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EDUTOR'S PREFACE

Tiis 1w the sixth of a series of Yearbook< whieh tiv National
Conneil of Teachers of Muthematies began to publish w1928, The
firse dealt with A Survey of Progress in the Past Twoentv-five
Yeare” the second with “Currieulum Problems in Teaching Mathe-
maties,” the thind with “Selected Topies in the Teaching of
Mathematies,” the fourth with “Significant Changes and Trends
in the Teaching of Mathematies Throuchout the World sinee 1910,
and the fifth with *The "Peaching of Geometrey,” Bound copies of
all but the first of these Vearbooks ean still he seewred from the
Burean of Publications, Teachers College, Cohunbia University,
New York, for 8195 ench.

These Yenrbooks have beens well veecived and hiave no douln
been the souree of mueh help to teachers of mathematies and to
others interestad in the nmthematies fickl, The sueeess of these
previots Yearbooks has convineed the Nutional Conmeil of the
desipahility und wisdom of continuing the sevies, The Sixth Yoeuar-
hook is necordingly presented in the Lope that it will be helpful not
ouly to secondary teachers but to intellient layme as well,

The purpose of the book i to set forth ns completely as possible
in the =pace allotted the place of mathematies in modern life,
Other ehiapters, treating of subjeets like Mathematies and Fngi-
neering, for exaaple, micht have been ineluded, buat the place of
mathementies m suel fickds is obvious, vo it was deeided best not to
melude them.

I wish to express my personal appreeintion as well ns that of the
National Council to all who have contributed to the Yearbook or
who inany way huve helped to make it what it is.

W. D. Repve,
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THE APPLICATION OF MATIHHEMATICS
'1'0 THE SOCIAL SCIENCES *
By IRVING FISHER

Yale University, New Haven, Cann.

A Personal Tribute. It may not be umiss to precede what [
have to say on Mathematies in the Socinl Sciences by a reminiscent
stutetient of my personal impressions of J. Willard Gibbs, whose
pupil I was foity years ngo. J. Willard Gibbs towered, head and
shoulders, above any other intelleet with which I have come in
contact. [ had a Fren realization of his greatness even in those
formative years in Yale College and the Yale Graduate School.
But this keen realization has grown even keener as the years have
swept by, not only because of the increased evidence of the funda-
mental value of Gibbs® work in his own chosen field but also be-
cause in my own consciousness, afte: so many details have dropped
from memory, there persists all the more clearly the strong im-
pression which Gibbs' personality and teaching made upon me,

In saying this I do not think I can be aceused of undue enthu-
sinem simply from the loyalty of a pupil to his teacher, especially
i view of the statements of Lord Kelvin and others, whieh virtu-
ally rank Gibbs as the Sir Isaae Newton of America. Lord Kelvin
suid waen visiting at Yaule, o few years ago, that “by the year 2000
Yale would be best kuown to the world for having produced J.
Willard Gibbs.”

One of the most striking chiwracterizations of Gibbs was re-
cently made by Dr. John Johuston, now with the United States
Steel Corporation. then Professor of Chemistry at Yale, in his ad-
dress on Gibbs delivered at Yale University two years ago. He
stated thet no result of Gibbs' work had yet been overthrown, and
that, in this respect, Gibbs scems to stand unique and supreme
awong the great scientists,

* Mdapted by permission from  Julletis of vhe tmerican Mathematical Nocoiety,
Aprll 19300 The seventh Jostall Willard Gilibs Leeture, read 0t Des Moines, Deceme
ber 41, 1020, before a0 Joint session of the Swevican Mathematlen] Socloty and
the Muerlean Aasociation for the Mdyvancemeny of Selence,

1
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The Einglish physical chemixt, Professor F. G, Donnan, has puid
the following tribute to him:

Gibbe ranks with men like Newton, Lugrange, and Hamilton, who by the
sheer foree and power of their minds huve produced those geneealized states
ments of scientifie law which mark epochs in the advance of exnet knowl-
edge. . . The work and inspiration of Gibbs have thus produced not only a
great seience but also an cqually geeat practice. There is, to«day, no great
chemienl or metallurgieal industrey that does not depend, for the development
and conirol of a great part of its uperations, on un understamling and appli-
eation of dynamic chemistry und the geometrical theory of heterogencous

equilibria.

Professor Ostwald said, in the preface to his Cerman transla-
tion of Gibbs' thermodynamic papers in 1892:

The importance of the thermodynamic papers of Willard (Gibbs can best
be indieated by the fact that in them is contained, explicitly or implicitly,
n large purt of the discoveries whicl have since been made by various inves-
tigators in the domain of chenical and physieal equilibrium and which have
led *o 80 notable u development in this field. . . . The contents of this work
are to-day of mmedinte importunce and by no means of merely historieal
vilue,  For of the almost boundless wealth ot results which it contains, or
to which it points the way, only o small part hus up to the present time 1892
been made fruitful,

Sir Joseph Larmor said of the work f Gibhs:

‘This monumentul memoir Pn the Equilibrium of Heterog neous Substances
made o clean sweep of the subjeet, and workers in the modern experimental
scicnee of physieal chemistry have returned to it again and again to find
their empivieal prineiples forecasted in Jhe light of pure theory und to derive
fresh inspiration for pew departures,

We think no less of Gibbs' greatness beeause he himself showed
so little consciousness of it. He must have realized the funda-
mental charscter of his work. But his pupils remarked his pro-
found modesty and often commented on it.  His chief delight was
in truth-sceking for its own sake, and he was so intent on this
scarch that he had no time even to think of cmphasizing the origi-
nality or value of his own additions to the great vista of truth over
which his mind s rept.  Doubtless he often did not know or greatly
carz where the work of others ceased and his own began. He did
not always wade through the literature which precrded his own
scientific papers. 1 remember hearing him say that when he wanted
to verify another man's results he osually found it easier to work
them out ror himself than to follow the other man's own course
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of reasoning.  ‘This was said without ahy allectation, but simoly
in & jocular vein, as by one who would eseape s difticult tasl by
going his own way,  But cven though it may be ditlicult to dis-
entangle what was original i Gibbhs™ work from vhat was antici-
puted by uothers, surely no competent person doubts to-day that
he founded o new eraie physies and ehemistry,

Breause of hix retiving disposition and the theoretical antine
of Ins work, he was, during his litetime, ahnost unknown uxeept
awong a fow speetal students. “Phe majority of students at Yale,
i my day, did uot know of his existence, mueh less of his prent-
ness. - And there were far fewer people in America who eouly! np-
precinte what Lie was doing than there were in larope,

His work wax more promptly recognized in Germany,  When
I studied in Berlin in 1898, and was asked under whom I had
studied in Amceriea, T enumerate 1 the mathematicians at Yale. To
my mortification, not one of the names was bnown to those Berliy
professors, uutil I mentioned Gibbs, whereupon they were loud in
his praises. “Geebs, Geebs, juwobl, ausgezeichnet!™

Even to-day, Gibhs illustrates the rale that a prophliet is not
without honor save in his own country,  Ax Professor Johnston
noted, the tifticth anniversary of the publication of the first part of
Gihbs' great work On the Eq ddlibrium of cleregoncous Substances
was signalized in Holland by the publientior of ¢ “iibhs number
of their el emienl joarnal,  This contained  oentributions from
Dutch suthorities, as well as from Frenel, German, Canadian, Nor-
weginn, and English authorities, but not one contribution from an
American!

It is trac, however, that at Yale we have Aually established o
Gibbs tund for a lectureship o be tilled by visting professors prd
that a new complete edition of his works has beon issued by Long-
mang, Green and Coo Ttoas also planned teissue two volumes of
commentations on Gibbs work to make its ehief results mare
aeeessible to the general scientist, [ ang prowd to have plaved o
purt in these undertakings. May 1 rake this upportunity to s v
that T am also proud to have been ineluded among the J. Wallard
Gibbs lecturers?  And may 1 congratulate the Averican Mithe-
matical Rociety on veing the organization to found this lecture: nip,
although Gibbs was professedly not so nueh a mathematician as o
physicist. The only other Gibbs lectureship seems to be that at
the Mellon Institute in Pittshurgh,  ‘Fhe Chicago Neetion of the
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Ameriean Chemienl Society awards a . Willurd Gibbs medal”
annng'ly, the recipient of which makes an address,

Gitibs' Contributions to Science, DPresumably Gibls' greatest
contribution to science was hi< application of the Laws of thermody-
namies ta chemistry, He noade this alnmst a0 deduedive selenee,
Professor Bumstead said of s work:

To an unusual extent, among the sciences which appeal to expotiment, it
can be, and has been, east in o ceduetive S Sir Lsaae Newton @id that
“it ia the glory of geometey that o o few prineiples it ‘s able 10 produse
so many things.”  ‘Theruodyviom es shares in this kind of glory; it has only
two fuldminentad principles, of which the fist is n stateinent of the con-
servation of cuergy as applicd vo heat, and the sccond stutes the fuet (so
devply foundod in general expetivnee that it secius nhaost axiomantie) that
heat will not, of itself, How Trom w body it lower tegpe atare to one of &
highicr tempewmtuee, From these two sitnple principles, by oan almost Facelid-
cant wethod, a sueprising nwmubor of Gt and eclatic ns hotween work and
heat, and vavous propertics of bodies were deduced about tne midd'e of the
lust cent. |

J. Wilimnd Gibbs was certadnly aonaaster at producing many
deductons from a few general prineipaes, And it was just because
of the peacrality of the prineiples from which he always insisted on
starting that he sueceeded in reaching sueh a wealth of conelu-
siony,

In faer, it has alwavs secnnad to me that Gibbs' chief intelloctunld
charucteristie consisted in his tendeney to make his reasoning os
general as possible, to gt the maximune of resulis frein the mini-
mute of hy potheses, 1 hall never forget, and b ve often quoted,
an aphoristy used by Gibbg, whether or not or ginnd with him,
to tie effeet that “the whole is shiimpler than its varts,”  For in-
stanee, v.hou he had a problem involving cotrdinates he preferred to
cmploy an determinate origin, maintaining that s results were
thereby rendesed simpler and cisicr than il he took the origin at
sulie apparently more convenient but special poiut in relution to
the crystal oe other conformation which he was discussing. When
the origin & in leterminate it antoratically eftuees itself from all
the general relavions dedueed,

Muny, if net most, other investigators instinetively seck to
solve special cies before attempting to solve the general case.
Sometimes they pay a big pendty in necdless experiluentation.
I reracmber Professor Bunastead, my fellow student at Yale, re-
counting with relizh a conversaticn thut Gibbs was reputed to have
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had with o vouthful investigator who had made a laborious experi-
mental stiwdy of certain velationships @ ad who was, with pardon-
able pride telling Gibbs of hig conclustom. After listenmng atten
tively Protessar Gibbs guite naturally and analeetedly eloased his
eves, ot w moment, and said, Yo, that would be true,” see-
g at onec that the speeial result wich this voung investigator
hid reacled was o necessary corollary of Gibbs' owvn more peneral
results. For hime it required noexperimental veritieation. e
voung man’s work hed, from Gibbs' viewpoint, been almost as
mueh wasted ax ¥ it had been spent in o liborious set of measure-
taents ol vighteangled triangles on the basis of which nweasuremonts
he shouid announce us 4 new and experimental discovery that the
syuare of the hypotenuse is equal to the s of the squares of the
other two sidesc It s worth noting that, though Gibhs did Lis
work in the Sloane Phivsies Laboratory, he never, as far as 1 know
at least, performed o single experitent, His lite work, stupendous
ax it was, and boased as it was on conerete faet, consisted exelu-
sively tnonew deduetions frome eld results, the full signiticanee of
whicl o one else had been able to derive.

In hLis eftort to sepresent physical relations by geometrieal
modeleand to porteay the theory of electricity wnd neenetism by
peotetrieal mcthods. Gibhs encountered the newd of o new veetor
analysis to replace the awkward analysis by Curtesinn cobrdinates,
requiving, as that does, three times as many equations to weite and
nuaipulate as does veetor analvsis, not to say civerting attentjon
from the hpes and suetaves actually involved to ther projections
on three aebitrary uses,

To me the most interesting course T ohad with Gibihe was on
veetor nuady sisc He believed he Leud simplified the Hamitton sys-
tem of giaternions, gettime bis ene from Gienssnann's e de g s-
lehre, But he was so vonseious of Lis obligations to Grassmann
that he was reluetant to pubiish his own svstem, apparently
doubtivg whether it possessed enough originality 1o warrant puhh-
cution.  He thevelore had privately printed asyllabus of Lis system,
amed this repringe was used by us in bis elass as wotest, Only afay
iy Vears id Protesser BO B Witson constriet aomore elaborate
teathook viaboqying Gabbs" prineiples of veetor analvsis,

PCis o carions Taet that, while Gibhs' work in thermodynanies
was appreciated in Gormany, his work in vector analysis was not,
[ rencennbar the comment ol Professor Schwartz at Beviin, when
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undertook to defend Gibbs' veetor anulysis: “Es ist swoeillkirlich,”
The Germans felt in honor bound to restriet pure mathematies to
were elnboration of the proposition that one and one make two,
Starting with this proposition, by snecessive wdditions or subtrac-
tions of unity we may, of course, by going forward, obtain all the
positive integers; this is wddition, Reversing, we obtain zero and
the negative integers; this is subteaction. Then, by applyving re-
peated addition or multiplication and repeated subteetion or dj-
vision, repeated multiplieation or involution, and repeated division
or evolution, we urrive at fractions, surds, imaginary quantities, und
finaly the compler variable w4 yi. But hevond this, by such
processes no more gereral form of magnitude can possibly he de-
rived; for, if we operate on wcomplex variable by whlition, sub-
traction, multiplication, division, involution or evolution, ander the
recoghized rules of algeben, we obtain simply other compiex vari-
ables and nothing els¢ whatsoever,  Only by changing, or as
the German erities would say, by violating, the  fundumen-
tal rules of algebra fuithiully followed in the above processes,
such s the rale that a b is equal to b a, is it possible o enter
into uny other veahn of mathematies than that of the complex
warinhle,

When T oreported these eriticisms to Gibhs, his connent was
that all depends on what yvour objeet is in making those suerosanet
rules for operatiug upon symbols. If the object is 1o interpret
physical phenomena aml it we find we ean do better by having
rule that aXb is equal not to b~ but to minus b, as in the
multiplication of two veetors, then, he said, the eriticisms of the
Germans are beside the point,

‘The fuet is that Gibbs, though a great mathematicine, was not
primarily interested in mathematios as such, His interest lay in
its upplications to reulity- -in the substanee rather than the form.
All his contributions to pure mathematies were sought wd foumd
not a= mere proliferations of formal and absteact logie but as by-
products of his work in interpreting the fuets of the physienl uni-
verse,

The far-reaching cffeets of Gibbs' work apply not only to in-
organie physies and chemistey but also to the orgunie world, One
of the most eluborate reviews of Gibbhs aad his relation to modern
seience ix by Lieutenant Colonel Fielding H, Garvison, M.D.,
Assistunt to the Librarian of the Army Medieal Library, Wash-
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igton, D. C., in which he shows, winong other things, the appli-
cation of Gibbs' work to the equilibrium of lieterogencous sub-
stances in general physiology,

Despite Gibbs' vetiving disposition und his disinclination for
general soeiety be was most cordial in his personal contaet with
colleagues and students and never scewed to laek time to give to
anyone who chose to discuss the subjeet in which he was so deeply
mterested. He made on all a deep impression of kindliness, 1
well remember the remark of Pereey Smith, now Professor of
Mathematios at Yale, who wur a fellow student of Gibbs with me,
ax we wilked out of one of Gibbs' leetures, "What a gentle man
he ie!™

He enjoyed a joke, often huched and excited langhter.  He
took pleasure in applying his mathematics in simple wavs.  One
of his minor but fascinating papers before the Yale Muthemati-
eal Club was on *The Paces of u Horse," the writing of which was
doubtless suggested by watching o horse which Le hud just pur-
chused. Probubly no one else ever put o horse throngh his paces
as seientitieally or wmusing!y as Gibbs did in that paper,

Giibbs himsell never cantvibuted to the social sciences.  Ap-
parently T am the only one of his pupils who, after first doing some
teaching in mathematies and physies, heeame prefessedly an eeono-
mist, although Professor F. B, Wilson, Gibbs' chief interpreter as
to muthematios, has taken a lively interest in many lines of social
seicnee and statisties wnd was this vear President of the Ameriean
Statiztical Association.

After several years of graduate study partly in mathematics
under Gibhs and partly in economies under Sumner, the time came
for me to write my doetor's (hesis, and 1 seleeted s my subject
Mathematical Investigations in the Theory of Value and Priees,
Professor Gibbs showed a lively intevest in this youthful work, and
wus expecially interested in the faet that T had used geometrie con-
structions and methods, including his own vector notation.

The late Prafessor Allvn Young of Harvard also made ocea-
glonal use of vectors in his ceonomie work.  Another cconomie
student and writer, a brilliant young Norwegian, Professor Ragnar
Frisch, has latterly usea the veetor notation o savs he eould
searcely think without it. Professor Friseh will this vear he Visit-
ing Professor at Yale from the University of Oslo,

It ix one of the handicaps of mathematies in the =ocial seiences
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that there are =0 few who are trained in both lines for sueh study,
and this partienlarly applies to any applications of Professor (ibbs’
veetor analysis, 15 veetor analyveis should bocome more widely
inderstood and used by students in the socinl scicnees, doubtless
it would be more generally utilized, at least as w vehiele for
thought,

Oceasionaily, and inereasingly, the ideas and notations of the
differential andintegral ealeulus are applicd by mathematical
ceonoists and statisticians, But, of conrse, most of the mathe-
maties employed in the social seiences consists of simple algebra,
There = wosaving, which, by the way, was quoted by Gibbs in his
address on Multiple Algebra, that “the human mnul has never
imvented a labor-saving machine cqual to algelra”

There ave several fairly distinet branchies of soctal science to
which mathematies hax been, or may be, applicd. The chief of
tlww may be distingui=hied as (1) pure ceonomies, 129 the “smooth-
ing” of statistical =erics, 13) correlation, wd 4) probabilitics, all
of which overlap to some extent.

My own chief interest in socinl scicnee, from & mathematical
point of view, has been in the first of these four STOUpPS, pre
theory.

1. Mathematics in Economic Theory When T began my
work in this field in 1891, mathematics in economic theory was
looked at askance, despite the fact that many vears before, ax carly
as 1838, Cournot had written his brilliant Researches into the
Mathematical Prineiples of the Theory of Wealth, This hook later

greatly stimulated Professor SNdgeworth of Oxtord and Professor
\I‘u\h all of Cambridge, and to-day is ranked among the cconomie
classies. The same may be said of Jevons' Theory of Political
Economy, published in 1871, But in 1891, when MY OwWn econonie
studies began, even the work of Cournot was ahmost unknown to
economists, and that of Jevons was little used.  If one will twrn
the pages of the main ceonomie literature of 1891 and earlier, he
will find practically no formulas and no disgrams. But Walras
aml Puarcto in Switzerland and Pantaleoni wnd Baroni in It y,

Fdgeworth and Marshall in England, Westergaard and Wicksel] in
Seandinavia, and a few other students in other countries were using
and defending the new wethod.

When, at the request of Professor Fidseworth, T read a s slightly
mathematical paper on the Mechanics of Bimetallism before the
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Feonomie Reetion of the British Association for the Advancement
of Seienee at Oxford in Repte. .her, 1893, T well remember how, in
the discussion of that and other mathematienl papers, Professor
Edgeworth was. as he expressed it, “damped” ‘v the unfriendly
eriticism of these rew methods by Professor Sidgwiek and others,

But little by little, the usefulness of mathematies has come to
be appreeiated. Besides the older writers already mentioned and
Auspitz and Lichen. whose work on price deteriaination of 1889
was one of my fivst inspirations, there have geadually come into
this ficld many younzer writers, among whom may be mentioned
Professor Henry L. Moore of Columbia University, Professor J, H.
Raosers of the University of Missourt, Professor ¢, F, Roos of Cor-
nell University, Professor Gritlith €', Fyans of Rice Institute, Pro-
fessor Henry Schultz of the University of Chicago. Professor Harold
Hotelling of Stanford University, W, A, Shewhart of the Bell Tele-
phone Laboratories, Professors J. Mayvnard Kevnes, A, C. Pigou,
and Arthur L. Bowley of England, Professors Alhert Aftalion and
Jaeques Ruelf of Franee, Professor T, von Bortkiewiez and Dr,
Otto Kiilme of Germany. Professor Wl Zawadski of Poland, Pro-
fessor Eo SIntsky of Russin, Professor Custav Cassol of Sweden,
Professor Ragnar Friseli of Norwav, Dr. Witlem 1., Valk of Hol-
land. Professors Corrado Gind and Luigi Amoroso of Ttaly.

And, besides the faet of sueh accessions to the ranks of the
small hand of professed mathematienl economists, is the even more
siunificant fact that economists in general have not only ceased
decryic g mathematies hut arc, in many eases, making some slight
use of it themselves,

The Iate Professor Marshall of Cambridee University was one
of the first to perccive what was happening. He said:

A ereat change in the manner of thoaght has been brought abont during
the present generation by the general adoption of semi-mathemation! lain-
grrge for expressing the relation between small inereruepts of a commod;ty
on thi- ons bd, and en the other hand siall ferements in the apgregate
price that will be paid for it: and by formally deseribing these @mall inere-
ments of price s messmg corresponding small inerements of pleasire,
The forewr, sand by far the wore important step was takeon by Cournt
Che el clies oo s procedas bl watigae a0 I thio ey riche sses,
IS the lattor by Dupnit € De Leoandsure o0 dis travasry publies, in
the Annales des Prnts ot Climissées, 1810, and by Gossen (Entutekelung
der Geslze des e nsehlichen Verliehrs, 1831, Bt their work wis forgotten :
part af it was done over again, developed and jablished almost simulfane-
ously by Jevons and by Carl Menger in 1871, and hy Walms a little later.
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Jevons alinost at once arrested public attention by his brilliant lucidity and
interesting style, . . .

A training in mathematies is helpful by giving command over a mar-
vellously terse and exaet language for expressing clearly some general rela-
tions and some short processes of ceonomie reasoning: which ean indeed be
expressed inorcinary linguage, but not with equal shurpness of outline.  And,
what ix of fir greater importanee, experience in handling physical problems
by mianthematical methods gives o grasp, that cannot be obtained equally well
in any other way, of the mutual interetion of economie chunges. The direct
application of mathematical reasoning to the discovers of economic truths
has recently rendered great serviees in (he haneds of nvister mathematicians
to the study of statistienl averages and probabilities and in measuring the
degree ol consilicnee between corrciatd statistieal tables.

Mathematies serves economic theory in supplyving such fundu-
mental concepts hased an the differential ealeulus and also through
the process of differentiation solves problems of maxima and
minima, ax in the simple process of determining formally what is
the price that the traffic will bear in order to muke profits a
maximum,

The chiel’ realm of economic theory to which mathematical
analysis of this formal kind applies is that of supply and de-
mand, the determination of prices, the theoretical effect of taxes
or tariffs on prices.  The results cannot always be reduced to
fimres It are often useful in terms of mere inequalities.

For instance, among the chief theorems shown mathematically
by Cournot are the following:

That a tax an a monopolized article will always raise its price,
but sometimes by more and sometimes by less than the tax itself.

That a tax on an article under unlimited competition always
raixes its price but by an amount less than the tax itself.

That a tax proportional to the net income of a producer will
not affect the price of his product.

That fixed charges among costs of production do not affect price
nor do taxes on fixed charges.

That opening up free trade in a competitive article between two
previously independent markets may decrease the total product.

Among the most surprising paradoxes discovered by the mathe-
maticul method is one shown by Edaeworth, that if a monopolist
sells two articles. say first and third class milway tickets, for which
the demand ix correlated, it may be possible to tax the third class
ticketz, at o fixed amount cach. with the result that the monopolist
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not only pavs the tax but lowers the prices of both kinds of tickets.

Familiarity with mathematies will save many confusions of
thought. For instance, it ig just as important i, economies to dis-
tinguish between o high price and a rising prive as it is in physies
to distingnish between velocity and ueceleration.  Rate of price
change has important effeets, both theoretically and in practice, on
the rate of interest and on the volume of business.

Theoretically the rate of interest ought to be higher during a
period of rising prices, or depreciation of the dollar, by an amount
equal to the rate of depreciation, and it ought to be lower during
appreciation,

Practically, however, the rate of interest ix slow of wdjustment
and what is more important. inadequate in adjustment. A mathe-
matical statistical analysis of this slowness and inadeguaey helps
expliin ureat business upheavals, as shown in my new book on
The Theory of Interest. T may say here, parenthetieally. though
the ease ix somewhat different. that the recent crash in the stoek
market was, in laree measure, the price paid for tardiness in rais-
ing the rate of interest. which should have been raised over a
vear before but was held down artificially.

Again, mathematies will save the stwdent of economies and the
student of accounting from the many confusions of double connting,
especially in the intrieate theory of income,

Another clementary, but important, use of mathematies in
cconomics is in making sure that a problem is determinate by
connting and matehing the number of independent equations and
the number of unknown quantities, A great deal of unneecessary
misunderstanding has existed and still exists in economie seience
as to what determines the rate of interest or other magnitudes in
cconomies,  These misunderstandings wonld not exist if the con-
testants wonld take the tronble to express themselves mathe-
maticallv. I we view the matter mathematically it soon hecomes
evident that one contestant has seen only one of the determining
fuetors, and the other another, without. either of them realizing that
hoth are computible and needed in a complete economie equilibrium.
The concept of economie equilibrium in which many factors art and
react on each other is one of the chief elementary contributions of
mathematics to economic theory, and one stressed by Cournet,
Walras, Murshall, Pareto, and Fdgeworth.

Xtill another use of ymathematies is in illustrating geometrically
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or analytically the fact that a price, or a marginal ubility, is a
function not sgmply of one but of many variables, the funetion
being purcly enupivical and ineapable of analvtical or arithmetieal
expres<ion,  In fact, the economic world is a world of n dimen-
sions,

Thus the marginal utilitv of bread to John Doce ig 0 funetion
of his quantity not only of bread consumed, but of hutter, sugar,
and mmierous other variables.

I have myself tried to apply these and other mathematical ideas
to the formal solution of the problem of prices of commodities.
the rate of interest, the relation of capital to income, the purchas-
g power of money, and what 8imen Newcomb, the astronomer-
ceonomixzt, called the equation of socictary eireulation. now ealled
the equation of exchange (the volume of cireulating medium multi-
plied by its veloeity of eireulation is equal to the price level multi-
plied by the volume of trade per unit of time).

Most of these and other applications of mathematies to cca-
nomie theory consist in short chains of reasoning.  Professor
Marshall had the impression tha only short chains of reasoning
could ever he expeeted in mathem: tieal economies. He said:

It ix obvious that there is no rocn in eeonomies for long triins of
deductive reasoning: no economist, not even Ricardo, attempted them, It
oy indeed appear st first sight that the contrary s suggested by the fre-
quent use of mathenutieal formulis i ceonomie studies. But on investie
gation it will be found that this suggestion ix illisory, except perhaps when a
pure mathemativian uxes economie hypotheses for the purpose of m:ithe-
matieal diversions; for then his concern i< to show the potentialities  of
mathe matien] methods on the supposition that meterial approprinte to their
use hd been supplied by ceonomic study, He 1akes no technieal respon-
sihility for the mutevial and is offen wnaware how inadequate the material
ix to bear the strainsg of his powoerful machinery,

But, as time gaes on, there appear instances of somewhat longer
trains of reasoning.

I may take an example from my own work. I have tried to
show how it is possible to estimate numerieally, through suitable
mathematical equations, the veloeity of the eireulation of money,
The formula for this was derived through a chain of mathematieal
reasoning requiring several links and embracing a considerable
numher of variables of which the ehief are the volume of money
i cireulation, the annual flow of money into and out of hanks, and
the annual caxh payvments to labor. This problem. by the way, of
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evaluating the veloeity of circulation of money had been pro-
nounced insolvable and, without mathematical analy=i=. it might
well be o considered. Ineidentally, the caleulations indieate that
money in the United States cireulates ahout twenty-five times a
vear. In other words, the average doliur stayve in the sane pocket
about two weeks.

To turn to o dilferent example, both Professor Ragnar Frisch
and myself, by independent methods, both of them highly mathe-
matieal, have shown how, theoretically under certain simple hy-
potheses, to necomplish the statistical measirement of “marginal
utility ™ er desirability, as o funetion of one's income. Thix would
determine whether or not it is trne that iF one man has donble
the income of another his tax onght to be double, more than double,
or less than donble in order that he should make the same saerifice.
In other words, it would =upply o mathematical eriterion hy which
to judge the justice of 2 progressive income tax.

I say “woukl™ rather than “does™ simply because as yet the
statisticx available do not secmn adequate for any aceurate evalua-
tion. But Professor Friseh and 1 are both hoping to pursue this
study further.  His and my preliminary results are not incon-
sistent. My own formula i= derived by a chain of mathematieal
reasoning which vesults in expressing the ratio of the “marginal
utility” of money for a person with a certain income to the “mar-
aginal utility"” which he would have with a different income in terms
of the following elements: those two incomes, the pereentages
which would he spent on foad, rent. ete under the two respective
incomes  and the index numbers of prices of food. rent, ete. refa-
tively to another conntry, serving a< o standard of comparizon,

Matl ematies also helps make elear the “dimensionality™ of
the magaitudes treated. Thus, the quantity of wheat, its price.
and its valne ave three magnitides as unlike in dimenstonality as
time. veloeity, amd distance. The rate of interest has the =implest
dimensionality, being. like angular veloeity, of dimension ¢ 1.

Matheamaties helps ug analyze time relationships in general.
especially to avoid the olld confusion bhetween eapital and income,
the one relating to an instant of time, the other to a period of
time,

Capital-income analysis ix a developent of the last two score
vears; but its roots go back for generations. Every good treatise
on algebra includes the fornmlax for ecapitalizing annnities and
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bonds, the formulas underlying the bond tables used in every
broker's office,

While the development of mathematical economics f-om the
theoretical side has been steady and impressive since I was a young
mun, it has by no means been so rapid as the development of the
three other branches to which T have referred.

2. Smoothing of Statistical Series. “Smoothing” statistical
data, the fitting of formmlas and curves to statisties, hus. of course,
heen one of the aims of statisticians for many generations. 1In
this way we have derived our mortality tables, the hasis used by
actnaries for caleulating life insurance premiums.

I understund that the second J, Willard Giibbs leeture was by
Robert Henderson on Life Inswrance as a Social Seience and as a
Mathematical Problem. The hmportance of this branch of our
subjeet does not need to be emphasized in an insurance center like
Des Moines,

Actuarial seience is. of course. a development of the formiulas
for capitalization or discount, particularly as applied to annuities,
comhined with the introduetion of the probability element based
on mortality statisties. Tt is essentiallv an analvsis of interest and
risk. It could be, and perhaps some day will be. applied to other
cconomic problems besides life insurance, as soon as statistios are
adequate for assessing risk numerically in other realins than hu-
man mortality. In fact, one of the crying needs of econoniie seience
1= a reliable hasis for evaluating risks.

Concurrently with actuarial seience has developed a seience
of mathematies of mortality in relation to population, extending
at least baek to the davs of William Farr, Superintendent of the
Statistical Department of the Registrar General's Office of Fongland
half a century ago.  To-day this science has been further devel-
oped by Knibbs of Aust: lin. Lotku and Glover in the United
States, and others.

Recently, with the development of statisties of industry, the
art of curve fitting, by mathematical methods. has erown very
rapidly, and examples of it will be found in many current issues of
statistical journals, I am., my=elf, with a collaborator, Max Sasuly,
working on a new method of eurve fitting aimed to avoid the use
of any preconceived formula but letting the statistical data them-
selves write their own formula, =0 to speak.

One important phase of enrve fitting whieh links it closely
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with the study of economic theory is the statistical evaluation
of supply and demund curves. Among those who have worked
in this field are Professor Henry L. Moore of Columbia University,
Professor Henry Schultz of Chieago University, Dr. Mordecai
Fzekiel of the United States Department of Agriculture, Pro-
fessors (. F. Warren, F. A, Pearson and ¢ F. Roos of Cornell
University, and Professor Holbrook Working of Stanford Uni-
versity.,  Professor Sehultz was apparently the first to work out
the statwtical determination of the effect of the tariff on the price
of ar imported commiodity —sugar,

3. Correlation. The third group of mathematical work in the
=aeial seienees, the development of correlation, ix closely associated
with the name of Karl Pearson of the University of London, who is
<til living,  His “correlation coeflicient” has becone ahnost a stand-
ard proeedure in economice statisties as well as in other seilences,
meluding biology. in whieh he is primarily engaged.  To-day
many, i not most. economists, espeeially if they work in statis-
tiex, are making some use of sueh corrvelation coeflfieients. Through
them they have been foreed to adopt mathematical aids in spite of
old traditions and prejudices.

Professor Warren M. Persons, formerly of Harvard, has
worked out correlations with lag, showing the interrelations of va-
rious economic phenomena in sueh a way as to serve the purposes
of foreeasting business conditions, A more elaborate method of
correlation has been worked out by Karl Karsten of New Haven.
@ private statistielan, who has made tables of correlation between
every pair of available series of ecconomie statistics and has put
these together by multiple correlation so as to prediet any one of
the series from all of the others whieh are found to serve toward
that end.  He i now issuing regularly a forecast of commodity
prices, of the volmue of business, of stock market trends, and of
varions other economie factors,

In the study of the so-called “business evele™ and forecastinx
future fluetnations, mathematical economists and statisticians have
made increasing use of what is virtually differentiation or integra-
tion. Thus T have emphasized “price-change” as distinet from
price. of which it is the differentinl quotient.  Reeiproecally. Mr,
Karsten has applied the idea of “quadrature” to the relations of
two statistieal series where one s virtnally derivable from the
other by integrafion.  This means it the curves are eyelical that
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they are related as are the curves of sines and cosines so that one
curve is at zero while the other is at a mnaximum or minimum.

One developmient in this field in which I have been especially
interested has been the study of the dstribution of the lng. This
appears to be a skew distribution, but nearly normal if time is
plotted on o logaritimie seale.

As already indieated, risk iz one of the 1 indamental elenents
in the mathenatical annlvsis of actuarial seieree. It i alo, in a
different way. through frequency distribution. a fundamental ele-
ment in correlation analvsis, In faet, there have been more or less
successful altempts by Kuarl Pearson to resolve a mortality curve
mto a s of several frequeney eurves and by Arne Fisher to do
the reverse. synthesize @ set of frequeney curves representing mor-
tality from certain causes into the total mortality curve. It may
alzo be pointed out that our second topie, curve fitting and sumooth-
ing. whether by least square methods or otherwise, is largely a
study in probability,

4. Analysis of Probability. All this brings us to the fourth
chief branch of our subject. the mathematical analvsix of prob-
ability in generanl o far as this relates to soeiul phenomenn as em-
bodied in statistics.  This has heen increasingly studicd by many
cconomistz, especially the late I Y. Kdeeworth. editor of the
Economie Jowrnal.  Also mathematieal statisticinns, sueh as (4

“Udny Yule, Arthur Bowley, R. A, Fisher. sir William Beveridge,

Truman L. Relley, A €. Whitaker, William L. Crum. Thiele, and
others have done mueh constructive work in this field.

Profeszar Vilfredo Parcto tried to work out o formula for sta-
tistiex of incomes in relation to the number of persons possessing
meomes of vavious #izes, and the Pareto curve hag become quite
famous. Tt hus been shown, however. parti-ularly by Professor
Macaulay of the Nutional Burean of Eeonomie Resenreh. that the
Parcto curve is nothing but the “tail” of a probability ecurve. ul-
though Paveto himself had been loath to admit this. It is true
that this particular =ort of probability or distribution curve is not
normal even if the abseissus are plotted on a lomuithmice senle.
It often happens in statistical series, especially where the frequency
distribution lics between zero as one extreme and infinity as the
other. that the frequency or probability curve while very skew
on the arithmetical seale turns ont to be nearly nomad on the
logarithmic scale.
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1 have, of course, by no means exhausted the list of applica-
tions of mathematies to econamices, still less to the other social
seienees,  Many applications have been made which are not easily
classitied under the fomr heads 1 have noted, namely, pure theory,
curve fitting, correlation. and probabilities,

Or these other and mizcellaneous applications, the most im-
portant. at least in the field of ceonomies and statisties, seems
to be that of index numbers. The theory and practice of index
numbers bave had o speeial fasceination for many of us beeause
they oveupy a tantalizing position on the borderline between a
priore rational theory and empirical makeshitt and beeause of the
many pitfalls encountered in their study. It is closely related
to the subjeet of probability.  In my book ou The Muaking of Index
Numbers, 1 have tried to find the best formula for an index number
out of several score available formulas.

It iz also true, of course, that the last three divisions of our sub-
jeet, curve fitting, correlation study, and probabilit =) traverse all
ficlds of knowledge. They apply not only to my own braneli of the
social selenees, economies, but to all others such as sociology, an-
thropology, and education, as well as to fields outside of social
science such as psychology, biology, hygiene, and engenies. In all
of these we find a development of mathematical method,  Each
hias itz own speeial concepts, measures, and prineiples cuch as the
crantal index of antlwopology, the intelligence guotient ol psy-
chiology and edueation, and the Mendelian prineiple in heredity;
and these the mathematician may study in terms of averages,
index numbers, correlations, deviations, frequeney distributions, and
otherwise. Just as the multiplication table is applicable in more
than one tield of knowledge, so mathematies in general is peeuliar to
none. Sooner or later every true science tends to become mathe-
matical.  The =oeial =eiences are simply a little later to be reached
than astronomy, physies. and chemistry, while the biological sei-
ences are later still.

Neientific method = one and the =ame, whether employved in
suel seiences a2 Gibbs developed, or in others, Mathematical no-
tation ix. as Gibbs said, <imply a languayge. 1t is reguired for the
hest expression of scientific methiod when the relations to be ex-
pressed beeome too involved for ordinary lunguage. which is less
preeize and complete. The outlook is bright for a healthy develop-
ment of mathematies in the social sciences,
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By J. ARTHUR HARRIN

lidvessity of Minnesata, Minncapoics, Minn.

nitoduction.  What is mathematics?  And what right has
mathcactties to obtrude itself upon the attention of biologists?

Since mathematies ix u very old scienco, inextricably hound up
i its historical development with logie and philosophy on the one
hund and with astronomy on the other, it is perhaps impossible to
give u concise definition which would satisfy the workers in all
its ficlds, theoretieal and applied. It is casier and more pertinent
to our present purpose to indieate some of the characteristics of
mathematies which make it an essentinl factor in the more ad-
vaneed stages of the developient of all other sciences. This may
serve as a preliminary to an outline of the elaims of mathematies
to the attention of biologists, bhused on « priost considerations, on
service in other natural sciences, and on the contribution which it
has already made to the advancement of biology.

I. THE FUNDAMENTAL CIHARACTERISTICS OF MATHEMATICS As
RELATED To THE PHYSICAL AND BIOLOGICAL SCIENCES

Premises and Conclusions. It iz one of the characteristics of
mathematics that, starting with certain axions, postulates, or as-
sumptions, it shows the way in which conclusions may be deduced
from these premises, The mathematicinn does not necessarily claim
absolute certainty for the physical validity of his conelusions, but
he believes protoundly that it is possible to find groups of axioms.—
sets of a few propositions each—suceh that the propositions of each
set are comnatihle and that the propesitions of each sot imply other

* The late Professor 1Iarris wax invited to write a chapter for this Yoarbook on
Mathematien in Blology,  Hoe glully aecepted the Invitatlon and had started to
prepare hix materful when he died suddenly after an operation for appendicltis,
It seems titting that we should have solnething frouw. I'rofessor Hurrlse pen.  We
are accordiug o reprinting by poermission this qrticle wdapted from 7he Neldentifie
Monthly for ‘ugnst 1928, Nee also Harris, J. Arthur, *The Fumdamental Mathe-
matieal Requis -ments of Blology,” A merican Yathematical Monthly, 36 178108~ -

THE EDITOR.
18
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propositions, which Iatter can be deduced from the former with
certainty. The asswmptions of pure mathematies need have no
physieal interpretations. They may indeed contradiet any of our
theories, Thes must not, however, contradiet cach other. Thus it
ix the business of the pure mathematicizn to discover systems of
self=vonsistent and colierent propositions.

Muthematios is an exact and final scienee only in the sense thut
with the postulates definitely given the conelusion admits of no
donbt. “Thus the pure mathematician coneerns himself not with
the solution of partiewlar problams in the natarnl seienees but with
the prineiples which underlie the solution of problems in general,

The Natura! Sciences. In the nntural scicnees, as contrasted
with mathenaties, the things which wie given e measurements
of natural phenomena vather than axioms or postulates. The sei-
entist wishes to derive from these observational data generaliza-
tons which we enll natural laws, It sects both reasonable and
desirable that he should endenvor to cnploy in this task the
rirorons sell-consistent svstems of reasoning Jdeveloped by the
aethematiomn, '

The stwdent of natural seicnee need not neeessavily coneern him-
selt with the eriteria by which the mathematicinn assures himselt
of the validity of his formulas, He desives merely to be fully con-
vinead of the usefuluess of sueh formulas in the solution of the
problems with which he himself hus to deal. He should be sufli-
ciently conversunt with the fundamental assumptions underlying
the equations which he proposes to use in his investigations, not to
make the error of applying them in problems presenting wholly
different sets ol conditions trom those for which they were de-
velopud.

The Biologist. The hiologist in common with the stident of
the other natural seicnees sturts with a series of direet observa-
tions of phenomenu. From these he wishes to derive o generaliza-
tion, w theory, or o law which shall express the vesults of his ex-
pericnee in coneise and mentally comprehensible teres, A theory
dedueed from a given set of observational data may e erroneous
beeause the measurenients were made under unsuitable conditions,
or by inadequate methods, or heeanse they are for some other rea-
son unsuited for use as a basis of generalization. I the theories
haxed on two or more sets of observations are inconsistent, the
experimentali=t refines the comwditions under which his observations
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are minde, inereases the precision and number of his measurements,
and retornlates his theories until he finds one which is in aecord
with the widest possible vange of experience awd which appeals
to him a0 reasonable deseription of the facts of nature. Thus,
were the mathetuatician to eriticize the worker in the nutural
seicnees, he would not require him to give up observation and ex-
perimentation, but would only demand that the conelusions drawn
from ob=ervation and mensurewent be logieal conelusions,

I ok Cratss or MATneMatics oN THE ATTENTION OF
BrotoGists

Claim of Pure Mathematics. ‘Ihe cluim of prre mathematios
to the attention of scholarly wankind is ke that of art, in that
it ix grounded in the innate human love of beautitul things and in
the innate human joy in originating them. It is ereative,  Tts
previous trinmphs of achievement fill us with satistving wonder;
it= pursuit is nkin to that of the exploration of w great mountain
systent in the conrse of which the vantage of cach peak scaled opens
to view the prospeet of higher servied peaks and vaster plateaus
beyond.,

The pursnit of pure mathematies in our day by the few who
have the ability and the training is not to be justified by the im-
wediate appheability of its results in the other seiences,  [ts
present existenee is justiticd by centuries of persistent appeal to
human interest.  In no generation in which we would deem life
worth while has sueh interest in muathematies been lacking,  Thus
its cliim to the attention of the scholar has beon tested by a
rigorous nntural seleetion, The survival of the science is suffi-
cient evidenee Tor its value as a souree of gratification to the active
human mind. Furthermore, the process of natural <election has not
merely shown the fitness of prre mathematies as sueh for survival,
[t has heen active within mathematies itself. Al that has not been
found to be sound wnd consistent has been rothlessly eliminated,
Thus all that has long remained may 1 operly appeal to workers
in the other =eienees ax worth their consideration wich reference to
1= possible value in their own special field.

Bat here we are not coneerned with the justification of pure
mathematios, but with qan appeal for the wider use of mathematies
by hiologists ns nomeans to the development of their own speeial
tield of ereative scholarship.,
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Claims of Mathematics on the Working Biologist. Let us
consider in outline the elaims which mathematices has on the atten-
tion of the working biologist.

The first two may he stated in very general terms. They will,
however, be developed in the discussion of speciat elaims which is
to ltullow.

The most general contribution of mathematies to the natural
seienees is the affording of an exact and easily workadle symbolism
for the expression of ideas. The progress of science depends very
bargely upon the facility with which facts may be recorded and
relationships between them considered,  In their bearing upon this
requircment of the natural sciences it is important to note that
an essential characteristic of mathematical methods is that they
ceonomize thought, The notation of the mathematician affords the
maxininn preciston, simplicity, and conciseness.  The worker in
natural science finds in mathematical literature a highly perfected
symbolisnn which he may use without developing one of his own.

But while a convenient notation is the most general contribu-
tion of mathemutics to the natural sciences, it is neither the only
nor the most important one. In the naturai scicnces it is essential
that accurate observations and exact measurements be interpreted
by sound processes of reasoning. It seems logical to assume that
the biclogist may profit by the centuries of experience of the mathe-
matician in the drawing of inevitable conclusions.

These claims are so general that we muy properly turn to those
based on the specifie accomplishiments of mathematies in the physi-
al seiences and in biology itself in substantiation of our wrgument
for its wider application in biological research.

