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EDITOR'S PREFACE

Foun Yranrooka preceding this one have been published by the
National Council of Teachers of Mathematica, The firet dealt
with “A Survey of Progress in the Past Twenty-five Years," the
sccond with “Currievtum Problems in Teachiug Mathematics,” the
third with “Sclected T'opics in the Teaching of Mathematics,” and
the fourth with “Significant Changes and Trends in the Teaching
of Mathematics Throughovt the World Since 1010.” These Year-
books have set a standard not only in quality and in appearance
but in cost to those who aro interested in reading them. That the

carbooks have been well received in evidenced by the fact that
the first onc has been out of print for two yoars, only a few copies
of the sccond are available, and there is only a limited number
left of the third and fourth,

The fifth Yenrbook is intended to supplement and assist the
National Committee recently appointed by the Mathematical
Association of Amorica and the National Council of Teachers of
Mathematics in studying the feasibility of a combined one-year
course in planc and solid geometry. However, this Yearbook is not
in any sense a report of this committes. It is intended mainly %o
stimulate discussion among teachers of mathematics throughout
the country and thus to clarify the situation for the committeo as
much as possible,

The reason for having two differont chapters on "A Unit of
Demonstrative Geometry for the Ninth Year” is that we wish to
have different points of view on this somewhat new departure,

I wish to express my personal appreciation as well as that of
the National Council to all the contributors who have helped so

much to make this Yearbook possible.
W. D. RegvE.
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THE TEACHING OF GEOMETRY

By WILLIAM DAVID REEVE
Teachers College, Columbia University, New York City

What “Geometry” Means. The word “geometry” originally
nieant “earth measure.” That ls, geomnetry was at first thought of
as we think of surveying at the present time. This original mean-
ing of the word, however, was abandoned many centuries ago and
“geometry” came to be used to designate that part of mathematics
dealing with points, lines, surfaces, and solids or with some com-
bination of these geometric magnitudes.

I. Two Tyrxs oF GROMETRY

Informal Geometry. At the present time wo recugnize two
types o1 geomeatry, The firet type is commonly referred to as “in-
tuitive geometry,” and the second as “‘dewnonstrative geometry.”
The name “intuitive geometry” is inadequate inasmuch as it does
not include that part of geometry which we often refer to as "ex-
perimental geometry.” The fact i8 that the name “intuitive” has
been used largely because it seemed to be tho best one available.
For pedagogical purposes it would improve the situation greatly and
would mako for clearnesa if we could adopt the term “informal
geometry” in the sense that no formal demonstrations are to be
given. This term would include the other two and we could then
treat the subjeat in the following manner:

1. Intuitive Geometry. Here the child looks at a figure and
says that certain things are so because he thinks they could not be
otherwise, For example, he looks at two inter-
secting lines and ays that the vertical angles z ><
and 2’ thus formed arn equal because * he feols it
in his bones.” His intuition tells him that it is true, and in such a
case, experiment or proof, informal or otherwise, will not be neces-
sary to convince him that his intuition is correct. In fact, if he
mensures & pair of vertical angles, he may not be able to got the

game number of degrees in each.
1
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Pulnearnd denfed that cortainty ean como frons Intultion, but
he gavo it w prominent place In the teaching of matheiantics, He
said:

I have already had occasion to fnsist on the place intuition should hold
in the tenching of the nthemntioal seiences. Without it young miude
could ot mnke w beginning in the understanding of mathematics; they
could not leam to love it and would see in it ouly & vain logomachy; above
all, without intuition thoy would avver become capable of applyiog mathes
matice.

Tho tendency of the modern pure mathomatician, especially
aince the critical investigation of the foundations of Euelid (pare
ticularly his parallel postulate), has been to reduce the use of
intuition to a minimun. Since the subject of geometry has been
considered a commingling of intuition, “the instrument of invens
tion," and logie, “tho instrument of demonstration,” with tho latter
predominating, it scems safe to give each an important réle in
tearhing geometry,

*Carson ! defines intuitions us “merely a particular class of ng-
sumptions «r postulates, such as form the bLasis of evory soicuce.”
Ho saye:

It in this type of exercise ‘n drawing and measurement which I regard as
An attack upon intuition. It replaecs this natural and inevitable process by
hasty gencraliation from experiments of the erudest type. Sovrae advoentes
of these exvreisen dofend th- m on the ground that they load to the formation
of intuitions, und that the pupils were not previously cognisant of the faots
involved. Wut in the first place, o conscious induction from deliberate experie
nllx“t: in .no& an intuition; it lavks ench of the apccial cloments connoted by
the term,

2. Ezpcrimenta! Geometry,  Here, by means of a simple experi-
ment of one kind or another, the child disvovers the truth of some
statcment.  For example, a small child playing with a toy horse
soon discovers that the horse is more stuble on threo legs than on
four.  Or by cutting out & paper triungle, tearing off the three
angles und placing them together (adjacent), the pupil may dis-
cover that their sum is equal to a half turn of a rotating line (180°),
These experiments prove nothing in the deductive sense, but they
bring ubout conviction in the mind of the child and that is what

tUnrson, G, St L., Krsaye on Mathematioad Bducatéum  Chapter on “latultion,”

P20 dinn and Qo 1018,
VI1bid, p. 7.
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we want at this carly stage where the “wonder motive” is the guid.
ing motive in learning,

It is clear that =ome tenchers will aay that intuition never does
anything more than furnish the provisional hypotheses which must
subsequently be investigated for their truth or falsity and that
this can be done by varivus methods which difier in their scientifie
exactness, Such a view would not consider experimental geomotry
as I have discussed it o sepurate type of informai geonietry, but
merely one of the modes of testing provisional hypotheses. From o
peaugogical point of view, however, it may prove useful to adopt
the scheme I have described, It ie cleur thut the child who readily
concludes that vertical angles formed by two interseeting lines nre
equal will not similarly conclude that the sum of the ungles of o
triangle is 180 degrees. Both ure provisional hypotheges, to be sure,
but the first is more or less certain, while the second demands some
kiud of experiment. Here is where paper-folding, models, measure-
ment, and the like, come in when one is teaching geometry infor-
mally or formally. Usually the pupils agree very well as to when
so-called formal proofs (mental experiments) ure necossury,

Content of Informal Geometry, If we consider any definite
objeet, we sce that, uside from such matters us its structure and
its purpose, there are three questions of a geometric nuture that ean
be usked concerning it They are: (1) What is the shape of the
object? (2) What is its size? and (3) Where is it? These questions
represent the initinl stages in the study of geometry; they sceck
for the probuble facts of the case, The first of these questions is
probubly the one that would be asked first by a primitive people
and it gives rise to what we call The Geometry of Form; the
second gives rise to The Geometry of Size; and the thind gives rise
to T'he Geometry of Position,

Reasons for Early Introduction of Informal Geometry, Vuvi-
ous reasons have been given for the carly introduction ol informal
geometty into the curriculum,

1. Historical. It is generally agreed thut mathematios is the
most ancicnt of all the scicnees, that it originuted nuturadly throgh
the necessary processes of cowunting which gave rise to arithmetie
and nmecasuring which gave us geometry,  However, demonstra-
tive geowmetry is no longer taught primarily for the facts of mensi:-
ration,

Mr, Betz, in particuluar, hus muade a very thorough study ol the
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possibllities of a historical approach in the field of intuitive geom-
ctry,  After much research in our large muscums, supplemented by
interviews with leading anthropologists, he has made some of his
findings available. His main conclusion is that the conscious evo-
lution of form was aided materially by the development of the
manual arts among primitive people, and that these manual activi-
tics, in their historie setting, constitute one of the most natural,
profitable, und enjoyuble means of introducing the pupil to o study
of geometrie forms.  No chironological sequenee can be established
for the order in which geometric forms were first dizcovered or
used, but there @s no doubt about the general soundness of the thesis
that manual activities have always been a principal source of
geumetric training.

Among the life situations from which mathematies originated,
the ones most often listed as important are those which have to do
with food, clothing, and shelter, For example, Mr, Betz tries to
explain the origin of some of our most common geometric forns by
relating them to the problem of shelter. Starting with the caveman
who built no shelter, going through the stage where man built one
form ¢f shelter or another to the stone uge where the lhouses re-
sembled ours, we find sume very interesting things.

The Indians, for instance, built cone-shuped tepees presumably
because they were familine with the evergreen tree and had often
found shelter aader its spreading branches,  Moreover, the ancients
doubtless lived in trees at first and then came down when weapons
and fire were discovered, It is known that to this day primitive
people build their shelters first out of the branches of the trees and
then out of poles covered with skins or hides; that from the out-
line of the branches of the tree on the ground they discovered or
first came tu recognize the “cirele’ as a geometric form.,

The construction of circles became necessary in building both
tepees and wigwams (dome-like shelters). The first step taken
was the selection of the center, and at that point a stake was
driven into the ground. To this stake was attached a strip of skin
or an improvised rope (vine), which served as a radius. This rope

' New, expecially, the following: 1) Betz, Wm., Geometry for Junior High Schoola,
published by J. M, Egloff, Rochester, N, Y.; 2) Betz—-Miller~Miller, Work Ruok n
Intuitive Geometry, published by ‘The Harter Publishing Company, Cleveland, Ohilo ;
33 uatrated Talka by DPuptle of the Linoodn Schopl, publiahed by the Lincoln
Schoul of Teachert College, New York, N. Y.; 4) Betzs, Wm,, "lntultion and Logice
tn Uwotaetey,” The Afathematics 2'cacher, 2:3.31,
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was “carried around” the center until a cirelo resulted. This is the
literal origin of the term “circumference.”

If the Indians tried to illustrate their work at all they doubtless
ueed pleture writing like that illustrated here to represent their

tepecs. This would suggest the “triangle” to
any prog-essive sAVAge. /\ A A

Next in order came dome-like shelters—
hemispheres, go to speak, which might easily have been suggested
by the shape of caves or of the sky overhead. These dome-like
shelters were doubtless built by gathering numerous pliable reeds of
suitable lengths and fastening the two ends in the ground to form
what we know to-day as the “wigwam.”

If a savage represented his wigwam by picture writing, he no
doubt drew something which looked like this figure,
and which of course suggested the semicircle to the LD
aforesaid progressive savage.

It has been further suggested that the savages doubtless made
“swent-lodges” out of their wigwams by cutting a hole in the center
into which tuey placed hot stones and water by means of which
steam for the bath was generated. Then when some tall savage
become too hot or desired to stand upright, someone got the iden
of enlarging the place either by lifting the top, as one might uncon-
sciously do, or by digging down into the ground. In either casc a
cylindrical base would result.

It is also known that primitive people often found it convenient
to build an ordinary “lean-to” to break the more biting winds.
Such lean-tos may still be seen in certain parts of our own country.
When the weather became worse, a double lean-to no doubt was
provided for the comfort of the family. Here again a tall savage
who might have gone beneath the lean-to and then
suddenly risen may have suggested the need for a
raised lean-to. This would result in a shelter like that
pictured here, with a rectangular solid as a base. This
form of shelter has become the most common one among all civil-
ized people. Hence the rectangle has become the most common
of all the plane figures.

All these explanations are of interest to any normal child and
from an imaginative standpoint have value in the course.

The historical approach, interesting as it may be, is not the
only way to introduce children to the study of geometry. I have
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tried the recreationul approach through the study of such o topic s
“QOther Spaces than Ours™ * and the children take tremendous inter-
et in the work besides learning many important coneepts and skills,

2, Pedagogica’  There are two reasons why geometry is so dif-
ficult for wuny pupils: first, the high school population to-day is
s different from that of a generation ago. The aupils of to-duy,
us Thorndike ® has pointed owt, differ from those of o generation
o not only in native ability, but also in experiences and interests.
This presents the first important problem, Second, in the tenth
grade the pupil is plunged headlong into the study of formal geom-
etry without any previous prepuration in or experience with in-
formal geometry as u buckground,

The uext problem is, therefore, to consider the importance of
beginning the study of geometry earlier and spreading it over a
longer period of time. If we do this generally in this country many
of the problems to be discussed luter in this Yearbook will be more
easily solved,

Professor Nunn has written some interesting comments upon
what he considers fundamentul stages in the student's development,
He says:

I assume as common ground that the schuol course in geometry should
show two main divisions: (1) a heuristic stage in which the chief purpose
is to order and clarify the spatiul experiences which the pupil hus gained
from his everyday intercourse with the physical world, to explore the more
salient and interesting properties of figurcs, und to illustrate the useful appli-
cations of geometry, as in surveying and “Mongean” geometry; (2) a stuge
in which the chief purpose is to organize into some kind of logicul svstem the
knowledge gained in the earlier stage und to develop it further. In the first
stage obvious truths (such us the trnsversal properties of pueallel hines)
are freely taken for granted. and deduction is ctuployed mainly to derive from
them important und suwriking truths (sueh s the constaney of the angle-sun
of a triangle) which are not foreed upon uz by observation, The second stuge
is marked by an attempt, more or loss thorougheoing and “rigorous,” to
explore the connexions between geometricul truths and to exhibit them as the
lugical consequences of a few simplo principles’

3. Practical. If we wish to make anv kind of object, it must
first be conceived in the mind. [t must then be carefully planned
as to size and the relation of its parts, and finally the parts must

¢ New Smilth, David Eugene, and eve Willinm Dovid, The Traching of Junior
lHigh Xchool Mathematics, pp. 308-3 +. Z-nn aml Company, 1927,

S Photndike, B, L., The Psychology of iphra, po 20 Muemillun 'n,

¢ Nunn, ‘I P, “The Sequence of Schoul Theurems in Guometry.,” The Mathematics
Teacher, O¢tober, 1925,
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be made and earefully placed in their proper position. A tailor,
for exnmple, must think of shape, size (pattern), and position in
his work just as we do in similar situations throughout life.  Of
course we can readily see that all such ideas” origlanted in nature.
One of my seventh-geade children onee wrote in his notebook, “1
think Nature must have bheen the first teacher of geometry.” And
20 she was,

On the practical ride of geometry o great deal of the work will
be form study. The student will come into contact with a great
many of the important forms through his senses. Here ix where
the teacher is so important in guiding the student to get the forms
correctly.  Many students as traditionally taught are blind to the
forms in the world about them.

4. Cultwral. Failure of students to appreciate the forms in life
about them leads to failure to appreciate much of the beauty in the
world, Tn a recent sermon Dr. Harry Fmerson Fosdick said,
“Beauty is a matter of symmetry,”  He might have added, beeause
the fact is well known, “and symmetry is a matter of appreciation
of form in geometry.”

Vienna has been called the center of fine arts and well it may
be. for there can be found some of the finest examples of form
study in the world.

If whatever is made must first be seen in the mind, then M.
Betz is right when he savs that “all beautiful things are the result
of plastic thinking.” We teachers of mathematics need to train our
students to appreciate beauty in form and design. Here is the place
for “creative education”—for “creative thinking.” Here is the
place to feast the imagination, to let it run riot, so to speak; for, as
Coleridge said:

Whilst reason is feasting luxuriously in its proper paradise,
Imagination is perishing on a dreary desert.

The trouble with so much of our teaching of geometry is that we
“feast the reason and starve the imagination.”

Experience of Other Countries. The experience of some of the
Furopean countries ought to convince us of the value of an in-
formal geometry course in the seventh grade. For many years
the mathematics teachers in Germany and England have given a
great, deal of attention to geometry in the earlier vears of the child’s
school life. Even as early as 1876 Herbert Spencer wrote the fol-
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lowing letter to I, Appleton and Company, who were then about
to republish in the United States a book on “Inventional Geometry"
written by his father, William George Spencer. This book had
already appeared in England:

London, June 3, 1876

Messm, D. Appleton & Co.: I am glad that you are about to republish,
in the United States, my father's little work on “Inventional Ucometry.”
Though it received but little notice when first issued here, recognition of jta
usefulness has heon gradunlly sproading, and it has bheen adopted by some of
the more rational sciencosteachers in schouls. Several years ago I heard of jts
introduction at Rugby, -

To its great efl'ciency, both as & means of praducing interest in geometry
and as » mental cisipline, T ean give personal testimony, 1 have seen it
create in a clase of boys g0 much enthusinem that they leoked forwnrd to their
geometryalosson as a chief event in the week., And girls initiated jn the system
by my father have frequently begged of him for problems to solve during their
holiday: .

‘Though T did not myself pass through it—for I commenerd mathematics
with my uncle before this method had been claborated by my father—yet 1
had experience of its offects in n higher division of geometry, When about
fifteen, I was carried through the st udy of perspective entirely after this same
method: my father giving me the successive problems in such order that I was
enabled to solve every one of themn, up to the most complex, without assistance.

Of course, the use of the method implies capacity in the teacher and real
interest in the intellectual welfare of his pupils. But given the competent man,
and he may produce in them a knowledge and an insight far beyond any that
can be given by mechanical lesson-learning.

Very truly yours,
HERBERT SPENCEN.

The author himself wrote the following introduction for the

American edition:
INTRODUCTION

When it is considered that by geometry the architect constructs our build-
ings, the civil enginecr our railwavs; that by a higher kind of geometry, the
surveyor makes a map of a country or of a kingdom; that a geometry still
higher is the foundution of the noble science of the astronomer, who by it not
only determines the diameter of the glohe he lives upon, but as well the sizes
of the sun, moon, and planets, and their distances from us and from each
other; when it is considered ulso, that by this higher kind of geometry, with
the assistunce of a chart and 1 mariner's compass, the sailor navigates the
ocean with success, and thus brings all nations into atnicable intercourse—it
will surely be allowed that its elements should be as accessible as possible,

Geometry may be divided into two parts—pructical and theoretical: the
practical bearing a similar relation to the theoretical that arithmetic does to
algebra. And, just as arithmetic is made to precede algebra, should practical
geometry be made to precede theoretical geometry,
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Arithmetic iz not undervalued beeause it is inferior to algebra, nor ought
practical grometry to he despised beeause theoreticul geometry is the nobler
of the two.

However exeollent arithmetic may be as an instrument for strengthening the
intellectunl powers, geometry is far more eo; for as it is easier to sce the
relation of surfuee to surfuee ane of line to line, than of one number to nne
other, 8o it is casier to induce a habit of reasoning by means of geometry
than it is by means of arithmetie. If taught judiciously, the collateral advan-
tages of practical geometry are not inconsiderable,  Residea introducing to aur
notice, in their proper order, many of the terme of the physical scicnces, it
offers the most favorable means of comprehending those terms, and impressing
them upon the memory. It educates the hand to dexterity and neatness, the
eye to accuracy of perception, and the judgment to the appreciation of beau-
tiful forms. These ndvantages alone claim for it & place in the education of
all, not e.cepting that of women Had practical geometry been taught as
arithmetic is taught, its value would scarcely have required insisting on. But
the didactic method hitherto used in teaching it doea not exhibit its powera
to advantage,

Any true geometrician who will teach practical geometry by definitions
and questions thereon, will find that he ¢an thus create a far greater interost
in the science than he can by the usual course; and, on adhering to the plan,
he will perceive that it brings into earlier activity that highly valuable but
much-neglected power, the power to invent. It is this fact that has induced
the author to choose as a asuitable name for it. the “inventional method"” of
tenching practical geometry,

He has diligently watched its eTects on both sexes, and his experience en-
ables him to say that its tendency is to lead the pupil to rely on his own
resources, to systematize his discoveries in order that he may use them, and
to induce gradually such a degree of self-reliance as enables him to prose-
cute his subsequent studies with satisfaction: especially if they should hup-
pen to be such studies as Euclid’s “Elements,” the use of the globes, or
perspective,

A word or two as to using the definitions and questions. Whether they
relate to the measurement of solids, or surfaces, or of lines; whether they
belong to common square measure, or to duodecimals; or whether they apper-
tain to the canon of trigonometry: it is not the author's intention that the
definitions should be learned by rote; but “e recommends that the pupil
should give an approprinte illustration of each as a proof that he under-
stands it.

Again, instead of dictating to the pupil how to constrict a geometrical
figure—say a square—and letting him rest satisfied with bein;: able to construet
one froin that dictation, the author has so organized these questions that by
doing justice to each in its turn, the pupil finds that, vhen he comes to it,
he can construct a square without aid.

