ounces
are not the same (ounce troy is 480 grains: ounce avoirdupois is
437.5 grains). The gallon is often represented in problems as a
measure of berries, vet it is not a unit of dry measure and when
used as such instead of the half-peck it is in error by nearly 38
cubic inches. No inkling is given in our texthooks of the system of
tolerances in weights and measures. Children are allowed to suppose
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that a foot is exactly a foot, a gallon exactly a gallon, aund a pound
exactly a pound. This is never the case. Accordingly, under the
leadership of the United States Bureau of Standards limits have
been set up. A foot must not vary from tte standard foot (or the
approved copy of it in the hands of the sealer of weights and meas-
ures) by more than 4. of an inch, a gallon must not be “short”
more than a dram (0.9 cubic inches), nor a pound by more than 14
of an ounce.

But it is in the more humanistic aspects of measurement that the
arithmetic course is most deficient. Why should linear measure be
introduced bv a table and disposed of by abstract examples in con-
version? Why not tell the story of the efforts which man made to
measure length and the meaning of the units which have come down
tous? The story cannot be told here. One may suggest, however,
the curious role of the barley corn and why it was so generally
adopted in various parts of the ancient and medieval worlds as the
first or smallest unit of length—how, too, it is the origin of the
grain as a unit of weight. Then the persistent use of parts of the
body—any parts which definitely terminate in ends, sides, or angles
—ought to be referred to. These were for things to be handled.
For distances to be traveled, the body in action was naturally em-
ployed. Hence arose the pace (single and double) and the day’s
journey. Ail these units were established independently of each
other. The finger, for example, was really and truly the breadth
of the forefinger. The palm was the actual breadth of the hand
without the thumb. The span was the distance from the tip of the
little finger to the end of the thumb when the fingers were out-
stretched. The cubit was the distance from the elbow to the end
of the middle finger. Later some systematizer put things like these
together in a table. The Hebrews, for example, had these equiva-
lences: 6 barley corns = r finger, 4 fingers = 1 palm, 3 palms =1
span, 2 spans == 1 cubit. Likewise two cubits were an ell, which,
however, had an independent existence as the distance from the
tip of the nnse (or the middle of the breast) to the end of the
middle finger when the arm and hand were extended. The ell is
essentially our yard, although the English yard is more properly
derived from th2 Anglo-Saxon girth.

It is clear that informational arithmetic can offer much in de-
veloping the _lcry of measuring length. It can do so equally well in
connection with measures of capacity, of weight, and of time. Nor
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is the story one of history alone. The uses of measurement in
modern society are likewise splendid material for informational
arithmetic.

Henry D, Hubbard!! says

Measuring tools evolve from simple origins—a stick, a shadow, a
gourd, a stone—to-day they number thousands. They give us new
senses, enable us to detect invisible light, to feel magnetic forces, to
sense a thousand things otherwise imperceptible, With the cresco-
graph one can see the movements of growing plants. A lens-and-mirror
device measures the diameter of stars, a feat comparable with measuring
a coin fifty miles away. The radioactivity of radium is measured by the
motion of an electrified strip of gold foil, while electrified quartz threads
are sent up ten miles to measure cosmic rays.

Science also makes a vast number of what may be called natural
measurements —

.+ . melting points of solids, weights of atoms, lengths of
light waves, properties of materials, In such measures lie latent the
means to alter nature almost at will and make it serve our purpose with
almost magical power. Such measures build civilization. They are the
numbers which rule the world of enterprise, the unscen frame of all
achievement.12

“Mathematics is queen of the sciences and arithmetic the queen
of mathematics.” This famous remark of the master mathematician
Gauss referred to a type of arithmetic which the schools, no matter
how advanced, seldom teach. Among the Greeks arithmetic was
highly valued as a study but it was not the arithmetic of reckoning.
That was logistic and little regarded. Tn the Middle Ages arithmetic
was one of the Seven Liberal Arts, but it was a theory, not an art,

It is evident that arithmetic has meant many things to many men.
To Gauss it was a great mathematical subject. Can we not so far
accept his dictum as to attempt to lay, however humbly, a really
mathematical foundation in our elementary school? To the Greeks
and to the philosophers of the Middle Ages arithmetic was a dis-
cipline. Can we not adopt their position also, to the extent of
asking that our arithmetic shall make its contribution to a liberal
education? Besides all this, can we not give our own interpretation
to arithmetic and make it the means by which, even from the first
school days, the child acquires information about number and an
ability to think in quantitative terms?

% Hubbard, Henry D., “The Romance of Measurement.”  Scientific Monthly,
33: p. 387, MLoc.cit., p. 357.




THE RE1.ATION OF SOCIAL ARITHMETIC TO
COMPUTATIONAL ARITHMETIC

By G. T. BUSWELL
University of Chicago

I. AN OVERVIEW OF ARITHMETIC

AN overview of the development of any field of knowledge reveals
certain major trends which, when studied critically, tend to simplify
one’s thinking about current problems relating to that field. Such
an overview of the subject of arithmetic is particularly illuminating.

Trends in the past. In the schools of the early colonial period
arithmetic received little attention. The subject made its appear-
ance gradually, due to practical demands, until by the year 1800
avithmetic was a common subject in elementary schools. However,
as revealed by the texibooks of the period, the subject was taught
in a very formal manner, the instruction consisting primarily of
the memorization of rules followed by their application. There was
no attempt to develop a rational understanding on the part of
pupils. In 1821 Colburn published a set of arithmetics which in-
stituted radical reforms. The teaching by rules was abandoned,
oral instruction was emphas .d, some drill was introduced to
secure better mastery of the .. mber combinations, and a rational
understanding of practical v.oblems was attempied. The result
of these reforms was a great expansion of the subject of arithmetic.
In the main the nature of this expansion was desirable up to approx-
imately 1860, following which time, while tke subject continued to
expand in terms of the proportion of the school day used for arith-
metic, the nature of the instruction became increasingly formal
“intil by 18go progressive educators were again demanding reforms.

From 1893 to 1910 there were general demands for the reduction
of the amount of time given to arithmetic and for the elimination
of much socially useless n.aterial. The criterion of social utility
was applied, those topics which were not considered of social value
being eliminated. One should note particularly, however, that this

74
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term “social utility” was interpreted purely in terms of computa-
tional values. While there have been serious checks to the applica-
tion of the theory of social utility to the subject of arithmetic since
1910, it is still common to consider a topic as socially valuable
only when there is evidence of rather widespread computational use.

One other major element revealed by an overview of arithmetic is
the very large amount of emphasis given to drill through the use
of formal practice exercises, beginning with the early practice exer-
cises of Courtis and Studebaker and extending well up to the present
time. This enormous use of drills reveals again the large degree
of importance attached to computational ability. While all along
there have been occasional apostles of a type of arithmetic which
would emphasize non-computational values, it is only within the
last half dozen years or so that a redefinition of social utility has
received ar'r idespread attention.

In 1926 McMurry gave concrete expression to his reaction against
t prevailing character of arithmetic by publishing a series of books
in vhich a deliberate attempt was made to secure a much greater
emphasis upon social values. While this particular set of books
has probably been more effective in influencing the thinking of
studen. : of arithmetic than in changing the character of practice
in proli: schools, it at least attempted to break away from an
over-emphasis upon computation. In several of his writings Judd
has repeatedly attacked the formality of arithmetic and has em-
phasized the values which might come trom a genuine socialization
of this subject, stressing particularly the use of arithmetic as an
instrument of thinking rather than as simply a tool to facilitate
computation. Again, in the Twenty-ninth Yearbook of the Society
for the Study of Education the reviewing committee under the
chairmanship of Brueckner called attention to the need of greater
emphasis upon non-computational arithmetic. Under the headings
of “The Informational Function” and “The Sociological Function”
of arithmetic, this committee made a plea for a type of treatment
which would make a pronounced change in the nature of the social
values to be derived from this subject.

The present situation. The present situation mav be expressed
briefly as follows. Twenty years of excessive use of drill and prac-
tice exercises have produced an emphasis upon rapid computation
to the exclusion of any considerable amount of emphasis on quanti-
tative thinking in social terms. The enthusiasm for practice exer-
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cises, which was evident in 1920, has waned rapidly during the last
decade. The persons who have been operating on the course of
study in arithmetic under the theory of social utility have based
their estimates of social utility upon surveys of the computational
uses of arithmetic and have written as though their private inter-
pretations of social utility were the ¢ v acceptable definition of the
term. The writer of this chapter challenges their definition of
the term “social utility.” As the term “social utility” has been
commonly used in the subject ... * rithmetic, it refers to those com-
putational processes which have been found commonly used in
various kinds of business practices, as revealed through surveys of
business usage. This narrow definition of “social utility” disregards
entirely the fact that computational practices may be carried on
with no understanding and in an entirely formal manner. It eval-
uates arithmetical ability in terms of an adding-machine. It fails
completely to comprehend that genuine social values of arithmetic
are related to the higher rational processes of understanding the
significance of quantitative situations, It is as formal in its impli-
cations as was the arithmetic of 1800, before the reforms instituted
by Warren Colburn, If the practices of the last twenty years are
carried to their logical culmination, the result will be a type of
arithmetic which will enable children to do in a limited number of
seconds a certain number of computations which have been found
to characterize the formal computational experiences of a limited
number of groups in society. It will make it necessary for some
other subject in the curriculum to assume the teaching of how to
deal with those quantitative situations and relationships which
characterize the thinking experience of all persons, but which do
not eventuate in any particular computation done with pencil and
paper, such as may be counted and measured in a survey of arith-
metic practices.

The essence of the current problem can be stated thus: Compu-
tation is a necessary function of arithmetic which no one proposes
to discard. Computation should grow out of as thorough an under-
standing of the number system and the operations involved in its
use as may be obtained at any given level of maturity in the schools.
It is not a problem of computation versus social arithmetic, but of
the relative emphasis to be given the two. The writer believes
that computation has been given much greater emphasis in the
total amount of time devoted to arithmetic than it deserves, or
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than it has used effectively, and that the opportunities for improv-
ing arithmetic lie in the vitalizing of children's thinking in both
non-computational and computational situations, but particularly
in those non-¢ymputational situations which are far more common
in experience than are those involving computation and which are
also more important in determining the social behavior of human
beings. It is the writer's belief that rapid computation will more
and more be transferred to adding machines and calculators and
that society can make an immensely profitable trade by devoting
a considerable portion of the time which has previously been used
for improving speed in computation to the development of a type
of quantitative thinking which is essential to living in a modern
world.

At the risk of presenting examples which are less effective than
someone else might propose, the writer will attempt to illustrate
in four specific situations the point of view which has been expressed
in the previous paragraphs.

II. THE SociAL. TREATMENT oF ARITHMETIC ToPICS
IN THE UPPER GRADES

Selection of topics. In the textbooks for Grades 7 and 8 it has
been customary to organize the arithmetical material presented
around certain topics of probable social value, such as insurance,
taxes, banking, investments, installment buying, etc. An applica-
tion of a broad theory of social values to this portion of the coLrse
of study would result in two possible changes: first, some changes
in the selection of topics considered to have social value for boys
and girls with an age range of from twelve to fifteen years: second,
a pronounced change in the character of the treatment accorded
the topics which are selected.

In regard to changes in the list of topics presented in upper-grade
arithmetic it must be conceded that some desirable changes have
been gradnally appearing during the last two decades. For example,
the treatment of carpeting and paper hanging, which was customary
in the textbooks of 1goo, has to a very considerable extent disap-
peared altogether, due to the fact that the problem of carpeting
floors has changed since that time and the fact that the old method
of computing the amount of wall paper needed never did agree
with the methods actually used in the wall-paper trade. The main
criticisms of the topics which are now common are of two sorts:
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first, the list of topics is altogether too limited, a number of excellent
ones being left out altogether, and, second, while the topics used
appear from their name to have social value the actual treatment
accorded them in many cases gives no expression to the possible
social values which might be obtained, but rather uses the topics
simply as a vehicle for continued drill in computation.

In regard to the first criticism, the treatment of stocks and bonds
as a form of investment undoubtedly has some possibilities of social
value. However, the common treatment of these forms of invest-
ment is rather .remote from the experience of average children,
whereas an introduction to savings and investment by reference to
the postal savings bank would be much more immediately related
to their experiences and would possess a social value which is diffi-
cult to secure through the ordinary method of teaching stocks and
bonds. Regardless of whatever obligations an author of a textbook
may feel in regard to treating stocks and bonds, it is altogether
probable that studies of price fluctuations and their relation to
actual values possess all of the arithmetical possibilities involved in
the business dealings of adults with the additional fact that such
a series of topics might lie entirely within the range of experience of
seventh and eighth grade children. The type of quantitative think-
ing which organizations such as the Consumer’s Research group at-
tempt to secure illustrates what arithmetic might contribute in the
way of non-computational experience.

Treatmen* of topics. Even more important than a selection of
topics for the seventh and eighth grades is the treatment accorded
to the topics finally selected. Insta!lment buying, for example, has
been used frequently as a vehicle for obtaining further practice in
arithmetical operations, but there are only a few books in which
the types of quantitative judgment important for installment buyers
are at all emphasized and in which the social thinking necessary to
guide one’s practices in this particular respect is provided. The
practices of installment buying afford one of the best examples of
the need for a type of quantitative thinking which goes quite beyond
the ordinary computational problems which are pertinent to this
topic. The treatment of taxation, as it commonly appears in the
textbooks on arithmetic, makes a very small contribution to the type
of judgment which a good citizen should make to a new taxing
proposal. In the section of one textbook dealing with taxation the
writer finds such problems as:
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1. At a tax rate of 19.6 mills on the dollar, what is the tax on prop-
erty assessed at $10,000?

2. Find the amount of the tax bill when the valuation is $10,000, the
rate per $1,000 is $12.60, and the collector's fee is 1 per cent.

While these computations may represent the type of arithmetical
activities in a taxing office, they do not represent the nature of the
problem of taxation for the average citizen. When o.1e reads in
the morning paper that the tax rate for the ensuing year is to be cut
by a flat reduction of 259, a certain type of mental reaction follows.
If the rate of reduction had been stated as 10% or as 4356, the
mental reaction of many individuals would be no different, although
the importance of the difference for their community might be very
great. YWhen one reads that the federal government has set aside
$1,000,000,000 for certain purposes one’s judgment should reflect
some notion of the tax burden which would be represented by such
an item as $1,000,000,000. In other words, the socially important
problems relating to taxation are not those of a computational
nature such as are figured in the tax assessor’s office, but rather
those problems involving quantitative thinking, for the most part
of the non-computational kind, but which precedes the expression of
whatever judgment the individual finally arrives at in regard to the
point in question. A genuinely social treatment of the topics of
the seventh and eighth grades should eventuate in a high type of
quantitative thinking rather than simply afford further practice in
computation, using the topic as a vehicle for such practice.

III. Tue Use orF PROBLEMS

A second example of possible improvement in the social treat-
ment of arithmetic relates to those problems designed primarily for
maintenance of processes which have been taught previously.

Miscellaneous problems. As one examines a present-day arith-
metic he finds that there are certain problems which are used
in the explanation of new processes or operations and which must
be selected for the particular needs of that stage of the explanation.
It is quite to be expected that in such a case the problems may be
unrelated to one another since the important matter to consider is
their applicability to the particular point needing explanation.
However, in thuse sections of the book in which several pages of
problems are given for review there is a possibility of obtaining an
increased svcial value by relating the problems to some major
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project which is socially worth while and which evokes a body of
social information that is needed for clear thinking. Both types
of treatment may be found in current textbooks. As an example of
the miscellaneous organization of problems, the writer finds the fol-
lowing topics presented in successive problems on a single page of a
textbook which he has before him:

Problem 1. Find how much a baby gained in weight during one
month,

Problem 2. Find how much longer it takes one boy than another to
run a given distance, the rate being stated.

Problem 3. At a given age for starting to school, determine how
long it will be before a certain child who is now four years and five
months of age will be able to begin school.

Problem 4. Determine how many potatoes are left after a certain
number of bushels have been sold.

Problem 5. Find how much it will cost each member of a church
to pay off a given amount of debt.

Problem 6. Determine how far a train will go in a certain number
of hours at a given rate.

Problem 7. Find how many chickens a farmer must sell to pay for
a given bill of goods which he has purchased.

Problem 8. Find how much larger one field is than another, the
measurements of each being given.

Considered as isolated exercises for providing drill in computation
these problems may be justified as they are. Considered in terms
of the additional social value which might be derived from a page
of problems involving exactly the same arithmetical operations, the
problems may be criticized very pointedly.

Problems socially significant. In contrast with the method of
treatment just described, reference may be made to another text-
book in which on a single page one finds the following type of ma-
terial. About a third of the page is given to concrete information
showing how crowded certain business areas of a city may be as
compared with certain residential areas. A diagram is presented
showing one floor of a large office building, together with additional
data giving the number of floors and the general dimensions of the
building and the lot on which it stands. Comparable data are also
given for a set of apartment house buildings and comparisons are
drawn between the crowded conditions in these buildings. The pupil
is asncd to supply similar data for the school building which he at-
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tends. Following these basic items of information are seven prob-
lems which as far as the arithmetical computations are concerned
might parallel the eight unrelated problems noted in the book
previously mentioned. The significant fact is that after working
the seven problems involved in the second book the pupil not only
has his computational practice, but he has had brought very vividly
to him the dense population of a skyscraper as compared with city
apartment houses and with one sckaol building, the one in which he
happens to be, Having at hand these basic items of social informa-
tion the pupil is better able to think clearly in regard to one of our
very important social problems, namely, the distribution of our
population.

If the type of treatment given on these two typical cases were
multiplied by fifty, the amount of such work which might be found in
a representative textbook, the net result would be, in the first book,
a body of miscellaneous information which would lead nowhere, the
only value realized being the arithmetical computation which is
facilitated, whereas, in the second case, it would be fifty pages of
experience in dealing with significant social data. The results of
one or the other kind of training may result in the difference between
a person who thinks on the basis of accurate information and the
person who tries to think without the necessary quantitative in-
formation and whose conclusions are so frequently out of all accord
with the facts,

Textbook makers are missing one of their genuine opportunities
in failing to socialize the more or less miscellaneous type of problem
which most of them include in their books. Some recent books
exhibit a very commendable tendency in this direction.

IV. MEASUREMENTS AND DENOMINATE NUMBERS

A third opportunity for increasing the social value in arithmetic
lies in the treatment of measurement and denominate numbers.
The treatment of these topics may range all the way from a formal
presentation of facts and tables, followed by their application in
problems, to an interesting informational treatment regarding the
aature of measures and denominate numbers, where they came from
and why, together with a mastery of their quantitative relationships.
Perhaps no better illustration could be given of a desirable form of
treatment than to refer to ~me of the pamphlets published recently
by the American Council  Education in which one finds an inter-
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esting body of information—the story of weights and measures, the
story of our calendar, and a treatment of the development of devices
for telling time. These pamphlets, ranging in size from thirty-two
Lo sixty-four pages, present a wealth of material which any teacher
in the intermediate and upper grades would find exceedingly useful
in socializing the treatment of measurements and denominate num-
bers. As a social achievement of the race, the development of
weights and measures and the development of mechanisms for telling
time represent achievements of far greater importance than the
average man realizes. The formal statement that sixty seconds
equals one minute and that sixty minutes equals one hour is neces-
sary information, but the teacher who teaches time by simply de-
manding computational ability involving these facts is missing the
entire social significance of this topic in measurement and is at the
same time depriving her pupils of 'a most interesting body of in-
formation., Teaching time relationships can be motivated greatly
by the story of the invention of time-telling instruments, ranging
from the earliest sundials, water clocks, sand clocks, candle clocks,
etc., to the more intricate mechanical devices eventuating in the
present types of clocks and chronometers, The one-hundred-yard
dash in the stone age was never measured in split seconds, nor would
it have been possible to start schools, had there been such, at pre-
cisely nine o'clock. The relationship between modern social living
as related to scheduled time and the behavior of primitive groups is
a fascinating story, possessing a significance for quantitative judg-
ments of time far too great to be missed. Children may use a foot
rule for measurements indefinitely without ever coming in touch
with information as to how a foot happened to be as long as it is and
when that unit of measure was first established. The establishment
of any unit of measure is a story of social significance which the
school has ordinarily overlooked, but the social importance of which
is clearly recognized by the government in its Bureau of Standards.

V. QUANTITATIVE INFORMATION

The fourth and last suggestion for socializing the content of the
arithmetic course is that a textbook in arithmetic might legitimately
provide a certain body of quantitative information of significance
in dealing with certain types of problems. The purpose of this
provision would be to initiate the practice of basing one's thinking
upon a body of quantitative experience. The application of this
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suggestion would result primarily in non-computational rather than
computational activities. To be specific, one of the basic problems
of society relates to the distribution of population. Children, of
course, know that there are large cities and small towns, but a vivid
understanding of the relative size of different places or districts
can scarcely be obtained without some experience in comparing
localities of different sizes.

As the writer is preparing this portion of his paper, a football
game is in progress on a neighboring field. The morning paper
stated that a crowd of 40,000 persons was expected. How large is
a crowd of 40,000 persons? How does a child, living in a town of
5.000 who reads about the game and finds a statement that there
were 40,000 persons in the grandstand, obtain any adequate quanti-
tative concept of the size of the crowd? He may do a bit of com-
putation and arrive at the notion that there were eight times as
many people at the game as there are people living in his town,
although it is doubtful whether such a statement would be very mean-
ingful to him since he has never seen all of the 5.000 people in his
town congregated in one place at one time. He knows from other
sources that a certain city has a population of 1,000,000 and another
city a population of 3.000,000. but these figures are more or less
meaningless to bim until he finally arrives at some comparable
scheme in which these various sizes ot population are arranged.

It seems that one of the functions of arithmetic should be to assist
in the building up of more vivid concepts relating to quantitative
thinking. A simple table of population is not sufficient to give
vividness, but some analysis of the populations may do so. No
other subject in the curriculum is attempting to build up for the
child such bases for quantitative thinking. The difference in those
who think quantitatively and those who do not is not expressed in
terms of their relative computational ability but rather in terms
of their habitual modes of thinking. The contribution of arithmetic
to methods of quantitative thinking regarding social and economic
problems is so significant that it should not be subordinated to an
attempt to secure more rapid computation. The argument here is
that a certain part of the space in an arithmetic textbook might
justifiably be devoted to pure information of the quantitative sort
which would be useful in the thinking experiences of children. Very
little of this type of material is to be found in arithmetics now
available.
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VI. ConcrLusioN

Arithmetic should be judged primarily in terms of its social
values. These values are not to be determined alone by a survey
of computational practices. The fallacy of the previous application
of the theory of social utility lies primarily in the natrow and re-
stricted definition given to social utility The narrow limitations
of this definition the writer entirely repudiates. Arithmetic as a
method of thinking possesses fully as much social value as arithmetic
as a tool for computation. The subject must be relieved of the
application of such a narrow point of view. Arithmetic consists of
two major types of material, first, a number system which must be
learned as a system with all of its common interrelations as ex-
pressed in the operations of the four fundamental processes. Com-
putational ability is essential and necessary for this type of mas-
tery. Second, arithmetic consists in the socialization of this type
of number experience until it permeates the common thinking prac-
tices of individuals. Overemphasis on computation has produced
a lopsided arithmetic. The recent movement to balance the teach-
ing of arithmetic by giving increasing emphasis to its social and
informational values is a movement so significant that it may well
become the outstanding reform which this generation will contribute
to the subject,
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SysTEMATIC AND FUuNcTIONAL APPROACHES
TO ARITHMETIC

The important réle of arithmetic. The Committee believes
that some facility in arithmetic is indispensable to the life of any
normal child. Each week brings scores of situations in which a child
must make use of number to carry on his work and play: he must be
able to count his marbles or the number of children invited to his
party; to measure the ingredients for a batch of candy, or the length,
width, and thickness of the board for a model ship; to hancle mor.ey
in his purchases at the store, or to add up the cost of his lunch or
total the cost of an order for stamps: to divide equally, or otherwise,
the contents of a bag of fruit among his friends, or apportion the cost
of an entertainment among the members of the group; to keep the
moving hands of the clock in mind in order to terminate the music
practice or to know when it is time to hasten home to eat; to differen-
tiate between more and less, larger an.. smaller, heavier and lighter ;
etc. For these and countless other everyday activities in school and
out, children use number to solve their difficulties and promote their
interests. Arithmetic is, as we have said, indispensable. There is no
difference of opinion on this point between those who would have
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children learn through an activity program and those specialists who
hold that arithmetic should be taught systematically through a
separate subject approach. And because arithmetic does serve so
important a rdle, all educators desire that the child shall acquire his
use nf nnmber by the most efficient learning techniques and shall be
able to use these acquisitions at later times to enrich his experiences
of a quantitative and qualitative nature.

Purposes of this paper. The purposes of this paper are to
present:

1. A point of view held by a minority group in elementary school
work concerning the learning of arithmetic.

2. A survey of opportunities for use of arithmetic in the “activi-
ties” curriculum.

3. Recommendations for the improvement of present practice.

There has been considerable innovation in curricular practice in
elementary schools of America during the past decade. Innumerable
public and private schools have attempted to break down the con-
cept of formal education by bringing within the range of schooling
the experiences and activities of normal child life, The typical child
possesses a variety of interests and curiosities, a readiness which
motivates him to participate actively in enterprises with almost
tireless energy. Normal children find nc particular “learning diffi-
culty” in improving their roller-skating, or in mastering the relss
and plays of a game of checkers, or in reading and following direc-
tions for assembling the parts of a model airplane. Wken the child
has the purpose to achieve, those learnings which might otherwise
involve difficult obstacles are with amazing agility mastered as
necessary skills for achievement. And in those experiences where
readiness attends the act. the learnings are freer to become a part
of the next learning situation. to function when and where needed.

These curricular innovations and experimentations have led to
many new departures in classroom practice. Fducation is now
recognized as consisting of every activity in which children engage
in and out of school. In many schools the daily program is not
divided into separate periods for arithmetic, geography, spelling,
composition, etc. In the classrooms of these schools education
starts with an interest which absorbs the pupils and expands and
deepens that interest into a series of related and worth-while ex-
periences. For example, a group of children may be enthusiastic
about aviation. They may read some of the ancient stories and
myths about flying—“Daedalus and Icarus,” “The Magic Carpet,”
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or “Pegasus.” They may follow Commander Byrd to the South Pole
and eagerly watch through newspaper and radio his airplane adven-
tures into the unknown Antarctic. Undoubtedly, the group will
write for aviation bulletins and seek information from wvarious
sources. Some of the group may plunge into the theory of air
dynamics or experiment with the principles of the rocket plane.
Thus the children develop joyfully a series of meaningful and related
aviation experiences which will differentiate eventually into a great
array of useful skills, facts, understandings, and attitudes. Yet, the
children may not be aware at any time that they are really pursuing
what is in the formal curriculum classified as “courses” in litera-
ture, geography, composition and spelling, science, arithmetic, etc.

It is obvious, however, that such a series of aviation experiences
would demand arithmetic at many points. For example, Byrd's
trip has to be financed; his cargo has weight and takes space, his
ship is small, yet he must provide food, shelter, clothing, and
equipment for a definite number of men and animals for an extended
period of time. The determination of these supplies is largely arith-
metical. Any study of air dynamics or rocket planes will necessitate
computation of a high order. Determining lift per unit wing sur-
face, horsepower of the engine, fuel capacity and consumption, pay
load, cruising range and speed, and a multitude of other problems
can be solved only by the use of number.

A first viewpoint: functional experiences adequate. In
schools where such related experiences constitute the curriculum,
there is a difference of opinion in regard to the teaching of arithme-
tic. At one extreme are the teachers who believe that arithmetic
should be taught only as it is needed to carry out the children’s
purposes in any given situation. These teachers contend that any
live, forward-moving activity offers ample opportunitics for learning
the meaning and use of arithmetic. They would not make use of
formal textbooks nor would they set aside a period in the daily
schedule for drill in arithmetic. Should a problem of average speed
arise in an aviation activity, the teacher and chiiiien would com-
pute the answer and pause long enough to grasp thc meaning of
the arithmetic process involved in the solution. They declare they
would not detract from the larger outcomes in the experience. how-
ever, by constructing a number of hypothetical problems in average
speed and then practice the process in order to fix the particular
arithmetic learnings used in the solution. This practice, they hold,
would interfere with the larger drive—the aviation intetest. This
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group of educators leaves the mastery of any number skill or process
mainly to the dynamic quality of functional situations and argues
that if educaticnal experiences are sufficlently rich and varied, those
skills and processes that are truly important are mastered by the
demands of constantly recurring life situations.

A second viewpoint : systematic arithmetic mastety the goal.
A second point of view concerning arithmetic and the activity cur-
ticulum starts from a different set of assumptions. In many class.
rooms, a definite body of arithmetic knowledge and skills Is selected
in advance to be learned. The teacher then seeks to find or to stimu-
late the children's interests which will demand the arithmetic con-
tent which has been selected for the year and o develop these in-
terests Into activities largely for the purpose of giving meaning
and readiness to the arithmetic lesson. In these classrooms, the
pupils find the stage continually set to arouse *helr feeling of need
for a particular arithmetic skill or process, then drill and exercise
follow to fix permanently these learnings. This point of view holds
certaln selected arithmetic content to be so valuable socially that
activities must be found or stimulated in order to motivate the
work, The arithmetic content is the Immediate end-point and the
activity becomes the method of teaching it. Formal systematic
daily arithmetic which follows a course of study or textbook governs
the selection and initiation of activities,

A third viewpoint: recognising two goals. There Is still an-
other—a third—point f view concerning this issue and the ma-
jority of the members of the committee responsible for this report
subscribe to it, To some extent it is a synthesis of the two positions
previously discussed. In the first place, in the classroom of those
adhering to this third position, the aim is to develop in children
those interests and urges which seem most worthwhile when all
things are considered, i.e., no large activity is selected solely because
it offers unusual opportunities for arithmetic. In the full develop-
ment of most activities, as is illustrated in the case of the study of
aviation, arithmetic will be necessary many times. Here arithmetic
serves as & tool or as a means to the solution of the larger purpose,
rathce thao as an end in itself. Arithmetic is 1 part of the process
by which the child refines—resolves his problem. There is no
forcing of artificial experiences in order to make opportunities for
arithmetic, but whenever the situation functionally calls for arith-
metic solution, it naturally comes into the activity, Furthermore,



ARITHMETIC IN AN ACTIVITY PROGRAM &

whenever the arithmetic process or skill Is a new one to the children
or'has not been adequately fixed in thelr neural patterns, time Is set
aside in arithmetic perlods for practicing these aspects of the subject.
(The intelligent teacher, of course, passes over a process which
she believes too difficult for the puplls to master or which is not
apt to come up again until several grades later in the school career.
She will need to check such judgments against standards held in her
school system.) ‘The skill or piucess is first called into meaning by
the demands of the problem and then effort is devoted to the fxation
of the process or skill through utilizing the best methods of learning
known to the teachers.

This point of view further recognizes that there are undoubtedly
certain aspects of arithn.etic which can best be learned by a sys-
tematic practice when the learner has once grasped the meaning of a
Process. Also, many arithmetic manipulations depend upon a mas-
tery of more elemental processes—multiplication can be done when
one can add figures, etc. Much of the mathematics work In the
high school is predicuted on the mastery of certain skills in the
lower grades. A mobile population adds to the desirability of some
common consent among schaols concerning the placement of the
major learnings. All these considerations presume a need for some
minimum understanding and facility of quantitative thinking and
some minimum skill in fundamental processes.

This position differs from the first position presented in this paper
in denying that functional experiences of childhood are alone ade-
quate to develop arithmetic skill. On the other hand, this com-
mittee does not agree with the usual program of systematic mastery
goal. The committee feels that their experience in teaching children
has shown them that the traditional course of study is faulty in its
selection of skills to Le learnod and in Jheir grade placement, This
committee holds that the teaching of arithmetic must take account
of the following:

1. The demonstrated geeater effectiveness of learning which re-
sults from the pursuit oi a meaningful and purposeful activity.

2. The maturation of the insight and the interests of children at
various ages.

3. The “logical” development of many aspects of arithmetic,

A survey undertaken. In order to find out more definitely
whether the viewpoint held by the members of this minority group
is sound, a survey was next undertaken in order to discover the
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extent to which opportunities for arithmetic in the activities program
were pussible. Six teachers of Grade 3 and six teachers of Grade 6

were Invited to coiperate. These teachers were chosen from public
and prlvm schools in New York City, from suburban communities
adjazent to New York City, and from rural communitles of New
Jersey. The necessity for group meetings to discuss survey tech.
niques made {t unwise to extend the survey widely throughout the
United States in this initial undertaking. The two levels, Grades
3 and 6, were selected in order to sample the elementary school.
These schools for the most part teach some formal arithmetic, but
on the whole these schools are organizing and integrating the chil-
dren’s experiences around worthwhile interests rather than fol. .wing
a strictly separate subject approach with a systematic course of
study.

Each teacher was asked to record on prepared blanks every situa-
tion faced by individuals or by her entire class, in which there was
a need for quantitative thinking and manipulation. These atith:
metic situutions were not to be those suggested by arithmetic courses
of study, textbooks, or workbooks, but those problems which arose
in the pursuit of some child-selected activity. An effort was made
to explore the out-of-school arithmetic experiences whenever pos.
sible. For the most part, however, the recorded problems grew out
of class activities rather than individual prcblems of a nonschool
natu.e,

The recording blank (only one problem to each blank) called
for the following:

1. The situation—-a brief statement of the unit of work or the ac-
tivity in which the demand for the use of arithmetic arose.

2. The arithmetic problem--the problem wurded in terms similar
to the usual texthook statement with all essential numbers.

3. Computation involved in solution (to be filled in by the chair-
man of the group).

4. Space provided for teacher’s name, grade, date, and number
of children who faced this problem

A typical completed record sheet for the third grade and one for
the sixth grade follow:

Opportunities for the Use of Arvithmetic in an Activity Curriculum

The situation: [A brief statement of the unit of work or the activity
in which the demand for the use of arit!.netic arose.]
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The fire house that John and Joseph are building for
the community study Is to be painted. The following
articles are needed:

The arithmetic problem: [The problem to be worded in terma similar
to the usual textbook statement v th al' essentiul numbers.)

t Can of enamel..... Cireiaariiannen 15¢

t Canofflatpaint................... tof

2 Brushesat sgeach................. .
Total cost.....vvuuss crisersnnng ?

Computation involved:

s¢ 13¢
X 2 10¢
10f
Teacher Grade 3 Date

Opportunitics for the Use of Arithmetic in an Activity Curriculum

The situation: [A brief statement of the unit of work or the activity
in which the demand for the use of arithmetic arose.)

The situation in which this problem arose was in a unit
entitled: “The Solar System—How Our Earth Became a
Meniber Planet.”

The arithmetic problem: [The problem to be worded in terms similar
to the usval textbook statement with all essential numbers. ]

A light year is the distance light travels in one of our
years at the rate of 186,000 miles a second (approxi-
mate). This is the unit scientists use in measuring the
distance of the stars. What is the distance of a light year
in miles?
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Computation involved:
186,000 11,160 000 66,060,000  1,007,040,000
X Go X 6o X 24 X 368
Teacher Grade 6 Date

Twelve teachers kept such records of arithmetic needa for the last
two months of the spring term and the first two months of the fall
term of 2933, The number of specific problems recorded totaled
439; 234 for Grade 3 and 203 for Grade 6. The majority of these
problems arose in connection with a few large units of work. For
example, cne of the units of work in Grade 3 dealt with the “Story
of Old New York." Among the arithmetic problems connected with
this unit were: the making of individual booklets (involving size
of cover, size of end sheets, size of binding tape, number of sheets of
paper, etc) ; making hats for the dramatization (size of each head,
using string and pencil compass, etc.) ; making a beaverboard sail-
boat for the dramatization (number of persons to ride in boat,
necessary boat size, measuring beaverboard, measuring sail, etc.) ;
and making a frieze of Old New York (measuring wall space avail-
able, counting number of scenes to be painted, dividing space by
number of scenes, etc.).

One of the units of work in Grade 6 dealt with the “Story of the
Solar System and the Beginnings of Our Earth.” Among the prob-
lems arising were: determining the size of prehistoric animals
from scale drawings (measuring size of drawing, multiplying by
scale value); computing the time for an airplane to travel to the
moon (dividing distance by speed of plane, dividing hours by 24,
dividing days by 7 in order to express time in weeks); making a
planetarium (finding relative distances of planets, relative size,
agreeing on manageable scale, etc.) ; constructing a time chart (fig-
uring relative length of various ages, measuring length of beaver-
board, determining scale, laying out time line on board, etc.) ; deter-
mining how many block prints of prehistoric animals are necessary
for individual booklets. (Each child made one animal print, there-
fore the number in the class times the number of different prints,
plus extras for possible waste, etc., constitutec the problem.)

Some of the problems recorded came in connection with indi-
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vidual or with group activities in no way connected with the major
units of work. For Instance, a child in Grade 3 had to leave ichool
at eleven-thirty two days a week for a special music lesson. [t was
necessary for the pupll to watch the clock on those daye and to
depart on time. In Grade 6 one group had health Inspections. The
children computed the percentages of the pupils havirg good pos.
ture, hearing, sight, etc., in order to note growth.

Analysis of the problems. The 439 problem sheets were studied
in order to find answers to the following questions:

1. How many one-step, two-step, and three-or-more-step prob-
lems do children solve In connection with their activities?

2. How mary operations in each of the four fundamental proc-
esses were completed ?

3. How many solutions involved Integers, fractions, mixed num-
bers, decimals, decimal-fractions, linear measure, time, calendar, etc,

4. How many problems demanded such miscelicneous manipula.
tions as measuring, comparison, counting, reading and writing num-
bers, telling time, graphing, etc.

S What was the general nature of the arithmetic problem arising
in Grade 3? In Grade 67

Type: of problems in Grade 3. The majority of the problems
recorded in the third grade classes arose In connection with seven
units of work. A brief statement of the theme of each unit is given
here with a list of i s problem situations.

Story of Old New York. This was a study of the early history
of the Manhattan Indians who slowly gave way to the Dutch who,
in turn, gave way to the English. During this transition period
New York City came into existence. The study culminated in a
historic frieze, booklets, and dramatizations,

Estimating age of modern means of travel in New York.

Figuring age of the United States as an independent country,

Measuring wall space for a historic frieze, cividing it into scenes,
allocating space to each.

Measuring beaverboard for boat to be used in drau..tization. Cut-
ting to measure.

Measuring head circumferences for paper hats, width of brims, laying
out pattern with compass.

Figuring size of cover and sheets to use in individual booklet, esti-
mating number of sheets needed, binding tape needed, etc.

Food Study. The children undertook a study of the foods eaten
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by their class, the sources, effects on health, etc. In connection with
the atudy were many experiences in cooking in the Household Arts
kitchen.

Timing the freeaing of sherbet.

Counting number of children to be nerved spaghetti.

Weighing a quart of milk and estimating weight of a gallon.

Finding number of tablespoons in cup.

Using %, 3, and % cup.

Figuring cost of homemade butter and comparing cost with butter
bought at store.

Understanding of statement that 60% water is evaporated in con-
densed milk.

Doubling a recipe vontaining 3 cups, 3§ cup, ¥ cup, 1% cups.

Counting number of children, cups, spoons, dishes, napkins.

Taking 14 of recipe.

Adding up the cost of a list of groceries and getting change from
$1.00.

Using candy thermonieter at 2R0°,

Multiplying lunch price by number of persons who paid, then figur-
ing profit.

Checking on change from $1.00.

Checking on change from §o¢.

Adding cost of items at cafeteria and checking on change from
50¢.

Adding amounts earned by children duritg month for purchase of
milk.

Cost of milk for month, days, and cost per quart known.

Change from 25¢, so¢, and $1.00 for 15¢ purchase.

Finding how many bottles of milk at §¢ each a one-dollar bill will
purchase,

Figuring change from §¢ in purchase of 3¢ stamp for lctter to be
sent to bottling plant.

Finding monthly milk bill for class.

New York, The Wonder City. 'The pupils surveyed their city’s
water supply, harbor, police, fire department, sanitation, etc.

In an hour period, how much time would be spent en route and how
much in observation at fire house? ‘Time for leaving fire house.

Figuring lumber needed to build small fire house in classroom.

Finding out how many sections of a 15-foot ladder would be needed
ta reach roof of various houses.

Finding out number of fect and yards of fire hose to reach from
hydrant to school house.
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Conmparing cost of nalls from several hardware stores, Finding num-
ber of pounds of nails which can be purchased for 2§¢.
Finding out number of days to elapse until dramatization,

The Story of Clocks. This unit involved a series of activities
with sand, water, and fire clocks, as they were invented and im-
preved by men of early times.

Measuring water and sand in pints, quarts, gallons.

Checking sand, water, and fire clocks with standard timepiece.
Comparing length of candles. o
Translating minutes into fraction of hours. Reverse process.
Measurement of candles in fractions of inches.

Increasing sand or water to make a clock of specified time period.
Measuring lapse of time.

Meaning of Roman numerals on clock.

Beginnings of the Earth, Another unit of work was a study of
the solar system, its history, the earth in its larger setting, life on
the earth, prehistoric animals, etc.

Writing and reading large numbers, distance, and time lapse.
Comparison oi distances to planets aid stars—farthest, nearest.
Comparison of sizes of planets—Ilargest, smallest, etc.
Comparison of diameter and circumference of earth.
Contemplation of earth'’s age (600,000,000).

Estimating lapse of time for various life changes on earth.
Speculation of largest number of stars possible,

Life in Anne Hutchinson’s T'ime. A study of the life of this
period and the hardships endured in achieving modern life revived
crafts, songs, games, and dances of the time. The children made an
old-fashioned garden on the school roof,

Counting letters in sampler.

Counting spaces between letters.

Counting spaces between words.

Counting spaces in r. ~rgins.

Computing length and width of sampler.

Estimating size of wood for rockers for cradle.

Lapse of time—Hutcl inson to present,

Electing officers for publication—counting ballots, marking off into
groups of five, comparing closeness of votes,

Finding number of small pieces of wood which can be cut from a
large board.
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Estimating number of wooden nalls three children can cut.
Estimating sine of printed page after marging are taken out.
Cost of bus ride per child.

Number of addition! children needed to pay for bus trip.
Estimating sise of cloth for bed cover and plllow for doll bed.

Life in Holland. This was a study of the people who live in
Holland: their home life, transportation, production, holidays, etc.

Increased dollar value of a Rembrandt painting.

Average number of pages per chapter In story book.

Total money earned by class.

Comparison of two totals of money earned.

Total weight of tray of cheese.

Translation of dozen Into units.

Total weight of cheeses,

Earning per week in cheese-making.

Lapse of time since tulip was introduced into Holland.
Difference in time in Christmas here anl in Holland.

Total cost of Christmas presents for Dutch child.

Lapse of time since Rembrandt painted his portrait,
Comprehension of two heights, one 4o feet and one 150 feet,
Measurement of length of room.

Comparison of 4o feet with known length of room.
Doubling a large number.

Finding working space on page after margins are blocked off.

The remainder of the prcblems recorded arose In connection with
telling time and with general classroom housekeeping ac‘ivities,
A few non-unit problems which originated in out-of-school experi-
ences of the pupils.

Telling time for next class,

Understanding terms of half-past and quarter-past.

Leaving classroom for assembly at appointed time.

Comparison of New York time with European countries and western
states. Use of radio in this connection,

Finding number of minutes until noon.

Finding one-quarter of a dollar is not same figure as ane-quarter of
an hour.

Time until vacation.

P.M. and A.M, concepts.

Counting children present and absent.

Dividing class into two groups,

Measuring length of room.



ARITHMETIC IN AN ACTIVITY PROGRAM ”

Verilying best authority from copyright dates.

Quickly fAnding page In reading book.

Totaling lunch order.

Coat of number of tickets.

Making change in selling tickets.

Counting to 20 to check tickets sold.

Checking total tickets against those sold.

Final accounting of money and tickets.

Estimating number of people coming to party.

Determining size of batches of cookies and punch to serve 6o people.

Determining total cost of party.

Measuring size of paper and lumber,

Figuring number of shelves needed.

Placement ol cupboard partitions.

Meaauring for screw holes.

Measuring size of covers.

Figuring cost of notebonks for class,

Inventorying room supplies and equipment.

Reading temperature of room thermometer,

Reading time of clock to take thermometer reading,

Lowest temperature.

Highest temperature.

Change in temperature daily.

Greatest and least temperature daily.

Period of greatest gain in temperature,

Measuring classroom size and reproducing it in scale drawing.

Finding cost of 10 typewriters in room.

Purchasing bulbs for school garden.

Gain or loss {. weight since last measurement.

Gain in height since last measurement,

Lapse of time for postcard to come to New York from India.

Comparison of age of coins in a collection.

Estimating number of pipes and stops on an organ.

Establishing priority of one of two historic events.

Comparing the dirigible Akron’s 207 passengers with known number
of persons in school assembly.

Number of 14’s in 1.

Adding up bill of materials.

Cost of feed for bird.

In making dictionary, counting letters in alphabet, deciding number
of pages to each letter in 8o-page notebook.

Determining amount of material for window curtains.

Learning about half, quarter, and eighth notes in music.
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Conterplating how far § miles would be.

Placing Declazation of Independence and end of Revolution.

Computing number of United States senators.

Figuring number of United States representatives from New York
snd California.

Types of problems in Qrade 6. In the problems recorded for
pupils of Grade 6, the majority were found in connection with ten
units of work. Following ure Lrief statements of these units with
the number situations involved:

Study of New York's Water Supply. A class went to Kensico
Dam to study the source of New York's water supply.

Recording the daily contribution of the pupils to cost of bus trip.
Figuring distance of bua trip.

Estimating per-pupll cost of trip.

Figuring fraction of total trip covered at various stopping polnts.
Converting water in dam to quarts.

Figuring percentage one number is of another.

Finding what percentage of the water s purified.

Estimating guilons of water used in month.

Getting total costs of bus, lunch, etc.

Finding amount of chlorine used in a day for purification.

The Solar System and Life Beginnings. This was a study of
the sun, planets, and other solar systems. They developed the
story of how life began and increased on the earth.

Translating scale drawing of animals to proportions for clay models.

Computing time for trip to moon in airplane, traveling 300 miles
per hour.

Relation of diameter to circumference.

Drawing to scale distunces and sizes of planets and sun.

Constructing planetarium.

Constructing time chart of ages of earth,

Estimating amount of paper for class booklets.

Estimating orbits of planets with diumeters known.

Estimating number of times light travels around earth in one second.

Comparing speed of train and light.

Reading large numbers.

Computing number of miles light travels in a year.

Health Work. A study was made of vitamins, diet, etc., necessary
to growth. The children experimented on diets with animals. ‘The
health of the class was checked,
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Making a graph of growth of two cages of rats fed different diets,
involving weighing and averaging.

Figuring percentage of class members having standard sight, hear-
ing, etc.

Natural Wealth of the United States. A study was made of ofl,
water, climate, soil, technology, etc., in relation to the wealth of
the United States.

Ordering small desk maps with check enclosed for payment.

Graphing increase in oll production since 1goo.

Graphing water power of United States and comparing it with foreign
countries,

Finding out the proportion of cars to population.

Comparison of rainfall maps.

Translating scale into miles from map.

Hallowe’en. Activities in connection with preparation for Hal-
lowe'en celebration were as follows:

Determining best price on masks and pumpkins for entire class.
Finding total cost of pumpkins.

Finding profit from sale of pumpkins.

Estimating loss from spoiled pumpkins.

Computing total profits from sale.

Dividing profit into two funds.

Estimating profit from sale of large number of items at festival,

A School Store. A class kept for sale certain articles which were
used by the school,

Finding cost of shipment of paints and paper.
Determining selling prices.

Estimating profits.

Borrowing to pay for shipment.

Figuring interest on loan.

Balancing account each month and paying off loan.
Finding cost of second shipment at increased new price.
Figuring new selling price.

Figuring new profits.

Study of Carelessness. The pupils figured what breakage and
lost articles cost the school annually.

Finding cost of replacing brushes scissors, screw-drivers, hammers,
planes, saws, chisels, files, pliers, awls, clamps, knives, balls, and books.
Adding the total bill.
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Anne Hutchinson's Time. A study was made of the clothing worn
when Anne Hutchinson was living:

Determining cost of materials needed in unit.

Finding balance in funds.

Comparison of prices of muslin ac various stores,

Determining amount of cloth needed to dreas dolls and make cos-
tumes for play.

Comparison of time lapses from Hu'chinson's time to present.

Age of Anne at marriage.

Age of Suzanne when returned by Indians,

Time in America when banished.

Age of Anne at death.

Construction of model house.

Scale drawing of house,

Scale drawing of furniture of house.

Estimating cost of excursion.

Sharing cost amony class.

Selecting meal from menu card with limited funds available.

Collecting money from children at table to pay check and making
correct change for each child.

Laying out pages of class booklet.

Counting links in crochet and finding center of pattern for making
small designs.

Western Movement. The purchases of land which made the
western territory accessible to our citizens was particularly empha-
sized in a unit of study concerning the Western Movement.

Computing amount of money spent for land over budget figure.
What percentage?

Translating square miles into acres.

Computing price per acre.

How many acres can be purchased for $15,000,000?

Club Activities. A group of boys having a checking account pur-
chased baseball equipment.

Purchasing bat at discount. Compute actual cost.
Figuring discount allowed on ball.

Comparing net cost with prie at another store.
Writing a check for purchases,

Balancing checkbook.

The remainder uf the recorded problems came in isolated activi-
ties in and out of school. They are as follows:
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Finding how many admisaions at 15¢ will total $14.25.

Estimating profit from sale of snapshots.