The Claim of Service in Other Physical Sciences. The
record ol service of mathematies in the physical seiences is an out-
standing claim on the attention of biologists,

In the past, mathematies has been an integral part of the scienees
which we are aceustonmied to regard as the more highly developed.—
of all the. is physical as distinguished from biological in the growth
of our vivilization. “The most determined eritie of the applieation
ol the mathematical method in bioiogy dares not conteniplate the
consequentes o a Maxwellian demon snatehing from our scientitic
literature and from the minds of our chemistz, physicists, engineers,
and ceonomists  the mathematical formclas woielr underlie the
routine of our duaily life.  In a few weeks long-distance com-
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munications would cease, the vehicles of transportation would be
motionless, factories would close, and urban population would face
sturvation.  Ax Professor A. Voss said in 1908, our entire present
civilization, us far as it depends upon the intellectual penetration
and utilization of nature, hus its real foundation in the mathe-
mutical sciences,

If reasoning by analogy is ever justified, experience in the
physical sciences would eertainly seem to afford suflicient evidence
of the necessity for the extensive introduetion of this powerful tool
of research into the biological sciences.

The argument that .iologists should emulate the workers in the
physical sciences is strengthened by the faet that biologieal phe-
nonena are the most nearly infinitely complex of all natural
phenomena. This is necessarily true because the internal structure
and functioning of the organism and the effective environmental
conditions under which it must live and reproduce comprehend a
material fraction of the physical and chemical complexities of the
universe. Before the more complicated biological phenomena can be
grasped in any but the most circumseribed and superficial way by
the human mind, they must either be analyzed and simplified by
experimental control or expressed in the mentally intelligible terms
of mathematical summaries or generalizations.

1t may be urged that the methud of dealing with large numbers
of measurements is not that of the physicist or of the chemist who
frequently works with minute samples under carefully controlled
conditions.

The reasons for the differences in methods are two. First, the
student of molecules has the advantage of working with less com-
plex materials and under more readily controlled experimental con-
ditions. Second, the physicist or chemist already has his molecules
or ions massed and can investigute them and draw conclusions con-
cerning their properties from his examination of the properdes of
his volume of gas or solution. The biologist must begin otherwise.
He must collect and determine the charucteristics of each indi-
vidual of a large sample in order to express the characteristies of
the whole pepulation in mathematieal terms.

When ltiologists have had the necessary preliminary training,
they will realize that, for many of the phenomena with which they
have to deal, the most easily comprehensible and the most useful
method of description and analysis is the mathematienl. In the
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past, biologists ax a class have been in reality hostile to the intro-
duetion tuto theiv seience of the methods which have proved their
worth elsewhere. 1 know thiz to be true from long and bitter
experience. Instead of being eager to place biology alongside of
physies aid chetistry in the ranks of the exact sciences, biologists
liave seemed not merely to exeuse, but actually to take pride in the
distinetion which has been drawn between the so-called exuet and
the su-called deseriptive seiences.

While the historieal attitude of the biclogist is not excusable, the
fuult has not been eutirely his.  With most men mathematies is
like a well-—the Jdeeper they go in the less they see out and about.
Mathematies mav quite properly be an end in itself, but in biology
it i1s strictly a means to an end. While mathematicians have in
the past been eager to serve workers in the physieal sciences, and
while mathematics itself owes a large debt to these scienees,
mathemativians huve not for the most part felt it worth while to
colne to the assistance of bilologists,  Muathematicians have often
asserted the need of mathemuaties in the biological seiences, but the
elaim has too often been made 1 an cx cathedra manner by those
who, while perhaps qualified to speak of things mathematical, he e
been relatively little fitted to discuss the needs ol biology.  While
biologists have been entirely too slow in recognizing the needs of
their science jor the mathematical tools, they hove shown thee
practical good sense which chisracterizes those whose minds have
contaet with matter by refusing to flork to the mathemuaticians'
standard until shown by conerete examples that the mathematical
method has real applicability in biology. Thus the burden of
proof has largely been thrown upon a few workers of greater vision,
with the inevitable result that progress in the application of mathe-
mwaties in biology hax been glow.

Progress has been =low, but progress theve has nevertheiess been,

The Evolution of Biology and the Influence of Quantita-
tive Methods. T'he natural scicnees ali hwel thelr beginnings in
observation and speculation.  Carerul deseription of the observed
phenomena then furnished a basis of interpretation by comparizon,
Fxperimentation, which requires not mercly controlled conditions
but mensured consegiences, followed observation and deseription.
Fluaily quantitative measurcient, caleulution, and the {ormula-
tion of mathematieal laws have characterized the highest stage of
scientific developient.
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These stages in the development of the natural sciences are, to
be sure, neither wholly distinet in nature nor sharply separated in
time. The methods of the later stages have in sonie instances been
anticipated by investigators who were in advance of their con-
temporaries. It would be unfortunate indeed if men of science did
not at all times avail themselves of whatever is best in the methods
as well as in the results of those who preceded them. Notwith-
standing the difliculty of delimiting the various horizons, as our
geological friends might feel inclined to designate the deposits of
scientific literature of these periods of differing dominant purposes,
the sequence is in full accord with historical facts.

The old physicist who defined the biologist as “‘a man with
scientific aspirations and inadequate mathematies” would find, if
lie looked over a fair sample of current biological literature, that
not only has the space devoted to quantitative data increased enor-
mously during the past few years, but that there is a steadily grow-
ing effort on the purt of biologists to express in concise formulas the
results of observation. Unfortunately, biology in most of its phases
still lacks the quantitative data, ana biologists in general want the
training in mathematical analysis which is essential in exact science.
Nevertheless the tendency of the times is unmistakable; the de-
mand for quantitative work is more and more domir int in the
biology of to-day.

The most forceful argument for the wider use of mathematics
in biology is furnished by the service which mathematics has al-
ready rendered in the biological sciences. Let us consider this more
specifically.

The Two Fronts of the Advance of Mathematics into
Biology. Progress in science depends upon evolution of method
as well as upon the accumulation of tlie data of ubservation, ex-
perimentation, and measurenient. The progress which has been
made in the development of biology as a quantitative science
through the introduction of mathematical methods is in its present
stage the resultant of various factors, which can be understood
only when considered in their relation to the evolutionary history of
science in general and of biology in particular.

This evolution of the natural sciences is admirably illustrated
by the history of biology. Observations and speculations began
with primitive man. If a desire to record what has been seen
formed a part of the motives of those who bruised crude figures
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on the walls of caves, descriptions began with or before the period
of written language. Some attempts at classification were made at
a very carly period in man’s cultural development, but we are
accustomed to think of the great era of description and classifica-
tion as initiated in their modern form by the work of Linnaeus.
This period was also one of detailed geographic exploration.
Breadth of exploration doubtless tended to stimulate intensity of
interest in description and classification. The activities of these
decades resulted in tue storing of great museums with carefully -
preserved and minutely described specimens of plants and animals,
in the publication of elegant icones which are among the master-
pieces of artistic book-making, comprehensive monographs of every
large genus, encyclopedic summaries of phyla and kingdoms, and
floras and faunas to the end of long vistas of library shelves.

Simultaneously with the latter decades of the period of de-
scription and classification of organisms, both living and fossil,
began the development of anatomy and embryology. hoth macro-
scopic and microscopic. These latter were indefatigably pursued
by an army of workers whose investigations were so comprehen-
sive that the vounger and more restless spirits began to fear that
there would be no worlds left for them to conquer.

With such a wealth of descriptive materials at their disposal,
t was inevitable that serious attempts at interpretation should be
made. Speculation as to the observed phenomena was largely re-
placed by effort at interpretation based upon comparison. “It is
descriptive but not comparative,” was the criticism of a volume laid
. before the elder Agassiz. The dominance of the comparative
method over a considerable period of the more recent history of
biology is attested hy the presence of the word comparative in
the titles of a number of institutions and journals.

With taxonomy, comparative anatomy and embryology, his-
tology, and cytology well outlined, biologists found themselves free
to extend to other fields the methods which had heretofore been
limited to physiology. IExperimental morphology, experimental
embryology, and experimental evolution are terms which illustrate
the degree to which the experimental method has dominated bio-
logical investigation during the last few years.

a) The Influence of Physics and Chemistry. As soon as biol-
ogy, in the course of it evolution, had passed the purely observa-
tional and descriptive stuge and breome an experimental science, it
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was natural that the attempt should be made to interpret biological
phenonena in terms of the more highly developed seiences of
physies and chemistry.

That many of the processes which oceur in the living organism
are chemical and physieal in nature was necessarily admitted as
soon as plysiology could be called a science. The controversy
hetween those who asserted that all biologieal phenomena are
physical and chemical and those who maintained that living mat-
ter is in some essentinl way different from non-living matter has
only served to stimulate investieations hevine to do with the
physies and the chemistry of life processes,

The development of the field of physical and chiemieal physioloey
has been dne not merely to its ereat theoretical interest but to it<
enormous practical importanee in agriculture, in the industries, and
in medicine. At present hiophvsies and biochemistry have attained
the rank of independent sciences, commanding facilities and per-
sonnel greater than that available for the whole of biology. with
the exception of taxanomy. a few vears ago.

The intimate contact with the more precise sciences of physics
anc chemistry which has resulted from the rapid development of
experimentution in biology during the past few vears has done
mieh to raise the standard of biological research.

Physies and chemistry are not merely seiences characterized by
menasurement rather than observation. They are sciences in which
it has long been reconizec that progress depends upon the exact-
nesz of the control of the conditions of experimentation, ¢ pre-
cision of the measurements, and the adequaey of the mathematienl
deseription and analysis of the measurements which have heen
macde. Here we have one of the two great lines of advance of the
mathematical method into the biolovical scien-es. Physics and
chemistry are quantitative and, to a high degrce. mathematical
seiences,  Biologists, if tney will pursue their science along the
lines of physics and ehemistry, must take over the mathematical
methods of expression and analvsis characteristic of these selences.
There can be no reasonable doubt that in the futnre physies and
chemistry will continue to influence biology. and even more pro-
foundly than in the past.  As the ws<ocintion of these seiences be-
comes more intimate. and us the hiologivt hecomes essentially a
chemist or a4 physicist. working witl, living organisms, the mathe-
matical mode of deseription and analysis whieh has been so fruit-
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ful in physics and chemistry will become increasingly significant
in biology.

b) The Rise of Biometry. The penetration of the mathemati-
cal leaven inco the biological lump through the medium of physics
and chemistry has been go gradual and so little associated with the
nanmes of any individual workers that it has taken place without
biologists ns a class being acutely aware of the profound change
in their science. The case is quite different with the second great
line of advance of the mathematical methads into biology. This is
directly traceable to the developmnent. initiated by Francis Galton
and strenuously carried forward by Karl Pearson, of mathematieal
formulas suitable for the analysis of the highly variable data of
biological observation and measurement; and to the application
of these methods to a wide range of biological and sociological prob-
lems by the biometric school.

While the biometric methods were developed primarily for the
study of phenomena which are so complex that they cannot be
grasped by the unaided human mind or which cannot be readily
subjected to experimental control, they are now heing advanta-
geously applied to the results of experimentation. Biologists will
doubtless some day realize that experimental results must receive
mathematical treatment for their full interpretation.

For the present. there are many who stubbornly refuse to sce.

We are sometimes told that the biometric constants are merely
a useful means of expressing results. The idleness of such an as-
sertion will be apparent from two simple illustrations,

All mankind has had the opportunity of ohserving the statures
an.d other phyvsical eharacteristies of hushands and wives. Yet it
remained for Pearson and his group to show that there is a high de-
gree of assortative mating in man. Why was this not perceived if
the correlation coeflicient only serves to express what we may learn
otherwise?

If the suggestion be made that those individuals who observed
human husbands and wives were for the most part scientifically
untrained, the reply is evident, Students by the thousands in the
biolegical laboratories of the world have observed conjugation in
Paramecium, but it required the biometrie investigation by Pearl.
working under the influence of Pearson. to show that in the union
theve is a high degree of similarity in the size of the conjugants.
IEven after the relationship was clearly demonstrated biometrically,
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its validity was denied by at least two eminent zoblogists, If
biometric methods are a useful means of expressing but not of
obtaining results, why did not zoblogists long ago note the as-
sortative conjugution demonstrated by Pearl, and arrive at the
explanations afforded by the masterly studies in the same field by
Jennings?

The answer is obvious in both cases. Unaided observation was
incarable of dealing with the problems. They required for their
solution the application of mathematical methods of analysis to
series of measurements.

These are by no means unique or exceptional cascs. Instances
of the failure of biologists to observe important relationships, even
with the materials or the data before their eyes, could easily be
multiplied. Examples of the misinterpretation of materials or data
equally open to observation could be readily adduced. The mental
limitation implied is not peculiar to biologists, The inability to
grasp the more complicated natural phenomena without svmbolism
is an inherent limitation of the human mind, fully recognized by
psychologists. That a man should be unable to reason abhout highlv
complicated phenomena without the use of mathematical formulas
is no more remarkable than that he should be unable to see
chromosomes without the microscope.

Another er:ticism frequently heard is that the statistical methods
can only locate problems—never solve them. The real solution.
we are told. must in the end be biological, psvchological. socio-
logical. as the case may be. If this be true, it is the more im-
portant that the biologist, psychologist, and sociologist he them-
selves capuble of using the mathematical methods, or at least of
cojperating intelligently with those who can. But is the eriticism
really valid? The same stricture is equally applicable to all
methods of research. After a group of phenomena have been de-
scribed and analvzed as well as they can be by any means, other
problems remain to be attacked by new refinements of method or
of analysis,

The assertion is often made that the final results must depend
upon the original measurements and not upon their mathematieal
treatment. A full discussion of this criticism would lead into sev-
eral complexities, but it is sufficient to answer by a very simple
illugtration.  The possibility  of securing accuracy  beyond the
power of observation, or at leust bevond the degree of refinement
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of the measurements adopted. may be casily tested by measuring
a seriex of objects twice, onee roughly and once with great aceuracy.
The statistical coustants of these two series of measurements may
then be caleulated and compared. Unless there has been a con-
sistent hias or personal equation on the part of the observer which
tends to make all his measurements too high or too low, there will
be a remarkably close agreement between the results of the con-
stants calculated from the gross and from the refined series of
measurements.

Finally, one of the most common ecriticisms of the biometric
methods is that they are eomplex and difficult to use. We have
been told seriously by biologists that thev expect to adopt the
biometric methods when they shall have been more simplified and
lience made more suitable for practical use. But research does not
tend to become simpler with the advance of science. Since biologi-
cal phenomena are innately complex. there is no likelihood that the
mathematical formulas recuired for their investigation will be sim-
plified except in matters of practical technique. Criticism of the
biometric methods on the ground of their difficulty is merely the
glorification of the mental lassitude of the critic.

Let us turn from the answering of criticisms to things more
constructive.

If seience is to advance at the rate which we desire, another
highly practieal consideration cannot be neglected. Many biologi-
cal phen mena cannot be subjected to experimental control. Thus
while the proper study of mankind may be man, human individuals
and their relatives cannot be investigated in the same manner as
white rats and Drosophila. While man may be the most con-
spicuons illustration of an organisin which cannot be studied in a
broad way under controlled conditions, the example i= not unique.
In inmunerable cases the statistical study of masses of data may
not only properly, but must necessarily, replace controlled experi-
mentation, I hope to show later that in such ecases ‘the experi-
mental and the statisticul method are in essence identical.

Iiven where refined experimentation is possible the biometrie
methods are particularly suited to reconnaissance work. In the
search for the relationship between different variables the statisti-
cal analysis of large mas<es of comparatively rough data may indi-
cate the place in which carefully controlled experiments may and
should be made. Finally, after biological problems have been sub-
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jected to as close experimental control as possible, the results are
generally so irregular as to make biometric analvsis desirable.

Let us consider briefly, in review, the elaims of the biometric
methods to the attention of biologists,

First: The biometric notation makes possible the expression of
the results of extensive experience in concise and mentally compre-
hensible terms.

This matter of the form of expression is one of far greater im-
portance than might at first be realized. Rapidity of progress in
any branch of science must depend very largely upon the facility
with which the data and conelusions of a new investication can be
compared with those already on the library shelves. It is by the
reoccurrence of like results that general theories are established. Tt
is by the noting of inconsistencies and the eircumstances under
which they occur that indications of as yet unsuspected relation-
ships are often seen.

There can be little doubt that the rapid advance of physics
and chemistry has heen due in no small degree to quantitative and
standardized modes of expression.

If the physicist or chemist wants a solubility, melting peint. or
conductivity of any substance, he has merely to turn to volumes
of constants to find whether it has heen determined, and if con-
stants are available, whether the recorded results accord with his
own. An investigator has been able to draw upon a common fund
of knowledge to a greater extent and with greater ease than in
biology. Thus svnthetic work has heen facilitated.

In its bearing on the problem of the simplification of scientific
literature, consider for a moment the state in which binlogy would
be to-day had it not been for the Linnaean notation, by which
species may be designated by a simple binomial instead of by a
cumbersome description whenever it is mentioner., The value of
thiz relatively succinet notation hecomes especially apparent when
we contemplate the vast harm which has been done to scientifie
research through the unwillingness or inability of taxonomists to
m.dntain uniformity of nomenclature. Then in view of what has
heen accomplished by this relatively simple expedient. imagine the
rapidity of advance which will he possible when a quantitative mode
of expression permits the resultz of many fields of biological re-
search to be summarized in annual volumes of standard constants,
[. personally. am inclined to look upon the publication of Donald-



O

ERIC

Aruitoxt provided by Eic:

MATHEMATICS IN BIOLOGY 31

son’s volume on the rat, in which the experience of a whole insti-
tution of workers is summarized in quantitative terms, as a real
milestone in the progress of hiology.

Second: The biometrie formulas provide a system of probable
errors which safeguards the worker in the formulation of his con-
clusions.  Biometrictans have referred so freely to prohable errors
that crities have facetiously suegested that biometry is chiefly
error.  But frankly and candidly, if a given set of observations is
insuflicient to demonstrate a relationship, is it not better that the
investizator discover the fuet himself than that he shounld publish
erroncons conelusions whieh must be corrected by subsequent re-
search?

Third: The biometrie methods not merely furnish a svstemn of
mentally compreliensible constants and concise equations, suitable
for the deseription of complex phenomena. and a series of probable
errors which safeguards the worker in drawing conclusions con-
cerning these phenomena, hut they make possible the investigation
of relationships so intrieate and so delicate that they are quite be-
vond the seope of unaided observation. Here the biometric methods
have a potentiality for service analogous to that of the equipment
of the moadern observatory, which is capable of dealing with stellar
phenomena that were bevond imagination a century ago, or to that
of modern mieroseopic equipment and teehnique which have given
rise to whole seiences of miecrocosms which were bevond the ken
of Linnacus. To argue that it is unnecessary to push on into the
investigation of these more reeondite relationships is as contrary
to the spirit of seience. as reactionary. as to argue that it were
hetter to have stopped with Galileo instead of advancing to the
refinements of moadern astronomy through the development of in-
struments and mathematieal theory.

Fourth: TFor many claszes of problems the biometrie formulas
applied to large masses of data furnish the elosest possihle approxi-
nuation to the experimental method of investigation.

The experimental method, as ideally applied. consists essentially
in the simplifieation of conditions by rendering constant all but
one, This one factor is then varied and its influence upon the
organism is noted,  In certain phases of stutistical analvsis an
essentially identieal method is followed, when we determine what
i= ecalled the partinl correlation between two variables for constant
values of one, two, or more other variables,
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For example, the basal metabolism of tall men is on the aver-
age greater than that of those of less stature. Heavy men also
show a higher daily gascous exchange than light ones. But taller
men are on the average heavier men, and it scems quite possible
that the lareer basal food requirement of taller men is merely
the resultant of the relationship between stature and body weight
on the one hand and hetween weight and metabolista on the other.
The biometrician solves such a problem statistically by determin-
ing the partial correlation between stature and metabolism for
constant weight. i.e., with the influence of body weight eliminated.
The experimentalist would have to attack the problem in exactly
the same manner.,

MMustrations might be given by the score of the analytical treat-
ment of statistical data which gives results of essentinlly the same
nature s those which are attained by the experimental method,
often in cases in which strictly experimental teehnique cannot be
readily applied.

Fifth: The biometrie formulas furnish the best means as vet
available for predicting the value of one variable from another,
or from a series of others, This is due to the fact that it is pos-
sible to pass at once from measures of interdependence in terms
of the un'versally comparable seale of correlation to regression
equations showing the rate of change in terms of the actual working
scale of any variable associated with another, or others, whose
values are known.

The great theoretical importance of this feature of the biometric
methads will be clearly realized when we remember that the test
for the validity of a theory is its eapacity for predieting the un-
known.

The foregning treatment in outline may have ben disappoint-
ing to those who have expected argument by illustration of specific
accomplishment. Thke method has heon followed because the bio-
togieal contributions which have already been made through the
use of the biometric methods are now so lurge that no one man,
even with unlimited space, can be expected to summarize them.
This is true, notwithstanding the fact that the number of workers
who have persistently staod by the biometrie guns during the long
and disconraging yeurs of general indifference on the part. of hiolo-
gizts can be counted on the tingers without using all the digits of
the hands.
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IIL. Tak Mork G NERaL Servick oF MatnesaTtics 1N Brotoay

Certain Limitations and Services of Mathematics in Bi-
ology. It woulld be unfortunate to bring this paper to a close
without emphasizing hoth certain lmitations and certain wider
serviees of mathematies in hiology,

The biologieal universe is all but infinitely complex. It is not
conceivable that all hological phenomena will be treated by mathe-
matical methods, Al that is necessury, however, is that the
mathematical methods of research be so developed that they may
be applieable to uny biological problem.

Nor must there be misunderstanding concerning the desirability
ol an unbroken front comprizing all the methods of research in the
attack on the complex problems of the biological universe. In
biolegy, cvolution of scientific method has been of surpassing
rapidity.  Deseription was deserted when ec., parison beeanme the
order of the day, ‘The mines of comparative morphology were in
part abandoned when the ery was raised that experimentation was
uncovering solid muggets, T'he problems of biology are =0 ninner-
ous and =0 varied that no niethod of research can be permanently
disearded,  Observation can never fail to be the cornerstone of
biology, ‘The task of classification is only partly completed, even
by those methods which were in use at the time when it was the
major interest of naturalists, Taxonomy must profit by and ulti-
mately mearporate all the pertinent facts uncarthed by the newer
tiethods of rescarch. Comparison can never fail to yield resuits
of importance. But all these methods may now be made more
refined and exaet by the introduction of mathematies applied
the deseription and analysis of quantitative data.

Two Points of Emphasis. In closing. T wonld like to return
to the broawder subject of mathematies in biology and to emphasiaze
two points,

My lirst point ix in the nature of o propheey.

In the fature, mathematies will have an inercasqiag infhience
in determining the direction of research.

This is due not solely to the fact that the biometrie tormlas
facilitate the solution of many problems, but also to the faect that
after & certain stage in scicnee 18 reached, caleulation is to some
degree eapable of anticipating the results of experimentation. The
value of the mathematician’s prediction i well known to the
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physicist, the chemist, and the astronomer. As yct little progress
in this direction has been made in biology, but I wn glad to go on
record as predicting that before many years have pussed experi-
mentation will be to a considerable extent guided by preliminary
culculation,

My second point has to deal with a very different matter.

Elegance or form has always made a powerful appeal t “he
mathematician,  As the biologist is forced by the inevitable prog-
ress of his seience to occupy himself more eand more with mathe-
matical literature, its logic, terseness, and elegance of expression
must have an intluence upon his own standards of presentation.

SUMMARY

Summarizing in a few sentences we may note that mathematics
18 driving into biology on two wide fronts.

Urn: the one, physics and chemistry are by virtue of their infly-
ence upon biological research foreing biologists to take over the
mathematics which is an indispensable part of these sciences. On
the other, biometry is grappling with problems which are not readily
amenable to experimental treatment,.

‘The possible contributions of mathematies to hwological science
are too varied to be suceinetly summarized.  We must, however,
record our entire disagreement with the dietum that mathematics
is only & mill from which no more comes out than was originally
put-in. What are put in are raw duta, the signiticanee of which is
obseured by a:l the perplexing irregularities due to morphologieal
and physiological variation, to errors of random sampling, and to
errors of measurement.  What cotnes out is & series of mathematical
constants and equations, epitomizing in mentally intelligible form
the whole discordunt mass of irvegularities and smoothing them in
a tanner to bring out the underlving laws. To assert that the
value of a biometrie research is determined by the raw biological
duta ix not altogethier unlie measuring the value of a Titian by
the grams of pain reqared to cover the canvas.

It has been the rare good fortune of Quetelet, Galton, and Pear-
son to initiate one of the great lines of advance in biology. These
men will one day reecive from biologists recognition as free and
generous us their great service merits. As for the rest of that little
handful of workers who have made up the biometrie school, it has
been the satisfuction of a few never to have stepped back from the
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guns during the long and discouraging years of biological indiffer-
ence and opposition,

The ultimate recognition of mathematical biology is merely a
purt of that inevitable and irreversible evolutionary process by
which biology ix to take its place in the ranks o. the exuct seiences.
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THE HUMANISTIC BEARINGS OF
MATHEMATICS

By CASSIUS J. KEYSER
Columbia University, New York City

Mathematics and Humanism. In order to reduce the hazard
of being misunderstood I will begin by giving some indication of
the senses in which the terms Mathematics and Humanism are to
be understood in the following pages.

Mathematics Defined.! After many centuries of endeavor it
has become possible in recent years to define Mathematics with a
high degree of precision and elarity. Mathematics may be viewed
as & body of achievements or as an intellectual cnterprise. I prefer
to view it as an enterprise, and I define the great term in the fol-
lowing words: Mathematics is the enterprise which has for its aim
to establish Hypothetical propositions. By a hypothetical propo-
sition I mean one that either is stated, or admits of being stated, in
the form, p implies g, where p denotes one or more propositions
(called axioms, postulates, assumptions, or primitive propositions),
where g denotes a proposition (commonly called a theorem), and
where the verb implies is intended to assert that ¢ is logically de
ducible from p.

It is common and often convenient to state a hypothetical
proposition in the form: If p, then q. Rnt here one must be on
one's guard, for it is obvious that many propositions, though stated
in this form, are not hypothetical. For example, the proposition—
if it lightens, then it will thunder—does not mean to assert that the
proposition, it will thunder, can be loyical’y deduced from the
proposition, it lightens. The test as to whether a proposition of
the form—if p, then g—is or is not hypothetical is whether the
assertor is intending, or not intending, to assert that g is logically
deducible from p.

It is to be carefully noted that a hypothetical proposition is

1 For a full exposition of this and kindred conceptions the reader may be re-

ferrml to my hook, The Pasturcs of Wonder, Columbla University Press.
3$6
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true or false secording as the asserted deducibility is or is not
possible,

A mathematieal proposition is a hypothetical proposition that
has been establizhed.  And an “established” proposition is one that
ix =0 spoken of, so regarded, o treated, by all or nearly all experts
in the feld or subject to which the proposition belongs,

The foregoing conception of mathematics gains in clarity by
viewing it side by side with the following conception of Science.
This term ought, I am convineed, to be defined as follows: Science
is the enterprise having for its aim to establish Categorical propo-
sitions. A categorieal proposition is one stating that such-and-such
is the case, regarding no matter what part or aspect of the actual
world. A categorical proposition, no matter what its form, never
asserts logical deducibility, or implieation, but, as I have said, a
by pothetical proposition always does.

By mathematical method I mean all available means estab-
lishing hypothetical propositions. Of these means, one is ¢ reign,
always absolutely indispensable. I mean Deduction,; all other
means are but auxiliary thereto, mere servants or helpers, never
adequate in themselves. The law is: No deduction, no mathe-
matics.

By scientific method I mean all available means for establish-
ing categorical propositions. Of these means, one is sovereign,
always absolutely indispensable. I mean Observation, all other
means are but auxiliary thereto, mere servants or helpers, never
adequate in themselves. The law is: No observation, no sciznce.

In mathematics Deduction is supreme, observation and all other
means subordinate.

In scicnce Observation is supreme, deduction and all other
means subordinate,

Types of Humanism. As for Humanism, it is especially im-
portant to indicate the sense in which the term is to be employed
in this essay, for that fine old word is to-day used in such a variety
of incompuatible «enses that, unlike the term mathematics, it cannot
now be said to have a standarcd signification. And so there are
Frananisms and humanisms, It will, I think, be a helpful prelim-
wary to signalize some of them.

There s, for example, the reeently much-dizeussed Humanism
which Professor Irving Babbitt Jas been endeavoring for two or
three decades to formulate and foster by means of leetures, es84Y'S,
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and books, and which he and fourteen other representatives of his
cult set forth a few months ago in the form of a symposium en-
titled Humanism and America, edited by Mr. Norman Foerster.
In his editorial preface Mr. Foerster tells us that “Professor Babbitt
has done more than any one else to formulate the «oncept of
humanism,” and that he is, in Mr. Foerster's opinion, “at the center
of the humanist movement.” It is, then, not strange that Pro-
fessor Babbitt’s role in the symposium is that of official definer.
Mr. Babbitt tell. us at the beginning of his “Kssay at Definition”
that definition is “indispensable.” Naturally the reader is glad-
dened by the prospeet of finding here an authoritative formulation
of the proper meaning of the great termi Humanism.

What, then, is Professor Babbitt's definition of that term? He
states it in these words: “Humanists are those who, in any age,
aim at proportionateness through cuitivation of the law of
measure.” In point of form the defirition isx good, but what of its
substanee? No mere hitching togethe: of such hazy verbal abstrac-
tions can convey any definite idea. Obviously the definition is
sadly in need of interpretation. The entire essay may be viewed,
and was doubtless intended to be viewed, as an attempt ut such
an interpretation. And what is the interpretation”? It consists
mainly of fragmentary deseription-—of scattered bits of deseription
—of what Professor Babbitt means by Humanism. Mathemati-
cians need not be told that there is a radical difference between
description and definition. Of Mr. Babbitt's scattered bits of de-
scription some are positive but most of them are negative. The
most revealing of the positive bits are these: The humanist “may
work in harmony with traditional religion,” yet he says with Pope,

Presume not God to sean:
The proper study of mankind is man;

his central muaxim is “Nothing too muaeh™; like Milton he regards
decorum as the “grand masterpicee to obzerve™; his finul appeal is
to intuition; the basis of the puattern he imitates is not divine but
is “the something in man’s nate that sets him apart simply as
man from the other animals™; Inmnuni=m manifests it=elf primarily,
“not in the enlargement of comprehension and sympathy,” but in
“szelection,” in the imposition of “a =cale of valies™; like Matthew
Arnoid, the humanist “hates all overpreponderance of single
clements™; he aims at approximuting ever nearer and nearer to
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“perfect poise”; for the humanist th. universe is sundered by a
variety of old duslisms, the psychical and the physical, the sub-
jeetive and the objective, thie properly human and the subhuman
or natural, the properly human and the superbunan or super-
natural, “law for man™ and “law for thing,” the free and the
determined; essential for him is the “higher will," here called the
“higher immediacy,” whose function it is to coutrol the “lower
nnmediaey "—"the merely temperamental man with his nnpressions
and emotions and expansive desires.”

Such are the positive bits of deseription, here wssembled (not
without labory trom various sections of Mr. Babbitt's essuy. Most
of them have long been fumiliar suggestions of the ideal and many
of them are admirabie.  No doubt they help us somewhat to under-
stund what it is that Professor Babbitt's definition of Humanisim’
1= intended to define.  We must not be too sure, however, what these
positive bits are designed to deseribe until My, Babbitt has in-
terpreted them for use Ininterpreting them he has supplemented
them with many deseriptive bits of the negative kind designed to
tell us what Humanisin is not.  In the light of these negations we
pereeive that Mr. Babbitt's brand of Humanism i+ almost weredibly
strict and exclusive,

Amazing, vast, an. very impressive is the array of human in-
terests, points of view, cults, activities, enterprises, personalities,
cithusiasms, aspirations, drewns, that Mr. Babbitt, either explicitly
or by implication and with the uir of pontifieal authority, exeludes
outright from the category of things humanistic.  All monists (who
deny or question the tenability of the old famiiiar dunlisms and
attempt to view the universe as a genuine cosmos somehow involv-
ing the unity of Nuture and Many, all naturists (who believe that
“out of the cartl the poem grows like the lily or the rose™, all
humanitarians aetuated and sustained by fuith in the endless
perfeetibility of mankind), all romantici-ts, all determinists, all
realists, all the plilozophers who regard the One as o “concept”
instend of u “living intuition,” all the colleges and universities and
othes educational institutions that “proclaim the gospel of scrvice,”
all  pragmatists, all psyebologists, all devotees  of =eience, all
speclulic ts (exeept speeiadists in Mr. Babbitt's variety of Human-
ism) 5 all of these wd yet other kinds of the unworthy are rigor-
ously exeluded by Mr. Babbitt from his humanistic tabernacle.
To admit men und women having any essential similitude to such
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as Epicurus or Lucretius or Nietzsche or Shelley or Shakespeare
or Rabelais or the Walter Paters or the Rousseaus or the Walt
Whitmans or the William Jameses or the Benedetto Croces or the
Thomas Hardys would be to profane the sacred temple, and so
they are debarred. Debarred also, by the clearest indicia of Pro-
fessor Babbitt's conception of Humanism, are such creators of
psychic light as Spinoza, John Locke, David Hume, KEuelid,
Newton, Einstein, Willard Gibbs, Lobachevski, Riemann, Gauss,
Laplace, Lagrange, Charles Darwin, Herbert Spencer, Henri
Poincaré, Louis Pasteur, to name only a few of the greatest of the
great Unfit.

It is evident that Humanism, as conceived by Profeszor Babbitt,
is too lacking in catholicity, in spiritual amplitude, in magnanimity,
to attract any one except Mr. Babbitt, his digciples, and fellow
symposiasts, who regard it as the sole remedy for healing the cul-
tural maladies of the world, especially in America, and as the sole
means for qualifving human individuals to represent worthily, in
their life and work, the great potential dignity of Man. Some have
called it “‘academic” or ‘*‘striet” or “doctrinal” Humaunism. It
might be described, not inaptly, as supercilious, sectarian, phari-
saical, arrogant. “It is,”” as Doctor H, S. Canby has said, “a very
poreupine hunched up against our familiar world.” Speaking of its
central standard of literary excellence, Mr. Henry Hazlitt has
written: “We are above all to judge a writer, not by his originality
or force, not by his talent or genius, but by his decorum! That
is, we are to praise him for a virtue within the reach of any learned
blockhead.”

Very different from the foregoing is the type of Humanism
delineated and advocated by Charles Francis Potter in his beauti-
fully written, sympathy-winning book Humanism: 4 New Religion
—very different in content, in manner, and in spirit. For Mr.
Potter and his kind, "Humanisin is faith in the supreme value
and self-perfectibility of human personality.” It might be called
human Humanism or nontheistic Humanism because, though it be-
lieves in man, it does not believe in a supernatural God. Mr.
Potter's conception of Humanism as a religion is probably due to
the fact that he wus bred in, and for many years practiced,
theology. His religion, however, has recently undergone a great
change. for he now agrees with Ames that *religion is the con-
sciousness of the highest social values” and with Haydon that
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“religion is the shared quest of the good life.” Mr. Potter’s re-
ligions Humanism is scientific in the sense that it looks mainly to
seience for help in more and more realizing ‘“the twin visions”—
the visicn “of an ideal developed human personality” ard the
vision “of an ideal commonwealth made up of such personalities.”
But Humanisin ean no more be defined exelusively in terms of
Religion than in terms of Art or Politics or Education or Literary
Criticism or any other one among the great interests of man as man,

A thivd variety of Humanizsm is that portrayed in The New
Humanism by Teon Samson. The book is hold, richly suggestive,
frequently keen. notably omniscient, strangely visionary, and often
flambovant. My, Samson's so-called Humanism might be fairly
deseritied as loquacious Humanism, for, says he, “There is nothing
that so unmistakably marks a man human as his capacity to talk”;
or it might be called proletarian Humanism, for “the prized jewels
of contemporary society will be turned to ashes when the pro-
letariat lights the fire of life and love on the funeral candles of
civilized culture”; or it might well be designated utopian or elysian
Humanism. for it envisages a planet-wide community of humans
who. having outgrown both war and work and the making and
reading of books and all religions and morals and governments and
all other historic or existing institutions. will thereafter devote
their unbroken leisure ecstatically to endless conversation—to
honest. original, infinitely varied and, of course, unfatiguing musical
discourse by word of mouth.

The Proper Meaning of Humanism. It is hardly necessary
to sayv that in dealing with the humanistic bearings of mathematices
I shall have in mind a conception of Humanism vastly different
from any of the foregoing varieties. It cannot be defined in terms
of Mr. Babbitt's “decorum,” “proportionateness,” and “law of
measure,” nor in terms of Mr. Potter's excellent “religion,” still
less in terms of Mr. Ramsan’s wholly fatuous proletarian dream.
Indeed I shall not attempt to define it at all. For. as in the case
of many another great idea—-that of justice. for example, or wisdom
or poetry or knowledge or truth or religion or art or love—its
significance is too immense, embracing too much of life, to admit
of being confined in a precize formula. But, though it cannot be
neatly defined, it can be deseribed well enough for the purposes
of identification and recognition. In vespect of brevity. clearness
and comprehensiveness, combined, the best description 1 have en-
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counteredd is in the following words of Mr. Walter Lippmann:
Hun.anism “signifies the intcntion of men to concern themselves
with the discovery of a good life on this planet by the use of
human faculties.” The Humanism indicated by that description is,
in spirit, in aim, and in implicit gcope, identical with the Humanism
whiel, beginning in the fourteenth century, sprang into full life and
greatly flourished throughout the fifteenth century as an essential
part of the Renaissance, first in Italy and later in other countries
of Furope. The term humanist, which then came into use, was
applied to those men who, by their activity, proclaimied the full
recovery of a very precious and very powerful human sense, one
thut Lad been lost and almost extuyruished in the preceding long
centuries of submission to external authorityv—I mean the sense
that humans are, as such, endowed with the dignity of autonomous
heings, potentially qualified by mative inheritance ‘o judge indi-
vidually and independently in all the great matters of human con-
cern and, by the exercise of their own faculties, to fashion their
lives worthily,

That sense of personal antonomy is essential to the proper
dignity of man and it is, as I have intimated, in the central core
of Humanism, The fact is continuously manifest. and frequently
hecomes articulate, in the aetivity of tue great humanists of the
Renaissance. Tet me eite one or two examples. One of the most
illustrions  humanists of the fifteenth century was Pico della
Mirandola. 1n his famous Oration on the Dignity of Man he rep-
resents God as addressing Man in the following remarkable words:
“The nature allotted to all other ereatures restrains them within
the laws T have appointed for them. Thou, restrained by no nar-
row bounds. shait determine thy nature thyself acenrding to thine
own free will, in whose power T have placed thee, T have sct
thee midmost the world in order that thou mightest the more con-
veniently survey whatsoever is in the world. . . . Thou shalt have
poser to decline unto the lower or brute creatures. Thou shalt
have power to rise unto the higher, or divine, according to the
sentence of thy intelleet.” Note Pico's vigorous assertion of the
antonomons nature of Man, and observe, too. now perfeetly his
ntterance times with the following words of another eminent
humanizt of the time, Leon Bottista Albert]- “Men can do all
things if they will.” Having in their hearts =o living « sense of
personal sovereigntv it is ro wander that the great humanists of
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that period cast off the shackles of ecclesiastical authority, and
it is no wonder that they were so eager in seeking, mastering, and
emulating all that remained of the literature, philosophy, science,
and art that hiad been ereated by the great humanists of antiquity.

Humanistic Education. I hope that T have now sufficiently
intimated whot it is that the term Humanism is to stand for in
the following dizeussion.  As most of those who will read this essay
are professional tenchers T will try to view my subject from the
fandpoint of an edueator and will deal with it as an educational
theme.

By humanistic education I mean education having for its aim
to qualify lmman individuals to represent worthily, in their life
and work. the great potential digrity of Man. In other words, I
mean education characterized by the aim of qualifving human
individuals »to dizcover” or—what is tantamount—to create “a
good life on this planet by the use of human faculties.” I say
“on this plinet” because in all times the great humanists have
been sane enough to concern themselves primarily, if not exelu-
sivelv. with mundare affairs, with means to excellence of life here
upon the earth. The discerning reader will readily see that the
two statements of aim are virtually equivalent.

Tt is obvious th.t in humanistic education we are concerned
with the highest and most composite of genuine ideals. “Com-
posite” beeause it embraces many other ideals which, though they
are also genuine. are subordinate and auxiliary, for genuine ideals
constitute u hierarchy of dignities. In this connection I cannot
refrain from saving, what T have repeatedly said elsewhere and
<hall never miss an opportunity to say, that genuine ideals are not
gonls to be reached but ave perfections to be endlessly pursued.
Genuine ideals are like those mathematical limits whose variables
approsch them ever more and more nearly but never attain them.
[ know not how to condemn with sufficient severity that all too
familiar philosophy. for it is now in much vogue, which counsels
us to eschew genuine ideals on the alleged ground that, because
thev are unattainable, they tend to dishearten and devitalize. To
hearken to that counsel is to turn away from the most powerful
lures to excellence,  For it is pursuit of unattainable ideals that
has led to thie great triumphs of the hwnan spirit in every depart-
ment of life. It is indeed the proper vocation of man.

In the theory of humanistic education it is necessary to dis-
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tinguish between a human being and the mere follower of a human
pursuit. As aunimate creatures inhabiting & world where we humans
are obliged. like the animals, to win our lives from day to day, we
all of us are, or are destined to be, in some sense, hewers of wood
and drawers of water. And so we all of us require vocational or
professional training. We ecannot escape the nccessity of being
specialists of one kind or another. The ideal of such training, the
ideal of specialism. is efficiency, But efficiency is not the ideal of
humanistie education, For humanistic education aims at the de-
velopment and the disciplining of the whole man. And the man
building a bridge is immeasurably greater than the engineer; the
man teaching the caleulus is infinitelv greater than the mathema-
tician; the man cultivating fields is vastly greater than the farmer;
the man painting a picture is incomparably greater than the artist.
Humanistic education does not exelude the ideal of cfficiency.
What it disowns is the ideal of mere efficiency. The ideal of
humanistic education is intelligence. emancipation, magnanimity:
intelligence regarding the human and the non-human worlds; eman-
eipation from every manner of trivial or sordid things, emancipa-
tion from provincialism, from fanaiicism. from higotry, from
prejucice, from the multiform tyranny of fear; and magnanimity.
largeness of mind and spirit, imagination enough and sympathy
enough and reason enough and emotion enongh and will enough
to gain and maintain the lordlv poise of a freeman amidst all the
trials and frustrations encorn‘ered in a vast, complicate. perplexing
warld.

Great Permanent Facts of Life and the World. It is ohvi-
ons that humanistic education aims to orient and disetpline our
human facuities, not with special reference to the technieal require-
ments of any given pursuit. no matter what. but with reference to
all the great permanent massive faets of life and the world, A
little reflection suffices to show that there are such facts,

One of them is the fact that every human beine has behind
hini an infinite past out of which he has come and which containg
for his gmidance and edification the records or the ruins of ali the
experiments that man has made in the art of living in the world.
It follows that humanistic education will not neglect the diseiplines
of the history aud the literature of antiquity.

Another of the great abiding massive fuets of life and the world
is the fact that we humans are constrained by forces bevond our
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control to live, not in isolation, but in human society; that we are
literally born members of a thousand teams with which we must
learn to codperate in some measure or perish. It is, therefore,
evident that hnmani-tie education is bound to provide disci-
pline in political science, in social science, in ethics, and in
jurisprudence,

A most impressive member of the group of great permanent
massive facts of life and the world is the ubiquitous presence of
Beauty. Beauty is the most precious and the most vitalizing
clement in the universe. More than aught clse it is beauty that
not c.aly makes life worth living but makes it possible; for if hy
some spiritual cataclysm all the beauty of nature and all the
heauty of art and all the beauty of thought were suddenly blotted
out, our human race would quickly perish by depression of spirit
owing to the omnipresence of uglinsss. Consequently humanistic
education will fashion itself in large measure by the consideration
that those who are to be qualified for the discovery or creation of
a good life must needs have taste in- the arts of men and an
awakened sensibility to the marvelous natural beauties of lan1i and
sea and sky.

Mathematics and the World of Ideas. Among the momen-
tous facts with reference to which it is the function of humanistic
education to orient and (*scipline our faculties I have now, finally,
to signalize the stupendous fact denoted in German by the term
(iedankenwelt—the world of Ideas. Tor equipping one to deal with
1leas as such—to deal with them, that is, in accord with the laws
of thotght, in accord with {he standards of rigorously sound think-
ing—there ix hut one avaiiable discipline, and it is that of logic
andl mathematies.  In deference to conservative usage I have said
logic and mathematies, though the maturest critics regard the two
as one. It is evident that to be set in right relation to the world
of ideas, though it is not alone sufficient, is certainly necessary, to
quiulify one to represent worthily the proper dignity of man. We
are thus bound to say that, for humanistic education. logic and
mathematies constitute not merely a uzeful discipline but one that
1= indi=pensable,

Attitudes in Mathematical Study. The fruits of that dis-
cipline naturally vary with the attitude of the student in pursuing
it. and the student’s attitude may be any one of three. He may,
that is, pursue mathematics for its own sake or for the sake of
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its uses and applications or for the sake of what I shall call its
bearings.