The greater part of the questions accompanying the cefinitions require for
their answers geometrical figures and diagrams, accuritely constructed by
means of a pair of compasses, a scale of equal parts, ard a protractor, while
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others require & verbal answer merely, In order to pluce the pupil as much
a8 possible in the state in which Nature plices him, some questions have been
asked that invah e an imposibility,

Whenever a depurture from the scientific order of the fuestions ocours,
such departure has boen preferred for the suke of wllowing time for the pupil
to 2olve xome diffieult problem; inastnuch us it tetids fur more to the formation
of & self-relinnt charaeter, that the pupil ghoull be allowed time to solve such
diflieult probloms, than thut he should be either hurried or nssisted,

The inventive power prows best in the sunshine of encourageient. lts
first shoots are tender,  Upbraiding a pupil with his want of skill, uctse like a
frost upon him, and materially checks his growth. It is partly on account
of the dormant state in which the inventive power is found in most persons,
and partly that very yvoung beginners may not feel intimidated, that the
introduetory questions have been made so very simple.

Early Arierican Textbooks in Informal Geometry, Soveral
books written in this country many years ago show that the idea
of an informal geometry course is not only not a new one, but has
even been considered  important by progressive teachers and
thinkers for a long time. The preface of First Lessons in Gcometry,
written by Thomas Hill in 1854, which is now out of print, reads in
part as follows:

I have long boen sceking a Geometry for beginners, suited to my taste,
and to my convictions of what is a proper foundation for scientific education,
Finding that Mr. Josinh Holbrook agreed most cordially with me ia my
estimate of this study, I had hoped that his treatise would satisfy me, but,
although the best I had seen, it did not satisfy my needs. Meanwhile, my own
children were in most urgent need of a textbook, and the sense of their want
has driven me to take the time necessary for writing these pages. Two
children, one of five, the other of seven and a half, were before my mind's
eve all the time of my writing; and st will be found that children of this age
are quicker of comprehending first lessons tn Geometry than those of fifteen.!

Many parts of this book will, however, be found adapted, not only to
children, but to pupils of adult age. The truths are sublime. I have tried
to present them in simple and attractive dress.

I have addressed the child’s imagination, rather than his reason, because
T wished to teach him to conceive of forms. The child's powers of sensation
are developed, before his powers of conception, and these before his reason-
ing powers.  This is, therefore, the true order of education; and a powerful
lngical drill, like Colburn’s admirable first lessons of Arithmetic, is sadly out
of place in the hands of a child whose powers of observation and conception
huve, as yet, received no training whatever. I have, therefore, avoided rea-
soning, and simply given interesting geometrical facts, fitted, I hope, to arouse
a child to the observation of phenomena, and to the perception of forms as
real entities.

' The {talics are HIll's.
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I give this in some detail in order to show that the idea of an
intuitive geometry course is not so reeent in this country as =ome
teachers seem to think, The large munber of books ¥ similar to
Hill's, written since 1830, will be somewhat surprising to many
teachers who are not friendly to the junior high school conrse in
mathematies and who can think of a great many rearons for con-
tinuing to beliove that what they already think is the last word in
teaching geomotry,

Demonstrative Geometry., As the human mind develops it
does not demand merely probable faets; it seeks to prove that these
facts are real. It is this attitude which has led the race to seek
to demonstrate the truth of its statements concerning geometrie

figures,
If in intuitive geometry, for example, the teacher tells the pupil
that in this ficure a = b and o+~ him to express an ¢

opinion on the relation between the size of angles
4 and B, the pupil will naturally say that these
angles are equal. It is not probable that any so- 4 s
called logical proof that his inference is correct will noticcably
increase his confidence in the validity of his judgment upon any
proposition of this degree of simplicity,

When, however, the pupil meets the Pythagorean theorem, his
intuition leads him to conelude its truth for only very special cases,
His greater maturity of thought should now tend to lead him to
desire to prove what is not so plainly evident as the theorem re-
lating to the isoceles triangle. When that “urge” toward demon-
stration appeurs, he is ready for what is called demonstrative
geometry.

To some minds this *“urge’ comes carly; to others it comes late:
to a few it comes not at all. Until it comes, however, the pupil
can profit but little from the study of demonstrative geometry.
He must accept on faith the simpler facts of geometey, When, if
ever, he comes to appreciate the value of a demonstration, he will

$ 1. Camphbell, W, T., Obrervational GGeometry, American Book Co. 1804,

20 Coates, Jo VUL L Biest Book oof Geomeetry, Maemitlan Col 1012,

3. ailor, 1. N Ineentional Geametry, The Century Co,, 100g,

4. Fowler, . W, Indurtive Geometry, published by the author, 189635,

O Hill, Go AL oA Geometry for Beginners, Ginn and Co,, 1897,

. Hornbrook, A, R, Conerete Goometrp, Amerlean Book Co,, 1895,

7. MueDonnld, J. W, Geometry in the Seegndary School, Willard Small, 1880,

8. Row, T\ 8., Gesmetric BErcrcises in Paper Pobling, Qpen Court Publishing
Co., 1005,

Q. Wright, D, 8., Krercises in Conercte (eometry, . C. Heath and Co., 1807,
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sce the significance of the systematized scheme or chain of geometry
and will then take an interest in proving most of the propositions
which he once took for granted.

For that matter, Euciid did not prove that if in the triangle AL .
we know that @ = b, then 24 = /B because anybody doubted it,
but because it was a part of his logical chain of geometry,

Deduction and Proof. It will be of interest here to note Car-
son s distinction between “deduction” and “proof.” He says:

Turning now to the more educational aspect of the subject, the first
problem which confronts us is this: children, when they commence mathe-
matics, have formed many intuitions concerning space and motion; are they
to be adopted and used as postulates without question, to be tacitly ignored,
or to be attucked? Hitherto teaching methods have tended to ignore or
attack such intuitions; instances of their adoption are almost non-existent.
Thiy statement may cause surprise, but I propose to justify it by classifying
methods which have been used under one or other of the two first heads,
and I shall urge that complete adoption is the only method proper to & first
course in mathematics,

Consider first the treatment of formal geometry, either that of Euclid
or of almost any of his modern rivals; in every case intuition is ignored to
o greater or less extent. FEuclid, of ret purpose, pushes this policy' to an
extreme; but all his competitors have adopted it in some degrce at least.
Deductions of certain statements still rersist, althoush they at once com-
mand acceptance when expressed in non-tcchnical form. For example, it is
still shown in elementary text-books that every chord of a circle perpendicular
to u diameter is bisected by that diameter. Draw a circle on & wall, then
draw the horizontal diameter, mark a point on it, and ask any onme you
please whether he will get to the circle more quickly by going straight up or
straight down from this point. Is there any doubt as to the answer?® And
are not those who deduce the proposition just quoted, from statements no
more acceptable, ignoring the intuition which is exposed in the immediate
answer to the question? All that we do in using such methods is to make
& chary use of intuition in order to reduce the detailed reasoning of Euclid’s
scheme; our attitude is that s*atements which are accepted intuitively should
nevertheless be deduced from others of the same class, unless the proofs are
too involved for the juvenile mind. We oscillate to and fro belween the
Scylla of acceptance and the Charybdis of proof, according as the one 18 more
revolting lo ourselves or the other to our pupils

At this point I wish to suggest that a distinction should be drawn between
the terms “deduction” and “proof.” There is no doubt that proof implies
access of material conviction, while deduction implies a purely logical process
in which premises and conclusion may be possible or impossible of accept-

' There 18 often apparent doubt: but it will usually be found that this {s due
to an attempt to est:mate the want of truth of the circle as drawn.
* The {talics are mine.—Rditor.
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ance. A proof is thus a particular kind of deduction, wherein the premises
are aceeptable (intuitions, for examj le), and the conclusion is not acceptable
until the proof carries conviction, in virtue of the premises on which it is
based. For example, Fuclid deduces the already acceptable statement that
any two sides of n triangle are together greater than the third side from the
premise (inter alin) that all right angles are equal to one another; but he
proves that triangles on the sume base and between the same parallels are
equal in area, starting from acceptuble premises concerning congruent and
converging lines,

The distinetion has didnctic importance, because pupils can appreciate
and obtain proofs long before they ecan understand the value of deduciions)
and it has scientific importance, because Lhe functions of proof and deduction
are entirely different®  Proofs are used in the ercetion of the superstructure
of a scicnce, deductions in an analysis of its foundutions, undertaken in order
to ascertain the number and nature of independent assumptions involved
therein. If two intuitions or assumptions, 4 and B, have been adopted, and
if we find that B can be deduced from A, and A from B, then only one
assumption is involved. and we have so much thie more faith in the bases
of the science. Herein lics the value of deducing one accepted statement
frc;m a:other; the element of doubt involved in each acceptance is thereby
reduced.

II. Purrose oF STupyYING (REOMETRY

Purpose in Teaching Tiemonstrative Geometry. The first
important question for any tercher of demonstrative geometry to
settle is the purpose he has in'nind. A great deal of our failure to
agree on certain matters af .urricuium construction is due to the
fa3% that we do not ngree on the valid aims in teaching the various
topics. That is why senior high school teachers of geometry so
often object to the teaching of informal geometry below the tenth
grade. The commuu objection is that if any geometry is taught
below the tenth grade the pupils who come to them will be handi-
capped in the work of the tenth grade. This is largely a miscon-
ception of the real situation and is due to lack of understanding of
the purpose in teaching informal geometry in the seventh and eighth
grades or & unit of demonstrative geometry in the ninth grade,
or both.

We must continnally (cpeat and emphasize the fact that the
purpose of geometry is to make clear to the pupil tie meaning of
demonstration, the meaning of mathematical precision, and the
pleasure of discovering absolute truth. If demonstrative geometry
is not taught in order to enable the pupil to have the satisfaction
of proving something, to train him in deductive thinking, to give

1 The italics are mine.—Bditor.
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him the power to prove his awn statements, then it is not worth
teaching at all,

Someone may ask, If tralning in construetive thinking is the
big objeetive, why not give o course in pure logic? The abhswer is
that geometry furnishes appropriate figures to illustrate and apply
the essentinl types of thinking, while pure logie does not.

Who Can Profit by Studying Geometry? Informual geometry
represents about all the geometry that many pupils are capable of
understanding. If all pupils had strong native ability, thev could
dispense with a considerable part of informal geometry and could
proceed with only a slight introduction to the demonstrative stage.
As it stands to-day, however, with almost all children going to sec-
ondary schools, informal geometry constitutes about all the training
in geontry that a considerable body of our pupils will be able to
absorh with profit,

On the other hand, the pupil with a fairly high intelligence
quotient will derive more pleasure and interest from doing than
from merely depending upon his intuition; he will obtain satisfnc-
tion in demonstrating that his intuition is correct. To do this he
must learn to give reasons for every step in the thinking process; in
other words, to demonstrate.  This applies to all subjects. The
natural sciences are not taught from a vocational point of view, but
for purposes of general information and because they furnish the
student an opportunity to colleet and test caipirieal facts, Simi-
larly, mathematies in general and demonstrative geometry in par-
tieulawr are not taught to make engineers out of those who study
them: the former is taught for the gencral information it affords in
one of the great branches of knowledge so useful in life; and the
latter s taught beeause it gives exercise in deductive thinking
where demonstration is independent. of external appearances,

If we can develop some kind of prognostié test in demonstrative
geometry that will tell us who can profit by such work, or if in
some way we can select those who will be able to succeed in the
study of the subject, any pupil whose mentality indicates a prob-
uble low degree of success should be excused from taking geom-
etry.  Wo must insist, however, that the responsibility of saying
who can profit by a study of geometry and who cannot profit by it
niust rest on people qualified to give the proper advice. That is an-
other reason why a trial course in demonstrative geometry in the
ninth grade appeals to so many teachers wien the purpose of teach-
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ing it is clenrly understood. From such a course it should be pos-
mible to prediet with some mensure of necaracy whether o pupil
ought to go on with the study of demonstrative geometry in the
tenth grade,

Geometry the Supreme Test. l'or xome the #twdy of geametry
is the real test of u real and abiding lnterest in mathematies,  Pro-
fessor Nunn told me that he got his first veal theill when he dis.
covered for himeelf that the sum of the angles of w triangle is 180",
It is reluted vhut Newton showed little promise until he touk up the
study of geometry, The point is that we never can tell what a pupil
wi't do il he is properly aroused.

Cmissions und Additions. In line with the purpose of teaching
geometry previously stated, we need to investigate earcfully the
conditions which work against obtaining the best results in the
teaching ol geometry, and to discover the possible means ol remes
dying existing nuperfections.  These imperiecetions may be remedied
by omitting some of the unnecessary and unimportant phases of
the geometry work, by substituting better material, and by add-
ing such new subjects or ideas as shall make the subject matter
more desirnble from the standpoint of both pupil and teacher,
Moreover, we need to improve our methods of teacling.

We have all heard the complaint that students are unuble to
apply to other seiences the principles which they are supposed
to have learned in mathematios, It is such complaints as this
and thie realization of their justness that have cuused mathema-
ticiuns to turn their minds to the improvement of the subject
matter in the stwdy of secondary mathematies.  Dr. Osgood of
Huarvard once said, “A student’s ability to prove a proposition is
no ussurance that he knows it.  The test as to whether hie knows
it is whether he can use it”

In no event will all authorities agree upon the best plan for
betterment.  There is a tendeney to go from one extreme to the
other, but it ought to be possible to study the situation intelli-
gently and then adopt whatever plans are considered best suited to
particular needs.

It has been suggested that all propositions not bearing on subse-
quent work in the same cousse should be omitted. Some teachers
digsapprove of this plan because many such propositions give pleas-
ure and make the work interesting to the student, Certainly we
want to make the work as interesting as possible, but should we
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Keep such mate:ial in the course, even though intercsting in the
classroom, if something better, bearing on aubsequent material, is
tu be had?

Others say that much time is wasted in work on original exer-
cizes which by many teachers are made a fetich, that “a proposition
whose solution is given by the teacher or by one or two pupils
out of u clags of forty, for the amazement of interested dullness,
or the vacant stare of apathetic indolence of the class, to be
copied mechanically ns an exercise In penmanship and drawing,
ix no more an original than any of the propositions in the regular
test.” U, as has been said, the object of preparatory instruction
ix twofold—(1) to put the pupil in possession of certain facts, and
12) to develop in him mathematieal power—it 18 equally true that
the routine method of handling originals does very little *oward
nccomplishing the first object and practically nothing toward at-
taining the second.

The geometry repert of the Central Assocation of Science and
Muthematics Teuchers for 1808 is full of suggestions as to omis.
sions and additions. It eays, ‘“The proposals of the committee are
meant to be evolutionary, not revolutionary in tendency; and each
suggestion i8 intended as one which could be adopted without de-
parting far from curcent texts and methods, The committee ex-
pects no sudden, drastic reforms in the teaching of geometry, but
hopes that those who may have been accustomed to look upon cur-
rent texts as ideal and their logic as unussailable will tolerate eritie
cism and concede the desirability of reforms. In any event, it is
not advised that many changes be introduced hastily, but that, so
far as possible, the teacher become familinr with cach change be-
fore putting it into practice in teaching."

Criticisms and Suggestions. 1t would be diflicult to list all
the criticisms and suggestions that have been made for improving
the situation in geometry. The following are a few of those r-ost
frequently offered,

1. All geometry has cultural value, Omit “culture for culture’s
suke” and teach a wmore practical geometry,

2. The question of rigor is overrated and overdone.

3. There ig too much hair-splitting of definitions, and too much
time wasted defining terms,

4, Too many theorems that need no proof are proved. Intui-
tion or experience should be substituted in such cases.



THE TEACHING OF GFOWETRY 17

5. More material is crowded into a single ycar than a child
fourteen or fiftecn years of age can absorb.

6. The notation in many textbooks is too elaborate, and besides
it obscures the thread of logic. For example, a line can be repre-
sented by o single letter and so can an angle.

7. Textbooks in geometry do not discriminate carefully or suf-
ficiently between the essentials and the nonessentials. They deluge
the pupil “with a great number of stock propositions a large pro-
portion of which are unimportant theorems.”

8. Of all the suggested omissions in geometry the subject of
limits has been given as much attention as any other part of geom-
etry. Nearly every mathematics teacher who has suggested any
omissions in geometry at all, so far as I know, has suggested at
least less teaching of the theory of limits, Fortunately, most
teachers of geometry now omit all reference to this subject, al-
though it has taken a long tinie to bring about this change. In
fact, some of the newer geometries still give it space in a supple-
ment.

Professor Alan Sanders, in the opening address to the Associa-
tion of Ohio Teachers of Mathematics and Science at Columbus,
December 20, 1904, discussed at length the question of limits and
showed why the subject was introduced into our American texts.
He also took up specific examples of the use of the theory of limits
and showed the inconsistency in their applieation to particular
proofs. He closed his argument with the following statement:

The fact that 80 per cent of the geometries used in this couptry give no

proof for the propositions quoted relating to cylinders, cones, and spheres
is & matter worthy of the serious consideration of the teachers of geometry.

Professor Lennes, in commenting on what Mr. Sanders said at
that time, interpreted the latter by saying that what Mr. Sanders
meant to say was that the proofs attempted do not as a matter of
fact prove anything. And he then adds, with an exclamation to
the shades of Euclid:

All the teachers of geometry in this country combined can no more prove
these theorems than they can raise a two-year-old calf in a day.

It is & “sine qua non” that shoddy proof must go. Clearness and honesty
of thought is the ideal of mathematics if of any field of intellectual activity.
If it should not be found possible to formulate & solid treatment of limits
adequate to meet the nceds of elementary geometry and at the same time
sufficiently simple to be understood by the pupil, then either the topics
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where limits are now used wust be omitted or a comprehensible treatment
must be devised without the use of limits. In case the latter alternative
were chosen, one might consider only those scgments, angles, ete,, which are
commensurable.  Of course, it would have to be stuted explicitly that such
treatment is not complete but that we usume the theorcms without proofs
in case the segments, ete, are incommensurable. The length of a cirele
might be considered as the perimeter of o regular polygon of, say, one million
sides, ete. Our results would then be accurate within the limits of obscryaa
tion. At every step we should have to be perfeetly clear as to what we ure
doing. The treatment could cusily be munaged so as to be entirely logioul
throughout.

IIL ExteNt oF THe Cotkskg

Conditions Controlling the Selection of Content. The pros-
sure upon the curriculum, the new subjects that are clamoring for
place in the sun, und the demands that we break with tradition—
all these problems have caused educators to question the extent
to which geometry should be carried. The wisdom of teaching
solid geometry in particular has been seriously questioned. In fact,
solid geometry as a separate half-year course is rapidly becoming
passé in our schools. It is not even required for entrance in some
of our enginecring schools and colleges, us, for example, the follow-
ing statement shows:

Sulid Geometry —Thouse who tuke this course have already had one year
of Plane Geometry to provide a foundation in geometric methods and proc-
esses.  In Solid Geometry much stress should be laid on the development of
spuce perceptiou. Pupils should be cncouraged to make niodels, and then
(0 druw them. The mensuration formulus relating to polyhedra, cylinders,
conew, and spheres should receive special attention,

This subject is no longer required for admission to any college of the
University of Nebraska, or of « considerable number of other large univer-
gities. It is therefore being dropped from the curriculs of many high schools.
Substitution of a fourth scmester of Algebra will be accepted by the Uni-
versity from those students who wish to offer sIX points entrance credits in
Mathematics. Such students miy then enter with three points in cuch sub-
ject, including Solid Geomietry, us herctofore.

Schools which do not offer a course in Solid Geometry would do well
to sce that the standard mensuration formulus from this subject are used
sufficiently both in Algebra and in Plane Geometry to make the pupils quite
familiar with them. They should include the formulas for the surface and
volume of parallelopiped, cylinder, cone, and sphere.  Proofs may be omitted

B Univeraity Ectension Xews, Vol. 8, No. 13, July 1928, Cniverslty Extension
Division, Uuiversity of Nebruska. .
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A Combination Course in Plane and Solid Geometry., I am
not taking the position that solid geometry should go or that it
should stay, but I do wish to point out that if it is to stay it will
probably have to be combined with plane geometry and bhe taught
in the tenth vear. In answer to this suggestion some teachers will
complain that they cannot teach plane geometry in one year, much
less solid geometry. Such an attitude presupposes a definite
amount of “ground” to be covered and this is a myth, except in the
case of those who are bound by extramural examinations. We can-
not teach all of geometry or all of any other subject in a lifetime.
Moreover, we do not teach geometry for the purpose of teaching
any given list of propositions, but to develop the ability to demon-
strate. The fact is that many pupils can learn all that is worth
learning in plane and solid geometry, and many others will learn
little if any. The rule of common sense—not, as is so often the
case, the rule of prejudice—should determine the extent of the
course.