Measu, ing size of bulletin board, dividing into sections, one for each
pupll to make a scene for frieze on China.

Computing age of Confucius.

Computing amount of beaverboard needed to build Greek temple for
classroom.

Making a time line of Greek history.

Computing money value of scrip held by class.

Averaging term tests.

Apportioning cost of flowers among class members.

budgeting cost of materials for Memorial Day play.

Spacing exhibit on bulletin board.

Spacing plants in border of garden.

Computing distance of Arcturus from earth. Comparing with earth-
to-sun distance.

Adding incomes from various tables where food was sold.

Computing average speed of Lindbergh in Paris flight.

Comparing land and water surface on earth.

Comparing speed of ruen, horse, train, auto, and airplane.

Measuring windows and purchasing materials for curtains.

Finding center of paper for typewriting.

Meacuring bricks for Pueblo.

Plotiing muric practice period over three weeks.

Computing how many quarts of milk can be bought with funds
available.

Figuring total cost of subscriptions to newspaper for members of
class.

Computing cost of photographic supplies and apportioning among
four children.

Apportioning books among sections of sixth grade.

Purchasing groceries and making change.

Figuring amount of material for dress and purchasing it.

Purchasing clothing.

Translating speed at sea (knots) into speed on land.

Types of problems. An analysis of Table I shows that the pu-
pils in Grades 3 and 6 found 439 problems growing out of their
activities. Of these, 279, or 63%), involved computation while 160,
or 37%, involved no computation. The pupils in Grade 3 found that
§6% of their problems involved computation while the pupils in
Grade 6 found that 729% of their problems were classified as com-
putation. This higher percentage of computational problems in the
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upper grade is worthy of note. The problems are 447 non-computa-
tional for Grade 3 as against 289 for Srade 6.

A further analysis of Table I discloses that of a total of 279 com-
putational problems i .c the two grades combined, 145 problems, or
529, are one-step problems; 72, or 26%, are two-step problems;
and 62, or 22%, are three-or-more-step problems. When the two
grades are compared, it is seen that 72% of the Grade 3 problems
are one-step as against 34% of the Grade 6 problems; 16% of Grade
3 problems are two-step as against 34% of Grade 6; 12% of Grade
3 problems are three-or-more-step, while 1% of Grade 6 problems
are of this more complex type. This difference in the percentage of
simple one-step problems in the two grades is marked.

The four fundamental processes. The 279 problems involving
computation necessitated 640 computational manipulations for solu-
tion. Tahle II shows that 194 computations were carried out in
Grade 3 and 446 in Grade 6. Of the total for the two grades 24%
were in addition, 23% were in subtraction, 38% were in multiplica-
tion, and 15% were in division. In Grade 3, 195% were in addi-
tion, as compared with 26% in addition in Grade 6. Subtraction
seoms to be more frequent in Grade 3 where 36% of all problems
were in subtraction, as compared with 17% for Grade 6. Multipli-
cation accounts for a disproportionate number of computations both
in Grade 3 (30%) and in Grade 6 (41%). Division is the least
used of the four processes in both grades—14% in Grade 3 and 15%
in Grade 6.

Types of numbers. A study was made of the type of numbers
used in these problems. Table III shows that of the 640 computa-
tions completed in the two grades, a total of 288, or 45%, were
integers, 8, or 1%, were fractions, 43, or 7%, were mixed numbers,
277, or 42%, were decimals (almost entirely money), while decimal
fractions and other types accouated for 1% and 3% of the total.
The high frequency of integers and decimals is outstanding. In
Grade 3 integers and decimals (money) mal.e up 65% and 17%, or
829, of the total computations fer the grade. Likewise integers
and decimals (money) make up 36 and 54%, or go%, of the total
for the sixth grade. The comparisun between integers in Grade 3
(65%6) and in Grade 6 (36'% ) ~huws a tendency away from whole
numbers as the pupils face m .¢ complex problems in the upper
grade and correspondingly more computation involving decimals,
Grade 3 showing 17% and Grade 6 5495. The slight decrease from
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Grade 3 to Grade 6 in percentage of computations involving frac-
tions, mixed numbers, and other types is probably too small to be
significant,

A study of integers. Table IV shows the classification of in-
tegers according to the fundamental processes. The last column in
the table shows a fairly even dis ribution of the four processes,

TABLE 11

NUMBER OF CoMPUTATIUNS INVOLVING EAch OF THE FouR FUNDAMENTAL
PRrOCEsSES, WITH PERCENTAGES

AnbITION SuarracrioN MuLTirLicaTION DivisioN

(irADLE TotaL
No. So No. Ce No, oy Nao. P
Inmr .......... 38 19 70 36 50 30 27 14 104
vI.......... 131 26 78 17 185 41 68 I8 4406
Total ....... 153 24 148 23 244 38 05 15 640

e ——————

Marked differences are seen between the two grades in subtraction,
only 5% of integers in Grade 6 as against 397, in Grade 3. To a
lesser degree a difference shows up in addition, 145 for Grade 3
as against 3790 for Grade 6. Both grades show about one-fourth
of all integer computations to be multiplication.

TABLE IV

THE DISTRIBUTION OF THE 288 COMPUTATIONS INVOLVING Imlegers Fouxp
AMONG THE FOUR FUNDAMENTAL PROCESSES, WITII PERCENTAGES

AvpiTION SunTRACTION MurripLicaTioN Division
GraDE TortAL
No. o No. rey No. Cy No. [
) QU 18 14 50 39 35 28 23 18 126
A2 S 6o 37 9 5 41 25 52 32 162
Total ......, 78 2y 59 20 76 20 75 20 288

A study of decimals. Table V indicates that 50% of the 277
computations of decimals are fairly evenly divided between addi-
tion and subtraction. Multiplication accounts for 469, while
division is seldom used in decimals, only 475 falling in this classi-
fication. More than a majority of all decimal computations in
Grade 3 deal with subtraction, but it must be noted that the total
number of decimal operations in Grade 3 is only 33. Any conclu-
sion based on these facts is necessarily tentative. There are no
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decimal computations for division in Grade 3. In Grade 6 multi-
plication of decimals accounts for 0% of all of this classification
for this grade. A later portion of this study will show that these
decimal operations were for the most part money transactions—

TABLE V

THE DISTRIBUTION OF THE 277 CoMPUTATIONS INVOLVING Decimals Founp
AMONG THE Four FUNDAMENTAL PRUCESSES, WITH PERCENTAGES

Abpition SuntRACTION  MULTIPLICATION Division

Gaape TotaL
No. % No. % No, A No. %
I .......... 6 18 18 (1] 9 27 o o 33
VI.......... 50 20 50 24 122 50 13 [ 244
Total ....... $6 23 77 27 131 40 13 4 a9y

adding items in a bill of expense, finding change due in a purchase,
or multiplying a price by the number of articles to be purchased.

Other types of numbers. Table III also shows that fractions
(1% ), mixed numbers (7%), decimal fractions (1%), and others
(3%) represent such a small part of the total that there is no

TABLE VI

CLASSIFICATION OF THE 160 NONCO {PUTATIONAL NUMBER
StruATIONS, FACED BY GRADLS 3 AND 6

Grade 111 Grade VI Total
Measuring ...........o00vinnn. 50 9 59
Comparic™n .....ovviinnnn..., 18 15 33
Counting ...........ccvvvvvnnn. 23 23
Making pattern ,............... I. 1
Reading large numbers .......... 1 1
Writing large numbers .......... 1 I
Telling time .................... 3 3
Graphing ...................... 4 4
Scale drawing .................. 5 5
Othertypes .................... 6 24 30
Total o .vviiiiiieann, 103 57 160

need for a closer analysis. The important point to be noted is
the infrequent use pupils of Grades 3 and 6 make of these types
of numbers as compared to integers and decimals (money).

The problems lacking computation. Table I indicates that a
total of 160 problems recorded lacked computation. A further
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analysis of these problems is shown in Table VI. Measuring, com-
parison, and counting constitute over two-thirds of all these prob-
lems. Graphing and scale drawing in Grade 6 occur often enough
to merit mention. Also, the noncomputational problems are twice
as numerous in the lower as in the higher grade.

CHART 1
PRoBLEMS IN Addilion ActusLLy DoNE BY PuriLs 1N GRADE 3
Integers 9+ 12 75+ 45 74+ 33
2 numbers 420 + 23§ 1+4 1§+ 10
120 + 100 5s+6 124+ 3
3 numbers 27+ 7+ 33 10+ 10+ 10
10410+ 8 6+12+8
15+ 10+ 10
4 Of more 5§+ 104 104+ 10+ 10
numbers 20+ 20+ 20+ 10+ 20
908 +48+ 22412
24+ 14+ 242
Fractions
2 fractions H+4 B+4 B+
4 or more U+K+U+ YK
fractions UK+ AR+ AR+ U+ U+ Y+ U+ Y
B+UH+ U+ 4
Mixed 2+ UB+ Y4 M+U+H
Numbers M+ U+ 4 12+ 4%+1
3 numbers
Decimals» 65 + .65 10.35 + .03
2 numbers 2.00 + .50 2.50 + 2.7§
7.00 +4.2§
3 numbers 500 + .65 + .75
Other Types
Linear 3yd. 2in. 4 121in,
Measure 24 yd. + 3 yd. 4 in.
Time 10:55 + § min,
11:00 4 2 min.
* All figures,

A study of addition in Grade 3. Chart I presents a study of
addition in Grade 3, showing the specific combinations utilized
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and the complexity of the comj utations. With integers there is a
fairly even distribution among addition of two numbers, three
numbers, and four or more numbers. Many of the additions can
be made without carrying. Only two of the problems involve num-
bers in the hundreds, while only five add up to sufficient totals
to be in the hundreds. Many of these figures are sums of money.

With addition of fractions and mixed numbers, only the fractions
¥, %, and 14 are needed. In decimals all the figures represent
money transactions. Other types include addition of yards and
inches and addition of hours anc. minutes.

CHART 11
PROBLEMS IN Sublraction ACTUALLY DONE BY PuPILS IN GRADE 3
Integers 10— 3 25 =3 14 — 10
12— 10 12~ 10 12 — 11
15=9 5—3 38 —15
17 -4 22— 4 50— 10
60 — 50 28 — 26 25— 35
40 — 30 22—2 72 — 68
78 — 68 73 — 69 78 —~ 11
78—11 71 — 68 74—
75 — 70 76 — 72 100 — 26
62 30 — 23 20—-6
20.- 3 120 — 100 30— 123
25— 21 25 — 24 42 — 11
1933 — 1643 1933 — 1675 1933 — 1640
1033 — 1300 1781 — 1776 1933 — 1826
1933 — 1897 1033 = 19007 1933 — 1920
1933 — 500 1492 — 1432 1933 — 1829
1933 — 1776 350,000 — 30
Decimals 1.00 — .69 1.00 — .30 1.00 — ,30
(all money) .50 — .30 .50 — .28 2§ — .15
50 — .15 20 ~ 1§ 2§ = .15
.50 — .30 .50 — .30 <50 — .18
1.00 — 1§ 1.00 — .1§ .35 — .30
1.00 — ,50 6.00 — .69 30— .30
Other Types 11:30 — § min. 5/25/33 — 4/16/33

A study of subtraction in Grade 3. Chart IT lists the actual
subtractions made in Grade 3. Most subtractions of integers are
here shown to be of two-place numbers, the major exceptions are
those involving dates. Only one large number is shown. As was
the case with addition, the subtraction of decimals is entirely in-
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volved in money problems. There were no problems involving
subtraction of fractions or mixed numbers. Calendar-computalion
and time problems constitute the two listings under other types.

A study of multiplication in Grade 3. Chart III shows that
integers are more frequent than other types of numbers. There is
a fairly wide sampling of the multiplication facts although most of

CHART III
ProOBLEMS IN Multiplication AcTuaLLy DoNE BY PupiLs 1N GRAD: 3
Integers X2 1 X12 2X2
2X3 2Xx3 2aX4
2X4 2X§ 2X5
2X6 2X6 2 X1
2 X 26 2X48 2 X 200
3X6 3X1u 3X 26
3 X 6o 3 X 100 4 X 12
§X10 §X12 § X 20
§X 20 § X 100 6 X 10
6 X 180 7X14 9 X 1o
10X 45 13 X 18 1§ X 20
15 X 30 20 X 21
Fractions X3
Mixed 14X 36 14 X 100 14 X 6o
Numbers KX B Xa Y X2
Y4 X 100 ¥ Xa Yi X9
3X 44 14 X2 44 X134
Decimals 1X.25 2 X .28 2 X .50
(money) 3 X .50 14 X .50 17 X .50
20X .30 20 X .30 20 X .30
Decimal a2 X ,27Y
Fractions
Other Types 8X 3 yd. 14 in,

the facts in the multiplication tables are not involved in the prob-
lems recorded. Fractions are confined to %4, ¥4, and 4. The only
case in all Grade 3 problems where the decimal fraction is used is
found here in multiplication. As has been true in addition and
subtraction, decimals were entirely confined to money problems.
A study of division in Grade 3. Chart IV shows that practi-
cally no division is needed in Grade 3 problems outside of integers.
Short divisivn without remainders has the same number of com-
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putations as long division. Many of the long-division problems
could be made into short-division problems by dividing by 10 or
multiples of 10. The computations of short division with remain-
ders are fewer in number than the other two classifications.

A study of addition in Grade 6. Chart V shows a large num-
ber of additions of integers and decimals with only one computa-
tion in linear measure and four computations in mixed numbers.
Most of the integers are one-place numbers. The figures 1 and 3

CHART 1V
ProBLEMS IN Division AcrvarLy DoNE By PupILs or GRADE 3
Integers 3+1 8+2 150 + 2
Short 600,000,000,000 + 2 16+ 4 25+ 3§
No Re- 147 12+ 12 60 + 10
mainder
Short 9+ 2 23+ 8 a5+ 7
Remainder 30+ 3+ 7 190+ 6
Long 50 + 2§ 100 + 20 200 + 50
150 + 30 112 + 36 §00 + 50
2400 + 8000 12,633,000 + 280,000
Mixed T+ W
Unclassified h+ g
1+ 3
8o+ 7?

are most frequently used due to .he fact that these computations
were additions of sums of money. The “penny” and “nickel” are
evidently familiar coins among the pupils. A group of additions o1
80’s and go’s, involves the averaging of school marks.

As in Grade 3, the fractions are all simple—1%, 1, %, Y..
The decimals for the most part refer to money transactions. There
is some question as to whether these figures should not have been
set down as integers rather than decimals. Pupils probably think
of “small change” as units of cents rather than as decimal parts of
a dollar. However, the teachers recording the problems indicate
that the pupils were in these instances using decimals to compute
the answer,

A study of subtraction in Grade 6. Chart VI lists the com-
putations made in subtraction, the majority of which consist of
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- CHART V
ProBrLEMS IN Addilion AcTuALLy DoNk 3y Purirs or GRADE 6

Integers
2 numbers 1933 + 550

3 numbers 104104 10 10+ 104§

qormore | t1+14+2+5+3

numbers | s+1+5+1+542

3+r+2+1+5+1
t+1+s5+1+2+0tr+r+1+2+3tr+1+4+2+43
t+1m0+10+5+5+s+r1+1+s5+1+§
§+s5+s5+s

t+14+141

s+ti1+s+s5s+2+s

t+s5+s5s+r1+s5+1+2
1+1+1+10+5+5+12

t+1+1+1+5+41

1+1+1+10+5+ 10
2+2+1+5+14+5+2

stri+s+1+1+s
3+1+s+r1+2+24+5+5
1+s5+5+2+5+5
1+2+2+s5+2+1t+1+5
t+r1+2+1+1+1+45§
t+1+2+1+2+r+r+1+1+24+6+3+1+54+141
s+10+5+10+125

S+5+s5+s5+5+5+s

t+14+14141

S+s+s+s5+s5+s

10+ 104 104 10+ 10+ 10

s+3+10+5

s+s5+r1+24+141
t1+s+s5+1+s5+s+2+141
t1+141414241

4+1+1+5+2+141

t+1+1+14+5+2

1+24+3+3+5+s
2+3+1+s+1+r+2+1+1+5+1+41
t+r1+4+1+ 14541
2+s5+s+mo+2+s+r+r+1+241
t+1+4+1+14+5+1
2+s5+s+rm0o+2+s+r1+r1+1+241
t+r+r+r1+s5+s5+1

t1+s5+10+s5+ 1045
1+1m00+5+1+104+1+10+145
t+rw+s5+s+r+1+2+24+34+5+142
24+s5+s5s+w0+s+s+r+s+2+rt+r+r4r
6+1m0+1+s+r0+s5+s+s+r+s5+1+3+1+s
1+s+m0+2+1+s5+s5s+1+s5+wot+r+r1+2+5+5+5+5
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CHART V (Continued)

Integers
(Comtinued)

t+25+104+5+5+S5+s+t+2+s+s+5+s+1+r+t+
t+at+s+3+a+1

I+ 0+ 4+ U+ IS+ +30+33+38+ ¢4 +63+65+83+
56 + 69 + 96

+s8+s+18+4o+35+25+5+30+27+6ur20+85+23+
0+u+w+3+18+4t+a3t+0+ratas+1s+ar+ 7+
sty +7+1s5+2a+104+ 13+ 19413

3+i+:+s+xo+s+s+x+s+t+s+x+x+s+t+3+
241

t+rot+otas+s+rttrtttatrtytrbstr+rtett

S+o+stt+Ss+r+s+s+s+r+r+atatrtr+r+s

thhs0+ 14+ 28416+ 30+ 27422

v+ 85+ 100+ 80+ 78+ 95

88 + 85 + 95 + 8o+ 9o + 90

92+ 78 + 85 + 87

85 + 65 + 80 + 81

90 + 92 + 80 + 85

92+ 9o+ 88 + go

90+ 91+ 95+ 90+92+09s

Mixed
Numbers

Yo+ 6 + 6Y1s

&+ 22 + 12Y4

Yo+ 2%+ 8%+ 4+ s
2+2+1h i Vi

Decimals

.25 + .10+ .30

.25 + .10+ .05

05 + .10 4+ .10

3.75 + .45 + 1.70 + .50 + 1.40

2104 2.45 + 1.75 + 2.20 4+ 2.10

05 + .25 + .10 + .0§

08 + .25 + .10+ .10

05 + .25 + .10+ .10

20 4 .25 + .35 + 104 .05 4+ .10+ .05

05 + .15+ .10+ .10

42.80 + 32.00

51.00 4+ 11.0§

10.00 + 2.00

.15 + .20+ .40

1.35 + 1.00 + .40

11.00 + 3.12 + 2.40

2.04 + 2.10 + §.00

108.61 + 74.80 + 100.00

I3 4 .16 + .09

20+ .75+ .15+ .20

7.50 + .90 + 3.00 + 5.00

26.40 + 20.75 + 2.00 + 18.40 + 6.75 + 4.00 + 10.00 + .60 + 2.55 +
3.15+ 1.11 + 8.50+ 1.30+ .25 + .45 + .40

JI 4 11 4 .03 + .2¢ - .22

074+ .33+ 124 2.00 + .17
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CHART V (Continued)

Decimals 5.50+ 2.78 + .38
(Ctinued) | t.00 + 21.00

8.99 + .78

2.00 + 81

3.00 + 3.60 + 5.67

ll“ + 'so + .SO

IS+ 385+ 40 + .28

6 4+ .40 + .62 + .30

4.00 + 0.60 + 18.75 + 14.00 + 10,00 + 2.50 + .40 + 1.2
5:45 + 944 + 1090 + 4.45 + 4.02 + 4.05 + 5.30 + 3.94 + 24.00
1.00 + .40

20 + 40

10+ .20 + .08

08 + .25 + .08 + .10 + .10 + .08
A5+ 254 30+ .38

10+ .10+ .20 + .50 + .30

30+ .50+ .10+ 40 + .10

20+ .20 + .50 + .20 + 4O

1.00 4+ .10 + .40 + .20

S0+ 304204 .30 + 40

182.2 4+ 1519

168.3 + 167.1

236.4 + 16

1459 + 149.8

92.2+ 89.4 +95.6 + 96.4

85+ 71.4 + 80.2 + 82,9

Other Types | 3 yd. 2 In. + 2 in. 4 3 in.

money transactions—decimals. The frequency of the o and g
is noticeable here. The small frequency of fractions is again evi-
dent in Chart VI; also the simplicity of the few fractions is note-
worthy. The computation of time lapsed is more frequent in this
chart than in any other. One unit of work drew heavily on com-
parative dates and is responsible for this type of subtraction.

A study of multiplication in Grade 6. Chart VII presents a
large group of multiplication computations made by pupils in Grade
6. Integers and decimals are most frequent. With integers there
is a grouping of multiplicands of one- and two-place numbers and
a second grouping of multiplicands of eight-or-more-place num-
bers. The larger multiplicands were supplied by units on the solar
system,

The mixed numbers are fairly simple. The decimals are largely
sums of money, although the use of 3.1416 as a multiplier in prob-
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CHART VI
PaoaLEMS IN Subiraction ACTUALLY DoONE By Pueits or Grave 6

Integers 15,000,000 = 2,000,000 1933 — 1628
15,000,000 — 2,000,000 100 — 46
43— 39 43— 40
43 = 36 43 30
10-6
Fractions Va-"h
Mixed 100 — 331§ 1=K
Numbers 100 — 8734
Decimals 10.00 — 7.80 2,50 — 2,20
1.13 = .11 1.26 — .19
76 — .11 88 = 09
4§ = .30 7§ = .50
t‘s - .QO .50 - .25
050 - .25 1.00 — 035
1.00 = .35 +§0 — 3§
50— .38 50 — .35
+50 = .35 50 = .35
50 — .35 50 — 40
.50 — .40 .50 — .40
1.00 — .30 1.00 — .40
1.00 — .40 1.00 = 4§
1.00 — 4§ 50 — .30
20 — 1§ .20 — .15
25 = 1§ 50 — .15
2,50 = 1.I§ 1.0 — 1.00
3.65 — 2.75 §5.00 — 1.64
14.25 —~ 11.80 5,10 — §.00
16.52 — 15.08 15.08 — r.08
14.00 — 4.80 1.20 — .32
283.41 — 02,05 2,00 — .56
1.00 — .38 §500.00 — 2.00
20.00 — 8.50 3.25 — .39
.60 — .50 4.50 — 3.7§
40 ~ .30 22,00 — 12,25
10.35 — 1.36 50 — .34
1.20 — .80 2,50 ~ 1.8%
3.00 - 2.70 71.§§ — 0o.50
10,00 — 7.19
Decimal a5 — .13y
Other Types 9/1871634 — 8/14/1634
8/9/1612 — 7/20/ 1501
9/12/1657 ~ 11/15/1633
10/3/1637 — 9/18/1634
8/20/1643 ~ 7/20/ 1591
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CHART VI
PRoBLEMS IN Multiplication Actuarty Dong BY PupiLs or Gaapx 6
Integers 5 X 50 9 X 30 10 X 30
10X 14 9X3§ 2 X 8s
o X14 9 X 11 4X19
4 X 22 4 X158 3X3
2Xg§ 3X1ro 23 X 23
3 X1 §X 18 6 X 50
17 X 30 12 X 60 4 X 100
9 X 12 $ X 150 6X12
2 X g0 4N 8 §X 10
2 X 40 §X 24
4 X 100 30 X 750,000,000 6o X 186,000
640 X 523,802 640 X $23,802
11,160,000 X 6o 669,600,000 X 24
16,074,400,000 X 360 186,000 X 60
11,160,000 X Go 669,600,000 X 24
16,074,400,000 X 360
Mixed 4 X 12Y, 0 X ral/y Ve X 11
Numbers ax Y, 4 XYy s X ¥/
12%y X 17 I XY, 2% 1's
400 X 7Y/4 4 X 1Y4 73 X 1¥s
tY/4 X 3% 22 X 33's 24 X 7,500
3a1X 10 41X 45
Decimals .10 X 1.13 .15 X 1.26 X5 X 36
10X 88 .05 X 4§ 7 X .38
.05 X 3§ 10 X 22 05 X 42
2X .05 2 X .05 2 X .05
2 X .0§ 2 X .08 2 X .05
1 X .25 I X .28 IX.35
1X.3§ I X.10 1 X .10
I X.0§ 1 X .05 I X .05
2X .10 2 X .10 2X .10
2X.10 3 X .05 3 X .05
3X .05 3X.05 3X.05
4X .05 4 X .05 4 X .05
4 X .05 4 X .05 4 X .05
4 X .08 4 X .05 2X .25
2 X .25 2 X .25 2X.25
2X.1§ 2 X .18 2 X.18
4 X .25% 4 X .25 4 X .10
4 X .10 4 X .10 4 X .10
4 X .10 4 X .10 3 X.25
1X.1§ 100 X .0038 100 X 0089
100 X ,0001 100 X .0048 100 X .084
100 X .036 100 X .039 100 X .10
.46 X 2.50 54 X 2.50 50 X 1.00
30 X .0625% 10 X .1§ 14 X .10
115 X 1.560 04 X 1.2§ 10 X 1,50
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CHART VII (Continued)

118

Decimals .15 X 100 6X 30.4 22 X .50
(Continued) .12 X 26 8 X .30 9 X .12
J2 X 17 7 X .30 10 X .§0
8 X 5.38 .40 X 66 25 X 83
§ X .40 16 X 1.1§ § X 1.3§
4 X 1.00 4 X 2.50 3X .83
7 X .45 3X.37 10X .8§
2 X .65 I X.2§ I X .45
1 X .60 6 X .40 12 X 3.28
40 X .2§ 40 X .28 40 X .05
22 X .25 12 X .0§ 12 X .30
10 X .10 30X .72 7% .18
9 X 1.48
38,000,000 X 3.1416
67,000,000 X 3.1410
141,000,000 X 3.1410
96,000,000 X 3.1416
483,000,000 X 3.1416
886,000,000 X 3.1416
1,800,000,000 X 3.1410
2,800,000,000 X 3.1416
Decimal § X 0134 234 X .25
Fractions 50X 734 714 X 6o
Other Types 4 X 3 yds. 7in.

lems of constructing a planetarium introduces decimal computation
in which no money is involved.

A study of division in Grade 6. Chart VIII shows the actual
numbers used in division in Grade 6. In the list of integers two
distinct groups of computations are found: one involves small
numbers and the other group deals with very large numbers. As
with multiplication in Grade 6, these large numbers are part of the
number situation faced in a study of light and the solar system.
Cancellation of ciphers is essential in the solution of these large,
long-division numbers. In Chart VIII the lack of fractions is again
obvious.

CoNcLUSIONS AND RECOMMENDATIONS

Some characteristics of the problems surveyed. A summary
of the outstanding characteristics as found in the survey is presented
here:
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CHART VIII
PROBLEMS IN Division AcTuaLLy DoNE BY PupiLs IN GRADE 6
Integers 18+ 2 36+2 26+ 4
6+3 40+ 5§ 50+ 12
IS+ § 31+7 000 + 12
6+5 135+ 7 120,000,000+ §
40 + 10 10+ 4 3,000,000 + 4
12 000,000 + 2,000,000 2,800,000,000 + 36,000,000
15,000,000 + 335,233,280  9,500,000,000 + 1,500,000,000
183 + 36 360,000,000 + 1,500,000,000
221,000 + 300 135,000,000 + 1,500,000,000
736 + 24 54,000,000 + 1,500,000,000
3,300 + 870,000 11,000,000 + I,500,000,000
7,700 + 870,000 50,000 + 1,500,000,000
7,900 + 870,000 186,000 + 2,500
73,000 + 870,000 §00 + 30
32,000 + 870,000 720 + 6o .
34,000 + 870,000 28 + 36
7:000 + 870,000 75+ 30
67,200,000 + 36,000,000 120+ 200
141,200,000 + 36,000,000 13,800,000 + 40,000,000
96,000,000 + 36,000,000 139,685,000 + 57,255,000
483,000,000 + 36,000,000 350+ 750
886,000,000 + 36,000,000 450,000,000 + 750,000,000
1,880,000,000 + 36,000,000 750,000,000 + 100,000,000
Mixed 3,610 + 3314 74 + 2
Numbers
Decimals 15,000,000,000 + .03 205.7 + 2
.50 + L.§0 304.1 + 2
3354 + 2 2524+ 9
9.55 + 72 51,00 + ,I§
10.00 + 40 1.8+ 3
118 + 4 Q.74 + 2
7155 +9
Decimal J0 + 34
Fractions

I. A very wide range of problem situations was found in both

grades. (See page 92 and following.)

2. A higher percentage of noncomputational problems is found

in Grade 3 than in Grade 6. (Table I.)

3. A higher percentage of computational problems is found in

Grade 6 than in Grade 3. (Table {.)
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4. Many more computations were necessary to solve the more
complex problems of Grade 6. (Table II.)

5. Multiplication is the most frequently used fundamental proc-
ess when both grades are combined. (Table II.)

6. Division is the least frequently used fundamental process
when both grades are combined. (Table II.)

7. Nearly half of the computations for the two grades com-
bined were with integers and of the remaining computations, deci-
mals were next most frequently used. (Table IIL.)

8. Very few problems in either grade involve fractions, mixed
numbers, or decimals, other than money. (Table III.)

9. A marked increase in complexity from integer to decimal
computation in Grade 6 over Grade 3. (Table III.)

1o. Integers are fairly evenly distributed among the fundamental
processes in the two grades combined. (Table IV.)

11. Multiplication of decimals accounts for 46% of all computa-
tions in the two grades combined. (Table V.)

12. Division of decimals is seldom used. (Table V.)

13. Measuring, counting, and comparing are the most frequently
found noncomputational problems. (Table V1)

14. Graphing ard scale drawing seem important in Grade 6.
(Table VI1.)

15. Grade 3 addition consist of all types of numbers, but in all
instances, simple numbers. The only fractions used are 14, 14 and
%. (Chart 1.)

16. Grade 3 subtraction is almost exclusively with integers. There
are some mixed numbers. The fractions include 14, 14, and 4.
(Chart I1.)

17. Grade 3 multiplication is confined largely to integers; the
same is true of division. (Charts III and IV.)

18. Grade 6 addition is largely integers and decimals (money).
Fractions are still simple—14, 14, and %4,. (Chart V.)

19. Grade 6 subtraction is mostly with decimals (money). (Chart
V1)

20. Grade 6 multiplication is largely with integers and decimals.
(Chart VIIL)

21. Grade 6 division is largely with integers with some large
numbers. (Chart VIIIL.)

22. Problems containing decimals were largely of money trans-
actions,
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Some general comments, A few general comments seem to be
in order at this point in the summary.

1. It was planned originally to check the findings of this survey
with courses of study to discover inarticulations. However, the
newer courses vary so greatly in the grade placement of number
facts and processes that it seemed impractical to set up a standard
against which to measure the findings of this survey. Consequently,
each city or state may make its own comparison to see how well
it squares with the findings of this study.

2. The present study is decidedly not a comprehensive survey.
It takes into account only Grades 3 and 6. It does not run through-
out the twelve months of the year. It lacks a record of many out-
of-school number situations. It is not a fair geographic sampling
of the pupils of the United States. For these and other reasons,
this study should be considered only as a preliminary investigation.

3. The authors of this study feel that a national survey of situa-
tions in which children find a need for arithmetic is highly desir-
able. It is their belief that considerable inarticulation would be
found between even the most modern arithmetic courses and the
actual needs of pupils. Undoubtedly, there are many aspects of
arithmetic now taught much too early—before the meaning and
need have been experienced by the pupils. Also, many aspects con-
sidered essentially as parts of a carefully planned, sequential, and
systematic program would be learned inductively, out of their logi-
cal order. Nevertheless they are leained and perhaps, in the long
run, better learned as far as functioning when needed in subse-
quent behavior is concerned. A survey would focus attention on
such inarticulations and unique learning characteristics of children.
Such a study might contribute much to facilitate developing control
over arithmetic facts and processes where meaning has been made
clear through personal experience.

4. While the committee presenting this report believes the survey
demonstrates a richness and vitality of arithmetic experiences in
the activity program which may serve to give the pupils signifi-
cant meaning and purpose, yet they point out again (see paragraphs
under 4 Third Viewpoint: Recognizing Two Goals, pages 88 and
89) that “functional experiences of childhood are alone not adequate
to develop arithmetic skills.” The teacher should recognize these
meaningful arithmetic experiences as readiness preceding the prac-
tice or drill necessary to fix the fact or process for the learner and
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the teacher must provide sufficient periods of practice to assure
mastery.

5. Further, the authors recognize that the present activity pro-
gram does not assure a comprehensive orientation in ar.thmetic.*
It is evident from this survey that each classroom found a very
small number of experiences per week. In addition, there is a
large element of chance operating in the selection of units of work
in the present activity school. In the typical activity program,
there is no check to assure that the total experiences of the six years
of elementary school will introduce a child to most of the signifi-
cant phases of comprehensive living in our contemporary world.
If the activity program had in it some principle guaranteeing the
development of a comprehensive understanding of most of the im-
portant social areas, then this committee would be willing to leave
to the demands of such activities, the development of the necessary
arithmetic fact and process, utilizing, of course, these meaningful
situations as the occasions for drill sufficient to give the required
degree of facility., They do not feel, however, that a survey of
the opportunities found in the present activities program is a suffi-
cient guide to the selection of arithmetic materials. Some guide
or criterion in addition to opportunities-found-in-activities is essen-
tial, especially in an age where accurate quantitative thinking and
computation is yearly becoming more basic to planning our collec-
tive enterprises. The most obvious source of this second criterion
is the arithmetic needs of this collective society. When course-
of-study makers can determine more clearly what constitutes full
and comprehensive living in our society, then the teacher will have
the important guide by which she may progressively select units of
‘experience which will demand the quantitative thinking and skills

* EpITOR's NoTE: The 234 third grade problems represented the total number of
problems that arose in the six third grades during a period of four months. This
is an average of about 60 problems per month for the entire six grades, or an
average of 10 problems per room per month. These 234 problems included both
computational and noncomputational varieties. On page ror it is stated that 56C%
of these problems were computational, which means that, on the average, only 3
computational problems per room per month were encountered.

Similarly, the 205 sixth grade problems represented the total number that were
found in all sixth grades in four months, This makes an average of 8% problems
per room per month, of which 72% were computational and the rest noncompu-
tational. This gives about 6 computational problems per month for each sixth
grade room. It is this very small amount of number work encountered in each

grade that leads the authors to the conclusion, stated above, that it is not pos-
sible to teach arithmetic solely through an activity program,
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commensurate with modern living. The school has an obligation
to society to see that all citizens develop sufficient arithmetic com-
petency to carry intelligently their mutual responsibilities. Only
as the units of work or activities in which the children engage are
selected in terms of a total social experience today ic there any
assurance that the school can meet its obligations to society and
the individual. In other words, the authors of this report contend
that units of experience should be as comprehensive and as all-
inclusive of social problems as is possible. Then and only then
will a survey of arithmetic opportunities in such units give the
major cues to selection and organization of classroom materials.

6. Until such time as the activities program is fundamentally
reconstructed and a survey of these arithmetic opportunities made,
a teacher will find it advantageous to approach the teaching of arith-
metic through her own survey of the needs of her own pupils. If
no opportunities are found for certain of the present courses-of-
study requirements, she will probably do the best she can to build
meaning before drill. But constantly, she will urge a revision of
the curriculum in terms of a more socially comprehensive experi-
ence which will surely present the necessity to gain control over
important arithmetic skills and processes.
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ECONOMY IN TEACHING ARITHMETIC

By J. T. JOHNSON
Chicago Normal College

I. INTRODUCTION

Main purpose of this study. The underlying motive which
prompted this article was the idea that mathematics need not and
should not be a disliked subject. Childrea manifest a liking for it
in the early grades as long as they understand it. However, along
in the fourth, fifth, and sixth grades we begin pushing and crowding
them in an effort to teach them all the fundamental skills, never
stopping to ask ourselves whether or not the child is mentally
mature enough to understand the many intricate processes. Skill
after skill is taught before any meaning is attached to them. The
child goes through a maze of mechanical operations, most of which
he does not understand but merely memorizes momentarily. Then
when he is ready for the junior or senior high school his taste for
mathematics is perverted and he thinks that arithmetic consists of
juggling figures and working hard examples. The teacher in her
zeal continues to emphasize skills because the course of study calls
for so many of them, and, not being able to put them all across,
finds no time for the social aspect which is, after all, the more im-
portant. In an effort to show how economy can be effected in teach-
ing the necessary skills so that some time can be provided for the
social side of quantitative thinking this article is written.

Before taking up the experiment and the immediate reasons
therefore, let us consider briefly the history of the relative status of
common fractions and decimals.

Past and present trends in common fractions and decimals.
The use of common fractions began in Egypt, as recorded in the
Rhind Papyrus, about r600 B.c. Decimals were first used in Eu-
rope ahout the year 1600 A.p., some three thousand years later.

It is interesting to note that the arithmetics written in England
shortly after decimals were introduced gave more value to decimals
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than to common or vulgar fractions, as they were then called, and
that later in this country the arithmetics stressed common fractions
and are still stressing them to a much greater extent than decimals.
A few specific cases will be cited.

In 1729 William Webster published in London his Arithmetic in
Epitome in Two Parts. Part I was called “Vulgar.Arithmetic” and
Part II was called “Decimal Arithmetic.”” In Part I only twenty-
three of 162 pages were devoted to vulgar fractions, whereas all of
the fifty-five pages of Part II dealt with decimals and how to use
them. In the preface to this book the author writes:

The Second Part of this Treatice which contains the Doctrine of Deci-
mal Fractions is a kind of Arithmetick peculiarly, as it were, adapted
to the concerns of Gentlemen: I have therefore been more large than
ordinary upon that Subject and have run over the General Rules again,
to shew its particular use and application.

In the preface of another arithmetic, called A New and Compen-
dious System of Practical Arithmetick, published by William Pardon
in London in 1738, we find:

But above all I would seriously recommend the Study and Practice
of Decimals, whose superlative Excellence may be seen by the several
Applications exhibited in this Book, and particularly the Contract
Method* of Multiplication, which for its Ease and Expedition deserves
to be universally practis’d by all Persons, where it can be applied.
Another Reason for the Use of Decimals, is, that in all fix’d Cases you
may turn your Divisor inio a Multiplier, which will generally expedite
the Work so much and render it so easy, that every one that tries it
will soon find its Extraordinary Usefulness, especially now the methods
of managing, repeating, and circulating Decimals are fully known.

After spending thirty-four pages explaining common fractions,
followed by forty-six pages on decimals, the author adds a chapter
of forty-one pages entitled, “Rules of Practice Wrought Diverse
Ways Both Vulgarly and Decimally,” in which chapter he shows
the advantages of decimals over common fractions by giving the
solution to numerous examples in multiplication of denominate
numbers, mostly by finding costs of various quantities. (ne won-
ders why the author brought in decimals when using English money
which is not on a decimal scale. An examination of the several
examples solved, however, shows the actual labor saved. At the
end of this double method of explanation he says:

* By contract method is meant the method of rounding off.
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I have now so fully explained this Rule that I think there can remain
no Difficulty, but what some or other of the foregoing Methods will
easily master: and indeed I would recommend the Decimal Way to be
used universally, both for its Ease and Certainty, not being incumbered
with Variety of Denominations: for after the Parts of any Quantity
whatever are found, either by Table or otherwise, then the Process is
the same with plain simple Multiplication though the Product is ap-
plicable to any Species of Coin, Weight, Measure, etc.

Less than fifty years later, in 1786, in New York, Nicholas Pike
published his arithmetic, 4 New and Complete System of Arithmetic.
It contained so3 pages of which fifteen were devoted to vulgar
fractions and only fifteen to decimals and federal money. The au-
thor says in the preface,

The Federal Coin, being purely decimal, most naturally falls in after
Decimal Fractions.

Two arithmetics issued in our country shortly after the adoption
of our decimal system of coinage gave precedence to decimals. One
in 1796 by Erastus Root treated the common fractions 14, %, and %
only. The other, by Chauncey Lee, published in 1797, gives this
interesting comment :

As the use of vulgar fractions may be advantageously superseded by
that of decimals, they are viewed as an unnecessary branch of common
school education and are therefore omitted from this compendium.

In 1821 Warren Colburn published his famous Intellectual Arith-
metic Upon the Inductive Method of Instruction in this country. In
it he gave seventy-six of the total 216 pages to common fractions
and, strange to say, gave no discussion to decimals.

In 1850 an arithmetic by D. McCurdy appeared in Boston, in
which decimals and federal money were taken up immediately after
whole-number operations. Common fractions were introduced after
percentage and its applications and just before involution and square
root. This was the only textbook among those examined in which
this arrangement was found.

In 1858, in New York, Robinson published his Progressive Intel-
lectual Arithmetic. Of a total of 174 pages he devotes sixty to
common fractions, followed by thirty pages more of problems
involving such fractions as: “44 of 36 is 4% of how many times
% of 42.” The subject of decimals was left out entirely.

Robinson’s Practical Arithmetic, published in New York nineteen
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years later, contains 360 pages of which twenty-six were given to
common fractions and twelve to decimals.

For a clearer picture of the trend, the above dates and some later
ones will be given in Table I.

TABLE I

TREND oF TeACHING CoMMON FRACTIONS AND DECIMALS pURING TuE Last Two
CENTURIES, As REVEALED IN LEADING ARITHMETIC TEXTS

Common Fractions  Decimals Ratio
Date Where Total
Published Pages Pages % Pages % Common Deci-

Fractions mals

1. 1663 (In Latin)» 383 13 3.4 20 §.2 1.olr.§
2, 1729 England 217 23 10.7 55 25.0 1.0:2.3
3 1738 England 397 34 8.6 46 11.6 1.0:1.3
4. 1751 England 401 23 5.7 56 14.0 1.0:2.4
5. 1786  United States 503 15 3.0 1§ 3.0 1.0:1.0
6. 1789 United States 220 15 6.8 9 4.1 1.7:1.0
7. 1821 United States 216 26 35.0 o 0.0 35.0:0
8. 1837 United States 228 17 7.8 11 4.8 1.§:1.0
9. 1847 United States 282 30 10.6 17 6.0 2.0:1.0
ro. 1850 United States 258 17 6.6 13 5.0 1.2alr.o
1. 1858 United States 174 6o 34.0 o o 34.0:0
12, 182 United States 239 2§ 10.§ 9 3.8 2.8: 1.0
13. 1873 Germany 336 66 19.6 2 0.6 33.0:1.0
14. 1877 United States 360 26 7.2 12 3.3 2.0:1.0
15, 1881  United States 359 38 10.6 26 7.2 1.5:1.0
16. 1885  United States 261 3%  14.% 28 10.7 1.4:1.0
17. 1900 United States 338 24 7.1 9 2.6 3.0!ro0
18. 1902  United States 3069 §3 14.3 21 5.7 2.5:r.0
19. 1906  United States 788 19§ 25.0 37 25.0 §.0:1.0
20. 1913 United States 866 92 10.0 30 3.0 3.3:1.0
21, 1920 United States 806 70 8.7 33 4.3 2.0:1.0
22, 1925  United States 844 113 13.0 64 7.8 2.0:1.0
23. 1928 United States 1044 110 10.0 68 6.8 1.5:1.0
24. 1930 United States 1157 166 14.0 64 5.5 2.5'1.0
28, 1932 United States 1497 146 9.0 72 5.0 2.0: 1,9
26. 1934 United States 1564 328 21.0 153 9.8 2.1:1.0

* Place not given.

Table I shows several trends. We notice that before 1786, as indi-
cated by the first four items, the Common Fractions/Decimal ratio
was about 1 to 2. After 1789 and up to the present time, leaving out
the three extreme cases (7, 11, and 13), the ratio is reversed, being
about 2:1. Why the arithmetics in this country after 1820 empha-
sized common fractions to such an extent and slighted decimals
when the English and early American arithmetics had done the re-
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verse is difficult to understand, ‘This is all the more difficult to ex-
plain when we take into account the fact that English money is not
built on a decimal basis and that United States money is. Can it be
that Warren Colburn in his brilliant style of 1821 when discussing
the method of Pestalozzi swept the arithmetic public before him and
converted every American teacher to common fractions? Or did the
tremendous sales of his book influence later writers of textbooks?
Another explanation might be that the belief in the doctrine of men-
tal discipline was so strong in those days among school people that
common fractions were selected because they offered more meat for
the mind. That Warren Colburn believed in mental discipline is
revealed in the following quotation:

Few exercises strengthen and mature the mind so much as arithmeti-
cal calculations, if the examples are made sufficiently simple to be under-
stood by the pupil; because a regular, though simple, process of reason-
ing is requisite to perform them, and the results are attended with
certainty.!

We note also from Table I that the increase in total number of
pages has gone upward like a growth curve, from a modest 200 to
300 pages before 1900 to 1,564 pages in 1934. These totals are for
books for the third to eighth grades of the elementary school. The
increase in number of pages is also largely due to the increase in
nur-ber of pages given over to common fractions and decimals, es-
pecially common fractions. Now, if we take into account that
several editions of number primers for the second grade and even
the first grade, not to mention the many arithmetic workbooks,
have appeared recently, we wonder how long this expansion can keep
up. Children, no doubt, can read better and more now than they
could a hundred years ago, but if the other school departments also
keep up an enlargement program there will come a time, perhaps it
has already come, when we shall have to call a halt and take an
inventory of our demands upon the child.

An examination of books on methods of teaching in foreign coun-
tries reveals further anomalies. In France, a book on method,
Legons d’Arithmetique, by Jules Tannery published in 1900 devotes
but ten pages to comnion fractions and thirteen to decimals, out of
a total of 509 pages. Another French book on method, La Theorie
Arithmetique, by Le Moyne and Aymard, published in 1904, con-

! Preface of first edition o First Lessons in Intellectual Arithmetic, by Warren
Colburn. 18ar.
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tains 434 pages, of which sixty pages are given to common fractions
and thirty to decimals. Still later in 1912 appeared Les Nombres
Positifs, a book on methodology by M. Stuyvaert. Of a total of
169 pages thirty are given to common fractions and none to deci-
mals. One wonders again why there was such a growing em-
phasis on common fractions in a country in which the metric system
Is used.

In Germany, A. Gerlach’s book on method in elementary arith.
metic, Lebenswoller Rechenunterricht, appeared in 1920. This book
criticizes the current practice among German arithmetic textbooks
of giving so much space to the unused common fractions.

An interesting comment is found in a report by an Education
Committee from a Conference Report on Teacking Arithmetic in
the London Elementary Schools in 1911. This report reads as
follows:

It appears from the answers that \ery few teachers would, or do, post-
pone the systematic teaching of decimal fractions beyond the stage
when a child possesses a clear conception of the nature of a vulgar
fraction together with the ability to perform very simple operations with
vulgar fractions. The majority both of men and women teachers agree
that an introduction to the notation of decimal fractions can be usefully
made even before the stage above mentioned has been reached; then
would subsequently carry on the teaching of decimals and vulgar frac-
tions simultaneously, carefully inculcating in the child a preference for
working decimally unless there was a distinct gain in doing otherwise.
A substantial minority point out that although training to work in
decimal fractions is most valuable, yet of an equal value is the mental
training derived from the manipulation of vulgar fractions in connection
with problem work.

II. REAsoNs FOR UNDERTAKING THr1s StuDY

Inadequate results obtained by students at end of the sixth
grade. Numerous investigations and experiments have shown
that neither common fractions nor decimals are learned to any
degree of mastery by students by the time they reach the end of
the sixth grade. One study of this subject is the dissertation by
Schorling, which gives the results of tests taken by 3,260 students
entering the seventh grade in widely scattered cities in the United
States. All of the questions involving common fractions and deci-
mals and their results are given here in Table II.



ECONOMY IN TEACHING ARITHMETIC 1297

TABLE I

Pex CENT or CorrECT RESPONSES TO QUESTIONS BY STUDENTS
ENTERING GRADE 7 (ADAPTED FROM SCHORLING) ?

In Common Fractions

%
t. What must you do to find%/; of ¥y Do you add? If not, what must you do? 54.9
8. Draw a circle around the part of the fraction ¢, which is called the denom-

IROr, i e e 41.2
3. Can we multiply both terms of a fraction by the same number without chang-

ing the value of the fraction? .......ovvviirvii ettt erninenrereenns 23.4
4 Can we subtract the same number from both terms of a fraction without

changin'g the valueof thefraction? .........covviiriiiirir i iirrrrennns 22.6
§. Can we divide both terms of a fraction by the same number without changing

the value of the fraction? ... ..........coiiiiiiiiii i iie s §.2
6. Can we add the same number to both terms of a fraction without changing

the value of the fraction? ............... O, N ‘el 0.4

In Decimals
1. Write .25asa commonfraction. ..................oiiiveininnnnn. .. 8r.

3

2, Write in figures. Fifty-nine and thrce hundredths. Write here. . ........ 6.1

3. WriteYeasadecimal. ... e *4.8

4 WriteYgasadecimal, ... ... i e 1.4

5. Write Yyasadecimal, o.ooovviiiiii i e 66.6
6. Does 1.2 X .5 equal 6.0 or .60 or .o60 or 60? Draw a circle around the right

1011 T 63.7

7. Weite Ygasadecimal, ... oo e 55.4
8, Moving the decimal point one place to the right in a number ......... the

number by 10, ... 49.5

9. Write .125 88 8 common fraction. ... ..cvvtiitiit ity 47.5
10. Moving the decimal point one place to the left in a number ......... the

number by 10, 1. o i e e 42.1

i, Write Yiaasadecimal, oo oo e 35.9

3 Schorling, Raleigh, A Tentatire List of Objectives in the Teaching of Jumior High School Mathematics
pp. 25-77.

The above questions are mainly on the meaning of common
fractions and decimals.

A test on manipulations in the two operations was given by the
writer to a 6A class of 43 students at the end of the year.