One who pursues mathematics for the sake of mathematics is
sustained by its charm. Having gained some knowledge of it, he
craves vet more, and what he has gained at any stage equips him
for further gain. If he be a research mathematician. the investigi-
tions he muakes lead him to further investigations. and so on end-
lessly.  The attitude of such a student reminds one of the farmer
who. when asked why he raised so much corn. replied, “In order to
feed hogs,” and when asked why he wished to feed so many hogs,
replied, “In order to buy more land,” and when asked why he de-
sired more land. replied, “In order to raise more corn.” I am not
condemning the attitude, far from it, but merely indicating it.
This attitude of the mathematieian is indeed well justified by two
considerations.  One of them is that he has great jov in the game.
and any one who has felt the joy knows how sustaining it is. The
second consideration is that, if mathematicians did not pursue
the subject without regard to its applications or uses. then. when
mathematieql doctrines are needed as instruments in the develop-
ment of other seientific subjects, the required doetrines would not
he in existence. Moreover, one of the important lessons of history
is that doctrines created for the mere jov of creating them, created.
that is, without regard to any question of applicability, are sooner
or later fornd to be applicable and thus acquire a secondary type
of justification. A familiar example of this very significant fact
1= afforded by the theory of conic scetions, which was essentially
worked aul for the pure intellectual joy of it long before it found
application in astronomy and navigation. A more recent and even
more striking example is that of the frightfully complicate Theory
of Tensors, established by Riemann and Christoffel long before
the “idle theory” hecame, at the hands of Einstein and his fellow.s.
the “backbone” of the General Theory of Relativity. Tn this con-
nection T must repeat one of the delightful stories told of J. J.
Svlvester when he was professor of mathematics in the Johns
Hopkins University. One day as he was crossing the eampus he
enconntered a notably practical-minded colleague, who said to him:
“Professor Sylvester. what subject are vou lecturing on this term?”
The great mathematician replied: “On the Theory of Substitution
Groups ” “What,” asked the practical man, “is the wuse of that
theory?” “I tnank God,” said Svlvester, “that so far as I know it



O

ERIC

Aruitoxt provided by Eic:

HUMANISTIC BEARINGS OF MATHEMATICS 47

hasn't any.”  Sylvester was at hewrt a poct, galvanized to the
highest mood by the heauty of pure thought.  For him mathemnatics
wus “the Musie of Reason.”

Very different, ordinarily, is the attitude of a student pursuing
mathematies in preparation for the practice of engineering.  And
the same may be said of one pursuing mathematies in preparation
for a carcer in physies or astronomy or chemistry or statistics or
ceanoniies or some other seientifie braneh in which mathematies
hees heen forld serviecable as an instrument of reseavch. For such
students mathematies is justified, not by its inner charm, but by
it applieability, They regard the subjeet not =0 muech as a braneh
of knowledee as< an indispengable tool. The attitude of such
studenta regquires no defense, Tt sometimes happens, however, that
such a stwlent is inelined to depreciate one of the Svlvester type.
The faet is well exemplified by Fourier who, as is well known, was
devated to the applications of mathematies to physical problems
and espeeially to the theory of he o much so that he reproached
Jacohi for not devoting his magnimceent abilities to similar prob-
ferns. The reproach ealled forth from Jacobi a justly famous and
very significant reply: “A philosopher like Fourier.” said Jacobi,
“ought to know that the unique end of seience is the honor of the
human spirit. and that a question respecting number is quite as
pertinent thercto ax a question respeeting the physical world.”

Humanistic Value of the Foregoing Attitudes. I shall not
tarry here to areue at length the humanistie value of mathematies
when pursued for its own sake or when pursued for the sake of
its applications. With reaard to applications, when T think of the
immeasnrable service rendered by mathematies in the countless
ordinary affairs of the workaday world, in the developments of
many branches of setence, and in the invention of marvelous means
fur the conquest of space and time, I ean hardly imagine any one
dull enough to deny that in these ways mathematies has greatly
contributed to the “creation of a good life on this plinet by the
nse of human faculties.”  As for those great mathematical creations
that owe their existence, not to any uses they mav serve, hut to
the pure jov which their ereation awd contemplation vield, it is
sufe to sav that hardly any other human achievements hetter
demonstrate the dignity of man, To elance at « single phase of
the matter, what can be found in the whole hixiory of thought
more humanistieally edifving than the story of the evolution of
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the number-concept, from the.rudest beginnings in primitive mind,
long before men had learned even the first steps in the process
of counting. to the great number-creations of the modern world?
The concepts of Integers und Fractions, of Cardinals and Ordinals,
of Positives and Negatives, of Rationals and Irrationals, of Reals
and Imaginaries, of Algebraics and Transcendentals, of Finites and
Infinites, these great coneepts viewed with the oceasions of their
rise, with their struggles for existence, their ultimate triumnphs over
stubborn opposition, their persistent hardy growth through the
centuries, their countless diversifications and subtle refinements, the
infinite network of their interrelations and their manitold, alwayvs
inereasing. practical and theoretical uses and applications, afford
a series of xecenes that, for any one who has once contemplated
them. constitute a truly unforgettable and inspiring panorama of
the mareh of mind.

Mathematics One of the Humanities. It remains to consider
the attitude of one who pursues the studyv of mathematies. not for
the sake of mathematies, nor for the sake of its uses and applica-
tions, but for the sake of its bearings. By the bearings of mathe-
matics T mean the relations of mathematical ideas. processes, and
doetrines to such great human concerns as are not, strictly speak-
ing. mathematical. One who pursues the study with a view to its
bearings can hardly fail to discover that, by virtue of its humanistic
significance and worth, mathematies is entitled to high rank among
the great Humanities. For what are the subjects that are best
entitled to be listed among the humanities? It ecan hardly he
doubted that the answer ought to be this: Those subjects have the
best claim to be called humanities which best serve to reveal +he
nature of our common humanity and best serve for the guidance
of our human life.

It can be readily shown, T think, that, according to the double
eriterion just stated, the claim of mathematics to be regarded as
one of the humanities is unsurpassed. Let us examine the matter
a little.  We must begin by asking: What is the chief mark of man
as man? What iz the defining quulity or charucter of the essential
nature of our common humanity?  What i it that serves hest to
diseriminate human beings from all other kinds of living creatures?
The answer, T think. iz thi=: The chief characteristic mark of man
as man 18 what Count Alfred Korzybski in his book, The Manhood
of Humanity, has called the time-binding capacity of human



HUMANISTIC BEARINGS OF MATHEMATICS 49

beings. The fine term denotes that highly composite faculty in
virtue of which each generation of mankind is enabled to employ
the accumulated achievements of the preceding generations as
capital for the production of yet greater achievements, so that, as
the generations succeed each other, science begets better science,
philosophy better philosoply, art better art, jurisprudence better
jurispradence, ethics better ethies, religion better religion, inven-
tion better invention, and so on. By that composite faculty man
is cet apart from the animals and the plants, It is the sceret of
the progressability of our human kind. [t is the civilizing energy
of the world.

Where does the time-binding power of man make itself mani-
fest? Obviously it manifests itzelf in the development of all great
subjects and human enterprises. I now ask: Where is this defining
mark of man revealed most clearly? It iz most clearly revealed
ip mathematics, for in the continuity of the progressive develop-
ment of mathematics, running from remote antiquity down through
the centuries and flourizhing to-day as never before, the time-
binding power of the human intellect i+ not only revealed but
revealed in its nukedness. 1 contend that, by this superior dis-
closure of the charactegistic nature of our cominon humanity,
mathematies conclusively vindicates its claim to distinguished
membership in the assembly of the humanities.

If we turn now for a momeat to contemplate mathematics re-
garded as a guardian and guide of our human life, we shall find
that the foregoing conclusion is abundantly confirmed. As every
one knows, human activity presents certain great distinctive types.
One of the greatest of these types is that which we call logical

~-thinking, not merely thinking but logical thinking. the generating
of precise ideas, the combination of them, the relating of ideas in
the forms of judgments and propositions, the uniting of propositions
to form doctrines for the enlightenment of the humau understand-
ing and the guidance of human conduct. Every or.e knows or ought
to know, for the fact is sufliciently obvious, thit above cach of
the great types of human activity there hovers a shining ideal of
excellence—a musge, if you will, or guardiun angel wooing and
beckoning us upward along the steep endless path toward per-
fection. Now, what is the muse or the angel thut lures and sus-
tains our efforts in logieal thinking? The name of the muse is
familiar—it is Logical Rigor, the name of an austere goddess de-
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manding, though never quite seeuring, absolute precision; demand-
ing, though never quite securing, ahsolute clarity; demanding,
though never quite seeuring, absolute cogeney. Is this unuttainable
ideal of absolute rigor a valuable one in the conduet of human
life? The answer, which cannot be too emphatie, is this: In every
depurtment of life where thought is required, the standard of logieal
rigor is so valuable that just in so far as our thinking departs from
it, our discours¢ sinks down toward the level of mere chattering-—
the noise and gabble of our prehuman and subhuman aneestors,

Why is it that the siandard of logical reetitude is <o clearly
tevealed in mathematies? And why is it that mathematies sueceeds
=0 famously in approximating conformation to the standard?  The
sceret lies in the method of mathematics—the method of carefully
selected and clearly enunciated postulates, of sharply and com-
pletely defined coneepts, and of painstaking deductious or demon-
strations. Because there is no field in which a worker can escape
the necessity of making conseious or unconscious use of postulates,
nor the necessity of formulating definitions and of attempting de-
uctions and demonstrations, it is evident thut mathiematical
brocedure furnishes a model for the guidanee of criticism of al]
discourse of reason, no matter what the subject or field to which
the discourse pertains.

Mathematics and the Universal Concerns of Man. The
considerations thus far advanced, though fundamental and decisive
regarding the title of mathematies to be listed among the humani-
ties, are far from Leing all that might be adduced. One who open-
mindedly contemplates the humanistic bearings of the subjeet will
be led sooner or later to see that, as I have said elzewhere,? “Lrery
major concern among the intellectual concerns of man s a concern
of mathematics.” No doubt that statement will seem to some to
be extravagant. Yet the statement is true and the truth of jt
ought to be made known to all. Let me bricfly submit a few justi-
fving considerations,

Every onc knows that among the most impressive liets of our
world is the great fact of Change. The universe of events, whether
great or small, whether mental or physical, is an en iessly flowing
stream. Transformation, slow or swift, visible or invisible, is
perpetual on every hand. But events are interdependent, <o that
change in one thing or place or time produces changes in other

? Noe Yole I'hilosophy and Qthey Fasays, E. I'. Duttun ang Company.
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things and places and times. With the processes of change every
human being -moron, medioae, or genius—must deal constantly
or perish.  The processes of change are not haphazard or chaotic,
they are lawful. To deal with them successfully, which is a major
concern of wman, it is necessary to know their laws, To discover
the laws of change is the aim of science, In this enterprise of
seience the idral prototype is muathematics, for mathematies eon-
sists mainly in the study of functions, and the study of functions
is the study of the ways in which changes in one or more things
produce changes in others.

We are here in the presence of another bearing of mathematics
upon a major concern of man. I mean our human conecern to
ascortain what things, if any, are permanent in the midst of change.
Human beings desire to know what things, if any, abide. We
wish to know what things, if any, may be counted upon. In this
great quest of permanence in the midst of mutation is found the
unity of seience, philozophy, art. and religion, for it is the sov-
ereign concern of them all. Is it a concern of mathematies? To
find the answer one has only to glance at the immense mathe-
matical literature embodying the truly colossal doctrine of In-
variance.

Next consider the great subject of Relations. Such terms as
spouse, hushand, wife, father, mother, parent, child, king, subject,
president, eitizen, partner, enemy, friend, greater, less, better, worse,
and so on and on, are familinr examples of relations. Whoever
examines the matter will be astonished to find that most of the
words in any language, either direetly or indireetly, cither ex-
plicitly or implicitly, denote relations.  EFaeh thing in the world
has named or unnamed relations to everything else.  Relations are
infinite in number and in kind. Being itself, said Lotze, consists
in relations. Seicence, said Henri Poinearé, eannot know “things”
but only “relations.” To be is to be related. To understand is
ta understand relztions.  To have knowledge is to have knowledge
of relations, [t iz evident that the understanding of relations, the
guining of relation-knowledge. is a major concern of all men and
women, whether they are aware of it or not,  Are relations a con-
corn of mathematies? They are so mueh its concern that able
eritics have thought it possible to regard mathematics as having
relations us its sole concern,

I have thus fur said nothing explieitly regarding morals and
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religion. Undoubtedly these are among the major concerns of man.
A word regarding ethies. We know that, in any fairly stable
community, no matter how primitive, no matter how civilized,
there gradually rise and ultimately prevail eertain sentiments re-
garding “right” and “wrong,” regarding “good” and “bad,” regard-
ing what “ought” to be, and “ought” not to be, in human conduct,
These sentiments get themselves expressed in the forms of maxims
or propositions. The propositions are regarded by all, or by most,
members of the community in question as embodiments of ethical
knowledge or truth, The body of propositions is an ethical system
grown out of experience. Such systems vary from community to
community, and from period to period in the life of a given com-
munity, What service can mathematics render in connection with
such a system of ethics? The question has been well answered
by Jacques Rueff in his excellent little book, Des Sciences
Physiques aux Sciences Morales. He has here shown that, in the
case of any such system, it is always possible to find a set of prin-
ciples or postulates from which the propositions of the system can
be deduced as consequences in the mathematical manuer. In this
way an ethical system rises from the level of experience to that of
a logically orcumzed doctrine. The transformation is one im-
periously demunded by the human intellect. Moreover, by such
a transformation an ethical system is shaped for eriticism. And
this is well, for, as Cousin long ago said, “La critique est la vie de
la science.” I should add that Rueff's book has been translated
into English and published by The Johns Hopkins University Press
under the title, From the Physical to the Social Scicnces.

The bearings of mathematics upon religion are treated hy
another essay in this volume. I will, therefore, content myself
with a single relevant observation. It is that the concept of in-
finity which is involved in the great question of imme rtality, is
dealt with in mathematics, but not elsewhere, in strict accord with
the standard of logical rectitude.

In the light of what has been said and suggested in the fore-
going discussion it is abundantly evident, I believe, that, among
the agencies for quakifying human individuals “to create a good
life on this planet by the use of human faenlties™ or to represent
worthily, in their life and work, the great potential dignity of Man,
Mathematics is unsurpassed.



MATHEMATICS AND RELIGION

By DAVID EUGENE SMITH
Teachers College, Columbia University, New York City

The Bonds Between Them. It is onc of the tendencies of
the mind to look upon its own major interest as the focus of all
knowledge. The mind tends to see analogies that are, at best,
remote; to magnify the influence which its own favored science
exerts upon all other branches of knowledge; and to feel that it
detects bonds which do not exist. The poet, for example, sees
in the Book of Genesis a magnificent prose poeni, the uplifting
power of which vanishes when he thinks of it as a treatise on
natural science. The mystic sees in the Old Testament a field of
what he feels is mysticism, and he reads into it a harmiess ob-
seurity that pleases him and has the merit of injuring no one clse.
The Christian apologist finds in its inaccuracies, as that a (p1)
equals 3, the errors of some ancient copyist, instead of frankly
recognizing that the one who wrote that particular verse simply
used the everyday common value adopted by the people of his
time. The mathematician may, for a similar reason, tend to
exaggerate remote analogics and to assert a closcness of relation-
ship between his own field of interest and that of the theologian
that is, in fact, very attenuated. In speaking of this relationship,
therefore, one must always be on his guard against trying to sce the
invisible or to imagine that which has no existence. So much for
the initial objection of those who look upon knowledge as made
up of separate and distinet domains.

The bonds uniting mathematies and religion have often been
considered, and many have been the monographs written and the
words spoken upon the subject. The trouble is that the attempts
have gencrally eoncerned the theologian on the one side and the
mystic with some knowledge of elementary mathematies on the
other. They have only rarely been made by either the seeker after
the good, the true, and the beautiful in religion, on the one side,
or the constructive mathematicins f genius on the other. Iiven
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when the conditions huve scemed favorable, however, as when
Newton wrote on religion, the vesult has been more Lunent:able than
convineing or inspiring,  Cauchy was o mathematieal genius but a
religious bigot, and many a religious leader in the Middle Ages
looked upon mathematies as an invention of Satun,

Hence it is evident that no briel essay is likely to contain much
that ix new or to have an influence that reaches bevond a small
cirele of readers. Nevertheless there i some advantage in the
intiunuey which sueli eireles afford, for a writer ean feel that s
relation=hip ix created which allows him to consider that he s
artnong riends to whom he is bound by ties of connmnon interest.

Terms Considered. If by the term “religion” is meant see-
tavianisny, or even Christianity, or Budidhism, or Brahmanismi, or
Mohammedanism alone, then this essay will mean but little, It
by the term “mathematies”™ is meant nothing but number mys-
ticism, or hyperspace, or a beliel in the infallibility of any single
dictum of the subject ax we now know or do not know it, then
these remarks will mean even less. But if ¢he render belongs to
that increasing class of those who have a general knowledge of
and a sympathy with both religion and mathematios in the large,
then it may have at least the value of suggestiveness,

Al religivus writings tend to o wivsticism which arizes from
ighorance or from the inability to explain the inexplicable,  As
part of thiz mysticisin is the mystery of numbers. The three primes
m the conmmon nuber realm of primitive peoples —the 3, 5, and
f-—center into the rituals of practically all religions, and it would
be an interesdig but rather profitless task to write a history of
any one of them. The material is suflicient for a labor of many
vears, but after it was carefully sifted, the result would be that
these numbers are mystic simply beeause they ure prime, and that
for this rewson alone they have been foreed into all domains of
religious mysticism.

What concerns us, this little civele of readers, however, is sone-
thing quite different, maonely, the influence of clementary mathe-
mties upon the refigions instit< of vouth: an influence uncon-
seiously or at lenst unobtrusively  stimdated by any  teacher
without bigotry, by ene having no wish w indulge in propugands
and not possessedl with that fatal deteet ot hatlueination which
lesds mekind to believe that it sees or hears or feels that whiel
la® no being,
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The Infinite. I'irst, muthematies soon leads us to a feeling
that the Infinite exists, The inquisitive child shows this when he
asks his teacher what 1= the largest number; and the teacher shows
it in her inability to reply. This feeling grows more impressive when
the child beeomes the youth und studies any elementary series,
even the sununation of n terms of the geometrie or any other type.
It increases when he studies geometry and wonders what happens
to the sutu of the angles of a triungle when the vertex is “carrvied
to infinity,” and when he asks the teacher whut infinity means.
It inereases when he studies simple trigonometry and finds that,
as an angle approaches 907 the tungent approaches infinity, sud-
denly  beeoming minus infinity when it passes through the right
angle, It inercnses when, if ever, he becomes a scholar in mathe-
nutties, and deuls with the intinities of higher orders, with trans-
finite numoers. with the  everal plans of representing infinity
graphically, and with the infinity of time and space, or with the
finteness of euch. And finally. when he meusures the known uni-
verse, or universe of universes. und thinks in light years (the
distance that light travels in a vear), and finds that the distance
aeross explored space may be 400.000,000 of these light vears, and
lets his imagination carry him to the verge of this space and leads
him to wonder about that which lies beyvond—then the mystery
beecones overpowering.  He has pushed back the elouds of igm;-
rance only to see that his own ignorance has become more aad
more hoveless, and that scienee leaves him helpless in the presence
of & new infinity. The childish boast that we will believe only
what we see, the most childish of all our feeble assertions of our
faith in our puerile strength, avails us not. Mathematices has
lured us on, und at the last we feel more helpless than ever, be-
cause we have come to see how full of awe we are in the presence
of the awful Intinite.

The Changing Bases. Aguin, the vorth need not even reach
the legal age of the adult before another fleod of mysteries tends
to engulf him,  He is taught in mathematies that certain postu-
lates are sacred and that he must not (uestion them. In religious
instruction he is taught the same.  Iu inathematics he will be en-
cournged by any honest and capable teacher to see that certain
postulates we not alwayvs true: in religion he may be econdenimed
if he queries certain others. In general, many teachers in euch
domain display a Kind of fear of honest inquiry, 4 fear bused either
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upon ignorance, or upon faith in tradition. No field of muathe-
maties need fear searching inquiry, and no religion or sect need
fear the scientific study of its essential nature, however much it
ay fear a study of the nonessentials which have accumulated
through the ages. In mathematics it is evident that eaeh of these
weries has the same number of terms, however far we go:

1234 5 6 7 8 910...
24681012141618 20 . ..

for cach term of the sccond is formed from the term of the first
that lies just above it. 1f, therefore, the numiber of terms of each
i unlimited, the number in each ease may be suid to be the same.
But the second series is a part of the first, cunsisting of every other
term. Hence, in this case, the part is equal to the whole. The
tllustration is & common one, and equ:. 1y common is the one which
shows that the infinity of points in one line is the same as that
in a line twice as long, or half as long, or one-tenth as long, or a
million times as long. Therefore the youth in school readily comes
to the stage at which he sees that postulates that are valid for
the small field in which he has lived, and that are necessary in
such a domain, cease to be so when he faces the Infinite, A postu-
late is an assumption of validity in some special region; but we
outgrow postulates as we outgrow elothes, whether in mathematies,
in physics, in behavior, or in any other domain, substituting new
ones which appear to have vulidity in the new region of thought
in which we find ourselves. When Linstein made known his theory,
it did not destroy Newton's postulates in gravitation, or his laws.
These are valid up to a certain point, or at least are practically
workuble,  He simply took the next step. . When Lobachevsky
and Boivai proelaimed their theory of purallels, they did not de-
stroy kuelid’s postulawies; they simply assumed another sot and
worked out a new lot of conelusions. In ordinary finite space,
FEuelid's geometry is a workable one; in space i general the other
has advantages.  Euchd taeitly assmmed that space was every-
where ulike and that a straight line. however far produced, never
returned into itself; modern writers tend to assume that spuace is
curved and that what we think of as a2 straighit line is like o great
cirele on a sphere, alwavs returning into itself Mat naties
simply =ays, "It this, then that™; it does not suy, "This is eternally
true, therefore that is eternally true.” It never fears to have a
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search made into its fundamentals; scicnce never fears it; and no
religion, whatever it may be, need fear it. An ignorant teacher
may fear that Fuelid has been killed; but the great Alexandrian
has been killed a thousand times by over-ambitions teachers, and
vot he is more vigorous to-day than ever-—vigorous beeause the
buases of geometry have been more firmly fixed through a search
into its fundamentals, and becanse the nature of proof is more
c¢learly known, Tt ix the nonessentials thar go; the es<entials stand.
Modern religious thinking leads to the same conclugsion—that it
has nothing to fear from honest study: if its nonessentials go, the
exsentinls will stand the more firmly.

The Play of Imagination. Like physics, astronomy. religion,
art, and poetry (whethe. these are separate regions of thought
need not cancern ns at present), mathematies offers a field for the
play of the inagination that is tending more and more to he culti-
vated. Take such a simple figure as the triangle AB('. TIf we
place a point X on the base AB, the fizure may he considered as
a four-sided one, AXB(*. What has now ' «ppened to the sum of
the angles of the figure? Any pupil in geon ry can readily answer
the (piestion.  What happens if X moves upward. =o that the fignre
has a refntrant angle? Then let X roam as it will. now resting on
BC, now resting at B, now passing through BC. now going to
“infinity”; now “passing through infinity” and returning from the
other side---and so on. What a chanee for the play of imagination
is here! And has not this play its analogue in the speeulations
to which the searcher after the great things in religion is led as
he comes to consider the relation of the finite to the Infinite? For
what the vouth in his study of this simple figure has found 1=
another illustration of the permanence of laws, the permanence of
truth, the confidence that may he his in hi= proofs of propositions
relating to what we know as “Euelidean spuace.” Tt is a wonderful
thing to come in contact with comething. however insignificant,
that is “the same, vesterday, to-dayv, and forever,” even in a hypo-
thetical field. 1f the speculations of vouth in such a field are
noble, how much nobler are those in ficlds more extended and
more vitall

Space and Time. Mathematics leads inevitably to a ronsid-
eratior. of the nature of space and time. The consideration may
ceetn trivial to us. but that it exists at all is significant. Where
does space end? Has it any end? If it curves, through what?
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Is it through a fourth dimension, which scientists now come to con-
sider a commonplace iden? If so, what other spaces are there and
what is their nature? Not without value are the rather childish
considerations of Flatland and its inhabitants, and of the way in
which a four-dimensional being may look at us and at the lives
we live. If this raises the question of other spaces, of other uni-
verses of universes, the speculation, immature though it may be,
has value, It places religion in a new light, it sets new bounds to
human impotence, and it takes awav the boastfulness of a mind
characterized by “arrested development.” The same influence
comes with respect to time. Ts it like space, a closed affair, re-
turning into itself? Is it. like length, a dimension—the fourth
dimension?  We can point to the north. but can we point to
to-morrow? Time has the elements of a dimension but we are too
three-dimensional-minded to point to the direction it takes,
Algebra, like geometry, leads us to similar speculations. The
equation 2x 4+ 3y = 6 is represented geometrically by a straight
line in a flat surface (a space of two dimensions) : 2z +3y+2=-6
iz represented geometrieally by a plane in our space of three dimen-
sions: but what about the equation 2z -1 3y + z 4w =267 IHave
our dimensions given ont? Should it be a solid in a space of four
dimensions?  And if so. where shall we end in our speculations?
Into what kind of a super-cosmos are we Leing led?  People sayv.
“I will not believe in God,” but they believe firmly in Nature,
and most of them have the faint remnants of a belief in signs, in
omens, in Iuek, and in looking at the new moon over the right
shoulder.  They will not believe in anv possibility of o warld
hevond, hut they will see the entire possibility, and at present thev
helieve in the prohability. of & dimension hevoud our own. Tt i a
curious situation, this religions skepticism, and it would seem that
it wonld tend to vanish if the theologian were not afraid of honest
search after the fundamentals of relieion. This. at any rate, has
been the result in the fields of mathematics and of science,
Obscurity of Language. Much of mathematies and slse of
religion is obscured by the langnaee nsed, Mathematicians in the
sixteenth century spoke of negative numbers as “fietitious” but as
soon as it wix found that they could be represented graphically
and used physieally. they censed to be such. They then hecume
no mare fictitions than a fraction. for we can neither look out of
a window 15 of a time nor look out of it —2 times. Fach number
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may be called artificial, but neither is fietitious. Similarly, the
square root of a negative number hax long been called “imaginary,”
hut as =oon as it was represented graphically and used physically
it consed to be any more imaginary than a fraction or a negative
nunther.  Religion has met with the same difficulties. Much of
the tronhle that voung people have in comprehending it is due
to the presence of terms and coneepts that are entirely irrelevant
to the essence of the subjeet. Eliminate these. or at least make
them more concrete, and this difficulty will be lessened or will
even disappear, as it has in mathematies,  Tf we would cease teach-
ing a constderable part of current algebra and concentrate on the
sreat features of even elementary mathematics, pupils would get
mueh more out of it.  1f wé should do the same for religion, the
result would be equally beneficial,

Some Effects of Mathematical Study. A very good friend
of mine. and ene for whom I have great respert, is continually
demanding, “Will anvene tell me why the girl should study
algebra?” My answer wonld he that she should not study it at
all if it iz to be tanght to her as it waos tanght to him, or ax he and
I may one time omrselves have tanaht ite After we have ent off
all the useless traditiona] growth that enenmbers it, <he =<hould
stigdy it for two or three very wood reasons, one of them being
that she has as mneh right as a boy has to feel her position in
the universe. to be led to consider =ueh concepts as time and space,
tu appreciate the nobler side of mathematies and to experience the
feeling of the grandenr of space that it opens to yvonth, Then T
wonld agk my friend in return, “Will anyone tell me why the girl
shontd know anvthing abont the nobler side of religion?”"  The
two questions are complementary. Perhaps he might =av that dish-
washing 1= more noble than either mathematies or religion, and
that to play bridge is more important than to think of what the
infinite in aleehrn or in religion means to her or to her brother;
but. does he really think =0?

Through clementary mathematws he youth finds for himself
that certain laws are eternal, that in the presence of the Infinite
some of hix carly beliefs must he abandoned. that what he onee
believed to be a fietion is ax real as life itself, that there may be
other spaces than ours, that our space may he enrved just like the
thin space on a sphere, and that death has no effeet upon the
eternal truth that the square of a -+ b is a® -+ 2ab - b2, He sees
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that quartz always crystallizes as a hexagonal prism joined to a
pyramid and that the hee’s cell patterns after it, and has done so
for millions of yews and will do so for billions more. With the
unseen tendrils of lis mind he grasps the Liternal. No book, no
pricst, no teacher, no authority has led him to sce that the certain-
ties of mathematies have helped to conquer what he considered his
certainties of childhood. The essential features of religion ofter
no difficulties that differ greatly from those which he may easily
conquer in the domain of the Mother of Sciences.

Do children get this from their mathematics? Not when led
by teachers whose minds and interests have never scen the light-—
and so with their courses in education, in science, ir history, in
religion, and in art. But a new era in the teaching of mathematics
is dawning, an era in which tradition gives way to a nobler concep-
tion of what all +he sciences mean in relation to one another and
in relation to the higher ideals of humanity—the fine arts, the
cultivation of a taste for better literature. the social life and the
comforts of the world, and the religious instinets of our race.



THE MATHEMATICS OF INVESTMUNT
By WILLIAM L. HART

Urieersity of Minnesota, Minneapulis, Minnesota

Parr L. INTRODUCTION

Extent of the Discussion. Along the backbone of the busi-
ness world we find those problems which involve simple interest,
compound interest, and the applications of compound interest in
the theory of both annuities certain and contingent annuities. The
word annuity here refers to any sequence of periodie payments.
The theory of interest and annuities and their applications is re-
ferred to as the mathematics of investment, or the mathematics
of finance: it iz a part of the more extended field of actuarial sci-
ence. The mathematies of investinent, as distinet from mere arith-
metie, is at the foundation of seientifie banking, aceounting, bond
practice, all forms of activity involving the investment of money
and the diseharge of debts —particnlarly the discharge of debts by
sequences of periodie payvments, adfe insurance, and life annuities.
In the present chapter, we shall discuss the theory and applications
of simple interest, compound interest, and annuities certain. We
shall not consider the theory of contingent annuities, and their
applications, which cccur mainly in a treatment of life annuitics
and of life insurance. This aspeet of the mathematies of invest-
ment is not of =uch general appeal as is the rest of the subject, and,
moreover, its treatment presents essential theorctical and notational
difficulties,

Mathematical Prerequisites. A minimum satisfactory ' athe-
matical backgronnd for the study of the elements of the
mathematies of investment consists of arithmetie, and one and one-
half years of high school algelia. Familiarity with the computa-
tional aspects of logarithms is very desirable, but is by no means
an essential part of this backeround; it is merely convenient to
simplify the arithmetic involved by using logarithms, or. hetter,
by using a eomputing machine,  Tn anv rational treatment of (he
mathematies of investment which does not introduce artificial
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mathematicul difficultics merely as theoretical toys, there is no
necd of the use of logarithns in solving exponential equations,
or other advaneed topies in the theory of logarithms. In the
present chapter, logarithms will be referred to only in brief dis-
cussions where an effort will be made to properly gauge their use-
fulness. or the necessity for their presence. Knowledge of the
formula for the sum of a geometrical progression is the only item
of the theory of progressions which will be needed, and this for-
mula will be used only ance in the chapter. This rather extended
discussion of the role which logarithms and progressions will play
has been given in order to dispel at once an all-too-prevalent no-
tion that the mathematies of investment is heavily dependent on
proaressions and logarithms. A proper foundation for the mathe-
maties of investment consists mainly of good arithmetical skill,
that familiarity with the use of literal numbers and algebraic
manipulation which results from one - 1 one-half years of algebra,
and such maturity of experience ax iy possessed by students of the
senior high school, or higher levels.

Historical Background. The mathematics of investment
developed very carly, along with the use of interest in finaneial
transactions,  From the vear 1202 onward. books on mathematies
included prob”ms coneerning hoth simple interest and compound
interest. At an extremely carly stage we find problems of great
difficulty, as juaged from the standpoint of the carly mathema-
tician who had neit“er the theory of logarithms nor the extensive
modern interest tables at his disposal.  Thus, Fibonaeei (1202)
proposes the following problem:!

A cortain man puts one denarins at inferest at such u rate that in five
vears b las two denariis and in oevery five vears thereafter the money
doubles. T ask how nuwny denarii he would win from this one denariug i
100 veurs,

In Tartaglia's General Trattato (1556). we meet the follow-
ing problem.® whose solutiom by Tartaglin, with his ineflicient
mathematical tools, demanded great ingenuity:

A merchant mave o university 2814 dueats ov the understandiag that he
was to pay 618 dueats a yewr for nine yeass, st the end of which the 2814
dueats should be considered ns paid. What interest wis he getting on his
money?

t8ea Vera Sanford, A Short Hictory of Mathemn irsy po 1, Houghton Miftin

Companny, 19500,
TR Vera sanford, apccl., poo 106,

-
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In fact., we can say that essentially all of the small amount of
theory on which the mathematies of investment is based has been
known for centuries.

The Unfamiliarity of the Subject. The mathematies of
investment eonsists of very little theory and of very much appli-
eation, amnd extremely interesting and praetical applieation at that.
Bevomd the level of elementary avithmetic and intuitional geome-
tryv, we should class the mathematies of investment as practically
the most elementary field of applied mathematies. In it we find
that artthnetie and to the astonishment of the elementary
stndentr even aleebra find continnal use.  In spite of the long
history of the mathematies of investment. its clementary charae-
ter, and its ereat practical importanee, American schools have been
<ow to move any appreeiable part of the =ubject down to the
school level where it might well be brought in. Until enmpara-
tivelv recent vears, one could not refer to the mathematies of in-
vestment even in an aadienee of vrofessional mathematieians with-
ot fenring that most of onex listeners were practieally unin-
fortned in reeard to the applications of the subject at hand. Up to
fifteen vears ago, very little effort was maude in American col-
loaes to teach a specialized course in the mathematies of invest-
ment exeept to that extremely small group. present in only a few
nniversities, whieh wa receiving the training necessary for the
actnarial side of life insuranee.  The =main diffienlty in presenting
the mathematies of investment to elementary American students
was the laek of a proper texthook, This diffienlty was sneceszfully
overeome for the first time in 1913, when Professor F. B. Skinner
of the University of Wizeconsin made an ontztanding eontribution
to mathematieal pedagogy by the publication of the first edition
of his Mathcmatios of Investment®  Since then, a areat variety of
other texts of an elementary rature have appeared, offering va-
piong modifieations of the ecourse as it was eriginally oraanized by
Professor Skinner. With the aid of the many excellent textx on
thie subjeet. the mathematies of investiment is now tanght cue-
ces<iilly to collese freshinen on an extensive seude, mainly to those
who are specindizing in business administration. yt also to large
anmbers of stndents in the general collere courses, On aceount of
the comparatively recent appearance of the mathematies of invest-
ment in the eolleee curmenlim, and the almost entire absenee of

T'hdiskesd by Ginn aned Cempany.
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any treatment of it at the sccondary level, the discussion of the
present chapter will presuppose no knowledge of the subject out-
side of the familiar facts about simple interest and compound in-
terest.

Outline of the Discussion. Purt 11 o, the chapter will be
devoted to a discussion of certain aspects of simple interest, and
of the related topic of ~imple discount. Admitting that the mate-
rial referred to in Part IT is present in high school arithmetie,
Part II aims to orient this clementary scetion of the subject with
respect to the more advanced portions. The author believes that
such orientation could with advantage be emphasized in the teach-
ing of arithmetie.

Part IIT will he devoted to compound interest, with emphasis
on simplification of method. Such simplification comes from n
the use of the interest period instead of the vear as the funda-
mentul unit of time in the formulas, and (2) systematic use of
interest tubles and interpolation in them, in place of logarithmic
methods.

Part IV will be concerned with a derivation of the fonda-
mental annuity formulas, and their application in various types
of problems. The length of Part IV, relative to Parts II and ITI,
doex not properly indicate the outstanding importance of Part IV
in the mathematies of investment. Lack of space for descriptive
material makes it impossible to present more than & brief indi-
ation of some of the many applieations of annuiries certain.

PART TI. Si1MpLE INTEREST AND SIMPLE Discouxt

An Algebraic Treatment of Simple Interest. At any
school lTevel heyond that on which the student has dealt with linear
equations, the treatment of simple interest and its applications
should be definitely tied to the familiar equations:

I = Pr¢; (1)
S=PQ 4 rt). (3)

In these equations, P 1 the original principal, r is the interest
rate, expresscd as a decimal. ¢ is the time of the investment, ex-
pressed in years, [ is the imerest earned by P in ¢ vears, and N is
the amount due at the end of ¢ years., We should not confuse the
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student by long-winded word-deseriptions of how to find the rate
when the prineipal, the interest, and the time are given, or of how
to find the principal when the wmount, the rate, and the time are
given.  He should be tanght to substitute given quantities in prop-
erly selected equations, and then to find the unknowns by the nat-
ural algebraie proeedure,

In a treatment of the mathematics of investment, simple in-
terest is important not only on its own merits but also ax a means
of presenting the important terminology of present value, amount,
accumulation, and discount under a simple guise. In equation
3. we call P the present value of the amount S, The possession of
P to-day is just as desirable as the possession of S at the end of ¢
vears,  With account taken of the effects of interest, I’ and S are
equivalent sums of money due on different dates.

To accumulate a principat P for ¢ years at the rate r means to
find the amount S due at the end of ¢ years if P is invested at the
rate r. To discount an amount S for { years means to find the
present value of 8 on a day ¢ years before it is due. The discount
on S is the ditference between S and its present value 2, or is
S —P).

Examere 1. (a) Discount $1,130 for 214 yeurs at the vate 514%¢, simple
interest,  (h) Find the discount on the $1,150.

Solutinn, (1) We desire to find the prosent value of the amount 8§ == 81,150,
215 years before it is done. We use equation 3 with £ ==215 8 ==1,150, and
r = 05):

1130 = P[1 + -(033)].
P2 + 3(035)7 == 2,300.
2275 P = 2.300
2300
P= Soi3 S1.010.44,

() Sinee the present vadne of 81150 1= 3101099, the discount is (1,150 —
1.010.9), or $134.01.

In the preeeding example, $139.01 iz the dizeonnt on £1.150,
due at the end of 214 veurs, and, alzo, $139.01 s the interest for
215 veurs on the prineipal $1.01099. That & $138.01 plays a
double role.

The last paragrapl illustrates an wteresting faet, From equa-
tion 2, [-=z oS- -0 Henee, the quantity I, wiich was delined
as the nfercst on the prineipal ) has now been given a second
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nanme; I is also the discount on the wmount S, That is, T plays a
double réle.

Simple Discount. The preceding discussion of the quan-
tity [ leads naturally to an important notion.  In referring to [/
as the interest on P, we use the equation I == Pet, which expresses T
as 4 certain percentage per yvear of the prineipal . Similarly, in
considering I ax the dizcount on the amount S, it is very con-
venient to express I as a certain pereentage per vear of the wimount
S, To do so, we introduce a rate of stmple discount, eall it o,
expressed as a decimal, Then == Sdt. Accordingly, from equu-
tion °

P=S—Tz=N—Ndt - N1 =ty

Henee, we are led to the following equations of simple discount:

I == Sdt; (4)
P=N8N-—1; 1)
P=N(1—dt. (6)

Equations 4, 5, and 6 are just as mportunt as cquations 1, 2, and 3.

Exampre 2. S300 is due at the end of 90 days. Find itz present value,
at 69¢ simple discount, using 360 day= to the year,

Solution. We are piven S==3800: o =~ 06; (==11. From equation 4,
I==3000.06) (%) =+ 450, Irowm equation 3, P = 300 — 4.50 = §205.50.

In current terminology, simple discourt is froquently referred to
as slmple interest payable in edvance. This is somewhat unfor-
tunate. because simple diseount is discount and s not nferest, in
the ordinary sense of the word. Nevertheless, if <:e once recognize
that simple interest in advance mcans discount, confusion ceases,
provided we admit the independent existenee of equations 4, 3, and
6, and do not attempt to make equations 1, 2, and 3 do double
duty * both for simple interest and ror shnple discount,  All of the
usual problems in the discounting o promissory notes, and the
other numerous applications of simple dizcount or what is the
sanie) of interest payuble in advance. can be conveniently han-
dled by use of equutions 4, 5, and 4.

Exayins 30 A banker charges 65¢ =imple interest prauble in advanee,
(@) What shall I agree to pay to him ut the end of 6 months, in order that

$The aaathor feels that the frequent faiinre of texthonks to reecgnize the Inde-

pendent existener ot eguations 40 A0 and o oan evil which hewd« ta the egrrent
{avk of elear thinking abont disconnt aud aaterest in advaues by the avernge wmaun,
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I may receive $1,000 from him now us the proceeds of my loan? (b) What
interest rate awm I actually paying?

Solution. (@) Interest in advance, at the rate 6%, meuns that simple
discount is being charged at the mte 6%. In equations 4, 5, and 6, we are
given P ==1,000, ¢ == 15, and d = 8. We use equation 6;

1,000 = 8[1 — %5(.06)];

97 8 = 1,000;
S= -1-'?-99- == $1,030.93.
RN

{0) From Part g, I pay 830.93 interest ut the end of 6 months in addition
to the $1,000 which I received at the beginning of the transaction. Frow
I = Pi¢, with P == 1,000, I ==30.93, und t == 1,

30.93 == 1,000(r) (34),
On solving, we ohtain r-=.0619. Hence, a rate of 6%, payable tn adrance,
on a 6-month loan, is equivalent to a charge of simple interest at the rate
6.19%.

The terminology of present value, amount, aceummulation. and
discount applies equally well both to simple dizcount and to simple
interest div.ussions. To discount an amount 8, due at the end of ¢
vears, under simple intcrest at the rate r, means to find P by use
of S=Pi1 +rt). To discount an amount S, due at the end of ¢
vears, under simple discount at the rate d, means to find P by use
of P=~8(1—dt), The equations of simple dizcount are eusier
to apply than those of simple interest, if we desire to find a prin-
cipal P2 when the amount S is given, that is, when we desire to dis-
count an amount N. The cquations of simple interest are easier
to apply than those of simple discount when we desire to find S
when P is given.®

Part I1I. CoMPOUND INTEREST

Definition of Compound Interest. If, at stated intervals
during the term of an investment, the interest due is added to the
principal and thereafter earns interest, the sum by which the origi-
nal prineipal has inereased by the end of the term of the invest-
went i called compound interest. At the end of the term, the
total awount due, which consists of the original principal plus the
compound interest, is called the compound amownt.

Hereafter, the unqualified word interest will always refer to
compound interest.

“For oa eonmplete discnsstn of the relethims betwern stmple disconnt e simyple
fnnterest, see Chapter 1ot the author's Mathomalies of Tnvestment, Korvised, 1, C.
Heath aund Company, publlshers,
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We speuk of interest being compounded, or converted into prin-
cipul.  The time between successive conversions of interest into
principal is called the conversion period, or the interest period.

Thus, if the rate is 6%, compounded quarterly, the conversion
period 1s 3 months, and interest i earned at the rate 656 per year
during each period, or at the rate 1.5 per conversion period.

Exasterg 10 Find the comjound mmnount at the end of 1 year if $100 is
invested at the rate 8%, compounded quarterly,

Solution.  The rate per conversion period is 02, The oviginal principal
is 8100. At the end of 3 months, $2.00 interest is due: the new principal is
§102. At the end of 6 monthe, the interest due is 290 of $102, or $204,
and the new principal is (8102 + 82,040, or 810401, In this fishion, we find
that the amount at the end of 1 year ic 8108213, The total compound
interest emmed in the year is 88243, The e at which the original principal

D B

increased during the year is P_I%O or §2143%¢.

Nominal and Effective Rates. In the usual way of de-
seribing a given varicty of compound interest, the rate specified is
called the nominal rate. 1t is the rate per vear at which interest is
earned during each conversion period.  The effcctive rate is the
rate per year at which interest is earned during each vear. Thus,
in the preceding exaumple, the nominul rate is 8%%; the effective
rate is 8.2437¢; the rate per conversion period ix 294, All of these
three rates of interest should be kept in mind when considering o
given vuariety of compound iuterest.

It ix emphusized that, in the future, when we refer to a rate of
interest, we mean a rate per year, exeept when we otherwise spe-
cify a rate per conversion prriod.

The Compound Interest Formula. Ict the inferest rate per
conversion period be r, expressed as a decimal. Let 22 be the origi-
nal principal, and let S be the compound wount to which P ac-
cumulates by the end of & conversion periods. Then, we shall prove
thut

S =Dl 4 mE, (1)
Proof. The original principal invested iz 2
The interest due at the end of 1st period 1= P27,
New principal at the end of 1st pevind ix P4 Pro- i1 e,
Tuterest due at the end of 2d peviod is e {20l -] or Prol 4o,
New prineipal at the end of 20 period j=

Pildr) Pl nr == Pol $-riel 4-r0, or Pl 4 p)®
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By the end of each period, the principal on hand at the begin-
ning of the period hus been multiplied by (1 4 r). Ience, by the
end ol & periods, t.ae original prinecipal P has been muitiplied A
successive times by (1 +-r), or by (1 +4r)*. Therefore, the com-
pound amount at the end of & periods is PP(1 -+ 14, as in equation 1.