Some teachers say that they wish to preserve a distinct place for
solid geometry in the schools because it is the subject which teaches
spatial relationships. However, trigonometry will do that as well
or better and it has other advantages not credited to solid geometry.

If solid geometry is to be preserved, it can be done in three
ways:

1. It can be taught as a separate unit in the tenth grade much
as it is done to-day, except that it must be more concentrated.

2, It can be fused with plane geometry at the places where such
fusion seems most desirable and possible.

3. It can be taught intuitively.

The advantages and disadvantages of each plan should be
discussed and some intelligent conclusion reached.

European Practice. In the European scliools the number of
propositions studied is generally smaller than has until recently
been the case with us, and the teaching of the subject is extended
over & longer period of time.** Our practice must be more uniform
than the practice in FEuropean schools because our penple move
about so much, and this makes it harder for us to arrange our
courses and the sequence of work to suit local needs. Besides, Euro-
pean schools take several years to do what we crowd into one year

¥ ALl teachers of mathematics in this country should be familinr with the report
of the British Association entitled The Teaching o} Geometry in Schools. A Ke-
port pr-.ared for the Mathematicul Asseciation. G. Bell and Sons, London.
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with disastrous results, The rise of the junior high schoo! idea,
however, has enabled us to take advantage of some of the best ideas
in European practice,

Along with the development of the junior high school course in
informal geometry we have also reduced the traditional number
of plane geometry propositions** which we expect a student to
muster and have increased considerably the number of original exer-
cises. Not only that, but these exercises are more carefully chosen.
As a result, they are simpler, more interesting, and on the whole
better adapted to our purpose of having the majority of our stu-
dents acquire the method of demonstration. We should not limit
the work to only those who possess rare mathematical ability and
who expect to be experts,

Algebra in Geometric Proofs. There has been a great deal of
discussion concerning the advisability of using algebra in geometric
proofs. The ,urists are in favor of leaving algebra out altogether,
in spite of the fact that the modern view of mathematics permits
geometr, and analysis to complement each other. At the other
extrelue are those who try continually to force algebra into a geo-
metric proof whether or not it properly belongs there.

A more satisfactory view would seem to be to use algebra in a
geometric demonstration when the railure to do so would make the
proof unusually difficult. Likewise, in such propositions as the
Pythagorean theorem it is not only easier but better to generalize
the theorem by including the other two metrical cases about the
square on the side opposite an acute angle and the square on the
side opposite an obtuse angle, and to use both algebra and trigo-
nometry in proving it. Such a procedure will save time that can
be devoted to the salient features of solid geonetry.

IV. FounpaTioNs oF GEOMETRY

Fundamental Principles and Definitions. The traditional plan
of proving propositions is to refer back to statements already
proved. However, there is no proposition before the first one by
means of which the first one is proved; so we decide to set up cer-
tain statements that we are willing to accept without proof. These
conventional statements are called postulates. Besides postulates
we use certain general assumptions, common to all mathematics,

1¢ S¢e the College Entrance Examination Board's Syllabl In Algebra and Geometry.
Documents Numbers 107 and 108.
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called arioms. I is now genernlly understood that the number of
assumptions should be small, but not too small.}s

Nature and Purpose of Definitions. Wherens the modern ten-
dency is to omit all memorized definitions in arithmetic, and for
the most part in algebra, the opposite is true in geometry. Here the
proof of a proposition may be based upon certain definitions as
well as upon preceding proofs or ussumptions (postulates or
axioms). As examples of terms which are used in proofs and which
should therefore be memorized. we have right angle, perpendicular,
bisector, perpendicular bisector, and so on. Here again, the text-
book or the teacher should guide the pupil in deciding whieh defini-
tions need to be memorized.

It is not possible to define all termns adequately; some of them
must simply go undefined. Such terms as point, line, plane, and
angle are good examples of things that might better go undefined.
The failure to memorize definitions for these terms does not, how-
ever, excuse the pupml for using them improperly, He is required
to use the term elcetricity although he cannot define it.

How Precise Must a Definition Be? All teachers of gecometry
who know anything about the situation at all,
know that nrecizion of definition is very diffi-
cult. Let the teacher who feels that absolute
accuracy is necessary first define a polygon and
then decide whether these figures come within

his definition. If this causes himn no worry, let
him figure out the smallest numnber of vertices
that a polygon may have, and then ask himself
whether a regular digon (two-angled polygon) is
possible. and if not, why not.
Let him further inquire whether the diagonals
of a quadrilateral lic inside or outside the figure,
and consider such a simple cuze as the one here D-—---
shown, in which the dingonals are A€’ and BD.

Finally, let him consider whether a quadri-
lateral is formed by intersecting lines, and how
many diagonals are possible, and then see if his A
stutements mect all the conditions suggested by
the figure here shown.

18 For a list of such assumptions the reader i< peferred to any good modern text
in geometry.
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Such questions should not be introduced in the early stages of
geometry. At that time a pupil may properly think of a quadri-
lateral as convex, as in the accompanying figure. This figure, as he
C properly conceives it, has only two diag-

onals, shown by the dotted lines AC and
BD. The teacher, however, should realize
that in general a quadrilateral is formed by
A B four straight lines lying in a plane. If we

adopt the modern phraseology we say that
these lines intersect in points at a finite distance or at an infinite
distance, and that in any case we have three diagonals, even though
some may be infinitely far away. For example, there are simple
cases that may be profitably considered by the teacher and perhaps
referred to later in the pupil’s course similar to these illustrations:

D
D C
c‘ DC
A A *
b A B 4 2

Such considerations may suggest more forcefully to the teacher
the undesirability of committing to memory definitions that are
not actually used in proofs, since we are constantly extending our
ideas of even very common terms, and any claim for absolute pre-
cision of definition is sure to be a hindrance to progress and will
probably be withdrawn as we proceed in our work.

Distinction between Theorems and Problems. The theorems
of geometry are concerned with proving geometric statements; the
problems are concerned with the construction of geometric figures
in a plane, the only instruments allowed being an unmarked
straight-edge and a pair of compasses. In solid geometry we as-
s1me that the necessary figures can be constructed, and so we do
not attempt to show how this can be done. The term proposition
is commonly used to cover both theorem and problem.

In early days, upwards of two thousand years ago, the writers
on plane geometry did not attempt to prove any theorem until they
had shown that the figure could be constructed. For this purpose
they placed some of their problems of plane geometry first, and in-
troduced others as needed. At present we generally assume that
all figures in plane geometry can be constructed, as we assume
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for solids, but we prove this later in a4 number of important
cases,

We might go even farther, for it would be possible and logieal
to assume all constructions in plane geometry, iust as we assume
them in more advanced work. We do this in some cases, as it is;
for example, we would not hesitate to ask a student to tell the
number of right angles in the sum of the interior angles of a regular
seven-sided polygon, although it is impossible to construct such a
figure with the limitation imposed upon plane geometry; namely,
of using only the compasses and the straight-edge.

Because of this modern view of the case, we generally place
the problems at the end of any particular book or chapter although
they might, as with ancient writers, be scattered among the
theorems.

Number and Importance of Theorems. The number of pos-
sible theorems in plane geometry, and similarly in solid geometry,
is apparently unlimited. New propositions are continually being
discovered, most of them being simple deductions from propositions
already known. The latter are usually theorems upon which a con-
siderable number of others depend; that is, they may properly be
designated as basie propositions.

Among the basic propositions the following are particularly im-
portant:

1. The congruence theorems,

The cquality of alternate ungles in the case of parallels.
The sum of the angles of a triangle.

The theorems rela ing to siniilar figures.

The Pythagorean theorem,

. Measurcment of an angle formed by two chords.

So important are these few propositions that, if we had no
others with which to work, we could, with these alone, prove a
large proportion of the original exercizes of geometry. Indeed, it
would not be bad practice to postulate all but the third and spend
the time finding out how many exercises could be mastered with
these as a foundation. A pupil would be fully as well off so far as
mere truining in logie ix concerned, although he would not have such
helpful muthematical cquipment ws he would have if he followed
the usual nlan.

fince the number of busie propositions in plane geometry is often
assumed to be about one hudred, or hawdly more than three for

poo




24 FIFTH YEARBOOK

every school week, have we time under this plan for thé important
part of geometry—the exercises: nyiced, huve we time for the alter-
native plan of giving a fair vl /N ceometry in this same year?
It is a mistaken idea thar the best resalts require the repetition of
the proof of every proposition in any particnlar textbook, A
teacher who is able to urouse the interest of his pupils in inde-
pendent work with the exercises, or in tinding other exercises that
are new to them, may safely discuss in class the proofs of the less
important theorems, with a brief citing of the reasons involved in
each step.

Model Proofs. Given this number of basic propositions, the
question arises as to how they should be presented. Should we
give the proofs in full? Should we give them in full at first and
gradually leave more and more gaps for the pupils to fill in order to
make the proofs complete? Should we dictate the propositions and
have the pupils work out the proofs? Should we follow a syllabus
instead of dictating, still leaving the proofs to be worked out?
Should we employ intuition, pretend to discover the propositions,
and then invent our own proofs, perhaps working them out by
having the entire class take part, we ourselves guiding them in the
right track? Should we give suggested proofs, the pupils following
out the suggestions, ourselves pretending to encourage an original-
ity which the suggestions render impossible? Or should we make
some other combination or experiment, knowing very well that the
same thing has doubtless been attempted many hundreds or thou-
sands of times before? Given a teacher with enthusiasm and per-
sonal magnetism, any one of these plans will yield fairly good re-
sults.

The plans are not equally good, however and world experience
has generally favored the use of a textbook that gives the proofs
of the early propositions in full, gradually reducing the degree
of completeness and leaving the pupil more and more upon his own
responsibility in completing the demonstration.

The purpose in giving a complete proof at first, with the reasons
stated both by section number and in full form, is that the pupil
may have a model before him. The reason for giving substantially
complete proofs thereafter is that an approximate model may be
before him even after he has come to rely more fully upon himself.
It should never be assumed that proofs are given only to be mem-
orized; they are given in order that a student should have, every
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day or two, & model for his treatment of the important exercises,
these conrtituting the field in which his originality, his insight into
geometry, and his ability to think logically are to be shown,

Wheti: 7 the pupil writes his reasons under each statement of the
proof or at the righi of the statement is a matter of little moment.
In the printed page a larger type and a more striking arrangement
can be used if the reasons follow the steps, but in written work on
a large page it is quite allowable to place reasons at the right, and
many teachers prefer this arrangement because they find that they
can the more readily mark the papers when they are written in this
way.

In any case, the model in the textbook will serve to keep before
the student. the necessity for succinet and logical expression.

Euclid's Sequence Versus the Modern Sequence. For about
2,000 years Euclid's sequence was the order that was universally
followed. To-day we have a simpler and more usable sequence,
not so rigidly scientific as Euclid intended it for university stu-
dents, but within the reach of high school pupils and better adapted
to their needs.

Euclid was little concerned with the classification of proposi-
tions. He arranged his propositions in an order that seemed to him
to begin with the easiest proposition. He then built the super-
structure so as to construct his figures before using them. We at-
tempt to classify our propositions, but we do not attempt to con-
struct. our figures before using them. From the standpoint of strict
logic Euclid’s plan is better; for teaching purposes ours is superior.
A good plan for teachers to follow is to choose a carefully written
modern textbook in geometry, follow the sequence given there as
carefully as possible, using all the ingenuity they can, emphasize
the work on original exercises, and cultivate the originality and
imagination of the pupils as much as possible.

V. METHODS OF ATTACKING ORIGINAL EXERCISES

Four of the Methods. No single method of attack can be ap-
plied to every exercise. This is fortunate because otherwise our
teaching would be more formal and wooden than it is. However, it is
worth something to point out w a pupil some of the more definite
methods of attack o that the “trial-and-error” method may not be
overworked to the loss of all concerned. The most commonly used
methods will be discussed.
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1. The Synthetic Mcthod. Professor David Eugene Smith says
of this method:

The pupil usually wanders about more or less until he strikes the right
line, and then he follows this to the conclusion. He should not be blamed
for doing this, for he is pursuing the method that the world followed in the
earliest times, and one that has always been common and always will be.
This is the synthetic method, the building up of the proof from propositions
previously proved. If the proposition is a theorem, it is usually not difficult
to recall propositions that may lead to the demonstration, and to select the
ones that are really needed. If it is a problem it is usunlly easy to look
ghead in the proposed solution, to sce what is necessary for its accomplish-
went and to select the preceding propositions sccordingly

2. The Analytic Method. The analytic method of attacking
original exercises in geometry is generally recognized as one of the
most. powerful methods which the pupil can learn. For this reason
Professor Schlauch’s chapter on the analytic method will be of
especial interest and no further df:cussion of it will be given here.

3. The Method of Loei. This method of attack in geometry

appliea chiefly to problems where some point is to be determined. This is
the method of the intersection of loei. Thus, to locate an electric light at
u pojnt cighteen fect from the point of intersection of two
streets and equidistant from them, evidently one locus is
a cirele with a radius eighteen feet and the center at the
vertex of the angle muade by the streets, and the other
locus is the bisector of the angle. The method is also
oceasionally applicable to theorems. For example, sup-
pose that we have to prove that the three perpendicular
bisectors of the sides of a triangle
pass through the same point; that is,
that they are coneurrent, Here the
loeus of points equidiztant from A
and B is PP, and the lacus of points
equidistant from B and C is QQ'.
These can cusily be shown to intersect, ax ut O. Then O, being equidistant
from A, B, and €, iz also on the perpendicular bisector of AC. Therefore
those biseetors are conceurrent in Q.1

4. The Indireet Method. This method is occasionally used as
a last resort, It is severely condemned by many, but it has its
supparters ax well. In order to help teachers who find a treatment
of this method ditfienlt or unsatistactory Professor Upton has pre-
pared a chapter on the indireet method.

WRmithy Drovist Baene, The Tonchog of Gopmeton, p, 1610 Ging and Co., 1911,
Vophid., po 1ni.
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General Directions for Proving Propositions. Aside from the
conventional methods of attack on exercises already referred to
there are a few general directions for proving propositions that may
be given to the pupil,

1. Read the proposition carcfully. Many pupils fail to prove
propositions beeause they do not read them carefully, determining
clearly what is given and what is to be proved. and beeause they
do not sketeh free-hand a figure representing the conditions.

2. Draw a general figure, Fuilures in proving original exercises
are often due to the fact that a pupil tukes a special case of a figure
and having proved the exercise assumes that Lis proof is general.

3. Draw the proper fiyure. The careful construction of the
figure under consideration will often suggest the relations which
lead ultimately to the proof.

4. Decide definitely what is given and what is to be proved.
The given part can perhaps best be stuted by using letters or sym-
bols relating to the figure, and similarly for what is to be proved.

5. Think out a careful plan for the proof. Here it is worth
while for the pupil to know the various ways of proving lines equal,
angles equal, lines parallel, triangles congruent, and the like, so
that he can be more intelligent in his selection of the proper plan to
follow.

VI. Tue ConpUeT oF THE RECITATION

Misuse of the Blackboard. It is doubtful whether there is any
way in which we have wasted more time or developed worse habits
among our pupils than in the traditional misuse of the blackboard.
The practice of sending an entire class to the blackboard to draw
figures and write out proofs that they have probably memorized
is wasteful of time and encourages bad habits. If somcone held a
stop-watch on us while we passed to and from the blackboard the
amount of time lost throughout the country in one day would
astonish us.

It is customary in some schools for the teacher to send a pupil
to the board occasionally to draw a figure and give a demonstration,
but it is usually very unsatisfactory because of the loss of time
and inattention thus developed. If it is necessary to have compli-
cated figures drawn, it is much more economical of time and it is
better teaching to use large pieces of cardboard upon which neat
and accurate drawings have becn made.
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Discussing Proofs. The proofs of the propositions as far as
they are given in the texthooks should be models or they should
not be proved at all, In fact, we could easily omit the proofs of
many conventional propositions and the pupil would gain in every
respect by such omissions.  Why should we give the proofs for
each of the family of parallelogram propositions which usually
begins with the one which reads: “The diagonal of a parallelogram
divides the parallelogram into two congruent triangles”? This and
all such simple propositions should be treated as original exercises,
provided. of course, the numher of model proofs in the text is suf-
ficient to give the pupil a good notion of a model proof.

General Conduct of the Recitation. .1 entire book might be
written on the conduct of the recitation in geometry. We might
discuss the various types of lessons to be recognized and taught,
how to take care of the routine factors of the recitation, such as
calling the roll, ventilating, and =0 on, how the time of the class
should be employed and divided, when the assignment of home
work should be made, how to ask artistic questions, and many
other such problems. However, most people who are qualified
to tereh geomctry at all xhould have had courses in method or
in proiessionalized subject matter before they are permitted to
teach.  In xuch courses all these details should be discussed at
greater length thun time here permits. Besides, teaching is an art
and there are always those who contend that there is no best way
of teaching unything. Wlether or not this is true I do not know. I
do know that the teaching of geometry in this country needs to be
and can be improved. It is with the hope that the general level
of the teaching of geometry may be improved that this yearbook
has been prepared.



WIAT SHALL WE TEACH IN GEOMETRY ?
By W. R, LONGLEY

Yale University, New Haven, Conn.

Revolution in Mathematics. Geometry is one of the oldest of
educational disciplines. More than any other it has retained its
essential character for centuries,  Why, then, should this most
stable subject of our curriculum be questioned at the present time?
Why should we ask:  What shall we teach in geometry? Greatly
accelerated changes in all conditions of the civilized world have put
teachers and advocates of mathematies in general on the defensive.
This is particularly true in the more elementary work. For various
reasons there is pressure from many sources to cut down the time
devoted to instruction and the material included in the courses.

The attacks begin on arithmetic. I do not know how wide-
spread these have been, but I do know that some educators main-
tain that much useless material is ineluded in the courses in arith-
metic in our elementary schools.  As a speeific illustration it is
argued that the subject matter of fractions is much inflated and
that no one in ordinary life uxes o fraction whose denominator is
anything but 2, 3, 5, or some simple multiple thereof, like 6, 10, or
12. Hence we should omit all work in fractions except simple
addition and multiplication of fractions with the denominators just
mentioned.

A little higher in the scale we are all familiar with the attacks
made on the amount of time devoted to mathematies in the second-
ary schools. Not so many years ago one of the important asso-
ciations of educators in New England formally adopted a resolution
urging the restriction of work in algebra to one ycar. Other
mathematical subjects have likewise been under fire. Thus far the
line has held fairly well but some losses have been sustained by the
mathematical army, the most serious, I think, being that on the
solid geometry front.

The Place of Mathematics. INow the changes that have al-
ready been made and those which are at present advocated by pro-

fessional educators are all in the line of progress. It should not be
29
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one attitude to combat progress stmply beeause we ure hom cone
servatives or hecatse we wish to hald on to our present jobs, We
may well asky Ts there any justifieation for continuing to teach
the present amonnt of wathemnties to the large number of unwill-
ing pupils who are our vietins? A partial answoer to the question
i¥ ta be found by exwmining tendencies in our institutions of higher
learning, Thut all engineering students need a eonsiderable amount
of mathematies goes without question, That not all cotlege stus
tents neeed mathematios s attested by the faet that few colleges
of liheral arts vequire mathematios of all stadents. Yet the amount
of mathematics requived of o growing group is increasing rapidly.
Muathematies has alwavs heen the basie toal of the physicist and
the astronomer, and modern thearies involve more advanced mathee
maties than the earlier ones. The equipment of the present-day
chemist involves more mathematical training Students in the
chemistry course at Yale are now required to have the two years
of college mathemuties given o engineers, and at the present
moment we are considering a request from the department of ehem-
istry to give nospeetal thivd year course for their students, Every-
one is fumiliae with the great inerease in applieations of mathemut-
ical stutisties in the fields of ccanomies, business, education, and the
natural seiences. Perhaps not <o many realize, however, the grow-
ing demand for mathemutieally tenined men and women in medical
researehy A short time ago a portion of the staff of the Medieal
sehool of Johns Hopkins formed o elass and requested a member
of the departtuent of mathenatios to give them a course in the
caleuus. A similae necd for more mathematical knowledge has
heen expericneed by certain: members of the faculty of the Yale
Medieal Sehool. One of the physicians has felt that Yale College
should have requived hine to study the ealeulus. He knew when
he entered college that he wanted to be a physician. He was re-
auired to take physies, chemistry, zoilogy, but not mathematices.
How <houdl he know as wnundergeaduate that in a few short yours
he would find it =0 desivable to have o working knowledge of the
enleulus?