The tests and results follow:

Common Fractions Per Cent Correct
LAY ato 4% oo oo 68
2. Subtract 8%/3 from 1o'/4 ... .. ..v....L, 75
3. Multiply 3%s by &5 .oooovvviii s, 33
4 Divide:g¥4+5 .ooviiiiiiiiiiiinn . 23

LT T A 46
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Decimals Per Cent Correct
LA 3osand 4s ooenii i, 59
2. Subtract 6.5 from 8,25 ................ 50
3 Multiply r02ty .32 ooviininnnn s, . 26
4 Divide:g.32+4 .00 50
S. Divide: a1) 442 oovvvviiiiiii, . 32

Let any teacher give these tests to an entering seventh grade not
previously coached und note the resuits.

The esults obtained in common fractions and decimals at the
end of the sixth grade do not warrant the time and energy put forth
by both students and teacher in the several years of teaching and
learning of these two topics. Something is wrong somewhere.

The skills required in addition and subtraction of common
fractions too difficult for fourth and fifth grade pupils. That
this has been the cause of the poor results shown in the preceding
section has been believed by some and doubted by others. This need
no Jonger be doubted. The Committee of Seven by their long and
comprehensive experiment has shown that addition and subtraction
of common fractions are too difficult for the fifth grade, and that
they are much more difficult than addition and subtraction of
decimals. The committee is now in the tenth year of its experiment
which represents fifteen different states and several hundred cities.3

The minimum mental age and minimum grade at ‘which a topic
in arithmetic should be taught is reported in their grade placement
table. Table IIT here gives that part of their table which Jeals
with the topics relating to common fractions and decimals.

TABLE III

MiINIMUM MENTAL AGE AND MINIMUM GRADE PLACEMENT OF CERTAIN
‘Topics IN ARITHMETIC

Minimum Minimum
Topic Mental Age Grade

Addition and subtraction of decimals ................. 10-11 5
Memorization of fractional and decimal equivalents .... 11-6 5
Multiplication of fractions. ..............ccc0vininns. 12-3 6
Division of fractions . .......cvviinirvininninns 12-3 6
Divisionof decimals ....................cccovuvins. 13-0 7
Addition and subtraction of fractions and mixed numbers

with unlike denominators (involving borrowing) ..... 13-10 7

The 1931 report of the Committee of Seven says:#

*Storm H. C. For personnel of the committee and the details of its method see
“Grade Piacement—A Summary of the Findings of the Committee of Seven,”
The lilinois Teacher, December 1931, S Ibid.
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The committee is convinced that teachers are very generally trying
to do the impossible in arithmetic in forcing upon the child computa-
tions that are not at all fitted to his growth. Our courses of study as
well as our textbooks are too much influenced by tradition and are
not nearly enough the result of scientific investigation. This blind
following of tradition causes much heartache on the part of both
teachers and pupils and engenders hatred of certain phases of arith-
metic, whereas the whole field of arithmetic should be a constant source
of joy to teacher and pupil alike.

The number of skills in common fractions and decimals re-
quiring mastery too many for the time allotted to them. The
many recent analyses of the various processes in arithmetic made
by Brueckner, Knight, Morton, Osburn, Wells, and others have
had some fruitful results, It may be true that some of these
authors have gone into such detail in unit skills and types that the
woods cannot be seen for the trees but they have shown us what
there is to teach and to learn in the various processes. They have
revealed to us the relative numbers of skills in the various opera-
tions, which alone is worth while, not to mention the valuable help
in diagnostic testing and remedial teaching that these analyses
have given.

Tn an effort to obtain a more definite measure of the teaching
time of these skills in common fractions and decimals, the writer
has made a less detailed analysis into major skills. A major skill
consists of one or more unit skills that go to make up one complete
act. An illustration will make this clear. Carrying in addition is
called a major skill by the writer although it is made up of three unit
skills, according to Brueckner, for example: writing down the right-
hand figure only, carrying a number in mind, and adding the carried
number to the first number in the next column. Since these are
parts of one major ability, that of carrying, and since the act of
carrying cannot be completely performed without all of the parts
they are classified as one major skill. This classification into major
skills is better for teaching purposes, albeit the unit skills are better
for diagnostic purposes.

According to the above method of analysis common fractions and
decimals were analysed by the writer as shown in Tables IV and V
which follow:
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TABLE 1V
THE MAJOR SkiL1s IN CommoN FRACTIONS

Illustrations of Skill
I. Meaning:
1. Fractions of a whole, Yiof 1 Yeofr
2. Fractions of a group. Ysof 12  %,0f12

II. Reduction:
1. To lower terms and higher terms. VIR Yy =3,
2. From improper fraction to mixed number ¢/, = 1!/, 2l = ¥/,
and the reverse.

III. Addition:

1. Fractions and mixed numbers whose de- ¥; + Y 1+ 3%
nominators are alike,

2. Fractions and mixed numbers whose de- ¥ + ¥, 4+ 2,
nominators are unlike, one denominator
being a multiple of the other.

3. Fractions and mixed numbers whose de- ¥/ + 1/, 6Y2 + 2Y/,
nominators are prime to each other,

4. Fractions and mixed numbers whose de- Yo+ Yy s+ 5%
nominators contain a common factor, one
denominator not a multiple of the other.

IV, Subtraction:
1. Fractions from fractions and mixed num- ¥, — ¥, 12Y — 8Y/,
bers from mixed numbers (minuend frac-
tion greater than subtrahend fraction).

2. Whole numbers from mixed numbers and 14"/, 16
mixed numbers from whole numbers. 11 s

3. Mixed numbers from mixed numbers 34Ys
(minuend fraction smaller than subtra- 15,
hend fraction). -—

4. Fractions from mixed numbers (minuend 6%/,
frac;ion spaller than subtrahend frac- ¥,
tion). —_—

V. Multiplication:
1. Fractions or whole numbers by fractions 1y X Y, 3XYe Yyx6
or whole numbers.
2. Mixed or whole numbers by mixed or 2/, X 3e  3X4/s 6Y21X 3

whole numbers,
3. Large mixed or whole numbers by large 16%, 24 184/,
mixed or whole numbers. 12 134 36V

— eee— r——

VI, Division:
1. Whole numbers or fractions by whole 2+ Vet 2 Y+ 1Yy
numbers or fractions.
2. Mixed or whole numbers by mixed or 2V, + 1Y/, Ve+ 4 8 + 6Y/4
whole numbers.
3. Mixed numbers or fractions by mixed i+ Ye Vs 3Ys
numbers or fractions,

Total number of major skills in common fractions T <.
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TABLE V

Tae MAJoR SKRILLS IN DECIMALS

1. Writing and meaning:
1. Writing and reading.
2. Meaning.

II. Addition:
II1. Subtraction:
IV. Multiplication:

V. Division:
t. Decimals by integers.
2. Decimals by decimals.
3. Integers by decimals.
4. Zero difficulties.
5. Integers by integers (with remainders),

VI. Changing common fractions to decimals.

Total number of major skills in decimals .......

Total skills in common fractions and decimals

606 600.006
.1 is larger than .09

3.8+ .37
14. — .69

12.2§
3.6

6.E
.8) .56
.17) 93.
.12) .006
63) 79

¥/ = 625

Brueckner in his diagnostic studies in 1rithmetic lists the fol-
lowing types and varieties of errors in common fractions and

decimals :

In Common Fractions:

Number of types from an ¢ priori analysis:®

In addition .............
In subtraction ...........
In multiplication ........
In division ..............

Number of varieties of errors found in an analysis of 21,065 errors
from 83,800 examples by 600 pupils in grades 5A, 6L, and 6A

In addition ........... e 32

In subtraction ............... ...t 44

In multiplication ................... 19

Indivision ..............cconnn. 20 -
Total ...... e 115

® Brueckner, L. J., Diagnostic and Remedial Teaching in Arithmelic, pp. 177-194.

S Ibid., pp. 200-206.
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In Decimals:
Number of types from a made-up diagnostic test:?

Inaddition ........................ 12
Insubtraction ...................... 17
In multiplication ................... 32
Indivision ..........covvvvununnnnn, 30

Total ..oovvvvriiiiiiiiiininn,, o1

- Number of varieties of errors found in an analysis of 8,785 errors from
15,288 examples by 168 pupils in Grade 7.8

Inaddition ........................ I§
In subtraction ...................... 14
In multipiication ................... 26
Indivision ................000uuuul 26

Total ....ooooviiviiiiiin 81

Teachers who are opposed to analyses will discount these sum-
maries and say it is an impossible task to teach so many different
types as separate skills to be learned. Be that as it may, if we do
not agree with the e priori analyses in the first and third sum-
maries above, we must agree with the second and fourth summaries
which are taken from empirical data in actual tests taken and that
there were *hat many different kinds of errors found.

The reason for enumerating these types here is that the author
is anxious to show that, in the second summary, the one based on
analysis of actual errors in common fractions, the number of types
of errors in addition and subtraction together are about twice the
number in multiplication and division together, the ratio being 76
to 39. In the corresponding summary in decimals (see the fourth
summary) the ratio of the number of types of errors in addition
and subtraction to the total number in multiplication and division
is just about reversed, being 29 to 52. Surely this is significant.
This significance will be more fully treated later.

Furthermore, in connection with this fourth summary the fol-
lowing should be taken into consideration. In Bruecknet’s original
tables from which this summary is derived there are three parts,
as follows:

TIbid.,, pp. 220-223.
$Ibid, p. 228,
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1. Difficulties basic to any addition (subtraction, multiplication, or
division).

2. Difficulties peculiar to the decimal situation.

3. Other difficulties (omissions, incompleted work, miscopying, etc.)

Counting the number of the varieties of the errors in each opera-
tion due to the decimal situation alone, the figures in summary 4
are reduced as follows: '

In addition, from 135 to 5.

In subtraction, from 14 to 3.

In multiplication, from 26 to r0.
In division, from 26 to 10.

This reduces the total number of varieties of errors due to the
decimal situation alone from 81 to 28.

Osburn, in an error study not so detailed as Brueckner's, lists the
following varieties in common fractions and decimals :®

Common Fractions Decimals
In addition .............. 6 I
In subtraction ............ 5 I
In multiplication ......... 9 I
In division ............... 3 2
Total .................. 23 5

In a later study Osburn proposed an estimation of relative dif-
ficulty of fractions based upon job analysis, that is, the number of
steps actually used in different examples.?® To illustrate: in the

example, 742 -~ 4%, he analyses and labels the steps as follows:

7Y = 61,
4'3= 4%
2% = 2¥,

12+3 1X4 12+1 7-—-1 13—4 9Q9+3 12+3 6-—4
D M A S S D D S

There are 8 steps symbolized by the letters above. In the ex-
ample, 4% — 2%, there are 10 steps, which are, in summary, as

*Osburn, W. J., Corrective Arithmetic, pp. 47-35. Houghton Mifflin Company,

1924,
¥ Osburn, W. J., Corrective Arithmetic, Vol. II, pp. 39-46, 1929.
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follows: M, D, M, D, M, A, A, S, S, A. In the example, 3% X %,
there are 5 steps: M, A, M, M, D. In the example, 6 = ¥, there
are only two steps, I and M (I signifies invert). In the example,
7% ~ 5%, there are 10 steps: M, A, M, A I, M, M, D, M, S.

With so many steps involved we should not be surprised if we
find that children have difficulty with common fractions.

Osburn made no such job analysis of decimals. Perhaps he
thought they were not sufficiently difficult to warrant the effort. I
am sure, however, that the division of decimals would embrace a
number of steps, but the majority of these belong tg ordinary
division of whole numbers.

Summarizing and collecting the data set forth so far in this
section, we find the number of skills and varieties of errors to be
as follows:

Common Fractions Dccimals
In writer’s (major skills) ............... 18 I
In Brueckner's (errors) ................ 115 28
In Osburn’s (errors) ................... 23 5
AVerage .....viiiiiiii e 52 14

If we differentiate between addition and subtraction on the one
hand and multiplication and division on the other, we find the
following figures:

Common Fractions Decimals
Addition Multiplication  Addition Multiplication
and and and anl
Subtraction Division Subtraction Division
In writer’s (skills) .... 8 6 2 6
In Brueckner’s (crrors) 76 39 8 20
In Osburn’s (errors) .. 11 12 2 3
Average .......... 31% 19 4 9%

It cannot be said that the writer’s position on common fractions
is extreme or unwarranted, for his figures are more modest than
either those of Brueckner or Osburn. Nor did either of these men
have any reason to be biased as they were interested solely in list-
ing errors in both common fractions and decimals.

That the addition and subtraction skills in decimals are much
simpler than the multiplication and division skills is shown in an-
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other summary—Table E on page 227 of Brueckner’s hook where
we note that the median error in each of the operations is as follows:

In addition .......... ............ 8.0
In subtraction ..................... 5.0
In multiplication ................., 14.§
Indivision ........................ 34.0

The above figures are based on errors actually made by 168
seventh grade pupils and show that the number of errors in mul-
tiplication and division together are nearly four times those of
addition and subtraction combined.

These figures are not necessary in order to convince the teachers
of arithmetic in the fifth and sixth grades. They know too well
that there are too many items in common fractions and decimals
both to be taught to a point of mastery in the time allotted to
them in the course of study. They also know that common frac-
tions are more difficult than decimalc and that addition and sub-
traction of decimals are distinctly more simple and easier to teach
than the corresponding operations in common fractions. The tables
and figures are for the teachers in the secondary school who have
never taught in the elementary school, and most of them have not.

As the writer has come in contact with these grades in direct
teaching, in supervising in arithmetic, and in training teachers for
teaching arithmetic in these grades, the probicm is very definite to
him and now seems acute. Something should be done to solve this
problem and the writer is optimistic enough to believe that some-
thing can be done to relieve the situation.

If addition and subtraction of decimals in which there are so
few skills to be learned could replace addition and subtraction of
common fractions, in which most of the skills are, 50 per cent of the
amount of work done in both could be cut down. To test ou* the
feasibility of this is the purpose of the experiment reported later
in this chapter.

Relative ease in learning and using common fractions and
decimals in addition and subtraction. Compared with decimals,
common fractions “equire many extra manipulations. For instance,
in common fractions we have to learn how to reduce mixed numbers
to improper fractions. There are no such reductions in decimals.
We have to know how to reduce imprnper fractions to mixed num-
bers. There is no such reduction in decimals. We have to reduce
to lower terms and higher terms in common fractions. In dccimals
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we merely drop and annex zeros. In changing to a common de-
nominator in common fractions, a fracticn such as 1% may be
changed to a variety of different fractions, %, 34, %, %o, %2, etc.,
depending upon the fractions with which it is to be combined,
whereas in decimals the equivalent to 14 is always .5. The concept
of decimals is simply an extension of the concept of our whole-
number system. The relative place value in our system of whole
numbers obtains throughout the decimal system and also between
the decimal system and the system of whole numbers. Thus the
concepts of the two systems are mutually reinforcing.

An examination of the follow:ng examples will reveal the enormous
amount of time saved when performing addition and subtraction of
common fractions by means of their decimal equivalents,

Let it be required to adc 3% to 2%.

By Old Method By Decimal Equivalents
Y= 34 3.75
22 = 2% 2.5
5%¢= 6 6.25

Let us work the example in subtraction, 34%% — 1534, by both
methods :

By Old Method By Decimal Method
- 342 = 3404 = 33% 34.5
1574 = 15%0 = 15%4 15.75
18Y4 18.75

In the decimal solution of this example only one new skill is
required, that of knowing the decimal equivalents. The remaining
work is the same as in whole-number subtraction. In the old method
at least five skills are required: reducing to a common denominator,
borrowing from the whole number, changing a whole number to a
fraction, changing a mixed number to a fraction, and subtracting
numerators only.

These comparisons by no means tell the whole story. Although
there is iess writing to do in the final solution by the decimal
method, the number of skills requiring mastery in learning are
much fewer in decimals than in common fractions. Aside from this
there is the question of errors. The chances for making errors are
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greatly reduced in the decimal method and this means that the
remedial teaching is simplified. Also the errors are more easily
detected in the decimal method, as will be shown later.

The use of decimals in multiplication and in division of common
fractions is not taken up in this study or recommended for two
reasons: first, multiplication and division of common fractions are
much simpler than addition and subtraction, as has been shown,
and, second, when multiplication and division of decimals are used
the question of rounding off, or of approximations, becomes too
complex for the fifth grade student. The rounding off from 2 to 1
and from 3 to 2 decimal places is simple and can and should be
learned by fifth grade students as it is very useful in carrying out
long division and for work in changing common fractions to deci-
mals. This is all that is required in addition and subtraction of
fractions by the decimal method.

The increasing importance and use of decimals. Another
reason for justifying this procedure in present-day arithmetic would
seem to be that decimals have become more and more important
since the advent of the automobile. Decimals are rapidly replacing
common fractions because in very accurate and minute measure-
ments it is necessary to go beyond 14, of an inch. The Nos, Yose,
and the 1{,., inch are too unwieldy and laborious to handle,
whereas the .o1, .co1, and .coor inch are not. Aside from this,
decimals offer a decided advantage when it comes to computing
with them. This is why mechanics has decimalized the inch, engi-
neering has decimalized the fout, and aviation has decimalized the
mile. It is of interest to note in this connection that Henry Ford
has ordered all fractions appearing on blue prints throughout his
plant to be written as decimals,

The great need for economy and efficiency. At the present
time when so many subjects are crowding in upon our elementary
school curriculum and less tivme and importance is given to arith-
metic than formerly, any attempt at an economy program in teach-
ing arithmetic should be welcomed as a desirable move. Especially
is this true if the program is to be more efficient,

The trend in recent courses of study in arithmetic is to ease up
on the requirements in the lower grades. All of the addition and
subtraction facts are no longer required to be completed until the
third grade. The multiplication and division facts are not com-
pleted before the fourth grade. All of the other higher skills in
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all of the four fundamentals have to be taught somewhere in the
elementary grades. The difficult long division which used to be
taught in the fourth grade is now moved up to the fifth grade, and
rightly so. Then comes common fractions which is begun in the
fifth grade. The fundamental processes are not yet fixed, for the
fifth grade child, a ten-year-old boy or girl, is very immature., One
would not ask his own ten-year-old child to add up his grocery
bill or check his bank stubs, yet at school the child of the same
age is supposed to do much more difficult work. The result of all
this is congestion in arithmetic learning in the fifth grade which
causes confusion, The following year the conscientious teacher,
aware of the fact that her students should know common fractions
but that they do not, spends much time reteaching them to the
neglect of the more important decimals. The student reaches the
end of the sixth grade, ‘vhen, according to the course of study, these
skills should be known, with a hazy and imperfect notion of what
fractions and decimals really are.

The writer, after visiting extensively and actually teaching all of
these skills to classes in the fifth and sixth grades for many years,
is firmly convinced that not more than the upper 20 per cent of the
average fifth and sixth grades can be taught to master the skills
necessary for fractions and decimals in the time alloted for them.
It is pathetic for the conscientious teacher to slavishly follow the
course of st ly in trying to teach the many skills and processes in
long division and common fractions. In most places the children
are willing enough and work hard to please the teacher, but to find
difficulty after difficulty coming up with new skills to be learned
before the old ones are mastered causes the child to be discouraged.
Discouragement grows into disinterestedness and disinterestedness
into dislike. Why do many of our high school girls and boys dislike
mathematics? The answer is they were not taught correctly in the
grades. Why do so many of our educationists knock mathematics?
The answer is the same. They were not properly taught in the
grades.

There has been much experimentation and some reform in
secondary school mathematics but very little reform has taken
place in the elementary ficld, aside from leaving out some unneces-
sary topics. In order to instill a love for mathematics which carries
over into the high school, we must see that the child’s taste is not
perverted in the grades.
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III. THE EXPERIMENT

Object of the experiment. In the light of the foregoing reasons
the purpose of this experiment was to find out if economy in time
could be effected by teaching addition and subtraction of fractions
by means of decimal equivalents and at the same time to find out
if they could be taught more efficiently by this method.

Method. Before this experiment was begun permission was
obtained from the assistant superintendent of schools in charge of
experimentation. Iurther permission had to be obtained from dis-
trict superintendents and principals. It was thought best to obtain
this permission so that the experiment could go on unhampered.
Conferences with these superintendents and principals were arranged
and after some explanation as to the purport of the experiment
consent was freely given. Fifth grade teachers who were in sym-
pathy with the experiment were selected.

Since some of the teaching in this unit was rather new, suggestions
setting forth the purpose and the prerequisite for the unit on teach-
ing addition and subtraction by decimal equivalents were given to
the teachers. A plan for presenting the unit was also given to the
teachers for them to follow or to be guided by. In this presentation
there are several fraction combinations that may not be found in
real life, such as those on pages 142 and 143 in examples 11 to 28.
The only reason that these were included was because they are
found in the arithmetics of to-day and students are forced to work
them by teachers who follow the book and most teachers follow
the book.

Until we are sure which fraction combinations are and which ones
are not used in the world around us, the decimal solution offers no
additional difficulty in addition or subtraction, be the combination
real or artificial, when the denominators are prime to each other.
For example, fourths plus fifths and fifths plus eighths are much
easier to add or subtract decimally than thirds plus fourths, al-
though the former are said to be artificial combinations and the
latter is real. In common fractions the relative facility is reversed.

The suggestions and presentation are reproduced in full herewith.

Miss L. began the work with her sB class on March 13, 1933,
after having spent about five weeks on the meaning of common
fractions taught in the usual way. A careful check of the time was
kept and recorded for future reference. Three weeks were spent on
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the meaning of decimals, three weeks on addition and subtraction
of decimals, and three weeks on the new unit of work on decimal
equivalents and addition and subtraction of common fractions by
decimal equivalents, Periods of from 30 to 40 minutes each day
were used.

SUOGESTIONS TO TEACHERS FOR TEACHING THE UNIT oN ADDITION
AND SUBTRACTION OF CoMMON FRACTIONS BY
DeciMAL EQUIVALENTS

This unit presupposes that the student has had two units on the
meaning of common fractions (including % of 128, and the like, and
addition of fractions of like denominators) and one unit on the mean-
ing of decimals and one on the addition and subtraction of decimals.
He is then ready to take up the 15 easy decimal equivalents of the
frequently used common fractions by finding them as parts of a dollar,
as shown later.

After these decimal equivalents have been learned the student can
then add or subtract any  these common fractions or mixed numbers
by simply writing their c¢imal equivalents and adding or subtracting
as in whole numbers,

The great economy thus effected is at once seen, for the great variety
of common denominators is hereby avoided. For example, % when
added will always be written as .75, whereas by the old method it
has to be changed sometimes to 44, sometimes to Moy 1g, or 184,
depending upon the fraction to which it is added. Whereas 8 units
are ordinarily required to teach addition and subtraction of common
fractions, because there are that many varieties of least-common-
denominator and mixed-number combinations, by the decimal method,
but one unit is required. The actual simplicity will be seen in the
presentation given below,

It is not intended that the student should convert his decimal answer
back to a common fraction in the cases where the answers are not
known decimal equivalents. In the majority of cases the answers will
not be known equivalents. The answers, however, should have just
as much or more meaning if thought of in terms of tenths or hundredths.
For example, in Example 11 of the presentation 15 mile will give
a meaning to the child of the fraction of a mile that the world uses
to-day. We hear and read of .15 mile but not very often of %, mile.
The child knows the meaning of .15 of a dollar, and .15 of a mile is
the same fraction,

From his knowledge of dollars and cents the student knows the
meaning of hundredths much better than thousandths. He is there-
fore asked to round his 3-place answers to the nearest hundredth to
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give them meaning. In Example 23 of the presentation .97 means more
to a fifth grade child than .967 means. The fact that his monthly
grades are given in terms of hundredths would help to give meaning
to hundredths here also. He adds and subtracts the decimals to three
places for the sake of accuracy but to give the answer meaning he
should be able to read it to the nearest hundredth.

PRESENTATION

1. Learning how to find the 15 decimal equivalents: You have studied
the meaning of common fractions and decimals in previous units. You
will study in this unit the relation between some of the common frac-
tions and decimals. You already know the relation between 15 and . 50.

1. What is the difference between 1§ and .50? We say that $.50 =
13 of a dollar, so .50 of anything = what part of it?

2. You know that 1 and 13 make a whole. Add .50 and .50 to see
if it makes 1 whole.

We want to learn how to write the simple common fractions as decimals
so that we can add them easily.

3. What is }.{ of a dollar? Write it decimally.

4. What does 3§ equal decimally?

5. How much does }{ and 3{ make? Add their decimal equivalents
to see if they make 1.

6. Next we have the fifths: 14, 25, 3¢ and 44. These can also be
written as decimals for you know that 1§ of a dollar is 8.20 and 23 of a
dollar is $.40. What is 3§ of a dollar?

7. What is 45 of a dollar written as a decimal?

8. Write now the decimal equivalents of 1%, 2£, 3¢, and 44.

9. What is 1 54 $4? Add their decimal equivalents.

ro. How much is 2§ 4 357 Add their decimal equivalents.

11. How would you find the decimal that is equivalent to 13? In
finding 1§ of a dollar divide $1.c0 by 8 and carry your answer to three
places, thus: 125

8) 1.000

12. Find the decimal for 33 by multiplying the answer above by 3.

r3. Find the decimal for %3.

14. Find the decimal equivalent of 7.

15. Add !gand 74. Add their decimal equivalents.

16. Add 35 and 54. Add their decimal equivalents.

17. There are only four more common fractions whose decimal equiva-
lents you should know. They are 14, 23, 15, and 5. Find what l3
of a dollar is decimally, just as you found 1§ of a dollar.

18. Find the equivalent of 23 by finding 23 of a dollar. Do this just
as you find 23 of any number, for example, 666235, As 624 is nearer

3) 2.000
7 than 6, we shall write the equivalent as .667.
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19. Find the decimal equivalent of 3¢ and 34 in the same way. The
last four decimal equivalents are usually written thus:

Jg=.333 %3 = .667 }g= 167 26 =.833

20. Add }4 and 24 decimally. What should you get?

21. Add g and %4 decimally.

We have now learned the 15 decimal equivalents to the most com-
monly used fractions. You should write them in your notebooks in
four groups, ranging from easy to difficult, as follows, and learn them.

= 2= ok Y=
H= 35 = 3 = 35 =
3§ = %= 2=

The following four equivalents are sometimes used. You need not
learn them unless you want to. They can be referred to if you have
fractions like them to add or to subtract.

o= 083 5{2 = 417 %42 = .583 1149 = 017

Note 1o the teacher: Whether the twelfths should be memorized or
merely used as references is left to the instructor. In the practice exer-
cises of this unit they are left out as a minimum requirement.

IL. Learning how to add by means of decimal equivalents:

1. In making fudge Mary used 134 cups of brown sugar and 3iofa
cup of granulated sugar. How many cups of sugar did she use?

1.5 By writing the 14 and 34 as decimals, you can
.75 add them easily. By adding you get 2.25 or 214
2,25 Cups.

Add the following as you did Example I:

2. 314 3. 234 4. 35% 5. 24 6. 615 7. 3§

8. %+ 23 9. U§+ 134 10. 334+ 514

11. Two boy scouts went hiking. They hiked 124 miles before break-
fast and 334 miles after breakiast. ‘How far did they hike altogether?

1.4 Write the fractions as decimals and add as you
3.75 did before. It is not necessary to read your an-
5.1 SWer as a common fraction unless it is an equiva-

lent which you know. Distances are often given

.
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in miles and hundredths, Here .15 of a mile is
the same part of a whole mile as 15¢ is of a dollar,

Add in the same way as you did in Example 11.

12. 334 13. 144 4. Y 135. 4% 16. 12}4 + 1034
1 64 123§ %

17. James worked 434 hours last Saturday and 654 hours the Satur-
day before selling papers. How many hours did he work on the two
Saturdays?

4.75
6.833
11.583

Write the decimal equivalents and add as before. If this answer were
in dollars and cents we would read it as $11.§8. This is called rounding
the answer to the nearest cent or hundredth of a dollar. As hundredths
are more easily understood and are also close enough for our work, we
may round our answers to hundredths in reading them when there are
three decimal places in our answer.

Add and read the answers to the nearest hundredths:
18. 13§ 19. 634 20. 43§ 21, %+ 3% 22, 1534
2

224 14 2478
23. 145 =1.8
214 = 2.167
3.967

Here our answer to the nearest hundredth is 3.97 because .67 is
nearer to .97 than to .g6.

Note: Let students experimentally determine this by adding .0o7 to
.96 and by subtracting .co3 from .97.

24. 154 25. 634 26. 1634 27. 614 28. 354
636 28 228 4% 84
29. Round off to the nearest hundredth:
.166 .334 .833 .666 .167 .333

.834 .667 I.501 4.334 3.999 6.068

30. After selling 334 apple pies and 4} cherry pies how many pies
had Harry sold altogether?
3.667
4.167
7-834
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Adding we get 7.834. After rounding this to the nearest hundredth
we get 7.83.  Which of the decimal equivalents when rounded to nearest
hundredth = .83?

If we wish then we can call this answer 756. You will remember that
the most difficult group of decimal equivalents was the 14’s and 1¢'s.
This is so because they did not come out as exact decimals but had to
be rounded. When adding thirds and sixths, therefore, the third or last
figure in the decimal answer is not certain. It is therefore best, if we
want the common-fraction equivalent, to round the answer to the near-
est hundredth as was done here, and then give the common fraction.

31. Round the following decimal equivalents to the nearest hundredths:

167, 833, .667, .333, .166, .834, .666, -334.

32. Add: 61§ Round your answer to the nearest hundredth. What
7%¢ common fraction is this the equivalent of? Read your
T answer with a common fraction.

Add and give common-fraction equivalents to your answers for the
following:

33. 133 34. 134 35. 625 36. 214 37. 133
5 234 1 576 556
643 323

Having now learned to add common fractions by means of decimals
there is nothing new to learn in subtraction of fractions if vou know
whole-number subtraction. If you have forgotten how to subtract with
whole numbers, this will give you a splendid opportunity for reviewing
them.

38. Helen sold 334 yards from a bolt of cloth containing 2514 vards.
How many yards remained?

25.5
375
21.75

Note: In order to subtract there is nothing new to learn here. You
simply write your fractions as decimals and then subtract as in whole
numbers. The answer is 213§ vards.

39. Likewise subtract the following: 163§

4
Also:
40. 23— 1¢ 41. 674 42. 714 43. 61§ 44. 10
3% 38 376 3l
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You are now ready to try the first practice exercise to see how many
you can work correctly alone.

Practice Exercise I:

Add:
L0234 274 3.6 4 B 528 6.633 7. 614
o B8 48 % 14 2§
3%4
8. Subtract: 814 0. Subtract: 1r
3% 5%

10. Frank ate }¢ of a pie for lunch and 13 of it for dinner. What part
of a pie did he eat altogether?

Practice Exercise II:

Add:
1623 2. 11} 3.4% 4 2 5. 6% 6. 5% 7.8y
9% 28 D¢ 123 136 24 7%%
9l8
8. Subtract: 733 9. Subtract: 1234
7

923

XN

|

ro. Katherine walks 33{ blocks to school. Her friend Alice walks
513 blocks. How much farth-r than Katherine does Alice walk?

At the end of the semester, on June 8, the following test in addi-
tion and subtraction of common fractions was given to the 5B
group and als) to another group of regular sA students of the same
school. The 5A group was chosen as the control group because
they had had addition and subtraction of common fractions during
this same year. When taking the test the 5B group used decimal
equivalents and the sA group used the customary lowest com non
denominator method. In fairness to the common fraction group,
least common denominators were limited to 24 according to the
course of study.

On the same day each group was given an intelligence test (Mc-
Call’s Multi-Mental Scale) to make comparisons more reliable. All
of the tests were given by the writer. Tables VI and VII give the
results of the tests in each group.
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TEST IN ADDITION AND SUBTRACTION oF CoMMON FRACTIONS

Add in the following four examples:

(Use space at right of e1ch example to work in.)

I. 1
3 734
44 1%
3 4.
350 234
634 26

Subtract in the following six examples:

(Use space at right of each for working.)

5 6.
43 1234
14 9

7 8.
10 9?‘3
5% 634

9. 10.
623 %

TABLE VI

RESULTS OF CoMMmON FRACTIONS TEST

Mean .
Mean Time, Range in Range in
Group v inA ;,c;"&?‘;t PEm in Minutes P.Em Accuracy Time

Experimental
SB ...ooiiiii 46 0943202 1,38 677 1.6 .24 30to 100% 3' 10" to
IS' w"

Control

SA L.oiiiiil 30 753148 237 10.63 573 .92 r10to 100% 7'10” to
33I w"

Difference ...... 19 12.86 20 14’
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TABLE VII
REsuLts oP INTELLIGENCE TEST
MENTAL AGEs INTELLIGENCE QUOTIRNTS
Group
Mean P.Ew Range Mean P.Ea Range
Experimental
sB ooieiii I1.74+=.91 .13 o-—1to 1060x126 1.87 Orto1sy
I$— 5
Control
1.1 S 1212 .91 .14 10—o0to 106107 1.73 63to1sy
I5—5
Difference ..,... 4% mo. 11 mo. R . 2

From the above results the P.E. of the difference of the means
was computed from the formula, P.E., = \/ PEn,® 4+ PE,3% and
found to be for accuracy, \/1.38%+2.3~", or 2.74 per cent, and for
time, \/.24% -+ .92%, or .95 minutes.

Actual difference between the means for accuracy = 19. per cent.
Actual difference between the means for time = 12.86 minutes. For
accuracy the ratio of the difference to its P.E.= 192.74 = 6.9.
For time the ratio of the difference to its P.E. = 12.86/.95 = 13.5.
Both of these results are highly significant and mutually reénforcing.
When the time taken to prepare the two groups is considered the
results become more significant.

It is interesting to note that the student of lowest 1.Q. (61) in
the decimal group had an accuracy score of 70 per cent, completing
correctly all but the three most difficult examples—4, 7, and 10.
All of her errors were of the same nature and consisted in not
remembering the decimal equivalent.

The student of lowest I.Q. (63) in the common-fraction group
had an accuracy score of 40 per cent, completing correctly only
Examples 1, 2, 5, and 6. It will be noted that these are the easiest
in each list. It should be added also that the former student did
hers in 9 minutes, whereas the latter took 28 minutes. This seems
to show that the decimal metho is not too difficult for dull students
to learn but that the lowest-common-denominator method may be.

This experiment was repeated in another sB class one year later
in the same school under the same conditions, using the same
method and length of teaching as in 1933. As a control group, if
it can be so called, the best class in the school, the highest ranking
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6A group, was chosen this time. This 6A class was 3 semesters in
advance of the experimental group and its average mental age was
I year 5 months greater than that of the experimental group. The
same test was given both groups as before, the 5B group using
decimal equivalents and the 6A group the lowest-common-denomi-
nator method. Intelligence tests were given both groups as before.
The results are shown in Tables VIII and IX.

TABLE VIII
RESULTS OF CoMMON-FRACTIONS TeST—SECOND EXPERIMENT

Mean

Mean Time, Rangein Range
Group Vo Auncy,  PEm G \fnatery PEm Accuracy  in Time

Experimental

[1: 44 9614 £ 100 1.5 IL25: 2.44 .37 Soto 100% s toar’
Control

6A ........... 40 885+11.6 1.8 1468+333 .52 40to 100% s to 25’
Difference ....... 7.64 3.43 10% 4

TABLE IX

RESULTS OF INTELLIGENCE TEST—SECOND EXPERIMENT

MEeNTAL Aces INTELLIGENCE QuoTIENTS
Grou
roup Mean PEm Range Mean P.Em Range
Experimental
sB ... 11.41 & .92 ‘14  9-—5to 1066120 181 71to 149
14— 8
Control
6A ... ... 1283 £ 1.13 a8 10—6to 106.5 £ 11.4 181 82t0 151
16— §
Difference ..... 1yr. 5mo 8 mo 1 9

From the results of Table VIII the P.E. of the difference of the
means was computed and found to be: For accuracy, /1.5 + 1.8%,

or 2.34, and for time, v/.37% + 522, or .64. Actual difference be-
tween means for accuracy = 7.64 per cent. Actual difference be-
tween means for time = 3.43 minutes. For accuracy the ratio of
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the difference to its P.E. = 764 3.26. For time the ratio of the

difference to its P.E, = i—zi- = §.37.

These results are again statistically significant. In view of the
fact that the control group was one and one-half semesters in ad-
vance of the experimental group and their mental age one year five
months older, the results of this experiment was a surprise to both
the writer and the teacher of the sB group. It should be added that
neither teacher of the 5B nor the 6A group knew in advance that
the results of her work were to be compared. It was felt that each
would work more naturally if unaware of any competition, The
time for the whole experiment was accurately checked for the sB
group, in order to assure that it would be less than that spent in the
control group. No one can doubt that the time spent on this topic
during the two years in the fifth and sixth grades was greater
than that spent in the 5B semester alone. It should be remembered
also that 6 weeks of this time in the 5B grade was devoted to
learning the meaning of decimals and how to add and subtract them.

Since the mean I.Q. (106.5) of each group was somewhat above
average, some may offer the criticism that such an experiment will
not give these results except with superior groups. In anticipation

TABLE X

REsurts IN AccurRACY AND TIME, FROM THE CoMMON-FRACTIONS
TesT TAKEN BY THE FIvE Stupents or LowesT 1.Q. 1N

Eaca Grour
5B Group
Pupil M.A. I1Q. Accuracy Time
F.Pooooooi o-8 71 100 12’ 10”
C.G.....oeee e 10-0 77 100 10’ 50"
B.G. ..ol 08 82 100 15’ 00"
W.T, ooviia o-8 82 100 o' 10”
AT. . ................ 0-3 83 100 9" 20"
Mean .............. 0-8.2 79 100 10’ 54"
6A Group
Pupil M.A, 1Q. Accuracy Time
LL oo, 10-2 82 100 21’ c0"’
R.B. ... 11-4 84 8o 1’ 5o
HM ............... 10-8 85 00 10’ 00"
F. L. ................ 11-6 8y 70 16’ go”’
LS ... 11-2 88 70 8’ 40"

Mean .............. 10-9.6 8s5.2 82 14’ 52"
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of this criticism and also to satisfy the writer’s curiosity the five
students of lowest I.Q. from each group were compared as to ac-
curacy and as to time taken for the test. The results are shown
in Table X, page 149.

Again the results were rather surprising and show that the decimal
method of adding and subtracting common fractions is not too
difficult for dull students,

IV. ConcrusioN

Practical implications. There are three important implications
arising from this study, that can be practically justified from the
standpoint of insuring economy and efficiency.,

First, after the fourth grade pupil has been taught addition and
subtraction of whole numbers, it seems an uncalled-for digression
to leave these operations, none of which have been mastered by this
time, and to take up an entirely new procedure of learning addition
and subtraction of common fractions whose operations are so unlike
those of whole numbers. Whereas, if addition and subtraction of
decimals are to be taken up in the fifth grade, it is but a simple step
from addition and subtraction « TUnited States money with which
he has already become familiar in the fourth grade.

Second, the new procedure provides needed review and further
learning of addition and subtraction of whole numbers through the
addition and subtraction of decimals. That the fundamental proc-
esses in whole numbers are not mastered even by fifth, sixth and
seventh grade students is shown by an examination of some of the
figures from Brueckner’s study!! previously referred to (see pages
132 and 133). In his table, Difficulties in Decimals, he lists the
errors that were due to ordinary addition, subtraction, multiplica-
tion, and division separate from those due to the decimal situation
and separate from all others, for example, omissions, wrong copies,
etc. Difficulties in decimals are shown in Table XI.

Table XTI shows that 28 per cent of all the mistakes in addition
and 74 per cent of all in subtraction of decimals were in addition
and subtraction of whole numbers and were not due to the decimal
situation. This means that when the errors in addition and sub-
traction of decimals are taken together half are due to whole-
number addition and subtraction. One might well ask, What is the
use of trying to learn the operations in both common \fractions and

 Brueckner, L. J., Diagnostic and Remedial Teaching in Arithmetic, PD. 231-235.
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TABLE XI

NuMBER OF ERRORS IN OPERATION WITH DECIMALS
BASED ON A 91-ITEM TEST GIVEN TO 300 STUDENTS IN GRADES 6, 7, AND 8

(ADAPTED FROM BRUECKNER)
Addition  Subtraction Multiplication Division

Due to the basic operation .... 159 343 468 616
Peculiar to the decimal situation 355 99 1033 2597
Allothers ....oovvvnvennnnens 66 23 316 538

Total ....ovivniiininnns,s 580 465 1814 3151
Per cent basic of total ........ 28 74 26 16

decimals when whole-number addition and subtraction is only half
learned ?

A third and most important implication is found in the facility
with which remedial work can be done on errors made in addition
and subtraction of common fractions when it is done by decimal
equivalents,

When a test is scored the customary procedure is to mark the
wrong examples on each paper. It could be very valuable if the
teacher could at the same time mark the nature of the error made
as well as the error itself. This she cannot do for lack of time.
For example, it would take hours to trace the kind of error in long
division. The nature of the error in addition and subtraction of
common fractions is still more difficult to identify when done in
the conventional way. If addition and subtraction are done by
decimal equivalents, the error is either in the fundamental opera-
tion of addition or subtraction or in the decimal equivalent. A
glance at the error reveals its nature so that the kind of error can
be designated at the same time that the error is marked. In
scoring the last test the writer used two different marks for errors,
as will be seen on the sample sheet. A vertical oval, (), designated
an error in the fundamental operation of addition or subtraction
and a horizontal oval, ©, an error in the decimal equivalent. It
took less than 15 minutes to score the set of 44 papers in this
way. The number of each kind of error is listed in Table XII.

When papers are returned to students these marks can be ex-
plained to them and they can immediately go to work to correct
their own errors from a table of decimal equivalents on the board.
What could be a more simple remedial class procedure?

How are most remedial procedures carried on? The fact of the
matter is that they are generally not carried on because the teacher
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TABLE XII

NATURE AND DisTRIBUTION OF ERRORS IN COMMON-
Fractions Test Mape By 5B Group

Number Per Cent of
of Errors All Errors
Inaddition .....vvvvenvienn., 1 2.3
Insubtraction ................. 1S 35.0
In decimal equivalent ..,....... 23 53.4
Inmiscopies .................. 4 9.3
Total ....covviviiviini it 43 100.0

has not sufficient time. When they are carried on the work is done
outside of school hours because it has to be done individually.

The writer also took the time to identify the kinds of errors made
by the 6A group on the last test in common fractions. This was
a much larger task which took more than two hours. Many errors
could not be identified from the pupil’s work. (See the sample
sheets on pages 154 and 155.) Brueckner says 20 per cent of errors
in common fractions cannot be identified from the pupil’s work. The
nature of the error could not be marked well on the pupils’ sheets.
See Table XIII for nature of errors.

The first four of these errors were also found among the addition
examples. The remaining ten were peculiar to this subtraction test
alone. There is no pretense here of a complete analysis of the
errors, The thirteen errors in mixed-number borrowing included
at least five different varieties. It merely shows that subtraction
of common fractions offers many new difficulties not founi ir di-
tion, whereas subtraction in decimals offers no new difficulty. It
also shows that the task of remedial work in addition and subtrac-
tion of fractions is a much more complex affair than when it is
done by decimal equivalents. The remedial procedure from this
test would have t> be individual because pupils could not identify
their own errors as was true in the case of the decimal method. Few
teachers have time for an individual remedial program, let alone
teaching 45 to 50 pupils.

It has now been shown that doing addition and subtraction of
common fractions by mcans of decimal equivalents effects a great
economy at three different stages in their mastery: first, in the
original learning of new skills, second, in the higher accuracy in
the test and the less amount of time taken for the tests, and, third,
in the simple remedial program following the tests. At the same
time a much greater efficiency has been attained.
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TABLE XII
NATURE OF ERRORS IN CoMMON-FRACTIONS TEST MADE BY 6A GROUP
Number
In the 4 Addition Examples of Errors
1. Inreducing one fractiontothe Locod. ...oovuun v, s
2. Notidentified ... ..ottt
« In combining mixed number gotten by adding the fractions to the whole
number of the AnSWer v.v..v vt 1
4. In reducing improper fractions to mixed numbers ..................
§. Inadding whole numbers ....................co0 i i,
6. Inadding the whole number of the answer to the whole part of the mixed
nUMbET iNANSWEr ..ot e 1
7. Inreducing to lowest terms ...........ociiiiniiin s 7
8. Wrong operation performed ..........ooviiiiiie s 1
9 Infindinglocod. ... i 1
to. Failure to reduce improper fraction in mixed number ............... 1
Total oo 22
Number
In the 6 Subtraction Examplese of Errors
1. In changing fractions to higher terms of thel.c.d. ................. 9
2. In reducing fractions to lowest terms . ...............c0ovvunovnn.... 3
3. In finding thel.c.d. .......... e e e 4
4. Wrong operation .........oviiiiiiiiii i 1
5. In subtracting the whole numbers ............................. ... I
6. In subtracting nUmMerators ............o.ouvveunrunnnnunnnnnnnn. . 4
7o Calling 10538 = 538 ... i 6
8. Forgot the minuend whole number had been borrowed from . ........ 1
9. Borrowed in minuend when not NECESSATY o\ veviiiinnncnnnnenns,. 1
ro. In mixed-numbcs borrowing ... 13
11. Subtracted minuend numerator from subtrahend numerator ... ...... 1
12. Incompleted .. .. . e
13. Omitted ... oo 1
14. Notidentified ................ e it e e e 8
Total oo 54

* It should be adiled that the writer did not count as an error failure to recluce an answer to lowest
terms if unrerduced answer was correct,

This program allows ample time for multiplication and division
of common fractions in Grade sA and multiplication and division
of decimals in Grade 6B. It also allows much time for needed
review. There is also sufficient time in the 6A semester for reviews
and strengthening of the many needed skills, before entering the
junior high school with its important but sadly neglected activity
of problem solving.

The problem of economy is not the only issue in this program.
When the child is taught his arithmetic in such a way and at such
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POOREST TEST PAPER FROM sB GROUP

Add the following four sxamplees:
(Vae the erucs at the right of esch examp® %o work in).

(1)-:.}—-3: So / (2)7-1/3 7. ? 7 3

y =2 'I
778 g-E7<=
(3) 5:1/10 / a- 3/4 2, Z s
““j*é-‘-u . - == 4

Subtraot the following eix exarplees
(Use apace at right of each for working).

(s) H,7 50 /2
o 1.0 28 ‘“” @

g A= "

EET,

{7) (8)
10 0 0 0 O 9-3/3
6-3/3 b, /3 ’ 3 3
7/8

¥ AR ki

There are § correct answers and § crrors: 1 in subtraction (7) and 4 in
decimai equivalent (2), (6), (8), and (g). It will be noticed that the decimal
equivalent of %3, not being known, caused errors in three examples: (6), (8),
and (9).

a time that he understands it and can master i he derives greater
satisfaction and joy from it than when the work is only half learned.
We must remember that the child learns from his past successes
rather than from his past failures, and that self-confidence in his
work can only be attained when he succeeds and masters the work
as he goes along.

This should be said in conclusion: From reading this article one
may be led to believe that the wiiter is in favor of abolishing the
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POOREST TEST PAGE FROM 6A GROUP

DRITION CcTION r

Add the following four exauplest
(Use the epace at the right of each example to work in),.

(1) (3) 7 E
34 L2 7-1/3 ) af
24 X 2=2/8 s.,-&v—- £
] x? -1
e B FTE N
5-1/10 74, Vean 15
; rh 1%
“\JJ.P_ w ,—ﬁ___
. 0 2419 .
ubtract the following eix examplea: nq -
(Uee space at right of each for working), 7_'“_ \K
(s) (e =
“-3/¢ H & ' 18313 = '%:._%
/e o4 -2 4 = A
3.5" ‘° ;,%- "I'&' \(
¥
(7) 10 102104 =94 (&) 9-3,/3 9 %< PR
- é“}‘—fg: 3 - =62
~ 7o R P £
H 7 =l 0"71 i e J
9 1§ . r 2L (10)
6-23/3 6 ‘;i =4 Ty 5/6 Sz 18
7Y A e, 607
R YRR 3 =9
-:..-?———1?:"—"
7{ 1
h

There are 4 correct answers and 6 errors: 1 in reducing to lowest terms (1) ;
t in leaving improper fraction unreduced (4); 1 not identified (6); 3 in bor-
rowing in minuend (7), (8), and {3). The errors in (7), (8), and (9) are not
the same although made in connection with borrowing in minuend.

least-common-denominator idea entirely. Such is far from the
truth. We need this concept in algebra and in higher mathematics.
What the writer is endeavoring to put across to the reader is that
since we have evidence tnat the fifth and sixth grade child does not
understand the concept uade‘lying addition and subtraction of
commion fractions and since the Committee of Seven has found
through careful investigation that addition and subtraction of com-
mon fractions whose denominators are different cannot be learned
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efficiently by students of lower mental age than thirteen years, it
is better to teach these topics in the seventh, eighth, and ninth
grades in a much shorter time and when the student is mentally
mature enough to see what they mean and can make them function
in his later life. Do not the seventh and eighth grade teachers of
the junior high school complain of the students coming to them not
knowing how to add and subtract common fractions? Does not
the ninth grade algebra teacher do the same? Would it not be
better that these teachers teach the least-common-denominator idea
for the first time themselves in connection with their own work and
at the same time give the students the fundamental principles under-
lying all fractions? These teachers would then not forever be
blaming the teachers below them.

At a recent conference on arithmetic the writer was told by a
superintendent of a city system where the placement of arithmetic
topics was in accordance with the findings of the Committee of
Seven that there was no crowding in the upper grades because of
pushing up topics as it took so much less time up there where the
maturity of the students gave these topics a ready reception and
proper absorption.