The exceedingly elementary discussion leading to equation 1
was not given with the idea that any new facts were being pre-
sented. The object of this disenssion was to exhibit the convenience
of the terminology of conversion periods, and rates per period, and
to =how how this terminology lemds to a simple general formula for
the compound amount.

As in Part I1, we call P, in equation 1, the present value of the
amount N, To aceumulate P for b conversion pertods at compound
interest, means to find the mount S by use of cquation 1.

Exasteig 20 Acemuulate $300 for 91 years at 657, compounded quarterly.

Solut/ion. The rate per conversion period is 06 -+4, or r== 015, The
nuiber ol conversion periods = k=4 9Ly = 37, From equation 1,

S == SO0CLOS = S0001LT518) = $520.44.
I the solition, we obtained the vadue of (1015)* from Table I, on page 84

If Tuble T were not availuble, (1.015)* would have to be com-
puted by usze of logarithms, or, less conveniently, by use of the
binomial theorem. For thiz reason, one might rashly =ay that
lozarithinis were essenddal tools for further work., This statewent
ix unjustitied, beeguse fairly complete tables ® of compound amounts
are just as accessible as tables of logurithms. The whole discus-
sion from here on presupposes that =ome convenient set of interest
tables ix available.  For the illustrations of the present chapter,
thie accompanying extracts of tables are suflicient.

To discount un amount N for /o conversion periods means to
fid the present value of N on woday & periods before S is due. To
find P, the present value, we solve equation 1 for P in terms of N
we find P2 == 85—+ (1 4 1), or

PS4 (2)
Althongl equutions 1 and 2 are eqnivalent equations. we refer to
them us the fundamental cguations of compound interest,

Fxasink 3. Diseount 330 for s years at 190, compounded semiamually.

Solution, Tu cquation 20 we hve S 830, s 02, and k= 2-415) =4,

P 5001020 - S0085676, = $418E,
The disconnt an thee $30 05 050 - 4188, or $8.16.

S, Pt the anthoer's Tables from the Mathordaloo s af Tnvestment,
Do C0 Heath ated Company. pablioner .
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Comment on the Fundamental Formulas. Recall that, in
eiptations 1 oand 2, the nuit of thoe ix the conversion period, and
not one yeary the symbal ris the rate per conversion period; I
ix the time, expressed in conversion periods.  This feature results
i a worthwhile simplification. It we had let n be the number of
yvears for which P is invested, m be the number of times that
interest is converted in cach year, amd j be the nowminal rate, then
we would have found that

Se= P (1 + nfl>' 3)

The greater complication of (3), ax compared_ with 1), is the
reason why we used the conversion period instead of the vear as
the fundamental unit of time for the deseription of data. We do
not employ equation 3. and recommend its complete submersion,

Compound Interest for Fractional Periods. The funda-
mentul definition of compound interest gives no meaning to the
notion nnless the time of the investment is an inegral number of
conversion periods, That ix, np to the present, we have assunmed
that &, in equation 1, is an integer. 11 the time of the investiment is
not & whole number of conversion periods, it i enstomary in
practice to define the compound amonnt to be the result obtained as
tullows:

thy Find the compound @t at the end of the last whole
conrversion poriod contained in the given time.

(21 Accunadate the resudting umount for the remainder of the
time at simple interest at the given nominal rate.

Exasere t0 Find the conount at the end of 2 years and 7 months, if
SLOVO is invested at 80 componnded quenterly,

Solution. The List interest date mothe termn of the investment is at the
end of 2%y yeurs, The ameamt ot the end of 213 years is, by equation 1,

$LO00TT02)" = 1000(1.2190) - - $1.210.00.
The manuinme tinee 15 1 month, Henee, we aeermtbde the new principal,
SL219 for 1 oanonthe at siingde imtevest, at the roae S0 We use == Prt
with 20 512090 ¢ 08, und £ Yy
L= 1219008 ) - < 8813,

The wmount at the ond of 2 v snd 7 omonths is ($1,219 + $8.13), or

3122713,

In place of the definition of the compound amount for a frac-
tomad period which we have jnst used. it iz customary to agree,
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in theoretieal work. that, coen when b is not an infeger, the pres-
ent value P oand the amount S shall be related by equation 1.
For contrast, the definition used in Example 4 muay be ealled the
practical definition of the amount for a fractional period. and the
second definition may be ealled the theoretical definition. The
amount given by the practical definition differs only s'ightly, i
the usual problem. from the amount given by the theorctical defi-
nition,

Unknown Rates and Times are convenieutly found by simple
mterpolution in compound interest tables.  The process of inter-
polation referred to is the =ame ws that emploved in the use of
tubles of logarithms or tables of the trigonometrie functions.

Exasmers 4. If interest is compoundid semiannually, find the nominal
rate ut which SLOOO acermmulates to 81200 in 53'% years,
Nelution,  Let v be the unknown rate per conversion period. We have
P - 31,000, 8 -0 81200, and k== 110 From equation 1,
1,200 = 1,000(1 + »™,
(14 r)t = 1200,
It the vow of Tuble T for A==11, we find (1015 = 1.1779, which is less
than 1200, und (LO2)" == 12434, which is more than 1200, Henee, r is be-
tween 015 and 02, In finding r by interpolation, we 5'“"‘2 “‘"'I '('i’;T)J'
s~ that 2 s the suane proportion of the way from -
Ol 10 02 4~ 1200 is of the way from 1.1779 to 1.2434.
12834 — 11779 = 0655 ;
1.2000 — 11779 = 0221,

s Ly
r-s? i 12000

021

1
i
l...
1] !

2
Hence, » is _g(.i.';l, of the way from OL3 to 02, Since (.02 — 015) == 005,
Fes 015 4 221 (005) <+ 015 + 0017 = 0167,

655

The nominal rate is 27, or 0334, or approsimately 3.3% . This final result
i* ahuoet certainly securate to tenths of wper eont. A second approximation
conld be fonnd by interpolation, by use of considerable computation! but
thee {resent result would .\':lﬁ.\'f_\' tost praetien] needs,

Exasmrere 6. How long will it take for £5,230 to aeetnnulate to $T375 if
the oney Is invested ot 600, compounded guarterly?
Solelion. Lot & b the neecssary nuber of conversion petiods, From
vquation 1, ) )
7,375 = 5250(1.015)%;
7375
1015)k == ['- - =] 1048,
(1.015 93,200
By interpolation in the 115250 colmmn of Table I, we find that & == 22.83,
perieds of 3 months, The time reguired is 1,02283) yvears, or 571 yeurs,

TRee Coment 1, py 34, in tle anthor’'s Mathewalws of v <{ment,
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There is umple justification, on the grounds of aceuraey and
simplicity, for using a certain logarithmic method in Example 5.
However, in the analogous and more important type of problem
relating to annuities, this logarithmic method is not applicable.
For this reason, we adopt the interpolation method as our standard
one for determining unknown rates.

In Lxample 6, we xolved an exponential equation in k by use
of interpulation. It eun be proved 8 that the solution obtained by
interpolation is an exuct solution of the problem, subject to the
matural limitations of the tables employ ed, if the practical defini-
tlon of the previous section is adopted for the compound amount
tor a fractional period.  On the other land. 4 solution of the ex-
ponential equation in Fxample 6 by use of the customary logarith-
mic method gives an inucceurate result, according to practice as
exemplitied by the practieal definition of Seetion 5. This is an
interesting point, in view of current impressions in regard to the
approximate nature of results obtainad by use of interpolation
methods,

Equations of Value. 'T'u compare two scts of finaneial obliga-
tions involving sums of money due on various dates, we must first
reduce «ll =umis involved to equivalent sus due on some comnion
comparizon date.  An cquation of value is an equation stating that
the sum of the values, on a certain comparison date, of one st
of obligations equals the sum of the vidues on this date of another
set.  Equations of value are powerful tools fur =olving problems
thiroughout the mathematics of investiment.

-

Exwrete 70 Woowes V(o $100 due at the end of 10 vears, and (b) $200
due at the end of 5 years with nceumulated interest at the rate 3%, com-
pounded semianmeadly. W wishes to pay in full by making two equal pay-
ments at the ends of the 3d and the 6t vears, 1§ nioney is now considered
worth 492, compounded s miamudly W the ereditor ¥, tind the size of B
eqial payments,

Solution, Let 8¢ be the payment. B wishes to replace his old oblia-
tions by two wew ones. By apation 1, Part LI, obligition b requires the
puytent of 200010150 at the end of ¢ yeurs,

Old Obligations New Obligations
tai 3100 due st the eud of 10 yr. $r due in 3 »r.
th) $20001.015)" due ut the end of 3 yr. Scodue in 6 yr.

Weo shall use the end of 5 vears as o eomgarieon dae. In the following
cquation of values the bt momber s the sumn of the equivalent values of

YRer Wo Lo Harty Daerwan Mathematical Month!n, Vol NNNVI (1920), p. 379,
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the old chligations at the end of 3 yeurs, and the right member is the sum
of the equivalent values of the new obligations at the end of 5 years. In
writing the left niember, we (diccawnt (@) for 5 years, and take (b) unchanged,
beeause () 1s due «t the el of 3 yeurs, In writing the right member, we
acewmudate the first e for 2 vears, end discount the second 8z for 1 year.
In discounting, or acewmulaiting, we use equation 2, or equation 1, as the
case nrty be,

100¢1.02) ** + 200(1.015)* = r(1.02)* + r(1.02) *,
100(.8203) -+ 200(1.1603) = r(1.0824) + r(.9612).
31413 = 2(1.082¢ + 9612) == 2,036

314.13 ey =

I=m - $153.72.
Parr IV, ANNUITIES CERTAIN

Annuities. An annuity is a sequence of equal periodic pay-
ments.  An annuity eccrtan iz one whose payments extend over a
fixed period of time; a1 contingent annuity is one whose payments
extend over a pertod or time the length of which depends on events
whose dates of occurrenee cannot be aecurately foretold.

Thus, a sequence of equal payments made in purchasing a
houze on the installment plan formg an annuity certain.  The
preminms on a life insurance poliey form « econtingent annuity
beeanse the premiums cease at the death of the insured person.

We shall deal only with annuities certuin, and. in this discus-
sion. the qualifving word eertain will he omitted. The sum of the
payments of an annuity whieh are made in one vear is called the
annual rent. The time between suceessive pavments is ealled the
payment interral, The time hetween the beeainning of the first
payment iterval and the end of the last une i= ealled the ferm
of the annmity.  Unless otherwise stated, the payvments of an
annuity are due at the ends of the paviment intervals; the first
payment s due at the end of the first interval, and the last pay-
went is due at the end of the term of the annnity,

Thus. in the caze of an annuity of 2150 per month for 15
vears, the pavment interval is orne month, the annual rent is
1800, and the termm 1s 15 vears.

Present Value and Amount of an Annuity. Under a specified
rate of interest. the present rabee of an annnity is the sum of the
present valies of all the pavients of the annuity.  The amount
of an annuity s the snm of the componnd amounts which wonld
be on hand at the end of the term of the annuity if all payvments
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should aceumulate until then from the dates on which they are
due.

Hiustration.  Consider an annuity of $100, payable annually
for 5 years. Suppose that interest is at the rate 4, compounded
annually.  We obtain the present value 4 of this annuity by add-
ing the 2d columm of the following table, and the mnount by
adding the 3d columr. The values of the various powers of (1.04)
were taken from a table not ineluded with this chapter.

I T T —— B
AYMENT OF : COMEOEND AMOUNT AT BN
: f,‘l ";;Tl.ll.;; "$ (f:_) N PRESEXT VALUE oF PAYMENT l::\i{t: l:::’;?:‘\:l):\\\plrtl:{ }lu};\l‘:;;‘ (';?»
L year 100(1.04)7 == 96.154 100(1.01)* = 116.986
2 years 100(1.04)7 - = 02.436 100(LOD)® == 112486
3 years 100(1.0)™ == R8.900 100(1.04)* = 108.160
1 years [00(1. 0 == 83450 100(1.04) == 104.000
5 years 100(1.0H)™ = 82.193 100 == 100.000
I i (add) A = $445.183 (add) 8 - $511.632

Annuity Formulas. In applications, the pavment interval of
the annuity involved is usually found to be the same as the con-
version period of the interest rate. This is the only case which we
shall treat.?

Conzider an annuity which pavs $1 at the end of each interest
period for n interest periods. Let (am at {) represent the present
value, and (si; at ) represent the amount of this annuity when the
interest rate per conversion period is 7.

To dctermine a formula for ai;. The first 81 payment is due at
the end of one interest period. and has the present value (1 4-1)-L
The present value of the second payment is (1 + 1)-2; ete., the
present value of the next to the last payvment. due at the end of
(n—1) periods, is (14 7)-*Y. The present value of the last
payment is (1 41" The present value of the annuity is the sum
of these present values, or

A= (L0 L4401y 2 (1 + )1

== (L= (L0 = 1 4-10) 2 (1 + 0 (1
On the right <ide of equation 1. we meet a goometeic progression,
with the common ratio equal to 1 -2 {1, The formula for the sum
of a geometrie progression is (ol - 0 (r - 11, where » i< the
ratio, { is the last term, and « is the tir<t term. In equation 1, we

9Far a prueral teeatment of all eases which arise (n the applications of an.
niities, see author's Mathematics of Investment, Chapter 1V,
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have r== (1 -}- 1, L=t 40 Landa = (1 + 1) . Henee, we find
that
g, = _]i_:_.(..ltj:_j-)u. . (2)

To find a fornoda for si-. We reeall that i we accunmlate a
present valne we obtain the corresponding amount.  Henee, sinee
;. ix the present value of the puvients of the annuity, and ~ i=
the sum of the amonnts of the same paviments at the end of the n
periods which form the term of the annuity. we ean obtain =37 by
aceumulating a,: for n periods, ’l‘ht-r('fm'(\. by formula 1 of Part
L with P - ay o= 0, and b=,

O N & RN L= (1 :'-:--(--]2 4:-’-] —1)(1 SN ELE

A (3)

8

I

Now, consider an annuity problem in which I is the periodie
payment, i is the interest rate per conversion period, and o is the
number of periods in the termn. T.et A represent the present value.
and S the amount of the annunity. The present value 4 will be R
times a;7, which is the present value when each pavment is 31 in-
stead of &R and. similarly, the amount & will be R times sa:.
Hence,

= Ry (4)
Rs (5
The relative mmpliv:itinn nf fm'mnlu.-' 2 and 3 might lead one
to think that any application of the annuity formulas would be
tedious.  However, the existenee of exeellent annuity tabler allows
ns to completely submerge equations 2 and 3. and to work entirely
with the simple equations 4 and 5, exeept in unusual problems
which need not be considered in an intraditetion to the subjeet.

Ui e

.I

Exwene Lo In prrehasing a honse, o man agrecs to pay $6.000 cash, ana
$1.000 :t the vnd of +ach 8 months for 6 years. I woney is worth 47, cont-
pounded semisnnuably, find the equivalent eash pries of the honse,

Solufrem, The $1LO00 pavments form an annuity whose terin is 6 vears;
the intersst rate per conversion period is 02 the termo iz 12 periods longe.
The euivalent cash value of the annuity is its present value 40 frome equa-
tion 4,

= 1,000z ot 020 LOD0CI0GTARY.  (From Tatide IV)
Henee, 4 10575300 The eash valne of the houa is (86.000 4 4), or ap-
proximately $16,575,
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ExaMmpie 20 I you deposit 850 at the end of ench 6 months in a bank
which eredits inter-st semiannually at the rate 4%, how much will be to your
credit at the end of the 20th vear?

Solution. "The amount to your credit is the amount $ of the annuity
formed by the denositss. We use equation 5§ with R = £50, n =40, and
i == 02,

S == 3«7 at 02) == JO(60.4020) == $3.020.10;
in the solution, we uscd Tuble 111,

Fxanme 3.0 @ purchase u house worth $12,000 cash. [ pay £2,000 cash.
U also weree 1o miake equal payments av the end of ench 3 months for 9 years
to discharge the balanee, prineipal und interest ineluded. If interest is at
the rate 65, compounded quarterly, what must I pay at the end of each 3
months?

Solutfon. After paying $2000 cash, the balinee is $10000. This $10,000
is the present value of the annuity which I shall pay, quarterly, in discharging
my debt. Let R be the unknown quarterly pavinent.  Then, we use equation
4+ with A - 3100, £ unknown, p - 36, and i =-: 015

10,000 = R{aw at 015,
10.000 __ 10.000

= (_(;—;.-t~01-5 = é,‘.—éﬁ-o.‘: == 8361.5% (Table V)

Amortization of a Debt. A Jdebt, whose present valie is 4, is
sadd to be amortized under & given rate of interest. it atl linblities
as to prineipal and interest are discharged by g sequence of periodie
payments. When the payiments are equal, as is naally the case.
they form an annuity whaose present vadue must equal A, the orig-
inal liability.  In the precedin. Fxample 3, we detormined the
quarterly payment which would ewortize o debt of R10.000 with
interest at 67, compounded cu rrerly. in 9 vears.

Exaveie 400 A farmix worth $25,000 easl. A boyer will Py £12.000 eash,
and heowill amortize the balanee by paviuents of 1000 at the end of each
3 months for 3 years and 9 monthe, At what interest rate, payable quarterly,
1 the transaction henug saeeuted?

Nolation. The halanes due, after the cash pavment, ig $13.000. Lot { he
the unknown mterest pate, por conversion perind  tof 3 months), Then,
SLHO00 mnst equal the present value, at the eate 7, of an annuity of $1.000
pvible quarterly for 3 vears and 9 months, We use fornaula 4, with n = 13,
KO- 31000, 4 SEL000, and 7 unknown

00 - 1.0 at 1 Cgae 1 ) - - 130

We solve the st equation by interpalation i Tuable IV, Woe see
from the table that Gay ab 10400 = 13343, and tad:, at 207 =

E288). Henee, 2is between 145 7 and 29540 By a solution like that
of Example 5 of Part T, we find that 7 0183 sipce thisc s the
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rate per 3 months, the nominal rate is 4i = 0710, or 74¢¢, approxi-
mateiy.

Examere 5. I purchase a building worth $20.000 cash, and agree to make
equal payments at the beginning of each 3 months for 8 years, to completely
discharge all of my Hability as to principal and interext. If interest is at
the rate 65¢, compounded guarterly, find my quarterly payment,

Solution, Let & be the unknown guarterly payment. If, for the moment,
we disregard the st payment, the remaining payments form an annuity whose
term commences on the day of purchase; the term of this annuity is 7%
vears, heense the list payment vceurs at the beginning of the last perind of
3 months in the § vears. Henee, the present value of all of the payments,
omitting the tiet one, i< R The exch valoe of the house equals the Ist
pavent 2, which is eash, plus the present value of the rev.aining payments.
Thevef- o,

20,000 = R -+ R(awiat 013).
20.000 == R (1 4 mar).

20,000 = R(1 + 246461). (Using Tuble IV)
20000 ennon
R= 256—1?5—1 == $770.85.

In Example 3. the quarterly payments furnish an illustration
e noanmoty due. A sequence of equal periodic payments is said
to wrm an anmaty due, as judged from a certain date, if the pay-
ments ceeur at the beaimnings of the payvment intervals. The first
pavment of an annuity due is payable at the beginning of its term,
and the last payvmeent ix payvable one period before the end of the
term. In Example 3. we could say that the cash value of the build-
ing is the present value of the annuity due formed by the payments.
In order to determine the present vidues, or amounts of annuities
dne, we do not have to develop new fortnubis: we solve such prob-
les by suitable manipulation ™ of the fundamental formulas 3
and 4.

Determination of a Final Amortization Payment. If a debt
of specified size is 1o be amortized, at a given rate of interest, hy
periodie pavments of specifield size. we meet the proeblem of deter-
mining when these payients should ceasze and of finding the final
irrecilar pavment which will elose the transaetion. The final pay-
ment is almost eertainly irrecular, az will be easily inferred from
the =olution of the next example.

I'asene 60 A man borrows 210,000 with the acreement that money is
warth 8¢, componnded quarterly, To discheree hiz prineipal and interest

@ Par g complete disarssion of annuities adue, see the anthor’'s Mathemetics of
Investment, p. 85,



O

ERIC

Aruitoxt provided by Eic:

8 THE SIXTH YEARBOOK

obliations, he will pay $500 at the end of each 3 months as long as necessary,
snd he will pay whatever final installment is necessary to close the trans-
aetion 3 months after the last 2500 payment which is required. Find {a)
how many 8500 payments will be required; (b the final smaller payment.

Nolution. (@) If n payments of 8500 each  ore exactly sufficient to dis-
charee the debt, then the present value of an annuity of $500 paid quarterly
for a periods would equal $10,000; that is, by equution 4 with i == 02,

10000 = 50V "=t ¢ 02,
(ar)ar ) = u, (&)

From Table IV, we see that (a., at 02) - 19.5, which is less
than 200 Henee, 25 pavments of $300 cach would not be suflicient
to dizeharge the debt. Also. from Table TV, (aza, at .02) =2 20.12;
henee, since this is more than 20, it follows that 26 payvments of
2300 each would be more than is required to discharge the debt.
These fiets show that the debtor should pay 25 installments of
2300 exach, and zome amount W, less than 8500, to close the trans-
action at the end of the 26th period. The lust $500 is due at the
end of 25 periods, or 617 vears.

th) To determine the unknown final payment, B, we proceed as follows.
First. we solve equation 6 for 2 by interpolation in Table IV. We find that

n=25+ f@ == 25.7075.
5,975
Then, Theorem I, which follows, states that the final payment is 500(./975),
or $308.75.

The solution of the last example serves to illustrate the fol-
lowing theorem,

Trrowest I When wodebt A s dischareed, prineipal and interest inelnded,
by pavments of ot the end of each jnterest period for az lone as neeessary,
with sn additional smaller payment one period after the st installment 2,
then the date and size of the final small pavment can be found as follows:

LoSelve A Rtan>al §y for 0 by inte epolation in Tahle IV,

2 00 the subitoom obtained s on - k4 f, where k is a positive tnteger and
!isa pasitive pwomhy ¢ lese then I. they the ftnal payment s due at the end
(R Ry inteecst poriods, and

Jinal pucomint = fR (N

The e=sential part of the statement of Theorem 1 is In equation
7. whose proof is bevond the seope of the present chapter.'
Feuation 7 was used in the solution of part O of Frample 6. In

“Ear a proof. see WO L Hart, Amerean Vathe watv-al Manthly, Vol. XXXV]
Slalim, p, 379,
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cquation 7 we have another interesting illustration of an exuact
resilt, obtain d through an wmterpolation process. A solution of the
equation .4 = Ra,~ by a logarithmie method, employing the explieit
formila 2, would give a dectinal f; nearly the =ame as the f of
cquiation 7, whieh was obtained by interpolation. But, the number
f, would not have the property which is possessed by f, and iz stated
I equation 7.

Sinking Funds. A =inkine fund is a fund aceunmlated to pay
an obligation falhing due at some future duates 6 a fund 18 ae-
cirontuted by investing cqual periodie deposits, the amount in the
mnd gt any thwe is the awoant of the ooty formed by the
deposits,

suppose that R4 is horrowed. with the agreement that interest is
pavable a< dne, and that the prineipal <hall be paid in one install-
ment at the end of A vears. Tt the debtor provides for the future
pryment of 24 by the ereation of a =inking fund. he is said to dis-
charge his debt by the sinking pund method.  Under this methad.
we shall assume that the debror makes equal deposits in his sink-
ing fund on the =ame days that e pavs interest to his ereditor.
The debtor's periodie expense on aceount of the debt is the =um of
the fotlowing items:

tay Payment to the eveditor of the interest due on §4.

thy Deposit for the sinking fund, which is to accumulate to
&4 by the end of the term of the transaction.

Fxawvere 700 man borrows 210000, and aerees to pav interest semi-
annually ot the rare 6770 and ta pay the prineipal in one installent at the
cned of 2% voarss I the debtor uses the sinkine faned method, and invests
his fomed at £70, eomy osted d sondanmualies sind the s miannual exprnse of
thee dbebitop on aceonnr of the debt,
Septnbnted mter st oot 67
03100001, or 8300,

Let I be the wommul deposit in the swking fund, These deposita
form oan anunity wWhose eeme is 2% vears, and whose amonnt puist be $10.000.
Brasiise the Tined 15 1o prosvide Tor the pepavient of the debt at the end of
2y vears Sines the frnd necnmnbite s ot £70 compauneded semiannnatly, we
shv 02 -58 1000, and £ anknown:

10000 - R, v o 'y
10,000
32000

Solasion, which is pavable to the creditor, i2

e ciplation 3 ow
J20140,
R =

1.4 6.

II_ L, 'h.

1 dely b

cuccetad enpens e the ichrr s aioe .« 10206 or approxi-
)

-

-

i
¢
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Bonds. A bond is a written contract to pay a definite redemp-
tion price 8 on a specified redemption date, and to pay equal
dividends D periodieally until after the redemption date. The
principal 8/ mentioned in the face of the bond is called the face
ralue, or the par value. A bond is said to be redeemed at par if
C == F t(as ix usually the caser, and at o premium if C is greater
than /. The interest rate named in a bond is called the dividend
rate, or the bond rate. The dividend D is described in a bond by
saving that it ix the interest. semiannual or otherwise, on the par
alue £ at the dividend rate. The following paragraph illustrates
the essential paragrapl in a hond:

The Kunsas Improvensat Corporation acknowledpes itself to owe and,
for value received, promises to pay the bearer Five Hundred Dollars on
January 1, 1936, with interast on the said sum from and after January 1, 1925,
at the rate 6% per annum. pavable semiannually, until the said prineipal
sum is paid.  Furthermore, an additional 107 of the said prineipal shall bhe
paid to.the bearer on the date of redemption.

For the bond of the preceding paragraph, F = 8300, = 8550,
and the semiannual dividend D = $15, whieh is semiannual interest
at 677 on 2300, A bond is numed after its face F and dividend
rate. 2o that the preceding paragraph i an extract from a £500,
6% bond. Corresponding to each dividend. there would usnally be
attached to tie bond an individual written contract to pay 8D on
the proper date.

When uninvestor purehases o bond, the interest pate which his
mvestiment vields is computed ander the assumption that he will
hald the bond until it is redeened.

When a bond s sold on a dividend date. the seller takes the
dividend which is due,  The purchaser receives the futnre divi-
dends. which form an annuity whose fipst pavment 18 diue at the
end of one dividend interval, and whose last payment iz due on
the reden:ption date. It an investor desires g specitied vield on
purclasing the bond, the price $2 which he should he willing to
pay 1= xiven by the following cquation. where present values are
computed at the investinent rate which the buver s specitied:

Pz vpresent value of $C, due on the redem ntio,, qater -+

cpresent value of the ennwty formed by the diridendsy, (8)

Exaseue 300 $100, 670 bond, wirh vl ns puvable semiannually, will
br redeemed at par at the end of 15 years. Find the price of the bond at
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which a purchaser will ubtain a retum of 4%¢, compuunded seminnnually, on
his investment.

Solution., The semi gl dividend is 830 Tl aumption value is $100,
due at the end of 15 yeurs. The term of the divider 1 annuity is 15 years,
or 30 interest periuds. By use of equition §,

P == 1000102 ¥ + 3tamyat 02) = $12240. (9)
In cquation 9, we used Table 11 and also Table 1V,

Determination of Bond Yields. A purchaser of a bond can-
not, as a rule, ditate the price which he will pay, or the interest
rate which the bond shadl vield, aithough, of eourse, he may with-
hold his purchase until the conditions =atisfy him,  Fssentially, a
purchaser of a bond must pay a price which is speeified by the law
of suvply and dennnd, as exemplified in the prices on the bond
market.  Henee, we are ted to the problem of determining the in-
vestnent vield which is given by the purebase of & bond at a given
price. This problem is the converse of thut treated in the preceding
exaniple, where a vield was given sand we determined the price.
A solution of this converse problem is too lengthy for the present
discus=ion, althovgh the =olution presents no serious diflienlty,  If
an annuity table, like Table 1Y, is availuble, the problens can be
solved by interpolation, after a =uitable arrangement of prelim-
inary details,  The solution is partienlarly easy if a bond table
ix available giving the prices of bonds at varions yields and for
varions times to the redemption date.

An approximate solution of th problem of determining a bond
vield ean be obtained by thie method ol the next two examples.
Exumpie 9 illustrates the ease of a bond bought at a dizeount,
that iz, bought for less than the redemption pavment. Fxample 10
dhistrates the case of a4 bond bought at a prewmium, that =, bought
for more than the redemption payviment. v s interesting to note
that the method = of these exmmples involves mere arithmetie,

Lxavews 90 A SLov, 6%¢ bond payvs Jhvidends annadly and is redeems-
sahle at par at the eod ol 10 youss I thes boned s bonehit Tor $850, determine

an af prosuuation to the yickl winel the nvesnor cbrana,

Noocteen, Fael divalnd s s6000 The myestor pays S830 for the bond,
and reccives S1ank) at the ened of W0 years, bespies the divelendse This dil-
forctee (1000 = S501, ur $130, reyresents the aeenmulared vadue, at the end
of 10 yeurs, of micre et on the mvestsent bosides that whieli the dividends
provided., Durmg the 10 yems, the mvestor shoubl think of the value of

vl g theoretiond justiicntion of the method, see adthar s Vathomito < of
Iniesiment, p. Sis
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his bond as mereasing from $830 10 SUKGO. 17 1he S50 mervase were spread
mmfortsly M oover the 10 vers, the e e Pt v wankd be Y,0150), or
I3 This S5, towerhe v with the camal disedetd of S0, or ST inoall, s
spprostately the amcd mtorost ety fram the jny estigent, The avernge
Vidue of the invostpne - Va3 L0 or SU25. Degaee thee value of
the bomd inercascs fon: 580 1o SLOML Il interest rate abtdned by the
ivestar i g pronitadely the rare o which £ 1 the mterest for one e

i)

SU23: thii~ rate
on SU25; this rate s 025

Cor OSE Thar s, ihe bomd vields approximately

S per yeuar.

[t can be shown that the method of the preceding exaunple rur-
nishes woresulde whiel s n=adly i error by not weore than 24 as
Uvery extreme fmityin the customary type af problem,

Exasere 100 10 the bend of Example 9 i< bonght for 81200, find an
approXimation to the yvield obtained by the mvestor,

Noletion. Faeh dividend i< 860, The investor Py SL200, but reecives
only SLOK at the end of 10 veurs, besitdes the- dividendse It i< wnt corr ot
te sy that the difference (1200 - LK, e S200, represents n loss of prin-
ciplc We should <ay thio this $200 deerease 1 Prosonts o rettien of prineipad
which hos vesalted throseh the divids Favtenuts. Tl nefore, eael dividend
Consists unly p;nﬂ_\' O 1ters < ; part of eweh iy idend I~ 4 return of 1-1‘iln'i1v:l.l.
IV the $200 revm of sl wepe spread untormly * over the 10 vears, the
retrn per vewr woukl be V2000, o0 8200 Hepee, inosaeh dividend of 860,
there 10 returm of about 820 of prinetpals the hduoee, ar $40, is interest,
The vahee of the bond deen ases Irom L2000 10 SLO00 WJdaring the 10 years;
the avertue vabue is L2004 10000, op SLIO0, The interost pate which the
nvestor obtiins is upprovinet I equad o the rate at which $10 is interest
10
1,100 ¢
approsimately 36 on s investment,

Ior one year on SLUA; this e s or WGtk The investor obtains

Pakr V. Conenvsigy

The disenission of Parts T1L I and IV was baitt around an
extrenely sl nunder of equations, thres gor sLLpie interest,
thice dor simple disconmnt, two for compotind interest. ol two for
anities. Tieaelr problem considered, the soimtion srartel dipeet Ly
from one of these fundamnental cgtions, Aitention i culled to
the relative shuplicity of <neh awethod, in eontrast to one where
we woubld employ the auxiliary set of forrauns obtained by saly-
b in turn, inoeael equation. for cach svmbol oters of the
others present. This seeond method, as applicd to e vopation

WAl e L pepee e et N S B e N R L IO T A T beanudd,
BTy L the P P oy Provipal s oo e anteruly e er e Fiige,
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N = Pl -F 1%, would demand that we solve the equation for r, and
for k, as o preliminary to our disenssion ol compound interest: the
solutions would be

__log N —log P, - 1.-/.5’
T log{l4+m 0T ‘1‘

The addition of equations 1 to the two stmple formulas which we
have used in discussing compound interest would give a rather
complicated nathematieal backeround to an otherwise simple sub-
jeet.  In Parts TI. ITL and IV, the restriction of onr formulas
to the fow simple equations which we employed gives 1 mathe-
matical backeround whieh is easy to remember and conventent to
apply.

The methods emploved in thiz chapter were absolutely depend-
ent on the use of previously prepared tables of the values of the
fundamental expressions invoived,  Failure to use sueli tables to
the fullest extent would result in an artificial presentation having
few contacts with actual practice in those fields where the subject
finds use.

The author believes that a larege wnount of the subjeet matter
of this ehapter werits consideration ax a part of any advanced
course in arithmetic given i the senior high school,

.

— 1 (n
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MATHEMATICS IN AGRICULTCRE *
By HARRY BUR ikss ROL

University of Minnesota, Department of Agriculture,
St Paul, Minnesola

INTRODUCTION

Value of Mathematics in Agriculture, There nre still many
people who question the value or the need of any appreciable
amount of mathcmitical training in the field of modern agricuboure.
On this account. at the outset, it will be well to consider the present
structure and relationships of the agricultural industry.

The Business of Farming., The modern farmer, if he is to be
suecesstul, must be a business man *n the fullest sense. He must
have in his mental equipment a larger and broader knowledge of
selentifie, economic. and finaneial principles than that required in
almost any other line of business in the world to-day in order that
he may plan, direct, and carry out the operation of his farm intel-
ligently and with protit.  He must be able to plan the size and
arrangement of huildings on the farmstead, to subdivide lis farm
into tields of the proper shape. size. and arrangement for economi-
‘al and balanced operation, to plan suitable rotations, to inaugurate
and carry out svstems of fertilization and pest control, to build
a farm ealendar, and to sehedule the smount and distribution of all
man and horse lubor, and mechanical power,  He must know some-
thing of the refative etlicieney of methods and equipment as well
s of the principles of depreciation and repliacement of both
wachinery and livestock. He must balanee his erop production
to meet the needs of his livestoek. and he must plan his feeding
rations and seleet an { breed new strains in hoth crops and livestoek
to insure best resu'ts in producionr. He must be able to estimate
the amount of paivt required for a building. or the best shape or
size for a given feld to be fenced with o known amount of feneing,
He must know the capacities of men and machinery, of bins and

* Written for the Sicth Yeaohaul -4 The Natwenal CUouned uf Teachers of Mathe-
matics and uappreved by the Dean aod Directar as Misesllaneogs Paper No, 224
of the University of Minnesota, Department of Agricalture. August, 1ano,

36
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buildings.  He mst have a knowledge of finuneing that includes
investnents, income, loans, capitalization, and amortization.  Above
all he must know markets, be able to build comparative tubles
and charts of vields. costs of production, and prices throngh a scries
af vears, and from these to forecast, with reasonable assuranee, the
prospects Tor the current uand the coming year for the various crops,
a< w oguide to his general plan of furming for thut year,

This 1s a large contract amd it iz plainly to be seen that it in-
volves a practical knowledge of mathemuaties fin bevond the =eape
of the mere traditional thivd R oof our grandiather’s day. It in-
cludes mensuration, proportion, rates and the compound interest
fdea in annuities and anertization, graphs and their interpretation,
fregneney distribntion, and the application of mathematies to the
vlementary principles and praetice of surveying.

Related Industry and Commerce. Agriculture is. and will
coutinue to be, the hasie industry in this country. “Lherefore,
whether wve recognize it or not, a very large part ol the general
industrind and comnerelal activity of the country 1= attuned to
Farmonize with the gertewitural tield, Millers of flour, bukers,
meat packers--in 0 word, all processors o7 human and animal
foodstuff<: mukers o =hoes and leather goods, clothing materials,
machinery. and equipment: also railroad and steamship companies
and other ageneies of distribution: aud. last but by no eans least,
hankers nud finaneies-=all keep their hand on the pulse of agri-
culture. Keep famt'iar with irs needs. its methods, its accomplish-
ments, its problems of production. fertilization. and pest control,
amd its periods of prosperity or depression. The struetare of any
one of the tvpes of activity just listed i< =0 clogely interwoven with
that of agriculture that even the expert thds it inpos<ible to tell
where the one leaves oft and the otier hegins, The forees of com-
teree and industey oadl Hues of manaaerial and expert serviee
are being drawn moere and more from the ranks of these who are
cdueated i agrieniture, agricuitiral seienees and ageieultural en-
cilleeringe,

Feis elear to all who grasp the siendiieqiee of this pleture that
when o nen seeks tdning inoarrienlewe and related seienee, no
otie ea el i wiad ranitication of indisiey o eonneree he may
Lond asoavesalt of this training, s cquabiv evident that whatever
sathemeties!
conduet of any line of activity allied to aericulture they are also,at

trainite and knowledee are essential to the proper
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least potentially and fundamentally, essential to training in agri-
culture and agricultural seience.

Fspecially  closely associated with the field of agricultural
seience are the various milling industries producing flour, food-
stutfs, and clothing materials, as well as paper, lumber, and other
building and struetural materials,  This combination creates an ever
inereasing demand for intimate knowledge of modern forest de-
velopment. conzervation, and maragement, of salesmanship, of
mechanicul knowledge and training, and most important of all, of
tinancing, weluding such matters as investments, insurance, bank-
ing. property valuation, loans, and amortization. The range of
mathematiea: knowledge required to handle this varied demand is
readily scen to be all the way fram the four fundamentals of
common arithmetic up through the various ramifications of the
compound interest principle, mensuration, logarithms, statistics,
caleulus, and the mechanies of materials,

The Rural Home Problem. Inscparuble from the conduct of
the farm business s the factor of the rural home which involves
problems of housing and feeding adjustinent as between the op-
erator’s family and the bired help. the stmplification of Iabor
through modern methods and deviees, sanitation, the economics of
food and clothing, and child training and welfare.  Heve the re-
quirements in mathematical knowledge and craining seem not to
be =0 broad and varied, but they are none the less definite in the
fields of proportion. mensuration, and minar finaneing.

Agricultural Science and Organized Research. This fieldl
comprises:

Agricultural Biockanistry, which to-day i= at the very founda-

tion of b foad and clothing supply in the processing of

dairy products, lour, and other grain foods, dye stuils, and eloth-

g materials s and also building materials developed from farm

grown crops, and the lke,

Nail Sedcnec on wlhich is based the conservation and develop-
ment of sotl fertiluy, and the conservation awd control of soil
olsture,

Tie Bielogieal Seanecs, whiel involve the development of de-
sivable types and strains in plant and animal life, such, for
exatple, as are resistant o diseases and elimatie rigors—and
the cantrol of both plant awd animal pests,
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Agricultural Economics, which deals continually with produe-
tion and price statistics, and market trends.

The edueator and investigator in anv of these lines of seience
to-day demands that students specializing in these fields and others
assisting in them in researeh work shall be strongly fortified in
mathematics, at least throuzh the caleulus and frequeney distnbu-
tion. For the worker in the field of geneties espeetally. such
forms of elementary series as geometrieal progression. fundamental
in the study of life cveles, and the binomial theorem. the very
foundation of the Mendelian law of inheritance, are essential parts
of the mental equipment.

Agricultural Eugineering. Tt is of course understood that
engineering praetice of any type is founded on mathematieal and
physieal! seience.  Agricultural engineering is in its very nature
unquestionably the broadest hranch of the engineering profeszion
and embraces the following fields:

Farm Structures, covering farm buildines and other struetures
and related equipment, such as that for lighting, heating, ven-
tilation, sanitary arrangements. and water supplvy,

Farm Mechanies, covering animal. steam, gas and eleetrie
power, tillice machines and implements. farm home conven-
iences. and related equipment.

Land Reelamation, covering land elearing, drainage. control of
soil erosion. irrization, and related struetures and equipment,

The proper subdivision of the furm. or the planninx of a faem-
house best adapted to the eare and feeding of the help, or of a
crop storace buildine, requires a knowledee of mensuration, sur-
vevine, and of the lnws of staties fully commensurate with that
required in planning a eity addition, @ ey home. or a city office
building, or factory,

The desivn of a plow hottom, a grain drill. a tireshing machine,
of a traetor requires quite as compliete and thoro.h knowledee
and understanding of streneth of materials, lawe of frietion. and
prineiples of meckanism. of thermodvnamies amd adiabatie ex-
pansion e does the desizm of 1 weaving loom, a sewing machine.
4 nultiple evlinder printing press, or an automobile built for
pleasure and speed. although these two areat elasses of problems
are essentially ditferent both in their ehaeter and in the ends



80 THE SIXTH YEARBOOK

sought; while the selection of the type of tractor best suited to do
the work on o given type of farm under given lacal conditions re.
quites n knowledge of structural materials, depreciation, soil dyna-
mics, and labor and power distribution, which is unique in the
field of engincering.

It is hore interesting and significant to remember that Dr. L. A,
White,! the first acknowledged agricultural ehgineer to receive a
Doctor's degree in that fiell, developed some fifteen years ago as
his Doctor's thesis “A Study of the Plow Bottom and Its Action
upon the Furrow Slice.”* a scholarly treatise of 34 pages, 24 of
which are pure mathematics of a high and diffieult order. This
study has had a profound influence on modern plow design and
usage. It is the recognized forerunner of extensive studies, now
being carried on at some of our ngricultural experiment stations, on
soil dynamics in relation to tilluge s a guide to the eficient design
of farm power units and tillage machines required in modern
agriculture,

The intricacies of design called for in modern seientific plan-
ning of farm drainage and irrigation svstems and of soil crosion
contrnl works, involving not only an intimate knowledge of the
basic laws of water flow in clused conduits and open ditches but
also of moisture relutions of crops, of soil texture and soil water
movement-—soil hydraulics. if you please—eall for a grasp of
advanced phases of mathematics and mathematical physics in new
and difficult paths that is even now taxing to the utmost the abili-
ties of our leaders in matheniatical and physical thought.

Forcation 1x MATHEMATICR FoR AGRICULTURE

This brief survey of the field of ngriculture in its various rami-
fications hrings us at once to grips with the question of what
fundamental mathematies in secondary sehool education is needed
to prepare for work in this field. In this connection reference may
quite properly he made to n former paper on this subject, read be-
fore the Mathematical Section of the Minnesota Fdueational Asso-
ciation in 19218 The situation is not radically different from what
it was at that time except that perhaps the demand for higher

tDirector of tue Natlonnl Commbttes on The Relation of Electrlelty to Agel-
cultnren.

Plwmoal of Ageicaltueal Kk eovarch, No, 4. Vol NI pp. 140182,

CUOMIndmum of  Mathematieal Regqultement for Agrlcultural Study."  Mathe.
matiea Teaches, Volo XV, No, 1, January 19218,
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tathematies in edueation for agriculture and related activities has
grown much stronger,

Historical Retrospect. During the first decade of the present
century thie demand wans at a very low ebb, the chief value of
mathematieal training for students in the agricultural field being
considered by many leaclers in that ficld as a necessary evil whose
chief value was cultural and direiplinary, This attitude, however,
resulted in such o doeline in the general quality of scholarship in
agriculture that by the middle of the second decade of the century
u decided protest against negleet of mathematical requirement
began to make itself felt and its move vigorous proponents started a
definite study of, and a propaganda for its more utilitarian aspects.
By 1918 thix activity began to take definite form in the claim that
what was veally needed was a general mathomaties especially
adapted to the elementary requirements of agriculture.  All non-
cssentials were to be swept away and only those topies were to be
retained which could be =hown to have a direet bearing upon some
phase of agricultural work, supported, of course, by the recognized
primary fundumentals,

Within three or four vears severnl new texts appeared purport-
ing to meet the requirements just stuted. The general plan scemed
to be clothed with official sanction when the Kesident Teaching
Section of the Association of Land Grant Colleges and Universities,
in its annual convention of 1920, voted approval of a syllabus for
a suitable text for such courses, which was presented to the session,
in galley proof form, by Professor Suimuel E. Rasor of the Depart-
ment of Mathematics of Ohio State University.

A Specialized Mathematics for Agriculture. There scems
to have been qguite general agreement as to the requisite details
of such a course, these being in general about ax follows:

A review of the hagic essentinls of clementary algebra as given
in standard secondary schools through quadratic equations.
The elementary prineiples and practice of common logarithms.

Elementary series. ineluding especially the progressions and the
binomial formula.

Depreciation and elementary accounting.

The compound interest principle and annuitics, perhaps better
thought of ax the mathematies of investiment.

Ratio, proportion and variation. dairy arithmetie, and mixtures.
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The principles and practice of numerieal trigonometry, espe-
cinlly as applied to general mensuration and plane surveying.

Permutationg and combinations.

Elementary statistics, frequency distribution, and the clemen-
tary theory of errors,

Conzideration has alto been given to various combinations of
certain of these details, under Leadings of cortain fielde in ngris
culture, such as, for example, the mathematics of farm manage-
ment,  The inclusion of this type of material has received cone
siderable support from the specialists in the farm management fleld.