The total number of college students hins inereased so enore
mously that the number taking ao weathematies may readily give
the fmpression thit other subjeet< wre growing more rapidly in
inportance. 12t there can be no doubt that the number who need
mittheinties is whso inereasing rapidly, and the amount of muatlic-
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muties required in eneh field of applieation has multiplied many
fold. ‘This situation should be sufficient justification for holding
our mathematical trenches ngninst every assault,

Value of Geometry. We should then be prepared not only to
defend ourselves from any attacks that may be made on our present
teaching of geometry, but also to make a vigorous counter-ussault
to retrieve what has been lost in solid geometry.  First of all, we
should take account of stock. Why should geometry be taught by
us and why should it be studied by the pupils? ‘I'he main reasons
may be summarized under four heads.

1. Logical exposition. In this phase of the work nothing else
approaches geometry,  Nowhere else does the pupil marshal his
facts in such strict order and present them with such precision of
statement.  For ages this has been considered the chief value of
the study. Pechaps it will continue to be so, but we must not be
unmindful of the fact thut there are some hereties, that some
psychologists assert that there is little, if any, transfer of training,
and that a study of the wuater-tight arguments of geometry helps ¢
lawyer very little in making u convineing argument in o courtroon.
We can not rely too much on training in argument, from hypo-
thesis to conclusion, as justification for retaining geometry us a re-
quired subject for all students.

2. Geometric facts and relations. The utilitv of this phase of
geometry is too vbvious to require comment. ks :ryone knows that
to a large extent geometry has been indispensable to civilized man
since the earliest days of which we have any record. Some of the
oldest hieroglyphics that have been deciphered refer to records of
land measurement in simple geometric forms. Sowne of the most
complicated geometric forms and relations ure involved in the latest
triumphs of engineering construction, I should like, howewver, to
call attention to the importance of a knowledge of geometric facts
as g part of a liberal education. Most of the great horde of stu-
dents going to college now are secking a liberal education. They
want to be able to uppreciate what they read and to talk intelli-
gently of art, literature, scientific progress, and current events in
general. They would be greatly mortified if they failed to under-
stand such a reference as “exacting his pound of flesh”  Yet a
similar ignorance of geometry is puassed off lightly. Certain facts.
for exanple, that a straight line is the shortest distance between
two points, appear to be obvious. Others do not. For instance,
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do all persons poscessing what ix called a liberal education know
that on the surfuce of a sphere the shortest distance between two
points is along the are of a great cirele? They do not. When
Lindbergh clectrified the world by his flight from New York to
" Paris, almost every newspaper printed a map showing his course
across the Atlantic. Many others must have had my experience of
trying to explain to friends why he flew so far north. Why should
he have been scen over Ireland wnen he was going to Paris? My
longest argument was with a college professor who did not know
what the newspaper account meant when it said that Lindbergh
followed & great circle. He was not familiar with the technical
term “great circle” and scemned to think that for some tempera-
mental reason Lindbergh chose to fly in a huge circular path, Isn'’t
it just as desirable in our modern social life to know the most
important sayings of Euclid ux it is to recognize the most common
quotations from Shakespeare?

3. Mensuration formulas and methods. These follow from the
geometric facts and relations. Their necessity and utilit- need no
comment.

4. Cultivation of space pcrception, including the representation
of three-dimensional objects by two-dimensional drawings. The
natural ability to visunlize objects and relations in space varies
greatly among individuals. There is no doubt that this natural
ability can be increased by cultivation, aad that such cultivation
has important practical results as well as less tangible effects on
general mental development.

Why Solid Geometry is on the Decline. With all the cogent
reasons that can be advanced for the study of georietry, why is it
that the most valuable part of the subject, namely, solid geometry,
is on the decline? Why have all colleges that are not technieal
schools ceased to require it? Why have more and more schools and
colleges withdrawn courses in it o that more and more students
have no opportunity to study it? With a lurge number of students
solid geometry is unquestionably just naturally unpopular. To
an appreciable number of teachers solid geometry is distasteful.
To the general public, including some professional mathematicians,
the study of solid geometry in prepuaratory school appears to be
futile.

Now I believe this situation cxists beeause of the common
meaning attached to solid geometry, It hrings up a vision of metic-
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ulous proofs of obvious fucts, of the devil's coffin and other com-
plicated figures called by more or less meaningless names, of long
and involved series of steps to establish a conclusion which often
is only vaguely understood. This unfortunate conception is due
largely to us, to our understanding of what we should teach. It
seems particularly regrettable because the subject can be made
extremely interesting. This is not my individual opinion alone, but
that of many others who have studied the situation and have asked
what is to be done about it. The answer is that we must change
the character of the cowrse. We must give up some of the less
valuable features and replace them by others.

Solutions Offered by the College Entrance Examination
Board. Two solutions of the problem have been offered by the
College Entrance Examination Board:

1. The requirement labeled Mathematics D. Solid geometry.
2. The requirement labeled Mathematies ed. Plane and solid
geometry, Minor requirement.

Mathematics D. It is my impression that comparatively few
people understand the intent of the Mathematics D requirement,
and to make it plain let me explain some of the history of its
formulation.

The present requirement was formulated by a commission of
eleven members appointed by the College Entrance Examination
Board in 1920. Iour of these members had served also on the
National Committee appointed by the Mathematical Association
of America to make recommendations concerning the content of
courses in mathematies in the secondary schools. At the first meet-
ing of the Commission a resolution was presented which was the
outgrowth of the work of the National Committee. I can not repro-
duce the wording of the resolution but it was to the following effect:

a. That sufficient drill in formal geometrie proofs is given in
plane geometry and that it can be very largely dispensed
with in solid geometry,

b. That mensuration be given much more prominence.

c¢. That much more work be done to develop space percep-
tion, relations of objects in three dimensions, and the
representation of these relations by drawings.

The resolution met with no opposition and received enthusiastic
support from some members of the body. It was agreed, however,
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that such a radical change would have to bhe made gradually and,
as the result of considerable discussion, it was decided to formnlate
two requirements to be known uas Nolid Geometry A and Rolid
Geometry B, the first to be the traditional course and the second
& new one defined along the lines suggested in the resolution, The
iden was expressed in the meeting that the proposed new require-
ment would gradually muke its way in the sehools and ultimately
replace the traditional one so that finally the so-called A require-
ment could be discontinued.

The work of the Commission wus apportioned among various
subcommittees on algebra, geometry, irigonometry, ete., with a
special committee on Solid Geometry B, The work of the general
committee on geometry consisted in drawing up a svllabus for each
of the requirements in geometry, Its chief contribution was the
selection of certain starred propositions chosen for their impor-
tance and suitability for examination purposes, with the idea
that less effort should be drvoted to memorizing the whole list of
pivpositions and more time should be given to originals. The task
of the special committee on Solid Geometry B consisted in selecting
a small list of propositions and in drawing up a deseription of the
new tvpe of work to be introduced. The result of jts attempt ap-
pears as the Appendix, pages 33-43, of Document No. 108, which
contains the definition of the requirements of the College Entrance
Examination Board.

When the different subcommittecs reported to the Commission,
it appeared that there wus less difference botween the A and B
requirements than had been expected,  Both reports recommended
essentially the same amount of geometric knowledge, a curtatlment,
of the time spent on book propositions. wnd an inerease in the time
spent on originals and applications.  The exssential difference was
that the A requirement included eight starred propositions in Book
VI and the B requirement included none. Nothing was more nat-
ural than to attempt to combine the two statements into one. The
final statement covering this combination is as follows:

The Board wishes to accord ! due latitude in the treatment of the subject
of solid geometry. It recognizes the value of the further training in logical
demonstration which supplements the stady of plane geometry and is given in
stundard courses at the present time. It recognizes also that the intuitive
geometry of the early school course muy well be carried further as regards

both a firmer grasp on space relutions and the visualization of space figures,
and the mensuration of surfaces and solids in space.
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The examinations will be constructed with reference to this lurger interpre-
tation of the requircnent. In the pust, the candidate has been expected to
unswer X questions, and this will be assumed for convenience in defining the
uature of the new examinations. These papers will consist of seven questions,
of which the candidate will be expected to answer six. Two of these questions
will call for demonstratjons of propositions from the starred list, but not both
of these propositions will be chosen from Book VI. Many teachers have felt
that the wmount of formal demonstration demanded by this Book has been
excessive und has obscured the subject matter. The purpose of the new re-
quircment is to give the teacher a freer hand, enubling him, if he so desires, to
teach the fucts concerning the relations of lines and planes in space by means
of problems and constructions.

What Can Be Done. The question now is, What can a teacher
do who wishes to break away from the drudgery of forcing unwill-
ing pupils to reproduce book proofs and substitute material which
appeals to the imagination, which stimulates the curiosity of the
pupil to find out for himself results which are not announced
in the statement of the problem, and still prepare the pupils to
meet the College Entrance Examination Board requirement? Such
a teacher can umit a formal proof of every one of the thirty-six
propositions in Book VI. I have done it with college freshmen
and believe the result is good. It is merely necessary that the
content of the book be understood.

The relations hetween lines and planes in space cun casily be
shusn by a few =imple models constructed extemporancously from
two or three hooks and pencils.  Very few of the facts require
proof.  If uny oue is not accepted readily by the whole cluss, it
should huve an inforinal but convincing demonstration,

An explanation of the meaning of the propositions should then
be followed by muny simple problems making use of them. A
single example will illustrate the idea. What is the angle between
two eiugonuls of w cube?  Most pupils will answer that immedi-
ately.  With all the symmetry involved what could the answer be
but 90?7 And they will be much surprised, when the problemn is
analyvzed and worked ont, to find that the answer is 707327, It is
an excellent introductory problem both in the steps of the solution
and in the unexpeeted vesult. The introduction of mumnerieal trig-
onometry in clemeatary algebra opens up a great (uantity of
material in both plane and solid geometry which could not be
tonched before, und probably very few of us are taking advantage
of this liberation from the domination of the 30°-60° right tri-
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angles. Further applications and developments are suggested, but
by no means exhausted, in the Appendix of the Board's pamphlet.
This procedure has the advantage of saving time and sustaining
interest. It avoids the danger of disgusting the pupil by proofs
of facts that anyone can see and thus killing his interest at the
start.

Mathematics cd. The second solution of the problem of geom-
etry teaching offered by the College Entrance Examination Board
is the requirement known as “Mathematies ed. Plane and Solid
Geometry. Minor requirement.” The suggestion of such a course
was made to the Commission by Professor Dunham Jackson, who
came to the first meeting just after the faculty of the University
of Minnesota had voted to eliminate solid geometry from the curri-
culum. He was anxious that something be done to retrieve the
loss but felt that we could probably not get more than one year
for geometry in our preparatory schools. He suggested a course
which should include both plane and solid geometry, but which
should require no more time than is usually given to plane geom-
etry. The proposal went through without opposition, because no
one would be required to take the course and it seemed quite right
to offer the opportunity to anyone who desired it.

Present Status of the Two Requirements. The progress of
the new geometry under the Mathematies ) requirement can not
readily be measured, and we can only surmise that little has been
accompl'shed. As to the Mathematics ¢d requirement we need only
turn to the Secretary’s reports to assure ourselves that it has not
been used. During the past four years the number of books in
geometry written by the Board's candidates was 24,432, Of this
number seventy-two were in Mathematics ed, After we have been
told by the readers that most of the seventy-two gave unmistakable
evidence of not knowing enough geometry to pick the right question
paper, we are fairly safe in saying that no progress has been made
with the minor requirement,

The minor requirement has recently had some able champions
in Professor Beatley and Professor Tyler, and a committee is now
at work to promote the idea. Until more progress has been made
in the development of the course, it is quite natural that the Board
should feel that it has done all that it can. A definition of the
requirement has been formulated and examinations are set every
year. Any candidate who chooses may take the examination. Any
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teacher or school may prepare for it—and any college may accept
it. The colleges have had no opportunity to express their attitude.
because the question has not been put to them in the only form
which they can answer, namely, by candidates offering the subject.
Personally, I have not the slightest doubt that the minor require-
ment in plane and solid geometry would be accepted everywhere.
except perhaps in some technical schools, in place of the plane
geometry alone.

Importance of Experimental Work. Who, then, has the op-
portunity and responsibility of changing the situation in geometry?
It seems to narrow down to the schools. Any school, or any teacher
who is given a free hand in a school, has the opportunity to teach
a course in solid geometry which is radically different from the
traditional one, a course which can not fail to arouse some curi-
osity, which appeals to pupils as worth while and to administrators
as having practical value. Such a course Lias been taught success-
fully, is approved by the Board, and is accepted by every college
in the country. We need only textbooks a little better adapted to
the purpose, a little bolder in breaking with tradition.

If the longer course proves impossible in some cases, the next
best chance is the minor requirement. I feel so sure that there
will be no difticulty in having suel a course aceepted by the colleges
that it seems unnecessary to consider this phase as an obstacle.
The course, however, will have to be developed. Some enthusi-
ustic believers in the subjeet, with opportunities to experiment with
clusses and time to work out details, must show the rest of us how
it can be done and prepare the texts with which to do it. "T'here is
presented here an opportunity for valuable construetive work, for
I can not believe that the subjeet will continue to be divided into
plane geometry and solid geometry. Considering present needs, it
seecmis more advantageous to develop the simpler parts of three-
dimensional geometry simultaneously with the corresponding work
in two dimensions.

Our young people of to-day have such a variety of interests
that it is quite natural for them to become impatient with a subject
which appears to have little, if any, connection with ordinary ex-
istence. They can not be censured for feeling that every effort
must be directed toward something that will count, not necessarily
toward greater earning capacity, but at least toward greater
mastery of the problems of present-day civilization which they are
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sust beginning to sense.  With the growing importance of mathe-
mutics to an increasing number of people it scems more than ever
unfortunate if there is any step in the mathematical ladder which
arrests progress. The traditional course in solid geometry often
presents such an obstacle. When a pupil does not study solid
geometry, it usually means that there is a break of at least a year
betfore he can go on with further work in mathematics. He not
only misses the content of the course and tle increased power that
cun come from it, but he loses much that he has already gained.
A= a college freshnian he finds himself usually at a great dis-
advantage in competition with others whose mathematical career
hus suffered no break, and whose mathematical maturity is greater
than a difference of one year's work would indicate.

Present View of the Situation. Now it is quite possible and
highly desirable that we shall sometinie have a rearrangement of
the mathematies curriculum which will offer to students in tle
last year of preparatory school a course which will be more at-
tractive than the present ones and which wil] better prepare them
for continuing the study of mathematics in college. In the meun-
tinie, while the pioneers are dcing their work, the best single step
that we can take is to teach solid geometry from the point of view
of the B requirement described above. Under the present defini-
tions of requirements in geometry of the College Entrance Exam-
ination Board there lies before us the opportunity of doing a con-
sirlerable service not only for the single subject of geometry but
alxo for mathematics throughout the whole curriculum of the sec-
ondary schools and colleges.



DEMONSTRATIVE GEOMETRY IN THE
SEVENTH AND EIGHTH YEARS

By VERA SANFORD

School of Education, Western Reserve University
Cleveland, Okio

Possibilities of an Early Approach to Demonstrative Geom-
etry. The development of the course of study in mathematies in
the junior high school, involving as it does the early introduction
of the ideas of algebra and trigonometry, raises the question of the
value of an earlier use of demonstrative geometry. One solution
urges that a unit of this subject be taught in the ninth year, the
work being somewhat less rigorous than the corresponding part of
the traditional course. A second solution involves the informal
introduction of the subject in the seventh and eighth years. It is
the purpose of this chapter to point out, by describing a specific
piece of work, how this second suggestion may be put into practice
with the brighter students; not. it must be understood, as a unit set
off from the pupil’s study of intunive and experimental geometry,
but rather as an integral part of his study of geometric relation-
ships. Tt is, as he may perhaps grow to realize, another method
of thinking about the topics with which he deals.

The objection will be raised that an important reason for pre-
senting the unit of demonstrative geometry in the ninth year is its
heuefit to the student whose school life terminates at this point, and
that such students seldom rank in the upper quartile of their group.
This point must be granted; yet experience shows that these stu-
dents sometimes find great satisfaction in the study of elementary
algebra. It is not improbable that something of the same sort may
follow from the study of elementary demonstrative geometry even
at an erlier point.

In the case of students who meet the subject later, whether in
the ninth vear or in the tenth or eleventh, their acquaintance with
the concepts of geometric reasoning may be quite as valuable
as their preliminary knowledge of georuetric forms,

39
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View Based on Experience. Although the considerations that
follow are based on my experiences over a period of nine years in
the Lincoln School of Teachers College, they should be considered
as mere suggestions of the possibilities of this work rather than as
a report of the results of scientific experimentation, During the
early part of this time the necessity of some such action was be-
coming niore and more clear to nie through my work in the senior
high school field where the problem was the building of a suitable
course on the basis of the junior high school work., During the
latter part of this period, I had an opportunity to see what changes
might be effected in the junior high school course to provide for
better preparation for the work of the later grades,

How the Question Arose. My first interest in this problem
was influenced by conditions which I think were not unique. I
found that classes trained in junior high school mathematics tended
to be restive when they were asked to prove theorems that in an
earlier grade they had assumed to be true or that they had estab-
lished by experiment. Even postulating a liberal number of propo-
sitions would not solve the difficulty, for their work had involved
congruency, similarity, area formulas, and even the Pythagorean
theorem. The essential differences between experimental and de-
monstrative geometry were emphasized but again and again the stu-
dents would refer to their former work; for example, in proving
that only one perpendicular could be dropped from a point to a
line by reference to the formula for the sum of the angles of a
triangle—a theorem that had not then heen proved. As authority,
they cited the page on which the statement appeared in their junior
high school text. They had a useful vocabulary of geometric
terms, but apparently their study of geometry that was intuitive
had inhibited their acceptance of geometry that was demonstrative.
A possible remedy was to reduce the amount of intuitive geon.etry
or to change its subject matter, perhaps emphasizing symmetry of
different types and paying little attention to congruence and simi-
larity. Yet these very topics were fundamental in parts of the
junior high school course that were themselves of intrinsic useful-
ness.

Experiment versus Reasoning. Another way of meeting the
problem was to attack it at its source. and to add to seventh and
eighth year geometry the consideration of the difference between
an opinion based on intuition and one based on reasoning. At this
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point, I was greatly assisted by a chance circumstance that not
only provided a natural opening for the problemn with the seventh
grade, but suggested a situation that might be duplicated with other
classes at the same point in other years. A social studies discussion
of the way in which men arrive at a statement of a scientific law
was interrupted by the close of the period, and the class came in
a body to the mathematics room. Mindful of the close interplay
between departments which is characteristie of the school, the social
studies teacher suggested that the pupils sce if they could not find
immediate assistance in mathematics. Fortunaiely the day’s work
was well adapted to this problem; so, building on the considerations
of the previous hour, we pretended complete ignorance of our pre-
vious work in the study of the sum of the angles of a triangle, and
started afresh,

First Step. The first step was to state the problem: to con-
struct a triangle whose angles are of given size.  This was clearly a
simple matter corapared to primitive man’s experiments with vari-
ous remedies for disease or an inventor’s groping toward scientific
discovery. When we listed the values of the angles which were
shown by experiment to permit the construction of a triangle and
those that did not, we were clearly in the trial-and-error stage
which had been discussed in the social studies class. The study of
our successes and failures led to the conclusion that the work was
not necessarily possible when just any angles were given, for the
drawing of the first two inexorably determined the size of the third
which might or might not be the same as the size of the third given
angle. Our conclusion was that some connection between the size
of the third angle and that of the other two was essential to the
drawing of the triangle.

At this point we might well have traced a comparisor. between
the work at hand and the methods of the medicine man and his
herbs or the astrologer who based his conclusions on observations
of the planets.

Scrutiny of our data showed that although there was wide
variation in the size of the angles in the different triangles, the sum
of the angles in any one case was in the neighborhood of 180°. Our
rule had now reached the stage where it read, “The construction
seems to be possible if the sum of the given angles is 180°.”

Second Step. We then passed to the second stage to see
whether this rule of thumb would work with cases chosen at ran-
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dom. The class argued that a single ease in which the rule did not
yield a satisfactory result would be sufficient to nullify it, and it
clearly would be impossible to draw all possible cases. It was here,
then, that we undertook the time-honored tests of cutting out a
triangle and piccing the corners together. We turned a ruler
through each ungle of the triangle in turn and were convineed that it
had made half of a complete turn (rotation). Finally, we accepted
the conelusion that the sum of the angles of a triangle drawn in a
plane is 180°. We had recapitulated the carly steps in the dis-
covery of a seientific law: first, trial and error leading to the formu-
lation of a rule of thumb; and second, the tests of this rule. The
final step of reasoning from previously accepted hypotheses to
laws was as yet untouched.