CURRENT PRACTICES IN TEACHER-TRAINING
COURSES IN ARITHMETIC

By ROMIE DUSTIN JUDD
Morehead State Teachers College, Morehead, Kentucky

AND ROBERT LEE MORTON
College of Education, Ohio University, Athens, Ohio

Scope of the investigation. This chapter reports a question-
naire investigation of current practices in teacher-training courses in
arithmetic as found in teachers colleges. Copies of the questionnaire
were sent to 142 institutions which were members of the American
Association of Teachers Colleges (1932-1933). One hundred twen-
ty-nine replies wcre received. The promptness with which the
questionnaire blanks were filled out and returned and the large
number of letters which were written supplying additional infor-
mation indicate that those who are responsible for teacher-training
courses in arithmetic are much interested in the investigation. In
the paragraphs and tables which follow information is supplied
in answer to a series of questions, the chief of which are as follows:

1. What texts are used in training courses in arithmetic?

2. What proportion of the training course is devoted to arithme-
tic content and what proportion to method ?

3. Are prerequisites set up for these courses ?

4. Is a course in arithmetic required for teacher certification?

5. To what extent are teacher-training courses in arithmetic
offered for the primary and intermediate levels separately and to
what extent does one course cover the work for both levels ?

6. Are the teacher-training courses in arithmetic classified as
mathematics or as education?

7. Hew large are the classes in training courses in arithmetic?

8. To what extent are demonstration lessons provided? Who
teaches th. demonstration lessons? When do they occur?

9. What is the importance of a series of devices in the opinions
of those who give training courses in arithmetic ?

157
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ro. What instructional methods are employed in conducting a
training course in arithmetic and to what extent is each of these
methods used ?

11. What are the judgments of those giving courses in the teach-
ing of arithmetic as to the time allotments for the topics of a general
three semester-hour course?

Texts used in training courses. Table I lists the principal texts
used in teacher-training courses in arithmetic and gives the fre-
quency with which each was reported. All texts reported by two
or more institutions are included in this table,

TABLE I
TEXTS Used IN TEACHER-TRAINING COURSES IN ARITHMETIC

Author Title of Text Frequency

Brueckner Diagnostic and Remedial Teaching in Arith-

metic 3
Brueckner ¢! al. The Triangle Arithmetic, Book III 3
Brown-Coffman The Teaching of Arithmetic 5
Klapper The Teaching of Arithmetic 3
Knight et al. Standard Service Arithmetics 4
Lenues The Teaching of Arithmetic 2
Lyman Advanced Arithmeu. 2
Morton Teaching Arithmetic in the Primary Grades 25
Morton Teaching Arithmetic in the Intermediate

Grades 27*
Newcomb Modern Methods of Teaching Arithmetic 4
Overman Principles and Methods of Teaching Arith-

metic 6
Overman A Course in Arithmetic for Teachers and

Teacher-Training Classes 41
Roantree-Taylor An Arithmetic for Teachers 14
Stone-Mallory-Grossmickle A Higher Arithmetic 9
Strayer-Upton Arithmetics 2
Taylor Arithmetic for Teacher-Training Classes I
Thorndike The New Methods in Arithmetic 2

* Twenty-three institutions reported the use of both Morton textbonks, 2 use the primary texthuok
only,and 4 use theintermediate textbook only.  Thus, the total number of institutions reporting the use
of one or both of these textbooks is 29.

t One institution reportelt the use of both of the Overman textbooks, s use the Principles and Methods
only. and 3 use the Conrse in Arithmetic only, Thus, the total number of institutions reporting the use of
one or both of these textbooks is 9.

As indicated in the notes to Table I, there is some duplication
in the frequencies reported in the tavle due to the fact that some
institutions use two of the texts listed. The total number of insti-
tutions included in Table I is 102. There remain 27 of the 129 insti-
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tutions reporting on this topic. Eighteen of these use one each
of a miscellaneous series of texts; the remaining ¢ use no basal text.

These data were collected in response to a question as to the
basal textbook for the course. The basal textbook turned out to
be two books in some instances, as has been shown. When the
question was broadened to include the number of basal textbooks
used, naturally in many cases a greater number of texts was indi-
cated. One hundred five institutions reported on this item. Of
these, 9 indicated that they used no basal textbook, as was stated
in the preceding paragraph. Of the remairing g6 institutions, we
find 56 using but one basal textbook, 25 using two, 13 using three,
and 2 using four,

Content 2*.d method. It is possible to get some indication of
the r l.iuve emphasis placed upon subject-matter content and
m-.uods of teaching in teacher-training courses in arithmetic by
noting the character of the books listed as the basal textbooks. The
reader who is acquainted with the titles listed in Table I can readily
draw his own conclusions as to whether the major emphasis is placed
upon content or upon method. In the opinion of the writers, Table
I may be summarized in this respect by the statement that in
approximately half of the institutions reporting the major emphasis
of the course is upon content, while in approximately half the
major emphasis is upon method. This statement is not based upon
a rigorous classification into two categories of the titles given in
Table I, and of the 18 miscellaneous titles which were not iicluded
in the table, but each of these titles and the frequency with which
it occurred were considered in arriving at this conclusion.

It is not possible, however, to determine with sufficient accuracy
the relative emphasis placed upon content and methods of teaching
in a course simply by noting the title of the basal textbook used.
After all, the answer to this question may be obtained only by
ascertaining just how the course is organized and conducted. Nat-
urally, the writers have been unable to obtain much detailed infor-
mation on the manner in which teacher-training courses in arith-
metic are organized and conducted. They have obtained from g6
of the institutions from which replies were received a statement of
the estimated per cent of the course-time which is given to content
and the per cent which is given to method. 'These per cents are sum-
marized in Table II.

Table II indicates that in one institution the entire time of the
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TABLE IT

EstIMATES o THE Per CENT of THE TIME OF THE COURSE
WaicH Is DEVOTED T0 METHOD IN 96 TEACHER-TRAINING

INsTITUTIONS
Per Cent Devoted to Method Frequency  Per Cent

I00 ittt it i e ittt ne e I 1.0
£ e L T 19 19.8
L - S 39 40.6
2 RO T 19 19.8
D T 12 12.§
= 6 6.3
Total ... i e a6 100.0

Median ..o 57

teacher-training course in arithmetic is devoted to methods of
teaching; that in 19 institutions the proportionate amount of time
devoted to method is 75% or more, but less than 100% ; etc. It is
particularly interesting to observe that in 6 institutions the entire
course-time is devoted to content, leaving no time for the develop-
ment of teaching method. The median amount of time devoted to
method is §7% of the total.

It should not be concluded that institutions in which teaching
method is stressed in the teacher-training course in arithmetic are
necessarily guilty of neglecting the subject-matter preparation of
their students. From the data pertaining to prerequisites it is evi-
dent that it is a rather common practice for those who are about
to enroll or for those who just have enrolled for a course in the
teaching of arithmetic to be given a subject-matter arithmetic test
to determine whether or not they possess serious deficiencies. Those
failing to meet the standard are often required to take a non-credit
course in arithmetic content and to pass the subject-matter test
before they are permitted to take the teaching course. In some
institutions the student failing to pass the subject-matter test takes
the non-credit content course and the teaching course concurrently
but is not granted credit in the latter until he is able to make a
satisfactory score on a test in the former. This plan is followed
at Ohio University. The test used is the two arithmetic parts of
the S*anford Achievement Test. The standard set is slightly higher
than the norm for the tenth grade, the highest norm given in the
manuai of directions.
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Prerequisites. One hundred one institutions answered the ques-
tion pertaining to prerequisites for the teacher-training course in
arithmetic. Thirty of these reported that there were prerequisites
for this course; 71 replied that there were none, The nature of
the prerequisites in these 30 institutions was not determined.

A certification requirement. One hundred four institutions an-
swered the question whether there was a training requirement in
arithmetic for teacher certification. Of this number 84 indicated
that an arithmetic course was required for some certificates, while
20 reported that arithmetic was not required for any certificate.

Differentiated courses. In recent years there has been a ten-
dency for teacher-training institutions to develop differentiated
courses in arithmetic. Courses designed particularly for the prepa-
ration of teachers for the primary grades and for the intermediate
grades have appeared on many campuses. Other courses covering
the work of all the grades of the elementary school are still found
in several institutions.

Table III reveals the practices of 96 institutions as regards gen-
eral versus differentiated courses. It will be seen that 55 of the
96 institutions offer courses on the primary and intermediate levels
separately, while 41 institutions offer the more general type of
course. The number of semester hours of credit carried by these

TABLE III

DIFFERENTIATED VERSUS GENERAL COURSES IN ARITHMETIC, WITH THE NUMBER OF
CrepiT HoURS AssIGNED To THESE CoURSEs IN g6 INSTITUTIONS

Hours Credit

Type of Course — Total
1 3 3 4
Primary ... 1 18 3r 5 55
Intermediate ........................... 1 13 35 6 55
General .............ooiiiiiii o 13 24 4 41
Total oo 2 44 9o 15 151 (96)

courses ranges from 1 to 4 for the differentiated courses and from
2 to 4 for the general courses. There is a slight tendency to grant
more credit to the intermediate than to the primary course. Clearly,
the modal practice is in favor of 3 hours for a single course, whether
differentiated or general.

Mathematics or education. In a preceding section it was shown
that training courses in arithmetic vary greatly in the proportionate
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emphasis placed upon subject-matter content and methods of teach-
ing. Tt seems reasonable to assume that a course made up largely
of content material would be more likely to be classified as a
course ir mathematics than would a course in which the major em-
phasis is upon methods of teaching. At any rate, in answering
the question whether arithmetic courses are accepted as mathematics
toward a degree, 52 of the 103 institutions reported yes and 51, no.

Replies to the question as to where arithmetic courses are listed
in the college catalogue reveal some interesting facts. Table IV
summarizes the replies.

TABLE 1V

CLASSIFICATION OF ARITHMETIC COURSES IN THE CATALOGUES
OF 129 INSTITUTIONS

Number of  Per Cent of

Classificatio R N
s on Institutions  Institutions

Mathematics ........oovviiinn.s, 69 53.5
Fducation ............oovvuivn.n, 13 10.9
Mathematics and education ......... 8 6.2
Special methods ................... 3 2.3
Socialized mathematics ............. 2 1.6
Not offered on college level ... ...... 15 11.6
Noreply coviiiii i 18 13.9

Total vovvvvi ... 129 100.0

It will be seen that 69 of the 129 institutions replying to the ques-
tionnaire, or 53.555 of the total, classify teacher-training courses
in arithmetic as mathematics. Disregarding the 15 institutions
which do not offer arithmetic courses on the college level and the
18 institutions from which replies were not received, we have 96
institutions replying to the questionnaire and giving a definite classi-
fication to training courses in arithmetic as college' courses. Using
this new base (96) in calculating per cents, we find that 71.9%0
classify arithmetic as mathematics, 14.6%, as education, 8.3%% as
mathematics and education, 3.195 as special methods, and 2.1% as
socialized mathematics,

Estimates of the per cent of the time of the course which is
devoted to method have been reported in Table II. It is pertinent
to inquire in this connection whether the per cent of time devoted
to method is greater in those institutions which classify the training
course in the catalogue as education than in those which classify
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it as mathematics. The data supplied by the questionnaires were
retabulated to answer this question and it was found that in insti-
tutions classifying arithmetic as mathematics the mean per cent of
the time of the course devoted to method is 50, while in those insti-
tutions classifving this subject as education the mean is 63. It
will be recalled that the median for all institutions is 57 (see Table
1),

Class size. Table V is a frequency table showing the size of
classes in teacher-training courses in arithmetic in 96 institutions
reporting on this item of the questionnaire.

TABLE V

Crass S1ze IN TEACHER-TRAINING COURSES IN ARITHMETIC
IN 96 INSTITUTIONS

Numherof  Per Cent of

Ni o A £
Number of Students Institutions  Institutions

e ot o SN 1 1.0
6000 ... ... o 0.0
BO™B0 &ttt 1 1.0
40740 « it e 13 18.8
30730 it : A8 47.0
20020 . e e 22 22 9
b {o o (' TN . 8 8.3
0 0 e e T 1.0
Total ................ . e 96 100.0
Median oooveiiiiin i ieiinennn, 33.8

So far as the writers know, there is no special reason for expecting
arithmetic classes to be larger or smaller than classes in other re-
quired courses offered to students of the same rank. The large
and small classes reported may be due to variations in the student
enrollments, to the absence or the presence of prerequisites for the
course, or to the existence or the absence of an arithmetic require-
ment for certification.

Demcnstration lessons. DPresumably, there are two purposes of
a teacher-training course in arithmetic: (1) to correct the student’s
deficiencies in subject matter and to give him a larger grasp and
a better understanding of the subject: and (2) to teach him how
to teach the subject to children in the elementary school. The
latter purpose is apparently not recognized in the 6 institutions
reported in Table II as devoting none of the time of the course
to method, and is barely recognized in 12 cther institutions which
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devote less than 25% of the course time to method. Whatever the
proportion of time devoted to method in the arithmetic course, it
is probable that all graduates of teacher-training institutions who
have been trained to teach in the elementary school are required
to take a course in student-teaching and that in this course the
methodology aspect of arithmetic and other subjects is stressed.
It is possible that in those institutions in which but little, if any,
of the time of the arithmetic course is given over to method, the
student is expected to acquire proper teaching technique in his
course in student teaching.

One hundred two institutions reported on whether demonstration
lessons were taught in the training school for the classes in arithme-
tic. Fifty-seven of these 102 institutions reported that such dem-
onstration lessons were provided, while 45 indicated that no such
provision was made.

The number of demonstration lessons ranges from o to 12, as is
indicated in Table VI. Tt will be seen that the more common prac-
tice among those which provide such lessons is to give from 3 to 6
lessons. The median number of lessons is 3.3. The Tedian for those

TABLE VI

NUMBER OF DEMONSTRATION LESSONS TAUGHT IN THE TRAIN-
ING SCHOOL FOR THE CLASS IN ARITHMETIC, As REPORTED
BY 102 INSTITUTIONS

Number of Number of

Lessons ‘Taught Institutions
b e 5
L L 6
Fax - S 6
570 19
374 e 18
G 3
O e e e 43
Total Lo 102
Median ..o 3.3
Median of those providing lessons ............. 5.8

which provide demonstration lessons ( excluding the 45 institutions in
which no demonstration lessons are provided) is 5.8.

The technique of teaching arithmetic is sometimes demonstrated
by the teacher of the college class in arithmetic who brings a pupil
before his class for this purpose. Of the 9o institutions reporting
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on this subject, 30 institutions indicated that they used a pupil for
demonstration purposes regularly, 15 that they used a pupil occa-
sionally, and 45 . .at they never used pupils in this manner.

It has been stated that 57 institutions reported that demonstra-
tion lessons were taught in the training school for the classes in
arithmetic. When asked whether demonstration lessons were taught
by the critic teacher, the class teacher, or both, the replies were as
follows: critic teacher, 41 : class teacher, 5; and both, 11; total, g7.

It is clear that some of those who give teacher-training courses
in arithmetic prefer to give their own demonstration lessons, but
that these are in the minority.

Another question had to do with the time when the demonstration
lesson should be given. Should s demonstration lesson illustrating
a certain phase of arithmetic be given before or after the develop-
ment of the unit in the teacher-training class? On this point, the
57 institutions providing demonstration lessons may be classified
as follows: Before the development of the unit, 1 ; after the develop-
ment of the unit, 41; before and after the development of the unit,
8, no reply, 7; total, 57.

Clearly, the majority of opinion on this subject is in favor of pro-
viding the demonstration lesson after the development of the unit
in the teacher-training class.

Table II reported estimates of the proportionate amount of the
time of the course devoted to content and to methods of teaching
and in a preceding section it has been shown that institutions classi-
fying the course as education give more time to method than do
institutions classifying the course as mathematics. When the data
were tabulated so as 1o show the relationship between the propor-
tiox: of the course devoted to method and the number of demonstra-
tion lessons given, it was discovered that, in general, the greater
the amount of time devoted to method, the greater the number of
demonstration lessons. This was shown by two separate tabulations,

First, the mean number of demonstration lessons was calculated
for each of the groups reported in Table II. The results are given
in Table VII. Tt will be seen that there is a steady decline in the
mean number of demonstration lessons as the per cent of time
devoted to method decreases.

. Second, the institutions were classified into three groups according
to the number of demonstration lessons given. The first group in-
cluded those giving no demonstration lessons; the second group,
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TABLE VII

RELATION BETWEEN THE PROPORTION OF THE TIME OF THE
Course DEVOTED T0 METHOD AND THE NUMBER OF
DEMONSTRATION LESSONS

Mean Number of
Per ce;:eg:?ud to Frequency  Demonstration
Lessons

TOO e evesvsensenosceronnnnse I 12.0

75700 tetrecernteriearcesnrenen 19 3.4

S 39 2.6

25740 tiiiiiriiaeiaiiiaieansaaa 19 2.3

b G 7 12 0.6

< 2 s 0.5
Total cvvviiiviiiieniiiieninns 90

those giving from 1 to 5 demonstration lessons; the third group,
those giving 6 or more demonstration lessons. The mean per cent
of time devoted to method was found to be 41 for the first group,
58 for the second group, and 67 for the third group.

Another tabulation was made to show the mean number of dem-
onstration lessons in institutions classifying the arithmetic course
as education and the number in those classifying the course as
mathematics. In institutions in which the arithmetic course is
called education, the mean number of demonstration lessons was
found to be 5.2. In those institutions in which the course is classi-
fied as mathematics, the mean number of demonstration lessons
is 2.0.

The use of devices. An effort was made to determine the opin-
ion of those who give training courses in arithmetic as to the value
of certain devices. The list of devices given in Table VIII was
submitted with the request that each be rated for importance. Rat-
ings were to be assigned as follows: A, very important; B, im-
portant; C, fair; D, not important. Not all the devices were rated
by an equal number of teachers, as will be seen by examining the
total column of Table VIII.

In filling out the questionnaire, each teacher was requested to
rate each device by using one of the four letters, A, B, C, D, as
indicated. After the replies had been tabulated it was decided
to assign numerical values to the ratings as follows, A, 3; B, 2; C,
1; D, o. The purpose of this was to make it possible to calculate
a mean rating for each device. The calculated means, given in the
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TABLE VIII
DisTRIBUTION OF RaTINGS OF DEVICES BY TEACHERs OF TRAINING COURSES IN

ARITHMETIC
tin
Device Rating — Total 12:::‘1::;
Amy Bm, Cwi Dmo
Tests .ooovvvivineniniinn.. 58 25 3 b 87 2.6
Graphs .................... 25 30 19 4 84 2.0
Flashcards ................ 23 35 19 3 81 1.9
Games .................. .. 13 - 31 35 5 84 1.6
Notebooks ................. 12 19 19 24 74 1.3
Crutches ................... 7 23 33 23 86 1.2
Number pictures ............ 4 17 40 12 73 1.2
Rhymes .. ... ............. 2 8 34 37 81 0.7
Puzzle problems ............ ) 3 24 53 82 0.4

last column of Table VIII, will indicate the approximate relative
importance of these devices in the opinion of those who filled out
the questionnaire,

Methods of instruction. What instructional methods are em-
ployed in conducting a training course in arithmetic and to what
extent is each of these methods used? To obtain an answer to this
question, the first seven methods listed in Table IX were named
in the questionnaire, with the request that the per cent of the total
time devoted to each be indicated. The last two methods named,
Nos. 8 and 9, in Table IX, were added by 20 and 7 teachers, re-
spectively. The reader should not conclude that problem solving
and tests are considered unworthy of mention by a larger number
of teachers. No doubt more teachers would have assigned time
to these methods had they been listed in the questionnaire,

All per cents were given in multiples of 5. Table IX gives the
distributions of time allowances and the mean time allowance for
each method.

The reader will be impressed with the marked variations in prac-
tice as regards the use of these instructional methods. The range
in amounts of time taken up by the discussion method is from 10%
to 5097 : by the lecture method it is from 5% to 6o*%, ; etc. Whether
these figures represent actual practices, however, is a question,
They may represent merely the ideals to which these teachers hold.
It is difficult to justify such extreme variation, however, either in
practice or ideals.




168 THE TENTH YEARBOOK

TABLE IX

NUMBER OF INSTITUTIONS DEVOTING VARIOUS PER CENTS OF TIME T0 NINE METHODS
OF INSTRUCTION IN THE TEACHING oF ARITHMETIC

Per Cent Mean

Method Total  Per
$ 10 IS 20 25 30 38 40 45 80 §s 6o Cent

1. Discussion .......... 15§ 13 17 10 4 1§ 18 97 29.4
2. Lecture ............ 1332 3 910 6 1 2 7 2 8 1.t
3. Demonstration lessons 17 22 ¢ 3 2 1 54 10.8
4 Reports .., ...... ..28 22 7 8 4 1 70 10.8
5. Questions and answers 12 26 10 15 8 3 1 1 76 14.9
6. Projects .o.......... 27 7 1 2 11 3 8.3
7. Case studies ........ 12 14 1 27 8.3
8. Problem solving ... .. 4 3 3 3 1 1 1 3 1 20 19.8
9. Tests .,............ 3 4 9 7.9

Judgments of a suggested course. Inorder that definite opin-
ions on time allotments to ‘'various topics in a three-hour course in
the teaching of arithmetic might be collected, the topics listed in
Table X were included in the questionnaire. The 54 hours pre-
sumably available in a three-semester-hour course were arbitrarily
divided up among the topics as indicated in the column headed
“Hours,” Those replying to the questionnaire were asked to indi-

TABLE X

JUDGMENTS OF TEACHERS OF TRAINING COURSES IN ARITHMETIC OF SUGGKSTED TIME
ALLOTMENTS FOR A THREE-SEMESTER-HOUR CoURsk

Teachers Voting fur

Suegested

Topics Hours Less Time No Change More Time Total
No. % Nu. o No. “a
Equations ............. 3 24 43 2 43 8 14 56
Devices vvovevnnvinen., . 3 30 50 23 38 7 12 6o
History of arithmetic ... 6 55 74 16 22 3 4 74
Objectives of arithmetic . 6 40 50 24 33 8 I 72
Problem solving ........ 12 26 37 20 29 24 34 70
Fundamental operations . 18 32 45 20 36 14 19 72
Drill exercises .......... I 3 5 25 44 29 5t 57
Common fractions ...... 1 3 22 37 34 (1] 59
Decimal fractions ....... 1 4 H 23 33 33 55 6o
Percentage ............. 1 4 7 17 30 36 03 57
Interest ............... 1 7 12 22 3% 29 50 58
Mensuration .. ..., ... 1 5 9 24 42 28 49 57
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cate whether they considered the proposed time allotments insuffi-
cient, adequate, or more than adequate.

It will be seen that those who would give less time outnumbered
those who would give 110re time to equations, devices, history, ob-
jectives, problem solving, ..nd the fundamental operations, although
the vote is very close in the case of problem solving. On the
other hand, those who would give more time than was suggested
in the questionnaire decidedly outnumbered those who would give
less time in the case of drill exercises, common fractions, decimal
fractions, percentage, interest, and mensuration. Evidently, many
consider one hour inadequate for these topics.

Some teachers suggested additional topics for inclusion in a
course in the teaching of arithmetic. These included: banking,
partial payments, the metric system, ratio and proportion, painting
and paper-hanging, graphs, checks and drafts, workbooks, budgets,
investments ard savings, insurance, test construction, taxes, and
others.

The writers are presenting the data of Table X for such interest
and informational value as they may possess. They are not recom-
mending a course made up of the topics listed, nor are they endors-
ing the suggested time allotments. 1t will be aoted also that the
course upon which these teachers voted is a general course and
that no judgments were collected ielative to allotments of time
to the topics included in covrses differentiated for the primary and
intermediate grades.

Summary. A questionnaire investig: ‘on of current practices in
teacher-training courses in arithmetic an.ung members of the Amer-
ican Association of Teachers College: 1'rught to light the informa-
tion summarized in the following parag:.. s:

1. Thirty-five different publications are used as textbooks, count-
ing a series of elementary school arithmetic textbooks as one publi-
cation. Twenty of these are primarily content books: 135 are books
devoted iargely to the teaching of arithmetic. Of the 120 institu-
tions reporting the use of a textbook, 58 use a book which is largely
content, while 62 use a book which is largely method. The text-
books which are used in two or more institution: are listed in
Table I.

2. As reported by 96 institutions, the per cent of time devoted
to method in teacher-training courses in arithmetic ranges from o
to 10o. There are 6 institutions at the for.ner extreme and 1 at the
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latter. The median per cent of time devoted to method is §7.
Some institutions, in which a relatively large amount of the time
of the course is devoted to method, require students to make good
the more serious subject-matter deficiencies in specially organized
classes in which the work is done without college credit.

3. Of ror1 institutions answering a question pertaining to pre-
requisites, 30 indicated that they have prerequisites for this course
and 71 that they have none.

4. Of 104 institutions answering a question as to whether there
was a training requirement in arithmetic for teacher certification,
84 indicated that there was such a requirement and 20 that there
was not,

5. Of 96 institutions reporting on the subject of gene-al and dif-
ferentiated courses in arithmetic, 55 indicate that they offer courses
n the primary and intermediate levels separately, while 41 offer
only the more general type of course.

6. The number of .semester-hours’ credit carried by training
courses in arithmetic ranges from 1 to 4. Sixty per cent of the
151 courses reported by g6 institutions carry three semester hours
of credit.

7. In 52 of 103 institutions reporting, arithmetic courses are ac-
cepted as mathematics toward a degree, while in 51 institutions
arithmetic is not classified as mathematics for this purpose.

Of 96 institutions reporting upon the classification of arithmetic
courses in catalogues, 69 indicate that it is classified as mathe-
matics, 14 as education, 8 as mathematics and education, 3 as spe-
cial methods, and 2 as socialized mathematics.

More cof the course time is devoted to method in institutions
classifying arithmetic as education than in institutions in which it
is classified as mathematics.

8. Classes in courses in the teaching of arithmetic range in size
from less than 10 to more than 70. The median for these classes is
33.8.

9. Of 102 institutions reporting as to whether demonstration les-
sons were taught in the training school for the classes in arithmetic,
57 indicated that such lessons were provided while 45 indicated
that they were not. The number of Jemonstration lessons ranges
from 1 to r2 with a median of s5.8.

Of go institutions reporting, 30 indicated that they used a pupil
before the class for demonstration purposes regularly, 15 that they
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used a pupil occasionally, and 43 that they never used a pupil for
this purpose.

In the 57 institutions in which demonstration lessons were taught
in the training school, these lessons were taught by the critic teacher
in 41 institutions, by the class teacher in 5, "nd by both the class
teacher and the critic teacher in 11.

Of so institutions reporting, 41 have the demonstration lesson
after the development of the unit in class, one before the develop-
ment of the unit, and eight before a.~ ..ter the development of
the unit.

There is a positive and clearly defined relationship between the
per cent of the course time devoted to method and the number of
demonstration lessons. Institutions classifying the course as edu-
cation provide more demonstration lessons than do institutions call-
ing the course mathematics.

1o0. Among the devices rated, tests, graphs, and flash cards were
considered to be of relatively Jarge worth; games, notebooks,
crutches, and number pictures were given an intermediate rating;
and rhymes and puzzle problems were thought to be of relatively
little value.

11. Marked variability is shown in the proportion of class time
which is taken up by various methods of instruction. The most
popular instructional methods with the means of the per cents of
class time devoted to each are: discussion, 29.4%{ : problem solving,
19.87¢ ; lecturing, 19.1°; ; questions and answers, 14.9%¢ ; demon-
stration lessons, 10.877 ; and reports, 10.87.

12. Judgments of suggested time allotments for a three-semester-
hour course showed much difference of opinion. There was a defi-
nite disposition to devote less than six of the fifty-four class hours
to the history of arithmetic and less than 6 hours to the objectives
of arithmetic. Other tendencies may be gleaned from data found in
Table X.

Concluding statement. In conclusion, the writers wish to point
out that the study which they have made supplies consideraole in-
formation relative to prevailing practices in the training of teachers
of arithmetic but does not indicate which of these practices are
desirable and which are undesirable. What constitutes the ideal
program for training teachers of this subject is not known. Ob-
viously, those who are charged with the responsibility do not agree
on how such a program should be planned and exscuted.
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There is a great need for research in order that the merits of
various programs may be tested. This research will require much
time and all of the skill which the profession can muster. In the
meantime, it is worth while for those who conduct the training
courses to know what others are doing. One should at least justify
to himself any of his practices which are out of harmony with
current tendencies in teacher training.



THE PROBLEM OF TRANSFER IN
ARITHMETIC

By JAMES ROBERT QVERMAN
Bowling Green State College

THE ProBLEM

WHEN a new educational theory, or procedure, is first introduced
it usually meets with considerable opposition. Although a few
teachers and administrators take up every new fad just because it
is new, the great majority are conservative and slow to change
their ideas and habits. This period of inertia, or opposition to
change, is usually followed by one in which the new idea rapidly
gains widespread, but uncritical, acceptance. Onc» convinced that
it has merit, educators become enthusiastic and can see neither the
weak points of the new nor the strong points of the old. As a
result educational theory and practice tend to swing from one
extreme to the opposite. Finally comes the period of sober judg-
ment, of critical evaluation of the old and of the new, which usually
results in a compromise, a middle-of-the-road course, or a combi-
nation of the good points of both the old and the new.

The problem of transfer of training afiords an excellent illustra-
tion of these three stages. As early as 18go, William James showed
that practice in learning one poem produced little or no gain in
ability to learn another poem. This pioneer experiment was soon
followed by others, by Jastrow, Raif, Thorndike, Woodworth, and
numerous others, in all of which the training of one mental func-
tion produced little or no gain in related functions, In spite of this
experimental evidence, however, the curriculum of the majority
of our schools and the methods used by most of our teachers con-
tinued for many years to be based upon the old ‘aculty psychology
and a belief in general and magical transfer.

Largely through the efforts of Thorndike this naive faith in
transfer was finally shaken, and educators and educational practice
rapidly swung to the opposite extreme. “Formal discipline” and

173
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“transfer of training” came to be regarded as exploded and dis-
credited theories. As a result, our present curricula and methods
of teaching are largely based on the theory that “we teach what
we teach, that and no more.”

At the present time we are entering upon the third stage, that
of critical evaluation. Later experiments, together with a more
careful interpretation of the results obtain:d by the early workers
in this field, have shown that a belief in the total absence of all
transfer is just as false as the earlier belief in complete and magical
spread. This chapter has been written in order to acquaint the
rank and file of teachers of arithmetic with the latest evidence on
the question of transfer, in the hope that it will help in shortening
the period of readjustment and in bridging the gap between our
present knowledge of the subject and the prevailing practice in our
schools,

EXPERIMENTAL EVIDENCE

Owing to limitations of space only a few of the experiments on
the spread of learning can be summarized in this article. Judd
[1],* in 1908, reported an experiment by Schalcow and himself.
Two groups of fifth and sixth grade boys practiced throwing a dart
at an object under water. Before starting practice one group was
given a full theoretical explanation of refraction. In the first series
of trials, with the object under twelve inches of water, one group
learned as rapidly as the other. The depth of the water was then
reduced to four inches. The boys without the theoretical training
were badly confused and apparently received no help from the for-
mer practice. The group with the theory, however, very quickly
ad: nted themselves to the new conditions.

In 1911 Starch [2] reported an experiment with fifteen subjects.
These were first given a series of tests covering addition of frac-
tions, adding and subtracting two numbers of three digits each,
multiplying two- and four-digit numbers by one-digit numbers,
dividing three-digit numbers by one-digit numbers, and memory
span for numbers and words. After the preliminary test, eight of
the subjects were given fourteen days of practice on mental multi-
plication of three-digit numbers by one-digit multipliers, All fif-
teen subjects were then given a different test covering the same

* The numbets in brackets refer to the bibliography given at the end of this
article,
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points as the preliminary test. All calculations on the tests, as
well as in the practice, were performed mentally. There was little
change in the memory span for either group. The practiced sub-
jects showed from 20%: to 40¢¢ more improvement on the arith-
metical tests than the unpracticed subjects. Starch concludes that
“Training in one type of ar .hmetical operation improves very con-
siderably the ability to do other fundamental arithmetical opera-
tions.”

In 1924 Knight and Setzafandt [3] reported a study showing that
practice in adding fractions having certain denominators resulted
in improvement in adding fractions with other denominators. Two
groups, neither of which knew how to add fractions at the start of
the experiment, were given instruction and equal amounts of prac-
tice on this process. The practice material for the first group
contained fractions having 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16,
18, 21, 24, 28, and 30 as denominators; that for the second group
contained only the denominators 2, 4, 8, 10, 12, 16, and 24. Fol-
lowing the period of instruction and practice, both groups were
given tests involving all of the denominators. It was found that
the unpracticed group added fractions having denominators 3. 5,
7, 9. 14, 15, 18, 21, 28, and 30 almost as well as the group that had
practiced with these denominators.

Beito and Brueckner [4], in 1930, conducted an experiment to
determine to what extent the teaching of addition combinations
in one order carries over to the same combinations in the reverse
order. Ninety-three pupils in Grade 2B were taught and practiced
on thirty-six reversible addition combinations. In all of the teach-
ing and practice these combinations were met in one order only,
the larger number always coming first. The combinations were
divided into three groups of twelve each and one week was de-
voted to the study and practice-of each group. Tests were given
at the beginning and at the end of each week, covering the reverse
form of the combinations, as well as the direct form as taught.
The total gain for the direct combinations, which were taught and
practiced, was 82 of the possible gain. The total gain for the
reverse combinations, which were not studied, was 84.7¢/ of the
possible gain. The authors conclude: “When pupils of any mental
level are taught only the direct form of an addition combination

suchas ' as nearly as can be, the reverse form, is learned

4

4
7
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concomitantly at least as completely as the direct form. The
bond formed in learning the direct form of an addition combina-
tion carries over almost completely to the reverse form.”

A somewhat similar experiment was reported by Olander [5] in
1931. Approximately thirteen hundred children in the first half
of the second grade took part in the experiment. Dart of the pupils
were taught all of the one hundred addition and one hundred sub-
traction combinatious; others were taught only fifty-five combina-
tions in each process. At the end of seventeen weeks of instruction
and practice all of the pupils were tested on all two hundred com-
binations. It was found that the pupils who were taught only
one hundred ten combinations made almost as good a score on the
ninety combinations that they had not studied as the score made
by the pupils who had studied these combinations. Olander con-
cludes:

The ability gained by children on fifty-five simple number combina-
tions in addition and in fifty-five similar combinations in subtraction
transferred almost completely to the forty-five remaining simple num-
ber combinations in each of the two processes. Between addition and
subtraction little significant difference in transfer was found. In sub-
traction the amount of transfer was only slightly less than in addition.

Olander also attempted to study the effect of generalization on
transfer. Some of the classes were given three minutes of instruc-
tion each day in generalizing groups of combinations, T hey were
led to see the general law in zero combinations, the relation between
a combination and its reverse, and the connection between the
addition and subtraction combinations. The remaining classes spent
the corresponding three minutes in drill without any attempt at
generalization. No significant differences in the amount of trans-
fer were found hetween the groups taught by these two methods,
‘The author states that this absence of any apparent effect of gen-
eralization on the amount of transfer may be accounted for by
one or more of the following explanations:

(¢) The function practiced was too narrow to necessitate special
stress on generalization, that is, the children generalized without help
from the teacher.

(b) The length of time spent on generalization . . . was too brief.

(¢) The «* "iren were too immature to profit from abstract verbal
generalizatio.
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Coxe [6] attempted to measure the effect of the study of begin-
ning Latin on the ability to spell English words of Latin deriva-
tion. In some of the Latin classes participating in the experiment
no attempt was made to connect the Latin and the English spellings,
in other classes the teachers pointed out the similarity in the spell-
ing of English and Latin words, and in still other classes the teach-
ers not only pointed out the likenesses in spelling but also attempted
to develop general rules and principles. The results indicated that
Latin, as ordinarily taught, results in little or no improvement in
spelling words derived from the Latin, but that the spelling of such
words is considerably improved by pointing out similarities be-
tween the Latin and the English spellings, and is still further im-
proved by the formulation of general rules and principles which
govern spelling.

Overman [7], in 1927-1928, made a study to measure the amount
of improvement in the subtraction of two-digit numbers, and in the
addition and subtraction of two- and three-digit numbers, resulting
from instruction and practice in the addition of two-digit numbers.
Pupils in the first half of the second year were given fifteen days
of instruction and practice on three types of addition examples:
(a) the addition of two numbers of two digits each, (b) the addi-
tion of three numbers of two digits each, and (¢) the addition of
a two-digit, a two-digit, and a one-digit number, in the order
named. At the beginning. during, and at the end of the fifteen
days the pupils were tested not only on these three types of exam-
ples, but on a number of other related types in addition and sub-
traction. Table I gives the percentage of possible gain on each
type.

Table I indicates that the fifteen days of instruction and prac-
tice resulted in a gain of 93.8¢¢ of the possible gain in adding two
numbers of two digits each: 8g.0¢¢ of the possible gain in adding
three numbers of two digits each: and ¢r.0¢ of the possible gain
in adding a two-digit, a two-digit, and a one-digit number, in that
order. Substantial gains were also made on each of the other types
of examples, although they were not included in the instruction
and practice. In many cases the gain on the untaught types was
almost as great as on the types taught. For example, the training
on the addition of two numbers of two digits each carried over
to the addition of two numbers of three digits and resulted in a
gain of 89.87% of the possible gain on that type of example. It
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TABLE 1
TYPES OF ExaMpLEs Taveur, wite Per CENT oF GAIN

Type of Example Per Cent of Pussible Gain
242 93.8
Taught 3+ 2+42 89.0
2+ 241 1.6
3+3 39.8
3+3+3 83.4
242424 2 S81.0
3+3+3+ 3 0.1
241+ 2 90 . ¢
14242 731
I+ 241 03.2
3+ 2 54.7
Not Taught{ 2 + 3 44.8
3+1 O1.7
r+3 54.2
24+ 341 44.0
2 =2 77-4
3—3 5.7
2~1 §57.2
3—-2 40.2
J—-1 54.1

* This notativn represents the adklition of two numbers of two digits
each.

also produced 77.4%¢ of possible gain on the subtraction of two-
digit numbers, and 735.7¢;- of possible gain on the subtraction of
three-digit numbers.

In order to determine the efiect of the method of teaching on
the amount of transfer, the pupils were divided into four matched
groups of 112 pupils each. These groups were taught by four dif-
ferent methods as follows:

Method A. The pupils were shown how to perform the operation
without any attempt to form generalizations or to teach underlying
principles.

Method B. The pupils were helped to formulate general methods
of procedure from the particular types taught. This will be re-
ferred to in what follows as the method of gemeralization,

Method C. The reasons and principles underlying the methods
of procedure taught were considered with the pupils. The formula-
tion of general rules of procedure was avoided as much as possible.
This will be referred to as the method of rationalization.
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Method D. The pupils were encouraged to formulate 7eneral
methods of procedure and the underlying principles were also dis-
cussed.

The four methods of teaching were found to produce practically
equal amounts of transfer to those types of examples that did not
involve the difficulty of placing numbers having different numbers
of digits. The relation of these types to the typs; taught was ap-
parently so close that the transfer took place without conscious
generalization, or the pupils were able to make this generalization
without help. In the case of examples involving the placement of
numbers having different numbers of digits, the generalization alone
increased the amount of transfer by 45.1 ¢, the rationalization alone
increased it by 15.5%(, and the two combined increased it by 36.9%%.
The connection between the examples of this type and those taught
was apparently less obvious to the pupils, and some of them were
unable to make the generalization without assistance. Many of
these pupils, however, were able to make the generalization with the
assistance of the teacher and the other members of the class. These
results would seem to indicate that Olander’s first explanation of
the fact that the generalization did not increase transfer in his
experiment is probably the correct one—the function practiced was
so narrow that the pupils generalized without help.

CoxcLusions

The experiments summarized above, together with many others
not mentioned because of a lack of space, warrant the following
conclusions:

1. Improvement in c¢.1e mental function. through instruction and
practice, often results in very substantial gains in other related
functions. In some cases this improvement may be as great as
that in the function practiced.

2. The amount of transfer, or improvement in the untaught func-
tion, depends not only upon the relation between the taught and
the untaught functions. but upon the method of teaching as well.
The fact that no transfer is obtained by one method of teaching
is no proof that considerable spread might not take place with
another method of instruction,

3. Transfer is greatly increased. at least in some cases, by methods
of teaching that (@) help the pupils formulate general rules or
methods of procedure from the specific cases taught, () emphasize
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likenesses between the old and the new situation and train the
pupils to look for and recognize such likenesses, and (¢) give the
pupils a real understanding of the method of procedure employed,
by making clear the reasons, or the principles, underlying this method.

Let us next consider what effect our present knowledge concern-
ing the spread of learning and the methods of increasing such
spread should have on the methodology of arithmetic.

1. Having proved that transfer does occur in useful amounts, we
must not go to the opposite extreme and expect it to accomplish
the impossible. Experimental evidence shows that many pupils,

32
after having learned how to add 22, are able without further in-
232 36 435

struction to add 322 and to subtract 24 and 213. It also shows,
however, that many pupils fail to make this transfer. We cannot,
therefore, give instruction and practice on two-place addition alone,
and trust to transfer to take care of three-place addition and two-
and three-place subtraction. We must continue to teach all of the
different facts and all of the different types of examples in the
fundamental processes.

2. AI'hough we cannot depend upon transfer alone we must not
lose sight of the fact that it can be of great help to us in our teach-
ing. Both economy and efficiency demand that we teach in such
a way as to take the greatest possible advantage of this assistance,
that we make the securing of the maximum helpful transfer a con-
scious aim of our instruction. The experimental evidence indicates
that this is best done in two ways: (@) by helping pupils formulate
general principles and general methods of procedure from the spe-
cifi® types taught and (&) by pointing out lik=nesses of principle and
method between the new and the old. Thus, in teaching the addition

232
of 24, we should not only show the pupil how to write the numbers
but should also see that he forms the generalization that the right-
hand column must be kept straight. Then when he comes to addi-

356 21
tion examples such as 4 and 132, and subtraction examples such
S

a8 183 156 T
3 32and 4. we must make sure that he sees that the same

as s and

generalization applies in these new situations. Generalization and
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looking for likenesses between the new and the old should become
habitual with both teachers and pupils.

UNsoLVED PROBLEMS

There are still a number of important questions concerning the
teaching of arithmetic that cannot be answered until we have further
experimen:al evidence concerning transfer.

1. What are the different facts and the different types of exam-
ples that must be taught in the fundamental processes? Under the
influence of the belief that all learning is specific, the tendency in
recent years has been to divide the subject matter of arithmetic into
a larger and larger number of smaller and smaller units. Whereas
it was once thought sufficient to teach 45 combinations in each of
the four processes, or a total of only 180 separate facts, we now
teach many more than this number. According to Osburn [8], who
gives an exhaustive analysis of the facts involved in the fundamental
processes, there are altogether 1,680 facts that the pupils may need
to know.

Along with this increase in the number of facts to be learned,
from 180 to 1.680. there has been a corresponding increase in the
number of steps employed in teaching the processes. \Whereas once
it was deemed sufficient to teach the pupils how to corry in addition,
we now teach them how to carry 1 ten, then how to carry 2 tens, 3
tens, etc. How to carry 1 hundred, 2 hundreds, 3 hundreds, etc.
How to carry 1 ten and 1 hundred, 2 tens and 1 hundred, etc., etc.
Obviously, if each of these represents a different situation to the
pupils, there are an infinite number of combinations and permuta-
tions to be learned in carrying alone.

It is quite evident that this division of the subject matter into
more and smaller teaching units cannot 2o on indefinitely. In fact,
the experimental evidence lends considerable support to the view
that it may have gone too far already, and that some of our analyses
of the learning difficulties in the fundamentals of arithmetic may be
based on superficial differences which the average pupil does not
notice.

Considerably more experimental evidence will be necessary before
we can definitely say just what facts, and what steps in the processes
are sufficiently different to make it necessary that they be taught
as separate units, and not until this evidence is obtained will it be
possible to construct a scientific curriculum in the fundamentals of
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arithmetic, The evidence to date, however, seems sufficient to war-
rant the prediction that the present tendency toward dissecting arith-
metic into smaller and smaller teaching units, based on exterral
and possibly superficial differences, is likely to give way to larger
units based on fundamental likenesses of method and of principle.
The experimental determination of the unit skills in arithmetic
should receive much attention in the near future.

2. Does an understanding of the reasons for a method of pro-
cedure help the pupil to generalize that method and to increase his
ability to apply it in new and slightly different situations? Does
rationalization increase transfer? Judd. in his experiment in train-
ing boys to strike an object under water, found that a knowledge
of theory was of great assistance in promoting transfer, Overman,
however, found that a knowledge of why the right-hand column
must De kept .traight in adding and in subtracting was of little
help to second grade pupils in forming this generalization and in
applying it to new situations. This may have been due to the age
of the pupils or to the nature of the subject matter. Possibly with
older pupils, or with different subject matter, rationalization might
greatly increase the spread. It seems reasonable to suppose, for
example, that a pupil who knows the short methods of multiplying
by 25 and by 1214, and also understands why these methods work,
would be more apt to invent the corresponding method of multi-
plying by 3314, than the pupil who knows the first two methods but
does not understand the principle involved. Considerably more
experimental evidence bearing on the effect of rationalization on
transfer, with pupils of different ages and abilities and with different
subject matter, must be obtained before any one can attempt to give
a final answer to the question of the value of rationalization in
teaching arithmetic.

3. Another question which cannot be finally answered in the light
of our present experimental evidence is the question of interference,
or negative transfer. Most of the studies which have been made
of pupils’ errors show that many mistakes are due to an attempt to
apply to a new situation A method of i-vocedure which was learned
in another situation and which is not applicable to the new. Over-
man, in the experimen: previously described, found that many
pupils in attempting to add 24 and 322, without instruction. wrote

22 322
:34 instead of 24. In ‘act the first plan was more popular than
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the second. This was probably due to transter of the habit of

3 keepirg an even margin on the left in all written work. An-
other popular method o1 adding 322 and 24 was to add all of
the digits, obtaining 13 as a result. This was probably due
to transfer from examples such as that given at the left, with
which the pupils were already familiar.

ﬁnlght [9] xives a number of illustrations of possible interference
due to transfer of wrong procedures.

Many children will perform correctly defore they have studied mul-
tiplication, the example 3§ 414 = 34, After they have studied multi-
plication they will often, it not cautioned, find the answer Mo. Here
they remember to add, but they now add ot the numerators and
denoruinators, A possible explanation is that having in recent work
in multiplication treated both numerator and denominator alike, as it
were. they do similarly in subsequent addition. In general, it may be
said that what a child does at any time is & result of all his past experi-
ence. Sume of his past experience may lead him in error, and many
childrsn possess quite limited amounts of ability to analyze from thelr
past ;;xperlence only the correct and useful things to use in any given
situation,

All observant teachers have noticed many similar cases of negative
transfer in their own expericnce. Recently a college freshman, in
a class in arithmetic for teachers, obtained ¥, as the answer to a
problem and changed it to 33, Upon questioning, she said that
% is equal to 24 because you can do the same thing to both the nu-
merator and cdenominator of a fraction ithout changing its value.
She had, therefore, extracted the square root of both the numerator
and the denominator,

Since many errors are due to negative transfer we must not only
teach so as {0 secure the maximum useful transfer, but we must
also teach so as to reduce negative transfer to a minimum. We
have little experimental evidence bearing on how the latter may be
accomplished. Until such evidence is obtaiued, the following sug-
gestions may be found belpful.

a) Many cases of neg: tive transfer seem to be due to the fajlure
or the inability of the pupils to analyze the new situation and to
recognize fundamental differences between the new and the old,
as well as superficial likenesses. In teaching pupils how to add 1a.1,
.34, and .5 the teacher not only should show the pupils how to add
such decimals, but should contrast the addition of decimals with the

o o w e




1y THE TENTH YEARBOOK

addition of whole numbers, emphasizing that, whereas in the one
case it is the right-hand column that must be kept straight, in the
other case it is the decimal points. Emphasiaing differences to pre-
vent negative transfer is probably just as important an element in
good ;uchlng as pointing out likenesses in order to assist helpful
'p". [}

) Children constantly generalize, whether we encourage them
to do so or not. Many cases of interference are due to errors in
generalization. These errurs are of two kinds. Pupils often gen-
eralize too widely. This is illustrated by the student who, having
learned that the numerator and the denominator of a fraction may
be multiplied or divided by the same number without changing the
value, concluded that she could perform any operation on the nu-
merator and the denominator as long as she treated both terms alike.
Pupils often form Incorrect generalizations. In the first cases of
carrying that the pupils meet, the number to be carried is usually 1.
It is not at all uncommon for pupils to generalize from this and to
fall into the error of always carrying 1.