There has heen a tendency on the part of some of the carlier
text writers to include toples that belong specifieally to other fields.
=uch as drawing, physics, and surveying, This practice is not well
wdvised, as each of these is a ficld by itself that holds and requires
fully as prominent and important a place in our school and college
curriculn as does mathematics,  While these ficlds ave among the
richest sources of real problems in mathematies, the inelusion in a
mathematies text of chapters on pure physics, drawing, or survey-
ing is to be depreeated, as no one of these distinet fields of study or
even of their major subdivisions ean be adequately covered in g
chapter or two. This scems especially true when it is remembered
that the time allotted to mathematies in school practice is fre-
quently too limited for thoroughgoing results even in that ficld
nlone,

Difficulties Encountered. Tle idea of o speeialized mathe-
matics of agriculture has grown up with such startling suddenness
that, as might be expected, mistakes in the plan of operation have
seriously interfered with its complete suceess in practice. Two of
these mistakes stand out with unusual clearness.

L. College administrators, continually harassed by the demands
of numerous new types of courses for admission to the roquired
curriculum, and often influcnced by those who cherish o lifelong
and unreasoning antipathy toward matlematics, have <ecized upon
the new idea of mathematies in agriculture as an excuse to limit
the time allotted to mathematies in agricultural ewrrieuln to n
degree utterly inadequate to the ground that must be covered, In
many eases this has been earried to the extreme of limiting the
time allot. w1 to mathematies in the aericultural college to one
quarter, with three to five hours per week, when those responsible
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fur the conduct of the work are painfully aware that three to five
class hours o week for a full year is little enough time in which
to expect the genceal run of freshman or even sophomore students
to grasp a working knowledge of the mass of topies called for in
such a course.  No doubt the administration justifies ite attitude
Ly the plea that the uscless luniber of old-fashioned mathematics,
comprising fully two-thirds of the subject matter material, has
heen cut away, and that i. should be possible to cut the allotted
time corvespondingly; n not well digested argument to be sure, but
intrenched behind a strong rampart of power.

2. Too often the teacher assigned to the course is sclected be-
enuse of his training in the field of pure mathematies, and from
the general faculty of the department of mathematics. In such
cases the chances are that, although hie may be well trained in
mathematics and even though he may be an excellent instructor,
he knows little of the ficld of agriculture and hie vigion o. the rela-
tion of mathematies to the agricultural field and its nmany-gided
functions mny he represented by the minus gign.  Regardless of his
scholarly attninments, his pedagogical talent, or his enthusiasmn
for pure mathematies as such, a teacher of this type will find it
very difficult to clieit the interest and support of the various de-
partments and groups of an agricultural faculty so ecssential to
sueecess in teaching the mathematies of agriculture, and he is thus
very apt to be deprived of his most relinble source of real problems
which show the relationship of the pure tundamental science to the
appliad.

Selection of Teachers. Tt is a well-established practice in
engineering schools and colleges, based on experience, to scleet as
tenchers of mathematies men who have been trained as engineers,
and are, as far as possible, experieneed engineers with a natural
grasp of the relations of pme mathematies to the problems of
engineering,  In the light of that experience and with the fuller
vishn of the place of mathematies in agriculture that is opening
up to the present age, why is it not the sune and logical procedure
to seleet our teachers of mathematies for agriculture more largely
from the ranks of those agriculturists, agricultural seientists, and
agricultural engineers who huve a elear understanding both of pure
nuthematies as sueh and of its relation to the problems of agri-
culture?  Thig would seemnt to be a rational practice, not only for
our colleges bhut ai H» for those secondary schools where preparation
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for advanced study in agriculture and in allied lincs is a pro-
nounced feature.

In fact, in view of the time limitations on mathematics in the
junior agricultural college curriculum, it would seem that the ulti-
mate success of any type of instruction or any type of course in
mathematics of agriculture must rest largely with the teacher of
mathematics in the secondary school.

Subi~ct Matter Requirements. This thought then brings
even more definitely before us the fundamental question; What
are the seconcary school requirements in mathematieal study that
serve as a suitable preparation for advanced education in the agri-
cultural fleld? An additional decade of experience in this field
has not greatly changed the answer from the one given ten years
ago.! The extent of mathematicnl training needed is largely de-
pendent upon the particular student's line of specinlization in the
field of agricultural or related study, but for good reeults the
secondary school mathematics should, without doubt, be much the
same in all cases. It does not appear that its outer houndarics
should greatly differ from those usually cxisting, in theory, in our
established grade and high schoo! curricula. However, possibilitics
of improvement over the stereotyped old order in intcrior sub-
division, topic arrangement, content, and methods of presentation
unquestionably exist.

Arithmetic. The young people of the present generation are
likely to be bunglers in their work with common arithmetic. Too
much stress, therefore, cannot be laid on extensive practice in the
earlier grades in the use of the four fundamental operations; and
the numerous short cuts in multiplication and division should be
known and used with facility by every normal young American,
It is wholly unnecessary to find a supposedly normal child of high
school age and standing using the process of long division in divid-
ing by any single digit from 2 to 9, and no teacher should aceept
or lightly pass over such a piece of work.

Teachers in other fields of work than mathematics, in which
mathematics is a necessary tool, complain that the students are
incompetent to do work involving the common operations in frac-
tions, decimals, percentage, and =imple mensuration. The responsi-
bility for this situation cannot he laid upon the children themselves;
it rests unon the teacher,

s Mathematica Tearher, Vol, XV, No. 1. January 1021, lLae, it
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Considerable stress is laid Ly leaders to-day on intuitive or
informal geometry as though it were a new idea in mathematical
training and usage. It is not new excopt perhaps in name. The
arithmetic texts of forty or fifty years ago included a very con-
siderable chapter on measuration. Tlere are still living thousands
of our older people who received the fundamentals of their educa-
tion in the one-room, ungraded, country school of an earlier day,
and who found both intellectual profit and keen delight in the
mastery and practics of both planimetric and volumetric mensura-
tion, long hefore they ever heard of geometry as such. Many of
them who never heard of formal geometry, as now taught in our high
achools, can apply their early training in mensuration to the every-
day problems of eapacity, area, and direction with greater facility
than can the majority of their children and grandchildren who
passed through exposure to arithmetic without any conscious con-
tact with mensuration and who consider the mastery of geometrical
principles to be the epitome of drudgery and dulluess instead of the
acquisition of new mental power which it is.

In brief, then, the teacher of arithmetie should insist on a ready
and correet use of the fundamentals in practical applications.
Intuitive or informal geometry is as properly a part of arithmetical
training as is percentage or interest, and beyond that it is a fruitful
source of practical problems to which no student in the agricultural
field should be a stranger.

Algebra. As clementary algebra is only generalized arithmetic
the beginnings of algebraie notation and processes, such as the
term, the exponent, the simple algebraic fraction, the binomial,
and even the simpler special products and the simple equation in
one unknown, should be introduced to the student of arithmetic at
the carlicst possible moment. There is no reason whatever why
this practice should not begin at least as early as in the seventh
grade and possibly in the sixth. Then by the time the pupil reaches
formal algebra in the ecighth or ninth grade he will be ready for
it and the .aansition from arithimetical methods of thinking in
number will be gradual and natural and carry with it no depressing
mental shock. This is as it should be and is in line with progressive
thought in education. Dr. Reeve's quotation from Dr. Charles W.
Fliot ® sums up and clinches this whole matter in excellent fashion.

" Che Fourth Yearbook, Natinnal Council of Teachers of Mathematica, b, 144,
Bureau of Publications, Teachers College, Columbla University.
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In regard to requirements in elementary algebra, this point has
been so definitely covered in the former paper already twice re-
ferred to that it needs not to be discussed here, although some
additional comment may be justified. It now seems clear that the
more complicated factorable form a® = b* should be among those
omitted from high school work in algebra for it finds very few
applications in practical applied mnathematics. The time that
would be spent on it by the high school pupil can be spent much
more profitably on other parts of the subject.

One bit of repetition from the earlier discussion scems amply
justified, even though it is in direct oppo.ition to eminent modern
authority, Trenting a proportion as ar equation of simple frac-
tions is, of course, perfectly proper, fo.c that is what it is, but it
must also be treated and taught ae & proportion. The principles
of proportion are essential, simp'e, and eminently useful. The
proportion, as such, is much more readily applied than is the
algebraic equation of simple fractions. Proportion is the front
door to variation and both are cssential in chemistry, in physies,
and in cngineering. The ‘eacher of mathematies will not secure
and retain the whole-hearted codperation of the scientist and the
engineer by refusing to teach the principles of clementary mathe-
matics for which these groups have daily and constant use. The
chemistry of to-day is hard for the average beginner anyway.
Whether the administeation is willing to admit it or not, beginning
cacmistry is an elimination course in the freshman year in many
of our colleges. The teacher will make it doubly hard for the
average freshman and almost insure his elimination, or, at least, his
strict probation, by refusing to equip him with a comprehen: ive
and thorough knowledge of proportion and variation; and tnis
refusal will not magnify the teacher in the esteem of the student,.

Elementary scries, particularly the progressions and the bi-
nomial theorem, are the very foundations of much biological science
as related to agriculture. Therefore, if they are not taurht, and
thoroughly, in the sccondary school they will have to be tuught
in the junior college. Ts such a plan good pedagogy? Is it not
rather a waste of valuuble time for the student to have to sceure,
in the junior college, essential mental cquipment that he should
already have when he first enters there?

One feels an urge to enlarge on the place of the graph in algebra,
espeeially when he considers its multiform uses in agriculture, but,
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as far as the subje.t is reluted to the teaching of mathematics,
Dr Reeve effectively sums up the essential idea as follows:

The study of the graph is u major trend to-day in algebra because, with
the formula, it helps to clurify the idea of functionality. We now emphasise
the meuning of graphs ruther thun the making of them. . . . Owing to the
prominence of the stutistical graph, nnd the iucreased intereat in educational
statist.cs, graphic work is assured a permanent place in our coursva in muthee
matice!

It might be added, “particularly in those on the muthemutics of
agriculture.”

As algebra is busie to all other mathematics it may be advis-
able to emphasize the fuct that the high school student should be
so well trained in it that he handles its clementary principles with
understanding and faeility. If the customary year allotted to
elementary algebra in high school curricula is not enough to
procice such a result, an extra half year of advanced clementary
algebra, treating of the morve difficult forms and including addi-
tional topics such as the progressions, variutions, and logaritlns
is desirable and preferuble to so-called high school higher algebra
with its abstract proofs mostly beyond the intellectual grasp of the
secondury school stndent. Ior the young student facility in appli-
cation comes from i andling often, with familiurity, rather than from
deep reasoning.  Aigebraic demonstration largely calls for greater
mental maturity than is usually found in the high school student.
The practice of some of the best high schools in offering the sug-
gested extra half year of advanced elementary algebra or general
matheniatics based on algebra, in licu of the half year of so-calied
higher algebra, has been productive of good results and is to be
commnended,

Geometry. Elementary fundamental regnirements in geom-
etry, as in arithmetic, algebra, and possibly trigonometry, are much
the swne whether the ultimate field of the student's life work be
that of medicine, law, engineering, theology, or agriculture; for
as one graduate school dean was recently heard to state, advanced
research in applied science can be naturally and safely based only
on work in the fundamental sciences of mathematices, physies, and
chen.istry, with particular reference to their application in solving
the given special problem in the given field of applied science.

The fundamental requirements in geometry in secondary school

2 Pourth Yearhook, Natinnal Couneil of Teachers of Mathematica p 160,
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training have been already so carefully covered by Dr. Reeve,
by the writer, and by others, that extended ndditional discussion
here is unnccessary. It may be well, however, to place the emn-
plinsis of repetition on the following basic considerations,

The number of fundamental propositions demonstrated in the
text should be reduced to the minimum absolutely hecessary as n
framework for the subject.

Original demonstrations should be encouraged and simplicity
and conciseness the «ein should be insisted on,

No sharp line should be drawn between plane and solid geom.
etry. They cun and should be tuught in a combined course that
need not exceed one school year in length,

It has never been well demonstrated that trigonometry belongs
in the high school curriculum, particulurly in the college prepara-
tory courses. If taught there at all it should be limited to those
simpler phases directly applicable to the solution of practicul
problems and its presentation should be made a part of the work
in plane geometry. It is not that elementary numerical trigo-
nometry is too ditlicult to be grasped by the mind of the high
school student but ruther that, as a rule, when taken as a complete
subjeet in the high school, plane trigonometry is seldom covered
in its entirety, The student having been once exposed to it in
his high school experience generally passes by the college course
in trigono.netry with its broader applications and point of view
with the result that he is usually lame throughout his study of
analytie geometry .nd the caleulus, even though by the time he has
completed those subjects he may have attained a mastery that
enables him to handle still more advanced phases of mathematics
with credit.

The value of practice in applieation of geometry to the solution
of practical problems cannot be overempharized, both ax a stimulys
to the interest of the student und us a valuable lesson in the prac-
tical utility of fundamental scienee in everyday affairs,

Calculur in High School Courses. Right Fere it is of interest
to note the discussion by Dr. Reeve of “Caleulus in the High
School,” together with his inclusion of clementary caleulus in the
outline of a prospective course in mathematics for twolfth grade
(senior high school) students” This ix perhaps o bold step, but

Trourth Yearbook, National Council of Teachrers o) Mathematics, pp. 164 and
1738
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within the limits of available time it niust be conceded to be allow-
able for the idea and the use of the first derivative, for example,
are not difficult to grasp, and experience has shown that it fre-
quently clarifies idens commonly included in the elementary mathe-
matics of high school curriculn which the students find difficult to
handle or to understand fully without the aid of the derivative.
The subject of muxima and minima is o clear case in point,

The writer cannot agree with the idea that daily work by the
clues at the blackboard is & mistake. Practice of the blackboard
type with a well-organizsed class, when consistently followed in o
well-planned course in geometry and supplemented by rigid ques-
tioning and criticiam by both class and teacher, uncovers and breaks
down the bad habit of memorizing proofs, stimulates keenness of
insight, power to visualize, and clurity of logic. 7The best results
in the teuching of geometry have followed systematic daily board
work, broken oceasionally by special presentation of originals or
purticulurly complieated regular theorams by selected or by volune
teer members of the class.  1f any great amount of time is wasted
in connection with board work it ix unquestionably due to lack
of system und class organization for which the teucher alone is
responsible,

VALUE OF UNrry AND THE UTILITARIAN POINT OF ViEW

In closing this discussion it seems desirable, even at the risk of
sume repetition, to outline a certnin broad foundation on which
to base the requirements in mathematical study for any field of
applied science,  This, of course, includes modern agriculture,
whether considered directly or through the avenues of its many
closely related fields of interest.

Mathematics Inseparable from Human Experience. [t haa
always been diflicult to understand the antagonisima displayed by
niany people to the iden of acquiring mathematical knowledge and
understanding; for, whether or not one recognizes or acknowledges
the fact, we live in a scientitic cosmos in which the fundamental,
governing forees all act in accordance with definite law, Law is the
idea, whether expressed or only implied, of the method of orderly
progress, and orderly progress is mathematical in its very essence.
Henee, no one can escape the continual influence of mathematical
principle in his life experience, no matter how much he may claim
or seek to do so.
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Unity of the Science the Key to Success. However, muthe-
maticians and other scientists should recognise that, among a large
uss of people, they Lave te mect this antagunistic state of mind,
It scems reasonable to ussume that the simpler, the more unified,
and the more directly applicable to the problems and interests of
daily life the science of mathematics can be made to appear to the
public mind, the more successful will they be in overcoming this
antugonisi,

We must, therefore, think of mathematics, not us aritlnnetie,
trigonometry, or culeulus, not as algebra, frequency distribution,
or theoretical mechanics, but us the science of quantity and its
relationships to thought and action with all their materinl accome
puniments, In other words, in our general considerntion of the
science of mathematics in relation to huwaan life, cducaution, and
progress, we must wipe out the rigid artificial boundaries set up
through centuries of stilted and pedantie scholasticism between
what for want of a better term we ure wont to eall “the branches
of mathematies,” for no such lines of clenvuge exist in scientifie fact,

Utility Demanded by the Youthful Mind. One of the essen-
tinly in muthematical truining that applies with especinl force to
the broad field of agriculture is the development of its cminently
utilitarian aspects, That is, we must seek continually to develop
the ability of the studeat to apply mathematical principles to the
phuse of human interest,

To uccomplish this end in these times of swift progress, wherein
both physical und intelleetual inertia are being more fully overcome
alnost daily by new and startling developments that have nearly
eliminated time and space in human experience, we must be ready
(o enter into the spivit of present-day youth, This means that
we must always be on the ulert to seeure real problems  from
any and every part of the field of activity, We must present them
to our students not alone for practice in their solution—which
must be insisted upon—-but even more to urouse their interest and
to siow the utilitariun side of wathematics in practically every
phase of human interest,

Old Type Problems Obsolete. ‘I'hc youth of to-day from
kindergarten to college commencement is little interested  in the
miuntile, senseless, or purely artificial problems with whieh our
mathemuties texts from arithmetic to ealeulus have been wont to
be pucked. Rather is he interested in what he sees actually going
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on ercund hit everywhete, things and events thut result in activity,
in growth evident to the oye, in onjoyment, and whatever leads
thereto,  The youth of tosday is fur more sophisticated than was
vither his father or his grandfuther at the same age, and the teacher
of wathematies must pluy up to this fact.

Meeting the Spirit of Youth, A boy is nat interested to-day
in how many oranges at § cents apicce und how many marbles at 3
cents apiece Mary can buy at the vorner store for 28 conts, nor yet
in the number of leaps the hound of fable wust take to cateh the
cqually legendury hure, His interest lies in the things he reads
in the headlines of the daily paper and the things that he hears
older men discuss-~the buseball score of the wajor leagucs, the
stock innrket, the price und speed of the Ford coupe, or the range
of the radiv,  This state of mind is espeeinlly charneteristic of the
youth in contact with things agricultural. e, too, follows the
busebnll score and the autonwobile, but he is interested alko in the
price of wheat, the tractor rersus the horse as the power that draws
the plow, the binder und the combine, the intluence of the tariff
on the price of pork and how it uflects his profits on his pet litter
ol spring pigs, and the latest developments in the airplane, which
has recently become an agricultural machine engaged in the war-
fare against plant and animal pests und discases.  Yet where would
the tractor, the radio, or the airplane be to-day but for the mathe-
matical principles involved in their design, construction, and opera-
tion - harnessed and put to work by the mind of man?

Just so fur ax the teacher of mathematies looks for his prob-
lem material to fields of human interest, especially those of
particulur interest to the youthful mind, is he likely to gucceed in
the task that lies before him to-day in fitting his scicnee to the
needs of all industreies, ineluding agriculture.

A Few Well Chosen Problems Best. One last thought and
this argnment is closed. In any topie in the field of mathematices,
w for problems, envefully chosen along the lines hevein indieated
and illustrating definite points at issue in a practieal and interesting
way, especiatly it these problems be fully analyzed and claritied
in the mind of the student, are far more likely to fix his attention
and stimulate him to mastery of the principles involved than s a
greaw mass of problems less alive with lonman interest, Multiplicity
of problems under apy new topic serves only to contuse the student
mind, mueh theoretical anthority to the contrary notwithstanding,



MATHEMATICS IN PHARMACY AND IN
ALLIED PROFESSIONS *

By EDWARD sSPEASE
School of Pharmacy, Western Reserve University,
Cleveland, Ohio

Introduction. The Yeurbook is doubtless the proper place
for a presentation of the usefulness of mathematics in pharmacy,
medicine, dentistry, and nursing, inasmuch as it will be read by
those most interested in the preparation of young men and women
who are to enter these professions.

This chapter will not deal with mathematics needed by the re-
search worker in the professions mentioned, but will confine itself
to the mathematics useful to the study and practices of the pro-
fessions,

The Mathematics Curriculum in the Professional Schools.
It may be of interest in the beginning to state that little or no
mathematics, as such, is taught to the medical student after he
enters the medical college, for it is presumed that he is properly
prepared to carry out all necessary ealculations confronting him
in his work. The dental student in some instances is taught some
application of mathematics in his course in materia medica, The
nursing student is taught some mathematics in the course known
as “Drugs and Solutions.” Nearly every pharmacy school to-day
offers a course in pharmaceutical mathematics. The teaching of
applied mathematies in these curricula which has come about
during recent years is due, I believe, ratier to the prowing con-
sciousness of the importance of the subject than merely to the
unpreparedness of the entering students.

It would be an easy matter to shift the responsibility for the
lack of knowledge of simple arithmetic and algebra to the high
school and grade school teachers; but is it not more reasonable to
assume that the student entering a profession will probubly be more

® Readera who are intereated in finding turther pProblems of the kind hersin
dlseussed should consult Pharmacentical Muthematica by the author of this
article and published by MceGraw-HilLe-T'uyg NpIToR.
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or less unskilled in the mathematics of his childhood and its appli-
cation in the professions? Should we unot rather expect him to
be taught the upplication when he rewches the study of the pro-
fession, and to have not only ability but also alertness enough to
review what he most neecls?

Nearly every =tudent entering a modu-ul college to-day will
have had at lenst one year of college mathematies, and many of
them will have had some calculus. This will be true also of the
student of pharmacy before he has completed his college course,
as most of the colleyes of pharmuey give at least one vear of
mathematies in the four-year course. This yenr will embrace
college algebra, trigonometry, and analytical geomotry. Some
colleges restriet this year to the first two subjects mentioned and
sune to the last two,

The four-year course will be the minimum one for Association
Schools of Pharmacey after 1932, Such mathematies, especially in
university schools or where a connection with a college of liberal
arts is possible, is taught by a teacher of mathematics or is given
in the regularly prescribed courses with students of liberal arts,
sviences, or engineering,

In addition to the above wmathematics, all students of chemistry
must know and use the applied mathematies of ehemistry,  The
inathematies of the freshman year of chemistry is compuaratively
simple, but the student of the sophomore or junior year will take a
course in chemica! problems, cither as a separate course or inter-
woven into the eourse in quantitative chemistry. Most of the stu-
dents of medicine and dentistry will have this work before entering
upon purely professional studies, though quantitative chemistry is
not in all instances required of them: and all students of pharmacy
will have it early in their professional work., The diflicult features
of such a eourse are seldom found in the pure mathematics, but
more often in the application to the field of chemistry,

It appears to-day that the weakness of the students coming to
us ix in simple arithmetic and in very simple algebra, but it is also
true that it is easier to teach the upplied mathematics of chemistry
and pharmacy to students to-day than it was fifteen vears ago.
The reader may draw his own inferences.

‘To summarize what has gone before and up to this point one
may say that the student of medicine, dentistry, and pharmacy
will have had the mathematies of grade school and high school and
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at least college algebra, trigonometry, and aunalytical geometry,
and some will have had both differential and integral ecalculus.
The student of nursing entering upon the combined courses now
offered in some universities will in some instances take college alge-
bra and trigonometry.

Prerequisites in Mathematics. Class A medical schools re-
quire two years of liberal arts work for entrance, and although
mathematies is not required in most schools, it is suggested as be-
ing a useful background course. Some medical schools require three
vears of liberal arts work and others four, The four-year course
in pharmacy in nearly all instances embraces the study of at least
one year of college mathematies exclusive of the applied mathe-
matics of pharmacy and chemistry,

Any student who is not properly prepared in mathematics
will experience difficulty in any of these four professions. The
best advice that a high school teacher can give to a boy or girl
planning to enter any one of these professions is to take all the
mathematies his high school offers. I do not say definitely that a
stadent who has not had all the mathematics available in a high
school will fail in one of these professions. I do say that I have
never known one who has had such work to fail and I do know
that the student who is good in mathematies and who has taken
much of it finds his professional work far easier.

Applied Mathematics of Pharmacy and the Allied Profes-
sions. The applied mathematics of the four professions is very
similar, though perhaps the pharmaeist finds a range greater than
that of the others; so the subject from this point on will be dis-
cussed from the basis of the elementary mathematics employed and
its application. No attempt will be made to elassify it for each or
any one of these professions. The above statement is of course
wade without reference to the mathematics necessary for the re-
search worker.

First are taught tables of weight and measure in common use
and how to change denominations from one table into like denomi-
nations in another. A student of any of these professions or a
student of chemistry who cannot understand and make these trans-
positions easily and quickly is handicapped. The metric system
is now accented but the student must be familiar with the avoirdu-
pois, troy, and apothecaries' weights as well. In pharmacy, labora-
tory work accompanies or follows this study and practically ali
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calculations found in the mathematics course are carried out in
the laboratory.

The writer has seen the following experiment made with students
of medicine and of dentistry and the interest displayed by them
was positively amazing. Weigh a grain of wheat, using apothe-
caries’ weights, and tien weigh it upon a fine analytical balance,
using metric weights. The fact that one grain is equivalent to
nearly 65 milligrams has taught some concept both of the grain and
ita origin and of the size of the milligrain. T shall leave it to the
reader to decide where this instruction belongs, whether in grade
gchool or in college. T believe I can argue upon either side of the
question but all will surely agree that the student of these profes-
sions needs the knowledge. It may be an innocent sport, if one
be interested in this subject, to ask.his physician, his dentist. his
pharmacist, or his nurse as he meets them, What is a grain? What
is & milligram? The writer once had a class of fifty freshinen,
twenty-two of whoin had never seen a grain of wheat.

In addition to an understanding of the tables of wcights and
measures and the transposition referred to, it becomes necessary for
the student to develop practical knowledge so that answers to given
problems are weighable and measurable with the usual apparatus
at hand. This is a practice that may well start in the early study
of arithmetic. A result involving a weight, volume, or linear meas-
ure should always be stated in such terins or denominations that
it iz of practical usefulness.

As an example of an improper answer for a problem I present
one which T once received from a state departmient. T had asked
for a definite location of a culvert on a canal. The map showed
it to be a short distance from a bridge and also a short distance
from a canal. called u “side cut.” leaving the main hody of water.
The answer given me was somewhat like this: “446,700 feet from
the north corporation line of ———" (a town several counties
away). The point I wished to locate was just a trifle more than
a mile from the “side cut.”

The review of ratio and proportion is always necessary, as it
ix u short cut to the solution of many everyday problems. The
term “ratio” and the mathematical expression of it not only are
found in our daily labors v work but will be found in a vast
number of the texts and .otic'es read by the four professions in
cvervday life.
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I am not familiar with the method employed in preparatory
schools to teach this subject, and I sympathize with the teacher
who must teach it; for I find there are some students who can
never really grasp it. simple though it is. Students who come to
us from city schools seem fairly familiar with the fractional method
of expressing a ratio, but have not been taught the real meaning of
u proportion or that it may be stated in whole numbers as well as
in fractional form. Ratio and proportion are used in both ehemi-
cal and pharmaceutical calenlations and are well-nigh indis-
pensable,

The reading and writing of fractions and the transposition of
the common fraction to the decimal and viee versa are almost dailyv
occurrences.

To the student who cannot master relative sizes, volumes,
weights, and other dimensions and who does not have a mental pic-
ture of fundamental units, such things as the capacity of bottles
or laboratory glassware constitute a never-ending problem.

An examination was given to a number of recent high school
graduates. 1t may be of interest to observe that they came from
large city, small city, and small town high schools. They were
given a problem which is not an uncommon one in everyday prac-
tice—to calculate the volume in gallons of a drum (cylinde»).
The figure of 231 cubic inches in a gallon was furnished, but not
the rule. Thev all knew the rule and how to apply it. The
dimensions of the drum were stated to be 36 inches in heigh* and
18 inches in diameter. One student's answer was “Four gallons.”
He had made a mistake in calculation but did not observe that
almost anyone could hazard a guess or make an estimate that
would be closer to the real answer.

Some practice, in addition to that of actually proving re-
sults, should be given to the end that a student will not present a
result that i: ridiculous. It is needless to offer more than the
above suggestion to an intelligent teacher as to the field open in
the laboratory for the use of mathematics.

The subject of percentage is very important and it likewise iz
& much abused subject in these professions. We use not only true
percentage but approximate percentages and near percentages;
and therefore, unless its real meaning be perfectly clear to the
student, much confusion results. It is very doubtful if the student
exists who cannot caleulate 57; or 65 of any given number of
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dollars or any given number of pounds, but the converse of even
such a simple problem always scems difficult. The application of
percentage to business problemns, to percentage strength of com-
pounds and to the mixing of substances of different strengths, to
the dilution of substances to a definite percentage strength, and to
the fortification of others always scems to mean something dif-
ferent from the old friend, percentage, of grade school days. There
are, of course, some things that interfere with the mixing of sub-
stances of different percentage strengths that complicate what is
otherwise a simple mnathematics problem. For example, one hun-
dred parts by volume of 959 by volume alcohol mixed with 100
parts by volume of water will only make about 190 parts by voluine
instead of 200 parts, Such procedures certainly should be taught
in an applied course and not in a preliminary course confined o
pure mathematics. It would be helpful, however, if teachers could
employ percentage in other ways than the relationship of it to
financial considerations. Why not study ratio and proportion in
mixtures such as concrete, one cement and three sand, or cement,
sand, and crushed stone, and then express them in terms of per-
centage? How about volatile matter and ash from coal? Such
examples would help us in percentage purity of chemicals, per-
centage composition of compounds, and percentage strength of so-
Intions.

Under the heading of the calculation of dosage we make use of
both common and decimal fractions and it is often necessary to
add, subtract. multiply, and divide them. The average student
has usually forgotten how. but it does not take long to bring back
this knowledge, and my observation is that once back, it stays,
becanse it is in daily use.

A nurse might be confronted with the problem of giving a 1/,
grain dose of a substance and all that she has are tablets of the
substance, each containing 14 of a grain. Fractions first, of
course, and then knowledge that a tablet cannot be divided with
safety, that small amounts cannot be weighed accurately upon the
apparatus at her disposal, and so on ad infinitum.

If time is not too short the student should be taught why
%-+ i = 771 and why the common denominator ig used. I here
mean to express that the student knows how to make such eal-
culations if he has not forgotten mechanical instructions, but he
does not seem able to see practical everyday problems and usage.
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He views these calculations as school tasks of to-day and does not
see their relationship to life problems.

When it comes to calculating specific gravities of solids and
liquids, the laboratory helps the student’s mathematics. The old-
fashioned drill of giving two factors in a three-factor product to
find the third often simplifies the entire teaching of this subjoect.
After the student learns what specific gravity is and begins to use
it, his mathematics becomes clear. This is a subject which he has
usually had in high school physics or in grade schonl mathematies,
and sometimes even in college physics, but its value has always
been academic to him,

Caleulation of allowable errors in weighing and measuring is
always more or less difficult. This again may often be compli-
cated by percentage. Suppose a student is told to prepare five gal-
lons of a mixture so that one teaspoonful will contain 174, of a
grain of strychnine sulphate. How accurate must be the balance
upon which the strychnine is weighed, and what percentage of
error in either direction does his good judgment tell him is allow-
able? Here again is applied mathematies. Percentage solutions,
solutions made on a ratio basis, and saturated solutions all involve
something besides mathematics, but the simple mathematics must,
be known first. The difficulties usually involved in teaching con-
version of temperaiure scale readings are obviated by teaching these
readings as definite measurements of length. Interpolation in spe-
cific gravity tables becomes easy to the student who has used
logarithms and this last subject is one that is needed by the student
of medicine and pharmacy very often indectl. Old-time alligation
has to be taught pharmacy students because State Boards demand
it. The writer, however, is not an advocate of its use.

A student always needs to understand problems of interest,
dizcount, profit and loss, and many other problems found in the
average commercial arithmetic.

The Preparation Students Should Have. The writer feels
that he will not do justice to himself unles: in closing lie states
his own opinion upon the preparation of students in mathematies
in order to make professional work easier. That opinion ix that
arithmetic should continue into the high schools, either in the form
of the old-fashioned advanced arithmetic or in the form of review
in the senior year. I make this statement knowing full well the
objections I should hear if I happened to be a well-known teacher



PHARMACY AND ALLIED PROFESSIONS 109

of mathematics. I hasten to add, however, that arithmetic should
not replace the algebrn, geometry, and in some instances higher
mathematics now taught; it should be taught in addition to them.
A student expecting to study any one of the four professions which
we have discussed, or one expecting to study chemistry or physies,
nevds mathematies every day.

Much of the necessary arithmetic may be reviewed by the
teacher of algebra. and may I add here that the teacher of algebra
should endeavor at all times to show, where possible, that much
of algebra is really a review of arithmetic and is after all an easier
method for solving many simple problems.  The simple equation,
to find the value of ., still seems to be difficult for many students
to =olve. They still find it difficult to form o simple equation and
solve it, and for such students the use of the simultaneous equation
is out of the question.

In my own institution we were once confronted with the prob-
lemn that our required course, embracing mathematics, was too se-
vere; that students who did not wish to become scientists and real
professional men should he permitted to take economics instead
of mathematies and language. It was their desire to know merely
enough of science to he safe technicians, and otherwise they would
have purely business interestz. It soon developed that those who
could not pass in mathematics felt they could join this second
class, and so our poor students went to the economies classes and
did not endear us to the professor of economics. Before long we
discontinued thiz practice, for we are of the opinion that business
as well as seience needs men of brains who have a working knowl-
edge of mathematics.

I must plead guilty to belonging to that class of old-fashioned
people who, if given the chance, would require for high school
graduation arithmetie, algebra (three semesters), plane and solid
geometry, and as much more as could be put into the course. Some
of the writers upon mathematies have felt that a knowledge of
mathematies and an ability to think do not necessarily go hand
in hand and that the first does not tend to develop the latter; but
those of us at this end of the =cale are usually fairly certain that
when we get a student who is a good student of mathematies and
has been well groinded in the subjeet, most of our troubles fade
into nothingness so far a= he is concerned. May I add that I do not
approve of applied subjects of any kind until after the funda-
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mentals have been taught? There is always the danger of slighting
the fundamental for the more interesting application.

I wish the specialist, the real mathematics teacher, to give the
student his elementary training. I know the specialist will do this
part of the work well, and I can then find the means to teach the
student the practical and professional application of the mathe-
matics he has learned.



MATHEMATICS AND STATISTICS

By HELEN M. WALKER
Teachers College, Columbia University, New York City

1. StaTisTiCAL METHOD IN PRESENT-DAY THINKING

Importance of Statistical Method. More and more the
modern temper relies upon statistical method in its attempts to
understand and to chart the workings of the world in which we
live. Particularly in those sciences which deal with human beings,
whether in their physical and biological aspects or in their social,
economic, and psychological relations, the spirit of our time asks
that its conclusions be based not so much upon the distinctive re-
actions of one or two individuals as upon the observation of large
numbers of individuals, the measurement of their common likenesses
and the extent of their diversity. As the data thus gathered from
mass phenomena become extensive, it becomes imperative to have
methods of organization to bring the facts within the compass
of our understanding, methods of analysis to make the essential
relations appear out of the mass of detail in which they are hid-
den, and methods ofclassification and deseription to facilitate the
presentation of the data for the study and consideration of other
persons. Thus statistical method becomes a telescope through which
we can study a larger terrain than would be accessible to our
unaided vision.

Use of Numerical Data. As the area of investigation is wid-
ened to include larger masses of individuals and as the nature of
the inquiry becomes more precise, it is inevitable that data and
conclusions shall assume numerical form. To quote Sir Francis
Galton:

General impressions are never to be trusted. Unfoitunately when they
are of long standing they become fixed rules of life, and assume a prescriptive
right not to be questioned. Consequently those who are not accustomed to
original inquiry entertain a hatred and a horror of statistics. They cannot
endure the idea of submitting their sacred impressions to cold-blooded veri-
fication. But it is the triumph of scientific men to rise superior to such

superstitions, to devise tests by which the value of beliefs may be aacertained,
111
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and o feel sufficiently masters of themselves to discard contemptuously
whatever may be found untrye,

Sir Arthur Newsholme writes:

As the scope of a science widens, it ix generally found necessary sooner
or later to adopt numerical <tandards of comparizon. In medical acjence
this is found to be especially nccessary, though perhaps in no other science
is the difficulty of exact numerical statement so great. The value of erperi.
ence, founded on an aceumulation of individual facts, varies greatly according
to the character of the observer. As Dr. Guy has put it: “The somettmes of
the cautious is the often of the sanguine, the aluways of the empiric, and the
never of the sceptic; while the numbers 1, 10, 100, and 1,000 have the same
meaning for all mankind.”

Adolphe Quetelet, the great Belgian astronomer, mathemati-
cian, anthropometrist, economist, and statistician, in the first lec-
ture of a course on the history of geience, said:

The more advanced the sciences have become, the more they have tended
to enter the domain of mathematics, which is a sort of center towards which
they converge. We can judge of the perfection to which a seience has come
by the facility, more or less great, by which it can be approached by caleu-
lation,

Relation of Statistical Method and Statistical Theory.
Clearly, then, statistical method must be grounded in statistical
theory, which is essentially a branch of mathematics. Indeed, sta-
tistical theory has its roots in the mathematical theory of prob-
ability and the work of the mathematical astronomers, notably
Giauss and Laplace. who early in the nineteenth century built up
a theory of errors of observation in the physical sciences. Statis-
tical method is completely dependent on statistical theory, yvet the
two have important differences in purpose, in procedure, in tech-
nique, and in the type of talent and preparation nceded for suc-
cessful prosecution,

Statistical theory is developed for an ideal situation seldom
completely realized in practice. Statistical method almost always
involves a measure of compromise between the recaleitrant facts
which life presents for analvsis and a mathematical theory which
postulates a particular form of distribution or other ideal circum-
stances only approximated by the data. The dependable statisti-
cian recognizes that the assumptions implicit in his formulas are
not completely fulfilled. but he secs that to use these formulas
and continue the investigation will afford a far closer approach to
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the truth he seeks than mere conjecture and intuitio:., which may
be the ounly alternative.

Difference Between Statistical Method aad Mathematics.
The man who develops n new piece of statistical theory works as
o mathematician and faces only those obligations ordinarily incum-
bent upon the mathematician. He must <tate his assumptions, he
must avoid contradictory assumptions, he must be careful that
his conclusions follow logically from his premises. Beyond that
point, he is free to make whatever assumptions are convenient
for the #implification of his argument. The worker in statistical
method who applies to the solution of some practical problem a
formula thus developed by the mathematician has an additional
obligation. He must not only know the assumptions on which
the formula rests, but he must also know the content of the field
in which he is working well enougli to determine whether these
assumptions can be appropriately made in that purticulur situation.
It is probably not essential that Le be able to go through the steps
of the derivation of each formula, but unless he knows what as-
sumptionz were made in that derivation and unless he ascertains
that these assumptions can be rcasonably made for his data, there
ix u possibility that he may come out with conclusions which are
far from correct. Herein lies the weakness of many statistical
investigations, either thut the research worker does not know the
muathematieal theory well enough to recognize the assumptions
upon which his procedure rests, or that he is not sufficiently at
home in the ficld of research to pass upon the validity of those
hypotheses.

Knowledge of statistical theory is not enough for the man who
would plan important statistical investigations. Neither the pure
mathematician nor the man innocent of mathematical training
makes the best worker in practical statistics. The expert in sta-
tistical theory needs also a rich knowledge of the content of the
ficld in which he would work. The geneval method of statistics
ix the same for all fields and the elementary training need not
differ much whether a man is to work in biology or psychology,
in cconomics or education. Therefore it is sometimes suggested that
a consulting statistician trained primarily in pure mathematics and
in statistical theory may act as consultant for a large number of
important statistical studies in various ficlds, the data for which
are collected by others and the results worked out by others. By
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providing expert advice on the method of research, such a man
might make it possible for important studies to he earried out by
wen interested in the content but ignorant of statisticnl method.
This solution has serious drawbacks, Without a general knowl-
edge of the field of study, it is difticult to choose appropriate statis-
tical procedure.  Without a consmning interest in the outcome of
the particular study and an intimate knowledge of its dotails, fruit-
tul leads do not arise, “hunches” are lneking, and the most rignifi-
car . facts and relutions may be overlooked. Recently a research
worker in biology wrote to ask me if he was justificd in using a
certain procedure.  Not being a biologist I could offer no creative
=uggestions, and could only say, “The assumptions underlying the
formula you wention are thus and so. I should be suspicious of
them, but a biologist will have to Pass upon their applicability.”
On the other hund, the view is common that the mathematician
who develops a formula has welded a tool which the nonmathe-
matical psychologist or economist or educator can profitably use
without knowledge of its derivation, and that the formulas printed
i the textbooks constitute a dependable machine into which data
may be fed and from which conclusions, even dizcoveries of vast
moment for human welfare. will eventuate automatically, Two
boys on the top «f a Fifth Avenue hus arrested my uttention with
& scrap of convirsation. Said the first, “But I don't understand
:t 5 whereupun his companion replied, “Understand it? Ginsh,
i an, why should you try to? It's a formulg]” The world is {uil
of men who want to take formulas on faith, arguing that they can
utilize u i{cchnique whose basis they do not understand, exactly
as they drive an automobile whiel they could not take to pieces
and reconstruet. The analogy has something to recommend it.
Certainly, most of the cemputation and abulation called for in a
statistical study can be done by clerks win merely follow diree-
tions. For the man who is directing research, howoever, the analogy
tails, In driving a car we have g perfect and obvious check upon
the auccess with which gears and steering wheel are managed. In
choosing a statistical procedure, no such obvious check is wvailable,
A formula is always bused upon assumptions made during the
process of derivation and these assumptions limit its applieation.
The formulas printed in texts are often special cases of longer ones
an! deduced from them by the application of very special as-
sumptions. The choice of a different formula may vitally afiect
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the nature of unu's results, but there is usunlly nothing in the re-
sults themselves to validate the wethod by which they were
reunched,

The Nature of Statistical Inference. Ntatisticul reasoning
differs from mathematical vearoning in another importunt way.
For the mathematician, conclusions follow inexorably and ins
evitably from premiscs; his reasoning eventuates in a single im-
mutable luw which is always invariably true when the original con-
ditions prevail.  The statistician devives no law which can apply
invariably to all members of the population which he studies; but
he deduces trends, tendencies, which are true in the main for the
group, but which may not hold at all for a given individual, He
speaks of the central tendeney of the group and of the tendeney
of the group to depart therefrom, of the seattering or divergence
of the group from that central tendency. The mathematician
Kknows all his premises; the statiztician can usually mcasure only
part of the influences which play upon the subjects he is studying.
The statistician is usually working in a field where events are
brought about by a highly complicated plexus of causes only part
of which can be measured, and therefore he speaks of probability
rather than certainty. IHe recognizes thut when he is studying one
hundred cases and is attempting to generalize for ten thousand
cuses the results which he obtained from the hundred, then every
measure he has computed for the hundred probubly differs a little
from what he would find if he computed the same weasure for
the ten thousand. Such sampling crrors cannot possibly be avoided
and can be mitigated only by the use of larger smples. When a
mathematician speaks of an crror, he means a mistake. When a
statistician =peaks of a sumpling error, or when he computes a
probable error in the attempt to measure the significance of his
sampling error, he is not dealing with a mistuke but with a funda-
wental characteristic of the nature of the universe which makes
one sample differ slightly from another,

It is the very essence of statistical method that it deseribes the
trends and the general characteristics of populations, but that these
tendencies eannot be asserted as neeessarily valid for each of the
individuals which constitute the group. To deseribe these tenden-
cies and relations with objectivity and precision, quantitative and
nuwmerical meazures are naturally called for, If we =ay, “Most
of the teachers in the country schools of America roceive very low

\
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salaries,” “Girls have a keener perception of color than boys,”
“Stuttering Las a tendency to be associated with left-hundedness,”
or “An increaging number of industrial concerns refuse to hire ap-
plicants who are over forty years of age,” we are muking state-
ments which, true or false, are exsentially statistical in nature be-
cause they are attempting to deseribe general characteristies of
populations--but they are vague. Numerical methods of deserip-
tion would have to be employed before these statenients could be
rendered precise, and as soon as that is done we aro beginning to
use the statisticul method, even if it is only in its most rudimentary
stages,

1L MATHEMATICAL TRAINING FOR NTATISTICAL Work

A Dilemma. We have already seen that statistical method is
rapidly becoming the language in which much of the research in
ceonomies, business, psychology, edueation, finance. life insurance,
industry, anthropometry, biology, medicine, and government is be-
ing cast. More and more an understanding of statistical 7 wrmi-
nology becomes necessary in ovder to read the techniea literature
of research, and this is true even of such subjects as religious edy-
cation. vocational guidance, and child welfare. We have already
seen that neither the wman trained solely in mathematical theory
nor the man ignorant of mathematics does the best work in organ-
1zing statistical inquirics.  This recent and rapidly developing gen-
eral interest in statistical studies has ereated a dilemma for which
there is no easy solution. In =ome fields, such as education and
psychology, it often secms that an understanding of statistical
methods is almost o requisite for successtul research; yel many
of the keenest minds in these fields do not have the mathematical
preparation which makes any thorough study of statistics feasible.
Men who have a high degree of scholarship in thewr own field are
finding themselves hampered in undertaking some piece of research
beeause it demands staristical treatment; other men find an in-
creasing proportion of the literature of their field unintelligible he-
cause it is phrased in an unfumiliar stutisticul language; still
others, deciding to study statistical method, discover thut they have
unfortunately forgotten the algebra and the arithmetic which they
had supposed they would never need again,  The average man-—a
phrase which is itself a statistical abstraction rather than o de-
seription of a real person—finds that to a certain degree he must
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think statistically in order to read his newspaper and the current
maguzines.