Third Step. The next day, however, a member of the class
asked if the sum cf the angles of a four-sided figure was also a
definite amount. I 'obert, brilliant but hasty, said, “Yes, 360°, for
a rectangle is a fout-sided figure and it has four right angles.”

“But,” objected Edson, “not all four-sided figures are rectangles.
Suppose it were a parallelogram?”

“That’s all right,” said Robert, “what you squecze out at one
corner comes in at the other.”

Edson’s reply indicated lack of conviction in these blanket
statements, and Margaret interpolated the opinion that some four-
sided figures were, as she put it, “neither rectangles nor parallclo-
grams b.: cockeyved.” With that she drew an irregular quadri-
lateral on the board. Cecilia (I. Q. 106) then said, “That's all
right. T'll show you (drawing & diagonal). The sum of the angles
here is 180° and here it is 180° -and together the sum for the whole
thing is 360°.”

The class agreed that Cecilia’s scheme was neither intuition as
was Robert’s, nor was it based on measurement. They decided to
eall it a “proof by reasoning.” From that time on, we definitely set
ourselves the job of proving our guesses in this manner whenever
possible.

In the course of this work, besides getting an inkling of the
meaning of demonstration, the class discovered for itself Rohert’s
use of an unproved converse, and eriticized him for his tacit as-
sumption that since all rectangles are quadrilaterals, all quadri-
laterals are also 1ectangles. Fxamples of converse statements were
proposed and discussed, and these ranged from very simple ones
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to the table talk at the Mad Hatter's party with the “I say what
I 'mean is the same as T mean what 1 say.”

Value of an Early Approach to Geometry. This was the
writer's first introduction to the informal use of the basic idea of a
proof by reasoring in the seventh grade, but it suggested a line of
thought to which other experiences were naturally allied.  Why
should not these students carly become accustomed to reasoning
from previously accepted theorems or from postulates? Not, of
course, with the technical vocabulary of “theorems” and “postu-
lates,” but with the concepts infurmally expressed? Why should
they not lewin the pitfalls of the glib quoting of a converse to a true
statement?  Why should they not learn how to phrase the appu-
site of a given statement? The work to which they come in science
and the social studies, for example, endeavors to stimulate inde-
pendent thought. It offers many opportunities for reasoning from
hypotheses but it also offers many oceasions in which the punil
is likely to fall into habits of incorreet reasoning in the matters of
converses and opposites mentioned above. Is the seventh or the
eighth grade too soon to begin to build an appreciation of a proof
and its implications?

Repetition of This Piece of Work, It not infrequently hap-
pens that the opportunities that come by chance in one class can be
induced by suegestion in another. This has been the case in the
instance cited here, and in other classes it has been a simple matter
to progress from the proof of a theorem by measurement to the proof
of a corollary of this theorem by reasoning. Other features have
entered naturally—the arbitrary nature of a definition, the idea
that u postulate is accepted without proof, and the contrast between
a direet proof and a proof by exclusion.

It has been my experience that these considerations make for
agreater unity in the geometry of the junior high school, that they
provide opportunity for individual work of high quality, and that
they bridge the gap between two opposing types of geometry-—
informal and demonstrative,




A UNIT OF DEMONSTRATIVE GEOMETRY
FOR THE NINTII YEAR

By JOSEPH B, ORLEANS

Goorge Washington High School,
Now York, N. 7,

Purpose of the Unit. A unit of demonstiative geometry, to
cover in time the equivalent of six to eight weeks, can best fit into
the work of the ninth year if algebra is begun in the cighth year
and if a foundation of intuitive geometry is laid in the seventh
year. Since many of the pupils in the algebra classes continue with
plane geometry the tenth year, nothing must be presented in this
unit which will in  fere with the work of that year. The purpose
of this course is t tive the pupils a notion of what a logical proof
is. It is not necessary, therefore, to emphrsize the transluting of
word problems into geometric language. That may well be left
for the next grade. The work need concern merely the relationship
between the facts that are given, the conclusion to be reached,
and the steps one must follow to reach the conclusion. Since the
unit is to be part of the work of a year which is devoted also to
algebra und to the solution of the right triangle, and is to be spread
over at least the 9B grade, it would be well to correlate the geom-
etry, as far as possible, with the algebra and the trigonometry.

Axioms and Postulates. The axioms and the necessary postu-
lates are not listed in the outline which follows becauss they will
appear in the work one at a time in various connections and the
individual teacher must emphasize and teach them as they oceur.

Nature of the Unit. This plan takes the form of a series of
exercises which are based upon certain postulated geometric facts
and which lend themselves to logicul demonstration, special em-
phasis being laid upon certain important probleims.

Outline of the Unit

. PrevimMiNary DEerINITIONS, Line, point, angle (straight,
right, obtuse, acute), vertical angles. In connection with these the
44
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class should review the fundamental constructions which lead to
the postulating of the congruence theorems,

II. VERTICAL ANGLEs ARE EgvaL.  An informal proof. Pupils
always wonder why they must prove that vertical angles are equal
when they can readily see that they are equal. An informal con-
versation about a puir of vertical angles and their common supple-
ment will help to establish the fact without dependence merely
upon appearances and will also give the pupils the beginning of the
relationship between statement and reason leading to a conclusion.

(&) Numerical exercises.

(1) b =20° fc=60° LAOE ="

(2) € S BOF=130°,/c=40° Za="?
(3) LFOD =140°. /b =60° La="
(4)A a.{f:=60°,éb=25°.éd=?
(5) Lf=b° £d=100° b= "
(6) la=2/¢, Le=060°. Le="?

004 =140°, L LEOC =120°,

(7)
F (DOB =?

(b) Proofs. (Use the above diagram.)

(1) £b4+ £c= LAOE. (2) (BOF — fc= L.

(3) £BOF — ¢ff= ¢d. (4) £f4- 2b+ £d = £180°.
(5) LCOA + £DOB + £EOC = 360°.
(6) £LCOA+ LEOC — LAOE =2/.
(7) If £f= Le, then Lb= Lec.

(¢) More difficult exercises, (Use the above diagram.)

(1) £C04A =150° LFEOC =130°, £n ="

(2) £BOF == 140°, 2100 =123°, £d ="

(3) LAOFE 4 £COB ==140°, £¢=40°, Lc="1?
(4) If LBOF = (FOD, prove £f= Le.

(d) Geometrie application. 1f a straight line bisects one of two
vertical angles, it biscets the other one also.

IIT. Tur Coneruences Turorems., The congruence of pairs of
triangles based upon s.a. 8. =s.a. 8, a.5.a. = a.s.a.,, and 8. 8. 5. =
s. 8.s. by means of trinngles constructed with given parts and cut
out of paper or cardboard.

Ezxercises

Given Prove
(D) b Za = 30°,

¢ éb:30°,
4\/>>C Lo =20°,
Zd =20°. A ABC = AADC.
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Given Prove
H
(2) p ¢ A4Cbisects £ 4.
AC bisects £/C. A ABC = AADC.
D
£
(3) A » BD bisects £ B.
EFis | toBD. ABED = ALDF.
(4) I is the midpoint
K H Of GII.
—=t"\ KGisLtoGH
G L and HL is | to
GH. AKGI = allll.
C
(5) AD and BC are
A 0/\ straight lines.
\/ P A0 =0Dand
A BO = OC. AAOB = ACOD.
4
(6) P XY =XW.
z XZ bisects £ X. AXZY == AXZIV.
' 4
A . .
(7) DBC is a straight
line.
ABis | to DC
b c and DB =B(C. AABD = AABC.
B
8) A4 ¢ ABisltoBD
and CDis ] to
/’ . BD.
bisects BD.
b o O AB—cD. AABO = AOCD.
M
(9) 0 MN = NP,
MO = OP. AMNO == ANPO.
D

ao 5 ¢ BC=4D,
) AB — CD. AABD = ABCD.
D
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Teach the fact of the equality of the corresponding sides and
of the corresponding angles of congruent triangles. Use exer-
cises 1 to 10 for drill in proving corresponding parts equal.

M
(11) E %o :-
N P
A
(12) ilj
D B A
(13) A
b ic
c A
(14) A
D ¥
‘
(15) Same diagram as
Ex. 14,
A D
(16)

Given Prove
NO biscets £PNM.
MN = NP, LM = 2P.
DBC( is a straight line.
AD = AC,
LDAB = £ BAC, LD = /(.
AB = (D,
L DBA = /BDC. AD = BC.

LBAD = /BCD.
LCBD = £ADB

CDis | to dFE,
Al is Lto CG,

BD = BF. L0 = /A
OB = BA,

DB = BF,

AE and CG are straight

lines, CD = AL,

AB=DC,

AC = BD. LA = 2D.
AB = BC,

L= LY 4 = 2.
AB = AD,

BC =D, LB = /D.
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(19) If two sides of a triangle are equal, the angles opposite those
sides are equal.

(Introduce the need of a construction line to help one to
reach the conclusion. Emphasize the importance of drawing
the construction line with a purpose in mind.)

Exercises Based on the Isosceles Triangle Ezercise

Given Prove

c
(20) AC = BC,
AD = EB. CD = CE.
4 4 o

(21) Same diagram as AC = BC,

Ex. 20. AE = DB. CD =CE.
A
(22) F is the midpoint of CE.
p o AC = AE,BC = DE. BF = DF.
c—<—¢
(23) A AC = AF.
G BD is | to CF.
GE is Lto CF.
C“—p £ CD=EF. BD = GE.
A
(24) AC = AE.
B D B is the midpoint of AC.
D is the midpoint of AE. CD = BE.
c £

(25) If the three sides of a triangle are equal, the three angles are
equal.

a Postulate the fact that the exterior angle of a triangle is
greater than either opposite interior angle. The proof of this
theorem does not fit into a series of exercises like those in this
outline. It is impossible to expect the pupils to suggest the
necessary construction lines. They must get them either
from the teacher or from a textbook. There is, therefore, no
loss in postulating this theorem.

A
(26) Given: AB = AC.
Prove: (B greater than / D,
8 ra D
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A
(27) Given: AD greater than AB.
Prove: [/ DBA greater than £ ADB.

(/]

IV. ParaLLEL LiNES. Two lines are parallel if a transversal
makes a pair of alternate interior angles equal. (This theorem in-
troduces the pupils to a simple form of the indirect proof.)

Ezxercises
(28) Tell why lines AB and CD are parallel if
o (8) £e=1T70° and £f="170°,
4 e 8 (b) £c=60° and Le=120°
(c) £La=110° and /f=170°.
c 4 o (d) £b=160° and /f=60°.
& (e) La=120° and /g = 60°.
(29) Prove that ABis | to CD if £b= £f. (Use diagram in
Ex. 28.)
(30) Prove that AB is || to CD if £a = *£h. (Use diagram in
Ex. 28.)
(31) Prove that ABis Il to CD if /b= /g. (Use diagram in
Ex. 28.)

(32) b A Given: £CAD = /FDA and
¢ /BAC = /EDF.
b 2 Prove: AB I to DE.

(33) Use diagram of Ex. 32. Given: £BAD = [ ADE and
/L BAC = (EDF.
Prove: AClito DF,

(34) A o Given: AB= DC and
E /CAB = /DCA.
B c Prove: AD | to BC.
(35) Draw two lines 4B and CD bisecting each other at E. Prove

AC lito DB,

(36) Two lines perpendicular to the same line are parallel,
Postulate the fact that if two lines are parallel, the alter-

nate interior angles are equal.
(37) If two lines are parallel, the corresponding angles are equal.
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(38) / ?i;Jeizf: ABl to CD. =1
/3 a Le=T70° (f=

4 c‘d B (b) If £c=80°, fe=1"

/ () If Le=75° (tg="

c—off p @D If Za=110°, 2f=7?

&/h (e) If £b=80°, fg="?

/ (f) If Zh=100° £b="

39 ? Given: AD = BC and AD Il to BC.

; A Prove: £ DCA = £BAC.

(40) Same diagram as Given: AB llto CD and AD |l to BC.
Ex. 39. Prove: (/B = ¢/D.

A D
(41) Given: AD itoCB and AO =. OB.
Prove: DO = 0C.
B

(42) If a line is perpendicular to orne of two parallel lines, it is
perpendicular to the other one also.

(43) In the accompanying diagram, prove
A that /DCA = LA 4+ £B. (Since we

are comparing the exterior angle with

two other angles, divide the exterior

angle into two parts in the most con-

venient way. Let the class discuss the

o ¢ 2 various possibilities and suggest the

construction line.)

(44) Prove that £4A -+ /B +4 ¢ C = 180°,
(The pupils have learned this fact in their

A sq0 .
intuitive geometry, Since we are comparing
the three angles with a straight angle, what
is the best way to introduce a straight angle

3

€ into the diugram?)

Ezcrcises Based on Ex. )

(45) If LA =170°and £B=50° /C =17

(46) How large is each angle of an equiangular triangle?

(47) The vertex angle of an isosceles triangle is 30°. How large
is the base angle?

(48) The base angle of an isosceles triangle is 85°. How large is
the veriex angle?

(49) What is the number of degrees in each angle of an isosceles
right triangle?
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(50) Two angles of a triangle contain respectively 60° and 67°.
What is the size of the third angle?

(61) Two angles of a triangle contain respectively z° and-y°.
What is the size of the third angle?

(52) Two angles of a triangle are equal and the third angle con-
tains 2k degrees. How many degrees are there in each of the
equal angles?

(83) If the three expressions 2z, 3z — 2, and z — 8 represent the
number of degrees in the three aungles of a triangle, find the
number of degrees in each angle.

(54) Two angles of a triangle are in the ratio of € to 7 and the third
equals the difference between the other two. Find each angzle.

(55) Find the number of degrees in the angles of a triangle, if the
first is 12° more than the secornd a~d the third is double the
second.

(56) Find the number of degrees in the angles of a triangle, if one
angle is twice the second and three times the third.

(67) Prove that the sum of thr angles of a quadrilateral is 360°.

(58) Explain why a triangle can have no more than one right angle.

(59) Expllain why a triangle can have no more than one obtuse
angle.

(60) Iiftwo angles of a triangle are equal respectively to two angles
of another triangle, the third angle of the first is equal to the
third angle of the second.

V. SiMmiLaR TriANGLES. Definition. Illustrate by means of
parallel lines. Contrast similar and congrueat, triangles. Contrast
equal corresponding sides of congruent triangles and proportional
corresponding sides of similar triangles. Relate this work to the
solution of the right triangle in the trigonometry.

Postulate the fact that two triangles are similar if at least two
angles of vne are equal to two angles of the other.

Ezercises Based on Similar Triangles

Given Prove
A
(61) ECis 1 to BD AECD ~ AABD
and ABis 1 to and write a pro-
b—; > BD. portion.
A

(62) BE islltoCD. AABE ~ AACD
B . and write a pro-
portion.
D

€y
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Given Prove
(63) p—"1" DEisitoAE  AABC ~ AADE
and CBiv L and write a pro-
A - to AD. portion.
c Z
(64) s EFGisaright AEFH ~ AEFG
angle. and write a pro-
£ ¢ FHis Lt EG. portion.
]
(65) Use the diagram EFQ is aright AFGH ~ AEFG
of Ex. 64. angle, and write a pro-
FHis | to EG. portion.
(66) o AABC~ADEF. AG:DH = AB:DE,
2 AQGis 1l toBC
aéllt P\ and DH is L
to EF.
(67) The two tri- Find the values of
. angles in the z and .
z \ diagram are
’ similar,
(68) The two tri- Find the value of 2.

a angles in the

£ diagram are
Ak r<Ne  similar.
*—=° = ADisLltoBC
and EH is |

oA to FG.
(69) @ BE is| to CD. Fin% the value of
¢ - A

o .
RSis|to TM. AROS ~ ATOM.

(70) RS RM is a straight Write a proportion
5" line. based on this {act.
7 ~ TS is a straight
line,

(71) 1" a pole 120 ft. high casts a shadow of 40 ft., how long is the
stadow of a pole 30 ft. long?

Summary. In the above outline the pupil becomes acquainted
with the meaning of a geometric demonstration through the notions
of congruence (in connection with which the teacher may introduce
symmetry), parallelism, and similarity. These 2re the three main
threads that run throughout the plane geometry of the tenth year.
With some classes some teachers may be able to go a bit further
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and develop the Pythagorean theorem, which will follow directly
from the exercises dealing with similar triangles. This can very
well be correlated with the solution of the incomplete quadratic
equation in algebra. No attempt has been made to suggest the
methods that the teacher is to use in introducing the work or in
developing the various parts. The outline merely suggests what
might be the content of a unit of demonstrative geometry in the
ninth year.




A UNIT OF DEMONSTRATIVE GEOMETRY
FOR THE NINTH YEAR

By JOSEPH SEIDLIN
Alfred University, Alfred, N. Y.

Nature of the Unit. The unit of demonstrative geometry here
suggested is based in principle upon the recommendation of the
National Committee on Mathematical Requirements*: “E. Dem-
onstrative Geometry. The demonstration of a limited number of
propositions, . . . the principal purpose being to show to the pupil
what ‘demonstration’ means.”

That a pupil may see a demonstration he must understand every
step in it and he must be satisfied with the genuineness of the struc-
ture as a whole. But he need not necessarily be able to reproduce
the “proof” synthetically o~ “get at it" analytically.

Other things being equai, the “demonstration’’ in this unit is no
less rigorous than that in present-day tenth year geometry. Though
assumptions are made rather freely, the extreme of assuming
“everything and anything” is avoided. The writer feels that too
many axioms and postulates would complicate the unit and destroy,
to a proportionate extent, the validity of demonstration.

Practical applications, basal theorems, the development of
spatial imagination are unquestionably desirable objectives in the
teaching of tenth year geometry. But they have exercised very
little influence in the choice of the content of this unit. It is dis-
tinctly not a mere preparatory course to further work in geometry.
On the other hand, this unit is so constructed that it will neither
interfere with nor inhibit the more formal geometry of the senior
high school.

Axioms, Postulates, and Definitions. At the very outset the
pupil must learn to distinguish between assumptions in demonstra-
tive geometry and inferred facts in intuitive or -experimental
geometry. For instance, in informal geometry we assume the
equality of vertical angles because the angles “look equal” and

* The Renrganization of Mathematica in Secondary Schools, edited by John W.
Young. Published by Houghton Mifiin Company.
54
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as a result of a simple experiment we assume that the sum of the
interior angles of a triangle is 180°; in demonstrative geometry we
may assume the equality of vertical angles irrespective of “looks”
or “experiment.” In other words, the pupil must be given to under-
stand that the axioms and postulates, the definitions, and the
“given” part of the thcorem are indisputable authorities in demon-
strative geometry.

In the plan of this unit the assumptions and definitions imme-
diately precede their actual use in proofs. Varying pupil conditions
may require a richer list of exercises and, likely, other assumptions
and definitions, In no sense is this unit to be regarded as a com-
plete or “closed” whole.

Introductory Group

Assumptions. The following assumptions will be necessary:
1. When two straight lines intersect, the vertical angles are equal.
2. If two sides and the included angle of one triangle are respec-
tively equal to two sides and the included angle of another
triangle, the triangles are congruent.

Definitions. We shall also need the following definitions:

1. The equal parts of congruent triangles are called their corre-
sponding parts.

2. Distance between two points is mousured along the straight line
joining the two points,

Exercises. The following excrcises may then be given:

1. Ifin AABC, AC is prolonged to D so as to make CD = AC, and
BC is prolonged to E so as to make CE = BC,

we can then prove that
(a) ACDE == AABC.
(by Eis as far frommn D as A is from B.
(c) AACE == ABCD.
(d) E is as far fromn A as D is from B.

These four exercises may be proved informally either in the order given
or in the order a, ¢, b, d
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2. If in AABC, D is the midpoint of BC and through D we draw
AE so as to make DE = 4D, and if we then draw BE, we can

prove that
(a) ADBE = AADC.
(b) £¢DBE = LACD.

C

A B
First Group

Assumptions. The following assumptions will now be neces-
sary:
1.1* The whole 1s greater than any of its parts.
2.1 In any function any quantity may be substituted for its equal.