It would seem that the best way to avoid errors due to incorrect
and too wide generaiization is to make training in generalization an
important part of our teaching. Plenty of practice should be given
and the dangers of generalizing too far and from too few data should
be noted. As loi'g as the pupils are permitted to form their own
generalizations without supervision or training, we can expect many
errors cdue to negative transfer,

¢) Unfortunately we have little or no experimental evidence on
the effect of rationalization on negative transfer. One would natu-
rally suppose, however, that the pupil who understands why a cer-
tain mechanical method of procedure produces the correct result
would be less apt to misapply this method than the pupil who lacked
such understanding. Merely warning that in adding we must write
12.1, .34, and .5 one way; and 132, 42, and 3 another should un-
doubtedly Le some protection against applying the same method to
both exaraples. It would seem, however, that an understanding
of why the decimal points must be kept in a straight “ne in the
first case, and the right-hand column must be straight in the second,
would be un added protection. It is certain that ariong adults, those
who try to apply mechanical methods without a full understanding
of the underlying principles fall into many errors. The misuse of
statistical methods by many educational workers is sufficient evi-
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dence of this fact. It s at least possible that the present tendency
towards teaching the fundamentals of arithmetic on a mechanical
level, without rationalization, may be a prolific breeder of error:
and that the ,.coper kind of rationalization, at the proper time,
would be the best protection against mistakes of this character.
Further experimental evidence must be obtained on this point be-
fore methodology in arithmetic can be placed on a sclentific
founclation.
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TYPES OF DRILL IN ARITHMFTIC

By AUSTIN C. REPP
University of Avisons

Defining of word “drill” In its original setting the word “drill”
was assoclated directly with fcrmal military discipline and train-
ing. Drill meant the exercise of men in formations and me ments
and in the execution of commands. From this early beginning the
term has been transferred to regular and thorough discipline in
many branches of knowledge. In a strictly military program drill
was shown to be effective. Overwhelming proof of its need and
desirability in such affairs is furnished in every chapter of history
from the time of Leonidas to Foch.

It has been apparent for some time that sheer exercise in such
activities as the learning of arithmetic, history, language usage,
and spelling gives no great assurance of mastery in these fields,
Although the early colonial schoolboy, from all accounts and infer-
ences, struggled with his sums in arithmetic for years and confined
his efforts to relatively few studies he was still in many respects
a novice in these subjects when he entered college. Karpinski
relates that arithmetic was taught in the American colleges until
well into the nineteenth century.! As time passed, the teaching of
the subject improved somewhat both in materials and in methods
of instruction. However, authoritative comment on the teaching
of arithmetic is still strongly colored with doubt about much of
the drill used. Thorndike® very clearly indicates his dissatisfaction
when he states:

The older methods trusted largely to mere frequency of connection—
that is, to mere repetition—in order to form habits of arithmetical
knowledge and skill. Pupils said their tables ovet and over. They
heard and said 7--9 =16, 6 X 8 = 48, and the like, over and over

'Karpinskl, L. C., The History of Arithmetic, p. 177. Rand McNally & Co,,
1928,
'Thorndike, E. L., I'he New Methods in Arithmetic, i §7. Rand McNally &
Co,, 1914,
186
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again, hour after huur, day after day, Yet scores of repetitions did not
form the bouds perfectly. A girl who learned to connect the names of
4$ children In her class with their faces infallibly in a few weeks from
casual incidental training did not learn to connect the 4$ addition com-
binations, t + 1 to 9+ 9, with their answers in aystematic drills of twice
that time. A boy who in two months' vacation learned, from & few
experiences of each, to know a thousand houses, turns of paths, Nowers,
fishes, boys, uses of tools, persunal peculiarities, slung expressions, swear
words, and the like, without effurt, ssemed utterly incapable of learning
his multiplication and division tables in & schoo) year.

The older methocs which Thorndike refers to and criticizes have
been by no means discarded in sofo. One might quite accurately
state that some of these methods obtain in a majority of the text.
books now in use. The drills produce little apparent effect and,
further, we might well conclude that the reason why pupils learn
some things eusily, and with lasting effect, while they fail to learn
other things no more complex, or forget when they do learn, can
largely be accounted for in terms of misuse of the luw of efect.
That is to say, a pupil learns and remembers when it pays him to
do so, for example, with his playmates and related objects or activi-
ties. However, in matters of less appurent value and Immediate
use and interest, the marked tendency is mastery of a questionabls
nature even though dosage is great both in amounts and i, be
quency of administration.

Kirby, Thorndike, and Hann even went so far as to, by implica-
tion, question altogether the effectiveness of drill? I nough (he re-
sults of the experiments of these three men were slig tly at variance,
they agreed on one point, that drill in arithmet.c does produce
increased efficiency in the processes receiving exercise. Such ex-
periments have been sufficiently verified, so that there is litle
question about the desirability of drill in any teaching or leaining
program. However, some persons are not convinced. Wheelet and
Perkins' maintain that gains in arithmetical skill are not due to
exercise but to maturation of the organism. Doubtless there is
some truth in such assertions. Gains probably can be accounted for
by both maturation and exercise. However, sheer physical matura-
tion without exercise of proper neural patterns could not bring into

' Buswell, G. T, and Judd, C. H., Summary of Educational Investization Relating
to Arithmetic, pp. 104, 104. University of Chicago Press, 1923,

*Wheeler, Raymond Holder and Perkins, Francis Theodore, Principl- s of Vental
Development, Chap, X111, Thomas Y. Crowell Company, 1932,
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being responses in arithmetic which are purely learned. Even when
first learning has been satisfactorily accomplished and a perlod
of vacation Is introduced without opportunity for frequent use of
learned combinations, skills, and the like, maturation is unable to
produce any increase {n ability or even to hold the ground already
Rained. Pupils compute with less facility in September than in the
previous June, in spite of three months of physical growth. Chil-
dren who have been drilled well in June withstand the vacation
period with much less loss than those who have not had such
drill.

The drills which Kirby, Thorndike, and Hann used in their experi-
ments were all of the type referred to throughout this chapter as
isolated drill. Since the outcomes of their experiments showed un-
questionably that pupils who were drilled in arithmetic were more
efiicient than puplls who received regular instruction without drill,
the proponents of drill in arithmetic went to work with renewed
vigor, apparently quite carcless of the question about the effective-
ness of different types of drill organization. The only change in the
drill offered seemed to be a slight difference in the length and fre-
quenc;,’ of the drills. Drill sheets outside the textbooks came into
some favor but maintained most of the old features. These prac-
tices gave clear indication that insight into types and purposes of
drills was somewhat lacking.

Purpose of drill. Drills, like other teaching devices, have only
one main purpose, which is to increase the pupil's understanding
and facility in the use of desirable facts, skills, and information.
To get the most good out of the time and energy expended in exer-
cise we must construct or select the type which will serve our pur-
poses best. There are two types of drill organization now in use,
isolated and mixed. In the isolated type intensive excicise of a
few skills is emphasized. In Table 1, which is an illustration of

TABLE 1

TuE ISOLATED TVPE 0F DRILL ORGANIZATION

Lo 2y+dy = P 3 3+%g=- 433+ -
s Motls= 6. Bytdy= nNo+lg= 8.} 5+
9. 23+D¢gm= 10. B5+1 5= i 542 12. 8y 4] =
13 Tytdga 14 3449 = 15 Jatlya 16, By +7y =
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the isolated drill, it will be noted that all problems are concerned
with one process in arithmetic.

A brief survey of Table 1 reveals that this is the type of :xercise
which has appeared in arithmetic for years, and its chief use was
confined to reviews given at the end of each term, srmnester, or
year. That Is to say, the older, and some of the more recent, au-
thors of arithmetic textbooks have advocated, by ‘beir textbook
productions, the use of isolated drill for maintenance or review pur-
poses. This, as will be pointed out later, is a practice which is not
wholly defensible in light of recent experimental evidence. The fact
is that isolated drill is now Increasingly used for a very different
purpose. Further reference to Table 1 and the inherent character-
istics of isolated drill organization will be made presently. The
second type of drill, shown in Table 1, is the mized drill organiza-
tion, in which many skills and processes are in~luded in one drill
exercise.

Until recently, mixed drill was not to be found in any of the

1ABLE 2
Tue Mixep TyPE or DaiLL OROANIZATION
1 3 6'h 3 4. 8963
14)8599 = 47)83 X 38
s. YaX 11X gm 0 Subtract: 7. Bolsh 8. 970905
9 Yrfrom 10 Ys — 77184 9706
85
27234378
9. Multiply: 10. 29§ L 4Vitrsm 12 Yw+Viw
438 by 577 X389
13, 84 4. YixaxYym 15, 65)1823 16, Add:
31 998
99 239
40 234
77 Q1o
60s 15, got2 629
3477 -
8¢
08 tS. Subtract 4 bu. 2 pk. 1 qt. from & bushels.
Answe Lo
10. 20,
Ada: Multiply:
o4 YV, ¥, 26, 10 ¥4 4209
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textbooks or courses of study in arithmetic with which the writer
is acquainted. However, due to the eforts of F. B, Knight, Q. M,
Ruch, and others, this type of drill is rapldly increasing in favor and
is displacing the isolated drill for some purposes, \Vhile drill has
been and is still open to attack on many fronts, it continues to be
used and when the program is properly organized, not only is the
arithmetical ability of puplls increased but this condition is also
accompanied by a perceptible degree of satisfaction on the part of
the learners,

As indicated in a preceding paragraph, there is not unanimous
agreement that drill, as the term is commonly used, is essential or
even desirable. Some proponents of Gestalt psychology would
discard such exercises altogether. Wheeler and Perkins are quite
specific in their statements concerning the law of exercise. They
say that learning is a continuous process of making discoveries;
that it involves doing something that was never done before, It is
growth in a specific si uation—anything but a repetition of a per-
formance. This apparently discredits the use oi drill altogether,
Nevertheless, after careful study of the entire proposal of a learning
program by Wheeler and Perkins, one is impressed with the sound-
ness of well-constructed drill as a means of increasing the effective-
ness of teaching in almost any situation. The drill proposed by
Gestalt psychologists, if it is to be given consideration, will need to
be modified in a number of ways. One of the chief defects of exer-
cise materials, as they are now set up, is the sameness of the situa-
tions, that is, the pupil is tempted, if not forced, to repeat responses
because the drill situations are identical with situations to which
they have already responded. Now the ideal drill on every desirable
fact, skill, or ability is such that each situation is a new one; for
example, 2 + 2 = 4 would be presented in equation form one time,
in column form another, in a problem setting another, and so on.
Obviously there are limitations to the amount of variations that can
be employed in the outward setting of the drill situation. Since the
total situation includes the pupil factor and nunierous other factors
besides the drill sheet, the exercise is never the same and thus re-
sponses cannot be merely repetitions. Still, marked dependence
upon variations in the experience of the pupil and in the total setting
of the exercise period, other than the drill sheets or exercises, is in
no way justified. The point made by the Gestalt psychologists,
v hile not a new idea, is vital. We must, i’ drill is to be effective,
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present situations in such fashion that the pupil is constantly alert
and not quiescent, that he constantly learns old facts & little better,
that he learns how to apply them more broadly, and that he learns
some new facts as well, Good arithmetic drill exercises have always
considered these features. Thorndike and his followers have long
advocated and supported such concepts,

The chief place which {solated drill should occupy in the learning
pracess is in close proximity to the first teaching and learning of new
facts, skills, and information. It should be noted that this type of
organization lends itself admirably to such use. That conditioning
of the organism resulting from first experience with such a fact as

6
12 Is slight, we all agree. ‘The depth of the impression made on

the nervous system of the child is usually not great, say, like U.
What eveiyone concerned desires is an impression which is deep,
clear-cut, and lasting, say like L. One uffective way to bring about
this desired condition is by intensive, interesting, and concentrated
exercise just following, first teaching and learning, It is significant
that practically all the better textbooks in arithmetic now provide
such exercises, The trend is definitely toward the use of isolated
drill in connection with first teaching. The “stamping in" process
can hardly be accomplished without it. Much of the isolated drill
will be anticipatory in nature. For example, preceding multipliza-
tion a considerable amount of dri'l in certain higher-decade addition,
such as 45+3= ,28+4+: , and 36+7= , will be de-
cidedly effective. The teacher of arithmetic can doubtless use much
more material of this nature than is now available. There is no
good reason why, until this lack is corrected, teachers should not
develop their own isolated drills for such purposes.

When properly used, isolated drill works in helpful fashion and
in complete harmony with two important laws of learning, that is,
exercise and effect. No pupil of reasonable ability fails to profit
significantly by exercise of responses recently acquired, with pleas-
ure, for to exercise a response pattern newly established always gives
satisfaction under no.mal school or home conditions. Concentrated
drill upon a few of the newest responses in arithmetic through iso-
lated types of exercises in the form of work sheets tends to
strengthen these responses and to decrease possibilities for con-
fusion. Such errors as 7-1-2:: 11 and 4 4- 7 = 9 may easily occur
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unless each of thexe and other similar facts receive sufficlent exercise
In isolation, just after Arst learning and before meeting them in
compiany with other basic combinations.

One of the chief questions to be decided upon relative to the use
of isolated drill for fixation of first learning Is: What degree of
overlearning at the time of first learning shall be accomplished ?
Uncler our American system of mass education we must, to a degree,
teach in groups. Obvlously a given amount of teaching effort, drill
material, corrective work, and the like, will produce different
amounts of overlearning {n pupils taught In the same class. Con-

sider the figure at the left, On the whole, should
Z we strive in first teaching and drill to reach only

level X which is merely the ability to respond once

correctly after first learning, including isolated drill,
Y has been completed? Should this pupil be encour-

aged to reach the level of overlearning represented

by ¥, or should the average pupils in a class be
X expected to respond with a degree of precision, ac-
T curacy, and ease represented at Z, which is some-
where in the neighborhood of the physiological limit? Obviously,
to attain level Z will require much more time and effort than that
required for the achievement of level X or level ¥. Since there are
other worth-while activities to be engaged in beside arithmetic, a
limit must be placed upon the amount of time and energy to be
devoted to the learning of this subject. Furthermore, every teaching
program must take into account the inevitable forgettiag curve.
True, we tend to remember more effectively the nearer we mount
to the physiological limit, but whether the pupils overlearn much
or little, nature tends to erase the impressions, responses, or neural
scars, and often with alarming rapidity. It seems defensible to
assume that we should encourage the pupil in his first learning
efforts to reach, at least, level ¥, Such a schedule of first-learning
effort will, through wise use of time saved, permit some much needed
attention to be given to the matter of fighting forgetting.

Maintenance of skills and abilities. We now turn to a con-
sideration of the matter of maintenance of skills aud abilities after
first teaching and learning have been successfully accomplished.
We can hardly limit ourselves to two laws of learning, exercise and
effect, if we have proper insight into the learning habits of children.
We must, in considering the drill program, break the 'aws of exer-




TYPES OF DRILL IN ARITHMETIC 193

cise and effect into several component concepts, such as the law of
use, the law of frequency, the law of recency, the law of disuse, and
the law of effect. It is not the intention here to recite the laws of
learning with which every student of education or psychology has
become so familiar that they have in some cases degenerated into a
“lingo.” ‘The purpose is, however, to take these laws which are the
very backbone of any good method of instruction and apply them
to the construction of a well-integrated drill program.

The facts relative to forgetting force us to give some attention to
systematic review of crucial knowledge and skill in arithmetic.
The facther the pupil progresses in arithnietic, the more he has to
remember and the more complex the matter of review and mainte-
nance of ability becomes. This is apparent when we consider the
number of facts and skilis that a sixth grade pupil must remember
with facility as compured with the number that the same pupil
was required to know and use as a third grade pupil. At the end of
the first half-year in the ordinary third grade a pupil is usually
required to know many of the facts and skills involved in the addi-
tion and subtraction of whole numbers, a limited number of facts
and skills in multiplication, a still more limited number concerning
division of whole numbers, and very little about common fractions
and denominate numbers. ‘The sixth grade work in the same school
requires the pupil to do accurate and falrly rapid work with all the
processes in whole numbers and fractions and, in addition, to be able
to work with decimals and denominate numbers. Where a pupil
in the third grade must maintain, let us say, a thousand facts and
skills, the pupils in the sixth grade must maintain many times that
number.

There are two methods of constructing drill for maintenance pur-
poses in this grade or in any grade. One is by meuns of isolated
drill construction, which is shown in Table 1. By this method,
addition of whole numbers, which is only one of twelve or fifteen
processes io be used by the average sixth grade pupil, would receive
approximately twenty minutes of review (drill) in isolation about
every twelve weeks, Every other process would have its turn in
the isolated drill program about every twelfth week. The relative
inadequacy of such a schedule of drill can be illustrated by one typi-
cal case. For example, addition of whole numbers would receive
twenty to thirty practices the first week of the term, twenty to
thirty the twenty-fourth week, and twenty to thirty the thirty-sixth
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week. During the remainder of the school year no direct attention
would he given to addition of whole numbers, Other skills would
be treated in similar fashion. The rise and fall of the learning curve
under such conditions would appear as in Figure I. While gain is
significant, considering the whole school year, there Is too much
opportunity for forgetting between “Lunches” of isolated drill on
the various topics. The difficulty is that the laws of recency, fre.
quency, and disuse are largely neglectrd, The periods between drills
are almost as long as the averaye summer vacations, Nearly all
drill ignores the law of elfect, for to forget something which one
wishes to remember is keenly annoying. Failure to remember cru.
cial facts may be so acutely unpleasant that the pupil will develop
& definite negative mental set toward all arithmetic work,

!
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Another and a much better type of drill organization for mainte.
nance purposes is mixed drill, such as that provided by an exercise,
See Table 2. When t.e same examples that were used in making
the isolated-type series of drills are organized in mixed fashion,
the distribution in amounts and time is appreciably better,

In such a program almost every one of the twelve or more proc-
esses dealt with receives some practice every week. We still have
approximately twenty to thirty problems for a twenty-minute drill
period, but exercise is given on many skills every week.

Figure IT shows how the curve of learning progresses when a good
mixed-drill schedule is put in operation following good first teaching
in which Is included valid isolated d- il Every skill received on the
average two exercises each week.
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Here it will be noted that the learning curve rises gradually but
regularly. That is to say, the maintenance exercises of the mixed
type preclude significant forgetting and actually force the leve! of
overlearning to rise in consistent fashion, In such a program every
law of learning—~-use, disuse, frequency, recency, and effect—is ade-
quately considered.

An experiment® in which the variable was distribution of practice
was conducted in 1928 with several hundred school children divided
into two equated groups. While both groups gained as a result of
the twenty-six-week drill program, the group which was permitted
to exercise skills often and to exercise each skill in small amounts
gaincd 23% more in accuracy of response than did the pupils sub-
jected to exercises of the isolated-drill type. A further significant
fact was revealed when each group of pupils was divided into three
parts as to arithmetical ability, and compared. The lowest third
in the group using mixed drill gained 54% more in arithmetical
efficiency than pupils of equal initial ability who had used isolated
drill for the same length of time (26 weeks). The middle third of
the group using mixed drill surpassed the corresponding third using
isolated drill 25% in gains, and the upper third using mixed drill
showed 8% better gains than did their paired competitors using
isolated drill. In 1933 an experiment with like groups was again
conducted by the writer. Results favored again the use of mixed
drill for maintenance purposes. The 1933 experiment was not so
well controlled as the 1928 experiment and for that reason could not
be considered as reliable. The writer, in 1934, conducted a third
experiment of like nature with one hundred and ten college stu-
dents. The data did not significantly favor mixed drill for mainte-
nance purposes,

A unified drill program. A useful concept to keep in mind in
connection with the use of mixed and isolated drill may be set forth
as follows: Such a program of drill will make a place for both
types of drill organization and each can be used to good advantage.
Each skill is best impressed into the pupil’s nervous system at the
beginning by use of carefully constructed isolated drill. From that
time on through the use of mixed drills no skill is allowed to go
long without exercise. The fact that each problem is different from
the next in the mixed drills tends to overcome any tendency toward

boredom. Furthermore, the degree of success is likely to be con-

* Repp, Austin, Tiwenty-ninth Yearbook of the National Society for the Study of
Education, Part II, Chap. VI. Public School Publishing Co., 1930.
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sistent and reasonably high on each week’s drill work since there
are no whole pages of problems such as are found in long division or
percentage reviews, every one of which Is difficult for the class or
some particular pupil. While some problems are likely to be diffi-
cult, in mixed drills others will be easy, thus offsetting the dis-
couragement arising from the undue difficulty of a few. The mental
set, as a rule, constantly grows in a positive direction when isolated
drills are used for fixation purposes and when mixed drills are used
for maintenance purposes. A unified drill program of isolated and
mixed drills will require no more tiine than a program using but one
type of drill, if review comes, as it should, about once a week for
maintenance purposes. There need be no such thing as reviews on
addition one week and on subtraction the next. In contrast, a
varied diet of reviews would be the regular experience week in and
week out.

While isolated drill will be used most frequently to impress be-
havior patterns newly acquired, this type of drill organization has a
second important place. Following the discovery of weakness in any
particular phase of a gross skill through the use of tests, mixed drills,
or other means, isolated drill will prove valuable. Here we have a
case quite similar to a first-teaching situation. In some respects it
is more difficult than a first-teaching situation because wrong re-
sponse patterns must be broken down before correct responses can
be established. In any case, exercise of the type afforded by use
of isolated drill will be most helpful.

Results of continued experimentation, together with some practi-
cal considerations growing out of the use of the two general types
of drill construction, tend to make one cautious about any sweeping
generalizations concerning ¢ type of drill for one purpose exclu-
sively and another type for another purpose. While the positions
stated in the preceding paragraphs seem to be tenable, the writer is
inclined to believe that mixed drill has some very definite limitations
even for maintenance purposes after a certain level of achievement
has been reached in the mastery of fundamental arithmetic facts.
There are a number of reasons why this is so. In the first place,
forgetting does not take place as rapidly and as completely as we
have sometimes thought. Smith" in a recent study with about one
hundred and fifty fifth grade pupils found, as have others in recent

* Smith, Lulu Fourest, “A Comparative Study of the Persistence and the Recall of
Learning.” Master's thesis, University of Arizona, Tucson, 1934,
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studies, that the loss of factual information in arithmetic during a
ninety-day summer vacation was not extreme. This would seem to
indicate that review on various skills well mastered, say up to nor-
mal mastery at the sixth grade level, need not come in small amounts
weekly but might well come at intervals a little more widely spaced
and in relatively larger amounts. The writer's experience with col-
lege students would lend some support to this concept. Myers and
Myers’ study also lends support to this position.t In the second
place, every drill is really a test or examination and should have
diagnostic and remedial possibilities. Diagnosis is so sketchy and
so widely spread as the result of an extreme mixed type of drill that
its usefulness in the way of remedial work is limited. To the writer
it would seem best for the teacher to use a modified type of mixed
drill beyond the fourth grade, if best results are to be achieved.
By modified mixed drill is meant exercises in which about four
processes will be exercised five or six times in a twenty-minute drill
period. This will not be the old isolated drill; neither will it be
exaggerated mixed drill. Table 3 is a good example of modified
mixed drill, in which many skills and processes are exercised each
week,

Method of presentation of drill, Tt is a commonly known
fact that drill with respect to method of presentation and response
may be any one of three types: oral, written, or oral and written.
Which type is best for teaching and learning purposes has not been
definitely established. In order to learn something about this ques-
tion the writer in April and May of 1934 directed an experiment in-
volving a small number of third grade pupils over a period of six
weeks. The three groups were at the outset equated as to arithmetic
ability. iach contained pupils of low, average, and superior ability.
All three groups were taught identical, new material in arithmetic.
Following first teaching Group I was given oral drill, Group II
written drill, and Group III oral and written drill. Such factors as
teachers, amount of drill, and drill time were kept constant for all
groups. The teaching was equated by using Teacher A for Group I
two weeks : then she was shifted to Group 1I, and then to Group III.
Teachers B and C were alternated in like manner. This was possible
because there was available a good supply of student-teachers who

TMyers, Gary C. and Caroline E., “The Cost of Quick Shifting in Number
Learning.”  Educational Research Bulletin (Ohio State University), 7:327-334,
October 31, 1928.
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TABLE 3
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were completing a four-year teacher-training course in college. At
the end of six weeks it was found, by use of a combined oral and
written test, that Group II had profited most as a result of the work ;
Group III achieved the next best results; and Group I made the
least gain. This would indicate that written drill following first
teaching in arithmetic is superior to either of the other types. Mo-
tivation was achieved through such devices as charts and class work,
and through encouraging and commendatory remarks by teachers,
as well as by other means of recognition. Perhaps the most im-
portant points in favor of written dri!l as opposed to oral are: each
pupil works at his own task undisturbed by others, there is little
waste of time, stimuli are relatis ly stable instead of transitory,
undue emotional strain is avoided che drill can be, and usually is,
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well planned instead of extemporaneous. Competition may be less
keen in written than in oral work, but this negative factor seems to
be offset by others of a positive nature. While the number of pupils
in these groups was too limited ( 27) to yield conclusive evi-
dence the experiment was carefully controlled and the results were
consistent.

Since it will be impossible in most cases for the classroom teacher
to construct for pupils all the drill that is necessary in a well-inte-
grated system of learning, it will often be necessary to select rather
than to construct the drills. At present the tendency is definitely
in the direction of a dual but unified drill program of the type
suggested in this chapter. The danger to the pupil lies in the fact
that many of those who construct drills give only lip service to the
laws of learning. Certain factors need to be carefully checked in
selecting the exercises to be used. First, difficulty and cruciality
of the facts and skills included in the practice exercises need to be
studied. Often we find that easy processes and combinations are
exercised frequently, while in comparison difficult combinations and
processes are greatly slighted. Furthermore, those facts and proc-
esses which are more crucial in edult life need to be included fre-
quently in drills, and unimportant processes should, in comparison,
be neglected or even ignored. If a drill is to be effective it must
not only bring about exercise but highly motivated exercise as well,
Several factors will aid in bringing about increased motivation.
Items should be arranged somewhat in order of difficulty. That is,
as a general rule the easier items should come first and the harder
items should follow in order of increasing difficulty. On this point
of arrangement of items agreement seems to be unanimous among
recognized authorities on test construction. The writer would like
to suggest that this rule may not be wholly valid. It may very well
be that an easy item placed well toward the end of a drill along with
more difficult items in the exercise will aid the pupil to make a new
start and achieve more in the whole drill than would otherwise be
the case. Experimentation on this point would be exceedingly in-
teresting and perhaps valuable. The drill sheets should be attractive
in appearance. This may be assured through the use of printed
characters of proper size, good quality of paper, and pleasing me-
chanical set-up of the sheet. Drills which have carefully determined
standards of achievement are on the whole more conducive to con-
tinued pupil interest than those without such standards. However,
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Panlasigui® shows definitely that failure in arithmetic may be made
so keenly annoying to children in the lower brackets of a class that
frequent attention to standards not only may be disturbing, but
may actually retard progress which would otherwise be within the
pupil’s capacity. For dull children or for pupils who make low
scores standerdized drill sheets seem to be less useful than those
without stansards.

Generally speaking, the proper use of drill in arithmetic needs
to be better understoud. Correct drill construction and its use is
still a fertile field for research. The teachers of arithmetic who
more carefully and effectively divide the time between first teach-
ing, fixation, and maintenance will be repaid a hundred-fold in in-
creased mastery by their pupils. Perhaps the recent attempts at
drill organization have swung a little too far to the left. We may
need to return somewhat to the right.

While this article is concerned primarily with the use of drill in
the teaching of arithmetic, it will not be out of place to say that
whatever truth has been discovered about types and effectiveness of
drill organization in arithmetic raight well be transferred and used
in the teaching of every other school subject.

* Panlasigui, Isidoro and Knight, F. B., in Twenly-ninth Yearbook of the Na-
tional Society for the Study of Education, Part II, Chap. XI. Public School
Publishing Co., 1930.



RETROSPECT, INTROSPECT, PROSPECT

By DAVID EUGENE SMITH
Emeritus Professor Teackers College, Columbia University

TH1s essay is written after a careful examination of the preceding
articles in the book. These articles show a degree of scientific re-
search which all readers will commend and which, it is safe to say,
will assist in the training of future teachers of acithmetic in par-
ticular and of marhematics jn general.

This article, begun with an array of facts which admitted of
statistical treatment, has turned to another path, one leading to a
field of combat. It begins with a brief historical summary—a
Retrospect. It passes to a moment of introspection, coining a word
merely for the sake of euphony—Introspect. It then moves on to
the dangerous field of prophecy and combat—the Prospect.

RETROSPECT

The field of Retrospect is that in which the pessimist has always
been at his best. To him the world has always been going to the
dogs. Not so many yea-s ago a very few radicals ventured to re-
mark that most of the ar.thmetic then taught was absolutely useless
for the vast majority of pupils. The result was a turmoil interesting
to watch, just as the present article will lead to combat. One ex-
ample held up before bodies of teachers was General Average—a
term long since useless, but familiar to teachers of arithmetic some
time after I began their training. To the student of social activi-
ties in the nineteenth century, or of the influence of geography
upon these activities and upon arithmetic, the study of the meaning
of this topic today is interesting. For the schools of this country
as a whole it lost a century ago whatever of value it had.

In the same way the last generation or so has seen “thrown into
the discard” such monstrosities, from the standpoint of the real
needs of the vast majority of people, as equation of payments, part-
nership involving time or partnership problems of any type, partial
payments, compound proportion, the learning of number names

201
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to vigintillions, duodecimals, continued fractions, repeating deci-
mals, apothecaries’ tables together with Troy weight, progressions,
the writing of Roman rumerals beyond any needs of the present,
cube root, and (of late) square root, and the unused and unusable
parts of the metric system. These are some. but not all, of the
subjects taught to teachers in our training schools a half century
ago—taught to be retaught in “the little red schoolhouses” all over
the country. Pessimists said that we could not improve upon this
offering, that we had nothing with which to replace it, and that it
was good for the soul if for nothing else. That the demand has not
ceased for traditional material which is practically obsolete, is evi-
denced by a passage in Professor Morton’s chapter. He states that,
in connection with curriculum making, certain teachers suggested
the inclusion of partial payments and paper-hanging. In certain
localities these have some value, but in a course for general use
in this country, they have no place. In the same study it is inter-
esting to observe that 59 per cent of those voting on the curriculum
asked for more time to be given to common fractions.

Here, then, are a few concrete cases of definite progress in a single
branch of school activity. This progress came gradually, but it
came surely, as a result of the common sense of, at first, a relatively
small number of teachers and doubtless through the help of the
parents of the children who had to be mentally tortured by the de-
mands that these subjects made. See, however, what this change
meant. Out of arithmetic was taken about half of the material, and
the pessimists saw in this mutilation the destruction of one of their
cherished pillars of education.

So w: see that we have cause for optimism today. If such a re-
markable change could be made in arithmetic in a half century, a
period in which conservatism was in power and when speed in
matters of educational reform was frowned upon by most of the
profession, why should we not expect a still greater advance in the
period before us?

All this has manifestly no bearing upon the methods of teaching
primary arithmetic—the arithmetic of number facts. This has been
discussed in a very scholarly way by Professor Brownell in his
monograph in this book. In his study he, too, has looked at the
past and has suggested the possibility of improvement in the future,
not in the subjects taught but in the way in which the skill in
computation is developed. It is manifestly necessary that the
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teacher should consider carefully both of these problems in attempt-
ing to improve the presentation of the subject.

INTROSPECT

And now, what of the present? Why not indulge in a brief intro-
spection which may help us to view the future with more profit
and with more optimism?

Confining ourselves to the mathematics—if we must use that
word in this sense—of childhood, let us see what elementary arith-
metic is offering today. Looking superficially over this field we
see the numerals which the Arabs never used but to which we have
given their name. We also see the numbers and forms which the
Romans scattered over their wide domain. If Caesar could see them
as they are taught today, he would need to go to school to see what
some of them mean. Does this introspection give us any idea of
change for the better in this narrow region? Let us also look at
our number names—are they like the laws of the Medes and Per-
sians, immutable to those who made them, but dead to the world of
today? Ask any scholarly person in Great Britain what a “billion”
was before the World War. Ask him what it is tending to become
today. Ask yourselves what you think it has always been. Ask the
scientist what it will be tomorrow.

We have “four fundamental operations” in arithmetic and in
algebra as well. Are these forever fixed? At various periods in
relatively modern times theve have been five, at other periods six,
and so on, up to nine. Moreover there are many who would agree
that there is only one operation—that of addition. We may say
that all this is a useless quibble over words, as indeed it may be,
but are all of these or other vperations of equal value and are they
to be taught as such? If so, must we still cling to the phraseology
which comes to us, chiefly from the sixteenth and seventeenth cen-
turies when Latin was the language of the scholar? Indeed, why
do we need the term at all? As to details, many a reader of this
article, if many there be, has to stop and think which is the
minuend and which the subtrahend when he subtracts. When he
says, “Deduct what I have paid and I will give you the rest,” he
uses the language of the business world. If anyone should say,
“Subtract what I paid and I will give you the sremainder or the
difference,” he would be a subject of derision—a pedantic way of
saying that he would be laughed at.
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Think of the trouble that the teacher has in getting a child to
remember which is the “product” and which is the “sum.” The
child sees no sense in the distinction, and he is right. It is only
a short time ago that “product” was also used for the result in
addition and in division, and even today when we write “carried
forward” or “brought forward,” carrying a sum to the next page
in an account bock, we are similarly translating “product” (carried
forward) into another form. _

This is only one of dozens of instances in which our language of
the schoolroom is not the language of trade or of daily life. You
may say, “Well, what’s the odds?” The question is legitimate, but
when you ask it you are using an old mathematical term, one which
is now forgotten.

Even the operations themselves will, in careful scrutiny, appear
to be open to much valid criticism. It is easy to say that the quo-
tient (what a word with which to bother children!) must be placed
above the numerus dividendus (which we keep as a relic in the form
of “dividend”), but by so saying we get into a mess of trouble,
In the first place the word “dividend” is generally used with an en-
tirely different meaning outside the schoolhouse from that which is
taught so uselessly and with some littie difficulty in the classroom.
In the next place, the argument for placing the quotient above in
short division, as well as in long, is open to a very dangerous attack.
The real crux of the matter comes down to this: Why do we en-
courage short division anyway when for most people it is longer
than the othe:?

This matter of using unnecessarily difficult names is summed
up very succinctly by Professor Brownell in his contribution to this
book: “Arithmetic is singularly unfortunate in the language which
has come to be used to describe the processes by which its subject
matter is to be learned and to be taught.” In speaking of the teach-
ing process, he is referring to the language of the “educator” and he
shows that the same stupidity is shown in the field of educational
theory as was and still appears in the presentation of the first ele-
ments of arithmetic. In such a brief sketch as this it is impossible
to carry this phase of our introspection much farther. Suffice it to
ask, do we not feel that possibly the language of arithmetic today
is open to wholesome change? Must we always have addends, sums,
differences, remainders, multiplicands, products, factors, least com-
mon multiple (which to the child is most uncommon), greatest
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common devisor, numerator, denominator, base, rate, percentage,
partial products, and various other relics of the past? It is no very
satisfactory answer to say, “But w~ must have them,” or even,
“Well, what would you use in their place?” ‘I'he assertion is not
true, and the question is easily answered by anyore who has given
the matter thought. The terms were originally introduced to be
memorized along with rules, a method of teaching now discarded.

But leaving the vocabulary out of the question, are we always
going to add long columns of figures in the classroom? Ask the
banker with his adding machines or the merchant with his cash
register—now to be found throughout the civilized world. Must we
always haggle over the “addition method” or the “taking-away plan
in subtraction” or should we consider what the world is now doing,
and what it ought to do for convenience? Is it more convenient to
write a result at the top or at the bottom of a computation, when it
must often be multiplied, divided, or added? Must we try year
after year to teach all children to do long division with decimal
fractions, except in simple cases with dollars and cents? Would
it not be a good plan for us to carry our introspection far enough
to ask when any one of us ever had occasion, outside the school-
room, to divide, say 203.047 by 4.2693, or whether we have ever
heard of anyone doing it by any schoolbook method? Of course,
the answer is that such cases are no longer found in our schools,
but what about dividing 34.2 by 1.09? This is found, and so in fact
is the other. Is it any answer to say that such cases are needed in
the laboratories of science when it can be taught there in five min-
utes if necessary ?

Coming to a point where combat is more sure to arise, what about
the common fractions which are so uncommon if not happily obso-
lete? Look at the monstrosities found in certain of our “tests” to-
day. The pun on “detest” would be almost allowable in these abso-
lutely unusable cases. Fractions such as have not been used in
practical work for two centuries are given under the pretense that
they are useful in teaching a “process.” Are we prepared to say
that a process, which in any case is of doubtful value, is to be
taught by the use of difficult fractions which no sane person would
ever attempt to use in daily life or even in the complicated formulas
of the laboratory?

But this introspection should not always lead to the pretended
discovery that the arithmetic of today is all bad. On the contrary,
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the American textbooks in arithmetic today are, for the purpose of
giving what most pupils will need in the future, the best in the
world. I say this with perfect confidence, for it has been my duty
and pleasure during many years to know the best books of all the
leading countries. In one respect Europe excels us, namely in a
certain form of thoroughness, but in spite of this, our textbooks are
far in the lead, for our purposes, considering the democracy of our
education. When we come to a semi-aristocracy of learning, sepa-
rating those who early show a taste for mathematics from those who
have no such aptitude, our problem will naturally be modified, but
not in the direction of retaining that which is useless.

That our textbooks are not perfect is apparent to anyone who
examines them even superficially, If the reader should apply intro-
spection with a broader motive than that of evaluating the subject
matter, he will do well to read Professor Buswell’s chapter in this
book. The general nature of social arithmetic is there s=t forth with
the author’s well-known ability to state his propositions clearly.
Especially important is his discussion of the probable values of the
material offered in the seventh and eighth grades—a problem which
every textbook writer has to meet, and one which changes from
decade to decade.

Prospect

What is the outlook for the future? If we have such good text-
books now, why should we try to improve upon them? Even if
our curricula are not very good, are they not good enough? Of
course the question would not be asked seriously by anyone gifted
with ordinary intelligence, so let us see what the future may have to
offer, not that the offering need be accepted but that it is deserving
of consideration.

First, as to the vocabulary. The early schools, influenced in
Europe by the Latin tongue, said, “This is a number to be added
(numerus addends),” a phrase perfectly clear to the Latin-taught
pupils. We took out all the meaning for children when we cut
this down to “addend.” We do not use the term often enough to
justify it in the schools, and we do not use it at all in daily life.
Why not say, “Let us add these numbers”? Furthermore, why do
we need to perpetuate anyv of the list of terms already mentioned
above? It is perfectly easy to say that this is the number to be
divided, just as the early writers said it in Latin. We have for-
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gotten the Latin meaning of “dividend,” but have kept it in school
with a meaning which, as already stated, is entirely different from
that used in business.

As to the numerals, there is no apparent need for a world change.
It is evident to everyone who has given any thought to the matter
that, mathematically and commercially speaking, it would be bet-
ter if the race had developed twelve fingers instead of ten, which
would have given us a scale of 12. We recognize its value in our
12 inches, 12 ounces in the old pound, and 12 shillings in the British
monetary system. To make a world change from a decimal to a
duodecimal system is, of course, out of the range of possibility,
unless auc ratil we have a world dictatorship, say a million years
hence.

When we consider the time wasted on the Roman numerals, how-
ever, the future will probably allow these to be taught only far
enough for reading dates and chapter numbers. There is not the
slightest need in present-day business for reading or writing num-
bers between CC and MDCC, and very little for any beyond 1900.
The latter we commonly see written MCM, a form which no Roman
would ever have used, and whose meaning but few would have
guessed.

As to operations, there will always be, so far as can be seen
at present, a need for adding short columns of figures in the
grocer’s bill—not by the grocer, for he will use an adding machine
(cash register), but by the purchaser who adds them in his account
book. Similarly, the outlook seems to show that in the next half
century all the operations will generally be done mechanically
except for a few ordinary computations of little difficulty. Even
today the slide rule is so inexpensive as to be used by thousands
of workmen in shops. We may reasonably look to the time, not
far off, when an inexpensive computing machine, the size of a
watch, will be in general use. We teach the use of the typewriter in
hundreds and probably thousands of schools today and they are
even entering the elementary grades, and the prospects seem to
be that the future will see the teaching of the calculating machine
in the same way. The day of the “lightning calculator” is, for
practical purposes, past; and the time for adding columns of figures
longer than needed for ordinary bills is passing.

As to fractions, the children in our schools today need the
halves, thirds, and fourths; they have some use for fifths and
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eighths in the dally iife of most people. This is recognized in Dr.
Buckingham's paper on Informational Aritbmetic. Other denomi-
nators like tenths, twelfths, and sixteenths, will doubtless continue
to be taught, but the words “nuierator” and “denominater” will
probably be replaced Ly shorter terms and die a peaceful death, un.
mourned and soon 0. gotten. I'he meaning of the symbols L. C. D,
and G. C. . will aiso go, since no operations with fractions, even
in scientific laboratories, will need them. In fact, they have not
been really necessary in business or in scientific work for many
years. The reducing of fractions to lowest terms, generally useless
since the invention of decimals, will Le among the historica) curi-
osities, and its handmaid factoring, except in the simplest cases,
will be put by its side in the museum. What Professor Overman,
in his very helpful essay on the problem of transfer, has to say
about the operations on the numerator and denominator of a
fraction today may very likely be read twenty-five years from now
as an interesting study of a forgotten topic. Even at the present
time the teacher who may ask what we are supposed to do with
a fraction like 1345 should understand that fractions of this kind
are obsolete. The fractions which the pupil or his parents will use
at the present time involve little, if any, reductions to lowest terms,
and these will rarely extend beyond such cases as ie and 13,.

But above all, we should bear in mind that it is not today that
concerns us, it is the future, Neither is it the offering of textbooks;
this is properly conditioned by the work of the curriculum makers,
and it is upon their judgment the nature of the arithmetics of the
next quarter of a century depends. Always the question is not
what pupils can do in any particular grade, but what they should
be asked to do. It is for this reason that the worst way of con-
structing a curriculum is to base it on what teachers say that the
pupils in their several grades are able to w~complish. They are
able to become proficient in writing numerals in Chinese, say in
Grade 3, but this is no reason for saying that this accomplishment
should feature there or anywhere else in the elementary school.

The work with decimals, for all except those who have special
interests in number work, will probably be limited to dollars and
cents, and to decimals rarely exceeding two or three places. Such
unreal monstrosities as the addition of “ragged decimals” will soon
go. Teachers will realize the significance of “degree of accuracy”
in measurements, and that in any given problem this degree will
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be constant. It is interesting to know that the value of p was
long ago computed to upwards of seven hundred decimal places,
but this has no practical value whatsoever, and the use of any
approximation beyond 3.14 in our elementary schools in connec-
tion with finding the circumference of a circle, of which measure-
ment shows the diameter to be 3.27 inches, would show mere stu-
pidity, In practical work in mechanics all computations relating
to decimals are already done with tables or with slide rules or
other more elaborate machines, and these are the methods of the
future. Professor Johnson’s paper on “Fconomy in Teaching Arith-
metic” has some interesting data showing that “common” fractions
have always occupied more space than decimals in the textbooks,
and therefore that the latter are much more easily taught, ‘This is
seen even more clearly when we consider that decimals, as used in
dollars and cents, are much more important in the daily life of
our people.

In the illuminating study entitled “Opportunities for the Use of
Arithmetic in an Activity Program,” it is significant that the table
showing the totals of uses of integers, fractions, etc., revealed that,
in Grade 3, 65%¢ was given to the use of integers, 45 to common
fractions, and 179 to decimals. In Grade 6 the numbers were 36%%
integers, o%: fractions, and 5440 decimals, the rest being devoted to
other items like compound numbers. All this shows the predomi-
nant use of decimals in the problems of the pupils’ experiences.

As to square and cube root, all computations relating to this line
of work can now be done by tables or machines, and there is not
the slightest practical use of teaching the subject to pupils in general,
interesting though it may be for those who like mathematics.

If the future is to see eliminated much that is of doubtful value
today, it is quite probable that the question of drill may be less
serious—at least it will be less extensive in its applications. Pro-
fessor Brownell gives some wholesome food for thought when he
says® “The statement that the drill theory in its extreme form sets
an impossible learning task for the child would seem to be justified.”
Probably the omission of unnecessary subjects for drill would be
welcomed by those who would recognize the benefit of this means of
fixing the remaining number facts and processes in mind.

It is not necessary to speak of the applied problems of grithmetic.
They have changed from decade to decade as business customs and
the needs of the home have changed. The best American arithmetics
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of today offer material that is both interesting and useful. If we are
asked what can be substituted for the elimination of useless material
already mentioned, the answer is an increase of practical and inter-
esting problems.

One of the most encouraging contributions of the present is what
is often called “the arithmetic of environment”—a rather pedantic
term but a suggestive one. It means that arithmetic is uncon-
sciously blending with economics and with a study of national
resources. Thus we have problems classified as relating to our
home industries and the great national industries as well.

This is possibly an outgrowth of the “project method” which was
to revolutionize arithmetic but which often ran, as is so frequently
the case with such efforts, to such an extreme as to be looked upon
somewhat as a “mere fad.” The use of real problems of the home,
of its surroundings, of its near-by industries, and, later, of the basic
industries of our country naturally develops as geography does—
from the near environment to the natio~ at large. Indeed, there is
no reason why the arithmetic and the geographic curricula should
not develop side by side in closer union than at present. In any case,
the value of emphasizing the search for problems relating to chil-
dren’s interests will continue to be in evidence in the future as it is
at the present time. The danger that this emphasis will lead chil-
dren to be less interested in number while becoming more interested
in its applications may be very apt to disappear with the gradual
carrying of some of the simpler kinds of computation from a higher
to a lower grade of the elementary school. In the upper grades, as
already suggested, it is quite within the range of possibility that
some inexpensive form of mechanical computation will gradually
find its way from the store to the school, just as the typewriter has
now a place in the high schools and as tables of interest, time, prices,
powers, and roots, as well as commercial graphs, have a place in the
upper grades of the elementary school, and as the “change-making”
devices have found place in thousands of stores.

As to the high schools, even today many of them meet the demand
for skill in stenography as well as in typing. There is also a de-
mand today for skilled operators on computing machines of various
kinds, and there seems to be no reason why the elementary schools
sliould not have this in mind while preparing for the work in the
high schools of the future. What Professor Brueckner says concern-
ing illustrative material, including that of a commercial nature,
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shows a healthy tendency, and the ability to place some of this
material in the hands of the pupil will follow in due time.

The objection that the disciplinary value of arithmetic is being
abandoned because of the tendency to have the problems less puz-
zling has little foundation. Whatever discipline arithmetic has may
better be secured from modern, informational, and interesting prob-
lems than from inherited puzzles. The latter should and probably
will be treated as rewards rather than as punishments. There is no
reason why we should not play with arithmetic just as we play
with cross-word puzzles, dominoes, tennis balls, and the football.
The recreations of mathematics are multitudinous, but they should
be recreations, not tasks.

From our present point of view, therefore, the future seems to
suggest to the high schools the development of mechanical computa-
tion, just as the present demands mechanical writing and bookkeep-
ing. The amount of computation with pen ard paper there, and
even in the elementary grades, is bound to become less and less.
The simple algebraic formula will find more welcome. The metric
system is becoming commonplace in our kilocycles, meters, and kilo-
meters. It would have made far more rapid progress if the schools
had not tried to teach myriagrams, milliliters, and other terms
which no one ever used. Even today Great Britain, a country which
the New World looks upon as conservative, makes much more use
of the simple metric units than we do. Perhaps we shall some day
“catch up” with her.

The future will probably see more use of graphs of one kind
and another than we see at present, graphs connecting up with deci-
mal computations. The common fraction with denominators above
12, 16, and 32 will, as above suggested, give place to decimals, and
the dull drudgery of working with fractions like 1%; will be
forgotten.

The future will also recognize that the schools do not exist to
make bookkeepers of all children, or to teach the arithmetic required
by a course in mechanics or actuarial science. The mass of the chil-
dren will learn what the mass of people need; the more elaborate
mathematics will be for the specialist.

It is dangerous to prognosticate, but it is a pleasant pastime, and
it is only by imagining a better future that the world makes progress.




THE MATHEMATICAL VIEWPOINT APPLIED
TO THE TEACHING OF ELEMENTARY
SCHOOL ARITHMETIC

By C. L. THIELE
Detroit Pullic Schools

INTRODUCTION

By DEGREES the name “mathematics” is being applied to the school
Courses on the lower grade levels. Until quite recently “mathe-
matics™ referred cnly to high school subjects, but “junior high
school mathematics” has now become almost universally the ac-
cepted name of the mathematics courses offered in Grades 7, 8, and
9. Work in the field of mathematics below the seventh grade, how-
ever, is still called “arithmetic.” The fact that we do not classify
arithmetic as elementary mathematics is not due to chance but
rather to the way in which the subject of arithmetic has been
treated.

It is the purpose of this chapter to consider elementary arithmetic
from a mathematical point of view in contrast with what has been
called a pedagogical point of view, and to offer evidence in favor of
the mathematical viewpoint. What is meant by the mathematical
point of view may be deduced from a statement by Bertrand
Russell';

Mathematics is a study which, when we start from its most familiar
portions, may be pursued in either of two opposite directions. The more
familiar direction is constructive, towards gradually increasing com-
plexity: from integers to fractions, real numbers, complex numbers; "
from addition and multiplication to differentiation and integration, and
on to higher mathematics.

“Constructive, toward gradually increasing complexity” connotes a
building up process based upon relationships. Guided by the mathe-
matical point of view relationships assume supreme importance.

* Russell, Bertrand, Introduction to Mathematical Philosophy, p. 1. The Mac-
millan Company, 1919.
212
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At present the notion persists in certain quarters to the effect that
the teacher and textbook writer necessarily must behave in certain
unwise ways if the subject of arithmetic is treated as a branch of
mathematics. In opposition to this notion is the contention that
both t13e organization and the teaching of arithmetic can conform
to sound pedagogical doctrine and at the same time follow the lines
of mathematical development. The issue seems to be:

Should the aim in teaching arithmetic in the elementary grades be
to develop ability to perform the mechanical procedures, after ana-
lyzing each procedure into its constituent elements of difficulty and
then teaching every conceivable mechanical difficulty, and if time
remains develop mathematical relationships?

or

Is it preferable to analyze the arithmetic of the elementary grades
to determine the important and useful mathematical relationships,
and then provide adequate teaching materials and instruction to de-
velop an understanding of these relationships and, if there is suffi-
cient time remaining after understandings i.ave been developed and
. the simpler skills have therewith been taught, to teach the many
other skills needed to perform all manner of mechanical operations ?