Suppose, for example, that a nutrition expert interested in the
feeding of small children wants to find out whether two-year-olds
have their appetites stimulated by the color of the food which is
offcred them, and plans to make daily observations of fifty nursery
school children.  His training is in child psychology and food
chemistry, but as the investigation progresses he finds himself
involved in a statistical study of some complexity. Or again, u
teacher of physical education wants to arrive at an index of
physical capaecity which will allow him to estimate in advance
the ease with which a given high school student can master a
particular sport, say swimming. His interests are in anatomy and
physical training, while this problem is largely one of applied
mathematics,

It Li= introduction to Wood's Measwrement tin Higher Educa-
tion (19231, Professor Louis Terman says:

From the hupruage of statisties there is no eseape if we wish to go beyond
the limmits of persomad opinton and individual bins, Worthwhile evaluations
m higher edieation will continue to be as rare as they now unhappily are
until the ratk and file of college und university teachers beeome able to
think in more exact quantitative termns than they are yet accustomed to.

More tlen a quarter of a eentury ago H. G Wells said:

The new mathematics s a sort of supplement to language, affording a
means of thonght about form and quantity and a means of expression more
exuct, compact, and ready thun ordinary language. The great body of
physical seience, a great deal of the essential fucts of financial svience, and
endless soetal and political problems are only uceessible und only thinkable
tu thuse who hive had a sound training in mathematical analysis, and the
time may not be far remote when it will be understood that for complete
mitiatt noas an efficient critizen of one of the great new complex world-wide
~tates that are now developing it is as necessary to be able to compute, to
think inoaverages and maxima and minima as it is now to be able to read
und to write, (Mankind in the Making, 1904, pp. 191-192.)

The time of which Wells then spoke is now inuninent,
Mathem-ntical Preparation. Iow mucli mathematics should
one know before undertaking the study of statistics? No au-
thoritative unswer can be given to this question, for no one. so
fur as the writer knows, bus made a careful, unprejudiced analy-
sis to sce what mathematical knowledge is needed for various
statistical undertakings. If a canvass of expert opinions were
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made, they would undoubtedly range all the way from that of
the mathematician who would insist upon a doctorate in pure
mathematics to that of the man who once told the writer that he
considered much study of mathematics an actual detriment, be-
cause he thought a statistician was freer and more original if he
did not know too much about mathematics. 1t is obvious that
there are many levels at which stutistical work is carried on, and
it would be valuable to have a thorough study made of the op-
timum mathematical preparation for each level. The suggestions
which follow must be interpreted as based solely on the personal
opinion of the writer, which in turn is derived from the observa-
tion of students and from the results of a statistical study of the
preparation and accomplishment of over four hundred students of
elementary statistical method.

The clerical worker who merely tabulates and copies raw data
probably performs no mathematical function at all. The computer
who works under the close supervision of someone elsc needs to
have a flair for figures, skill on computing machines, a high sense
of accuracy and reliability, and enough knowledge of arithmetic
and algebra to cnable him to see short cuts in arithmetic opera-
tions, but he can be a competent worker on this level with relatively
little theoretical training. He can make extensive computations
under direction without much understanding of the import of his
WOrK,

The student who hopes to do anything at all with the theory
of statistics should have, as minitnum preparation, differential cal-
culus, While it is truc that Yule wrote his Introduction to the
Theory of Statistics without any of the notation of the calculus,
nevertheless he could not avoid its general method, and most of
his readers will agree that he did not succeed in simplifying his
material by this expedient. The student who goes beyond the first
stages in his study of statistical theory and who attempts to read
the original memoirs in which important derivations are set forth,
will find that he needs to know integral caleulus, differential equa-
tions, theory of probability, a great deal about the convergence of
series, function theory—in fact, almost any form of mathematical
analysis which he has studied will be of ultimate use. The geome-
tries are in gencral less pertinent, although there are one or two
important papers which have utilized geometric concepts. The
man who is to do original research in statistical theory will be
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thankful for all the mathematical analysis he has studied, and will
be exceptional if he does not feel the urgent need of niore training
than he has had in mathematics.

Between these extremes, the elerical worker and the student of
theoretical statisties, there is a large and rapidly growing group
wlhose needs are more diffieult to define and to meet. These are
the men with primary interest in other fields who need some knowl-
edge of statistical method in order to read the technieal literature
of their field, to interpret and.evaluate the research of their fel-
lows, and to organize data derived from studies of their own. They
are often impatient with any attempt to teach them statistical
theory, and they say they are interested “only” in practical in-
terpretation and critical evaluation, failing to understand that
critieal evaluation and wise interpretation often eall for a fine com-
bination of acvmen, wide knowledge of the field of study, and sotne
knowledge of statistical theory. The man who is reduced to quo-
tation of what other people have said or written about a formula,
having no first-hund knowledge of its bases, may also be limited to
imitation and quotation when he attempts to interpret its practi-
cal meaning in a concrete case,

However, let us suppose that we are attempting to teach as
much of statistical method as ean be compassed without the deriva-
tion of formulux, teaching only statistical computation and as
much critieal interpretation as is intellectually feasible to students
who make no mathematical derivations. What mathematies is
essential to such a program? If we postulate a course in statistics
stripped to a minimum of mathematical content and designed to be
of the utinost practical help to the person who has studied no
mathematics beyond the high sehool, what topies in secondary
school mathematics will be most needed?  Here again it is neces-
sury to make a declaimer and to admit that there is no authority
for an answer save personal opinion based on a study of the needs
and diffieulties of a good muny muature students suffering from
mathematical anemia.

The question falls into two parts: Which of the topics now
commonly taught in the secondary scehiools do students of elemen-
tury statistics use most?  What topics not commonly taught in
secondary school mathematies would be useful to the prospective
student of statistiex, simple enough to be grasped by high school
pupils, and of sutlicient utility for the soecial sciences to merit
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consideration as possible additions to an already crowded cur-
riculum?

III. Torics IN ARITHMETIC AND ALGEBRA MOST NEEDED FOR
BEGINNING STATISTICS

Attitudes and Habits. For success in the general processes of
elementary statistical method, it appears that mathematical in-
formation and specific skills are less important than certain atti-
tudes of mind which are sometimes regarded as by-produects. That
clusive thing which we call mathematical ability scems to be more
essential than mathematical training unless the training produces
these habits of mind. If a student has forgotten how to handle
radicals and logarithms he can relearn these techniques easily.
If he has never rightly understood the import of a formula, if he
never knew what the solution of cquations or the reduction of
fractions were about but wmerely acquired skil] in performing cer-
tain tricks which produced an answer, if he thinks variable and
unknown to be synonymous terms, if he has never seen arithmetic
generalized into algebra, these are matters much more serious
than a total lapse of memory. Worst of all, if he is unable to
think in terms of symbolism, is frightened by algebraic formulas,
panic-stricken when obliged to compute, and without conscience in
the matter of accuracy, he has a heavy load of old habits to dis-
card before he can lope for any progress in statistical studies.
Fortunately, the ways of thinking which the statistician would
urge the mathematics teacher to inculeate and develop are ways
of thinking which mathematicians also value highly. The fol-
lowing are of central importance:

1. Ability to Think in Terms of Symbolism. The language of
statistical theory and method is highly symbolie, and no other
single ability seems so closely related to sueccess in this field as
the ability to read meaning directly from symbolism. In a group
of prognostie tests which we have been giving to students of ele-
mentary statistics at the beginning of the first term's work, a short
symbolism test including only eleven items shows a correlation of
05 with marks at the end of the first term. For so short a test
this is remarkable. When the symbolism test is made longer,
the correlation will undoubtedly be still higler. Of all the other
prognostic tests with which we have heen experimenting, none, not
even a stundardized test of general intelligence, shows so close a re-
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lationship to the term’s marks. Even for the pupil who will never
study statistics, this ability to use symbolism as a language in
whieh to express his ideas is one of the most readily defensible
aims for the teaching of algebra, though not one of the most easily
realized. Teachers of high school matheinatics can scarcely put
too much emphasis upon translation from symbols to words and
from words to symbols. In addition to practice in these two forms
of translation there should be practice in expressing in symbolie
form the pupil's own ideas about quantitative matters, a sort of
free svmbolie comnposition. Ninth grade pupils enjoy this when
the ability has been developed by earefully graded exercises. It
would be of inestimable value to those who will some day study
statistical method.

2. Correct Thinking About Variables. Hazy thinking which
permits a pupil to confuse variables with unknowns because both
are often represented by the letters 2 and y may not be inconsistent
with high marks in a high school algebra course, where it is often
possible to achieve correct answers blindly by merely following
the rules of the game; hut sueh confusion is a very serious handi-
cap when algebra is to be applied to statistical method. For ex-
ample, suppose we let 2, represent the height in inches of one boy,
x. the height of a second, and so on, z, heing the height of the nth
boy. Then the sum of all the heights divided by the number of

boys will be the mean (or average) height, or M= -—2,—\?— Now

clearly z is not an unknown here, for we are not trying to find the
value of some missing nuinber, but it is a variable representing a
class of numbers to all members of which the formula refers.

In arithmetic a symbol is always associated with the same
number, 4 having always the same meaning no matter where it
occurs. In algebra the pupil early discovers that x or n (or any
other letter) may have one value in one problem and another value
in another problemn; but <o long as he is solving such an equation
as 3r 4+ 2 =20, z has only one value for that equation. He sees
readily enough that r may mean 6 in this equation while in an-
other it may mean 4 or 7 or something elze, but he is still essentially
on the arithmetie level because during the discussion one symbol
stands for one number, that number being temporarily unknown.
To give the pupil a conecept of variables is psychologically more
difficult as well as more stimulating and ultimately more impor-
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tant. This is one of the most valuable contributions algebra makes
to human thinking and ought to be approachied with care and
thoroughness. The enormous power of algebra is largely inhierent
in the fact that a single symbol can be used to represent every
one of a class of numbers. Almost any bright pupil can learn to
manipulate formulas mechanically, to evaluate the formula by sub-
stituting given values of the variables, and to change the subject
of the formula; but unless he has grasped the meaning of a vari-
able he cannot think property about formulas, eannot compose for-
mulas to express relations, cannot have any idea of functionality,
Unfortunately, many pupils ean write glibly 13n “+ 7n = 20n with-
out realizing that this means, “If seven times any number is added
to thirteen times that same number. the result will always be
twenty times the original number.” If anyone doubts this state-
ment it is only necessary to ask a class to find the value of
13X 43 + 7 > 43. and to hand in all their serateh work, and then
to note how few think of multiplying 48 X 20 and how many niike
the two separate multiplications and add the results.

In statisties we deal constantly with variables, while only
seldom do we solve equations to discover the value of unknowns,
and the student who has learned to think of z as standing always
for a single missing number has a mental handicap to overcome.

3. Freedom from Fear. Among mature. educated men and
women, graduate students with intelligence well above average,
there exists a surprising amount of fear of anything savoring of
arithmetic or algebra, old inhibitions which are rooted in arith-
metic faih..~s and worries in the early grades. old strains and
anxicties which can often be traced back to a teacher who was
scornful when answers did not come out right, or who tried to
hurry children beyond their capabilities. Tt is nsually a revela-
tion to the student to discover that a considerahle part of the fear
and worry which he had been attributing to the ditlienltics of sta-
tisties actually hud their origin in carly misadventures with arith-
metic or altebra, and when to this dizeovery he adds the discovery
that a little well-direeted practice will rid him of his sense of
mathematical inferiority, he achieves a joyouns freedom. But ought
any subject to have such serious emotional connotations among
men and women who are otherwise sensible and intelligent?  Will
the boys and girls who are being tanalit arithmetie, algebra, and
geometry to-day have to carry a similar load of emotional condi-
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tioning toward mathematics? Have we even yet learned to adapt
our teaching to the pupil so that he may work up to his individual
capacity without being constantly humiliated and scarred by fail-
ure to do successfully work which is beyond his capacity? Can we
learn to teach so that boys and girls may have the triumph of
becoming mathematical adventurers and discoverers and so se-
cure a self-confidence which will be & positive force in building
their personalities?

4. Right Attitudes Toward the Outcome of Computation. The
secondary school pupil usually considers his eomputations, his
algebraie manipulation, his geometric reasoning, and his trigo-
nometric analysis vindicated by the approval of a teacher or by
agreement with published answers. Methods of cheeking do not
interest him much; they seem like an unnecessary labor imposed
by an exacting taskmaster when comparison with an answer known
to be right offers a more direct proof of his work. In statistical
investigations there is no such authority against which one may
measure his work, and methods of checking become of paramount
importance. The habit of- checking each step of a computation
or of finding two independent ways to reaeh the same result must
be developed in any one who hopes to do valuable statistical
work,

The habit of estimating in advance of computation what is a
probable value for its outcome and of checking each computed
ralue by common sense to sce if it is reasonable will save the
statistician much grief. Also, the general value of these habits
makes them worth considerable. attention from the teacher of
muthematics.

A conscience about accuracy is necessary to the good statisti-
ciun,  The correctness of his work is ordinarily taken for granted
by his readers, and only rarely does one man recompute the meas-
ures published by another. Tlis work must stand by itself and he
must be able to vouch for its correctness. He should be sensitive
about the aceuracy of his computations, of his tabulations, of the
measurements from whieh his data were derived. He should rec-
ognize that the number of deecimal places which he carries in his
final resnlts is a tacit pledge of the degree of accuraey of his origi-
nal measurements, and that he should carry these results only so
far as is appropriate to the preeision of the original measurements.
He must always realize that unless his problem is a trivial one,
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the outcome of his computations may provide information on
which will be based decisions of importance for human welfare,
and that therefore he has no right to offer any but trustworthy
work.

What training can we give a high school student to develop in
him this sense of responsibility? Answers are available for eheck-
ing; why bother about excessive accuracy? No social conse-
(uences wait upon the outcome of the usual algebra problem; a
slip in the progress of a geometric proof can bring disaster to nu
one unless it be to the perpetrator of the slip. Certsinly a desire
for accuracy does not arrive as the result of verbal argument on
the part of the teacher,

Probably the best expedient is to make one pupil or a small
group of pupils responsible for securing data and computing tlie
results in some matter about which the class wishes to have in-
formation, This may approximate the situation of the statistician,
whose work has important social consequences and who is stimu-
lated by the thought that the outcome may remain unknown unless
he finds it.

Information and Skills. For a course of the type we are now
postulating the necessary mathematical techniques are very sim-
ple—skill and a degree of rapidity in computation, knowledge
of arithmetic short cuts, ability to place a decimal point, to take
square root, to read a mathematical table, to change the subject of
a formula, to evaluate a formula, to transform fractions, to op-
erate with complex fractions, to plot points on cobrdinate axes, to
make statistical graphs and to interpret them, to draw the graph of
a linear equation and to know the import of the slope of a line,
and to handle radicals. Tle use of a slide rule, of computing ma-
chines and of logarithms is highly desirable, as is also the ability
to interpolate.

The formula given below indicates the complexity of structure
to be encountered in computing a coeflicient of correlation:
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One should he able to change the formn of this fraction as con-
venlent and to know enough about radieals to deal with the de-
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nominator. Again, it is necessary to evaluate expressions of the
forms '

VI1i—tl—a) l—-¥6) d~¢),

bv1l—ctv1 — a— be
a , and _ =,
cvVl1l—fvl—g* v1i—=»bv1l—¢
These suggest about the limit of algebraic diffieulty likely to be

encountered in a first-year course in whieh formulas are not
derived.

IV. StatisTical, MEeTiop For HicH ScHooL STUDENTS

A Challenge to Teachers. Any one vitally eoneerned with
the teaching of high school pupils and observant of the rapidly
growing publie need for some knowledge of quantitative method in
social problcms must be asking what portions of statistical method
can be brought within the comprehension of high school boys and
girls, and in what way these can best be presented to them. If
some aspects of statistical method are to be taught in high school,
shall this be done by the mathematics teachers or by the soeial
science teachers? Shall a new course be created, shall a new unit
be added to the social science work, or a new unit be added to the
work in mathematics? Shall it be required or elective, for seniors
or underclassmen?

Thege questions call for much study and creative teaching on
the part of high school teachers with pioneering spirit, and there
seems every reason to expect that the next decade may produce
~xigniticant changes in the program of both high schools and col-
leges,  The situation is full of challenge for those teachers of high
school mathematics who like to leave the beaten path and adven-
ture a bit, who are not afraid of the hard study necessary to
prepare themselves for teaching in a new field, and who have a
genuine interest in that type of social problem which can be ap-
proached by a quantitative study of mass phenomena. Such
teachers will need first to make themselves thoroughly at home
in statistical method, not merely with its elementary plases but
with its spirit and some of its theory. It will be most unfortunate
if teachers who have had only a six-weeks' summer course in statis-
tical method are the ones who undertake this pioneering. because
the selection of material for a simple course is not in itself a simple
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task, and cannot be well done by the person whose knowledge is
elementary.

Suggested Materials, As a starting point for creative and
experimental work in organizing units in statistics to be added to
high school mathematics courses, the writer suggests a number of
topics which she has taught to ninth grade pupils of average ability
who found the material interesting, stimulating, and no more dif§-
cult than the rest of their ninth grade mathematics.

1. Graphs. Almost any good junior high school text now con-
tains valuable material on the statistical as well as the mathemati-
cal graph. Special emphasis should be placed on the criticism of
published graphs, the analysis of their strong and weak points, and
suggestions of alternate ways in which the same material might
be presented, with the advantages and disadvantages of each form.
Most of the modern junior high school texts now include a treat-
ment of the histogram and frequency curve. From these, the
cumulative frequency curve follows casily. If the raw frequencies
are turned into per cents and two or more distributions are plotted
on the same axcs, the resulting diagram provides a way of com-
paring two groups which reveals at once many things not dis-
cernible from the original distributions. Such diagrams may be
used to compare the work of two sections of a class on the same
test, to compare the work of a class with published norms for a
standardized test, to compare scores made by boys with those
made by girls, or to compare the test scores made by a elass at
the beginning of a term with the scores of the same elass on the
same test at a later date. All of these ecomparisons are matters
of genuine interest to the class.

For later statistical work, it is valuable to know how to find
the equation for a given line and this is not necessarily a task so
difficult that it must be reserved for college courses in analytic
geometry. Incidentally, this problem has as much intrinsie mathe-
matical interest as its converse which is commonly taught, and it
can be treated in a manner simple enough for ninth grade pupils.
The pupils may be given a practical problem in measuring any
two variables that have a lincar relationship and plotting the re-
sulting pairs of measures on cobrdinate axes. Because of slight
errors of measurement—unavoidable inaccuracies which are due
to the fallibility of human eves and hands and measuring instru-
ments—the resulting pairs of measures will cluster about a straight
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line without actually falling upon it. After the data have been
plotted, the pupil should draw the straight line which he thinks
i« the best fit for this swarm of points. Then he should find the
equation for this line of best fit. Such a problem may be used to
open up a general method of deriving laws which express ten-
dencies of physical or social data, to suggest the general method
of curve fitting as employed in the various seiences, to extend and
enrich the pupil's understanding of graphs. and to introduce the
idea of errors of observation, a concept pregnant with intelleetual
challenge if treated by a teacher who las grasped its philosophical
import.

2. The Percentile System. The simplicity of the percentile
scheme tineluding median. deciles, quartiles, quartile deviation),
its frequent use to define the standing of high school or college
students on standardized tests, its wide usefulness for describing
the performance of an individual in terms of his position within a
group. the ease with which real problems within the comprehension
of adolescents may be aszemibled, and the fact that the process of
computing a percentile offers an attractive application of per-
centage. an introduction to the idea of interpolation and a simple
problem in intuitive geometry, all make the percentile system
admirably adapted to the end of the junior high school mathematics
course. Most of the topies studied in a course in statistical method
are so interwoven that no one of them ecan be truly understood
withoul knowledge of many others. Because of this interdepend-
ence of subject matter there scems to be a fairly circumseribed
choice of topies suitable for the secondary school. The percentile
svetem i one of the few topics which can be studied satisfactorily
withont the vexation of continually needing an understanding of
advanced work to clarify its meaning. This is, moreover, a field
in which children ean be encouraged to produce their own prob-
lemix, to make measurements and to use the pereentile system for
reporting results to the class, This furnishes an opportunity for
the pupil to get a $##tle taste of the thrill of original rescarch and
gives lim a =imple language in which to report the results of his
own independent labors.  This is lezs difficult for the adolescent
to understand than some of the problems in financial mathematices
which the junior high =chool pupil is mastering, and ite social uses
are no less real.

3. Averayes. The concept of central tendeney, or average, is
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fundamental to the way the modern man thinks about his world.
We talk of the average length of life for various occupations, aver-
age mileage we get per gallon of gasoline, average size of clusses,
average cost of commodities, average age of men and women at
marriage, average salary of high school teachers, average age of
children entering high school. It is well for people to know that
there iz more than one method for determining central tendency,
more than one kind of average, and that in some situations where
the arithmetic mean is misleading one of the others may give a
truer picture of the group.

The arithmetic mean is eusily mastered, likewise the mode. If
percentiles have already been studied, the pupils know the niedian
and are ready now to consider the advantages and disadvantages
of each of these three averages and to discuss which is the best
to use in a given concrete situation. While the harmonic and
geometric means are used somewhat less frequently in practice.
they afford attractive illustrations of mathematical principles and
provide excellent applications for work in fractions and in log-
arithms, and are probably not too difficult for high school work.
(Because 1 have not tried to teach the harmonic and geometric
means to high school pupils, I hesitate to make a definite recom-
mendation.)

The discussion of averages provides an opportunity to clarify
for the pupil the essential nature of statistical inquiry, to show
him both the importance and the limitations of drawing informa-
tion from individual cases, and also the necessity of broadening
the scope of a study to take in large groups of cases in order to
generalize results of observation. For the sake of a satisfactory
life among his fellows he needs to sce that an average is but a
partial description of a group, so that he may not fall into the
error of seorning individuals who deviate from that average. He
can be shown the need for a nicasure of the variabilitv of a group
as well as a measure of ils central tendency. In the percentile
svstem he has already scen such o measure, and he may be told that
there is a measure of variability which goes with the arithmetic
mean just as the quartile deviation goes with the median, but that
it is a little more ditfienlt to understand and that he will have to
wait for further work in statistical method to find it.

4. Relationship. The tendeney of two traits to be associated.
so that wr- .. of them is large the other is likely to be large
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also, or when one is abzent the other is likely to be absent, is con-
stantly under digeussion.  Are the swiftest computers the most
aceurate?  Does education improve moral character and inerease
powers of leadership?  Are the more intelligent people stronger or
weaker physically thau the less intelligent? Does the study of
Latin improve the clurity and beauty of style in English comipo-
sition?  What qualities are associnted with success in college?
Questions which, like these, depend for an answer upon a measure
of the interrelationship of two traits are innumerable.

The computation of any precise measure of correlation xecms
to the writer entirely out of the question for high school pupils,
but there are three graphic methods of presenting data of this sort
which are useful, which give a rough graphic picture of the extent
of relationghip, and which seem within the abilities of high school
pupils. The writer has proved the second one successful with ninth
grade childven of uvernge intelligence.  She has made no experi-
ments with the othier two fur high echool children, but for older
students they seem at leaxt as simple as the seatter diagram.

Space should not be taken here to deseribe in detail these
methods of picturing relutionship, and therefore the following bricf
paragraphs may not be clear to persons who are hearing of thew
for the first time. The intention is merely to suggest to those who
anve studied stutistical method material which is suitable for high
schiool use. Used by a teacher who understands the material thor-
oughly and who has a somewhat philosoohical view of the prob-
lems of the relationship of two variate , the material suggested
below may open up a new world to the suudents,

a) Diagram to Show Ranl Correlation. Suppose that ten
ciglith grade pupils hae tuken a test in speed of computation, and
their names have been set down in the rank order of their per-
formance, Mary having mude the best xcore, John the second, Dick
the third, and =0 on, Suppose also that the same ten pupils have
tuken u test in problem solving, and that the ovder of their scores
here ix somewhat different, John nov having first rank, Dick
socond. Bertha third, and so on.  The record for the ten children
ix xhown in the tabulation on page 130,

If there were perfect positive correlation between speed of com-
putation and problem solving, one child wonld have first rank in
hoth lists, another would Lave sccond rank in both lists, and so
on, any ehild making the sione vank in both, If there were perfect
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| QH T} A RANK 1IN

RANK IN
CoOMPUTATION PRONLEM RobviNa
Mury ...l e, e 1 ¢
John ... i 2 1
1071 S Ceerinens 3 2
Esther .. ..viiiiiiiiiiiiinenn.s 4 5
Bertha ........ooviviviniines . 5 3
Tom . viviiiiiiiiinen veeaes . 8 a9
Jack o e, ? 8
Carl ...ovviiinn e reraries " 8 3]
Edward .......cviiiiiiienenns 9 10
Josephine ....o.iiiiiiiiiiaen, 10 ”

negative eorrelation between the two abilities, the child who stood
first in one would be last in the other, and the order of excellence
would be exactly reversed for the two lists, Evidently this situa-
tion shows neither perfect positive nor perfect negative relation-
ship, but there is a general tendency for the people who are high
in one trait to be high in the other, and for people who are low in
one to be low in the other also. Therefore we say that the relation-
ship is positive, though not perfect.

We will now draw two parallel lines and will lay off on each
ten points equally spaced, as in the dingram on page 131. Be-
cause Mary has first rank in computation and fourth rank in
problem solving, we will draw a lin connecting the point 1 on
the computation scale with the point 4 on the problem solving
scale. Decause John has second rani in computation and first rank
in problem sulving, we will draw a line connecting the point 2 on
the computation scale with the point 1 on the problem solving scale,
In a similar way lines are drawn to represent the record of each
of the other pupils, one cross line representing the pair of scores
for one pupil. When correlation is perfect and positive all the
cross lines are parallel.  The wmore crisscrossing there is, the
lower is the correlation, and the less relationship is there between
the two traits.

This form of diagram can be used to greatest advantage with
a small number of cases, say less than twenty-five. The scatter
diagram described later can be used for very large groups.

A class may be divided into small committees, each committee
being responsible for a report on the relationship between one pair
of traits, so that when the charts from all the committecs are
assembled they will illustrate a number of different problems,
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showing varving degrees of relationship, some high and some low.
Unless the pupil sees a variety of such diagrams he is likely to
attach too much importance to the particular shape of the one he
has drawn.

Psychologically, this use of a graph to portray a statistical re-
lationship is widely different from the graph of a mathematical
function and should be attempted only by a teacher who has insight
into the nature of statistical inference and who can bridge the
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rather diflicult gap between a mathanatical function where there
is a perfect correspondence between two variables and a statistical
situation where the dependence is only partinl.  Puarenthetically it
may be said that the writer is convineed that it i psvchologically
easier for children to learn the mathematical graph first and the
statistical graph later as an application of the mathemutical graph,
than to use the statistical graph to pave the way for the mathe-
matical graph, as is commonly done in junior high school texts.

b) Scatter Diagram. Nlaterial of immediate interest to the
¢lass can be readily found for a problem in plotting a ccatter dia-
gram. This is an easy extension of the work in plotting points on
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cobrdinate axes and of the use of a step interval as studied in the
drawing of histograms and frequency curves. It results in a swarm
of points as did the experiment described in the discussion of find-
ing the equation for a line. When the scatter diagram has been
set up (see any elementary text in statistical method for the
procedure), marginal frequencies should be found and the mean
or average for each of the two traits should be computed. The
value of cach mean should then be indieated on the scale of the
appropriate trait, and a line drawn across the diagram at that
point. The lines of the two means then divide the area of the
scatter diagram into four quadrants. The class may be asked to
note the number of cases which are above the mean in both traits,
below in both, or above in one and below in the other, and they
may be told that when most of the cases are either above the mean
for both traits or below for both, the two traits are said to show
positive correlation; when most of the cases are above the mean
for one trait and below it for the other, the correlation is said to
be negative. This is of course a very rough statement, but ninth
grade pupils understand it. They can also understand the general
import of the appearance o. the scatter diagram. When the corre-
lation is high, the dots tend to cluster closely along a line; when
it is low, they tend to scatter indiscriminately over the diagram.

An exceptionally mature class can go further, They ean com-
pute the mean for each vertical column in the table, marking its
position by a small red dot, and then can draw the line of best
fit for these red dots. In the same way they can find the mean of
cach horizontal row, marking its position with a small blue dot,
and can draw the line of best fit for the blue dits. These two
lines are called regression lines, and they should intersect ecach
other at the interscction of the means of the two traits mentioned
in the preceding paragraph. If we find the slope of the first line
to the horizontal axis and the slope of the second line to the vertical
axis, and if we multiply these two slopes together and take the
square root of their product, that square root is the coefficient of
correlation, 'Thi. work would seem to be appropriate only for
advanced pupils in an elective course.

¢) Histograms Showing Relationship. The use of histograms
to show the interrelationship of two vuriates may be illustrated
by data gathered in our elementary statisties classes at Teachers
College. At the first meeting of the class in the fall a battery of
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prognostic tests was given, the results from which were compared
four months later with the record which the same students made
in the first semester’s work. Among these tests was one composed
of thirty statements purporting to be algebraic identities, and the
students were told to indicate which of these were true and which
false.
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Frevng 1. Neores oF 151 STepeNTs 1N A TrUe-Farse TeST oF ALGeBRAIC RELA-
TIoNsHIPS, TracHERS CoLLEGE, SEPTEMBER, 1928

Black portion represents thirty-two students scoring 27 or more. Cross-
hatehed portion represents forty students scorving 18 or less

Figure 1 is an ordinary histogram showing the distribution of
scores on this true-false test, the area which represents students
with scores of 27 or more being black, the area which represents
stuedents with scores of 18 or less being shaded by crosshuteling,
There are 32 cases in the black area, 40 in the area shaded by
crosshatching, and 79 in the middle area, which is shaded by wide
diagonal lines.

Iigure 2 is alz0 a histogram showing the distribution of femester
grades made by these =ame =tudents in the course in statistics.
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These grades are stated in such a way that the average grade is
approximately 50, From the original data sheet, not reproduced
here, the squares on this second histogram are shaded to correspond
to Figure 1. If a student had an algebra score of 27 or more, the
area allotted to him in this new histogram is black. If he had a
score of 18 or less, the area allotted to him is indicated by cross-
hatching,

A very close relationship between semester grades and algebra
scores would show the black squares all at the upper end of Figure
2 and the crosshatched squares all at the lower end, A complete
lack of relationship would show black, crosshatehed, and wide
diagonal lined squares seattered at random over the area of t'.
polygon. Colored crayons may he used to advantage. If a more
areful study is desived. the students might be numbered in the
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Figtre 2. SeMesTER GRADES oF 151 STUDENTS OF FLEMENTARY STATISTICAL
Mernop, Teacnins Contgcr, JAN tany, 1920

IHlack portion rjresents thirty-twee stidents scorme 27 or more in the
algebra test,  Crossh:tched section “epresents forty students seoving 18 or less
in the algebra test

order of their scores on the algebra test. and these numbers written
into the squares on both dingrams. Then it would be possible to
make a case study of the student who had a high algebra score
but made only 36 in =emester grade and of the student with a low
algebra score who eame up to 58 in semester record.

Statements of the following type can he derived from this
graph:  Of the 22 students with lowest semester grades, only one
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had a high score on the algebra test. Of the 27 students with
highest semester grades, only one had a very low algebra score.
Of the 58 students with semester grades above 32 (more than the
upper thirdi, only four nad a very low ulgebra score. Apparently
knowledge of algebra is not a sufficient condition for high semester
standing, but it seems to be almost a necessary one.

The Outlook for Instruction in Statistics. At present our
graduate schools contain hundreds of students of statistics who
huve an inadequate background of mathematies. They struggle
against unnecessary odds beeause in their high school and early
college days no one revealed to them the vital contributions which
mathematics may make to the =olution of human problems, If
they had secen then that *‘the social sciences, mathematically de-
veloped, are to be the controlling factors in civilization,” as W, F.
White has phrased it, they might have elected more mathematics
or they might have approached the mathematies which they took
with a mind-set which would make it function better when needed.
1T they had begun the study of statisties earlier in their educational
career, there would still be time to acquire the mathematies whieh
they need, but making the acquaintance of statistical method only
after their graduate work in some other field is well advanced, they
find themselves in a very difficult position.

College courses in statistical mcthod are multiplying with great
rupidity, and the number of students enrolled is multiplying still
more rapidly. In all probabihty it will before long become cus-
tomary to require an elementary course in statistical method for
undergraduates who major in the social sciences—including psy-
chology, education, and biology—just as laboratory work is now
required of those who major in the physical sciences; and then it
will probably become customary for a course in the mathematical
theory of statisties to be considered an essential part of the work
of u college department of mathematics. When these requirements
are made, certain topies are almost certain to sift down into the
work of the high school.

Do the teachers of high school mathematics wish to leave to
the social seience teachers the responsibility for instruction in quan-
titative methods of studying mass phenomena?
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MATHEMATICS IN PHYSICS *
By H. EMMETT BROWN

Lincoln School, Teachers College, Columbia University,
New York City

Natural Philesophy. Modern high school physics takes its
origin from certain courses called natural philosophy which, at
least as early as 1729, begun to appear in the academies of Ikng-
land. By the middle of the eighteenth century, they were so
well established that several texts had appeared.

Natural philosophy was one of the subjects studied in the
academies in this country from the first. In 1754 we find one
Reverend William Smith teaching “natual and moral philosophy”
ut the “Publick Academy in the City of Philadelphia.,” ' It was a
part of the curricula of the Iinglish High in Boston (founded 1821)
and of the first public high schools in New York (1825).

These courses in natural philosophy were decidedly different in
character from the college physics of that time and from present-
day high school courses. They were descriptive and nonmathe-
matical even where the need for mathematical discussion was ap-
parently clearly indicated. Largely because of this lack of quan-
titative treatment, the tests somewhat resembled those that might
be used in some of to-day’s courses in “Applied Physics.” One
text, Ferguson’s, which enjoyed considerable popularity from about
1750 to 1825, devoted sixty-two pages to machines and forty to
pumps. As Mann 2 indicates, these texts were attempting to meet
the demand for secular information whicl. the classics were unable
to supply. In many instances, the authors were men whose major

* This chapter will deal with high school physles ouly, Inasmuch aw n simllar
treatment for college physics han already appeared.  (See Congdon, A, R., T'rutning
in Iligh School Mathematica Essentiul for Suceesx i (Certum Collirge Subjects,
Contrlbutlons to Education, No, 403, Bureau of PPublications. Teachers (ollege,
Columbla Universlty, 1930.) In thia dlreussion, however, not only the mathematies
thut Is necessary for sucvess {u high achon! physics will be dlseussed, but ulso the
Kenerdl funetlon of muthematies will he emphasizel,

! Brown, E. K. The Making of Our Middle Schools. Longmany, Green & Co.,
1602,

*Mann, C. R., The Teaching nf Physaics, p. 33. The Macmillan Co., 1912,
136
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interest lay in other directions. Very-frequently they were clergy-
men. Their purpose was “to bring the rapidly increasing scien-
tific knowledge of the times home to young people, without try-
ing te foree upon them that study of mathematical forms and
their interrelations which was characteristic of the university
physicx”# The character of these texts and their nonmathemati-
cal nature can best be illustrated by the following quotation from
the 1846 edition of The System of Natural Philosophy, by J. L.
Comstock, a physician. (The numbers refer to sections of the
original.)

83, If a rock is rolled from a steep mountain. its motion is at first slow
and gentle, but as it proceeds downwards it moves with perpetually increased
velocity, seeming to gather fresh speed every moment, until its force is such
that every obstacle is overcome; trees and rocks are beat from its path,
and its m« "'n does not cense until it has rolled to a great distance on the
plain.

It is found by experimnent that the motion of a falling body is increased,
or accolerated, in regular mathematical proportions. . . . It has been ascer-
tained by experimvent, tl«t a body, freely falling, and without resistance,
passes through a distance of sixteen fect and one inch during the first second
of time. Leaving out the inch, which is not necessury for our present purpose,
the ratio of descent is as follows, . . .

90. It the heicht through which the body falls in one second be known,
the heizht throngh which it falls in any proposed time may be computed,
For since the height is proportional to the square of the time, the height
through which it. will fall in two seconds will be four times that which it
falls through in one second. In three seconds it will fall through nine times
that space; in four seconds sirteen times that of the first second; in fire
seconds, twenty-five times, and ~o on, in this proportion.

Just how far modern physies has departed from the pirit of
such writing may be disclosed by a glarce at the portion of any
present-day text dealing with this same topic. The factors chiefly
rexponzible for the character of hooks such as Comstock’s were at.
least three in number:

1. The increasingly rapid introduction of machines into all
branches of industry with the accompunying demand for more
information about these devices.

2. The refusal by the colleges ta aceept natural philosophy .s a
fit subject for college entrance requirements.

3. The belated survival of the naive, philosophic, nonexperi-
mental point of view of mediaeval science.

*Mann, €, R, op, cit.
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The Quantitative Nature of Mod 'rn High School Physics.
It is bevond the scope of thix ehapter to discuss in detail all the
influences that Lave determined the character of present-day high
school physics. However. any attempt to get a perspective of the
subject which failed to take into aceount the influence of the col-
leges would, indecd, be incomplete.  This influence was felt in many
directions, and is concealed in many factors which, apparently in-
dependent of the university influence, exercised their effect upon
the developing subject of sccordary school physies, In 1872, hy
recognizing physies as a subject snitable for eollege entrance eredit,
the colleges hastened the disappearance of natural philosophy from
secondary school curricula. There followed a period in which the
dominance of the higher institutions of learning was undisputed.
They had set the sta'ap of their approval upon the new subject and
insured its vigorous growth. What was more natural than for the
subject of physies to acknowledge its fealty and to plan its courses
to be as much like those of its sponsor as possible? Since the
model was the eollege physies course. a very great emphasis was
placed upon the standardization of subjeet matter to this pattern,
to the mathematieal =ide of the work, and to a general utilization
of physics for its disciplinary values. The inevitable followed.
Enrollment in physies dropped from about 23 per cent of all high
school pupils in 1895, to 14 per cent in 1915, and to 9 per cent
in 1922, Some of this drop must be discounted as due to the re-
moval of the subject from required lists and to the increased
diversification of the high school offering.  However. making all
possible allowanee for such factors, it is quite evident that there
has been a real falling off in enrollment in the subject, in spite of a
strong reorganization movement, which began about 1903, and was
featured by the report of the science committee appointed by the
National Education Association.

The Movement Against Mathematics. One of the features
of this reorganization has been the assault upon the mathemati-
cal portions of the subject. There bas unquestionably been too
great an emphasis upon this feature of the work. Ro long as the
diseiplinary theory of edueation held, the plare of mathematics
was clearly indicated. The more diffieult and rigorous the course,
the greater the disciplinary value gained by struggling through it.
Therefore educitors made the subject more stringent by inserting
great numbers of mathematical problems. Tradition was with
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them; their .nodel, college physies. had been featured by rigorous
mathematical diseipline for a long time; problems requiring mathe-
matical colutions are the easiest to devise and correct; to require
a class to solve soveral hundred problems was an assignment that
was clear-cut and definite, and what is more, was easy to check for
complete performance.  Physics too frequently degencrated into a
meaningless jugeling of algebraic formulas, devoid of significance
for cither physies or mathematies. A law would be studied and
then “proved”—-as though it could be—by means of a few read-
fags taken in the laboratory (very likely judiciously manipulated
by the budding scientist ia an attempt to make the “proof” more
sutisfactory).®* Then would come the deluge—the =solution of large
numbers of problems based on the law and using the particular
formula, which in so.ne mysterious fashion was a shorthand expres-
sion for the law.

A reaction was inevitable and, as often happens with such phe-
nomena. it went too far. It was advocated that plysics should be
stripped of its mathematics and made into a subject almost en-
tirelv descriptive.  Thus Micheison, one of America’s foremost
physicists, proposes “for discussion the feasibility of a plan for
the teaching of physics which avoids as far as possible the use of
mathematies of even the most elementary kind, and which gives
to the science of measurement only a secondary importance.”
Adams * suggests, “Mathematies should be used very little in the
class in plivsies except for the solution of problems which are in-
troduced in connection with the laboratory work to generalize and
establish laws from given data.”

Opinions such as these were widely circulated in the profes-
sional literature of a few vears ago. It seemed necessary that
every high school physies teacher take a stand either for or against
the demathematization of his subjeet. If it had not beeca for the
influence of the colleges. it is possible that a form of physics cimi-
lar to the old natural philosophy might have gained a foothold.
As it is, the foree of the movement is manifest in the perpetuation
from yvear to vear of various hybrid courses in Household Physies,
Applied Physicz, Physies for Non-College Students. and the like.
More recently came a swing in the other direction. The cry went

* Blnetein i« poported to have said, “No amount of experimentation can ever
prove me right. A\ single exper'ment may at any time prove me wrong'

C Adamv, JJ. W.. Correlation detween Mathematies and Physica in American High
Nehuols, Master's thesis, Teachers College, Columbia University, 1902,



140 THE SIXTH YEARBOOK

up that the basic outline for the physics course should be the same
for all. modifications in specific content being made to fit the
necds of individual classes, Above all, “demathematization must
stop,” 8

As we look back over the contested issues from our vantage
point in the year 1930, we realize that much of the time and energy
devoted to the discussion of this problem has been wasted. Onee
again we have been the victims of our educational myopia which
renders us unable “to see the forest for the trees.” It is as though
a convention of carpenters should become engaged in a heated
controversy over the advisability of discarding the hammer in
future building construction, when no superior substitute is in
sight. The question is not whether they should, or should not,
gnmploy the hammer, but rather, how means can be devised to
instruct members in the more efficient use of all the tools of their
trade.

So it is in physics. There is no question of whether we shall
curtail the use of mathematics as much as possible or expand its
use in all directions. To debate the question is to distort and alter
the whole problem. Such discussion predicates a physics course,
& main ohjective for whieh is: To show how the science of physies
may be used to illustrate mathematical processes. Our problem is
to devise means to employ more effeetively this tool of the seien-
tist's trade.

The Réle of Mathematics in High School Physics. Rusk®
says in thla connection:

Those who are eryving for secondary school physics to throw off the burden
of mathematics and become descriptive, should carefully reconsider their
position and what they mean by descriptive. Mathematies shonid certainly
not bhe loaded on the high school physics pupils as a burden, but withont
the adequate nse of mathematical forms neither methods nor appreciation
of precise thinking about physical phenomena can be developed. What is
needed to-day is not an attempt to develop embryo mathematical physicists,
but a more frequent use of simple mathewnatieal forms by all. Even in
elementury physies the pupil should be Jrd to look upon the mathematies
he uses as either simplifving the subject and making it more intelligible,
or as making it directly applicable and useful. More mathematies than the
pupil can thus consciously assimilate js nseless and confusing.

Rusk is here suggesting certain specific aspects of the funda-

*Randall, D . and Others, “The Place of the Numeriral Problem in High
Rehanl Physies Sehnnl Reriew, Vol. 288 : 30.43, 1118,
* Rusk. Rogers D, How to Tearh Physics. p 37. I. R, Lippinrstt Co., 1023,
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mental concept of mathematics as a tool. To these we can add
certain of our own, so that the list now stands as follows:

Mathematies can be used in connection with high school physics:

1. To simplify the subject and make it more intelligible.

2. To make it direstly applicable and useful.

3. To enrich the concepts of physies,

4. To =how the interrelaticns of the various divisions of the subject matter.

(The various items in the preceding list are not mutually exclusive. A
single mathematical operation may be used in more than one of the above
counections.)

Ilustrations of these uses will he brought out in a later section
of this chapter.

But is this a conception of the réle of mathematics in physics
that is at all new? We have already seen how it was of use when
phvsics was tauglt for its disciplinary values. Let us look at
mathematics used in a different fashion by the mathematical re-
search physicists hefore we decide.
~ Many years ago, Nichols and Franklin in a preface to a text
in physies said: “Calculus is the natural language of physics.”
Others have expanded the statement to include all mathematics.

A slightly different point of view is shown by the statement of
another author, when he says, “The finished form of all science is
mathematics.”

With the recent discoveries in physics, the relationships between
the frontier physies and ite language, mathematics, have subtly
altered. Mathemraties is often no longer the language—it is the
speaker itself. The scientific phenomena which mathen atics has
interpreted have been replaced by mathematical formulas which
are probably not eapable of being translated into any sort of
mechanieal model.  Indeed. we are warned against making the
attempt.

This new variety of space, Finstein makes no attempt to visualize. Its
definition is strietly and severely mathematical. . . . In such a space Einstein
has found it possible by means of the ealeulus of tensors to build up a self-
consistent geometry: and in terms of such a space he has formulated a
general mathematieal theory which as one speeial case reduces to Maxwells
equations, and as snother to the equations of Einstein’s gravitational theory.!

I do not maintain that this substitution of mathematical for-
mulas for what we have been pleased to eall physical reality is
YHeyl, . R, Nrw Frantiers of Physics, p, 135, D Appleton & Co., 1030.
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universal in modern physics. I do maintain that it indicates a
changed relationship.

The réle of mathematics in sccondary school physies, at the
present time, is probably midway between the two positions; the
one which it oceupied in early high school physies in which it was
used as a taskmaster to make the subject difficult, worthy of in-
clusion on lists of subjects suitable for college entrance, and hence
of great dizciplinary value; the other which it occupies to-day in
research physies, To our question, “Is this u new conception of
the role of mat! ...dies in physies?” we are forced to give a quali-
fied negative. The rile of mathematies as interpreter and simplifier
is not new. It has simply taken on a greatly increased signifi-
cance in high school physies of to-day.