Definitions. We shall also need the following definition:
1.1 In the triangle ABC, Yic
angles ABC, BCA, and CAB are its interior
angles;
angles CBX, ACY, BAZ are called exterior A
angles. 8

Theorem I. The following theorem may then be proved:

An exterior angle of a triangle is greater than either of the oppo-
site interior angles.

Given. In AABC, with AB produced to X, CBX is &' exterior
angle and £ ACB is one of the opposite interior angles.

Provel. (CBX > (£ ACB.

Proof. Through the midpoint of BC, say D, draw AE so as to
make DE = AD; draw BE.

C L
D

= X
A B
It is easy to show (see Exercise 2) that / DBE = £ ACB. But
we know that /CBX > £ DBE (see Assumption 1.1). And, there-
fore, /CBX > £ ACB (see Assumption 2.1).t
¢ Read "First assumption in the first group™ and similarly for the other notatlon

llke this.
+ The reasons should be stated In words, of course.
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Prove 8. LCBX > /CAB.

The proof may be developed completely and independently of (1), or
it might suffice merely to indicate the two new elementa.

Second Group

Assumptions. Another assumption will now be necessar;.

1.2 Three mutually intersecting lines, not passing through the same
point, form a triangle.
Definitions. This definition is needed:

1.2 When two lines are cut by a third (called a transversal) the
angles formed on the alternate sides of the transversal and
“inside” the two lines are called alternate-interior angles,

Angles z and y are alternate-interior angles.

Theorem II. The following theorem may now be proved.

Two hines cut by a third will not meet, however far produced,
tf the alternate-interior angles are equal.

Given. Lines PQ and RS are cut by the transversal AC so that ~
Im= /In

A
R 2 K3
/A

Prove. PQ cannot meet RS.

Proof. At first it may seem (to the pupil) that it is impossible
to prove this theorem since, aiter all, it is not practicable to keep
on producing these lines forever. Here; again, we have the oppor-
tunity to glorify the power of logical demonstration.

We are going to prove that because /m = /n it is impossible
for PQ to meet RS anywhere: What sort of figure would be formed
by AC and PQ and RS if the latter two met?
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Pemnee I ‘d Q — 7
fo

Obviously a triangle ABC would :-. formed (see Assumption
1.2). What is the relation of Zm to 2a? (see Definition 1.1), It
would therefore follow that £m > 2n (see Theorem I). But we
know that Zm= ¢/n (the only fact “given”). This rules out the
possibility of the “exterior-opposite-interior” angle relationship be-
tween angles m and n. In other words, AC, PQ, and RS cannot
possibly form a triangle. And, therefore, PQ cannot mect RS (see
Assumption 1.2).

Definition, Another definition will now be necessary:

22 Two lines in the same plane that do not meet, however far pro-
duced, are called parallel lines.

Exercises. We may now prove these three exercises:

1.2 Restate Theorem II, using Definition 2.2.

2.2 Any number of well-known corollaries and exercises may follow
Theorem II. (The choice is left to the instructor.)

3.2 Two sides of a triangle are prolonged their own lengths through
the vertex of the triangle. Prove that the line joining their ends
is parallel to the base.

Third Group

Definitions. The following definitions will now be needed:
1.3 Straight angle.
2.3 Sum »f angles about a point.
3.3 Exterior angles of any polygon.
4.3 n-sided polygon.
5.3 Exterior-interior, or corresponding, angles.

Assumptions. Two more assumptions must now be made:

1.3 The more common axioms.
2.3 If two parallel lines are cut by a transversal the corresponding
angles are cqual.

Exercises. The following exercises can now be proved:

1.3 If two angles have their sides parallel, left to left and right to
right, the angles are equal,
2.3 The extension of Exercise 1,3 to more than two angles:

la
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3.3 By means of the accompanying diagram show that the sum of
the interior angles of a triangle is equal to a straight angle.
We have AC produced to X.
BC ?roduced to Y.
DE il to AB.

Show that angles m, n, o are equal, respectively, to angles p, g, .

A fad

Theorem III. The following theorem should then be given:

The sum of the exterior angles of any polygon is equal to two
straight angles.

Since “an n-sided polygon” cannot be drawn (to the complete
satisfaction of the pupil), we will employ a five-sided polygon and
indicate toward the end of the proof that this in no way impairs
the generality of the theorem.

Given. Polygon ABCDE with its sides produced so as to form
the exterior angles a, b, ¢, d, e.

v 2
Prove. fa+4 Lo+ Lc+ £d+ /e =2straight angles.

Proof. Through some point, such as P, within polygon ABCDE,
draw PI]lto AB, PG llto BC, PH ||to (D, PJ|lto DE, PK |ito I A.
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La= LKPF

Lb= (FPG

Zc= [ GPH ;See Exercise &.°

Ld= [HPJ

Ze= (JPK

a4 Lb+ Le+ Ld+ Le= (KPF 4+ (FPG + /GPH +

/ HPJ 4 /JPK (Sums of equals are equal).
But /KPF 4 (FPG+ (GPH + / HPJ 4 £JPK =2 straight
angles (Definition 23).

S ladLb4 L e+ £d+ Le =2 straight angles (Assumption 2.1).
In what way would the proof be altered by the choice of a polygon of
six sides, or eight sides, or ten sides, or, conceivably, any number of sides?
Exercises. The following exercises can now be proved:
4.3 Simple numerical exercises involving exterior angles of equi-
angular polygons.
5.3 Show that in any polygon A — 180° — a (where A is any in-
terior angle and a is its adjacent exterior angle).
6.3 The sum of the interior angles of a polygon of five sides equals
three straight angles.
7.3 The sum of the interior angles of a polygon of six sides equals
four straight angles.
8.3 The sum of the interior angles of a triangle is a straight angle.
(Note that the proof here is independent of that of Exercise 3.3.)
9.3 Numerical exercises based on the above theorem and exercises.

Enriched by simple exercises the unit might end here. Cer-
tainly not much more should be attempted if only three or four
weeks are allotted to this work, Under a more favorable time
apportionment, say six weeks, it would be desirable to enlarge the
unit by including the following propositions on areas. In the latter
case it would be necessary to have enlarged the scope of exercises
on parallelograms. In particular, we need to have considered:

(1) Opposite sides of a parallelogram are equal.

(2) 4 diagonal divides a parallelogram into two equal triangles.

Theorem IV. We may now introduce the following theorem:

If a parallglogram and a rectangle have the same base and alti-
tude, their areas are equal.

F__D E_ ¢
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Given. ABCD, a parallelogram with base AB and altitude BE.
ABEF, a rectangle with base AB and altitude BE.

Prove. Area of ABCD = Area of ABEF.

Proof. Area of ABCD = Area of ABED + Area of ABCE
(The whole is equal to the sum of its parts.)
Area of ABEF = Area of ABED + Area of AADF
(The whole is equal to the sum of its parts.)
(i.e., the parallelogram and the rectangle have ABDE
in common; all we need to show, therefore, is that
ABCE = AADF.)
In A BCE and ADF (1) BC = AD (Opposite sides of a paral-
lelogram are equal.)
(2) BE = AF (Opposite sides of a paral-
lelogram are equal.)
(3) LEBC = /FAD (Exercise 1.3)
(4) /.ABCE = AADF (Assumption 2)
Consequently, Area of ABED + Area of ABCE = Area of
ABED + Area of AADF (Sumis of equals are equal.) Area of
ABCID = Area of ABEF. (Quantities equal to equal quantities are
equal.)

Exercises. These exercises can now be given:

1.4 If two parallelograms have the same base and altitude, their
areas are equal.

2.4 If two triangles have the same base and altitude, their areas are
equal.

3.4 If a triangle and a rectangle have the same base and altitude,
the area of the triangle is half the area of the rectangle.

Theorem V. The Pythagorean theorem can now be presented:

The square on the hypotenuse of a right triangle 1s equal to the
sum of the squares on its sides.

Given. Right AABC with BC 1to AC
Square ADEB on AB (hypotenuse)
Square BFGC on BC
Square ACHK on AC

Prove. Area of square ADEB = Area of square ACHK + Area
of square BFGC. .
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D L £

Proof. The added lines in the above diagram are CL drawn
perpendicular to DE; CD and BK.

CL divides the square ADEB into two rectangles—ADLM and
LEBM. We will develop the proo: by showing that

(1) Area of ADL)M = Area of square ACHK

(2) Area of LEBM = Area of square BFGC

To prove (1) we show that

(3) AABK = AADC

(4) Area of AABK = } Area of square ACHK

(5) Areaof AADC = } Area of rectangle ADLM

To prove (3) we show that

(6) AB = AD (sides of square ADEB)

(7) AK = AC (sides of square ACHK)

(8) LKAB = /CAD (each=90° + /CAB)

To prove (4) and (5) we use Fxercise 3.4, since /BCI =
90° -+ 90° = 180°, and, therefore, BCI is a straight line parallel
to AK,

To prove (2) we draw the additional lines AF and CE and then
follow the procedure of the proof of (11.

The above proof is partial, sketchy, and very informal. Never-
theless it is conclusive and sutisfying. For the brightest and most
interested pupils the complete form  proof may be given. The
duller pupils may be spared even the informal proof. To the bright
pupil the Pythagorean theorem geometrically proved may seem a
fitting “grand finale.”
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Exercises,
1.5 Any desirable number of exercises involving the Pythagorean
theorem.

Conclusion. The purpose of this unit, it will be recalled, is
“to show to the pupil what ‘demonstration’ means.” The propo-
sitions were expressly so chosen as to make the introduction to logi-
cal proof most real, most palatable, and least painful to the average
pupil. The unit of demonstrative geometry will serve its purpose
best if it leaves with the pupil a pleasant and lasting impres-
sion that there is a subtle, mentally-satisfying quality in “proof
by reasoning” not found either in “proof by experiment” or in
“intuition.”



TEACHING PLANE AND SOLID GEOMETRY
SIMULTANEOUSLY

By MAY L. WILT

University High School, West Virginia University
Morgantown, W. Va.

Introduction. Under the pressure of change in secondary math-
ematics, plane and solid geometry have been compressed into a
one-year course. Such a combination entails two marked changes:
first, the elimination of about one-third of the content, and second,
the simultaneous introduction of the more fundamental parts of
plane and solid geometry. '

Reduction of Content, Teachers of secondary mathematics
have realized for some time that they have been attempting to
teach material which rightly belongs only in advanced courses es-
pecially planned for teachers of mathematics. Consider the fol-
lowing: the proofs of the congruent triangle theorems, incom-
mensurable cases, the geometric proof of the Pythagorean theorem,
and much of the material on limits. Postulating the three congru-
ence theorems on triangles and solving the Pythagorean theorem
algebraically strengthens rather than weakens the pupil's power.
Certainly it helps to eliminate difficulty.

Simultaneous Introduction of Plane and Solid Geometry.
How can plane and solid geometry be taught simultaneously? The
sequence of Fuclid must be largely followed, but we sheuld not
forget that the geometry of Kuclid was constituted and arranged
for mature minds—not for children of the age now found studying
geometry ir secondary schools. Probably the first step in this new
presentation is the enlargement of definitions.

Enlargement of Definitions. ' Take, for instance, the concept
“angle.”” Wy limit the child to plane angles? Let him see dihe-
dral and polvhedral angles at the same time. He is daily faced
by the dihedral angle when his book is opened, when a piece of
paper is folded, and when he sces the intersection of any two walls
in his home, in his schoolroonm. or elsewhere. Moreover, he sees

U
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trihedral angles in the corners of boxes, the corners of rooms; and he
discovers polyhedral angles in roofs of houses, in church steeples,
and iu the crystals of various minerals. Does isolation of special
angles contribute more to their meaning than consideration of them
simultaneously? Probably there has been a tendency toward too
much separation in the past.

Think of the possibilities in the following: perpendiculars to
lines and to planes, plane and spherical triangles, bisectors, comnple-
mentary and supplementary angles, circles and spheres, and paral-
lel lines and parallel planes. Spatial concepts and plane concepts
contribute much to each other, but since we live in a three-dimen-
sional world the spatial concepts should be easier of comprehension.
In our zeal to follow the past, however, we have turned psycho-
logical order around.

Congruency of Triangles. Now let us examine some of the
ways in which solid geometry may be introduced with plane geom-
etry. Take the three fundamental congruence theorems on tri-
angles. Is there any real reason why the triangles involved may
not be revolved from one plane to another or why we may not draw
oblique lines from any point in a perpendicular to a plane? In-
deed, there seems to be no real danger in letting the pupil know
that there are other types of triangles—spherical triangles, for ex-
ample. We try to make our pupils “plane minded” insteund of
“gpace minded "-~thus we begin to isolate and disconnect the various
phases of mathematics. The marvel is that pupils have ever at-
tained a high degrec of understanding and power in this subject.

Parallel Lines. The theorems in plane geometry based on
parallel lines and parallel lines cut by transversals are not espe-
cially difficult for pupils to understand, but parallel planes and
parallel planes cut by transversal planes seem to annoy and disturb
them. I see no reason for separating the treatment of these
theorems, If two parallel lines cut by a third line are pulled
through space in a direction perpendicular to them, the student can
visualize the straight lines, tracing out two parallel planes, cut by a
third plane. Moreover, the plane angles formed by the original
lines trace out dihedrul angles. Since plane angles measure dihe-
dral angles the story is told convincingly.

Just as the ideas connected with a parallelogram grow out of
the theorems concerned with pairs of intersecting parallel lines, so
also do those connected with purallelopipeds grow out of the situa-
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tion where pairs of parallel planes interscct. Similarly, polygons
and prisms gre related. Pull a polygon through space and the
prism can be visualized.

Volumes and Areas. Areas of plane figures and areas and
volumes of three-dimensional figures have so long been separated
that the ordinary student finds it difficult to understand much about
them.

Circles. One of the most interesting opportunities for teaching
plane and solid geometry simultaneously is found in associating
the circle and the sphere. Revolve a circle about one of its diame-
ters as an axis and observe the path traced by an arc, a chord, a
radius, and a central angle. The association clarifies each.

Loci. Probably no topic offers richer material for bringing
together the content of plane and solid geometry than tle discus-
sion of loci. The locus of a point equidistant from two parallel
lines and from two parallel planes, the locus of a point equidistant
from the sides of a plane angle and also from a dihedral angle, and
the corresponding two- and three-diniensional associates based on
the locus of a point equidistant from the extremities of a given
line, together with countless other cases, indicate the marvelous
opportunities available.

Possibly a small unit of solid geometry will remain at the end
of the evurse-—a unit which seems to be more effective when taught
alone. However, with experience, more and more of solid geometry
will become absorbed in plane geometry. As a result, the teaching
cf geometry will become more dynamic and the understanding of it
less difficult for most pupils.



AN EXPERIMENT IN REDISTRIBUTION OF
MATERIAL FOR HIGH »CHOOL GEOMETRY

By GERTRUDE E. ALLLEN
University High School of the University of California
QOalland, Calif.

Introduction. A distinguished Scotclunan, visiting professor at
the University of California, while addressing a Phi Beta Kapna
gathering recently referred to the hordes that throng our campus
as a “university proletariat innocent of the vaguest suggestion of
culture or scholarship—yet withal, friendly. capable, nice young
things.” To initiate a European guest more completely in the pro-
fession of public education in a democrucy, we should introduce him
to the multitudes which overflow our high schooly, the source of a
selected group which forms the so-called “university proletariat.”

The management of these “friendly, cupuble, nice young things”
is a very insistent and vital problem to the adults concerncd. It
means nothing in their young lives for their clders to stand uloof
and condemn them in casual review, Ralph Wuldo Enerson once
said, “The secret of education lics in respecting the child™ As a
bigh school teacher, I champion the cause of high =ehool children.
Our greatest service to them is to preserve and foster their breezy
freshness, originality, independence, und enthusinsm; to direet their
purposeful activity in order that it may be ctlicient and =ienificant
in the world in which they live. In the attempt to o this the
natural questions which the thoughtful teacher is alwayvs asking
him=elf are—Why? What? When? How? The speeitic question
opened for discussion here is—-In what way are the arowth and
developrment of senior high school children best pramoted und
nurtured through the study of elementary geometry?  The purpose
of this chapter is to deseribe in some detail the moditied program
of tenth grade geometry at the University High School of Ouk-
land, California—a program which hus been in the proces< of heing
evolved by experimentation over u period of about ten years in an
attempt to redistribute the material and to wlapt the methods of
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presentation better to the nceds of the children entrusted to our
care. The statements preceding the outline are introduced by way
of explanation and defense.

You have already a visitor’s impression of our lively foreground.
The buackground in California high schools requires perhaps a
little explanation. First, public schools are of far greater signifi-
cance and importance than private schools and California spends
money lavishly on the equipment and maintenance of the public
high school. Superior private schools are comparatively few in
number and have in many cases largely a non-resident clientele.
The State Board of Education defines requirements for gradua-
tion and it must approve public high school courses of study. The
Board does not preseribe uniform textbooks nor set state examina-
tions. No mathematics is required for high school graduation.
Graduatex of aceredited high schools may be admitted to the Uni-
versity of California without examination—subject to approval
of the admissions committee. A new ruling, effective in 1931,
transfers certain responsibilities from the high school prineipal to
this committee. The university committee requires that a candi-
date for matriculution offer elementary algebra and plane geonetry.
Further than that, technical colleges require four years of mathe-
matics as a prerequisite for university courses. There is always
the alternative of passing the College Entrance Board Examina-
tions; the point of immediate interest is, however, that elementary
algebra and plane geometry are required as preparation for college
and that the university is the goal of a large muajority of our young
people. There is a reaszonable degree of freedom for every teacher
of geometry to exercise his initiative and judgment; in the last
analysis, however, his student= must make good when they continue
their work and he must justify his goals and standards to his prin-
cipal and superintendent so that the percentage of failures is within
the range of normnal expectancy. The teachers set or select their
own examinations, and these examinations are only one of the fac-
tors deterniining promotion; only in exceptional cases do our
students tuke the College Entrance Board Examinations. The high
schools and the individual teachers are rated by the university on
the basis of the success with which their graduates carry on at the
university. Such a plan seems eminently just—it offers the greatest
possible stimulus to teachers to work with the welfare of the chil-
dren as the ideal always uppermost in their minds.
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Criticism of the Teaching of Geometry. As a matter of back-
ground, I think it is worth while also to take stock of some of the
significant things that educational leaders have said about geometry
and about the way it is taught. A few criticisms and suggestions
are given in the following quotations:

“Schemes of geometrical education , , . are lacking in foundation, method
and extent. Euclid's Scheme—itself utterly unsuitable as an introduction to
the subject, has been so far tumpered with that hardly any scheme remains.
So long as no attempt is muade to devise a connected development based
on the many intuitions which ure common to all civilized beings before they
reach maturity—so long will the subject realize a painfully small proportion
of its potential value."—G. St.L. Curson, Essays on Mathematical Education.

“As a school subject, geometry is capuble of improvement in spirit and
in content. In most schools there hus been a good deal of memorizing of
demonstrations—originul exerciss pliyed a negligible part without purpose
or pleasure."—David Fugene Swnth, #irst Yeacbook, National Council of
Teachers of Mathematics,

“The chances for development of mental power outside of geometry are
much greater today than they were before the dawn of the present u;;e of
geience. . . . We have many good geometricinng who scem to possess small
logical sense in other affuirs. . . . logical power is a growth and ususlly a
slow growth—-an attribute of maturty and not of youthfulness, . . . An
average pupil cun memorize and reproduce anything that is printed in the
geometries.  We deceive ourselves into believing that the puptls were really
comprehending the thing which they scenndd to be domg. . . . Humanize the
teaching of high school geometry. . . . Admit thut gevmetry should be taught
for the benefit of the students, und that this benefit consists quite us much in
the inwurd development of power to use the subject in its manifold upplica-
tions a3 in the outward insistence upon its theoretiean] aspeets fur the purpuse
of mental discipline.”—H. I Slaught, Huwmanizing of High School Mathe-
matics.

"Euclid's brillisnt suceess in orgamzing nto « formally dedoetjve system
the geometric trewsures of hix times has caused the regn of seicence i.n the
modern sense to be so long deferred. . . . The learner is Jed blind-folded,

.. Method of investigation 1s concenled. . . | It is essential that the boy
be familia~ by way of experim nt, illustration, measurement, and by every
possible m ans, with the ideas to which Le apphes his logic and, moreover
that he should be interested in the subject.”—Perry.