Obviously those who would follow the second of the two programs
take the mathematical point of view. Those who would adhere
to the first program have in educational literature referred to it as
the pedagogical viewpoint. In the literature dealing with the sub-
ject of arithmetic, certain objections to the mathematical viewpoint
have been made. Chief among these is that a mathematical analysis
of arithmetic produces an outline of learning elements which cannot
be used effectively in the classroom. The learning elements thus
derived are not, it has been charged, specific enough for learning
purposes. There is also the assertion that the explanations and
descriptions of processes resulting from mathematical analysis are
on an adult level in the form of rules and definitions which are too
brief and too compact and otherwise impractical for children to use.
There seems also to be a feeling expressed by some that mathe-
matical analysis does not permit the application of laws of learning
because too much transfer between processes is demanded. All in
all, the objections to the mathematical organization and presenta-
tion of materials of instruction seem to be based upon the notion that
what is pedagogical and what is mathematical are not compatible.
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Those who consider the learning elements of arithmetic as so
many specifics which must be mastered without any relationship to
one another deny that the human mind has the ability to classify,
organize, arrange, and systematize. Whether we will it or not,
children are constantly doing these things; they are sensing rela-
tionships and are utilizing them. Our methods of instruction which
have neglected almost entirely the value of directed inferential
thinking have driven children to generalize by confronting them
with learning tasks and then relying upon the magic of repetition
to bring about mastery. Those favoring the mathematical point
of view point to the fact that, except in certain instances, children
have mastered many of the difficulties of arithmetic by methods not
known. As evidence, they point to the fact that many adults confess
that they have retained habits formed during their early school days
and that, consequently, at times they still make tens, refer to the
addition doubles, and utilize other devices which are the products
of inferential thinking. The extent to which children generalize
in this fashion cannot be determined because when automatic re-
sponse has been achieved the generalizations which were employed
are forgotten. On this basis the claim is made that children gen-
eralize more than adults suspect. If children do these desirable
things anyway, the proposal has been made that instructional mate-
rial be so organized that generalizing shall come as a matter of
course,

Farthermore, preference for the mathematical point of view has
been based upon two other reasons: frst, the average person has
many more occasions to read and interpret quantitative data than he
has to make actual computations, and, second, students who have
been given a great deal of instruction in the mechanical procedures
show, on the basis of test results, that they not only fail to retain
the ability to perform the unrelated mechanical procedures correctly,
but also fail to master them during the grade in which they are
taught. The grade placement studies by Washburne? and others are
cited as evidence for this statement.

Only a very few arithmetic studies have been reported which were
designed to measure the value of learning by the inferential or gen-
eralized method. The writer has unpublished evidence and im-
pressions obtained from the observation of pupils which, in addition

*Washburne, Carleton, “Mental Age and the Arithmetic Curriculum.” Journal
of Educational Research, pp. 210-332, March, 1931,
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to other studies which have been made, will be reported in this
article,

Parr I

THE MATHEMATICAL VIEWPOINT APPLIED TO TIE
TEACHING oF THE NUMBER COMBINATIONS

The foregoing discussion has been offered to indicate that oppo-
site points of view exist regarding the extent to which opportunities
for generalized learning should be provided in our schools. When
an attempt is made to measure the effectiveness of this type of learn-
ing, two problems arise. One relates to the analysis of the content
for teaching purposes and the other to the manner in which the
analysis is to be employed in teaching situations. Obviously, the
mathematician is primarily concerned with relationships, It is upon
this basis that he would seek out the simple elements which form
the foundation and follow with a building up process in which each
new element grows out of simpler elements, In the teaching process
he would be concerned with the manner in which the learning situa-
tions are presented and managed in the classroom after appropriate
analysis has been made and the course of instruction has been or-
ganized according to the resulting analysis. It is not within the
province of this chapter to make a complete mathematical analysis
of the curriculum and to discuss the teaching thereof, nor does it
seem necessary to defend the acceptance, for purpose of study, of
those elements of arithmetic which find a place in our school courses.
The first evidence to be submitted will deal entirely with the num-
ber combinations,

Addition combinations. Although the study to be reported in-
volved the teaching of the one hundred addition and the one hundred
subtraction combinations, only that which deals with the addition
combinations will be reported in full. The experimental study was
conducted in the Detroit schools over a period of two semesters,
beginning in September and ending in June. Approximately three
hundred beginning second grade pupils, the majority of whom had
C, C —, D, and E intelligence ratings,® were selected for this study
because the method of drilling upon specifics had yielded unsatis-
factory results with this type of children.

*These ratings are distributed on the normal curve of distribution according
to the following percentages: A 8%, B 12%, C+ 20%, C 40%, C— 205%,
D 12%, E 8%.
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From an inventory of generalizations made by children on their
own initiative and from a preliminary experiment made during the
year previous to the year during which this study was conducted,
the one hundred addition combinations were placed in seven groups.
They are presented in detail in Table I, to which reference will be
made several times. The table not only indicates the grouping of
the combinations for the generalized method experiment but also
gives the per cents of error on the individual combinations for this
experiment and for that conducted by Clapp* several years ago. In
fairness to the Clapp experiment, it must be stated that in his tests
every pupil tried every combination. In the Detroit experiment pu-
pils were scored only on those combinations which they tried in the
time allotted for the test. However, to obtain a fair measure on all
the combinations, two test forms were used. Combinations in the
second were placed in reverse order from the first test.

The addition groupings presented in Table I may be summarized
as follows: (1) adding 1 and reverses, (2) adding 2 and the re-
verses, (3) adding o and reverses, (4) the doubles and one more and
one less than the doubles, (5) the combinations of 10 and their
reverses, (6) the combinations of 9 and their reverses, (7) miscel-
laneous combinations not included in the above and their reverses.
Those familiar with arithmetic teaching will appreciate the dif-
ference between this grouping and that commonly found in text-
books and in arithmetic courses of study.

In the teaching of the addition combinations thus grouped, the
teachers followed the general plan of introducing a given set of
combinations through concrete experiences. The generalizations
were demonstrated only if the pupils did not sense them. However,
every effort was made to permit the pupils to do inferential thinking
before any demonstrations were made. These demonstrations were
not in the form of drills akin to phonetic drills in reading but were
employed only in the initial stages of growth and thereafter referred
to only in special cases. The demonstrations were for the purpose
of assisting the slow-learning pupils in the acquisition of a method
of combination attack when the organization of the materials of
instruction did not suggest it to them. For example, if pupils did
not, after knowing 2-+-2=4, 34-3=6, 444 =3, 5~ 5 = 10,

‘The Number Combinations, Their Relative Dificulty and Frequency of Their

Appearance in Textbooks, p. 20. Bureau of Education Research Bulletin No. 1.
University of Wisconsin, 1924.
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etc., sense that 2+3 =3, 3-+4=79, 4-+5=9, 546 =11, etc,
the idea that the second set ef combinations is either one more or
one less than certain doubles was demonstrated. Thus the organi-
zation contained an intrinsic method of combination attack for
pupils to grasp in the natural course of their number experiences.
Mention may be made of the fact that the ability to sense relations
was checked by having pupils describe the “trick” used or pref-
erably by checking with larger numbers. The “one more or one less
than a double” idea was checked by such problems as 20 + 20 = 40,
20-fF21=7}

It is one thing to experience new combinations and to generalize
about them and another to master them to the point of automatic
response. The fact that many children were able to write sums at
the rate of seventeen per minute on the final test is partial evidence
that automatic response was achieved. In keeping with the plan of
stressing generalizations rather than specific combinations, strength-
ening and remedial exercises were organized. Following each drill
test the individual pupils located in turn the group to which each
incorrect combination belonged, The group had been listed on
the blackboard in the form of a chart as each new group was in-
troduced. Thus practice was given in making recognitions which
served as cues to action. As a corrective measure, drill was on the
“kind of combination” missed rather than on the specific combina-
tions. In other words, pupils did not, after missing a combination,
“write the correct form ten times,” study it aloud, play flash-card

‘games, or engage in repetitions of the specifics of learning, but they
did refresh their minds on methods of attack.

At the close of the second semester the pupils were given a written
test form of the one hundred addition combinations arranged in
mixed order. As has already been mentioned, 6 minutes were allowed
for the writing of the one hundred sums. No initial test was adminis-
tered because some pupils could not read numbers, and only a few
could write numbers upon entering the second grade. Furthermore,
results were at hand for purposes of comparison from another ex-
perimert made in the Detroit schools in whic. second grade children
had religiously followed the method of drilling on specifics. In
that experiment pupils used workbooks in which spaces were pro-
vided for recording and writing the correct forms of combinations
missed in tests. Also, in the workbook experiment the Clapp order
of difficulty was employed in the grouping of the combinations.
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TABLE 1

THE GROUPING OF THE 100 ADDITION COMBINATIONS POR THE GENERALIZED METHOD
EXPERIMENT WITH THE DETROIT AND THE CLAPPY PERCENTAGES OF
EgroR POR EACH COMBINATION

1. Adding 1
I a 3 4 [ 6 ? 8 9
1 X X 1 X X X X X
Detroit % 1 1 6 9 4 [ 4 [ 3
Clapp % 58 45 79 7.7 3131 7.1 9.7 108 103
The reverses of adding 1
X 1 1 X 1 ¢ X 1 X
1 2 3 4 5 6 7 8 9
Detroit %, 1 8 4 8 8 7 6 8 7
Clapp % 58 11§ 5§56 10X 9.3 64 7.1 7.1 10
2. Adding 2
2 3 4 5 6 7 8 9
2 a 2 2 2 a a a
Detroit % 3 8 11 9 8 2 3 6
Clapp % 38 8.5 114 149 122 108 108 7.2
The reverses of adding 2
a a 2 a a a a
3 4 5 6 7 8 9
Detroit % 6 1z 10 10 6 6 6
Clapp 9% 141 1021 105 193 158 8x 0.8
3- Adding o
X 2 3 4 5 6 7 8 9
o ° ° ° ° ° o ° °
Detroit S5 6 7 8 6 8 4 7 7 10
Clapp % 123 7.7 125 13 88 99 13 1.7 141
The reverses of adding o
° ° ° ° ° ° ° ° °
1 2 3 4 5 6 7 8 9
Detroit % 19 17 19 18 13 15 18 18 26
Clapp % 109 155 124 126 119 142 131 98 128
4. The doubles
2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9
Detroit % 3 8 2 2 X 6 3 2

Clapp % 38 44 83 30 97 83 96 8a
S Ibid.



THE MATHEMATICAL VIEWPOINT 219

TABLE I—(Continued)
One more than the doubles

2 3 4 5 6 7 8
3 4 S 6 7 8 9
Detroit % 6 9 6 9 9 14 7
Clapp % 141 143 111 198 24.§ 305 30.2
One less than the doubles
3 4 S 6 7 8 9
2 3 4 5 6 7 8
Detroit % 8 9 9 10 8 Iz 9
Clapp % 85 111 82 163 208 349 242
§. Adding to 1o and reverses *
I0 I0 10 10 10 10 10 10 10
1 2 3 4 5 6 7 8 9

- ewmm

(Not included in Clapp list or in Detroit combination test.)

X 2 3 4 (1 6 7 8 9
I0 10 10 10 10 I0 10 10 10

——  eme  emm eem o eves et ewm e weem

(Not included in Clapp list or in Detroit combination test.)

6. Adding to 9 and reverses

9 9 9 9 9 9 9 9
1 2 3 4 [ 6 7 8
Detroit %, 3 6 12 12 b3 8 ) 9
Clapp % 102 7.2 147 229 2285 260 36.7 242
X 2 3 4 5 6 7 8
9 9 9 9 9 9 9 9
Detroit % 7 6 10 11 12 9 12 7
Clapp % 100 9.8 12.0 21.8 25.x 328 39.8 302
7. Miscellaneous combinations and reverses
[ 6 6 7 7 7 8 8 8 8
3 3 4 3 4 5 3 4 L 6
Detroit 9 i 8 9 4 i 10 3 8 12 12
Clapp % 151 165 12.3 162 158 233 12.3 173 33.3 .- 32.§
3 3 4 3 4 5 3 4 s 6
5 6 6 7 7 7 8 8 8 8
Detroit % 8 7 8 8 8 I 0 11 10 12

Clapp % 149 130 224 189 200 242 144 162 309 33.8

* Ordinarily not included in the one hundred addition combinations. The combinations of o were
related to those of 1o in this experiment and therefore taught.
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Thus there were differences between the two experiments in the
grouping of the combinations and in the teaching methods. The
comparative scores on a six-minute test of the one hundred addition
combinations together with other significant data are herewith
offered. The generalized-method pupils were taught by four
teachers, three of whom taught two classes each. The pupils in
Group I in the Specific Drill report were taught by seven teachers.
The Group II pupils were selected from six classes racially and
otherwise comparable with Group II of the generalized-method ex-
periment. The Group I children in each experiment were com-
parable mentally and in other respects. Comparative results of the
two experiments follow in Table II.

TABLE 1I

AVERAGE PER CENT CORRECT OF THE 100 ADDITION COMBINATIONS BY GROUPS, WITH
THE INTELLIGENCE DISTRIBUTION oF EacH Group

Average No. of Intelligence Distribution, in Per Cents
Experiment Per Cent i’uf)ils
Correct A B ¢+ ¢ ¢- D E
Generalized Method
Group I .......... 99 45 17 33 31 19
Group II .......... 76 217 6 7 13 30 29 13
Specific Drill
Group I .......... 77 227 13 19 18 27 14 5 3
GroupII .......... 55 66 4 8 17 20 18 15 17

The final test scores speak for themselves. It must be recalled
that both methods were tried under experimental conditions and
that the intelligence ratings were for the most part decidedly in
favor of the specific-drill groups. Despite this fact, the generalized-
method group results were superior to those obtained by methods
of specific drill. Comparable group comparisons are decidedly in
favor of the generalized method.

The effectiveness of teaching the addition combinations grouped
according to generalizations may be realized from a further study
of the percentages of error recorded in Table I.% Inspection of the
percentages of error within the groupings used for teaching pur-
poses seems to give support to the contention that combinations
can be grouped effectively according to generalizations. Special
attention is also called to the following facts:

®See Table I, page 218, for per conts of error on each of the one hundred addition
combinations taught by the generalized method, and the Clapp per cents of error.
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@) The reverses of combinations were on the average about equal
in difficulty to the basic combinations,

) The limits of error within groups fall within a narrow range.

¢) The doubles, adding o, adding 1, and adding 2, were somewhat
easier than the other combinations.

d) The percentages of error for the so-called “hard” combinations
were not much greater than the percentages of error for the so-to-
speak “easy” comhi.ations.

The last point is brought out very forcibly when Clapp’s figures
for the difficulties experienced in learning the combinations are
organized according to the groupings employed in the generalized-
method experiment.?

Although the generalized-method and the Clapp experiments were
not managed in the same way (and consequently the scores cannot
be compared directly), there is substantial agreement between the
two experiments in the relative difficulty percentages of error for the
doubles group, adding 1, adding 2, adding o, and their reverses.
There are, however, marked differences between results obtained
for the so-called “harder” combinations. The pupils who employed
the generalized method learned the combinations of larger numbers
almost as well as those of the smaller numbers, For example, 79
and 9+ 7, which are listed as the most difficult of all the addition
combinations on Clapp'’s list, were not any more difficult than g -2,
4+ 2, and 9 - 3 for the pupils who were studying according to the
generalized method.

The disparity between the order of difficulty of the one hundred
addition combinations obtained by Clapp and that resulting from
the generalized method of organization and instruction is marked.
A coefficient of correlation of +-.52 between the orders of difficulty
indicates quite clearly that the difficulty experienced in mastering
the addition combinations is not a fixed matter. Likewise it seems
to substantiate the claim that the extent to which relationships
among the combinations are built up does influence the mastery
of them. '

Attention is called to the fact that the studies by Washburne and
Vogel,® Counts,” Smith,' and Phelps,!t the results of which tallied

"See Table I,

® Washburne, C. W. and Vogel, Mabel. “Are Any Number Combinations Inher-
ently Difficult> Journal of Educational Research, 17:235-255, April, 1928.

®*Counts, George S. Arithmetic Tests and Studies in the Psychology of Arith-
melic. Supplementary Educational Monographs, No. 4. University of Chicago
Press, 1917. [Footnotes continued on page 222.)
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with Clapp’s order of difficulty of the combinations, were not
planned to test the effectiveness of an organization and a type of
instruction aiming to emphasize number relationships.

Even in Olander's ¥ study, which purported to measure transfer
of learning, the pupils were not led to recognize intimate relation-
ships until the end of the fifth week. Furthermore, the groupings
employed in Olander's study followed the Clapp order of difficulty.
Also, the recognition of generalizations was incidental rather than
basic during the introductory and mastery periods of learning. The
extent to which transfer plays a part obviously depends upon the
steps taken to obtain transfer. In Olander's study much was made
of generalizing but possibly much of the value therefrom was negated
from drill on the specifics of learning.

Summary. From the foregoing it seems reasonable to conclude
that training in the art of generalizing through the employment of a
method which is entirely directed toward and based upon the pupils’
consciousness of number relations4ips does change the whole com-
plexion of the situation as if relates to a mastery of the number
combinations. ‘The data obtained under comparable conditions as
herein reported seem to indicate a superiority of the generalized
method over a repetitive drill method for superior as well as for
duller pupils. Also, combinations which have been presumed to
be difficult prove to be learned as well as those which have been
thought to be easy. Furthernmore, the evidence at hand seems to
indicate the possibility of extending the mathematical point of view
to the whole field of arithmetical learning,

The advisability of applying the mathematical viewpoint to the
organization and teaching of the subtraction, multiplication, and
division combinations has been subjected to some experimentation.
Data from which reliable conclusions can be drawn are not as yet
available, Observations of teaching procedure aiming to cause
children to sense and to build up number relationships have, how-
ever, yielded what might be termed tentative conclusions favoring
that method.

Subtraction combinations. The teaching of the subtraction

1 Smith, James Henry, *“Arithmetic Combinations.” Elomentary School Journal,
31:766-770, June, 1921,

Y Phelps, C. L. “A Study of Errors in Tests nf Adding Ability.” Elementory
School Teacher, 14:29-36, September, 1913,

Y Olander, Herbert T. “Transfer of Learning in Simple Addition and Subtrac-
tion.” Elementary School Journal, 31:358-370, 427-437, January-February, 1931.
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combinations was coupled with the teaching of the addition com-
binations in the study already reported. The data from the sub-
traction tests are not as complete as those obtained from the addition
tests but are sufficiently complete to be offered for consideration,
In sofar as it was possible in the subtraction experiment, the addi-
tion generalizations were employed. The addition combinations of
1o seemed to be favored by the pupils in obtaining answers for many
of the subtraction combinations, For example, to 17 — 9, many pu-
pils responded: 9+ 1=10, 10+7 =17, 9+ 8=17, 17 —9=38§;
and to 14 — 8 the steps were: 8-+2 =10, 10+ 4 = 14, 8 + 6 = 14,
14 — 8 = 6.

The subtraction results from the generalized-method and specific-
drill experiments, for which the addition scores were presented in
Table II, follows in Table IIL.

TABLE III

AVERAGE PER CENT CORRECT OF THE 100 SUBTRACTION CoMBINATIONS BY GROUPS
WITH THE INTELLIGENCE DIsTRIBUTION OF EAcH GROUP-TIME 6 MINUTES

Average No. of Intelligence Distribution, in Per Cents
Experiment Per Cent Pui)ils
Correct A B C+ C C- D E
Generalized Method
Group I .......... 91 45 17 33 3t 19
GroupII ......000e 6s 217 6 7 13 40 20 1§
Specific Drill
Group I .......... 54 227 13 19 18 27 14 [ 3
GroupII .......... .38 66 4 8 17 20 18 15 17

Although the statistical reliability of the differences betwcen the
average scores of the generalized-method and specific-drill groups on
the six-minute subtraction test are not available from the data at
hand, the generalized-method scores seem by comparison to be even
better for subtraction than for addition.

Multiplication and division, The plan for teaching the multi-
plication combinations by the generalized method can only be in-
dicated at this time. An experimental effort has been made to
employ the basic principles of organizing the multiplication combina-
tions according to generalizations and to conduct the learning ex-
periences from the point of view of utilizing relationships. For
example, the pupils have been stimulated to build up their own
multiplication tables by adding; the completed tables have been
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studied for the purposes of noting characteristic relationships and
establishing points of departure.

The table of ¢'s seemed to present the largest number of oppor-
tunities for generalizing. Pupils soon discovered that the right-hand
digits of the products descended in regular order from ¢ to o and the
left-hand digits beginning with the 1 of 18 ascended to g of go. A
few pupils noted the fact that the sum of the digits in each product
is 9. As a reference point 45 was chosen by many pupils because
they were aware of the fact that it was the product of g X 5. From
this they readily obtaimed the Products of 9 X 6, 9 X 7, g X 8, and
9X9. A few sensed’ 9 X g to be 81 because 9 X 10 = go. Many
pupils voted the table of ¢'s to be next in difficulty to the 2’s and g,
The introduction of the table of 9’s following the s’s seemed to pro-
mote the habit of searching for generalizations, which habit was
applied to the study of the other tables,

Obviously the pupils following the generalized riethod spent a
greater amount of time than usual in class discussion and activities
aimed to develop a relationship among the multiplication combina-
tions. Throughout, the reverse forms were identified as new t1bles
were introduced. Also, the time spent by the teachers on drill exer-
cises in the form of games, flash-card drills, and other forms of re-
petition was much less than is ordinarily devoted. While data are
not at hand from which any conclusion can be drawn, the pupils
did develop methods of attack which eliminated much of the guess-
ing so common when children are in doubt. Just as subtraction was
closely linked with addition, division was related to multiplicavion.

Attention is again called to the basic idea of providing experiences
which will cause pupils to sense number relationship and thereby
enable them to develop a mode of attack rather than leave this to
chance. Teaching by this method shifts the emphasis from excessive
drilling to study based upon understanding,

PArT 11

THE MATHEMATICAL VIEWPOINT APPLIED TO ARITHMETIC
Topics SELECTED FROM THE MippLE AND UpPER GRADES

The possibilities of applying the mathematical point of view to
the teaching of arithmetic beyond the fundamenial number com-
binations are apparent. However, the fact that all arithmetic rep-
resents a system of interrelationships makes it quite impossikle to
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enumerate all of them. The more one studies the science of arith-
metic the larger the number of relationships becomes. There are,
however, a few stumbling-blocks in the path of pupils from the
lower grades to the higher which deserve special consideration. It
is with the idea of suggesting an extension of the mathematical
point of view to include these topics that some of them will be
discussed.

Fractions and the operations with fractions. Traditionally the
study of the common fractions has dampened the ardor of hosts
of boys and girls for the subject of arithmetic in our American
schools. This fact is not surprising when many of our standard
textbooks and much of the present-day teaching emphasizes terms
such as numerator and denominator, proper and improper frac-
tions, common divisors, and common denominators more than the
understanding of the basic idea of fractions. Teachers are not to
be censored too severely for this if the space devoted in the text-
book to the development of the fraction concept is cut to a minimum
so as to provide room in the textbook for the many specific diffi-
culties into which the topic has been analyzed. Furthermore, the
absence from the classroom of concrete materials and tools in the
form of scissors, drawing instruments and containers, colored paper,
string, strips of cloth and wood, etc., makes the task of developing
the fraction concept a difficult one. It is not surprising, then, that
many children actually believe 44 to be more than % as a result
of the type of instruction they receive. The ieason for this mis-
conception is obvious. Also, many children who can manipulate
fractions to the extent of subtracting with borrowing do not sense
an equality between %} and ¢4 nor can they distinguish 3; as 3 of
the 4 equal parts of a whole. Contact with and observation of chil-
dren in the fifth and sixth grades will bear out these contentions.
These faults are clearly the result of not approaching the teaching
of fractions from a mathematical point of view. A consideration
of the teaching of the four operations with common fractions will
serve further to illustrate this point.

An informal experiment has been conducted by the writer to
determine the advisability of first tcaching addition, subtraction,
multiplication, and division of common fractions without introduc-
ing such devices as those for finding common divisors, cancelling,
and inverting divisors. Naturally, before these devices were intro-
duced only those simple fractions which could be managed mentally
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or with objects were involved. The so-called devices for changing
to higher or lower terms, reducing improper fractions, finding com-
mon denominators, cancelling and inverting divisors were presented
only when the work could not be performed mentally. The teachers
who were engaged in this experiment were unanimous in their opin-
ion that the pupils in the experimental groups worked with more
confidence and less confusion of thought than pupils ordinarily
do.

The multiplication and division process ideas, as one might well -
assume, proved to be the most difficult to manage. In order to
bridge the gap between whole number relationships and fractional
relationships in multiplication situations, the “of”’ idea was elim-
inated from all consideration, Instead, exercises such as the fol-
lowing were employed:

() ()
6X4 = 4 times 6 =
6X3 = 3 times 6 =
6X2 = 2 times 6 =
6X1 = 1 times 6 =
6X Y= 14 times 6 =

(0 (d)
¥Xr 1X Y
Xy WX Y
Yo xX % UXY
X118 BX Y

In the course of instruction under discussion, “ 14 times as much”
took the place of “ 14 of.” To find “ % of”” a number it was divided
by 2. Thus an attempt was made to establish a multiplication
relationship between fractions and between fractions and whole
numbers.

The division idea was extended from whole-number situations to
fraction situations in much the same way. In the first place, in-
stead of saying, “4 divided by 1,” for 4+ 1 =, pupils used the
whole number vocabulary in the form of, “How many 1’s in 4.”
In a siniilar manner pupils determined “How many s in 14 and
“How many %’s in 14,” etc. Exercises of the following type were
employed to link the division idea with fractions and thus lead to
the generalization that the result of a division of any number by a
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fraction is greater than the number operated upon. Exercises of
the following types were employed to extend the notion of division
relationships from whole number to fraction relationships.

(@) ® (c) (d)

24 +4 = Yitas= Yi+ Yim Vit Hm=
24+3 =
24+2 = Y+ 2= U+ = U+ Y=
24+1 =

24+ Y = HBr2= B+ Y= B+ Y=

Obviously thn exercises designed to stress division relationships
between common fractions and between common fractions and
whole numbers included only verv simple fractions. The method
of inverting the divisor and multiplying was first applied to prob-
lems which could also be solved mentally and thus confidence in
the new method was developed,

Mixed numbers. Observation of fifth and sixth grade pupils
seems also to suggest that the whole numbers and the fractions
of mixed numbers have not been brought together in a meaningful
way. As an illustration, many pupils have not developed the trick
of approximation and consequently are satisfied with such answers
as 490 15 and 48 1% for the problem 6 3} X 8 24 = ?. This lack
of judgment is even more evident in the case of multiplication of
mixed decimals. For a problem such as 7.5 X 4.6 = ?, 3450 and
345 are not infrequent answers. These illustrations seem to indi-
cate that the values of mixed numbers are not associated with the
number scale. Very little instruction was required to cause chil-
dren to appreciate that 6 34 is almost 7 and 8 24 is almost 9, and
therefore the product of these two mixed numbers would be between
48 and 63. In the case of 7.5 4.6, answers like 3450 and 345
indicate quite clearly that 7.5 and 4.6 were not sensed as more than
7 and less than 8 and more than 4 ind less than s, respectively.
Only a small amount of instruction based upon the foot rule or the
number scale was required to remove this difficuity. These illus-
trations are offered to stresc the fact that provision must be made
to build up the number relationships so important to students of
arithmetic.

Comparison of numbers. The importance of this topic is not
appreciated by many arithmetic teachers and textbook writers.
Evidences of an almost total lack of ability to compare or to relate




228 THE TENTH YEARBOOK

whole numbers one to another may be ascertained by questioning
the average seventh or eighth grade class. When asked what part
of 4 is 8 or how many 8’s are there in 4, most children will reply
that there are no 8’s in 4 because 8 is larger than 4. Thus the
idea of relationship between whole numbers breaks down when the
resulting ratio is less than 1.

The absence of the ratio concept is also apparent when junior
high school children are asked to find what per cent one number
is of another when the per cent is 100 or more. The majority of
eighth grade pupils tested informally gave either 50% or 33%4 %
as an answer to the problem: “A pair of fancy pigeons was bought
for $4 and sold for $12. What was the per cent gain of the selling
price over the cost ?”

Asked how they would find the tax rate when the total budget
and assessed valuation figures are known, many teachers have
admitted that they would divide the smaller number by the larger
one. Such deductions are natural when rules such as the following
may be found in mathematics textbooks: “To find what frac-
tional part one number is of a larger one, write the smaller number
over the larger one to make a fraction. Then reduce the fraction
to lowest terms.”

The effect of teaching of this type, which seemingly is concerned
more with immediate success in computation than with basic under-
standing, is obvious.

The whole and its parts. From the second grade through the
eighth grade evidence may be obtained which indicates that the
relationship between the whole and its parts is not sensed. For
example, many third grade children find it difficult to obtain the
number of words correct in a spelling test if the total number of
words and the number wrong are known. Similarly, many fifth
grade children are confused when given, for example, the part of
the pie remaining and asked to find the part eaten. In a like
manner teachers of many slow sections are forced to omit finding
the net price by multiplying by the per cent left after a discount
has been taken. The difficulties arising in the teaching of upper
grade work seem tc indicate, for example, that the extension of
the formula ¢4+b6=ctoa=c— b and b =c — a does not come
by chance but must, like the many other important number rela-
tionships, be made goals toward which arithmetic instruction should
be pointed.
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ConcLusIoN

To the list of illustrations offered to show the ill effects resulting
from teaching arithmetic without the thought of building up num-
ber relationships, more could be added. The prime purpose of the
writer, however, has not been to present a complete program of
arithmetic organized according to the mathematical viewpoint nor
to indicate how the learning situations might in all cases be man-
aged, but rather to present a point of view. The beginnings of
experimentation in the lower grades have been reported as well
as impressions received from dealings with children in the middle
and upper grades. The writer does not claim that any conclusive
deductions can be drawn. However, it seems that when the value
of mathematics teaching in the secondary schools, by the memory
and specific-drill methods, is being questioned, it would be well to
forestall similar attacks on the mathematics of the lower schools.

Already there are those in the teaching profession who would
spend less time teaching arithmetic because studies have been made
showing how little arithmetic is used by housewives and others.
These reductionists have not, however, proposed to determine what
arithmetic people might use to advantage in situations in which
they find themselves. In other words, the possibility of improving
the responses made to the situations of everyday life has not been
considered by the reductionists.

Those holding the idea that arithmetic is a set of specifics upon
which boys and girls must be drilled are unwittingly lending sup-
port to the reductionists by listing the exact number of skills which
must be mastered. It would, indeed, not be difficult to prove that
a large percentage of the specific skills and facts listed are not
used by the average citizen and on this basis recommend further
reduction. The results of the mental age study by Washburne!®
strengthened the idea held by many that in the courses of instruc-
tion in elementary school arithmetic there is still much dead wood
which should be removed. Some of the skills, such as the more
difficult cases of long division, much of the multiplication and divi-
sion of common and decimal fractions, and a large part of the
work with denominate numbers, might well be eliminated in the
interest of more understanding. However, the part that arithmetic
study might play in the total education of the child is such that

3 See footnote 2, page 214.
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th thought and understanding phases of arithmetic should be
given more rather than less time in the curriculum.

In contrast to the idea that arithmetic is nothing more than a
list of specific skills is the one to which support has been given
in this chapter, namely, that arithmetic is more than a set of
specific skills and facts—it is a mode of thought resulting from
an appreciation of and an awareness of the many interrelated ele-
ments within the system of numbers. The individual who has either
from school instruction or from his own reflection brought together
the elements of arithmetic into a system of number relationships
is not lacking in quantitative sense. In the utilization of the tools
of arithmetic he does not depend upon the memory of a rule or a
fixed pattern but senses the quantitative aspects of a situation and
proceeds to manipulate numbers much as a linguist gives forth
words. If a convenient method of satisfying the requirements of a
situation does not present itself, he is apt to invent one. Although
a certain percentage of the school graduates do acquire a quantita-
tive sense, they are seemingly doing it in spite of the school which
directly does very li‘tle to develop it.

Almost forty years ago McLellan and Dewey gave voice to the
idea that in teaching arithmetic relationships should be stressed.
The idea was expressed as follows:

An education which neglects the formal relationships constituting the
framework of the subject matter taught is inert and supine. The peda-
gogical problem is not solved by railing at ‘form’ but in discovering what
kind of form we are dealing with, how it is related to its own content,
and in working out the educational methods which answer to this
relationship.!*

If this type of arithmetic education were put into effect, several
adjustments would have to be made in the majority of our American
schools.

First, provision would have to be made for pupils to discover
relationships. This obviously is contingent upon a grasp of the
fundamental quantities with which pupils will deal and of the
process ideas by means of which these quantities are related. In
many of our American schools much more present-to-sense experi-
ence than is now provided would be required. However, there are
educational groups which carry this practice to the point of dimin-

¥ McLellan, J. A. and Dewey, John, The Psychology of Number, p. xii. D. Ap-
pleton and Co., 1895.
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ishing returns. The idea of a possible concrete basis should carry
over from quantities and processes which have been studied in the
concrete to extensions and modifications of these quantities and
Processes met in the abstract. It seems sufficient to carry this mat-
ter to a point that the pupil will know that a concrete content may
be given to the quantitative abstraction he has acquired if he
chooses to do so.

Second, if the new is to be apprehended in terms of the old, the
arithmetic of the elementary grades will have to be simplified.
Many teachers rightly contend that the arithmetic courses for ele-
mentary school children (Grades 1 to 6) include so many skills
that there is little time to teach for understanding. Now that chil-
dren remain in school, generally speaking, through the eighth or
ninth year, there is little need for crowding the whole arithmetic
curriculum, including the topics of perceutage and interest, into
the first six years of schooling. Perhaps the grade placement studies
now under way will influence textbook writers and course-of-study
makers to simplify the arithmetic curriculum for the elementary
grades. Perhaps the major portion of time set aside for teaching
arithmetic in the elementary grades can be spent to advantage on
the thought and understanding aspects of the subject.

Third, should a shift in emphasis be made from teaching skills,
as such, to developing understanding, the present methods and
facilities for teaching would requiic consider.lle revision. Pupils
necessarily would work more with concrete materials than they
now do. Teaching materials for the arithmetic classroom might
then cost much more than they do at present. The traditional
classroom organization and arrangement would need to be modi-
fied. In all probability teaching arithmetic from the mathematical
point of view would require much more skill and training on the
part of teachers than is now demanded. It is also conceivable that
pupils would derive much more satisfaction from their learning
experiences than they now do. Finally it seems to be self-evident
that with a background of understanding the skills would, when
introduced, be mastered with much less effort and with more profit.
Also, the social applications and settings would play a larger part
than they do at present if understanding were sought.

The possibility of completely revamping the present elementary
school arithmetic program of teaching after the fashion which has
been described is quite remote. Our educational traditions as they
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relate to school administration and classroom practices are too
strong to permit much variation from present practices. There is,
however, the possibility even now of basing the teaching of the
skills upon a foundation of understanding even though many of
the skills are, as many think, taught prematurely.

There are indications that suggest that further simplification of
the arithmetic content of the lower grades is now taking place. The
introduction of certain topics of arithmetic, such as long division
and the operations with common and decimal fractions, is being
delayed in some school systems. These changes have resulted
mainly because the testing movement has indicated a low degree
of mastery. The basic reason ior low mastery may, however, be
due to an absence of basic understanding of the number relation-
ships involved.

The probable course of events in the elementary schools can be
predicted by referring to that which is taking place in the secondary
schools. A process of simplification and modification of the ele-
mentary algebra curriculum has been in operation for more than
a decade and it has been in the direction of substituting under-
standing for the complicated skills of algebra. Those familiar with
happenings in the field of elementary algebra and who are in sym-
pathy with the new movement see in it the strongest argument for
teaching algebra. Likewise those interested in the teaching of
arithmetic n.ay well realize that arithmetic will be attacked just
as algebra and geometry have been unless the real values of the
subject are sought.

The evidence at hand seems to give support to the contention
that it is only by taking the mathematical point of view with
respect to the teaching of arithmetic that the potential values of
the subject can be derived from a study of it. On that basis can
the teaching of arithmetic be justified and demanded.



THE NEW PSYCHOLOGY OF LEARNING

By RAYMOND HOLDER WHEELER
University of Kansas

THe significance of the New Psychology for education cannot be
sufficiently understood without a brief historical sketch. Not only
psychology, but all science, including mathematics, is subordinate
to a Universal Cultural Pattern or World View. More than that,
this world view has fluctuated cyclically, between two extremes, one
in which interest has been in the part-whole problem, and the other,
in which interest has centered almost exclusively on parts, In the
one case such problems came to the front as the réle of the part
in the whole. In biology, for example, the uppermost question was:
What is the function of the part in contributing to the economy
of the organism as a whole? In chemistry, the problems of the
atom versus the molecule, substance-chemistry versus stereochem-
istry, rose into the foreground. In mathematics, during such pe-
riods, interest centered on geometry, series, transformations, rota-
tions, groups, form, invariance, and maxima and minima, that is,
on problems of mathematical wholes or systems. In psychology,
main problems were presented in terms of patterns, selves, person-
alities, and social adjustment. In social science, the main problem
was the relation of the individual to the group. Society was defined
as somethi.:p more than the sum of its individuals. The emphasis
was socialistic, Cobperation was regarded as a basic process in
nature and all science became teleological, Philosophy was ration.
alistic and idealistic. Three periods such as these have stood out
with extraordinary clearness, centering around the dates 1240, 1650,
and 1820, more especially the latter two.

History of the New Psychology. Following each of these pe-
riods, for reasons that cannot here be discussed, the general culture
pattern swerved toward an exclusive interest in parts, elements, and
individuals. These were periods of mechanistic science, emphasis
upon competition as a basic force in nature, individualism, revolu-
tion, expansion, imperialism, warfare, exploration. Wholes were
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then mechanistically regarded as mere aggregates of parts. Mathe-
matics turned away from geometry, particularly from 1740 to 1800,
and centered upon analysis, infinitesimals, and probabilities. Ethics
became utilitarian and hedonistic. Philosophy turned to material-
ism, voluntarism, and romanticism. These were periods of laissez-
faire. Individuals were emancipating themselves from tyranny, or
were grasping for power. The dates 1400, 1775, and 1860 represent
the peaks of these mechanistic movements. Notice that in the
history of human endeavor, these are the periods when thought
has concentrated upon the part, the element, the individual, as if a
part did not belong to a whole, at all. The names of such persons
as Paracelsus, Vives, Machiavelli, Rousseau, Hume, de la Mettrie,
Diderct, Adam Smith, Jeremy Bentham, J. S, Mill, Darwin, Vir-
choff, Haeckle, Biichner, Malthus, Lagrange, Weismann, Dalton,
Boltzman, Prout, Schlziden, Schwann, and Nietzche, typify mech-
anistic thought, while those of Thomas Aquinas, Leibnitz, Harvey,
Casper Wolff, Grotius, ampenella, St. Simon, Proudhon, Lilienfeld,
Worms, Robert Owen, Cuvier, von Baer, Claude Bernard, Berthol-
let, Avogadro, Gerhardt, Butlerow, Wilhelm Ostwald, Clerk Max-
well, Emst Mach, Chasles, Steiner, Lobachevsky, Galois, Riemann,
Dedekind, Hilbert, Kant, Hegel, Bradley, Alexander, and Bosan-
quet, all typify the opposite approach.

A study of history shows that times in which constructive thought
was achieved, relative to the part-whole problem, were for the most
part confinud to the first three periods mentioned, represented by
the years 1250, 1650, and 1820. These were vitalistic and idealistic
periods. The years 1400, 1775, and 1860 came in the midst of mate-
rialistic and atomistic periods. During these latter periods theories
of nature developed which were for the most part barren, because
overinterest in the part, the element, and the infinitesimal blinded
science to the ever-present problem of form, wholes, configuration,
unity, system, and order, in short, to the problem of the part in the
whole. So, in these periods, the true nature of the part-whole
problem was neglected. The world was regarded as a fortuitous
concourse of atoms. Teleology and over-summative wholes were
denied. These were periods of applied science and of material,
rather than spiritual, progress.

It was during the atomistic, mechanistic, materialistic, romantic,
and expansive mid-Victorian era that our present educational system
was conceived and executed, and it was under the influence of this
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cy-le that our “orthodox” educational psychology, the psychology
of association, bonds, conditioned reflex, and behaviorism, was
actually born. So our schools are constructed as if the main prob-
lem of life was one of parts. We have a departmental system in
which one subject is studied out of relation to the other subjects, as
an isolated discipline, Such a method is artificial. To make a
long story short, our present educational system, methods of teack-
ing, and supposed laws of learning are not based upon the main
trend of scientific thought down through tke centuries.

If one goes back to the roots of current scientific theories found
in relativistic physics, organismic biology, and Gestalt psychology,
he will discover them almost exclusively in the periods, 1630 to
1740, 1800 to 1840, and in the thirteenth century, hence back to
Aristotle and Plato. Generally speaking, the scientific conceptions
prevailing from 1740 to 1800 and from 1840 to 1900 (mathematics
excepted) constituted unproductive sidetracks. They were preju-
diced conceptions, coming during emotional rather than intellectual
eras. Unfortunately, the atomistic, superficial, distorted concep-
tions of nature that held sway during the latter period shaped our
educational system, objectives, and methods, and still dominate
our textbooks. Repetition, drill, departments, grades, and the like,
reflect the atomistic, mechanistic, and hedonistic cul-de-sac in which
human thought has lost itself twice, in the later 1700’ and again
in the middle 1800’s. Errors become institutionalized and acquire
inertia. Today we face the huge problem of ridding our school
system of these errors and of the theory behind them.

This, then, is what the modern attack on the school system is
all about. We are returning to the main cultural track again. Had
we been students in the days of Steiner, von Staudt, Lobachevsky,
Cuvier, von Baer, St. Simon, Herbart, Kant, and Hegel, around
one hundred years ago, we would understand the modern move-
ment much better. As it is, in order to pick up the continuity of
the main track, one must skip over the assumptions, not the data,
of Watson, Thorndike, and Titchener, and go back to Herbart and
Hamilton; over Weismann, Haeckel, and Darwin, to von Baer and
Cuvier; and over “rugged individualism” to the more social views
of the opening of the century. Even Karl Marx belongs to Darwin,
not to the truly social point of view—the correct view of the laws
of social wholes. One must skip over J. S. Mill, Bentham, Ricardo,
and Malthus and go back to Althusius, Campenella, and Grotius.
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There is no need of groping with our current problems. A clear
conception of methods and objectives is quite possible. There is
nothing difficult about them, except the labor of eliminating the
inertia of mid-Victorian scientific mores and taboos.

Today, educators have a distorted conception of how to arrive
at facts. They seem to think that all one needs to do is to set
up an experiment, to devise a test, or to send out a questionnaire.
They are thinking in terms of 1860, or else they are not thinking
at all.

It is hard to believe that our immediate heritage, as regards basic
scientific conceptions, is mostly wrong. But what else would have
plunged us into so violent a revolution as that of giving up in
physics a mechanistic and absolute conception of the universe for
an organic and relativistic one; or in biology of giving up the
mechanistic cell theory for an organismic one; or in psychology,
association for Gestalt; in social problems, rugged individualism
for a collectivistic point of view; and in ethics, utilitarianism for
idealism? The facts -~ that the whole structure of mid-nineteenth
century thought was wrong, because it put the part first, and that
this thought shaped the character of the psychoiogy we learned, the
school system we attended, and the method of instruction to which
we were subjected. These three effects still prevail.

Now what has all this to do with the psychology of learning?
Everything. Most of it is wrong, because the facts of learning are
being misstated through the influence of mechanistic assumptions.
Mechanistic assumptions have been abandoned by twentieth cen-
tury science all along the line. Assuming sense impressions to be
the beginning of mental life, assuming learning to proceed by trial
and error, assuming progress in any subject to follow laws of repe-
tition, exercise, and effect, assuming mental processes to e com-
posed of skills, is to impose false conceptions upon the facts, for
these are mechanistic assumptions inherited from 1770 and 1860.
The psychology of arithmetic that you learned is based upon these
false assumptions and this, precisely, is why more pupils do not
like arithmetic. It is not being taught correctly.

The change to a new educational psychology will not be made
over-night, for the new, basic discoveries in the mother science,
psychology proper, have yet to be applied wholesale in the class-
room. Good teachers, however, have been applying it intuitively all
along, as fast as they could, handicapped by a psychology that was
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mostly wrong. The same type of thing happened in all the sciences,
for scientists as well as leaders in other fields are expressions of the
age they live in and the training they receive. Individuals should
not be blamed for the predicament that our teachers are in right
now. The other sciences face the task of rewriting all their text-
books. And when they are rewritten the data, accumulated under
mechanistic assumptions, will be redefined, reordered, reinterpreted.
The painstaking work which these data represent will live again.

The main principles of the New Psychology. So much for

“history, Let us now review the main principles of the new psy-

chology of learning.

1. Learning is a function of maturation and insight, Tt is a
growth process that follows laws of dynamics, that is, laws of struc-
tured, unitary, energy systems or fields.!

2. First impressions are of total situations, but are undifferen-
tiated. First movements are mass actions, likewise undifferentiated.
In spite of appearances to the contrary, these impressions and move-
ments are completely integrated.? (There is no such thing as lack
of organization or of integration anywhere in the organic or the
inorganic world.) But responses are sometimes unpredictable.
Lack of predictability does not mean lack of coérdination, Learning
is a process during which unpredictability gives way to predict-
ability, lack of control to control. The atom whirling around in a
field of gas is behaving in a perfectly orderly fashion with respect
to a constant flux in its surrounding field. The infant’s hand, by
waudering in its seemingly aimless fashion, is doing the same thing.
The neuromuscular field is unstable, Once more, instability does
not mean lack of organization. When the organization (perfect at
all times) becomes static (the neuromuscular system has acquired
stable form), then the hand movement becomes voluntary and pre-
dictable in ordinary situations. We erroneously say that coordina-
tion has been acquired. Only a different sort of codrdination has
been acquired, one that we now call “useful.”

3. Learning is not exclusively an inductive process. First impres-
sions are not chaotic and unorganized. They are merely unstable
in the sense of not being under environmental control. There is

'See R. H. Wheeler and F. T. Perkins, Principles of Mental Development,
Thomas Y. Crowell Company, 1932. Several of these laws are explained in
Chapter II.

* Ibid,, Chaps. III and 1V,
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nothing more highly organized than children’s logic, to which im-
pressions are subordinate. Adults do not discover this logic, that
is all. Children flit from one thing to another, not hecause they
are disorganized, but because their energy is in flux. That flux is
as inevitably subject to law as a cyclone. And a cyclone obeys the
same laws as does a steady breeze. So too, behavior in the child
follows the same laws as the more stable behavior of the adult,
only the conditions are different. There are laws of wholes, not
laws of putting parts together.

Learning, then, is not a matter of forming bonds, a process of
putting pieces of experience together3 It is not based on drill and
on repetition of response. Bond psychology is irrational and has
never been required by the facts of observation. It is a mechanistic,
philosophy imposed upon the facts. On the contrary, learning is a
logical process and from the beginning characterized by a grasp of
relations, no matter how vague. Progress is systematic; it is a
logical expansion and differentiation of unitary grasps of total situa-
tions—of wholes. It is organized and insightful, creative response
tc stimulus-patterns.

4. Learning does not proceed by trial and error. This concept is
based upon an illusion, the fallacy of the double standard, aris-
ing out of the difference between the adult and the animal or child.*
There is no such thing as a tvial-and-error process anywhere in na-
ture. Responses may be inadequate for two reasons: First, the gen-
eral grasp of a purpose or a goal precedes adequate knowledge of
how to reach the goal. The effort is orderly in spite of its failures.
Failures occur because ideas are undifferentiated and therefore their
outcome is not always predictable, even by the learner himself.
Second, characterizing the effort of the learner as a failure is due
to an illusion. A sophisticated person may be watching a beginner.
The former knows the means to the e..d while the latter does not.
He imposes his criteria upon the beginner, when those criteria do
not apply.

5. More important, by far, than formal, prescribed methods of
instruction are the personality of the learner and of the teacher,
and the relationship between these personalities. Learning is sub-
ordinate to the growth and the demands of the personality-as-a-
whole. The atmosphere of the classroom is more important than
textbooks. The latter are necessary, but are secondary.

? Ibid, See Chaps. XIII to XIX, inclusive, for experimental proof.
¢ Ibid., pp. 356 ff.
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6. Learning depends upon the will to learn, which cannot be
forced by requirements or authority, but must be challenged by
dynamic teachers and dynamic teaching.

7. Learning depends on clearness of goals, and the fitness with
which tasks are adjusted to the pupil’s level of maturation and in-
sight. Progress is made by pacing®

8. Goals are their own rewards, under natural law. Grades, grade
points, many forms of motivation by social competition, and other
hypocrisies are detrimental to learning. The subject must be worth
learning in its own right. It can be made so, easily.8

9. A large part of the most efficient learning is incidental, that
is, learning a special subject with reference to some broader interest
or aim without realizing it: Learning number relationships in con-
nection with telling time or making change ; learning baseball aver-
ages (without effort) through sheer interest in big league contests;
learning innumerable dates and incidents of history in the course
of studying social and cultural trends. In none of these learning
processes is drill involved.

10. Learning depends on transposition,” that is, discovery of form,
system, order, pattern, logical relations, analogies, the repeated use
of a hidden logical principle, and the making of relational judg-
ments. It is not a matter of combining skills.

11. Subjects are inadequately learned when learned in isolation.
Several should be learned together in terms of their interdependence.