An Integrated Physics Course. Before specifically illustrat-
ing ways in which mathematies enriches high sehool physics, it
will be necessary to develop briefly the point of view of the latter
subject.

It has heen cvident for some time that one of the obstacles
standing in the way of more satisfactory student accomplishment
in high school physics was the manner in which the work was
segregated into five wuater-tight compartments—Nechanics, Heat,
Sound, Light, and Flectricity. Such a procedure made it difficult
for the student to grasp the underlying unity of the subject and
henee to tie in each day’s work with the course as a whole. Dis-
satisfaction resulted, and poor learning was the usual outcome, It
seems necessury, then, to present the various divisions of physies.
or any scienee, as part of a larger whole, or to state it differentl,,
to develop the entire course around some large, unifying coneapt.
This ix not a new idea. nor is the eoncept difficult to obtain. Space
permitting, it would he rather easy to show that the “Fnergy Con-
cept” is the one best suited for such a development, Mann,* as
far back as 1912, indicated how it might be used. Numerous
writers of science works intended for popular consumption have
testified to its importance (Heyl, Bridgman, Luckiesh, Jeans).
In spite of this fact. textbook writers have lagged in producing
texts developed around the energy concept. A possible statemeni
of the concept for the physics course might be. “Physics is the
study of energy and energy transformations which are basic to the
continued existence of all life and to the universe itself.”

¢ Mann, C. R, op. cit.
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The =un i pouring out its chergy at an enormous rate, millians
of tans of its substance being amnihilated (ot burned) each sees
ond.  This energy travels ont in all divections inta spuee, The
eatth intereepts one two-bitlionth of it.  Some of this energy is
radinnt heat which the earth absorbs and transfarms.  As a re-
sult of its absorption, the energy of the moleenles of the ahsorh-
ing body > inerensed sl varions effvets teoperature ehange, ex-
punston, change of state resulte O by devions steps it may be
stared as potentind ernersy i coal orin monntain lakes,

Some of the sun's energy is visible light, which man controls,
redirects, nnd analyvzes, that he may realize his universe, or ren-
der his surroundings aesthetienlly more satistaetory,

One of the commonest forms ix mechanieal energy into which
both heat and Hght enerey are frequently converted. Here we
study marhines, the deviees moat commonly cployed by man in
effecting enerey transformations. Round is a form of energy trans-
mitted by particles vibrating in a certain regular fashion,

Fleetricity, ¢ f the most convenient forms of energy, is one
into which ull t.. others may be converted, Statie eleetric phe-
nomena are due to the notentinl energ: of electrons: current
phenomen, to the kinetie enerey of moving cleetrons (or possi-
bly nuelei. or protons), The operation of the simple cell and stor-
age hatteries. indueed enrrents, radio, and numerous other effeets
are explained in terms of these moving eleetrons,

This. then, is the thread which ties together the various parts
of physies.

InnustraTioNs oF e Usie oF MatieEMaties 1N Privsies

Asx has been indicate:d, there should bhe no question of whether
or not we shall demathemutize high school physies, but simply one
of determining how mueh mathaoaties s needed to accomplish
any one of the four funetions of mathematies (see page 14D, and
what are the hest methods for seenring results.

Examples of the uge of mathematies for this purpose follow:

1. Energy Changes. A student will get certain values from a
mere diseussion of the paszibility of change from one energy forin
to another. He will almost eertainly get a great deal more if, at the
appropriate time in the course, mathematieal developments such as
the following are employed:

¢) Clanging heat energy to mechanical encrgy.
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ExaMpLE. How much work can a steam engine, which is 8%
efficient, perform for every pound of coal consumed?

The question obviously involves the relationship between heat
and work. Is it a fixed one? The early work of Rumford and
Joule. in particular, gives us the answer. Whenever a fixed amount
of work is used up in producing heat, the quantity of heat energy
produced is always the same. The converse is equally true. The
relationship is that 1 B./1.U.* = 778 foot pounds. Each pound of
coal when burned produces about 14,000 B.T.U. of which only
87¢, or about 1,120 B.T.U,, is utilized. Thus the engine can do
1,120 X 778 or 871,360 foot pounds of work. For each pound
of coal, a 1,000 pound weight could be raised about 900 feet!

b) Changing one form of mechanical encrgy into another form
of mechanical energy.

EXAMPLE. An automobile, weighing 3,200 lbs., s travelling at
the rate of 30 males per hour. What is its kinetic energy?

The problem in this form illustrates admirably what [ mean
when I say that it is not a question of whether we shall or shall
not diminish the amount of mathematies to be used in high school
physics, but rather of the way in which we shall use it. At this
point the student will huve had the definition of energy as “ability
to do work” and of kinetic energy as ‘“‘energy due to motion.”
And yet almost all texts are content to give problems which merely
require the student to work out values for kinetic cnergy, a pro-
cedure which is alinost sure to be meaningless for him. It is re-
motely possible that by requiring the student to label his answer
with the proper unit—foot pounds—the unit of work, he will obtain
a fleeting impression that this kinetic energy may, in some man-
ner, be converted into work. Let us make sure that he realizes
that this transformation does take place by adding the following
probletn:

The automobile hits a stone wall and is brought to a stop.
How great is the shock which the bumper receives, if it bends 77
Using our ordinary formmula, K.E. — %{I;— we learn that the
car has a kinetic cnergy of 96.800 ft. Ibs. 'This amount of work

must be absorbed in bringing the car to a halt. Now work is oh-

® The B.T.U. (Britixh Thermal Unit) is the amonnt of heat royuired to raise
the temperatuve of 1 b, of water degree I,
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tained by the formula W =F X s, where s is distance, and F
force. Hence if we set the 96,800 equal to the expression on the
right where s is V5 foot (6”), we learn that the bumper receives a
shock of 193,600 lbs. Is it any wonder that under these condi-
tions the car would probably be wrecked?

Or let us change the problem to read: What is the braking
force, if the car is brought to rest in 100 ft. by a uniform applica-
tion of the brakes! Netting our quantity of energy equal to
F X s again, using s = 100 1t., we learn that the braking force is
968 lbs.  This ineludes, of course, the friction of the moving parts
and of the tires on the road, the effect of engine compression, as
well ax the actual foree of the brakes.

By =etting up a problem involving the kinctie energy of a
descending hammer, we can see why we so easily lose our tlannb
nails when we clumisily place them on the board in the path of the
descending hammer head, even though nothing disastrous hap-
pens when our hand iz in the open where the distance over whiech
the energy can be absorbed is large, and henee the foree is smuall,
A simile problem will Lelp us to understand why experience has
taught us to let our hands “give’ with the ball, when catehing a
baxehull barehanded.

Certainly the studeat will be able to see that here is energy
which v indeed weust, be abrorbed in some fashion. Better by
farr to leave ont any mathematieal consideration of kinetie energy,
in other words to demathematize, than not to mathematize sulli-
ciently to bring out all thut i= possible from the subject.

¢) Changing mechanical energy into electrical cnergy.

In heat engines the basic energy chunge is from the heat encray
of the coal or gasoline to meehanical encergy and then to electrical
energy,  However, engines are vated at the maximum horse power
which they can continuously deliver. Hence the following proh-
lem will help to make clear tie energy change involved in this
prineiple.

IixaspLe. What s the narinaom dectrical power trate of pro-
ducing cnergy) wlich a generator which is 80 efficient can de-
velop when driven by a 40 ILP. engine?

The factor involved ix the relationship between the eleetrie wunit
of power, the waét, and the mechanical unit, the horse power
(H.Po. We are told that 1 H.P. == 746 watt<, Thus our 40 H. P.
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engine could cause the gencrator to develop 40 X 746 X 80% or
about 24,000 watts,

We may ecarry the question further if we desire by asking,
“How many 40 watt lights could such a plant opcrate?” The an-
swer is obtained, of course, by simply dividing the 24,000 by 40,
which gives 600.

d) Changing electrical energy into heat energy.

Exameie. How long would it take to heat a liter (about one
quart) of water from room temperature, 20°C., to the boiling point
in an electric percolator which wses 350 watts and which s 609!
efflicient?

The quantities involved are the unit of electricu] energy, the
watt second or joule, and the unit of lieat, the calorie, which are
related by the expression, 1 joule = 0.24 calorie. A ealorie is the
heat required to raise the temperature of 1 gm, of water 1°C.

The energy input into the percolator is in the form of watt
seconds of which only 60% are available, due to unavoidable in-
efficiencies of operation. The number of scconds is unknown. Let
this be represented by ¢. Then the number of watt seconds avail-
uble for transformation into heat energy is 60% of 550¢ or 330¢
watt seconds.

Now ecach watt sccond equals 0.24 calorie, so our 330¢ watt see-
onds is equivalent to about 79¢f calories. Putuing it somewhat
differently: in one sccond the percolator will produce 79 calories.

Let us turn our attention to the wuter. There are 1,000 grams
(1 liter of water weighs 1.000 grams) which are heated from room
temperature, 20°C., to the boiling point, 100°C., a rise of 80 de-
grees. Hence 1,000 X< 80, or 80,000 calories, must be supplied by
the pereolator. Thus it will take 80,000/79 or about 1,013 sce-
onds, which is about 17 minutes, to produce the desired result,

We could, of course, give other exanples of mathematical illus-
trations of energy changes, the conversion of light and other radiant
forms of encrgy being the only ones bevond the scope of the high
school course.

A final energy chiange, most hasie of -], i= that by which the
sun and other stars produce their energy. Jeans and others have
advanced as the most tenable hypothesis that this energy is pro-
duced by the direct change. or conversion. of matter into energy,
mainly light and radiant heat. As a result of thi- theory, we have
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been deluged with such statements as these: There is enough
energy in a piece of coal smaller than a pea “to take the Maure-
tania across the Atlantic and baek™; or, In a single pound of coal
(or for that matter a pound of any substance) there is sufficient
energy to keep “the whole British nation going for a fortnight, do-
mestic fires, factories, trains, power stations, ships and all.”®

But is there a fixed relationship here, as with other energy
transforinations? Yes, for we are told that for every gram of mat-
ter completely destroyed 9 X 10* ergs of energy are produced. Or
if we change that to more fumiliar units, for every pound so de-
stroyved about 3 X 10'* foot pounds of cnergy result. Darrow '°
reports that the earth receives 60 tons of energy in the form of sun-
light every year, or about 13 of a pound a minute. That means
that we are receiving in the form of light, radiant heat, and other
forms of energy 14 X 3 X10' foot pounds of energy each min-
ute. That is about 7.5 X 10** foot pounds per minute, which is
equivalent to about 2.3 X 10'* horse power (230,000,000,000 H.P.).

All of these energy changes are made more real and vivid by
the realization that a certain quantity of one kind of energy may
be converted into another form and, by the proper mathematical
equation, the resultant quantity of new energy computed.

2. Definitions and Units. I have taken up the use of mathe-
matics to illustrate energy changes first, simply beecause these
transformations are basie to all of high school physies.  There
are, however, other uses for mathematies than these. One of the
most important is in clarifyving and simplifying the defivitions and
units of the science.

a) Work is u unit often used. We define work as that which
is accomplished when a force acts through a distance, or, as it is
sometimes defined, “the overcoming of resistance.” Somn:etimes
the proviso is added that the foree must be measured in the direc-
tion in which the motion takes place. Not a very clear-cut defi-
nition, possibly. But how simple it becomes when we put it in the
form of a formula, W = F X s, and illustrate it by such a prob-
lem as this: “How much work do yow do when you walk to the
top of a stairway 10 ft. high?  As=uming vour weight as 1350 lbs,,
the answer 1,500 ft. b=, is obtained immediately.

¥ Jeans, Rir Juames, Phe Paiverse Vround Uz, Do 1810 The Macmillan Company,
1hdh,

© Darrow, I L., The New Warld of Physical Discorviry, p. 330, Bobby Merril),
1930,
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We may use a sort of reductio ad absurdum method to further
clarify the meaning by assigning and diseussing such a problem as,
"You are pushing a lawn mower which weighs 40 lbs. How much
work do you do in pushing it 10 f¢.? Many will at first multiply the
weight, 40 lbs., by the distance 10 ft., getting 400 ft. lbs. for an
answer. But going back to our fundamental definition of work
as force times distance, we realize that the force required to push
the mower is not given when we know the weight alone. Con-
sequently the problem us stated cannot be worked. Let us earny
our problem further. Suppose friction is negligibly small. Then
the work done, the product of this negligioly small force and the
ten feet, is itself negligibly small. In the theoretical cyse when
there wus no friction at all, no work would be done.  Suppose,
though, we were to carry the mower to the top of a flight of stairs
ten feet high, could we then get an answer? Our formuly requires
us to use a force. Do we know it? Yes, it is 40 Ibs., because at the
carth’s surface it requires a 40 Ib. force to lift a mass of 40 lbs.
magnitude. Our work is now 40 X 10 or 400 ft. 1bs,

By focusing our attention on the fact that we must use o force,
the formula has lelped to eliminate the confusion resulting from
two situations in one of whieh we can use the weight of the ob-
Jeet and in the other of which we cannot.

b) Another unit, the meaning of which is elarified by n muthe-
matical treatment, is the watt second, or the more convenient,
urger, Kilvwatt hour. It is easy to establish the fuct that the watt
i= a unit of power. Now, power is delined mathematically as
work/time or W/t. A watt second then is a unit of power, W' /1,
multiplied by a unit of time, ¢. Dividing out the t's we get simply
W, In other words, the watt sccond is u unit of work, or electrical
energy. Similarly the more practical kilowatt hour, which is merely
a larger measure, is also a unit of electrical energy.

Other instances might be given but these are probably suffi-
cient to illustrate this important function of mathematies in high
school physics.

3. Laws and Principles. One illustration will be sufficient,
I believe, to show how mathematics helps to clarify and enricl,
some of the laws of physics.

One of the most important laws in physics is the so-called
“Inverse-Square Law” whiclh states that the intensity of the illumi-
nation from a given source varies directly with the strength of the
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source and inversely with the square of the distance from it.
Stated algebraically:
Candle power

Distance®

Let us compute the illumination at distances of 1, 2, and 3 f{t.
from a 36 candle power light. We get 36, 9, and 4 foot cand!ns,
respectively, numbers which bear the relationship of 9 to 4 to 1 to
each other or 3* to 2% to 1*. The original distances were 1, 2, and
3 feet. The illuminations are in the inverse order and squared.
Certainly this more vividly illustrates the real significance of the
law than a nonmathematical discussion could possibly do.

4. Structure of Matter. Without being inclined to demon-
strate mathematically that it is all quite possible, populer writers
in this fiela have usually been content to astound wit!l. statcinents
such as the following, the two parts of which are apparently con-
tradictory.

Illumination (foot candles) =

If all the molecules in a cubic centimeter (Y of a cubic inch) of hydrogen
gas at ordinary temperature und pressure, were placed end to end in a single
line this “string of molecular beads” would extend several million miles or
many times the distunce betwecen the earth and the moon. In a cubie
centimeter of hydrogen at atmospheric pressure and at the temperature of
melting ice there are 2.7 X 10 molecules, each having a diameter of 2.17 X
10 cm.

(And then follows the part apparently irreconcilable with the for-
nmer statement about the “molccular beads.”)

Less thun a millionth of the total space [italics minel is occupied by the
hydrogen molecules under these conditions.”

We may very well ask how it is possible that these molecules
should reach so far when placed end to end, and yet that less than
a millionth of the space should be occupied by them? Small won-
der that high school physics pupils reading such a statement put
it down as another one of those things beyond their comprehen-
sion.

But let us see what mathematics shows., The distance the
molecules will reach when placed in a line is the sum of their
diameters. If we multiply the number of molecules, 2.7 X 107,
by the diameter of each, 2.17 X 10-® we get about 6 X 10'* cm.
This is 6 X 10 kilometers or about 3.6 X 10% miles, that is 3,600,000

1 Lycklesh, Matthew, Foundations of the Universe, p. 34. D. Van Nostrand
Company, lnc,, 1925,
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miles,  Since the distance from the earth to the moon is only
240,000 niiles, we see that actually the molecules would reach 15
times as far as the moon,

To check the statement ubout the space, we need to know the
xpace occupied by one molecule, that is, its volunie. We will need
to assume that the molecule is spherical in shape, which is prob-
ably not quite true. The volume of a sphere is given by the formula
sd®, or 14 X 3.4 X (217 X 10 %)%, or about 5.1 > 107% cubie
centimeters. If we multiply this by the total number of molecules
in one cubie eentimeter, 2.7 X 10", we ret approximately 14 X 10-%
or about 1/7,000 of a cubic centimeter. This does not agree with
Luckiesh's statement. It may be he is in error. Or perhaps our
fundamental assuption that he molecule is sphierical is wrong,
If it were in the shape of a flut, clongated ellipsoid, the volume
of each molecule would he greatly reduced without affeeting the
length of the *molecular beads.” Or we may attempt reconciliation
by saying that this angure. 17,000 represents the portion of the
spaee that would be oceupied by solid splieres of the sume diameter
a= the moleeule, while it is known that the moleeule i= far from
solid.

In any event, the fundaniental pieture of a volume of gas in
which the molecules when placed end to end will reach vast dis-
tances, and yet in whieli the molecules are separated by distances
which are large in compaiison with the size of individual molecules,
is rendered quite consistent.

One further illustration of the use of muathematies in the field
of the structure of matter is afforded by the Kinetic-moleeular
theory of guses. You will recall thut this theory indicates that
thi molecules of gases are moving in & haphazard fashion in all
dircetions and that when two gases are at the same temperature, the
mean Kinetic energy of the molecules of one gas equals the mean
kinetic energy of the molecules of the second gas,

At some time during the work on lieat. the fuct is brought out
that the molecules of the gases are moving at different speeds and
that those of the lighter gases are the most rapid. Usually an
experiment sveh as that illestrated is used to show this fact ex-
perimentally.  When illuminating vaz is introduced under the
bell jar, its molecules being =maller and of higher speeds diffuse
through the porous eup faster than the woleeules of air inside es-
ape to the outside.  This produces an increased pressure inside the
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cup which pushes the indicating column down. On removing the
Jar, the reverse process takes place, a partial vacuum is produced
inside the cup, and the indicating column rises to a puint higher
than that at which it stood originally.

Now the explunation of this result, secse _
i.e, thut the molecules of illuminating cc0uscee
gas (largely methane CH,, carbon mon-
oxide CO, and hydrogen H) are all
lighter than air and hence move at a
Ligher rate of speed, follows directly
from the theory which asserts that the
averuge kinetic energy of the molecules
is the same. The mathematical state-
ment is

\ 2 H
WS WY,

2g 29
where w; and v; stand for the average
weight and average veloeity cf iiie mole-
culez of various substances in illmminating gas and w, and », similar
quantities for air molecules. Multiplying through by 24 we get

2 —— +
W2 = w, vk

Now the average value for wy, the weight of the gas molecules, is
less than for we. Hence in order that the equation may be pre-
served we realize that the molecules of illuminating gas must have
a haphazard motion decidedly faster than that of the air mole-
cules.

If we desire to make the illustration more specific, let us take
tle case of oxygen and hydrogen. Again we have

2 — Hp 2
WV, = w0,
Now it is known that the oxygen molecule is 16 times as heavy as
that o1 hydrogen; in other words, that w, = 1614, Substituting
this value for w, in the precading equation, we get
. 2 — -_— g
16w, v,2 = w,v,2 or 16v2 = v,2
Taking the square root of both sides
4vo = ‘Uh.
In other words, the average velocity of the hydrogen molecules is
four times that of the oxvgen moleecules,
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This is the last of four types of illustration, chosen to bring
out the various uses to which the tool, mathematics, can be put
in high school physics. There are, of course, other illustrations
that might have been used with equal validity. Let us reiterate
our fundamental belief that no one is able to hand down ex-
cathedra opinions on the quantity of mathematics to be used in
physics. We can only decide upon the quantity and nature of the
mathematics we will employ, in assisting in the development of
a certain specific unit, to perform those tasks of which mathe-
matics is admittedly capable,

MATHEMATICAL ABILITIES NEEDED IN Hicit Scuoon Prysics

Kilzer * has shown that, next to an interest in the subject, the
outstanding factor contributing to success in physics is ability to
handle the simple mathematics involved. This is merely a recent
verification of something that many physics teachers have long
believed. Most vigorous in their advocacy of this theory have
been those teachers whom it helped to free from the responsibility
for large numbers of student failures. When 25 per cent of the
physics class failed (and this was not at all uncommon), the
teachers could wash their hands clean of the whole affair by ex-
claiming, “What can you expect with the poor mathematical prepa-
ration our students get in this school?” Such an attitude is in-
fectious and many very exeellent physics teachers, at some time
or other in their careers, have rallied around the banner whose
slogan is, “Blame it all on the mathematics teacher.”

As long as the doctrine of the transfer of training held sway,
this attitude was bound to be widely accepted. To-day we realize
that, whatever may be the responsibility of the mathematics de-
partment, the blame for the large number of failures that have
been common in high school physies must be placed squarely upon
the shoulders of one individual, the physies teacher.  With this
realization the saner point of view, expressed in the following
(uotation, has gained recognition,

The apparent lack of transfor of training is due to both the failure to
retain. what was learned und the fajlure to see any common connecting

elements between the field of mathematies aned mathematies in physies. Poor
work in the mathematies involved in phyzivs i not entirely due to the
B Kilzer, I.. R. “The Mathematics Needed ju High School Physies,”" Schont

Sofence and Mathematicx, Vul, 205361362, 19249, (An abstract of the author's
Ph.D. disgertation on thls subject.)
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mathematics itself. . . . Thus mathematics and the understanding of the
subject are dependent on ability to read and understand material connected
with physics; to understand what is said by the teacher and others in the
class.

Before attempting to solve the problem of what to do about the
acknowledged inability of students to solve numerical problems in
physics, two questions need to be answered:

1. What mathematics is actually needed for the working out
of the problems in physics?

2. How well can the average student handle this mathe-
matics?

Reagan ' solved the 241 problems found in one edition of Milli-
kan and Gale's text, and analyzed cach for the skills necded. He
found that arithmetical processes were the most commonly used,;
addition being used 47 times; subtraction 37 times; multiplication
422 times; division 266 times; common fractions (including all
processes—reduction, addition, ete.) 97 times; as well as miscellane-
ous skills with smaller frequencies.

Algebra was used less often, the skills with their frequencies
being:

1. Translation of laws of physics into mathematieal formula. ... 9
2. Derivation of formula from given mathematical relationship.. 6
3. Selection of formula..... b e e et et 56
4. Solution of equation with one unknown...................... 11
5. Solution of quadritic equUALION.....coveiiieiieeeeerrerenenss 1
(Not solvable by factoring.)
6. Squaring a binominl. ...t iiiiiiiiiei et e iiieieiieeanes 1
7. Operations with slgncd numbers, .o oo ieiiieiionieninn., . 13

Cieometry  was utilized with still less frequeney. Only 16
theorems, of which the most important were those dealing with the
similarity of triangles, proportionalities between lines, and the re-
lation between the sides of a right triangle, were found.

The use of trigonometry, solid geometry, and the like, was not
c¢learly indicated as necessary.

As a result of this study, Reagan concludes that the demands
on mathematieal ability are not unduly heavy; that the knowl-
edge of arithmetice iz satisfactory if the student can multiply and

8 Gosx, Mildred J.. (‘tquaez of Failure in High Nchool Physics.  Contributlons to
Filueation, Vol 11, World Book Company, 1928,

B Reapgan, 4. W, The Mathematies Involved in Solving High School Physles
Problems.” Nchool Neicnce and Mathematiea, Vol 25 202.290, 19825,

RIC
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divide integers up to 12 places and if he ean app  the laws of
mensuration; that the ordinary geometry course is reasonably
sure to be adequate preparation; but that algebra is the most
likely to be deficient where work with formulas, ratios, and pro-
portions is involved.

Lohr ' prepared a 28-problem test which he administered to
classes in hotl secondary and junior college physics. He found
a rather large list of specific nmthr.'matim\l’ahilit-ies, such as the
ability to determine the volune of a sphere given the radius. to
make a line graph of the relation (.= (F.— 32y 3, and the like,
which eoald be solved correetly by less than 75 per cent of the
members of hoth groups; and a somewhat smaller list, such as the
subtraction of decimals, and reducing inches to centimeters, the
reduetion factor being given, thut could be handled correctly by
more than 75 per cent of the college group. The secondary group
wits not significantly different,

He concludes that, on the whole, “pupils come to physies with
o marked ability to handle the mathematics of physies”; that the
inabilities ean be detcrmined: and that it is the duty of the physics
teacher to identify the mathematics difficulties, to reteach the
mathematics needed, and to teach the physies of the problem situn-
tion. Note the temperateness of this last conclusion. There is no
tendeney to lay the blame on the mathematics teacher. Physices
teachers have come to realize that be a student as well trained as
vou please in mathematics, unless the physics in the problem situa-
tion is well taught there will be un unsatisfuctory accomplishment.
The difficulties inherent in the situation, even when all these con-
ditions have been met. is woll brought out by Nvberg's ' eriticism
of Lohr's wark. ‘The writer points out that some of the inabilities
revealed might be due to small differences between the wording
commonly employed in physies texts and that used in algebrax,
These small differences are very likely not to he explained away in
teaching the physics of the problem. For example, one of the skills
in which lurge numbers of the students were deficient was the
ability to determine the Per cent of error between the true and the
measured scores.  Nyberg points out that a st.ident nmight fail to

¥ Lohr, Vergil €, @A Sty of the Mathematleal Abilities, Powers amid Skilix
ax Rhown hy Certain Classes i Physfeal Selence,™  Sehaol Seience and Mathe-
matica, Vol 20: K54 14, 1405,

J

MNNberg, Jos, A, A Dlsenssion of an Article pu Mathemation! Abilitles aud
Physles  Sehool Seicnce and Muathewatiox, Vol, 26 9.15, 1026,
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attempt the problem through not knowing whether to compute the
per cent error on the true or the measured score, even although,
when the scores are reasonably close, results are virtually the same
whichever is employed. Algebra texts commonly indicate which to
use as & base.

Similarly, graphing the relationship C.= (¥.— 32) 5 might
have seemed more difficult than it is intrinsically, because the units
for graphing were not stipulated. In other problems, Nyberg
seemed to find violations of graphing rules, hazy instructions, and
unfamiliar terminology creating artificial difficulties,

All this serves to illustrate the complexity of the whole prob-
lem.  Beside teaching the physics of the problem situation, the
teacher, in order to secure reasonably satisfactory performance in
problem solving, will probably need to reteach the mathematies
involved, identifving identical elements, and should also make sure
that unfamiliar phraseology or deviation from mathematical prac-
tice do not necdlessly complicate matters. It is quite probable that
Kilzer's suggestion that a prete t of mathematical ability be given
early in the course is a good one.

WhHaAT Puysies Asks or MATHEMATICS

All of the suggestions of the preceding paragraph were hased
upon the assumption that the mathematical training of entering
students is satisfuctory. Let us¢ consider what steps may be taken
to make this preparation of greater value in physies. taking
Reagan's '7 analysis as a starting point for our progra  of mathe-
maticud training,

1. Algebra. Arithmetie ix not commonly taught in high school.
=0 first we will consider certain specifie suggestions with respeet to
algebra,

a) Formulas. An examination of reeent texthooks in algebra
will reveal that a great deal more work with the formula is indi-
cated than was common in earlier bonks. It is very probable that
the type of wo'k being done in this line in the best of modern
schools is amply adequate for the needs of high school physies.

More specifically, a physies teacher might suggest that ample

practice be given in solving a formula such as I:-R-fur both E

amel B oand, in general, that drill be given in solving each of the

T Rengron, i W, g ca,
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formulas commonly encountered in physies for letters of the right-
hand member, 1In addition, considerable practice should be given
in obtaining the value of one symbol when actual values for the
others are given.

Sometimes physics students are asked to examine data obtained
in the laboratory or elsewhere, in an attempt to discern the rela-
tionship connecting two of the quantities

LuNGTH oF l VOLTAGE involved. Sumetinies the data are exceed-

UNiroRM Wine Diop . . R R .
05 o -1 e tagly siniple and the relutionship quite
5 cm. Svolts et o ' 4 .
50 om. 31volts | tNuetias in the table at the left:

75 em. | 4.5 volts Pliysies teachers will recognize these as
100 em. | 59volts | duty from the experiment showing the re-
' lationship between resistance of various
portions of a circuit and the voltage drop around that portion. An
alzebra student will easily discern that there is a direet relationship
between the two quantities. True. it is not quite exact, but in view
of the fact that these are experimental figures and hence subject
to the usual errors of experiment, a consistent mathematieal rela-
tionship is definitely suguested.

Data do not alwavs come out <o nicely: as, for example. in the
table at the right which gives mensured vitlues for the distance
covered by a *frictionless™ car, moving

down a taut wire, in various time intervals, Inseaxce | Trae
Here the relationship is at onee less e 1 seo.
obvious, and less exact, If the “tudent is 15" or 53" 2 sec.
to notice at all the tendency tor a direct | 10’ or 120" 3 sce.
: . : . ‘ 172" or 206” | 4 sec.
proportionality to exist between the dis- :

tunce und the square of the time, he needs
considerable experience with a similar type of work,

It is quite common in some high school algebra classes to ask
students to writc a formula that will express the relationship be-
tween the quuntities in a table. The work of the two tubles above
suggests the desirability of ineluding u certain number of problems
in which. as the data are supposed to be the result of actual meas-
urement f{and hLence subjeet to error) the simple mathematical
relationship between the quantitios may be slightly in error for
some, or possibly ull, of the pairs of measurements,

b) Proportion and Variution. Physies texts abound in such
expressions as. “The density of air. or any gus, varies divectly as
the pressure at constant temperature.” And then as a mathemati-
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cal equivalent of this law some such expression as %l -I-;;l is given,
The first time this situation arises (and it arises often), the begin-
ning student is plunged into difficulty. In many instances he has
had no experience in dealing with quentities that vary directly
one with the other (although he may L .ve handled an equivalent
problem disguised under a different terminology), or if he has, a
method not employing a proportion may have heen used. The
mathematies teacher will be of very real assistance here if the use of
the subseript is taught to bring out the distinetion hetween different
quantities of the sume kind. (Thus D,. D.. D, or D,, D,, D, may
indicate different numerical values of density.) In addition, the

>
- IP to show a direct variation be-

_V
V to indicate an inverse variation,

D,
use of expressions such as D=

s P,
tween two quantities, and = P, =

ghould be thoroughly taught and utilized in a number of situations.
The fact that ID); = ﬁ, \ g‘ 113 f,) 11,) , and the like, are all
equally valid as expressions of the sume direct relationship, as well
as the corresponding equivalents of the inverse variation, such as
that given above, should also be brought out and thoroughly fixed
by drill,

The method for solving proportions should also be taught. In
addition to the usual cross-product (product of the means equals
product of the extremes) metliod, the various ways for first simpli-
fying a proportion should be made functional. The following
proportions will make thig point clear.  In cach case before cross-
multiplying the indicated simplification should be performed.

T— =—g Simplify the first ratio to —(12
25 _19 Divide both nunwerators by 5. chan' ag to the form L _2,
x 7 z 7
Divide both denominators by 4 (equivalent to multiplying
$H =z both =ides of the equation by 4), chunging to the form
8 12 4 _=z
=3

¢) Other Operations, The other algebraie skille specifically
indicated by the studies of Reagun and others are likely to be
thoroughly mastered in the usual algebra course, since while they
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oceur with a small frequency in physics problems they oceupy a
much more prominent place in the mathematics course. For in-
stance, Reagan found that in the 241 problems in the Millikan and
Gale text only 1 solution of g quadratic equation and only 13
operations with signed numbers were specifically required.

While not fundamental to the solution of physics problems there
are several topics, not commonly ineluded in an algebra course,
which bear on the ability to handle the mathematics of physies,
Taught in the algebra class, they would at once lighten the physics
teacher's burden and add topies which would be of interest in
algebra.

d) Metric System. Fven though many algebra students may
not go on to take a physics course, vet the increasing use of the
metric system in everyday life amply justifies its inclusion in the
mathematics course. The increasing tendency for authors of
algebra texts to include a short section on the metric system, Years
testimony to the value of such a unit and to its fitness in a modern,
laboratory-type course, An opportunity is here afforded for cor-
relation between the m.:thematies and the physics departments,
Metric rules, gram weights and balances, graduated cylinders and
liter measures, all ean be borrowed. Where possible, the meeting
place of the alaebra class may be changed to the physics laboratory
for the duration of this unit. The first strip-film roll from the set
on Mechanies (sold by the Spencer Lens Co.), whieh deals with
the metric system, may be shown with advantage. Not only is
such corcelated work helpful for the physics teacher in rendering
tnnecessary any detailed study for the metrie system, but it is an
interesting variation from the usual routine of the algebra class,

e) The Slide Rule. 1f we aceept the theory of the role of
mathematies put forth earlier in this article. we are forced to the
conelusion that any device whicl, simplifies the mere mechanices of
multiplying. dividing, and the like, is worth while. The slide rule
Is such a device. We may smnmarize its advantages as follows:

1. By reducing the amount of attention that necds to be devoted
to tiie arithmetical processes by which the answer is obtained,
it allows the foeusing of a more undivided attention upon the
phy=ical prineiple involved.

2. When its use is thoronally mastered, a great deal of time is
saved, A greater nuiber of problems may be worked, or
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the time spent on the mathematical development of a given
topic reduced.

3. Its use prevents obtaining results with an entirely fictitious
aceuracy. If the measurement of the diameter of a cirel
gives 246 cm., the final answer cannot be accurate tn a
greater number of places. We are all too familiar with
answers such as 4.75292664, which is obtained with the usual
area formula, multiplied out “longhand” using a = 3.1416.
In this answer, the latter decimals are of no significance what-
soever as they were all obtained by a multiplication involving
the doubtful measured figure 6 of the original measurement.
The greatest number of places to which we are justified in
carrying the answer is three, giving 4.75 sq. cm. for the area.
The slide rule more or less automatically takes care of such
situations.

Not only is the slide rule of advantage in physies but the mas-
tery of its operation is quite within the grasp of a ninth grade
algebra student. In fact the manner in which multiplication and
division are performed can be taught in a very few minutes.

The scales of a slide rule are logarithmic. Because of the de-
creasing space between suceessive numbers of the same order, the
spacing in different parts of the rule is not the same. Between 1
and 2, each of the smallest divisions indicates o value of .01 of the
whole space; hetween 2 and 3. and 3 and 4, .02; and from 4 to 10,
the end of the rule, .05 of a whole space. This indieates the folly
of stopping with a mere demaonstration of the prineiple of the rule.
We must insure an ability to interpret the =eales guickly and
aceurately—an ability whieh can be acquired only atter consider-
able drill. The algebra student who, by himscli, will aequire any
real ability to use the rule following a short demonstration is an
excecdingly rarve individual.

The Keuffel and Esser Company, 27 Fulton Street, New York
City, who have rules that retail for as litile as 75 ceuts or one
dollar (subjeet to a school dizcount). also manufacture a large 8°
demonstration rule, and furnish lelpful suggestions on methods for
teaching the use of the rule. In my own wuark., T have found
mimeographed work sheets helpful in this connection. On one such
sheet, three drawings of the 107 scale. full size. were shown. One
showed only the major divisions, the second both mejor and sce-
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ondary, and the third drawing some of the smallest divisions.
Questions were asked about the size of the different divisions and
students were required to indicate the value of certain points indi-
cated by arrows on the drawings. On a second sheet, magnifica-
tions of portions of ench of the three size divisions were drawn,
Arrows were directed to various points on the drawings. By esti-
mating the reading of each arrow, practice in using the scales, when
the indicator does not coincide exactly with one of the markings,
was afforded the student. Other work shects give instructions for
performing the various operations—multiplying, divid'ng, squaring,
and extracting square root, together with a selection of problems
and answers.

To do a thorough jobh of teaching the slide rule is not the easiest
of tasks, but it gives the student a tool which is useful in many
future activities. F urthermore, students like the work. In the first,
flush of their enthusiasm they will not multiply 2 X 8 exeept on
the slide rule. Tt is the task of the algebra teacher to utilize this
early enthusiasm to secure for the students a degree of confidence in
the accuracy of their results which will insure their turning to the
rule as a convenient tool, and not as a novelty or toy.

Rince the slide rule is based upon logarithms, many teachers
may feel that a knowledge of these is necessary for mastery of the
instrument. This does not follow. In industry many persons use
the rule who have only the vaguest of notions of the principles
involved. That these persons are any the less accurate or rapid in
their use of the rule has vet to be shown.

Criticisms of the slide rule sometimnes advanced are that it is
inaccurate and that it encourages careless work. The slide rule
has its limitations. of course. but it is amply aceurate for most
computations which high school students are ealled upon to per-
form, particularly where measured (quantitics are involved, as in
physics. By bringing out the principle thut an answer ohtained
by using measured quantities canuot be more geeu ute. exeept in
the case of an average, than the least aceurate quantity employed
in the computation, the value of the slide rule in automatieally
“rounding-oft” answers will be indicated and fietitionsly aceurate
answers will be eliminated. A discussion of significant figures can
be appropeiately taken up in this conneetion. To the charge that
it encotirages carciess work, T need tmply respond that one of the
most important uses to which the slide rule is put, is thut of check-
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ing results of ordinary computation. In the long run, the use of
the slide rule, by facilitating the checking of results, will probably
increase accuracy. Any individual cases in which carelessness has
followed its use are likely to be the result of failure to impress the
limitations of tlie instrument upon its user,

f) Ezxponents. Any reader of popular science articles cannot
help but be impressed by the number of numerical quantities sueh
as 2.7 X 10'° or 2.17 X 10* which occur. This would suggest the
desirability of adding to the usual work on exponents a more de-
tailed consideration than is commonly accorded this portion of the
subject. This work should include raising to a power; extract-
ing a root; multiplying; dividing; changing a decimal to this form;
changing from this form to a decimal. If, in addition, a real feeling
for the bigness of such a number as 2.7 X 10'* and for the minute-
ness of such a quantity as 2.17 X 10* is developed, « valuable
service will have been rendered the student.

2. Other High School Mathematics. The investigations of
Reagan and others have revealed that the small amount of geom-
etry (16 propositions) required in high school physics is almost
certain to be sufficiently functional after the usual “exposure” to
the subject.

Since physies is taught semewhat more commonly in the
cleventh school year, algebra and geometry constitute the usual
preparation of the pupils in mathematics. This being the case, a
knowledge of trigonometry cannot be <xpected. Knowledge of the
simple functions, sine, cosine, and tangent, and also an ability to
use a table of their natural values ave helpful, but not necessary.
This small amount of trigonometry is often learned in ninth year
algebra courses.

Some advaneed schools are offering courses in the elementary
caleulus in the senior yvear. With a physies group composed of
seniors tuking both subjects, there is an opportunity for correlating
the work of the two subjeets in a few instances, notubly in acceler-
ated motion, Thus, taking the derivative of the equation for the
distance covered by a freely falling body in a given time, S = Vgt
we get dS/dt =gt But dS/dt is simply a definition of veloeity,
so we have » == gt. Similarly, ta’ ng the derivative of this equa-
tion, we get dv/dt =g¢g. Again, dv/dt is a definition for accelera-
tion. These processes will give a better insight into the meaning
of the terms “acceleration” and “velocity.”
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Tyler*® puts it (speaking of a college group), “I like to tell my
students that the court will not aceept » = s/t as a defense in a
case of over-speeding; that the automobile trap for obvious reasons

\s e e
Uses and that our definition o derivative as speed werely com-

pletes the transition to the limit."
Of course, there are no problems in the ordinary plysics text
that require a knowledge of calculus for their solution,

CORRELATED MATHEMATICS AND PHysIcs

There have been widely varying opinions expressed as to the
wimount of physies that should be introduced into a mathematics
course.  Young says that physies “should be taught simultaneously
with matlhiematics throughout the four years of the course, bringing
the mathematical theory and the physical application into eclose
juxtaposition.” ™ In England there is customarily a great deal of
correlation between the courses. Nunn, an English writer, however,
aflinms that problems involving seience principles to be used in the
mathematies course, “must be limited to those whose solution is
simply the question of the straightforward mathematios.” * I
have, I hope, made my own position clear with regard to that which
I consider to be the rile of mathematics in physies.  As to the
role of science in the mathematics class, that is beyond the scope
ol this article. Suffice it to say that I am perfectly willing for the
mathematics courses to “help themselves” to as much scieuce as
they see fit in order to enrich the content of their subjects,

And yet, in that which I am about to say, I may seem to be
isconsistent.  There have been at various times enthusiasts who
have insisted that a combined physies and mathematies course
might be worth while. In at least one cuse, this ok the form of
cotabining three subjects—a year of plane geometry, the muathe-
maties of the eleventh school yvear, and a year of physies into u
stugle course to run for two years. The total muuber of recitations
in the two years were equal to those of two “majors.” Tt would
be most unscientific for me to attempt to decide finally upon the

YTyler, I W, “Muathematics In Selenee,” The Mathcematics Tvacher, Vaol,
21:273.279, 192N,

¥ Young, J. W, A, Tue Teaching of Mathomation. Longmans, Green and Cong-
pany, 14245,

W Nunn, L Perey, The Touehing of U, Langmans, Green and Company,
1919,
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merits or demerits of such a plan. It can unquestionably be carried
ont with a good group of students who will vemain through the
two years; and time will be saved. In the same way, I am sure
that a group ol equal ability could be prepared to take the College
Fntrance Lixamination in physics in one-half to two-thirds the
usual time. Unquestionably it would be a course in which many
of the larger gencralizations and principles of physies would be
slighted, in the hurry to obtain the necessary information and
abilitics (largely mathematical) necessary to make this scholastic
hurdle. In the same way, I feel that many of the larger principles
of physies would be lost in some of the forced correlations of this
combined mathemades and physics course. Instead of :ny real
appreciation of the energy concept and what it means to man and
his universe, the student would probably gain a very real under-
standing of the fact that science makes excellent illustrative
material for the study of mathematics.

SUMMARY

In this chapter. T have attempted to trace briefly the develop-
ment of to-day’s high school physies, to show how it changed from
a highly deseriptive, nonmathematical subject to one which, under
the domination of the colleges, and in virtue of the doctrine of
dizeipline, beeame a highly mathematized subjeet, and how finally.
during the last decade, the pendulum has swung back, going per-
haps too far in its swing,

Whatever may be the final solution to this problem, it can be
demonstrated, I believe, that the role of mathematies in high school
physies is somewhat different from that which it assumes in the
colleges, and i decidedly different from its dominant position on
the frontiers of physies research, By illustration, the attempt was
made to bring out the nature of this role. ie., that mathematies is
an invaluable tool for simplifying, elarifving, and enriching various
aspects of the subject.

A consideration of the amount of mathematies trianing needed
for thiz function followed. and the conclusion was reached that
white the average student in physies has been “exposed” to enough
mathematics, for various reasons, he is unable to work many
uite simple problems.  The fault cannot be laid at the door of
any one department of the school, being inextricably tied up with
the newness of the subject for the student, and with the smallness
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of transfer. With the idea of improving, if possible, the mathe-
matical preparation, suggestions for slight changes from and addi-
tions to the usual algebra course were given.

If, as the result of this chapter, any clearer understanding of
the character and scope of the problem and of the relationship
between mathematies and physies is attained, the purpose with
which its writing wus undertaken will have been realized.
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POLYGONAL FORMS

By GEORGE D. BIRKHOFF
Harvard University, Cambridge, Mass.

The empirical aesthetie formula®
M==0/C

where O is the “order” attributed to certain aesthetic factors (such
ax symnictry, cte) with proper weights attached, where € is the
“complexity,” and M is the “aesthetic measure” itself, finds its
simplest  possible application in the interesting, if elementary,
aesthetic question of polygonal form. Our aim in thiz chapter is to
deal with this case, and exhibit the result of the rigid application of
the formula to ninety typical polygonal forms, ordered according
to deereasing values of M (pp, 190-195), If the reader finds a
gradual diminution in attractiveness in passing from the first
polvgon (No. 1) to the last (No. 90), the formula may be regarded
ax substantiated.

The judgment of students in two graduate courses, held at
Columbia University (summer 1929) and Harvard (summer 1930),
seenis to indieate the validity of the formula. I wish to express
here appreciation of the cordial codperation which I received from
the students in these classes.  In one instance, that of the right tri-
angle resting on a side (No. 701, the rating was felt to be too
low. Ir, bowever, the context supposed in this conneetion, namely,
that a single polygon is used ax a file in vertical position, is kept
in mind, it will be elerr that while the right triavgzle i valued
highly us an element in composition, it is searcely ever used in
this particular way, i.e.. in isolation.

In judging the validity of the formula it is necessary of course
to eliminate ull aceidental connotations, such »: the religious one
of the crosses in the list, thut of a rectangulur box suggested by

VOroeeodings of the International Mathemationl Congress, Bologoa, 1928, For
A diseussion of the peoehotogionl basis of the formula, see an artiele A Mathe.
matical Approach to Nestheties.” shortly to appear in Seientia, 1T expect to

publish various applisttions o bueok Torm as syon as possible, - AU 1HILOR.
165
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No. 37, and the like. Furthermore, the first effect of novelty must
be discounted.

1. Preliminary Requirements. If the problem of classification
of polygonal forms is to have reasonably precise meaning, some
particular representation must be chosen. We shall accordingly
imagine that we have before us a collection of blye porcelain tiles,
of uniform material and size. It is easy to consider these solely in
their aspect of pure form.