“It is to the interest of the geometrician himself that he be persuaded to
look about for ways of cultivating space imagery which sre more efficient
than thove afforded in the logical courses now offered in demonstrative geoni-
etry. If demonstrative geometry is to be made a training in reasoning which
may be used in other fields, there must be radical changes in the methods of
teaching it."—C. H. Judd, Psychology of High School Subjects,
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“Our geametrie concepts have been reached for the most part by purposeful
experience. . ., (eometry has sprung from interest centering in spatial rela-
tions of physical bodics. .. . Tt is wrong in elementary geonietry to cultivate
predominately the logical side of the subject and negleet to throw open to
voung students the wells of knowledge contained in experience.”—-Mach,
Space and Geometry,

"Muthematies generally, and particularly geometry, owes its existence to
the need which was felt of learning sonicthing about the relutions of real
things to one another. . . ., According to axiomutics, the logicul-formal alone
fortus the subjeet matter of mathematies. . . . It is not surprising that differ-
+nt persous must arrive at the same logical conelusions when they have already
aereed upon the fundiamental laws as well as the methods by which these
baws are deduced therefrom. ., L It is elear that the system of concepts of
asionatie geometry alone cannot muke any asscrtions as to the relations of
real objects. . . . To be able to minke suon assertions, geometry must be
stripped of its merely logical-formal chareter by codirdination of real objects
of experience with the empty framework of axiomatie geometry, We need
alsu to add the relition of =olid bodies of three dimensions, . . . Geometry
thus completed i< evidently a natural science. . . . We may in fact regard
it as the most ancient. branch of physies. . . . I attach specinl importance
to the view of weonvery wloeh T have pret st furth beeause, withaut it, I
should have bren unable to formulate the theory of relativity."-~Albert Fin-
stein, Sidolights on Rilativity,

"The reasoning we huve to depend on in the daily conduct of life is almost
all probuble and not demonstr g e, —C W Eliot.

“Very few of the activities of the mind are thinking—but no school work
is worthy of a place in a school progrin that Joes not require some thinking.
+ + « Thinking is the activity of u person dominated by a particular purpose,
Essentials of thinkig-—something to think xbout, 4 motive for thinking, a
method of thinking, inherent capacity to think at all. , . . Reasoning begins
not with premises but with ditlieulties. . . Dithiculty, perples ‘ty, demand
for the solution of & problem . . . stewdvine gitidding Cetor i the entire
process of reflection. . . . What is imvortant ix that the mind should be
sensitive to problems and skillod in teethods of atteck and solution.”—John
Dewey, How We Think,

Course of Study in Elementary Geometry : #

A. One-Year Course, ‘l'nith scheu Meeroor Liter EHERTHEY RN R TSTIN l)_\' advice
of schonl counselor,

Prerequisite—E «mentary Alge-bra,

Required for admission to the University of Cliforn: .

B. Aims. The following aitns wre to bee qofiaeod,
L, The Development of Space Intmntion by
a. "Laying a foundation of cxpericnee vy on whivk to behd”
(1) Fxperiment and measurement.
* Reprinted from Oakland Conrse ot Study., Balbetin 77,
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(2) Constructions.
(n) Geometric drawing.
(h) Making models and crude instruments,

(3) Observation of geometrie forms in nature, architecture, and decora-
tive design.

(1) Exercise of spatial imagination,

b. “Organizing o body of knowledge out of this experience.” The definite

goal is:

(1) To gain an accurate knowledge of the significaunt propositions of
geometry,

(2) To develop and learn for practical use the essential formulas of
mensuration,

(3) To reveal possibilities in further exploration and to find incentives
to carry on.

¢. “Applying the resulting knowledge to practical use in the concrete world.”

2. To Furnish Favorable Materinl for Exercise in the Process of Logicul
Thinking.
a. To develop an understanding and appreciation of the method of de-
ductive reasoning in the field of geometry.

b. To form habits of exuct, truthful statement, and of logical organization
of ideas in this field.

c. To establish and exercise a conscious technique of thinking—using as a
basis Dewey’s analysis of a complete act of thought:
(1) A felt difficulty.
(2} Its location and definition.
(3) Suggestions of possible solution.
(1) Development of reasoning of the bearings of the suggestions.
(5) Further observation and experiment leading to its acceptance or
rejection.

d. To foster all possible transfer of ability to the solution of new problems,
both mathematical and non-mathematical.

C. Outline of Course.
1. Congruence and Equality.

a. Congruent triangles—their significance in the study of trigonowmetry and
in mechanieal constructions.
b. Sum of angles of triangle and polygon.
(1) Importance in theory of trigonometry.
(2) Isosceles and equilateral triangles, regular polygons.
(3) Applications in design for surface covering, such as quilt patterns,
tiling, c: rpet, and oilcloth patterns.

¢. Right triangle and theorem of Pythagoras.

(1) Deriving theorems for length of side opposite an obtuse and an acute
angle in a triangle.
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(2) Different interesting proofs and various important applications of the
Pythagorean theorem.

(3) Ratio of side to dingonal of a squure; of altitude to base in an equi=
lateral triangle.

2. Similarity and Symmetry.

a. Similar triangles and similar polygons; the right triangle; sine, cosine,
and tangent functions of an angle; problems in heights and distances;
ratio of lines in right trinngle formed by dropping a perpendiculsr from
the vertex of the right angle to the hypotenuse und the constructions
depending upon the equality of these ratios.

b. Ratio of corresponding lines, corresponding areas, and the volumes of
similar solids.

. Symmetry—central, axial, planar. Observations of symmetry in nature,
architecture, stage settings, art design, room furnishings.

3. Form and Position.

a. Rectilinear figures and solids bounded by planes.

(1) Intersecting lines and intersecting planes; peneil of planes; concur-
rent lines in a triangle; the centers of a triangle and the related
circles.

(2) Perpendicular lines and perpendicular planes ;—rectungles and rec-
tangular solids.

(3) Parallel lines and parallel planes with their related angles; parallelo-
grams and parallelopipeds.

b. Circles.

(1) Subtended arcs, angles, and chords.

(2) Secants and tangents to a circle with related angles, relation of
segments of intersecting lines which meet in a circle.

(3) Regular polygons inscribed and ecircumscribed ; limiting value for
ratio of perimeter to diameter; computing = (the ratio of the
circumference to the diameter); computing area of regular polygons
and circles; informal treatment of theory of limits.

¢. Locus of a point which moves about in space, but satisfies fixed con-
ditions; locus of the moving point when positions are restricted to the
plane; informal treatment of variubles and constants.

4. Geometric Construction.
Constructions of more or less complexitv to stimulate thought in applying
previously acquired knowledge in new situations.

5. Mensuration.
a. Development of standurd formulas for areas and volumes.

h. Numerical computations involving these formulas applied in miscel-
laneous problems of practical value.
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MaxinG SoME Sorip GEOMETRY AN INTLGRAL PART oF TENTH
YEAR WORK IN ELEMENTARY CCEOMETRY

First Method. We find that for children the most natural and
interesting intrcduction to the abstract phase of geometry is through
their concrete er'p-riences in their real world of three dimensions;
and we also find that conditions most favorable to transfer of
training obtain in the application and operation of general prin-
ciples to problems in this same world of three dimensions. Certain
fundamental concepts are more effectively developed and investi-
gated by generalized treatment than by a restricted treatment
which limits the excursions of thought to flatland—such concepts,
for example, as congruence, symmetry, similarity, locus, geometric
forms. angles. parallelism, perpendicularity, motion by rotation and
translation, position referred to X-Y-Z axes, size. and measurement
of length, area, volume, and angles.

The fundamental principles of congruence are more significant
if they are explained in connection with solids as well as plane
figures, reference being made t1 the importahce of exact congruence
in the economics of industry. Childran contribute a remarkable
va.iety of material for illustrations—radio parts, Ford parts. tele-
phones, quart milk bottles, standard screws, electric base plugs,
lead pencils, Mason fruit jars linoleum patterns. taslet armchairs.
and the like. Similarity may be illustrated by an object and a
miniature model of it. preferably two objects which can be measured
and weighed to compare corresponding lengths, areas. and weights.
A satisfactory treatment of i1 'ar figures shculd bring to the stu-
dent the conviction that when :wo similar solids are compare.!,
two corresponding lines hav- (... rame ratio as any other twa
corresponding lines. carrespon...nz ~reas have the same ratio as the
squares of any two corresponding lines: and ulso that the volumes
have the same ratio as the cubes of two corresponding lines. Sym-
metry may be illustrated by the human body—for example. the two
hands—or it may be illustrated by a pair of shoes. a vase, a shapely
tree, a well designed building, a balarced stage setting—as well as
an isosceles triangle. a kite, or a fleur-de-lis pattern. Parallelism
is better understood by observiag purallel walls in the corridar,
the floor and ceiling of the room, a picture molding and the eeiling,
parallel rows of trees in an orchard, parallel columns in a beautiful
building, than by parallel lines drawn on a sheet of paper. The
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nature of a locus is made clearer by numerous examples of re-
stricted motion in space and the corresponding result when the
lecus is limited to a plane. The tridimensional locus problems are
entively intuitive but children never question this procedure; they
probably will challenge the arbitrary requirement of a logical proof
for any theorems on loei.  The type of generalized treatment indi-
cated in the preceding illustrations serves to engage the attention
amd interest of the beginner, envielies the field of his geometric ex-
perience, and motivates rather than disiacts his efforts in logical
demonstration,

Second Method. A sccond means of unifying plane and solid
aeometry is the extension of certain fuets and theorems of the first
to inelude analogous facts and theorems of the second. For ex-
ample, from whatever aspect one chooses to discuss definitions for
point, line, surface. and solid, mugnitudes of one. two, three dimen-
sons are involved, and some child with a fertile imagination, active
euriosity or good memory for hearsays will wish to pursue the
diseussion into the realm of the fourth dimension. Postulating the
statement that a straight line is the shortest distance between two
points—how can we account for Lindbergh’s route from New York
to Paris? What is the shortest air line route from New York to
San Francisco, from San Franciseo to Honolulu? Extend the con-
cept of an angle between two lines to include the definition of an
angle formed by o line and a plane and an angle forned by two
planes. Tlustrate the carpenter’s test for making an upright perpen-
dieular to the plane of the floor. Note the one-to-one correspond-
ence of purallel lines cut by a transversal line and parallel planes
ent by o transversal plane: ‘parallelogram and parallelepiped;
recular polygons and regular convex polyvhedra; area of o rectangle
and volume of a reetangular parallelepiped: area of a parallelogram
and volume of an oblique parallelepiped; area of a triangle and
volume of a triangular pyramid: area of a circle and volume of a
spherer perigon and steregon: radian and steradian; central angle
in a cirele and intercepted are and polyvhedral angle at center
of 1 sphere and intereepted spherieal polvgon: area of u trapezoid
and volume of the frustum of & pyramid,  Rotation about an axis
1+ w usetful deviee in a student's thinkineg: what solid ix generated
by rotating a reetangle abaut its base? by votating a right triangle
about either arm of the right anele, about the hypotenuse? a
cirele about its dinmeter? an ellipse about its major uxis, about its
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minor axis?  Other ansdogies will =uggest themselves and may be
introduced we the diseretion of the teacher when by doing s0
interest in the work is inereased or the mathematieal outlook
widened.

Third Method. A third means of lifting demonstrative geo-
metry out of flatlund is to seleet varied positions for the phes in
whiel our figures are deawn -not 0 cing this to the blackboard
or the writing pud,  Consider the angre of elevation of the top of
the flagpole, the diazonad of the clissroom, the total =urface of the
texcher's desk. the lateral sarfs -+ of o pyramid, the total surface
of the Platonie bodies, the siooaar polvgons formed by parallel
transverse sections of o pyramid, and the like,  Apply the theorem
=="The sum of the squares on the four sidex of a parallelogram
equals the sum of the squares on the two diagonals™ to different
planes in a parallelepiped, snd arvive at the conelusion it the sum
of the squares un the twelve edees equals the sum of the L Ies
on the four diagonals, There was w0 good exereise of this deserip-
tion i a recent College Entrance Board Examination: “V-AB0D
= any pyramid with o rectangular base ABCD. Prove that the
Iateral edges are connected by the relation

LE VO = (VB (VD)

Fourth Method. The fourth sugeestion is to devote the last
month of the vear's work to mensuration. A teacher can make
Jndicious scleetion, substitution, and elimination of theorems o that
atenth vear cluss can work very satisfuetorily through w conrse
in demonstrative ceotmietry in nine months, inehding a review and
one of the standurdized  achiovement test<, According to our
records, eighry per eent of these stndonts tike no more work in
nathematios, i one judgment, they will et the greatest eduea-
tional value by rounding out their work with significant applica-
tHous and practice in aeeneste wnd eflicient computation, The
twenty per cent who continnge peed siels exereise and training even
more: turthermore, they will Lave an opportunity to supplement
the tenth year ceometey eonve with o ~ceond course in the seniog
vear. We emphasize in mensiation the development of the stand-
ard formulas for arens and volumes of solids, the use of these
formulas in think ney theough o problem and setting up the eom-
plete plan of solution in equation forn, and  correct, efticient
methods of computation. \ cood colleetion of sensible, sighiieant
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problems is made and there is a preliminary requirement of indi-
cating solutions in equation form, followed later with estimating,
computation. and check. Attention is given incidentally to the
fundamental principles of perspective drawing. I believe that any
open-minded teacher who tries this plan once will never be satisfied
unless he continues to follow it,

MaxgiNG SoME ELEMENTARY WORK IN TRIGONOMETRY AN INTEGRAL
PaArRT oF THe GEOMETRY COURSE

Congruence. In the treatinent of congruent triangles, we may
arouse curiosity and stimulate a forward-looking interest if we ex-
plain that it is the primary business of trigonometry or triangle
measurement to “‘solve triangles,” that is, to compute the unknown
clements in a triangle when a sufficient number of elements are
known to determine the triangle. Hence the importance of know-
ing all the different possibilities—or understanding that the dif-
ferent cases may be expressed in the one general statement—a tri-
angle is determined if any three independent elements are given
(except in the ambiguous case).

Similarity. Particular emphasis may be given to the theorem:
“Two right triangles are similar if an acute angle of one equals
an acute angle of the other.” This fact forms the basis for a large
group of important ratios fundamental to the solution of triangles.
We form the triangle of reference for a given angle by dropping
a perpendicular from the terminal arm of the angle upon the initial
arm. Hence the ratio of any two of the lines in a right triangle
so formed remains constant for a given value of the angle and
changes in value with a change in the size of the angle. These six
ratios are called the trigonometric functions of the angle in ques-
tion. Problems in the solution of right triangles, some practice in
the use of the tables of natural functions contained in the ge-
ometry textbook, and specinlizing on sine, cosine, and tangent can
be given.

Projection. The definition of the projection of a line segment
on & coplanar line is p = { cos 4. This definition may be used in a
very neat proof of the Pythagorean theorem given as supplementary
or alternative work; thus:

Given the right triangle ABC', right angled at C, a’ the projec-
tion of a on ¢, and b’ the projection of b on r.
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Then
c=a" +4 b
c=acosB+bcosA=a'-%+b-—f—.
Hence
¢ =a? + b2,

Law of Cosines. By using the previous definition of projection
the gencralized case of the Pythagorean theorem may be extended
to read ¢* =a®+ b? — 2abcos C. It may be applied in solving
problems, particularly with angles of 30°, 45°, 60°, 120°, 135°.

Law of Sines. The interesting relation between the sides of a
triangle and the angles opposite them may be developed through
the definition of the sine function. This is significant; indeed, we
are challenged to explain it, as children almost invariably jump to
the erroneous conclusion that the ratio of two sides of a triangle
is the same as the ratio of the two angles opposite, This may be
an inference from the case of the isosceles triangle, but it is a very
common error and should be corrected. Particular attention should
be paid to the ratio of the sides in the two draughtsman's triangles.

Mensuration of the Circle. In this unit the pupils usually
make “pi-books.” containing history and selected problems, and
develop the numerical value of 2 by means of the sine and tangent
ratios for the inscribed and circumseribed regular polygons, respec-
tively. We supply each with a mimeographed sheet containing
eight-place t:.bles for the angles concerned. This is a substitute for
the texthook computation and we find that the pupils take great
pride in their own theses.

MAKING SOME ALGEBRA AND ARITHMETIC AN INTEGRAL PART OF
THE WORK IN GEOMETRY

Unification. Whenever it is practical to do so, we make algebra
and arithmetic an integral part of the work in geometry. Aside
from the sense of continuity that the student feels, there is an
opportunity to exercise fundamentual skills and there is a specific
advantage in facilitating work in geometry. A free use of symbolic
notation facilitates geometrie analvsis and the expression of it;
the use of the formula and equation ix exsential to the application
of theorems proved, or to the process of making geometric knowl-
edge function effectively in action, whichever way one may please
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to =tate it To qllesteate:  In the trinngle ABC, desienate angles
by capital letters and sides opposite by corresponding small letters,
Make o practice of indicating line segments by small letters, engles
by capitals or Greck letters, v<ing u subseript if severnl angles have
tcommon vertex,  Use the conventional abbreviations in writing
out authorities. A few little wevices of this sort help the student
to Keep hisz “eve on the ball.,” The eqration and formula are funda-
mental i the work of mensuration,  We insist on thinking through
the problem and indieating in cauation form the final result hefore
ANy computations are made. As far us numerienl computations
are coneesned. T think we have o rieht to insist that economical
correet work is an essential part of ceometry, It is diseoneerting
toateacher, when welass as «aroup has developed very beautifully
the problem of the Golden Reetion, to discover, by means of the
aiestions asked by those who do not understand, that their diftienl-
ties arise from adding fractions by adding both numerators and
denominators, indiserininate  caneeling, or inability  to do the
stnplest factoring,

Algebraic Symbolism. The following are a few specific cuses

where aleebraie svinbolism is used:

L To find the cunt of the enterine aneles of g pelyeon §on sides made h_\'
productnge cch of e sides i steeessoon, Lt ey and A represent one
exterior ansbe and the adgaernt mitenor angde; let B oand J represent the
corresj-ondimg sums,

Tuke the CONSCCTIVE Vertie S TR

[ et )‘7 : 1 =t _:

Sinee this happens n times, E+T-naxts
But I==nstys —2st g

Thereloe., . B2 st 4,

< Inthe prood for dividing a line scgment 1 in Golden Section intermnally,
+ bemng the farger part, we have Trom the construeton

I+x 1
[ AR
The goal is to prove
r_l—-r
T

How ean yoor gt in one step what von want from what vour hve?

3. Rapebsody broneht in this elippne from the Oakland Tribune - s it
trae? Materid in the gron Pyeanii] wonld bauld o wall 2§t wide and
e bieh from New York to San Franeiseo,”

U From anether College Fntres Boand FExamination® Is there enough
nateral in U ew fr, of lead to make 200000 bullets, 14 in, in diamoter?
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. Giet o galvanized bucket from the janitor's closet, Make the necessary
linear measurements and compute the munber of gallons it will hold.
Check by hquid measure,

dy=9 in.; dy==11 in; h=12m,
No.of gal. = é amh (n? 4 ) - 231

w122, 12 301 _ 43 .
=3 X 7 X231 X i —-420“5.11.
6. Iinagine the Great Wall of China torn down and built into a rectangulur
wull which would encircle the earth at the equator (25000 mi) and
3 ft. wide. How high would it be? The Chinese wall is L300 mi. long,
15 ft. wide at top, 25 ft. wide at bottom, and 20 ft. high.
Prism, == Prisma
15+ 25 .

3 X 25000 X 3280 == 1500 X 5280 X =y X 20

Cr

z=8§

~7

. More or less algebraic work is necessary in the simpler problems of
proportion and wlso in the problem of the Golden Section of a line.

How 11 CoMBINED CoURsE Is WoRKED OuT

Choice of Material, We have attempted to arrange the work
in logically self-consistent units, choosing the material from what
seenis to be significant and understandable to the fifteen-year-old
child and ignoring the artificial man-made barrier between plane
and solid geometry. This plan has been justified in our judgnent
both in the interest of the large mujority who take only two yeurs
of high school mathematies and in the continuous growti of those
who study advanced geometry with introductory work in the eal-
culus. The dictum of certain very wise teachers is amply vindicated
over and over again in our practical experienee -it is vital to the
learning proeess that a child be taught =omething which he wishes
to learn, that he understand what he is doing, that he be interested
in what he is doing, that this interest be sustained through satisface-
tion in accomplisiment which appeals to him as worth while, and
that he have opportunity to use the knowledge he hus gained in
sonie purposeful activity.