12, No transfer will occur unless the material is learned in con-
nection with the field to which transfer is desired. Isolated ideas
and subjects do not integrate. Learning is not bond-forming. It is
an orderly and organized process of differentiating general grasps
of situations with respect to experience. The details emerge or-
ganized, as they differentiate from previous knowledge, in the face of
new situations (not repeated ones).

Obviously detailed applications of the New Psychology to the
teaching process await experimentation. Meanwhile, however, ex-
perimenters themselves, trained under a mechauistic definition of
scientific method, must, of necessity, work under insw .mountable
handicaps until their conception of the experimental method, and
what it is for, undergoes a radical change. Mechanistic nineteenth

*Ibid., pp. 119, 197, 345, 381, 404, 415, 486.
* Ibid., Chaps. XXII, XXIIT, and XXVI.

T Ibid., pp. 84, 454, 457, 458, 486.
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century science overestimated induction and underestimated deduc-
tion. It falsely rested upon a naive empiricism that can be traced
back to a British philosophy of the eighteenth century.

The essence of the successful experiment is an adequate concep-
tion of the problem. Consider an illustration. A thousand children
are taught beginning arithmetic by the configurational or logical
method. Another thousand are taught by the association psychol-
ogy, the drill method. It is found that the second group has better
immediate retention of number combinations and that the first
group understands number relations better and has better long-
time retention. It is concluded that drill is better for imme-
diate memory and should, therefore, be continued. This example
is typical of the wasteful type of experimental work so characteristic
of educational research. Such thinking simply does not face funda-
mental educational problems. It assumes that immediate memory
is acquired by means of association, and remote memory through
insight, This is nothing more nor less than a naive imposition of
two incompatible logics upon experiment.

Everyone knows that if nonsense syllables are to be memorized,
they must be repeated. This is not because bonds are established
by repetition, but because a column of nonsense syllables contains
little more than space-and-time form, with a minimum of logical
form, hence the total pattern is unstable. Numerous repetitions of
the stimulus (not of the response) are necessary to effect and main-
tain stability of such a pattern. Time is wasted because the mate-
rial is soon forgotten. Where learning material has ljttle logical
form, there is always short-time retention. For example, 2 X § = 10,
§ X 5 =25, §X 50 = 250 have more logical form than 3X 9g==29,
6 X9=754, 13X 17 =221, It is a sheer waste of time to drill
pupils on combinations like the last three. They will not be remem-
bered. When used they will be figured out.

The experiment we are discussing also makes the error of assum-
ing that short-time retention is a goal of education, on the ground
that it is of some value to the educative process and not to be sup-
planted by other values and methods. It is assumed that, when a
method calculated to promote long-time retention is adequately
presented, short-time retention does not follow as a matter of
course. If retention is immediate only, it is certain that the material
learned is meaningless to the pupil, and that drill will not give the
material more meaning.
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During mechanistic eras of science, the opinion prevails that
scientific generalizations follow exclusively from inductive pro-
cedures, in short, that science is pure induction. This is only
because interest centers on the parts which are supposed, naturally,
to come first. Hence inductive experience is said to generate scien-
tific laws. This is far from the case. No fundamental scientific
principle has ever been discovered in this way, nor was this the
claim of that great promoter of experimental science, Francis Bacon.
Bacon was unalterably opposed to faith in theories that were not
tested by observation, but he was not opposed to deduction.

Order of scientific method. Fruitful scientific experiments al-
ways have their beginnings in a well-thought-out idea, whose plausi-
bility accrues to its apparent logical or deductive soundness. Nei-
ther experiment nor measurement, as such, leads to laws. A
conception of a law or principle is necessary for the adequate plan-
ning of an experiment and for the choice of measuring instruments.
Any educator who does not know this simple truth simply does not
know the history of science. The order of the adequate scientific
method, then, is this:

1. From a general understanding of nature, often suggested by a
single experience, or at best a small number of experiences, a con-
cept of a law or principle is developed.

2. This principle guides the planning of the experiment and the
choice of quantitative units, even the construction of the apparatus.
Gas laws had to be conceived before the thermometer, with which
we measure temperature, could be constructed. Laws regarding
electricity had to be known before the voltmeter, by means of
which resistance is measured, could be made.

3. The experiment is performed in order to ascertain if the pre-
dictions, spe-ified in the conceived law, hold true under rigid
conditions.

4. The law receives refined quantitative expression in terms of
the data obtained, but is not discovered by means of repeated ob-
servations. Scientific authorities have never disputed this print,
but it seems to be commonly believed by educators that an experi-
ment somehow has the divine power of revealing truth. Truths are
not revealed by experiment. They are tested by experimeat after
insight has revealed them.

If assumptions employed in devising an experiment are logically
unsound, the experiment will not necessarily reveal the error. On
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the contrary, the error will lead to a misinterpretation of the re-
sults. The association theory led to mis-statements of fact in psy-
chology for two hundred years without detection and at least dur-
ing fifty years of experimental work. In experiments on animals,
twenty-five years ago, transposition was noted as an exception to
the usual fact (now known to be extremely important), but so fully
was association assumed that the “exceptional” facts were merely
regarded as interesting curiosities. They compelled no revolution
in theory. Even today the mechanistic pattern of thinking is so
strong that Pavlov, for example, can see one thing and believe an-
other, in direct contradiction to his own facts.

More than one hundred years of experimentation in chemistry
failed to reveal the logical error of defining an acid in terms of a
fixed substance. A discovery of the error requires but a few se.onds
of logical thought. In fact the error was suggested by chemists
around 1820, but did not receive its rigorous experimental substan-
tiation until the twentieth century.

The error of association psychology is not discoverable by means
of experiments planned under mechanistic assumptions. The as-
sumptions keep on distorting the results because the problems are
inadequately conceived. Education keeps on paying the price.
Two criteria are necessary before adequate facts can be guaranteed:
(1) logical consistency of the assumptions underlying the conception
of the problem to be tested, for it is in terms of these assumptions
that the facts are to be evaluated; and (2) success in predicting the
facts, or consistency of results. If thought is inadequate, the facts
are bound to be inadequate. Associationistic assumptions are logi-
cally self-contradictory.® They cannot possibly, therefore, form the
basis for any adequate experiment. If such an experiment proves
successful, it is because the experimenter did what he inferred he
was not doing.

Before teaching methods can be adequately improved on the basis
of experiment, most of our educators must face the task, then, of
altering their fundamental ideas about the learning process; they
must face the task, first, of mastering the theory of the new psy-
chology. Otherwise, they will have no adequate working hy-
pothesis to test by experiment. One cannot experiment scientifically
without an hypothesis.

Also, teachers can, for the present, obtain help from an intensive

' Ibid.,, Chap. XIX.,
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study of the Gestalt theory—more help than from associationistic
workbooks. With a knowledge of this theory, teachers can change
their own methods, and can arrange the presentation of their own
material in an orderly, interrelated fashion, to suit the occasion.
I know many teachers who are doing it.

HiINTS To TEACHERS oF MATHEMATICS

Now the mathematics teacher who wants to be told just what to
do and how to do it, at a particular hour of the day, will be dis-
appointed in the following section. There is no exact formula for
teaching any given subject or for correcting poor learning in any
particular pupil. Each difficulty and each pupil is a problem in
itself, to be solved by the use of general knowledge, that is, by the
application of laws to the particular case.

The child-teacher relation is more important by far than the
internal machinery of how the mind arrives at four by adding two
and two. The adding process is a creative discovery, not a mechan-
ical juggling of special skills.® We can best spend our time, there-
fore, trying to verify and to expand that intuitive insight every
good teacher has, than to discuss the so-called mechanics of mathe-
matical skills when such skills do not exist.

1. Make a large scrapbook of folklore about number; collect
number games that reveal the logic of number relationships; have
1 rich repertoire of dramatic and interesting incidents in which
number solves an important problem —saves a life, makes possible
an adventure, results in human advancement. Study the lives of
primitive peoples and note how number, size, matching, form, ge
ometry, symmetry, played a living réle in their daily existence.
Refer frequently to dramatic achievements of man made possible by
a mastery of mathematics: engineering, warfare, control of elec-
tricity, astronomy, medicine.

2. Relate number to form, pattern, invention, history, geography,
nature study—to every conceivable form of vital human activity
at the appropriate level of difficulty. Do not try to teach arith-
metic; teach discovery, life, and nature through arithmetic.

3. Prepare interesting problers which can be solved by means of
arithmetic. Teach arithmetic the way its discoverers learned it.

4. Forget drills. Prepare your work logically and concentrate
on relations.

* Ibid., Chaps. XXIV and XXV.
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§. Teach numbers as operators, Dramatize arithmetic. Per-
sonify it. Explain in different ways what 2 will do to 4; what 5 will
do to ro. Will any number whatever do anything to zero?

6. Use transposition. This is the systematic way to teach. Vary
your problems or examples so that they will bring out an invariant
number relationship, and select illustrations from a wide range.
It is form—system—that is important. The arithmetic teacher who
does not know the prevalence of form, rhythm, symmetry, repeating
series, groups, etc., among number relationships should not attempt
to teach arithmetic. She does not know her subject.

7. Study arithmetic and geometry, curves and graphs, for the life
values and the logic they contain or imply. Learn to like mathe-
matics yourself. It cannot be taught unless it is loved, unless it
is one of the avenues for the expansion of the human soul. But to
be loved, it must be understood. In your own study of mathematics,
give it an ethical and aesthetic value, then breathe that atmosphere
into the classroom. Number is intimately related to beauty and
form.

8. The mathematics teacher will learn better how to teach mathe-
matics by taking cultural courses and by deliberately observing
the indirect part played by quantity in human affairs generally
than in all the Education courses offered throughout the country.

9. Do not think that success as a mathematics teacher depends
upon following a schedule sheet or an outline which tells you what
to do at half-past ten on Tuesday morning. It does not. Nor is
success measured by how many pupils you can prepare for the
oimonthly standardized test. Do not prepare pupils for an examina-
tion. Instead, teach arithmetic. Some day the examinations will
be abandoned!

10. Forget that you must eventually give pupils a grade. Teach
arithmetic as something worth while in its own right.

11. In order to obtain a feeling for mathematics, read popular his-
tories of v athematics, such as Bell's Queen of the Sciences and
Dantzig’s Number, the Language of Science. A proper feeling for
the subject is a first step in becoming a successful teacher.

12. Ask unusual questions from time to time to find out how
much the pupil really understands about a particular number or
process. To illustrate: How near one is two? How long would
it take to count to a hundred, a thousand, a million? How many
minutes in a week? How far is it to the moon? How many people
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are there in the world? Could they all get into the State of (the
home state of the pupil)? Can a dog count? Would a mother dog
know it if you took away one of her puppies? Why is a dozen
instead of ten used as a common unit of sales? How would you
spend a hundred dollars ?

13. In the lower grades interest in mathematics can be helped
by referring to such problems as catching busses, knowing when to
come in for supper, when to go to bed, how often to feed the cat,
how much to feed it. Plan discussion periods devoted to whens,
and how-muches, in various situations of life.

14. Remember that knowing what to teach comes first. How to
teach comes second.

15. If you wish truly to understand simple arithmetic and alge-
bra study the great masters of higher mathematics—Cantor, Weier-
strass, Dedekind, Peano, Hilbert, Bertrand Russell. Study them
under a mathematics teacher who is philosophically minded, and
can reduce the great discoveries of these masters to simple terms,

16. Eliminate from your mind that mathematics is, first, the
science of number, quantity, and measurement. It is not. Pri-
marily, it is a rigid logic, a science of precise order, pattern, trans-
position, invariants, matching. Study such phrases as the following,
all of which are taken from the history of mathematics: the part is
equal to the whole; the part has the power of the whole; you can
prove the special case only when the general case is subject to
proof; divide means contain; infinity is not a noun, it is an adjec-
tive; there are no infinitesimals; a “point” is in reality a “system”;
a given number is a class. The logic of these assertions is the same
as the logic of Gestalt psychology.

Teaching elementary arithmetic successfully. Success in ele-
mentary arithmetic depends upon the differentiation and expansion
of an original, vague grasp of magnitude. Remember that primitive
man perceived number-groups before he could comprehend additive
aggregates. For example, 1, 2, 3, 4 meant unities of those magni-
tudes. Thus such words as pair, duet, brace, trio, quartet, herd, and
flock are older than 2, 3, 10, 25. Moreover, 2 (as a single group) of
one thing was different from 2 of another thing, hence a couple of
persons, a pair of hands, a brace of partridges.

Modern children develop their concept of number in a similar
way, but, of course, more rapidly. The first comprehension of
number is relative, not absolute. It is one versus many, a f w
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versus many, little versus large. If the number of units is not too
large, magnitudes are compared and matched with surprising accu-
racy before the counting process starts.

Arithmetic should begin, therefore, with a study of matching and
comparing, with no recourse to exact number at first and with
problems so arranged that quantity can be differentiated from size
and color. For exathple, the children might compare a group of
three small blocks with a group of three large blocks, or a group of
three red blocks with a group of three blue blocks, all the
same Size.

Ability to count is no guarantee whatever that the child knows
where 2 or 8 is, in the range from 1 to 10. The process involves at
first only an undifferentiated idea of succession, ard, with respect
to specific numbers, is absolutely mechanical. The individual num-
bers are not differentiated meaningfully until the child can count
backwards and forward readily, from any starting-point in the
range. All talk about kinaesthetic cues, auditory imagery, and the
like, is utter nonsense, and quite irrelevant.

The first number to concentrate upon should be an easy one
such as 4, 10, or 12. Tken the procedure in any case should be
that of finding what the number >ntains. This is ascertained by
a simultaneous study of division, subtraction, multiplication, and
addition. A longer time should be spent studying, say, 4. Use ob-
jects at first. The project is to find out what 4 means: 4 = 2 +?
4=2X7? 4+?=2 4=1+7? 4=3-+2? The general rule is,
at first, to reverse the usual form of the equation, that is, the whole
should be presented first. This method is slower at the outset but
more effective in the end, and in fact, necessary, if the fundamentals
of arithmetic are ever to be learned.

While exploring the range from 1 to 10, help to differentiate the
range by using systematic games, bringing out the “secrets” of the
series as a whole. For example, in addition and subtraction, study
such series as the following:

2—=?=1 Io—?=1 I+1="7" 1+9="7
3—?=1 Io—?=2 I+2="7? 24+8=7
4—=?=1 Io—?=3 I+3=2 3+7="7"
5=?=1 I0—?=4 I+4="7? 4+6="7?
6—-2=1 Io—?=35§ I+§5=7 5+5=7?

Io—?2=6 1+6=7 6+4="7"
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The teacher should keep referring to the range of numbers kept
before the pupil on the board: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Many children learn mechanically to add and subtract without
having any conception of the fact that 2 is next to 1 in the range,
or that 8 is “2 numbers in from 10” or “y positions over from 1.”

The whole purpose of arithmetic is to discover number relation-
ships and to be able to reason with number. It is not to learn the
tables. The child should know how to derive one number from
another in different ways. For example, how many ways can you
obtain §? 144,243, 1X5,5—0, 6—1, 10+ 2. Many chil-
dren in the fourth grade are confused by this simple little question.
They have not learned simple arithmetic, for it has not been taught
to them.

It is quite as important to keep arithmetic alive by putting chil-
dren into the problem situations, where, in order to get out, they
must think in terms of number. After all, arithmetic should at
first be taught as a special subject only at occasional intervals. It
should generally be taught in connection with some interesting
project.

Fractions, along with division should be begun early and scattered
throughout the curriculum, as their difficulty permits. Introduce A
when 4 + 2 = 2 is taught, % when 10~ 2 is taught. This is a good
time to introduce % -4 = 1. Teach % X % =1 of 14 by going
back to2 X 2 = 4.

MaTHEMATICS IN THE JUNIOR HicH SchooL

In the junior high school mathematics should be taught mainly as
a means of making more precise a vitalizing and interesting knowl-
edge of form and precision in nature. Study form and symmetry
in the architecture of the savage and in his methods of calculating,
How were the pyramids built? How was land surveyed in the
days of ancient Egypt? Why were the Pythagoreans afraid of
“irrational numbers,” such as »? Study ratios and proportion as
they were used in the simple Greek art. Note that the more beauti-
ful buildings are cheaper to build and are more desirable. This is
an actual discovery of engineering science. Beauty means economy.
Note symmetry in animal and plant life—curves, spirals, spheres,
cylinders, orderly transformations from one curve to ancther as
in the veins of plants. Study birds’ eggs, frost crystals, snow
crystals, salt crystals, naturally formed jewels, spider webs, bee
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cells. Look for precision and mathematical rules of a simple char-
acter found almost anywhere in nature. Attack the problem of
rhythm. Demonstrate complex tones with their overtones; conso-
nance with its dependence upon simple harmonics. Study seasonal
activity of all kinds, and cycles, by means of graphs. Attack simple
problems in social science where averages and curves of distribution
are employed. Make the study of interest alive, by historical anec-
dotes. In the middle ages charging interest was thought to be a sin.
Why?

Teach the transposability of number. Do not permit the pupil
to obtain the idea, for example, that five is only @ number; it is
any number of 5 units, and the units can be of any size one wants—
elephants, planets, solar systems. A number is a class of numbers.
This will help the pupil immeasurably when he comes to algebra.
Teach also the relativity of number. Five is just s, not 4.9 or s.1,
but it becomes smaller and smaller in relation to 10, 22, 105, 10,000,
etc., and larger and larger in relation to 4, 3, 2, 1, ¥, ¥, Yo, etc.

A few remarks might be made epropos of long division. Trouble
comes from not building up to it logically, and from not adequately
showing that no really »ew problem is involved. Play guessing
games in addition, carefully planned to build up a better knowledge
of the nuni:ber range. The range from 1 to 100, for example, pos-
sesses “nodal points.” Study the range as a whole for these points.
Construct a long, narrow chart with all the numbers from 1 to roo
arranged in sequence. Point out the “nodal points” 50, 25, 75, the
rhythmic sequence of 10’s, and other “strategic” numbers whir' are
the products of a number of different combinations, such .. 48
(4 X 12; 6 X8; 2X24; 3X16) and 72.

In long division trouble comes because a grasp of the relative size
of the two numbers is not sufficiently differentiated. Hence the
pupil is unable to estimate, for example, how many times 16 goes
into 73.

Much help will be gained by noting, on the long number range,
just mentioned, where 16 XX 2, 16 X 3, 16 X 4, and 16 X 5 would
come. Moreover, there are many interesting and useful short-cut
methods of calculating that might be explained to the class. In
short, the secret of long division is to have the number range from
1 to 100 differentiated as-a-whole.!?

9 \Wheeler, Raymond H. and F. T. Perkins, Principles of Mental Development,
Thomas Y. Crowell Company, 1932. See also the discussion of pacing, in con-
nection with this problem.
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The teacher of high school mathematics has, at best, an acute
problem to face. From the first grade on through the eighth, an in-
creasing number of pupils acquire a distaste for mathematics, even
a fear of it. Moreover, textbooks, again, get the cart before the
horse. For example, plane geometry is naturally an abstraction
from solid geometry. Geometry should begin, therefore, with those
simpler problems of “solid” space and forms that do not require
too much rigor of proof. The pupil should study different ways in
which three-dimensional space can be divided or differentiated. He
should receive training in visualizing intersecting planes and in
visualizing lines (partitions) within solids and should become ac-
customed to finding forms ordered within forms. More than this,
as Bertrand Russell complains, it is stupid to be teaching Euclidean
geometry to pupils, anyway. They do not live in a Euclidean
world. It is a hindrance to further study. We live in a Riemannian
and relativistic world. It would be better to teach high school
pupils the logic of relativity (they can readily grasp its essentials)
than to grind them through the proofs of numerous dry theorems—
save those few that are necessary for later work in practical survey-
ing, eugineering, and the like.

The logic of relativity promotes a social point of view, a much
more accurate view ot the relation of the individual to the group
than the absolutistic inferences of ordinary high school mathematics.
This statement may sound astonishing, but it should not be in the
least. The atomistic thought-pattern that constructed Euclidean
geometry, mechanistic science, and the mathematics of infinitesimals
also constructed mercantilism, utilitarianism, monarchies, competi-
tion as the source of biological and social evolution, mechanistic
biology, rugged individualism, and association psychology ; justified
war, and laid Christianity on the shelf! The relativistic pattern,
prevailing in 1650, 1320, and 1935, works with the part-whole prob-
lem; leads to an organic view of nature, even of mathematics; it -
leads to cc¥pcrativn, idealism, social democracy, intelligent pacifism,
an emphasis upon harmony, and the balanced adjustment of parts
within equilibrated wholes. This is the pattern upon which Gestalt
psychology is based. If high school purils are to go out into the
world with any idea of what that world is like, they must be given
some idea of the part-whole problem. Eventually, instruction in
mathematics will help to solve the problem.

Our schools, today, face one of the most acute crises in history.,
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In the sixteenth and seventeenth centuries science revolutionized
human culture. It is doing so again in the tweatieth century. The
eighth grader, today, understands without fear, either what the col-
lege professor did not know or was afraid to accept in 1600. This
is equivalent to saying that the eighth grader of tomorrow will
have to understand the gist of Einstein’s . eory of relativity and
many other problems of the same logical cntegory.!* Unless this
happens we shall not have a civilization, for the simple reason that
there will be a new civilization based on the new science, or no
civilization at all. The part the teacher of mathematics must play
in this process is to forget skills, to discover the logic that mathe-
matics contains, and to teach it, for that logic pertains to the part-
whole problem.

In this chapter my purpose has been to stimulate further study of
Gestelt psychology and to call attention to the universal shift in
human thought, of which Gestalt psychology is only a special rase.
The high school teacher, like all of us, is dissatisfied. He is groping
for something. He is participating in a cultural revolution. He is
living in an exciting age. He wants to help in rebuilding the educa-
tional system that it may fit the age in which it finds itself, thereby
serving the needs of humanity. He can do his part best, not by
asking for course outlines and specific instructions to follow me-
chanically, but by deep, serious, thought pertaining to first prin-
ciples, both of mathematics and of psyclhology.

" Read A. Korzybski's Science and Sanity. The Scicnce Press, 1933,



MAKING LONG DIVISION AUTOMATIC

By CLIFFORD B. UPTON
Teachers College, Columbia Universit y

A coop computer works as automatically as possible so far as his
actual computation is concerned. If he is efficient, each step in the
computation is reduced to the plane of habit and he proceeds from
one step to the next with as small an expenditure of thinking or
reasoning as possible. By making his computation automatic he
works far more rapidly than he would if it were necessary to think
out each step before taking it.

Examples of automatic computation. A good example of an
automatic procedure in computation is found in multiplying
the numbers shown at the right. In this case the multipli- Z.;;ési
cand is quickly multiplied by each figure of the multiplier, ——
and partial products are placed automatically. The actual multi-
plication by o is omitted bui its effect is taken into consideration
by moving the next partial product an extra place to the left. The
addition of the partial products easily becomes a habit. The entire
Procedure is substantially standardized, at least so far as adults are
concerned. If a hundred different adults did this example they
would all proceed practically in the same way. The same thing
is true if the numbers in the above example are added or sub-
tracted. In the case of subtraction the adults fall into several
groups, each group proceedin,, according to the particular method
of subtraction that may have been taught, but within the group the
procedure is standardized.

Short division. With respect to the operation of division, how-
ever, the situation changes. If we have a problem in short
division like the one at the right the method is practically 194!
uniform if the adults have really learned to do short division with-
out the use of “crutches,” that is, if they have learned to make it a
purely mental affair, writing only the quotient figures. There is a
group that will work such a proslem by the long division process
and another group that will follow the short division process, using
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some such crutch as writing the numbers representing the re-
mainders. However, each group is fairly uniform in the procedure
which it follows. The point that deserves emphasis is that in multi-
plication, addition, and subtraction, the work is so carefully stand-
ardized that it is done automatically regardless of the particular
example that may be presented.

Long division. When we come to long division, however, the
situation seems to be quite different and, though the general plan
of working an example in long division may remain somewhat uni-
form with a given individual, he still varies his procedure in accord-
ance with the particular example upon which he may be working.
Whereas a hundred individuals will multiply two numbers together
in exactly the same way, these same individuals on a given example
in long division may so differ in the details of their thinking that
no two will follow exactly the same method of work throughout.
The reason for this wide difference in practice is due to the fact
that long division constantly requires the estimation of figures and
the exercise of judgment; such situations, however, do not arise in
the more standardized procedures in addition, subtraction, and mul-
tiplication. The difficult part of long division, of course, is that
connected with those steps by which one finds a tentative quotient
figure, correcting it if necessary, and then arriving at the conclusion
that the right figure has been found. It is this feature of long divi-
sion that makes it by far the most difficult operation with whole
numbers, not only for cLildren but also for adults. It is likewise
this feature that leads adults to follow such widely different prac-
tices in working a given exam~le. After making an extensive study
for the past fifteen years of the actual methods and devices used by
hundreds of adults in long divisicn, the author has found tha* even
though adults may have originally been taught some scheme of
long division that was fairly vell organized, they have, through their
own experience with this operation, come to adopt devices which
vary from the procedurc originally taught them. Unfortunately
many adults never were given very systematic training when ttey
learned long division. As children they were plunged into mauy of
the difficulties of long division within a relatively short time and
each was obliged to work out his own system. The detailed instruc-
tion concerning the various difficulties of long division and the
careful grading of exercises such as are found in modern arithmetics
did not exist in the texts that these adults studied.



MAKING LONG DIVISION AUTOMATIC 253

Saving time in long division. The various devices or proce-
dures which adults finally adopt in long division are usually the
result of their desire to obtain each quotient figure in as short a
time as possible. Any one who has had much experience with long
division knows that he can get the correct quotient figures finally
by a process of trial and error. He can guess at a quotient figure
and then multiply to see if his guess is right. But all this is time-
consuming. Careful investigation shows that such procedures as
have been built up by experience are wholly for the purpose of
avoiding the trial and error process and of arriving at the correct
quotient figures as quickly as possible, with the minimum amount
of multiplying or of testing to determine whether the quotient
figures are right. Every computer always seeks the path of least
resistance, saving a step here and there whenever he can. If a
system of long division could be devised which would give the cor-
rect quotient figures on first trial in a very high percentage of all
cases, and which would greatly reduce the need for correcting figures,
such a system would make this operation practically as automatic
as are the processes of addition, subtraction, and multiplication. It
would also make possible the saving of an enormous amount of time
in working examples in long division. It is the aim of this article
to present such a system.,

VARIATION IN ProceDpURES Usep 1N LoNG DivisioN

In order to arrive at a thorough understanding of our problem
it will be necessary to study at some length the procedures actually
used by different groups of adults in working long division examples.
A group of typical examples is given below.

Example 1. In working the example at the right many adults
divide the partial dividend by the first figure of the divisor 34
in order to find the quotient figure. Thus, to find the 26jg00

first quotient figure they divide ¢ by 2, which gives 4 as a 8
trial quotient. Since 4 is found to be too large, they then :;z
try 3 which is right. To get the next quotient figure they o

divide 12 by 2, getting 6, which is too large. They try s
which is also too large. They then try 4 which is correct. It should
be noted that the correct quotient figure was obtained each time
only after two or three trials.

If the ahove example had had a divisor of 21, 22, 28, or 29 instead
of a divisor of 26, the procedure for obtaining the trial quotient
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figure by dividing by the first figure of the divisor would still be
followed by a certain group of adults. A similar practice would be
followed for divisors from 41 to 49, 71 to 79, etc. For the sake of
convenience this procedure by which trial quotients are obtained
by dividing by the first figure of the divisor will be referred to
hereafter as Rule I,

Example 2. Instead of following the method outlined in the
example above, where the divisor is 26, some adults find the
trial quotient in this example by dividing each partial divi- 265—5%3
dend by 3, which is one more than the first figure of the 78
divisor. In other words, they think of 26 as being ncar 3o0. 120
To find the first quotient figure they divide ¢ by 3, getting 104
3, which is correct. To find the next figure of the quotient 16
they divide 12 by 3, getting 4, which is also correct. By following
this method it is seen that the correct quotient figure is found each
time on the first trial. Those who work the above example, where
the divisor is 26, by finding the quotient figures by dividing by one
more than the first figure of the divisor, follow this same plan if
the divisor is 27, 28, or 29, that is, they divide by 3 to find each
quotient figure. The reason that they do this is because 27, 28,
and 29 are nearer to 30 than they are to 20. In fact, this group of
individaals also follows this plan for any other two-figure divicor
from 26 to g9 if the second figure of the divisor is 6, 7, 8, or g.
There is another group of individuals that follows this plan in a

~ limited way, applying it only when the second figure of the divisor
is 8 or g, as in the divisors 78 or 59. In this case all other divisors,
which means those ending in 1 to 7, are handled by these individuals
as in Example 1, that is, by Rule I. In other words, this last group
of individuals divides by the first figure of the divisor except in
those cases where the divisor ends in 8 or g, in which case these
individuals divide by one more than the first figure. The procedure
by which trial quotients are obtained in the case of certain divisors
by dividing by one more than the first figure of the divisor will be
referred to hereafter as Rule II.

The use of Rule II in long division has been the subject of more
or less discussion among teachers. There are some teachers who
favor using it, though the particular divisc: 5 with which it is to be
used are not always agreed upon, largely due to the fact that these
teachers have limited knowledge concer:.’'ng the efficiency of this
rule. There are other teachers who do not use Rule II at all, pre-
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ferring in all cases to divide by the first figure of the divisor, as
illustrated in Example 1 on page 253. The relative merits of Rules I
and II, particularly when applied to divisors ending in 6 to ¢, will
be discussed later in this article.

Example 3. Regardless of how the quotient figures are obtained
in situations such as those illustrated in Examples 1 and 2, it is
found that the procedure changes in examples like the following:

L 63 s
11) 518 12) 759 25) g11
44 12 i3

78 39 1601

i 36 Iso

1 3 131

In these cases no attempt is made to divide by the first figure of
the divisor ¢~ ,otain the quotient figures. Instead one applies his
knowle” ;¢ of the multiples of 11, 12, and 25. Most adults and
chiluren know the tables of 11’s and 12’s, hence they make use of
the memorized multiples of these numbers just as they use the
multiples of ¢ in an example in short division with a djvisor of 9.
"The multiples of 25, up to 10 X 25, are also quite generally memor-
ized through acquaintance with our 1oney system.,

Example 4. The example shown here represents another special
situation in long division, this situation occurring in

the step where the second quotient figure, o, is obtained. 208
After obtaining the first quotient figure which is found to °*' i§:7°
be 2, the partial product, 124, is subtracted, leaving a re- o7
mainder of 6o. When the next figure, 7, is brought down 558
there is a new partial dividend of 607. To obtain the next 490

quotient figure the procedure varies. Some persons think 490

“60 -~ 6 = 10" but, since no quotient figure can be larger than o,
they change io to 9. They then proceed to check the correctness
of 9 by multiplying 62 by g, comparing the product with 607. The
important consideration in this case is the method by which ¢ was
obtained, which was to divide 6o by 6, getting 10, and considering
it as 9. With many persons this is not a natural procedure and it
often causes confusion. Children are just as likely to divide 6 by 6,
getting a quotient figure of 1, as they are to divide 60 by 6, getting
a quotient of ro. Even if children do get a quotient of 10, they
have to be carefully taught to consider it as 9.

There is another group of individuals who do not divide 6o by 6.
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Instead, before bringing down the next figure, 7, they observe that
the remainder, 6o, is almost as large as the divisor 62, that is, they
observe that 62 goes almost once into 60. Hence they conclude that
when the next quotient figure is brought down, making a partial
dividend of 607, the quotient will be 9.

There is still a third group of persons who make a mental com-
parison of the partial dividend, 607, with the divisor, 62, observing
that 6o7 is a little less than 10 times 62, that is, that 607 is a little
less than 620. Hence they conclude that 62 goes into 607 about g
times and then try that figure. It must be understood, of course,
that when this figure, g, is obtained, regardless of which one of the
above procedures is followed, it is considered to be a fairly safe
guess. There is no guarantee that g is right until it has been
tested in some way or until the product, g X 62, is obtained.

In connection with an example like 2¢) 260, in which the divisor
ends in 9, it should be observed that when one divides 26 by 2,
getting a quotient of 13, he is applying Rule I. This quotient 13
is then changed to ¢ and finally to 8. If this example were worked
by Rule II one would divide 26 by 3, getting the correct quotient
8 on the first trial. In the case of all divisors ending in 6, 7, 8, and
9, Rule II always gives a single figure for the quotient. whereas
Rule I in certain cases like the one just considered gives a two-
figure quotient.

Example 5. Another special situation is illustrated in the ex-
ample shown here. After getting the second quotient

figure and subtracting the pa{tial product, 252, we have 5799
. e 36) 205524
a remainder of 3. Bringing down the next figure, we have 180
a new partial dividend of 32. Regardless of the procedure 258
by which the first two quotient figures were obtained, 252
most persons obtain the third quotient figure, which is o, 3:4
324

by simple inspection, observing that 32 is less than 36
and hence 32 cannot contain 36. If the other quotient figures were
found either by Rule I or by Rule II, these rules are usually aban-
doned when it comes to a situation where the partial dividend is
less than the divisor. In other words, inspection operates in this
case and immediately gives the correct quotient figure, which is o.

Inspection would be used in a similar manner in a case like
36)38 where it is easily seen that 38 contains 36 once. In other
words, it is so evident by inspection that the quotient is 1 that
no attempt is made to apply either Rule I or Rule II.
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Example 6. A specialized situation in long division is illus-
trated by the example at the right where the divisor is 26.

Instead of using Rule I or Rule IT in this case the computer 36)—13%
thinks of 26 as almost equal to 25, assuming that the 156

quotient figure for a divisor of 26 will be very close to the “108
quotient figure for a divisor of 25. Hence he thinks, “There 104
are six 25’s in 166. I will try 6.” The figure 6 is then tested 4

by finding the product of 26 by 6. Similarly, in getting the next
quotient figure he thinks, “There are four 25’s in 108. I will try
4” A similar practice would have been followed if the divisor
were 24 instead of 26. It is evident, of course, that the person who
follows this method of estimating the quotient figures for the divi-
sors 24 and 26 is one who has memorized the multiples of 25.
Otherwise such a procedure has little advantage. The device sillus-
trated here is really a special trick for the particular divisors 24
and 26. If the divisor were 21 or 22, Rule I would probably be used.

Testing quotient figures. In the six examples given above,
which illustrate the wide variation in the procedures used in obtain-
ing quotient figures, attention has largely been centered upon the
methods by which one arrives at the trial quotient figure. Some
reference has been made to the testing of these trial figures, this
testing being assumed to be the actual multiplication of the divisor
by the trial quotient to see if the product obtained is one that can
be used. There are, however, other methods of testing quotient
figures, none of whiclf has general acceptance but all of which have
more or less of a following. These other methods present almost
as many varieties as do the procedures by which the trial quotients
are found, which merely further illustrates the fact that long divi-
sion is not a standardized operation like that of addition.

In order to e¢nlarge our picture of this wide variation in procedures
in long division, we will now discuss the various methods which are
used for testing quotient figures.

MetHODS oF TESTING TRIAL QUOTIENT FIGURES

When one obtains a trial quotient figure it can be tested to see
whether it is correct by actually multiplying the divisor by the trial
quotient and making the following observations:

Method A. If the product obtained is greater than the partial
dividend, the quotient figure is too large. Hence a smaller figure
must be tried.




258 THE TENTH YEARBOOK

Method B. If the product is smaller than the partial dividend,
one finds the difference between the two and then compares the
remainder with the divisor. If this remainder is smaller than the
divisor the quotient figure is correct. If this remainder is equal to
or larger than the divisor, the quotient figure is too small and a
larger figure must be tried.

These methods of testing quotient figures should always be ap-
plied for each quotient figure obtained regardless of the particular
system of long division that is being taught. The pupil should be
required always to make these tests so that such testing will be-
come a habit with him,

In addition to Methods A and B described above, there are sup-
plementary methods by which one can determine mentally whether
a quotient figure is right without getting the complete product of
the divisor by the quotient figure, as is required when Methods A
and B are used. When a complete product is obtained, even if the
multiplication is done mentally, it is credited to Method A or
Method B, rather than being considered as coming under one of
the supplementary methods which are described below. These sup-
plementary methods are as follows:

Method C. This method of testing is illustrated by 47
the example at the right and is sometimes applied by those 36) 1004

who use Rule I exclusively for estimating quotient figures. 144
All the work in this testing is to be done mentally. The ;‘Zf
steps are as follows: -

(1) By using Rule I, the pupil gets 5 as the trial quotient. He then
thinks, “5 X 30 = 150. 169 — 150 = 19 remainder. 5 X 6 = 30 which
is larger than 19, so 35 is too large. T ry 4.”

(2) He tests the quotient 4 the same way, thinking, “4 % 30 = 120.
169 — 120 = 49 remainder. 4 X 6 = 24, which is less than 49, hence 4
is right.”

(3) After step (2), the pupil ruultiplies 36 by 4, getting 14-. Tt
should be noted that no work in step (2) gave the product 144.
Hence steps (2) and (3) were both used in getting the figure 4.

(4) Using Rule I, the pupil divides 2 5 by 3, getting a trial quotient
of 8. He then thinks, “8 X 30 = 240, 254 — 240 =14. 8 X 6 =48,
which is larger than 14, hence 8 is too large. Try 7.

(5) The quotient 7 is tested thus: 7 X 30 = 210. 254 — 210 = 44.
7 X 6 == 42, which is less than 44. Hence 7 is right.

(6) The pupil then multiplies 36 by 7, getting 252.
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It is evident that this process is a very intricate one and that its
successful use depends upon a high degree of mental concentration
on the part of the pupil. This plan exercises the same type of
mental skill that is required in short division, hence it really as-
sumes that short division has been taught before long division, for
without training of a similar kind in short division a pupil would
make little progress with this method. Because of its difficulty
Method C is not extensively used. In the above work it is impor-
tant to notice that the testing in step (1) avoided the necessity of
multiplying 36 by s, but the testing in step (2) did not save the
necessity of multiplying 36 by 4 in step (3). Likewise step (4)
saved a multiplication by 8 but step (5) did not save the necessity
of multiplying by 7 in step (6). In other words, 6 steps were
needed to do this example, steps (1), (2), (4), and (5) representing
concentrated mental work of a type that is very fatiguing to pupils.
In fact, steps (1), (2), (4), and (5) are much more difficult than
steps (3) and (6). If the example is worked without this mental
testing . [ quotient figures, the steps are as follows:

(1) After getting the trial quotient of 5, the pupil actually multi-
plies 36 by 5 and finds the product too large; hence 5 is too large,
according to Method A on page 257.

(2) He then multiples 36 by 4 and finds the product satisfactory
by Method B on page 258. Hence 4 is right.

(3) After getting the trial quotient 8, he multiplies 36 by 8 and
finds the product too large, hence 8 is too large.

(4) He multiplies 36 by 7 and finds the product satisfactory, hence
7 is right.

This solution requires only 4 steps which are carried out auto-
matically, compared with 6 steps when Method C is used, 4 of these
6 steps being very difficult. In other words, the use of Method C
represents extra work which necessarily slows up the process of long
division. Those who advocate Method C usually require that every
quotient figure be checked mentally in this way before the actual
multiplication is made; the only exception to this statement is in
the case of those quotient figures which are found by inspection in
accordance with Rule 171, described on page 263, or which are found
by using one’s knowledge of the multiples of 11, 12, and 23, as is
explained under Rule IV on page 264.

Method D. Another method of testing quotient figures mentally
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is shown here. After getting the first trial quotient, 4, the 6
computer starts mentally to multiply 26 by 4, ignoring the zﬁﬁgﬁ
unit’s figure of the product and merely observing that the 28
carry number 2, when added to 8 (4 X 2), gives 10, which is 158
greater than g of the partial dividend 93. Hence 4 is too 156
large. The computer then tries 3 which is first tested in the 2
same way. This time the test shows that 3 is probably right, after
which the actual multiplication, 33X 26, is made to make certain
of this fact.

This same type of mental testing is applied in getting the second
quotient figure, which is first estimated as 7. By noting mentally
that the carry number is 4 when 26 is multiplied by 7 the computer
finds that 4 added to 14 gives 18, which is larger than the 15 of
158. Hence 7 is too large. He then tries 6 and tests it in the same
way, after which the actual multiplication, 6 X 26, is made. In this
work we see that the effect of the carry number is the important
consideration, the actual unit’s figure of the product being ig-
nored. The unit’s figure of the product is not determined in most
cases until after this preliminary testing is finished. In other words,
since the testing does not produce the complete final product, one
has to go through an extra step to get it. If the mental testing had
simultaneously given the complete product, this procedure would
be classified under Method A on page 257 rather than under Method
D. We see that mental testing by Method D requires extra steps
and adds to the time needed in working examples in long division,

Method E. Another type of mental testing is illustrated by the

example 64)489 where it is quickly seen that the quotient 8 is too
large. This is really an easy application of Method C or Method
D, depending upon how one does it. The reason for discussing this
case separately is because some persons, who advocate using Rule I
for all divisors, think that in a situation like this it is so self-evident
that the quotient needs correction that they wish to consider this
case as no more difficult than those in which the right quotient is
obtained on first trial. In other words, they wish to count these
particular “self-evident” cases as the equivalent of finding the right
Guotient at once, ignoring such mental testing as is done to deter-
mine that a correction is necessary. In this way they aim to show
that the use of Rule I for all divisors is a more efficient procedure
than this article will show it to be.

We do not consider it proper to count these “self-evident” cases as
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“rights,” by ignoring the mental testing that is done. Skill in test-
ing quotient figures mentally by Methods C, D, or E requires much
time for children to acquire. Further, if a child limits this mental
testing to particular types of cases like those above he must form
the additional habit of examining each case to see if it is one of the
kind to which he wishes to apply a mental test. All such work
requires time and thought. Hence we believe there is no justifica-
tion whatever for considering “self-evident” cases like those above
as the equivalent of getting the right quotient on first trial.

From our point of view any kind of mental testing of a quotient
figure, whether it be rapid or otherwise, must be considered as an
extra step and so counted when one is determining the total number
of steps needed to work a given example in long division.

The system of long division advocated later in this article assumes
that methods of mental testing, like Methods C, D, or E, will not
be used because they consume too much time. It is the elimination
of such testing that makes it possible to have automatic long divi-
sion. This question is discussed further on page 263 of this article.

Before discussing the next topic attention is called to the fact
that in “self-evident” cases like those considered above there is a
danger of assuming that the correct quotient is always 1 less than
the trial quotient, it being understood that the trial quotient is
obtained by the use of Rule I. Tt is readily seen that this assump-
tion soon gives trouble and that these “self-evident” cases are not
as simple as they seem. As evidence of this fact consider the fol-
lowing cases of this type where the true quotient is 2 or 3 less than

the trial quotient: 26)186, 20)162, 38)233, 50)352. We grant in
these cases that an experienced computer can see by a very rapid
mental test that the first trial quotient is not the true quotient but
i*. is not evident whether these quotients are wrong by 1, by 2,
o Dby 3.

The need for automatic long division. It is very apparent
from a study of the methods of obtaining and checking trial quo-
tient figures given on the preceding pages that nothing like a
standardized, automatic system for long division is followed by the
great majority of people, corresponding to the standardized process
that these same people employ in multiplying 497 by 341. 1t is
also evident that each person is constantly endeavoring to find ways
which will give him the correct quotient figure in the shortest time
with the least amount of testing and multiplying. There are un-
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doubtedly some methods in long division that are far more effective
than others in obtaining quotient figures in certain situations. The
difficulty seems to be that most adults have had no way of becom-
ing acquainted with the many possible procedures in long division
and of knowing their relative efficiency. They follow what they
were originally taught, improving upon that method whenever pos-
sible on the basis of their own observation and experience. Most
of them would gladly change certain of their practices in division
if they could be convinced of the superiority of some other procedure
over the one they are now using.

SysTEM A—AN AvutoMAaTIC SYsTEM OF LoNG DIvisioN

In order to make it possible for one to .coceed in long division as
automaticzlly as he does in the other fundamental operations with
whole nun.bers, the author has devised a system of long division,
which, for convenience, will be referred to hereafter as System A.

Efficiency of this system. This system of long division gives
the following remarkable results in finding quotient figures:

(a) In 80.43%0 of all cases this system immediately gives the cor-
rect quotient figure on the first trial, that is, the first trial quotient
is the true quotient.

(b) In 19.29% of all cases this system gives a quotient figure on
the first trial that differs from the correct quotient figure only by 1.
This means that only one correction has to be made in order to get
the right quotient figure.

(c) In 0.28% of all cases this system gives a quotient figure that
differs from the correct figure by 2. This means that in only 1 case
out of every 357 cases is it necessary to make two corrections in
order to get the right quotient figure.

(d) In no situations does this system produce a quotient figure
that differs from the correct figure by more than 2. In other words,
more than two corrections of the trial quotient figure are never
necessary and two corrections are necessary only in an extremely
small number of cases.

Summarizing the above results, it is seen that in g9.725% of all
the cases this system gives on first trial either the correct quotient
figure or a figure that differs from it only by one.

Details of the system. This highly efficient system as applied
to two-figure divisors is made up of the following five rules:

Rule I. For divisors from 19 to g9 that end in 1, 2, 3, 4, or 5,
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each quotient figure is found by dividing the partial dividend by
the first figure of the divisor.

Thus, for the divisor 43 the trial divisor is 4; for the divisor 85 the
trial divisor is 8. The divisor 235 could be included under Rule I but, as
explained later, it seems preferable to include it under Rule IV.

Rule II. For divisors from 19 to g9 that end in 6, 7, 8, or g,
each quotient figure is found by dividing the partial dividend by
one more than the first figure of the divisor.

For example, if the divisor is 87 the trial divisor is g; if the divisor
is 49, thg trial divisor is §.

There are a few situations where Rules I and II are not applied,
these situations being handled by Rules I1I and IV below.

Rule III. A rapid comparison of the divisor and the partial divi-
dend should always be made to see if the quotient is immediately
evident. Tf so, the quotient figure thus obtained should be used.
This rule, which is called the method of inspection or comparison,
may be applied with great rapidity in the following situations:

(a) In cases like 17) 17, 23) 24, 27) 29, 34) 30, 46) 48, etc., where
the partial dividend is equal to or only a few units larger than the
divisor, it is immediately seen that the quotient is 1.

In the above examples it will be noted that the partial dividend is
always in the same decade as the divisor. This assumption is made in
order to make it easy for children to apply the method of inspection.
Naturally for adults it will be easy also to apply this principle when
the partial dividend is in a decade above the divisor. For simplicity,
however, we make the limitation above noted. It is assumed that
children will apply Rules I or II when the partial dividend is in a
decade above that of the divisor.

(b) In cases like 17) 13, 23) 14, 20) 17, etc., where the partial
dividend is less than the divisor, it is immediately scen that the
quotient is o.

After Jong division has been fully learned, most persons intuitively
apply Rule III first, before making other attempts to find the correct
quotient figure. In teaching long division to pupils, however, it is
easier to teacl: (e use of Rules I and TI before Rule 111,

Some critics who have not given sufficient thought to the subject
maintain that many pupils might apply Rule II to an example like
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28)29, getting a quotient of 9 from 29+ 3, instead of a quotient of 1.
Hence they would abandon Rule II entirely, applying Rule I in all
examples. In practice, however, no one applies Rule II in a case like
28)29. In such cases a rapid comparison of 28 and 29 shows imme-
diately that the quotient is 1. The author has closelv observed thou-
sands of persons at actual work in long division and has yet to find
a single person who would apply Rule II in a case like that above.
All these persons, without exception, used Rule III in such examples.
There are only a few other cases, such as 26)29, 37)39, 47)48, and
78)70, in which one could theoretically apply Rule II and obtain a
quotient figure that differs considerably from the correct quotient. In
all such cases it is seen that the partial dividend never exceeds the
divisor by more than 3 units. Consequently, in all such cases, every
one would intuitively use Rule III.

Rule IV, For the divisors 11, 12, and 25 it is assumed that the
multiples of each of these divisors, up to g times the divisor, have
been memorized and that these products will be used in obtaining
quotient figures, just as one would use the multiples of ¢ in short
division with g as the divisor. Familiarity with the multiples of
25 comes through acquaintance with our money system while the
tables of the 11's and 127, or their equivalent, are usually learned
in the third or fourth grade.

Rule V. The divisors 13 to 18 are treated separately just like
six particularly difficult words in spelling. For these six divisors
the quotients are found, in general, by the method of trial and error.

Thus, for each of these divisors we roughly estimate the number of
times it will go into the partial dividend and then multiply to see
whether this trial quotient is correct.

Some teachers apply Rule I to the divisors 13 to 18; that is, they
divide the partial dividend by 1 to find the trial quotient figure. This
practice is most tedious and unsatisfactory, since it requires several
corrections of the trial quotient figure before the correct quotient is
found. It should be noted that the divisor 19 is included under the
divisors listed for Rule II.

Two important habits. In addition to the rules given above
System A assumes that considerable attention will be given to hav-
ing pupils establish the habit of comparing each new partial product
with the partial dividend to be sure that no attempt is made to
subtract a partial product which is larger than the partial dividend.
This system also assumes that the pupil will establish the habit
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of comparing each new remainder with the divisor and to under-
stand (1) that the quotient figure is correct if the remainder is less
than the divisor, and (2) that the quotient figure must be made
larger if the remainder is equal to or greater than the divisor.

Mental checking no- required. In order that System A may be
automatic it makes no ise whatever of methods of testing quotient
figures mentally such as ti.ose described under Methods C, D, and
E on pages 258-261. In this system the pupil immediately multi-
plies his divisor by the trial quotient without stopping to make a
mental test of the quotient figure. This multiplication may be done
mentally or otherwise, but regardless of the way in which it is done
it is regarded as a multiplication and counted as such when one is
counting the total number of steps required to work a problem.
Even though this multiplication may be a very easy one, it is still
counted as a multiplication.