A further requirement must be imposed in order to fix the psy-
chological state of the “normal observer.” Such a polygonal tile
produces a somewhat different impression when it is seen upon a
table than when it is seen against a vertical wall. In fact, such a
tile lying upon the table would be viewed from various angles,
while on the vertical wall it would have a single favorable orienta-
tion. Therefore it is desirable to think of the polygonal tiles as
situated in vertical position against a wall. In general, the sclected
orientation will of course be the most favorable, aithough it need
not be so, as for instance in No. 83 o the lst.

Perhaps the actual use of the volygon for decorative purposes
which most nearly conforms to these conditions is that in which
some selected porcelain tile is sct at regular intervals along a
stuccoed wall,

Just as in all other acsthetic fields, a certain degree of fan iliar-
ity with the various types of objects involved is required before
the aesthetic judgment becomes consistent and certain, The ninety
bolygons listed in order of deereasing acsthetie measure will furnish
a fair idea of the extent and variety or poly gonal forms.

It is clear that when these requirements are satisfied the prob-
lem of polygonal form becomes a legitimate one.

2. Triangular Form. With these preliminaries dizposed of,
let us turn to a determination of the principal tvpes of aesthetie
factors affecting our enjovment of polygonal form. Onee such a
determination has been made, we will be prepared to assess the
relative importance of these factors, and to formulate an appro-
priate aesthetic mieasure such asx we are secking.  We will begin
with the simplest clasx of polvgons, nantely the triangles,

Now triangles are usually classitied as being either izosceles and
so having at least two sides equal, or sculene. Clearly the isosceles
triangles are more interesting from the point of view of aesthetic
form. The proper orientation of an isosceles triangle ix naturally



O

POLYGONAL FORMS 167

one in which two equal sides are inclined at the same angle
to the vertieal. This is the case for each of the triangles (a), (b),
(c) of the adjoining figure. In all of these, the triangle “rests”

NN

(e) (d) (e)
Figusg 1

npon & horizontal side. However, if these triangles are inverted.
the equal sides will again be inclined at the same angle to the
vertical. It is readily verified that this sccond reversed orienta-
tion is also satisfactory, and that these two are superior to all
others.  With these orientutions only do we obtain “symmetry
about a vertieal axis,” This is elearly a desideratum of first im-
portance.

Obviously if a symmetrical figure be rotated about the axis I
of symmetry through 180°, it returns to its initial position.

Judgments of symmetry about a vertical axis are econstantly
being made in our everyday experience. Let us recall, for example,
how quiekly we become aware of any slight asymmetry in the
human faee. Thus the association “symmetry about a vertical
axis” is intuitive, and is pleasing to a notable degree in almost
every instanee,

If the isosceles triangle (4) he made to rest upon one of the
two equal sides, there =till remains the feeling that the triangle is
in equilibrium, although the svmmetry about the vertical axis is
thereby destroyed. It will be observed, furthermore, that the sym-
metry about the inclined axis is searcely noted by the eve and is
not felt favorably. Thus the triangle in its new orientation makes
much the same impression as any scealene triangle which rests upon
1 horizontal side [eompare with ()], The indifference of the eve
to =uch an inclined axiz of symmetry i3 also evidenced by the
iro=celes right triangle (d) with one of its equal sides horizontal.

On the other hand, if the isosceles triangle (b) be given any
orientation whatsoever other than the two with vertical symmetry
and the third just considered, there is dissatisfaction because of
the lack of equilibrium.
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For the isosceles triangle (). however, there are only two
orientations in which it secems to be in cquilibrium, namely, the
two with vertical svmmetry. In fact, if the triangle (¢) be made
to rest upon one of its two equal sides, the center of ar a falls
too far to left or right as the case may be, und this fact gives rise
to an unpleasant lack of equilibrium.

The association “equilibriund” ix also one constantly made in
everyday experience. and is felt pleasantly.

Among the various shapes of irosceles trinngles, the equilateral
triangle (a) with all sides equal stands out as one possessing
peculiar interest. If such an cquilateral triangle be set in a position
which ix not symmetrical about o vertical axis, all the pleasure
in"its exceplional symmetrieanl quality disappears.  However, once
the favorable orientation ix taken, this quality is fully enjoved. In
the first place the three axes of symmetry are noted. But it is the
“rotutional svmmetry™ which is expecially effective,

In the cuse of the equilateral triangle the center €' of rotation
is the point of interseetion of the three axes of symmetry, and the
angle of rotation « is evidently 120° or one-third of a complete
revolution.

The rather occult association “rotutional symmetry’” is often
made visually in evervday experience. The appreciation of the
form of the cirele may perhaps be regarded as fundamentally based
upon this association.

Among the izosceles trinngles which are not cquilaterul, there
seems to be little to choose in respect to acesthetie merit. 1t does
not appear to be a matter of importance whether the angle between
the two equal sides is acute ax in (b1, obtuse ux in (¢), or a right
angle.

The scalene triangles are readily disposed of. The best position
i one in which the triangle rests upon a horizontal side long enough
for the triangle to be in cquilibrium.  The right triangle with
vertical and horizontal side is obviously the best among the sealene
triangles | note the triangle (d) . From one point of view this is
because an unfavorable factor enters into the general sealene tri-
angle of type te) due to the presence of three unreluted directions,
The treatment of this negative factor of “diversity of directions" ix
rather technical since it involves the notion of the “group” of a
polvgon (Rections 14, 16).

Thus the various types of triangles in a vertical plane can be
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grouped in the following five given elasses in descending order of
aesthetic value: (1) an equilateral trinngle with vertieal axis of
symmetry; (2) an izosceles triangle with vertieal axis of symmetry;
(3) a right triangle with vertical and horizontal side; (4) a tri-
angle whieh is without vertical axis of svmmetry and rests upon
a sufficiently long horizontal side to insure the feeling of equilib-
rium; (5) any trinngle which lacks equilibrium. The triangles
of the first three classex are definitely pleasing; those of the fourth
class are perhaps to be considered indifferent in quality; and those
of the fifth class are definitely displeasing. Since it is a natural
requirement that the best orientation of any triangle be selected,
the fourth class will contuin all tl., scalene triangles without a
right angle. and the fifth class will not enter into consideration.

It has been tacitly assumed in the ahove analysis of triangulay
form that no xide of the triungle is extremely small in compe, i on
to the two other sides, and that no angle ix very =mall or very near
to 180°. These are obvious prerequisites if the triangle is to he
characteristic.  If they are not met, the triangle approximates in
form to a straight line und the cffect is definitely disagreeable,
becauze of ambiguity.

We are now in a position to list the nesthetic factors that have
been thus far encountered: vertical symmetry (+), inclined sym-
metry (0}, equilibrium (4, rotational svinmetry (4-), perpen-
dicular sides (01, diversity of directions (—), small sides (—),
small angles or angles nearly 180> (—),

Here and later we use the svmbol (4) to indicate that the
corresponding association or element of order uperates to inerease
aesthetie value, the symbol 107 to indicate that it isx without subh-
stantinl effeet, and the svibol (—1 to indieate that it diminishes
acsthetic value. Such associations or elements of order will accord-
ingly have a positive index in O if the symbol ix (43, and a negu-
tive index if the symbol is (—).

3. Plato's Favorite Triangle. It cannot be emphaxized too
much that the classification of the various forms of triangle given
above takes into account only the simplest and most natural
acsthetie faetors,  Haow completely such i scheme of classifieation
can be upset by the introduction of factors hased upon fortuitous
aszoclations, is easily illustrated,

Plato in the Timacus savs: “Now, the one which we maintain
to be the most beautiful of all the many triangles (and we need

RIC

Aruitoxt provided by Eic:



170 THE SIXTH YEARBOOK

not speak of others) is that of which the double forms a third tri-
angle which is equilateral.” The context makes perfectly clear in
what sense this statement is to be interpreted: If one judges the
beauty of a triangle by its power to furnish other interesting
geometrical figures by combination, there is no other triangle com-
parable with this favorite triangle of Plato. For out of it can bhe
huilt (Figure 2) the equilateral triangle, the rectangle, the paral-

NV AL

Ficure 2

lelogram, the diamond, and the regular hexagon among polygons,
as well as throe of the five regular solids. This power in combina-
tion was pernliarly gignificant to Plato, who valued it for purposes
of cosmological speculation. It was on such a mystical view that
he based his aesthetic preference.

Yet it may well be doubted whether persons not having his
particular philosophic outlook would agree with Plato. Tn fact,
it appears that this scalene right triangle is not superior to the
general right triangle for the aesthetic problem under consid-
eration.

4, The Scalene Triangle in Japanese Art. It is well known
that the Japanese prefer to use asymumetric form vather than the
too purely symmetric.  Indeed, in all art, whether Eustern or
Western, obvious svmmetry tends to become tiresome.

In particular it has heen said that all Japanese composition ix
hased upon the scalene triangle. Is this fact in agreement with the
classification effected above which concedes aesthetie superiority to
the isosceles and in particular to the equilateral triangle? The
answer seems to be plain: When used as an element of composition
in paintine the isosceles triangle may introduce an adventitious
element ot symmetry which is disturbing to the general motif. But,
in “he much more elementary question of triangular form per s,
the general opinion. at least in the West, is in favor of the equi-
luteral and izoseeles triangle rather than the sealene triangle.

Recently while in Japan I was fortunate enough to be able to
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question vne of the greatest Jupunese painters, Takenouchi Seiho, in
this matter, und I understood from him that the same opinion would
doubtles: be held in Jupan. .

5. The Form of Quadrilaterals, Let us turn next to the
consideration of the form of quadrilaterals, and let us examine
first those types in which there is symmetry about a vertical axis.
There are two cases.  In the first ease at least one side of the
quadrilateral interseets the axis of symmetry. kvidently such a
side must be perpendicular to the axis of symmetry. Furthermare,
there must then be a second oppuosite side which is also perpen-
dicular to the axis. Thus the general possibility 12 that of a sym-
metrie trapezoid given by ter of Figure 3. Thix trapezoid may,
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Ficurr 3

however, take the form of a rectangle or square illustrated by
(b) and (ar respeetively, It ix to be observed that the rectangle
possessex o further horizontal axix of symmetry, while the square
possesses not only a horizontal and vertical axis of symmetry but
also two anes inelined at 45 to the horizontal direction.  Likewise,
both rectangie and square have rotational symmetry. the angles of
rotation being 1802 and 90” respectively. Judging by the extent
of symmwetry invobhved, we shonld expeet to tind the square to be
the best in tormn, the reetanale excellent. and bhoth superior in
aesthetic quality fo the svmmetrien] trapezoid.  Sueh a relative
rating coineides with my own aesthetie judanent and that of many
others,

Both the reetangle and the square have eentral symnetry. Any
fisure with rotational svimmetry whose least angle of rotation is
contained an even nmmber of times in 3600 will possess central
symmetry: ciuses in point are the rectangle and the square, since
1802 and 90° are contained respectively 4 and 2 times in 3607,
On the other band, any figure with rotational symmetry whose
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least angle of rotation is contuined an odd number of times in
360° will not poscess central svunetry; for example, the equi-
lateral triangle is a case in point, with a least angle of rotation
120° which ix contained 8 times in 360°,

It has been elaimed that the rectangle is a form superior to
the =cuare and even that certain rectangles such as the “Gollen
Rectangle™ exeel all others. I shall indicate later in what sense,
if any, sueh statements ean he valid (Neetion 6).

In the sceond caxe of svmmetry about the vertieal axis, the
quadrilateral has two of its vertices on the aXiz of symmetry, hut
none of the sides interseets the axix. Here the general possibility
ix indicated by (&) and (dr of the figure below in which quadri-

(e

(a)

I'iéree 4

lateral ter is corvex and o) is reintrant. The first of these may,
however, reduce w the cquilateral quadrilateral or dimmond as
in (b1, or even to the squune (a1 with sides inclined at 45° to the
horizontal direetio...

Of the two general cuses pepresented by the quadrilaterals (¢
and vd)in Figure 4, oic L loar that che convex type ted is definitely
superior to the alternive eiintrant e of quandrilateral (), This
recntrant character evidently operates so that the quadrilateral
sugeests w trinnele from which o trlangar “niche” has been re-
moved. In general each polyeon Ivine between o given reéntrant
polveon and e minisun convey poiveon which cneloses it s
termed a niehc™ of the refntrant polvaan, A rubber hand stretehed
around the given polveon will take the form of the minimum en-
closing convex pulygon,

It ix not the mers faet that the quadrilateral is recntrant which
i deeisively unfavorable.  Consider, for example, the hexagr.
or six-pointed star tsee No. 6, page 190).  This star is evidently
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highly pleasing in form and vet it i reéntrant. It will be noted,
however, that every side of the star although of “retntrant”
type ix “supported” by another side which lies in the =ame
straight line, while this is not true of the reéntrant sides of the
quadril~teral.

In the comparizon of quadrilaterals of types (a) to td) on page
172 we find. as we should expeet, that the square (@) and the din-
mond (b in the orientations indicated are markedly superior to
the quadrilaterals (er and ) already dF cussed,

However, it scoms= to nie to be diflicult to say whether or not
the square =o situated is better in form than the diawond, despite
the faet that on the score of symmetry alone the square hoids
bigher rank.  As far as I ean analyze my own impressions, I ain
led to the following explanation of this unecertainty in acsthetic
judgment:  For me and many others the orientation of the square
with sides vertical and horizontal i superior to the orientation
in which its =idex are inelined at an angle of 45° to the horizontal
direetion indeed, thix superiority will appear tn conzequence of
the definition of aesthetic measure adopted later? Henee a certain
feeling of displeasure ix experienced in the contemplation of the
square in the orieutation (a1 above, just beeause it is found in an
inferior orientation and beeause it would be so casy to alter it {or
the better. It one could abstraet one's feeling completely from
this association. which is really irrelevant, T believe the square ta)
would setundly mpress one as being =uperior in aesthetie quality
to the diamond 16,

There »emain for diseussion those quadrilaterals which have no
vertieal axts of symmetey. Here, as in the case of the zealene tri-
angle, dttention can be limited to easex i which the queadrilateral
rest= o a sufliciently long horizontal side =0 that it appears to be
in stable equilibrinm, for otherwise the quadrilaterals are definitely
displeasing,

[t 3= readily found that the only quadrilaterals of this sort
which prssess rotational svimnetry are the parallelograms, which
are llustrated by vy in Figure 500 Evidently the charaeteristie
angle of rotation for a pacallelooam 1= 18070 The parallelogram is
the stimplest type of polygon pos.essing rotational svunnetry but
not svnaetry about any axis, and it evidently stands fivst among
the types ta) to tdic Next to the parallelogram in aeshietie quality

PNer pilges DNIHINT,
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follows the trapezoid, with two sides parallel as in (b); evidently
the association “parallel” is one made constantly and intuitively in
evervday experience.  Then follow the general convex quadri-
lateral like (), and finally the reéntrant case illustrated by (d).

{a) (h) tee) (d)
Fiaurr 5

It will be observed that the presence of an isolated right angle
or of two equal sides, as in (¢4, i without speeial influence.

We have now examined the various types of quadrilaterals and
arranged those of each type in order of preference. It remains to
compare brietly those of different types. On the basis of my own
aesthetie jndament I am led to arrange them in the following order
of diminishing aesthetic value: the square; the rectangle; the dia-
mond; the convex quadrilateral svnmetrie about an axts through
two opposite vertices, the symmetrie trapezoid and the parallelo-
gram; the refntrant quadrilateral svmmetric about an axis; the
convex quadrilateral without symmetry; the reéntrant quadrilat-
eral withont symmetry,  Of these, the List two types are definitely
unsatisfactory,  Here T assinte that the quadrilaterals are placed
In the most favorable position, of course.  This relitive arrange-
ment is that assigned by the aesthetic formula,

Wo shall not attempt at this stage to compare triangles and
quadrilaterals with one another.

There are two new types of elements of order brought to light
by onr examination of quadrilaterals. The first is of negative type
v and operaces when the quadrilateral is reiintrant. Further
inzight into the natiure of this element will be obtained in g follow-
ing section. The second is conneeted with the parallelism of sides
and 15 of positive type (40, Tt is more convenent, however, to
regard this =econd clement on its negative side. when it is aptly
characterized as diversity of direetions of sides™ | rt Evideatly,

VN0 page [wN
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other things being equal. the more parallelisms of sides there are,
the less will be the diversity of direction of the sides.

It has furthermore appeared that the mere equality of sides is
an indifferent factor iO for the quadrilaterals and also for polygons
having more than fonr sides. This stands in apparently sharp
distinetion from the case of the triangle. The reason for the differ-
ence is to be found in the fact that only for the triangle does
equality of two sides insure symmetry.

6. The Golden Rectangle. It will perhaps have been noted
that thus far in our analysis the precise dimensiocns of polygons
have scarcely been considered.  The question whether or not these
dimensions have aesthetic significance has frequently been asked,
particularly in reference to the rectangle.

The German psychologist Fechiner conducted elaborate experi-
ments to ascertain if possible the most satisfactory rectangular
shape, inelusive of the square. His results may be briefly sum-
marized as follows:  The =quare and more especially a rectangle
of dimensions having the ratio of longer to =horter side of about
8 to & were generally adjudged to be the best among the various
rectangular shapes.

Now the so-called Golden Reetangle i= characterized by the
ratio 1.618 . . . which is nearly 8 to 3. Is it not perhap= true
that there resides in it =ome special oceult beauty which makes it
superiar ta all others?

The interesting geometrical property that 1f a square on the
<horter side be taken away, another Golden Rectangle remains
csee Fioure 60 has scemed to some persons to justify the con-
clusion that it 1= the most beautitul reetangle. This view secms
to me without adequate basis.

In erder to understand the wetter, it is well to keep in mind
the ather speeial reetangle favorad by Plato, made ot the two halves

of s equilaterad trianale. Forit, the vatio is 1732 0 00 Tt is also
well to keep in wind the reetanale with ratio 1414 . ., whieh,

it divided intwo equal rectangles by line parallel to the two
horter sides gives two rectangles of the sae shape as the orig-
inal reetarele. Here the ratio s nearly 7 to 3. Furtheroore, the
rectanele wade up of two squares, with: the tatio 2 to 1L is also to be
noted.

Tlas we tind tive veetaneles twe include the square) with
siuple geontetrie properties, These are represented in Figure 6, in
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whicli the ratio » of the longer side to the shorter is indicated in
cach case.

It can perhaps be justly said that a shape not suggesting a
sitaple numerical ratio like 1 to 1 or 2 to 1 is desirable in many
connections where the rectangle is used as an element in compo-
sition.  In that event the square and the double of a square are

r..1 r 1.411¢ ro. 16818 rooo1.932 r. 2

Ficrre 6

excluded.  Morcover, perhaps the rectangle approved by Plato
might not serve sinee it does not differ =utticiently from the double
of & square. But this =till leaves a wide range of choice, embracing
the cases r = 1414 and also r == 1.618. for instance. Of these two
[ <lightly prefer the rectangle with ratio 1.414 to the Golden Rect-
angle with ratio 1.618.

Now it may be that certain persons, through their acquaintance
with and liking for Greek art, have come to individua.ize and
wentify with fair approximation the particular <hape embaodied
in the Golden Rectangle, For such persons an intuitive association
of purely aceidental eharacter would be established in favor of the
Golden Reetangle, Only by assuming that a number of his ex-
perimental subjeets were of this tvpe can 1 understand the experi-
meatal results of Feehner in favor of-a particular ratio of nearly
8 to 3.

In comparing the =quare and the rectangle, it should not he
forgotten that the rectangles contain an infinitude of shapes, de-
pendent on the ratio of the sines, wherens the square presents but
a single shape. Henee the rectangles provide a much more flexible
instrument in desien than the square does, It s, for example,
obvious that when a reetangnlar frame is used for a portrait the
square <hape is in general less snitable than that of g rectangle
with the heieht greater than the breadth, However, [ believe that
the square is mueh more often used than any other single ree-
tangular form. such as the Goblen Reetanele,

These remarks Jdo not quite do full justice to the speeial forms
of the reetangles when these are not 1sed singly but in combination
with other polygonal forms. For instance, the arrangement of two
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adjoining rectangnlar windows with » = 1414 =0 as to form a single
steh window with » == 1414 might be deeidedly pleasing in certain
architectural effects, beeause the stune shape is discovered in » new
aspect,  Similarly, three il 'ning windows, the central one being
square and the outer ones equal Golden Rectangles with short sides
horizontul, might prove very peasing tor a like reason.

7. The Form of Five- and Six-sided Polygons. Qur survey
of triangles and quadvilaterals has brought to light a1 nnmber of
the essential aesthetie faetors which operate in the case of more
complicated polyvgons, So far, these have all been in the nature of
associatiors or elements of order. Tt would be tedious to continue
with our analys=is, step by stepe If we did <o, the Taets for five- and
six-sided polygons would be found to be on the whole similar to
those already noted. We shall be content, therefore, 1o note those
features which are not illustrated by the shimpler polygons of three
or four sides, and then to consider the other features which are
iHustrated only by =till more complicated polygons,

To begin with, ket us recall our previens conclusion that svin-
metry about an inclined axiz huas little or no significanee in itself.
It is true that when there is symmetry abont the vertieal axis alko,
the matter is not so clear: but in that event, there will ulso be
rotatiomal symanetry. =0 that such sviometry about an inelined
axi= can be considered alwavs oz arising out of a combination of
symmetry ubout the vertical and rotational svumetry, in ease it
operates effeetively.

Thus the question artscs fnmedintely = 1o the sienificance of
svinnetry about a horizontal axiz when there i= no vertical svme-

ful (hi 1 ted

Frovne 7

mwetry.  This case 1= tlustrated most sty by the pentagonal
pulvaon tar in Fieure 700 T the fivst plaee, it i< elear that the svim-
iuetry wbont the horizontal axis i< meh more ensily appraized by
the ove than the synunetry about an axis in any other diveetion
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except the vertical. Notwithstanding this faet, the symmetry
whout the horizontsl axis is regarded indifferently or with an-
tiputhy, because it is felt that the bolygon is not properly placed.
Hence we are led. us hefore, to rate svmmetry about a horizontal
axis as in itself an westhetie factor of indifferent, type (0).

A serond factor already brietly alluded 1o ¥ is effectively isolated
by & comparizon of the two reéntrant hexagonal polygons (b) and
te). These are both of the same general type, but only in the first
cuse (b) do two of the four reintrant sides lie in a s=traight line
and so support one another. It is obvious that ¢4 is notably
superior to (¢) just on this account.

In general, then, we may expect reéntrant sides which are not
supported by other sides in the same straight line «Section 3) to
operate unfavorably and so to correspond to a faetor of negative
type (—).

The psyehological explanation of this sitnation appears to be
evident. In general the association “reintrant™ is not a pleasant
one. But if, when the eve follows a reéntrant side. another side is
discovered in the sume straight line, there is g compensating feel-
g of satistaction.  Thus only the mnsupported reéntrant sides
need to be considered as producing o definitely negative tone of
{celing,

The third factor is illustrated by 1) of the same figure. which
1~ essentially made up of two triangles only overlapping =lightly
Bear a vertex of each. In consequence. the six-sided polygon ix
not characteristic and this faet ix folt unfavorably, It will he
noted that the two vertices are then very near to one another
and also to near-by sides. Henee there is a factor dependent on
too great nearness of vertices to other vertices or sidoes, which is of
negative type (-—1. We have already observed the special instunce
when one of the sides of g triangle is excessively short,

8. More Complicated Forms. The ninety polygons listed in
descending order of aesthetie newsure according to the empirvieal
ruies later adopted. present graphically the prineipal types of
poivgons, and may be regurded as rezsonably complete for polygons
of not more than nine sides. The survey of these polygons brings
to light & few further aesthetic facturs of importance,

One of the new items is the obvionsly inereasing complexity
itself, whieh, bevond a certain point. is found to he burdensonge.

 Nee page 172,
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In this conneection we may note the fact that the convex polygon
of many sides ix more likely to be pleasing than the refintrant one,
particularly if the latter contains a diversity of niches.

A second very important new factor makes its appearance when
the polygon is dircetly related to some uniform network of horizontal
and vertical lines, as in the case of the Greek cross |[see (a),
Figure 8], or else ix elosely related to a uniform diamond network

(a) (b)
Ficure 8

[see (O] with its sides equally inelined to the vertieal, this dia-
mond  network in turn suggesting a uniform borizontal-vertical
network.,

Evidently the aesthetic fuctor of elose relationship to 1 uniform
horizontal-vertical or diamond network plays a fundamental part
and enhanees the aesthetie value of numy polygons listed, e.g., the
square tNo. 11, the reetangle (No. 21, the diamond (No, 43, the
Lexagram (No. 61, the Greek eross 1 No. 91, the swastika emblem
(No. 411, ete. In the case of the square, reetanele. and diamond,
the validity of this association is perhaps debatable. But. o fre-
gquently do we see these polvgons usedl in conjunction with o net-
work that it =ecms= proper to regard them as suggesting reiationship
to a uniform horizontal-vertieal or diamond network,  On the
other hand, it is evidently not legitimate to regard the assoelation
with o uniforni diamond network os possessing interest equnt to
that of association with a horizontal-vertieal network. It is with
these faets in mimd that the empirieal rule dealing with the aesthetie
Fnetor of relationship to such a network will be jormalated. The
associutional basis of this factor in evervday experience is obvious,
Systems of lines placed in the recular array of a network are con-
stantly met with, and their relationship to ene another is intui-
tively appreeiated.

In the  nsideration of sueh more complicated  polvgons it
appears e JLat some kind of syunnetry is o always reguired if the

RIC
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polygonal form is to be at all attractive. When this requirenient is
not met, no degree of relationship to a horizontal-vertienl network,
for instance, ean entirely offset the deficiency. Thus, if symmetry
ix lacking, the fact appears as a definite negative acsthetie factor
which must be taken account of.

Evidently a further actual nesthetie factor in miany cases is
some aecidental associntion, such as is present, for ex cample, in
the case of the cross and the swastika. The mathematical theory
takes no necount of such completely indefinable “elements of order,”
although they have a definite aesthetie offoct,

9. On the Structure of the Aesthetic Formula. According
to the general theory proposed in the rst cll.lptcx we seek an
aesthetie formula of the type M = O ¢ where M s the sesthetio
measure, O i the order, and €' is the complexity. In the ease of
polygonal form before us, () will he separated into five elemoents,

O=V+LE4+RLHV - F
The aesthetie factors encountered above are correlated in the
following way with ' and these five elements:
C: complexity,
Ve overtical symmetry (49,
E: vqnilibrium ().
R rotational syvimetrey (40),
HV: close velion to o hovizontad-vertical network « 4.
F:ounsatistietory form mvolving some of the following faetors: tag
stnall distanees from vertices 1o vortees op sples (=3, or angles
ton near 07 or IS0 L or any other ambigity of Torm diversity
of nches (0 0 unsay ported pontrant sples ¢ - Vo diversity of
divections (=95 Laek of symmetry (o),

It will be observed that the term F involving the general
attributes of unsatisfactary form i an “omnium gatherum” for all
the neeative aesthetie faetors which have been noted,

The various indifferent factors of type 10 play no part - f
course.  Some of these are cquality of sides, perpendicnlarity of
sides, and inelined or Lhorizontal svinmetry twithout vertieal axis
of sv mmetry),

In the course of the teehniead evatuation of €, VoECR I, R,
and o of M, ta which we now proceed, a stple mathematical
coneept, namely. that of the gronp of motions of the given polyveon,
will be introdueed. This coneept torms o basic mathemnatieal
adjunet, necessary for the comprelension of the problem before us.
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The aesthetic measure M defined by the formu'a will turn out
to depend upon the orientation of the polygon. In case an axis
of symmetry exists, the highest aesthetic measure of a particular
polygon will invariably be found when such an axis is taken in the
vertical direction. But the same measure will be obtained if this
orientation is reversed. This seems to be in accordance with the
facts which are observed. An apparent exception is furnished by the
Roman cross (No. 49) and certain other polygons, when an inversion
appears to diminish notably the aesthetie value. But this will be
found to be due to the faet that an important connotative element
of order ix thereby removed; for instance, in the case of the cross
it is the religious assoeiation. Our coneclusion, therefore, is that
these exceptions are apparent rather than real.

10. The Complexity C. The complexity ' of a polygon will
be defined as the least number of indefinitely extended straight
lines which contain all the sides of the polygon. Thus for any
quadrilateral the complexity is evidently 4; for the Greek cross
(No. 9) the complexity is 8, although the number of sides in the
ordinary sense is 12; for the pinwheel-shaped figure (No. 53). the
complexity 15 evidently 10; and so on.

The psyvehological reasonableness of this empirical rute ix evi-
dent, Lor convex polvgons, and also for polygons which are not
convex but which do not possess any two sides that are situated in
the same =traight line, the complexity € i merely the number of
sides.  As the eyve follows the contour of the polvgon in looking
at the various sides in suceessien, the effort involved would appear
to he proportional to the number of sides. On the other hand, if
there are two or more sides on one and the same straight line,
the eve follows these in one motion.  For example, in the case of
the Greek or Roman eross, the eve might regard it as made up of
two rectangles,  These considerations suggest that the definition
chosen for the complexity (' is appropriate.

11. The Element V of Vertical Symmetry. The organiza-
tion of the entire polvgon which results from vertical symmetry is
obvious to the eve. By long practice we have become accustomed
to appreeiating symmetry of this sort immediately.  On this ae-
count the element 1 s particularly significant.

We shall give to 17 the value 1if the polvgon possesses sym-
moetry about the vertieal axiz, and the value 0 in the contrary case.
In other words, the element Vowill he a unit element of order, and,
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sinee there exist various polygons of pleasing quality, such as the
swastika, which do not have vertieal svmmetry, we shall assign
the value 0 rather than some negative value to ¥V when there is no
such symmetry,

A large proportion of the polygons listed possess such vertieal
symmetry, and it ean be verified that the preseuce of such sym-
metry is immediately and favorably recognized.

12. The Element E of . quilibrium. We consider next the
second element £ of order coneerned with equilibrium. It has been
previously obscrved that when the polygon has vertical symmetry
or when it rests upon a sutliciently extended horizontal buse, it is
felt to be in equilibrium.

In order to speeify completely the requirements for equinbrium,
we note first that it is optical equilibrium which is referred to,
rather than ordinary mechanical equilibrium.  For example, the
pinwheel polyzon No. 53 would actually be in (unstable) meehanieal
equilibrium if turned through an angle of 45°, inasmuch as the
center of arca would lie direetly above the lowest point. Never-
theless, it does not give the optieal impression of equilibrium, sinee
the eye is not accustomed to estimating accurately the balance of
figures acted upon by gravity.

What is really needed in order that the feeling of complete
equilibrium he indueed, is either that there be symmetry about the
vertical, or thut the extreme points of support at the bottom of the
polygon are =ufliciently far removed from one another, with the
center of area Iying well between the vertical lines through these
two extreme points,

In order to state suflicient requirements for this, we shall agree
that complete optieal cquilibrium will be indueed if the center of
area lies not only between these two lines. but at a distanee from
either of theni, at least one-sixth that of the total horizontal
breadth of the polygon. It this somewhat arbitrary condition is
satisfied, as well n= in the ease of vertieal svinmetry, we shall give
E the value 1. If the polyeon does not satisfy these conditions
but i= in equilibrinm in the ordinary mechanical sense, we shall
take ' to be 0. Otherwise we shall take £ to be —1, inasmuch
as the lack of cquilibrium is then detinitely objeetionable.

In general the best orientation of 2 polygon will be one of
complete equilibrinm,.  Among the ninety polyvgons listed, this is
the case withon: exeeption,



O

ERIC

Aruitoxt provided by Eic:

POLYGONAL FORMS 183

13. The Element R of Rotational Symmetry. In the case
when the polygon possesses rotational svmmetry, there is evidently
a least angle of rotation 360°/g which is an exact divisor of 360°.
1f the corresponding rotation be repeated successively g times, the
polygon will not only be returned as a whole to its initial position,
but a complete revolution will have been effected, so that every
point goes back to where it was at the outset,

There 1z a certain signifieant similarity between the rotational
symmetry which we are now considering and the axial symmetry
already referred to. In order *» make this plain let us recall that
if a polygon be rotated through 180° about an axis of symmetry,
it alzo will return to its initial position. Thus the test for both
kinds of symumetry ix that a certain specified metion of rotation
restores the polygon to its initial position. In the case of rotational
symmetry the axis of rotation is perpendicular to the plane of the
polygon at its center of area and the rotation is in the plane of
the polygon; while in the ease of axial svmmetry the axis of rota-
tion is an axis of symmetry in the plane, and the rotation is a half
revolution,

A consideration of the wvarious possibilities when a polygon
possesses svimnetry of rote tion shows that there are several cases
which must be distinguished from one another in their acsthetie
effect.,

The first and simplest casge i= that in which the polygon has
not only svmmetry of rotation but symmetry about an axis
tverticalr ws well. In this ease, illustrated by many polygons of
the list. such a symmetry of rotation is immediately and favorably
feit by the obeerver. Fvidently an axiz of symmetry is moved into
& new axix of symmetry when the polvgon is earried into itself by
an allowed rotation in its plane.

A wore detatled mathematieal consideration of this case which
the reader ean casily verify by means of a few examples shows
that In all eases there are precisely ¢ distinet axes of symmetry
with an angie 360° /2y between suecessive axes.  If ¢ is odd, all of
these axes are obtained from a single one by means of rotations of
the nolygon into itself in its plane; wherens, when g is even there
are two sets of g/2 axes of symmetry at angles 360° /¢ apart, the
axes of one set brsecting the aneles between those of the other.
The rectangle illustrates the general sttuation for ¢ = 2, while the
regular poivgon of ¢ sides Hustrates it for ¢ > 2,
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There is also a second case when the rotational element R is
felt almost equally favorably, despite the lack of true vertical
symmetry; namely, when the minimum convex polygon which in-
closes the given polygon does not abut upon any of its niches, and is
symmetric about a vertical axis. Polygons Nos. 41, 50, 51, and 69
illustrate this casc. Here the inclosing convex polygon is so
strongly suggested, with its ¢ axes of symmetry, as to suggest
vividly the rotational element.

On the other hand, even though the minimum inclosing polygon
is symmetric about a vertical axis, the same effect is not felt if the
niches abut on its vertices. This third case is illustrated by poly-
gons Nos. 53, 67, 85, 88, 90. In partial explanation of this differ-
ence in effect it may be observed that in the first two cases the
center of the polygon is clearly defined, either by means of the
axes of symmetry of the given polygon or by means of those of the
minimum enclosing polyvgon which are strongly suggested. This
circumstance operates udvantugeously.

In both of the first two cases we shall take the element I as
g/2 80 long us g does not exceed 6. For q equal to 6 or greater,
we take R = 3, since the effect of the rotational element is limited
and seems to attain its maximum when q is 6. The mathematical
reason for the particular choice of ¢/2 as the value of R when
q does not exceed 6 is alluded to in the next section.

We pass next to the further consideration of those pelygons
falling under the last case. Two possibilities need to be distin-
guished according as ¢ is even or odd respectively, thus giving rise
to a third and fourth case respectively,

When ¢ is even, there is central symmetry, and such central
symmetry is appreeiated immediately. In particular, it enables
the observer to fix the center accurately,  Here there are no axes
of symmetry, actunl or suggested. Since it is only these that bring
out clearly the rotational syvimnietry, the rotational symmetry as
such plays only a small réle; and so we take R =1 in the third
case, whatever be the value of q so long as it is even. The justifiea-
tion from the mathematical point of view of the choice R =1 in
this case will not be attempted here.

Polygons Nos. 39, 45. 48, 53, 65, 67, 74, 77, 84, 85 illustrate this
third case k' = 1.

On the other hand, the four polygons, Nos, 79, 88, 89, and 90,
illustrate the convex and reéntrant types in the fourth case. It
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will be observed that even in the convex type one is scarcely aware
of the rotational symmetry.

Thus in this fourth case, as well as in any case where there is no
rotational symmetry whatever, we are led to take B = 0.

14, The Groun of Motions of a Polygon. It has been seen
that either a rotation of a polygon about one of its axes of sym-
metry through 180°, or a rotation of the polygon about its center
of area through a multiple of the fundamental angle of rotation
360°/q, will return the polygon to its original position. There are
no other motions which can leave a polygon unaltered. Among
these motions we will list (by convention) the particular motion /
which moves no point, as well as the other motions 4, B, . .., if
such there be.

Definition of the grou, of motions of a polygon. The collec-
tion of rotations of a polygon about each of its axes of symmetry
through 180°, and of the rota’ions abcut its center of area through
any angle of rotation, will be termed the “group of motions” of
the polygon,

The group of motions of a polygon has the fundamental prop-
erty thit two such motions 4 and B performed successively will
also return the polvgon to its initial position, and so be equivalent
to a single inotion C of the group; or symbolically, AB = C,

This leads us to two further related definitions:

Definition of conjugate figures. If F be any figure in the plane
of a given poiyzon, which takes the successive positions F, F,, Fp,

. under the corresponding motions I, 4, B, . . . of the group,
the figures F, F,, Fp, . . . are said to be “conjugate.”

Definition of fundamental region. A region of the plane which
with itz conjugate regions fills the entire plane in which the given
polygon lies, but in such a way that these regions do not overlap.
iz said to be a “fundamental region” for the given group of motions.

It is worth while to give an illustration. For the rectangle with
vertieal axis of symmetry, the motions of the group (besides I)
are evidently the rotations 8¢ and Sy of 180° about the vertical and
horizontal axes of symmetry respectively, and the rotation R
through 180° in its plane about the center.

It is evident thai two opposite sides of the rectangle are con-
jugate under this group of motions. Similarly, the four vertices
of the rectangle are conjugate under the group. Finally, it is clear
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that any one of the four quadrants into which the plane ls divided
by the two axes of 8y mmetry Is & fundamental roglon for this group
of motlons.

It ls evident that these concepts e really necessary for the
understanding of the clement B above treated. In particular, the
quantity q/2== R is 1 for q =2 when the fundamental reglon s
a half plane, and is inverscly praportional to the angular sise of
the fundumental region. This evaluation of # agrees with the cholee
of ¥ as 1, beeause of the fundumental half plane in the cane of
vertical syinmetry.

15. The Element HV of Relation to a Network. In many
polygons of the list, ns hus been previously noted, there s obviously
a close relationship of the given polygon to a uniform horizontal-
vertieal network, and this relation is at once recognized as pleas-
ing.

Evidently the corresponding clement 2V in O is connected with
certain motions of the plane in much the same way as tlie clement
V is comneeted with a motion of rotation about a vertieal axis,
and the element B with a motion of rotation about a center. In
faet, such a uniform network returns to its initial position when
any onc of a variety of translatory motions of the plane is made,
while these same motions will take the polygon to a new posi-
tion in which it may in large measure have the same hounding
lines as it had in its first position, This happens when most of
the sides of the polygon coineide with the lines of such a network,
In an incoplete way. then, the clement MV is connected with
mntions of the plane just ns arve the clements V and R.

The most favoruble case is evidently that in which the polygon
has all its sides upon a uniform network of horizantal and vertieal
lines in such wisze that these lines completely fill out a rectangular
position of the network. In this case only do we take IV = 2,
Polygons Nos. 1, 2, 9, 23, 25, 26, 20. cte., illustrate this posgibility,

The choice of a value HV =2 weems natural since there are
essentially o kinds of independent transtatory motions whieh re-
turn the network to its original position; namely, a translation to
the right or left, and a translation up or down, Any other trans-
lation may be regavded as derivable by ecombination from these twa,

A similar case is that in which the sides of the polygon all lie
upon the lines of a uniform netwark formed hy two sots of parallel
lines equally inclined to the vertical, and fill out a diamond-shaped
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partion of the network. But the effect here is less favorable so
that we take NV =1,

It becomes neccssary at this stage to face a somewhat difficult
and vexing question, and assign an index in all cases when the
polygon is agreeably related to a uniform horisontal-vertical or
diamond network. We shall fix upon the following empirical
rules. We define 21V to be 1 if the polygon fills out a rectangular
portion of a horvizontal-verticnl network in such a way that the
first sct of conditions holds, with the following possible exceptions:
one shle of the polygon and its conjugates may fall along dingonals
of the rectangular portion or of ndjoining rectangles of the net-
work; one vertical and one hovizontal line, as well as their con-
jugates, tmay not be oceupled by a side of the polygon,

Ilustrations of this case /{V == 1 are furnished by polygons Nos.
13, 24, 42. 43, 49, 50. 62, 60 of the list given nbove.

HV will also be defined to be 1 if the polygon fills out a dia-
mond-shaped portion of a diamond network with the following
possible cxceptions: one side of the polygon and its conjugates
may fall along dingonals of the diamond-shaped portion or of ad-
joining diamonds of the network; one line in the diamond-shaped
portion and its conjugates may not be occupied by a side.

Polygons Nos, 5, 6. 24, 53, 03, 08 are illustrations of this case
ny =1,

In every caze when IV is 1 we shall demand that at least two
lines of cither set of the network shall be occupied by a side, In
all other eases whatsoever we shall take I/V =0,

It is obvious that the above determination of indices for the
clement IV is largely arbitrary. Nevertheless, it scoms to agree
with the facts chaerved,

16. The Element F of General Form. There remains to be
treated the factor -lealing with general form which we have de-
seribed as an “omnhium gatheruwn” of unfavorable clements (Sec-
tion 9).

The case where /' is 0 corresponds to satisfactory forin, Here
the analysis made in the carlier sections suggests the following
conditions: the minimum distance from any vertex to any other
vertex or side must not be too small--for defiLitencss, we say it is
not to be less than 1/, the maximum distance between points of
the polygon; no angle is to be too small or too large—for definite-
noss wo say not less than 20” nor greater than 160°; the-~ is to be at
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most one niche and Ita conjugates; there Is no unsupported retn-
trant side; there are at most two directions and their conjugate
directions, provided that horisontal and vertical directions are
countedl together as v, o} there is sufficicnt aymmetry to the extent
that not both V' and R are 0.

It is possible to justify this cholee of conditions by reference to
the ninoty listed polygonal forms. Here we may omit the first
two conditions from consideration, since they mercly eliminate
ambiguity of form. The third condition, which admits only one
type of niche, has its origin in the observed fact that only a single
niche may occur, a8 in the Cireck cross (No. 8), without the form
being thereby impaired. The fowrth condition is justified by the
fact already noted that any unsupported retntrant side produces
A disagreeable effect.  Similarly, if there are three or more dist; ot
types of direction, the polygon appears unsatisfactory, unless two
of these are vertical and horizontal, as in No. 43, for inatance; this
fact gives rise to the fifth condition. Finally, the sixth and last
of these conditions is obviously to bo based upon the fnct already
noted, that a lnck of cffective symmetry is not possible with satise
factory form.

By this rule we take account of all the factors of F as these
were listed in Section 9.

We consider next the case in which one and only one of the six
conditions fails and that to the least possible extent there may be
one type of vertex (and conjugates) for which the first condition
fails; or one type of angle for whieh the second condition fails; or
two types of niches; or one unsupported retintrant side; or three
types of direction when verticnl and horizontal directions are
counterl as the same; or hoth V and R may be 0. Under these cir-
cumstances we take # to be 1,

In every other caze we take ¥ to be 2.

All the polygons Nos, 1 to 22 inclusive have F =0, No. 24 is
the first polygon for which F is 1, becavse of its having two types
of niches; No. 23 is the first which has one type of unsupported
reéntrant side, The first case for which # is 1 because of diversity
of directions ix No, 80. ‘The first for which F is 2 is No. 55 which
is also the firgt for which V and R are 0.

17. Summary. The various elements in the complete formula

MoV +E+R4HV _F
- (o]
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have now been defined. The complete definition might be assem-
bled in brief form, Let us, however, merely recapitulute the main
facts:

V =1 if there Is vertical symmetry (otherwisa 0).

E =1 if there in vertical symmetry or the polygon “rests” on
a long cnough hovigontul side; F =0 if there is “unstuble”
equilibrium; & == — 1 {f a0 polygon appears about to fall to one
eide or the othe~,

R =:q;2 if there s rotational symnnetry with angle 360°/q
of rotation, and there are axes of symmetry or axes are strongly
suggested (¢.g., the swastika, No., 411, except that & is taken as 8 for
q > 8, in any other case R =1 if there is conteal symmetry, and
R = 0 if there is not.

IV =2 if there is complete cuincidence of the polygon with
a reetangular part of a uniform horizontal-vertical network (e.g.,
No. 41); HV =1 if there is nearly complete relation to such a net-
work, or complete or nearly complete relation to a uniform dia-
mond network with sides equally inclined to the vertical: HV is 0
otherwise,

F =0 if the form is satisfnctory; F =1 if there i one clement
of unsatisfactory form: as one type of unsupported side; or two
types of niche; or three types of directions when vertical and hori-
zontal are counted as only one direction; or when there is no sym-
metry (1 and &' both 0); # = 2 if there are more than one of these
elements of bad form,

C is the number of straight lines occupied by the sides of the
polygon.

The ninety polygons listed below in order of decreasing M
according to the empirieal formula show the result of a rigid appli-
cation of thiz formula,

It remains for the reader to determine for nimself, by ingpection
of the polygons listed or by consideration of still further polygonal
forms, whether or not the formula is to be regarded as reasonably
sutisfactory.
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