The reason that System A can discard methods of mental check-
ing is because this system gives the right quotient figure on first
trial in 4 out of every 5 cases. Why should we check every trial
quotient figure mentally by Methods C or D when 4 out of every s
quotient figures are right anyway? To discover that the quotient
figure is wrong in the fifth case out of each five cases it is beticr to
go ahead and make a multiplication that would have proved to be
unnecessary if the quotient figures had been tested mentally ather
than to waste time making 4 difficult mental checks in connection
with 4 quotient figures that are right anyway. An illustrative
problem in which the advantages of omitting mental checking are
shown is given in connection with the discussion of Method C.

Three-figure divisors, Mention shc 'd be made of the fact
that while System A as presented in this irticle refers to two-figure
divisors, this system is equally efticiea: with divisors of three or
more figures. In the case of larger diviso. s, the first iwo fignres
of the divisor indicate which rule is to be used. For exaniple, in a
divisor like 325 we use Rule I because the first two figures, 32, come
under Rule I. Hence 3 is the trial divisor, Likewise, if the divisor
were 383 we would use Rule I because 38 comes under Rule II.
In this case 4 would be the trial divisor.

DeTERMINING THE EFFICIENCY OF SysTEMs A AxD B

The method by which the efficiency of System A was determined
is as follows. For each two-figure divisor all the partial dividends
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that can possibly exist for that divisor were studied in relation to
Rules I, TI, ITI, and IV. For example, the divisor 28 was studied
with reference to its 280 possible partial dividends, these dividends
running consecutively from o to 279 inclusive. It is thus seen that
the largest partial dividend which can have 28 as a divisor is 279,
it being understood, of course, that a partial dividend never con-
tains the complete divisor more than ¢ times. Hence the divisor
28 can not have partial dividends as large as 280 or 281. The
largest partial dividend for any given divisor is 1 less than 1o times
the divisor; the smallest partial dividend in ea.n case is o. There-
fore the total number of partial dividends equals 10 times the
divisor,

Method of studying the divisors. We will now give the de-
tails concerning the examination of each partial dividend for the
divisor 28. For each partial dividend from o to 27 the quotient is
« a fact which is immediately evident on inspection, as explained
under Rule 11T on page 263. For the dividends 28 and 29 the quo-
tient is r, a fact which is also evident on inspection. This gives
30 cases in all from o to 29 where the correct quotient is found by
inspection, that is, by Rule III. Hence the divisor 28 is credited
with jo0 *rights” which are entered in Column R in Table XII!
on page 273.

We now continue the study of the divisor 28 in its relation to
each partial dividend from 30 to 279. this study first being made
with respect to Rule . The results are recorded in Table VIII on
page 200, Beginning with the dividend 30, we apply Rule I to this
case, thinking 32, which gives a quotient of 1, this quotient
being correct. Hence in Table VIII, under Rule I, the divisor 28 is
credited with 1 “right,” this credit being for the dividend 3o0. In
Table VIIT the “rights™ are placed in Column R. In the same way
we examine the dividends 31 to 39 and obtain o more “rights,”
which are entered after the divizor 28 in Column R. When we
study the dividend 4o, however, the situation changes because 4o
divided by 28 gives a quotient of 1, whereas Rule I applied to 40
gives 4--2, or 2. Hence, in this case, Rule T gives a quotient that
is wrong by 1, this fact being credited in Table VIIT in the column

YIn Table X111 the number of cases after cach divisor includes all partial div-
idends from o up to the end of the decade in which the divisor appears; for exam-
ple, for the divisor 52 it is assumed to be self-evident that the quotient is o or 1 for
all partial dividends from o to 59 inclusive, 39 being the end of the decade in which
§2 appears.
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TABLE 1

Divisors Expineg IN 1

TABLE III
Divisors ENDING IN 3

Rule I Rule I
Divisor | Total Cases R W Divisor | Total Cases R W W
21 180 136 44 23 20u 73 112 1§
31 250 220 44 33 290 153 132
41 360 316 44 43 3% 248 132
st 450 400 44 53 a7 338 132
o1 540 400 34 63 500 428 132
71 030 5§80 44 53 650 518 132
81 r20 656 44 83 740 608 132
91 S10 706 44 93 830 093 132
Totals g 3uho 3008 352 Totals l 4120 , 3009 | 1030 15
; T N : ) 1
Per cent | 100.007¢ ‘1. 117 (1 8. 8917, Per cent { 100. 007 ;74.49','} 25. 15‘,'2; 0.30%p
' { | i

R =Right on first trial.

TABLE II

Wi=Wrang by 1. Wi=Wrong by a.

Divisors Expine 1y 2

TABLE IV
Divisors ENDING IN 4

marked W, which

Rule I Rule I
T e e e s e L _..
Divisor  "Total Cases! R Wy Divisar jTotal Cases R W W

i ' HERRE—" ————— . . . . e em— - ——— e —— w 8- - — e
———— - | - L ;
22 190 1o2 f SN 24 210 58 108 44
32 L 280 192 b 34 300 120 1602 12
42 | 370 282 his 44 R L) 214 170
52 0 4uo 372 S8 54 430 . 304 150
62 1 550 402 88 04 sio | o304 | 156
72 040 552 hi T4 bho 454 150
N2 730 042 88 N4 550 574 150
02 ! N2 532 S8 04 sS40 004 170
T T e e e e e dit |__.._..._ T e e - e ———— ————
323 [ { Ty i) ) i
Totals | 4040 | 3330 | o4 , l LFotals , 4200 ! 2818 | 1320 l 50
R T [ P vy S
Perceat 100 oo 257 0143 i Per cent ' 100 0o 07 1070 31 50 1.33%
H . H | | 1

means “wrong by r." Similarly, in applying

Rule I to each of the partial dividends from 41 to 49, we get g more
quotients that are wrong by 1, these being entered also in Column
W,. We proceed in this way, examining each partial dividend in
turn until we arrive at dividend 279. In some cases we find that
Rule I gives a quotient that is wrong by 2, such cases being entered

ERIC

Aruitoxt provided by Eic:
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TABLE V
Divisors ENDING IN §

l Rulel Rule II
Divisor | Total Cases R Wi Wi R W Wi
25* 220 50 120 50 50 140 30
35 310 10§ 170 35 10§ 200 3
45 400 180 210 10 180 220
§5 490 270 220 270 220
65 58¢ 360 220 360 220
75 670 450 220 450 220
85 760 540 220 540 220
05 850 630 220 630 220
Totals 4060 2535 1480 45 2535 1520 5
Per cent | 100.0005| 62.44%% | 36.45% | 1.11% | 62.44% | 37.44% | 0.12%

* The divisor 25 is inserted for convenience but the figures following the divisor are not included in
the totals at the bottom of the table since the divisor 25 is considered as coming under Rule IV,

TABLE VI
Divisors ENDING IN 6

Rulel Ruie I1
Divisor Total Cases R w, W; Wi R Wi Wi
26 230 46 106 76 2 72 150 8
30 320 92 192 36 144 156
46 410 156 244 10 234 176
50 500 236 2064 324 176
00 590 326 2064 414 176
=6 630 416 204 504 176
K] 770 500 264 504 176
ah 8vo 596 264 634 176
Totals | 4300 I 2374 l 1562 I 122 ' 2 2970 | 1382 8
Percent | roo.00”e ;54.45‘,'{,;42.71’fo 2.80 io 04 ¢ 8. xz‘_ig.:p .70%! 0.18%%
!

in Column W,. The dividend 128 is an example of this kind. If
we actually divide 128 by 28 the true quotient is 4 but according to
Rule I the quotient is 12 =+ 2, or 6, which is wrong by 2. Hence the
entrv for 128 is put in the W, column. After completing the ex-
amination of all the dividends for the divisor 28 we find that we
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TABLE VII
Divisors ENDING IN 7

Rule I Rule I
Divisor | Total Cases R Wi Wy Ws R Wi
27 240 43 97 89 11 108 132
37 330 84 184 62 198 132
47 420 139 254 27 288 132
57 510 208 206 6 378 132
67 600 292 308 468 132
77 690 382 308 558 132
87 780 472 308 648 132
97 870 562 308 738 132
Totals 4440 2182 2063 184 11 3384 1056
Per cent | 100.00% | 49.15% | 46.46% | 4.14% 0.25% | 76.22% | 23.78%,

TABLE VIII
Drvisors EnpiNG v 8
Rule X Rule IT

Divisor | Total Cases R W, Wi Wi R W

28 250 42 88 96 24 162 88

38 340 78 172 90 252 88

48 430 126 256 48 342 83

58 520 160 312 20 432 88

68 010 262 344 4 522 88

78 700 348 352 612 88

38 700 438 352 702 88

08 i 8% 528 352 792 83
Totals ! 4520 l 2010 I 2228 258 , 24 3816 704
Per cent xoo.oo‘,‘a{ 44.47% [ 40.29% | 5.71% ’ 0.53%0 | 34.42%5 | 15.58%%

have 42 cases in Column R, 88 cases in Column Wy, 96 in Column
W, and 24 in Column W, all of this being shown in Table VIII.
In all we have entered 250 cases in Table VIII, the remaining 30
cases being entered in Table XII. This accounts for the 280 partial
dividends that belong to the divisor 28.

We now do the work for the divisor 28 all over again, examining
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the partial dividends 30 to 279 in relation to Rule II instead of
Rule I. The results of this study are shown under Rule II in Table
VIIL. The partial dividends o to 29 continue to be handled by
inspection and hence remain in Table XII.

TABLE I
Divisors ENDING IN ¢

Rule I Rule IT
| -

Divisor | Total Cases ' R Wy Wy Wi Wy W R W
10 150 10 31 40 40 33 5 126 44
29 200 41 84 03 42 216 44
39 350 74 159 Ity 3 300 44
49 440 s 248 74 390 44
59 530 RS 318 39 436 44
09 b0 1 239 | 3006 15 570 44
) 710 l 310 392 2 066 44
89 Sco I 404 306 756 44
@ soo | so4 | 300 846 | a4

Totals l 4770 188 | 2300 | 377 | 85 | 35 | 5 | 4374 | 396

. ’ oy - ~r| = vé 4
Per cent | 100.00%¢: 39.370¢ 50.u‘,.;.:;.go‘_.c:x.78‘,,_\io.73f,clo.le(ior.;'o% 8.30%
' . |

The abave totals include the didsor 1.

We next study the divisor 38 in connection with all its partial
dividends, this study being made first with reference to Rule III,
then with reference to Rule I. and finally with reference to Rule II.
We note that the divisor 38 has 380 partial dividends to be studied
whereas the divisor 28 has only 280 such dividends. In fact, as the
diviszor becomes larger, the number of possible partial dividends
increases. After the work for the divisor 38 is completed, the other
divisors ending in 8 are studied in like manner. Table VIII gives
the complete results for all the divisors ending in 8. except for the
inspection cases which appear in Table XII. Examining Table VIII
we find that Rule I gives results that are right in 2010 cases, wrong
by 1 in 2228 cases, wrong by 2 in 238 cases, and wrong by 3 in 24
cases, It should be observed that the results are wrong by 1 more
often than they are right. Comparing the 2010 “rights” with the
totzl of 4520 cases svudied in Table VIII, we find that Rule T gives
tne right quotient in 44.47¢¢ of the cases. Examining these 4520
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cases with reference to Rule II we find from Table VIII that Rule II
gives the right quotient in 3816 cases, which are 84.42% of all the
cases, Comparing this 84.42%¢ with the 44.479¢ obtained for Rule I
we see that, for divisors ending in 8, Rule II is almost twice as
efficient as Rule I with respect to the number of “rights” that it
produces on the first trial.

Every other divisor from .9 to g9 was studied in the same way
as the divisors ending in 8, the results being given in Tables I to IX
on pages 267-270. Examining Table IX we find that for divisors
ending in 9, Rule II produces “rights” on first trial in g1.70% of
the cases, whereas Rule I produces “rights” on the first trial in only
39.37% of the cases. Thus we see that, for divisors ending in o,
Rule 1T is much more than twice as efficient as Rule I with respect
to the number of “rights.”

In Tables I to IV it should be noted that the divisors ending in
I to 4 are studied only with respect to Rule I whereas in Tables V
to IX the divisors ending in 5 to ¢ are examined both for Rule I
and for Rule II. The reason that we do not study the divisors end-
ing in 1 to 4 with respect to Rule II is because no one would use
that rule with this group of divisors.

Results of using Rules I and II. Using the figures given
in Tables I to IX we are now able to compile Tables X and XI.
Table X summarizes the results when Rule I is applied to all
divisors ending in 1 to 5: Table XI gives the results when botk
Rule T and Rule II are applied to all divisors ending in 6 to .
From Table X we see that Rule I has been applied to divisors end-
ing in 1 to 5 in a total of 20,380 cases and that out of this number
Rule I gives the right quotient on first trial in 15,366 cases, or in
75.40¢¢ of the total cases. From Table XI we find that Rule I has
been applied to divisors ending in 6 to ¢ in 18,090 cases and that
out of this number Rule I gives the right quotient on first trial in
8444 cases or in 46.689% of the total cases. In other words, Rule I is
far more effective when applied to divisors ending in 1 to 5 than it
is when applied to divisors ending in 6 to ¢, giving “rights” in
75.407¢ of the cases for divisors ending in 1 to 5 and “rights” in
only 46.68¢¢ of the cases for divisors ending in 6 to 9. On the other
hand, if Rule II is applied to divisors ending in 6 to o, Table XI
shows that it gives “rights” in 80.40¢¢ of the cases, It is very evi-
dent, therefore, that to use Rule I for divisors ending in 1 to 5 and
to use Rule II “r divisors ending in 6 to g gives much better results
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TABLE X
SumMARY FOR Divisors ENDING IN 1 TO §

Rule T
Divisors |, ~
i Total Cases
E in
nding R W Ws
1 3,960 3,608 352
2 4,040 | 3,336 704
3 4,120 3,000 1036 15
4 4,200 2,818 1326 56
5 4,060 | 2,535 | 1480 45
Totals | 20,380 | 15,366 4808 116

Per cent | 100.00% | 75.409% | 24.03% | ©.57%

TABLE XI
SuMMARY FOR DIvisoRs ENDING IN 6 To g

Rule I Rule II
Divisors Total

Ending in { Cases

R w Y W W W, R Wi Wi

6 4.360 2314 1862 122 2 32,970 | 1382 8
7 4.440 2182 2063 184 I 3,18 1056
8 4,520 2010 2228 258 24 3.5816 704
9 I a.770%| 1828 2390 377 8s 35 s 4.374 306
Totals | 18,000 | 8443 | 8543 | ot | 123 | 35 S Jt4.544| 3538 | 8

Per cent !xoo.oo% 46.68%5 1 47.23%5 ] 5.205¢10.675 1 0.195% | 0.03¢ 80.40%% | 19.56%| 0.04%

* The cases for the divisor 19 are included in this group both for Rule I and Rule II.

on the first trial than to use Rule I exclusively for all divisors.
Such a combination of Ruies I and II is used in System A.
Results of using Rule IiY. Having studied the results of using
Rules I and II let us now study the results of using Rule III, by
which quotient figures ure obtained by inspection, The use of
Rule TII has already been described somewhat on page 263 and
also on page 266 in connection with the study of the diviscr 28.
We will now consider this rule in its relation to all other divisors
from 11 to 99 inclusive.? In connection with each of these divisors
we examine those partial dividends which are such that it is clearly
evident on inspection that they contain the divisor once, or that

* The multip'es o~ such as 20. 30, etc.. are not included in this group since they
are not regarded us study as long division divisors.
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they do not contain it at all. In other words, for each divisor we
consider those dividends where it is immediately evident that the
quotient is either o or 1. For example, for the divisor 11, it is evi-
dent that the quotient is o for the partial dividends from o to 10.
It is also evident that the quotient is 1 for the partial dividends
from 11 to 19. We stop at 19 merely beca:se 19 is in the same
decade as the divisor 11, that is, we assume that it is easily seen that

TABLE XII
Cases WHERE QuoTiENnT Is EVDENT BY INspECTION, Using Rute III
D = Divisor R = Number of cases that are right on first trial

D R D l R D R D R D R
11 20 fwd. | 420 fwd. | 1110 fwd. | 2080 fwd. | 3330
12 20 29 30 47 50 63 70 83 go
13 20 31 40 48 50 66 70 84 90
14 20 32 40 40 50 67 70 85 90
15 20 33 40 51 60 68 70 86 90
16 20 34 40 52 6o 69 70 87 90
17 20 35 40 53 60 71 8o 88 9o
18 20 36 40 54 60 72 8o 89 90
19 20 37 40 55 60 73 8o 91 100
21 30 38 40 56 6o 74 8o g2 100
22 30 39 40 57 6o 75 8o 93 100
2 30 41 50 58 6o 76 8o 94 100
24 30 42 50 59 6o 77 8o 95 100
23 30 43 50 01 70 78 8o 90 too
2b 30 44 50 62 70 70 8o 9r 100
27 30 43 50 63 7o 81 90 98 100
23 30 46 50 64 70 82 9o 99 100

420 1110 2080 3330 Total ; 4860

Al} cases given in the above table have quotients equal to o or 1.

the quotient is 1 when the partial dividend is equal to or greater
than the divisor, with the restriction that the partial dividends
giving a quotient of 1 must be in the same decade as the divisor.
With these assumptions in mind, let us apply them to several other
divisors. For the divisor 21 the partial dividends which give a
quotient oi either o or 1 range from o to 29, making 30 partial divi-
dends in all; for the divisor 85 these partial dividends range from
o to 89, making go partial dividends in all; whereas, for 57 they
range from o to 59, making 6o partial dividends in all. All this
work, of course, comes under Rule III, which was described on
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page 263. Table XII on page 273 lists the number of partial divi-
dends for each divisor where Rule 111 applies. From this table it is
seen that there is a total of 4860 cases where it is immediately evi-
dent that the quotient is either o or 1. These 4860 cases are con-
sidered, therefore, as 4860 “rights.” There are no cases under
Rule I1I where the quotient is wrong by 1 or 2. Rule ITI, therefore,
is a very satisfactory rule in that jt always gives the right quotient
immediately,

Results of using Rule IV. We will now consider Rule IV, de-
scribed on page 264, which treats of the multiples of the divisors
11, 12, and 25. Tt is assumed that the pupil has memorized the
multiples of rr and 12 through the tables, at least up to ¢ times
each of these divisors. It is also assumed that the pupil knows the
multiples of 25 through his acquaintance with our money system.
If a child knows the multiples of r1. 12, and 25 he will apply them
in long division in the same way that he applies the multiples of 7
in short division,

For the divisor 11 the total number of partial dividends that can
exist is 110, these dividends ranging from o to rog. We have
already assumed that for the divisor 11 the partial dividends fro::
o to 19 will be handled by inspection, as is shown in Table XI; on
page 273. This leaves go partial dividends where it is expected that
the memorized multiples of 11 will be applied. In these go cases,
therefore, the right quotient will be obtained at once since we merely
compare each partial dividend with the appropriate multiple of 11.
Similarly, for the divisor r2 there is a total of 120 partial dividends,
20 of which have been assigned to Rule IT1, as shown in Table XII.
This leaves 1co partial dividends where the multiples of 12 will be
applied, these 100 cases giving the right quotient on the first trial.
For the divisor 25 there are 230 partial dividends in all, 30 of which
have been assigned to Rule III, leaving 220 partial dividends to be
handled by the multiples of 25. Thus we have 220 more cases
where the right quotient is obtained on the first trial. Summing
this up, for the divisors 11, 12, and 25 we have 90 -+ 100 -} 220, or
410 cases where memorized multiples will be used. Hence Rule IV
will be credited with a total of 410 cases. all of which give the right
quotient on the first trial.

Summary of System A. We have fully discussed Rules I, II,
ITI, and IV and have shown how effectively these rules apply to the
partial dividends that are assigned to them. We are now ready to
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combine the results with reference to these four rules in Table XIII
which appears on this page. This table is really a summary of the
system of long division advocated by the author, which we have
designated as System A. Table XIII shows that System A com-
prises a total of 43,740 cases in long division and that this system
gives the right quotient figure on first trial in 80.43% of all these
cases, a quotient that is right within 1 in 19.29% of the cases, and
a quotient that is right within 2 in 0.285, of the ases. In other
words, this system gives the right quotient on first trial in 4 out of

TABLE XIII
LoNG DIvISION—SUMMARY OF SysTEM A

Total Cases R Wy Wy

Rule I. (Divisors ending in 1 to 5.) | 20,3% | 135,366 4398 116
See Table X.

Rule II. (Divisors ending in 6 to ¢ in- | 18,090 | 14,544 33538 8

cluding 19} See Table XI.
Rule I11. (Quotient evident on inspec- 4.800 1,860
tion.) See Table XII,
Rule IV. (Multiples of 11, 12, and 23.) 410 410
See page 264.

Totals - 43.740 I 35,180 8436 124

Per cent ;xoo.oo',‘{,! 80.4370 | 19.297¢ | ©.28¢¢
i !

every 5 cases, the remaining cases having almost always a quotient
that is right within 1. In making the statement that the remaining
cases are almost always right within 1 we base it on the fact that
quotients that are wrong by 2 occur in only 0.28% of all the cases
which means that they occur in only 1 out of every 357 cases.
To put this another way, in working problems in long division ac-
cording to System A, only 1 out of every 5 quotient figures has to be
corrected and, in general, only a single correction is needed. So far
as the author knows, no other system of long division has ever been
presented which is as effective and as practical as System A.

Trial and error cases. The partial dividends connected with the
divisurs 13 to 18 have been included in System A only to the extent
to which they come under Rule III, that is, only those partial
dividends have been included for these divisors where the quotients
are evident on inspection. The remaining cases relating to these
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divisors, which total 810 cases, are treated on the principle of trial
and error since neither Rule I nor Rule II can be effectively applied
to these cases without obtaining a large number of wrong quotient
figures. This means that in the 810 cases just mentioned one
guesses or estimates a quotient figure and then multiplies mentally
or otherwise to see whether the figure is right. If the figure is
wrong, it is corected, being made either larger or smaller as the
situation may require. If the remainder is larger than the divisor
the pupil knows that the quotient figure must be made larger. If
the product obtained is larger than the partial dividend the pupil
knows that the quotient should be made smaller. It is important
to note that in working problems by the trial and error method,
the quotient figures sometimes have to be made larger and some-
times smaller, hence the pupil has to be acquainted with two ways
of correcting quotient figures, this being true regardless of the sys-
tem of long division that the pupil follows; for a further discussion
of this matter, see page 283.

It is of interest to note that after one has gained some experience
in working with the divisors 13 to 18, he memorizes certain of the
multiples of these divisors. Most adults and many children will
immediately tell you the product in such cases as 2 X 15, 3 X 13,
4 X 15.1nd 5 X 15. In fact, the multiples of the divisors 13 to 18
up to 5 times each of these divisors are usually remembered uncon-
sciously after a certain amount of experience in computing. To the
extent, therefore, that these products are memorized, the trial and
error element disappears and the number of correct quotients ob-
tained on first trial greatly increases. Hence, while theoretically
there are 810 cases that we have assigned to be worked by trial and
error, in practice it happens that about 400 of these cases are worked
by using known multiples of the divisors, ju:t as one works exam-
ples where the divisor is 11 or 12. This ‘eaves only about 410
cases that have to be worked by trial and error. Even in these 410
cases the trial and error process can be speeded up considerably i
children are taught mentally to multiply the divisors 13 to 18 by
any number from 1 to g, beginning the multiplication with the ten's
figure of the divisor rather than with the unit's figure. For example,
to multiply 17 by 5 mentally think “5X 10=350. 35X 7= 33.
50+ 35 = 85.” To muluply 18 by 7 think “70 4 56 = 126.” After
a little practice with this mental multiplication it is surprising to
find how quickly it can be done,
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Summary of System B. System A, which has just been de-
scribed, applies Rule I to divisors ending in 1 to s and Rule II to
divisors ending in 6 to 9. It is possible, of course, to perform the
operation of long division without any use of Rule II whatever,
making use only of Rule I, together with inspection and the multi-
ples of 11, 12, and 235. Such a system of long division will, for
convenience. be called System B to distinguish it from System A,

Let us now determine the efficiency of System B as a whole. In
this connectivn we should first point out that System A consists
of a total of 43,740 cases; this includes 170 cases® helonging to the
divisor 19, which are handled by Rule IT, In System B, however,
it seems more sensible to include the divisor 19 in the group of
divisors from 13 to 18 which are treated by trial and error. An
examination of Table IX on page 270 will show that the divisor 19
gives very pool iesults if included under Rule T since it gives quo-
tients that are wrong all the way from 1 to 5, Hence to include
the divisor 19 under Rule I in System B would put that system at
a distinct disadvantage. Further, no experienced computer would
apply Rule I to the divisor 19. For these reasons System B will
not include the divisor 19 under Rule I, hence it will have 170 cases
less than System A. This will give System B a total of 43,740 — 170,
or 43,570 cases. Those who follow System B will include the divisor
19 in the trial and error group.

TABLE XIV
Loxe Diviston—SUuMMaRry oF SvstEv B

e e —— e ———————em

(TotalCases: R0 Wi | Wy | wa

Rule L. (Divisors ending in 1 to 5) See |
Table X, ; , . i
Rule I. (Divisors ending in 6 to g omit- 17920 S.325 8,512 ogor ! Ra
ting 10.)  See Table XV, i : : i
Rule ITL. {Quotient evident on inspec- ;4,800 . 4,800 i ;
tion} See Table XIIL , ) :
Rule IV, (Multiples of 11, 12, and 25.) | 410 | 410i ;
Sev page a0y, i i i '

0,380 15,306 4,898 x.mi'

Totals ' 43.570  20,0b1 13.410 1017 ¢ 83

Percent 100.00"; 670" 50 =877 2.337 0.1

* There are, of course. 1o0 partial dividends in all for the divisor 19, of which 20
are handled by Rule III. See Table XII.
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The necessary facts concerning System B are given in Table X1V
on page 277, from which it is evident that System B as a whole
gives “rights” on first trial in 66.70%¢ of the cases, quotients that
are wrong by 1 in 30.78¢%¢ of the cases, quotients that are wrong by
2 in 2,339 of the cases, and quotients that are wrong by 3 in 0.19%%
of the cases. The corresponding facts for System A as a whole are
given in Table XIII on page 27s.

CoMPARISON OF SYSTEM A WITH SysTEM B

A comparison of these two systems as a whole shows that System
A gives “rights” in 80.43¢¢ of the cases while System B gives
“rights” in only 66.70% of the cases. Likewise, System A gives
quotients wrong by 1 in only 19.29% of the cases in comparison
with 30.78¢% for System B. System .\ has cases wrong by 2 in
only 0.28% of the cases in comparison with 2,33% for System B.
System A has no cases wrong by 3 while System B has 0.19% of
the cases wrong by 3.

It is shown above that the “rights” are 80.43%¢ for System A and
66.705~ for System B, making a difference of about 14¢¢ in favor
of System A. This advantage of 145¢c becomes far more significant
when we apply it to the total number of cases involved since it
means that System A has over 6ooo mc.e “rights” than System B.
Further, System -\ avoids much of the correction of quotient figures
that is necessary in System B.

It is of interest to compare System B with System A not only
in respect to the systems as a whole, as we have done above, but
also with respect to certain aspects of these systems. Naturally,
the only difference between these systems, with the exception of
the treatment of the divisor 19. is that System A uses Rule Il for
divisors ending in 6 to ¢ while System B continues to use Rule I
for this group of divisors, So far as divisors ending in 1 to 5 are
concerned both systems are identical. If the divisor 19 is left out of
consideration, since it is treated differently in the two systems, we
have 17,920 cases involving divisci- ending in 6 to ¢ which are
treated by Rule'l in System B and by Rule IIin System A. Hence
such superiority as System A may have over System B depends en-
tirely upon the handling of these 17.920 cases. In any comparison,
therefore, attention must be centered particularly upon this group
of cases.

Comparing Rules I and II. A summary of the results of apply-
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TABLE XV
Cousanason o Ruras I avn IT 200 Devisoas
™ e 09
TowlCam| 1 " " "
RuleI 1eee | 48 (1T (1] [ 1
100.00% | 47.01% | 47.50% | 5.05% | 0.45%
8 _l
Ruetn |— 9% [ 14417 | a4
100.00% | 80.45% | 10.50% | 0.04%
 In this comparisen the diviser 19 ls omitied.

ing both Rules I and II to these 19,010 cases Is given above in
Table XV. Studying this table we find that out of 17,020 Cases,
Rule I gives 842 “rights” on first trial, hence Rule I is right in
47.01% of the cases. When Rule II is applied to these 17,920
cases it gives 14,418 “rights,” hence Rule II is right in 80.46% of
the cases. It is apparent, therefore, merely by comparing the per-
centage of “rights” for each rule that the argument s decidedly in
favor of Rule II for divisors ending in 6 to 9. This comparison,
however, is further strengthened in favor of Rule II if we also
study the cases that are not right. While Rule I is right in 8423
cases it gives a quotient that is wrong by 1, 2, or 3 in 9493 cases,
which means that the “wrongs” are more frequent than the “rights.”
Attention is also called to the fact that in 983 cases the quotients
are wrong by 2 or 3. In contrast, Rule II gives 14,418 “rights” and
only 3so2 “wrongs,” practically all of these “wrongs” being wrong
only by 1. The cases which are wrong by 2 are almost negligible
since there are only 8 such cases out of a total of 17,020 cases,
which means that in only 1 case out of each 2240 cases is the quotient
wrong by 2. In view of these considerations there is not the slight-
est question wit'1 reference to the superiority of Rule IT over Rule I
when applied to divisors ending in 6 to ¢, Further, it should be
pointed out that there are still other considerations besides the
statistical superiority just meutioned that give Rule IT distinct
advantages over Rule I, these considerations being discussed below.

Cases causing difficulty with Rule I. When Rule I is applied
to divisors ending in 6 to g there are 2400* very awkward cases that

¢ These 2400 cases do not include those belonging to the divisor 19,
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arise where the application of Rule I to the partial dividend pro-
duces a two-figure quotient such as 10, 11, 12, 13, or 14 instead
of a one-hgure quotient, which we expect in long division. Exam-

ples of this situation are s8)205, which gives a quotient of 10,
26)227, which gives a quotient of 11, 39) 364, which gives a quotient

of 12, 28268 which gives a quotient of 13, and 29)284 which gives
a quotient of 24. In all these cases it is expected that the pupll
will consider the quotient as ¢ since a quotient figure larger than
9 is not possible.® Assuming that the quotient is ¢ in such cases, the
pupil first tries ¢ to see whether it Is right. If ¢ is too large, he
tries a smaller quotient., In many of these cases ¢ Is too large and

has to be changed to 8, 7, or 6. The example 29j202 Is an illus-
tration of the case where the true quotient is ¢ instead of 9. Since
there are 2400 of these cases out of & total of 17,920 cases it Is seen
that about t out of every 8 cases involves this awkward situation
where the quotient figure turns out to be a number anywhere from
10 to 14 when the partial dividend is divided by the first figure of
the divisor. If Rule II is applied to this group of 2400 cases this
embarrassment mever arises since Rule II always gives a one-figure
quotient and under no circumstances can it produce a two-figure
quotient like 10, 11, or 14. Furthermore, when Rule II is applied
to these 2400 cases it gives the correct quotient on first trial in 70%
of the cases; when the quotient figure is wrong, it is practically
always wrong by 1, there being only 8 cases where it Is wrong by
2. This means that it is wrong by 2 in only 1 out of every 300
cases, Rule II never produces a situation where three corrections
of the quotient figure must be made, as is sometimes necessary
when Rule I is applied to these cases. These 2400 cases cause con-
siderable difficulty not only to pupils but also to adults who are
more experienced in the use of long division. With pupils the
difficulty arises from the fact that they are not accustomed to get

quotient figures like 10, 11, 12, or 14. In fact, in a case like 26)248
where the quotient figure must be considered as 12 it is more natural
for the pupil to think 2 <- 2 = 1, thus getting :i quotient of 1 instead
of 12. Due to the confusion that arises when Rule I is applied to
these cases there is a tendency, especially wi'h adults, to abandon

*Throughout this study in compiling the facts for Rule I in Tables I to XV a
quotient of 1o or more has been considered as 9} if 9 was right, it was called &
“right.” On the other hand, if 9 was wrong, this result was counted “wrong by 1"
ot “wrong by 2" as the ciy: wmight be.
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Rule I when these situations arise and to handle these particular
cases b Inspection or by trial and error.

If we should deliberately take these cases out of System B and
decide to handle them Ly trial and error, we would naturally put
System B at a distinct disadvantage because we would greatly in-
crease the trial and error cases. An efficlent system of long division
must give a definite result on the application of a given rule, hence
such a system does not include any wure trial and error cases than
are absolutely necessary, The situation would not be so unfavorable
with reference to these 2400 cares if Rule I applied to these cases
produced quotient figures of only 10 and 11, but it does complicate
matters when these quotient figutes run up to 12, 13, and 14 because
the child has first to think of 12, 13 or 14 as 9 and then often has
to make other corrections, It should be emphasized again that
these awkward situations can be avoided if Rule II is used since
in all these 2400 cases Rule II gives only a single quotient figure.

It is true, of course, that there are also some situations of the
kind just discussed that are connected with divisors ending in 1 to
5. Fortunately, however, there are only 1150 such cases® and In
1080 of these cases the quotient is alwuys 10, the remaining 70
cases giving a quotient of 11. Another merit of these 1150 cases
is that when we think of 10 or 11 as 9 it nappens that ¢ is the
correct result in 1101 cases. In other words, we get 1101 “rights”
out of riso cases. It is apparent, therefore, that the 1150 cases
connected with the divisors ending in 1 to g that give quotients of
10 of 11 are far less numerous and much less complicated than the
corresponding 2400 cases connected with the divisors ending in 6
to 9, which give quotients from 10 to 14 and which require many
more corrections of the quotient figures.

We have already pointed out that these 2400 cases tend to en-
courage the users of Rule I to abandon that rule with respect to
these particular cases and to use trial aud error instead. The mo-
ment we encourage trial and error, we likewise encourage mental
methods of checking quotient figures such as those described under
Methods C, D, and E on pages 258-261. It has been made clear
on those pages that mental methods of checking quotient figures
are contrary to the interests of an automatic system of lona division
and greatly increase the amount of time neressary to do long divi-
sion problems.

* These 1150 cases do not Include cases connected with the divisor 28,
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Arguments againat Rule II. In regard to Rule II the opponents
of that rule argue, of course, that those who use Rule I never
have to increase the first Agure of the divisor by 2, this being neces-
sary when Rule II is used; they seem to regard such an increass
of the first figure of the divisor as something undesirable. While
it does take a little time to form the habit of increasing the frst
figure of the divisor, this habit socon becomes a mechanical one and
never requires an exercise of judgment or any skill in estimation
like that which i{s necessary when one uses mental methods of
checking quotient figures, such mental methods being frequently
needed If one uses Rule I exclusively. It has always se 1ed amus-
Ing that the critics of Rule II are never disturbed in the slightest
when they ask a child who uses Rule I to think of a trial quotient
of 13 as ¢ when it occurs in the many troublesome situations dis-
cussed on page 280. But these critics never cease to complain when
one who advocates the use of Rule II asks a child to think of g9 as
60o. In the former case the child veally does not undersiand why
he changes 13 to 9; he does it because he is told to do so. A child
can readily understand, however, the reason for thinking of so as
alniost 6o.

In deciding, therefore, whether to use Rule II we have to wejgh
carefully the consequences of not using it, the chief of which are
the repeated corrections of the quotient figures that become neces-
sary when only Rule I is used and the necessity of learning mental
methods of checking quotient figures in order to reduce the number
of corrections actually made. Certainly it is a relatively simple
matter to form the habit of increasing the first figure of the divisor
by one as compared with constantly facing the many annoyances
that are bound to arise if Rule II is not used.

In considering any skill that is connected with long division we
must remember that the value of that particular skill depends not
only upon the frequency with which we use it in long division but
it also depends upon how often it proves to be a skill that can be
generally applied in various fields of arithmetic, that is, outside the
field of long division. The habit of thinking of 29 as 30, or of 48
as $o, which is the predominant habit connected with the use of
Rule II, is an extremely important one in arithmetic, being basically
essential in all our work in “rounding off”’ numbers. When we are
working problems involving money and get an answer like $1.579
we, of course, think of it as $1.580 or $1.58, which means that 79
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is rounded off to 80. Similarly, when an advertisement in a news-
Paper states that hats are to be sold for $1.49 we know that this
means practically $1.50. Likewise, if 29 children out of a class of

40 have defective teeth, we often think of ig as about i since we

think of 29 as approximately go. The point to be emphasised is that
frequently throughout srithn-etic we are obliged to round off num.
bers and to get approx.mate answers. In fact, much stress {s put
upon this kind of thing in arithmetic today, particularly in connec-
tion with estimating in advance the answer to a problem, for all
estimatiag involves the rounding off of numbers. It is apparent,
therefore, that when we use Rule II in long division, which requires
us to think of s7 as 6o, or of 39 as 40, we are cultivating one of the
most useful skills in arithmetic which in everyday life we will prob-
ably apply far more often in other situations than in long division,

The other argument that the opponents of Rule II so frequently
present [s that when Rule II gives the wrong quotient figure the
correct quotient figure is always larger than the trial quotient figure,
whereas when Rule I gives the wrong quotient figure the correct
quotient figure is always smaller than the trial quotient figure, This
means that if we use both Rule I and Rule II we have to becoms
acquainted with two methods of correcting quotient figures, some-
times making them larger und sometimes making them smaller, It
is urged that if Rule I is used exclusively only one method of cor-
recting quotient figures is needed, which is to make them smaller,
the assumption being that those who use Rule I exclusively never
have any occasion to correct quotient figures by making them
larger. This assumption is, of course, entirely without foundation
because no one can build a system of long division in which all
quotient figures are found by Rule I. Any system which uses Rule I
exclusively also has a considerable need for the method of trial and
error, which means that a quotient figure is tried and then made
larger or smaller as the case requires, The facts are that there is
fur more trial and error used on the part of those who confine them-
selves to Rule I only than there is by those who use Kule I in con-
junction with Rule II, that is, by those who use System A, The
argument, therefore, that Rule I avoids the necessity of learning
two ways of correcting quotient figures has little weight because one
has to know these two ways when he works examples by the trial
and error method.
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1t should be emphasized that when a pupil Ands that a quotient
figure I wrong he is never in any doubt whatever as to whether to
make the figure larger or smaller if he has been given proper
training with respect to two essential skills in long division, these
skills relating to the comparison of each new partial product with
the purtial dividend and the comparison of the remainder with the
divisor. These skills were deacribed more fully under Methods A
and B on pages 257 and 28,

There is still another consideration in connection with this matter
of vorrecting quotient figures, \Whether the figure be too large or
too small, in general only one correction is necessary when System A
is employed, whereas two or more corrections are frequently neces.
sary when System B is used.

Summary of advantages of Rule II. Summing up this matter
with respect to the advantages of Rule II over Rule I for divisors
ending in 6 to 9, the following points descrve emphasis:

1. Referring to Table XV on page 279 we find that out of a total
of 17,920 cases Rule II gives the right quotient figure on first trial in
80.40%: of the cases whereas Rule 1 gives the right quotient figure
in only 47.01% of the cases. Further, if the quotient figure is not
right on first trial, Rule II requires, in general, only a single cotrec-
tion? of the quotient figure while Rule I may require two or three
corrections.

2, Rule Il avoids all the difficulties arising from 2400 cases where
Rule I produces a two-figure quotient ranging from 10 to 14. In
these cases Rule II gives a one-figure quotient. These 2400 cases
represent 2400 out of 17,920 cases. Hence, if Rule IT instead of
Rule 1 is used for divisors ending in 6 to ¢, difficulties are avoided
that otherwis. would arise in 1 out of every 8 cases,

3. Rule II gives pupils excellent training in “rounding off” num-
bers, which is a very useful accomplishment in arithmetic.

4. When Rule II is used with Rule I the pupil does not have to
learn any more methods of correcting quotient figures than are
necessary if he uses Rule I exclusively. Those who use only Rule I
must know two ways of correcting quotient figures in order to
work examples by the trial and error method, such cases occurring
moere often when Rule I is used exclusively than when both rules

are used.

'Rule 11 requires two corrections of the quotient figure in only 8 out of 17,920
cases, that is, in only 1 out of every 2240 cases.
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AtTEMPTs T0 IMPROVE SvsTEm B

All those persons who have had an extended .xperience with
System B, which uses only Rule I, realize that ‘ney have a great
deal of correcting to do in connection with their quotient figures,
Hence we see various attempts to improve § ystem B and at the
same time to retain Rule I as far as possible.

Modifications of System B. One of the modifications of Sys-
tem B most frequently used is that in which Rule II is upplied
only to divisors ending in 9 while Rule I is applied to divisors end-
ing in 1 to 8. Such a plan gives a system of long division in which
there i a larger percentage of “rights” on the first trial than is
possible when Rule I is used exclusively for all divisors. In this
modified system the exact effect of applying Rule II only to di-
visors ending in ¢ is shown by consulting Table IX on page 270.
This table shows that there are 4770 cases in all to which divisors
ending in g can be appli *d and that Rule II gives “rights” in 91.70%
of these cases, while Rule I gives “rights” in only 39.37% of the
cases,

Another modification of System B is to use Rule II for divisors
ending in both 8 and 9 and Rule I for divisors ending in 1 to 7.
The effect of such a modification is easily determined. We have
shown above the advantages of using Rule II for divisors ending in
9. Hence we merely need to point out the additional gain that
may come from applying this rule also to divisors ending in 8. From
Table VIII on page 269 we find that the divisors ending in 8 include
a total of 4520 cases and that Rule II gives “rights” in 84.429 of
the cases while Rule I gives “rights” in only 44.47% of the cases.
It is apparent, therefore, that a long division system gains in effi-
ciency by applying Rule II rather than Rule I to divisors “nding
in 8 and g but it will not be as effective as System A, which applies
Rule II to all divisors ending in 6 to g.

From the above discussion it is easy to see why we frequently fin
people, and also textbooks, applying Rule II to divisors ending in
8 and 9. We might add that we usually find that those who follow
the above practice are glad to extend the use of this rule to divisors
ending in 6 and 7 when it is pointed out to them that, for divisors
ending in 7, Rule II gives “rights” in 76.229¢ of the cases compared
with 49.15¢¢ for Rule I (see Table VII); and that, for divisors
ending in 6, Rule II gives “rights’ in 68.12% of the cases compared
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with $4.45% for Rule I (see Table VI). It Is largely ignorance of
the facts concerning this matter that has kept many people from
using Rule II for all divisors ending in 6 to ¢, as is advucated in
System A, We should note that for divisors ending in g the per-
centage of “rights” is about the same whether we use Rule I or
Rule II, this fact being evident from an inspection of Table V on
page 268, Hence it is purely a matter of personal preference whether
Rule I or Rule II shall be used for the divisors ending in 5. System
A uses Rule I for divisors ending in 3.

The author once knew a teacher who used Rule I exclusively but
who had observed by experience that she did not have much suc-
cess with this rule for divisors ending in 9. She knew that most of
the quotients which she obtained were too large and hence needed
correction so sh? decided that whenever the divisor ended in g, she
would reduce th: trial quotient by 1 before multiplying the divisor
by it. For exaraple, {f the trial quotient were 7, she called it 6.
She had made no detailed study of the matter to determine whether
this practice was justified but she did have a feeling that with it
she got better results than otherwise. With the aid of Table IX on
pageé 270 we can determine exactly how successful her plan would
be. Under Rule I in that table we find for all divisors ending in 9,
except the divisor 19, that Rule I gives 1859 “rights,” 2350 W,
cases, 337 W, cases, and 45 Wy cases. By her plan the 1859 “rights”
would each become W, cases (with quotients too small by 1) ; the
2359 W, cases would become “rights”; the 337 W3 cases would be-
come W; cases; and the 45 W3 cases would become W3 cases. It
should be noted that Ler plan gives two groups of W, cases. Adding
these two groups we get 18594 337, or 2196 W, cases in all. It
is evident, therefore, that this teacher did improve the efficiency
of her work for divisors ending in ¢ because she obtained 2359
“rights” by her method as compared with 1859 “rights” if she had
followed Rule I in the usual way. She also obtained 2196 W,
cases as compared with 2359 W; cases by the regular plan. She had
the further advantage of changing 337 W cases into W, cases, and
45 W3 cases into W; cases. Summing it up she got more “rights”
with less correcting to do than she would have had otherwise,
though her gains were not outstanding in any way. The writer
cannot recommend this method because it is quite inferior to the

* The divisor 19 is omnitted because it is assumed that one using Rule I exclusively
would put the divisor x9 in the trial and error group.
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results obtained by the use of Rule 11 for divisors e ding in o. It
does illustrate, however, the fact that those who use Rule 1 exclu-
sively are not satisfied with it and are constantly attempting to
do something to improve its efficiency.

HistortcAL. CoNstpERaTIONS AND CONCLUSION

It will be of interest to consider Rule II historically for a few
moments. Of course there is nothing new about this rule if we
consider it merely as increasing the ten's figure of certain divisors
by 1. In English and American textbooks in arithmetic published
during the past hundred years we often find it recommended that
for divisors like s8 or 59 we should use 6 as the trial divisor. Many
of these textbooks do not give a specific rule stating the groups of
divisors to which Rule II should be applied but they imply such a
rule in the model examples which are worked out. It is in these
models that the pupil is told, for example, to think of 5o as 6o and
to use 6 as the trial divisor. There are other old books which clearly
define just how Rule II should be used. For example, in De Mor-
gan's arithmetic® published in 183%, it is stated that when the
second figure of the divisor is 5, or greater than g, the first figure
of the divisor should be increased by 1. In D, P. Colburn’s arith-
metic,'® published in 1856, a similar rule is given which reads as
follows:

When the divisor is 2 large number, it is often convenient or neces-
sary to use the nearest nu.nber of tens, hundreds, or thousands, as a
trial divisor, to determine the probable quotient figure. For example,
in dividing by 31, 32, 33, or 34 we make 30 or 3 the trial divisor. In
dividing by 36, 37, 38, or 30 we make 40 or 4 the trial divisor. In divid-
ing by 35 we may make either 30 or 40 the trial divisor.

It should be noted that Colburn leaves it to the choice of the
computer as to what rule he shall follow for divisors ending in §.
Table V on - age 268 of this article clearly indicates that there is
practically no preference of one rule over the other for divisors
ending in §.

An interestiug application of the practice of increasing the first
figure of the divisor by 1 occurs in the arithmetic of Warren Col-
burn‘s published in 1822. This practice is illustrated in a case

*De Morgan, Augustus. The Elemnents of Arithmetic. 3rd edit. London, 1835,

¥ Colburn, Dana P. The First Book of Arithmetic. Philadeiphia, 1856.

11 Colburn, Warre. Arithmetiz; A Sequel to First Lessons in Arithmetic. Bos-
ton, 1821,




288 THE TENTH YEARBOOK

like 36) 197, Dividing by the first figure of the divisor Mr. Colburn
thinks 19+ 3 which gives 6. Then dividing immediately by one
more than the first figure of the divisor he thinks 19 <+ ¢ which gives
4. ‘The upper and lower “limits” of the trial quotient, as he ex-
presses it, are 6 and 4, which suggests to him to try s as his first
trial quotient,

We see, therefore, that the practice of increasing the first figure
of the divisor by 1 in certain cases, as is repiesented by Rule 11, has
had approval for many years. The main difficulty in teaching this
practice in the past has been a lack of definiteness as to whether it
should be limited to divisors ending in 8 and 9 or whether it should
include those ending in 6 and 7 as well, This lack of agreement was
undoubtedly duc to *he fact that no one had taken the trouble to
study this matter from all points of view, both statistically and
otherwise, and to make his findinrs available, or that, if someone
had made such a study, he did not publish his results. Further,
regardless of the question as to whether Rule II should be applied
to all divisors ending in 6 to g or to only a part of this group, there
was no definite instruction showing how to avoid difficulties that
might arise if Rules I and II were used in connection with certain
cases to which neither of these rules should ever be appiied. In
other words, the use of inspection and of known multiples as devices
to take the place of Rules I and II for certain cases, and a pr )vision
for the divisors 13 to 18 through the method of trial ar.d error, had
not been made, 50 far as the author knows, until he developed Sys-
tem A in one of his college classes about ten years ago. This de-
velopment involved an enormous amount of painstaking work,
Since then several others have studied certain aspects of this prob-
lem and have published their conclusions.!?

It should be made clear that such contributio. as System A may
make to the teaching of long division does not lie wholly in the
use of Rule II for the divisors ending in 6 to ¢ but in a certain
combination of Rules I and II with other devices. By clearly de-

"Sce the following articles:

Knight, F, B. Comments on Long Division. Fourth Yearbook, Department of
Superintendence of the N.E.A., p. 268, Washingtor., 1926.

Jeep, H. H. A Discussion of Long Division. Second Yearbook, National Coun-
cil of Teachers of Mathematics, p. 41. New York, 1929.

Grossnickle, F. E. A series of three articles on long division. Ylementary School
Journal, Vol. XXXII, pp. 299, 442, and s95. December, 1931; February, Apri),

1932,
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fining the areas in which the several procedures should be applied,
System A avoids many awkward situations that otherwise might
arise. By eliminating mental testing, System A also makes it pos-
sible to perform long division automatically. System A, therefore, Is
not only theoretically an efficient system but it is a thoroughly prac.
tical one as well, For the past eight years this system has been
used very successfully in hundreds of elementary school classes.
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