The subject matter content is characterized by an increased
number of postulates, u deereased number of theorens to be proved,
a close correlation between plane and solid geometry, the incor-
poration of =onte algebra, trgonometry, and arithetie, and the
application of general prineiples in the solution of practical
problems,
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It appears permissible and advisable in the teaching of be-
ginners to accept as postulates the statement of all possible intui-
tions. The conventional assumptions would include: (1) the
cquality of vertically opposite angles; (2) propertics of figures
which are evident from svmmetry; (3) congruence of figures which
can be determined by superposition tdiscarding superposition as a
so-called method of proof); (4) congruence of plane figures whicli
possess line symmetry; (3) the angle properties of parallel lines,
namely: If two straight lines are cut by a transversal so that the
corresponding angles are equal. the lines are parallel; and the con-
verse, if two parallel lines are cut by a transversal, the correspond-
ing angles are equal; (5) the area of a rectangle is equal to the
product of its base by its altitude; (6) the central angle in a circle
has the same measure in degrees as its intercepted arc; (7) equal
central angles of a circle have equal ares, and conversely; (8) if
while approaching their respective limits two variables are always
equal, then their limits are equal.

Omissions and Substitutions. Omissions and substitutions
must be determined by the textbook one uses and also. of course, by
the ability of the class. The text used in Oakland is Smith's Essen-
tials of Planc and Solid (feometry. Consistent with an agreement
previously made, we omit ax theorems in this text those spec.fic
statements which we develop intuitively and accept as postulates.
Furthermore, we omit the proofs of incommensurable cases given in
the supplement, pages 425-428; the algebraic manipulations of a
proportion, pages 157-161 (making necessary readjustments in the
method of the geometric proofs): the two problems which involve
dividing a line segment externally, page 183 and the proof as given
on page 240; and pages 192, 196, 197, 228, 229; possibly the con-
structions on pages 223 and 224, We substitute for the theorem on
page 209: A = LYoah sin (*; for proof on page 210 a simpler proof
based on the ratio of Lobh to Vab’h’; and at that point extend the
comparigon to the ratio of the volumes of two similar solids by
finding the ratio of k(lwh) to k("w’h’1. For problems on pages
248 and 254 we substitute the trigonometrie ratios suggested in the
section of this article on trigonometry. Hero's formula, page 194, is
developed with the class, and then memorized and used—pupils are
not required to reproduce the proof. In the tenth vear course in
geometry ro attempt 18 made to give formual proofs of the solid
geometry  orems. We ain to develop an understanding of certain
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fundamental principles, a conviction that these principles are in-
deed true facts, We aim to develop when needed, as clearly and
directly as possible, the fundamental formulas listed on page 498
and provide opportunity for the knowledge of these formulas to
function in the analysis and solution of worth-while problems of
application, )

Formal Proofs in Solid Geometry. Ve reserve formal proofs
in solid geometry for the second course in geometry offered in
the senior year of high school. Select groups of mature students
are able to do more rigorous advanced work with profit. They can
prove supplementary theorems of plane geometry and the essentinl
theorems of solid geometry, and yet have ample time in their
senmiester's work for introductory work in the calculus or for ele-
mentary analytic geometry. One advantage in the redistribution of
subject matter here indicated is that time is provided for extension
of electives for the superior student. The development and entire
treatment is kept thoroughly concrete. It can be muanaged in a
way to furnish a review and codrdination of high school work and
provide a better background and introduction to university work.
We have watched with interest the intelligent student expecting
soon to leave school; he is quite as keen about broadening his
intellectual horizon as the prospective university freshman who
needs to be fortified as well as possibie for his new job. The vol-
untary expressions of appreciation of former graduates who have
taken elective work is very gratifying and comes both from the
university student and from young men in business.

Redistribution of Material. After the selection of appropriate
material, the next problem in redistribution is its effective organi-
zation and control. The essential points to be considered are
sequence, grouping, generalizing, and inethod of development. The
orthodox, logical sequence is not the only one possible. With he-
ginners we are more concerned to have self-consistent, interde-
pendent units and a psychologically coherent whole than to repro-
duce a Euclidean chain or a philosophical masterpiece of logical
perfection. It is important to group the material in wnits on the
basis of a key proposition or s fundamental concept; for example,
the angle-sum in a triangle, parallel lines and parallelograms, the
Pythagorean group, measurement of areas and volumes, similar
figures, circle measurement, and the like. Again, within the group,
it is well to emphasize the relative importance of the theorems,
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giving reasons. It is a good plan for students to keep note-books
and in review of a unit to outline and summarize. For example,
they can summarize (1) ways of proving triangles congruent; (2)
ways of proving lines equal; (3) wavs of proving angles equal;
(4) ways of proving a quadrilateral a parallelogram; (5) ways of
proving lines parallel: (6) ways of proving triangles similar: (7)
facts thev have proved about parallel lines; t8) facts they have
proved about regular polygons: (9) fucts they have proved about
two intersecting secants of a eirele.

Generalization.  Generalization is  an extremely  important
phise of mathematical thinking—the term expresses the use of in-
duction which seeks from a number of seattered details to dis-
cover a general statement or prineiple. thus involving the whole
question of abstraction and of transfoer, Guiding the efforts of
children in generalization iz one of the most interesting features
of the teaching of geometry. Some illustrations of general state-
ments which inelude a group of theorems arg: A triangle is deter-
mined if any three independent elements are given (except in the
ambiguous casel; if two intersecting lines cut a circle, the product
of the segments of one equuls the product of the segments o the
other, measuring from the point of interseetion of the seean s to the
points where the sceant meets the eirele; the angle formed by
two lines whivgt micet o civele hus the sunie measure in degrees as
half’ the sum o the intereepted ares, half their difference, or half
the are. according as the lines meet inside, outside, or on the eir-
cumference.  The Pythagorean theorem has many possible forms
of generalization; we have <ometimes had elusses in which each
individual presented o different proof, as well as tuking the supple-
mentary projeet of proving several of the general theorems of which
this is a particular euse.

The Function of the Teacher. ‘T function of the teacher in
helping the learner to lewrn is quite us Huportant in a4 geomoetry
class as an appropriate amd weil organized hody of subjeet matter.
Clear, forceful. and conclusive thinking can be acquired only by
long and puinful effort—this in part aceounts for the fuet that very
few persons ever beeome thinkers,  Indecd. 1 think tenehers are
often greater obstacles to progress than dull ehiidren or dithienlt
work. At one time I eould not understand why such g vigorous
reform movement as Perry initinted sbouid regrire a generiation
of thirty years to become an wetive agent in the ordinary cluss-
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roont; however, after ten years' experience in teacher training, asso-
ciated with the University of (alifornia, I have become deeply
impressed with the persistence of tradition, It takes a long time
to develop in a voung university graduate the problem-solving atti-
tude in hiz work as a teacher and in his relation to the work of the
learner. He is prone to look upon the teaching process as foreeful
feeding, disgorging, and giving exaininations: ax a rule. he expecets
to teach the same things he weas taught ad to teach them in the
same way.

Unfortunately many of our candidates for positions as teachers
of mathematics did not study solid geometry in high =school and
have found no suitable opportunity to take it in their university
course, We must deal with university graduates having majors in
mathematics who are not at home in the subject matter of high
school geometry and it is somewhat diflicult for them to coiperate
in administering a correlated course. Our hope for improvement
is that the glorious exceptions may be sufficiently brilliant and
strong in leadership to dominate the situation in the course of time.

The Logical-Formal Process. ‘While it is not the purpose of
this chapter to discuss method, it might be legitimate to do so. as
the logical-formal proccss is strictly the characteristic subject
matter of demonstrative geometry. It seems best to pass over the
question of method, merely giving some of the most helpful and
gignificant references. These are given in the footnote below.!
We are interested in developing an active and effective problem-

tBoeok, Wm, F.: Learning How to Study and Work Efectively, Chap. XX,
Coliimbin Associatex:  An Introduction to Kefleetive Thinking.
Colvin, 8. 8.: The Learning Process,
Dewey, John: Howe We Think.

Freenmu, MNC: Peycholuogy of the Common Branches, p. 214,

Hassier, J. O “Analytic and Indoctive Method vs. Synthetic and Dednetive
in Teaching Problem Solution." Schaol Ncience and Mathematics, March
1025,

Hansler, J, O.:  “Teaching Grometry into lta Rightful Plaees  The Mathe-
matick T'eacher, October 14240,

Johiuson, Elsie Parker: “Teaching Pupils a Conseinas Use of a Technlyue of
Thinking.” The Mathemativs Teacher, April 1ul4

Keyrer, Cansius: The Human Warth of Kigorous Chinking.

Keyser, Cassius: Thinking About Thinking.

MeLaughlin, H. Po: Geometry ax a Course in Reasoning.” The Mathematies
Teacher, December 1023,

Oversteeet, Ho At dhant Ourselyes,

Shaw, James Byrnle: The Bhiloxophy of Mathematica. Chap. V. "The Mcthoda
of Mathematiea™”

Shaw, James Byrnie: “The Way Mathematleians Work.” T'he Mathemalica
L'eacher, March 1923.
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solving kind of thinking in children; in developing the power to
meet new situations and the ability to investigate and discover
facts to prove what they believe to be true, and to convince others
of the truths they have discovered. This logical-formal material
becomes in a sense a large part of the subject matter of the course,
but the important thing to recognize is that such abstractions do
not make wholesonie food for babes. The difficult problem of re-
organization is to discover exact'y what type of concrete material
does uppeul to the interest of children and challenge their efforts, I
believe that we are seeking the psychological order. There must
be no abrupt transition from introductory intuitive geometry to
systematic demonstrative geometry. A good deal of unconscious
mental play and random experimenting may be pcrmitted in the
arly stages by introducing the novel, beginning with concrete
situations to be met, having a genuine problem. Some of the cur-
rent social problems may be discussed with the students. Some
day they should be qualified to codperate in solving problems in

their own social group. How did the Institute of Pacific Rela--

tions attack their problem? They defined their job—an experiment
in understanding; their object was to study the conditions of the
Pacific peoples with a view to improving their mutual relations;
they then proceeded to develop a technique for their job, The
method of attacking geometry problems should be applicable to
problems of mechanical and social engiaecring as well—to problems
of world peace, farm relief, temperance, tariff, or making a living.
Summary. Summarizing our findings from experimenting with
the redistribution of geometry material: it is the ever-enduring
process of trying to adapt procedure to wlhat we think is going
on in the minds of the children we are trying to teach, and to the
aius we have together set up asa goal. Tuc teachers 2 who have co-
operated in the experinient are unanimous in recommending a more
fundamental basis for organizing elementary and advanced geo-
metry than a division into plane and solid geometry; an increased
number of postulates and a decreased number of theorems to be
proved in the elementary tenth year course; close correlation of

?The classroom teachers und supervising teachers of our University High School
brlotig to the regular teaching staff of tue Ouskiand Public Schools.  I'be meaghers
of the Mathematics Iepartment have been: Miss Anna Grafelman, Misx Ning
Hospe, Miss Kate Fuster, liss Irene Lorimer, M.s¢ Emma Hesse, Mr. Max Yulich,
and the late Miss Ethel Durst., As head of the department I would like to ex-
press my appreciation of their excellent work and their e codiperation. 1t is
iuvaluable to have teachers who are in truth thinkers and teachers of thinking.

1 ——
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plane and solid geonmtry, trigonometry, alecbra, and arithmetic:
significant originals and applied problems; organization of subject
matter into acoherent whole made up of self-consistent interdepend-
ent units. I have attempted to explain some of the working details
of the general plan. "The experiment has the glories of the incon-
plete. No textbook fulfills the requirements of the outline deseribed
above, aithough we have been most grateful for the suggestive and
luminating material in certain recent texts, espeeiully with refer-
ence to instructional tests, illustrative material, live, up-to-date
problems, and interesting challinges to stwdent offort. Further ad-
Justents i content may be nuode s well as improvement in the
teehinique of teaching, We ean, however, furnish stutisties from
the Oakl el Departiment of Researel and Guidance and from the
records of our hich school craduates to defend wdequately our
theorier and practice.

O
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A NEW APPROACI TO ELEMENTARY
GEOMETRY

By GEORGE D, BIRKHOFF axp RALPH BEATLEY

Harvard University, Cambridge, Mass.

Purpose of Demonstrative Geometry, In demonstrative geom-
etry the emphasis is on reasoning. This is all the more important
because it deepens geonietrie insight. To the extent that the sub-
ject fails to develop the power to reason and to yield an apprecia-
tion of scientific method in reasoning, its fundamental value for
purposes of instruction is lessened.

There are, to be sure, many geometric facts of importance quite
apart from the logical structure. The bulk of these belong prop-
erly in the intuitive geometry of Grades VII and VIII, and are not
the chief end of our instruction in demonstrative geometry in the
senior high school.

If, then, we find that some of our pupils in demonstrative
geometry make little if any gain in the power to reason as a result
of our instruction, and find, moreover, that other pupils of equal
intelligence and schooling—except that they have had no demon-
strative geometry—show very marked improsemert in their ability
to reason, our position is certainly open to attack. We cannot
blame the pupils entirely. Perhaps there is something wrong with
the subject; or perhaps the teaching could be improved,

Undefined Terms. If we are to give our pupils an apprecia-
tion of scientific method in reasoning, we ought to insist on a few
undefined terms at the outset.  Why pretend to define everything?
The words “straight line™ mean more to most people than Euclid’s
definition, or later paraphrases of it. Then why not call “straight
line” an undefined term? If we cannot detine “point.” “surface,”
“angle,” without involving the concept we are defining, why not
take them as undefined?

Need of Certain Assumptions. Do our students appreciate
the need of certain assumptions as fundamental in our logical sys-
tem? Do we not allow them to infer that in geometry we can prove

86
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everything, and that we assume cortain clementary  propositions
not beeause we have to, but beenuse we are in a hurry to get on to
more important matters?  Should we not pather seize the oppor-
tunity to impress on them the need of eertain assymptiong, aml
show that this necd ix not peeuliar to grometry, but is inherent in
all Togieal syxtems?  Could anvthing hut good come from our Indi-
cating the possibility of some latitude in the ehojee of axstimptions
for geametry, and showing that ench such ehoice loads to o slightly
different approach to geometry, cacl valil with respect to its own
group of assumptions and to no ather? 1t is neither necessary nop
desitable, perhaps, to mention non-Fuelidean peometries in this
connection,

What is the point in telling beginners that we shall assume vop-
tain “self-cvident trath<" and then ushing them to prove certain
other propositions whiel they regrd as equally self-evident teaths?
Would they not come to a quicker understanding of the nature af
proof throush the efNort to prove vasv “originals” which are not too
plausible and which secm therefore to require justitication?

The Method of Proof by Superposition. If wo cun pssihly
avoid it, should we continue to demoralize oy elasses at the ontset
by usking them to prove the obvious by the me hod of superposi-
tion, u method =0 out of heemony with the lare e ain of o in-
struction that even though we recognize its validite we pess et e
use to those few cases for which we can tind no hetter meghot?

The Incommensurable Case. Fuelild developed e it banerje
and aluehra Le peeded by purely geametrie methads, anel mede o
reference to nnmber, Confronted by “the incommersurn e e,
he was able to cirearvent it only by means of ineqnedisies aned an
exceedingly shrews ddefiv iton of propecion,  Oue destrncetion in
arithmetio wand alicelirn etplovs coneepts developed sipee Foagelid's
time wied takes vneher s des stinting point, Oy Prapils wre nen
troubled by drvaticaeds il see no veed of the freonenetsaen il
case. O present praetice is to pay bar seaet sttention ta gt Jap
that hardiv renoves b dithenlty, heeanse 0 631 wnds in i
before ves Witk vaone eficetive tse of one irrationads w ol et
along withont auy mention of incommen<ygrable eoo PR RTY IS
Fuelul they were of fmslamentad importanee, 15 we noontion the
incommersurable case ar o we can oy disiies i one exeep
fi(m.'ll. I‘n!‘ tho ill('l'Hllll"ll.‘lll'.'lll!l' 1< nll ll'l.‘l’i\'l':_\' Codlnnnt et -
renced the commetsnrahie s the exeeption,
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Texts in Geometry. In short, many pupils get littlo good from
their study of geometry because at certain critical points the text
ir quite inadequate.  This is of course no disparagement of Euelid:
his awdicnee knew more about logic and less about number than
do our pupils in school to-day, IFrom our puint of view hia text
should say much more about the foundations of logical method,
connecting these with situations outside geometry by appropriate
exereiges, nnd should start with the real number system ns we have
it to-day and gain the power and simplicity which such an approach
wun vield.

Possible Changes in Teaching Geometry. Pcrhaps if we are
to rewrite Buclid we should consider other quesiions tov.  Congru-
ence and parallelism are fundamental in Euelid's geometry; and
from parallelism is derived the caneept of sinilarity. We can ex-
press this symbolicaily ax follows: ==, l— ~. But in our demon-
strations we refer chiefly to similarity, and less often tc those
aspects of parallelism not comprised in similarity. Moreover, con-
gruence and similarity have much in common. The British Report
on The Teaching of Geometry in Schools (G. Bell and Sons, Ion-
don, 1023. p. 35) makes the interesting suggestion that we replace
the Parallel Postulute by a Postulate of Similarity, and derive the
idea of parnllels from similarity, This arrangement can be shown
symbolically as follons: =, ~ — |,

Whether we make such a change or not, our pupils should see
that the Parallel Postulate can be replaced by some other assump-
tion—for cxample a proposition concerning equal corresponding
angles formed by a transversal and two other lines—and that the
erstwhile Parallel Postulate is now a theorem depending on the new
assumption, "The pupils should also discover the effect on geometry
of omitting the Parallel Postulate, or its equivalent, and all the
theorems dependent on it

Plane and Solid Geometry Combined. Inasmuch as most stu-
dents of demonstrative goometry devote but one year to the sub-
ject, it will probubly be worth while to make as many allusions
as possible to related propositions in three dimensions, This three-
Jimensional material would have to be based on intuition and find
expression mainly in the exercises, Tle principle of duality and
certain other modern coneepts should be ineluded also,

An Approach Based on Number. Let us give further consid-
eration to an approach to geometry based directly on number.
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Within the lnst century Riemann devised an approach to geom-
etry, not intended for clementary purposes and quite unsuited to
then, but nevertheless very suggestive. In this geometry the notion
of distance between two pointa is regar-led as the primary geometrie
relation. A little thought will make it plain that most geometric
coneeptions cah readily be defined in terms of distance. Tor ex-
nmple, the line regment AB may be defined as the collection of
points P such that the distance from 4 to P plus the distance from
P to B is equal to the distance from 4 to B. Aguin, the circle inay
be defined as the plane figure consisting of all the points P at a
given distance » from a fixed point O called the center. From the
Riemannian point of view geometry then appears us the theory
of the interrclation of various distances between points, and the
formula which expresses the distance between any two points is
regarded as the basic element.

In the case of Fuclidean geonietry this formula may be written

PP,= V{5, —2)" + (1 — 3%,

where the pairs of numbers r wul i are the labels which identify the
point in question. This asserts that the distance between any two
pointa P, und Py whose number pairs are z,, ¥, and 2,, y, is given
by the square root of the sum of the squares of the differences of the
a's and y's corresponding to these two points. Here we are not to
think of the formula in itsclf as having geometric significanse; in-
stead we must think of a vast collection of points, the distance of
any two of them being given to us by tabular entries, for instance,
and then we must think of the above formula as giving a particu-
larly simple rule by which the various points could be identified
and the distances between them found as given in the fundamental
table by short numerical reckoning.

Advantages of Such a Method. Now with this Riemannian
method of approa :h intuitive processes which are fundamental for
Fuclidean geome .y have no place. That indeed is the funda-
mental difficulty -ith the method from a pedagogical point of view.
But from a logical point of view it has several advantages which
ought tu be pointed out. In the first place, whereas Eudlidean
geometry takes for granted that there exist such things as points,
lines, and planes, although as a matter of fuct none actually cor-
respond to physical objects, in this new method the whole construc-
tion is based upon the number system. For example, a point ig
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defined to be a pair of numbers ¢, ¥ and the distance between any
two pointa is defined as in the above rule. Consequently we know
at the vutset that we are dealing with entities which exist in the
satne genxe that numbers do, so that our conclusions about them
are hound to be us consistent as our rules of reckoning with num-
bers.  Ta the second place, when we employ this method of ap-
proach we build up at the same time the elementary ideas which
belong to analvtic geometry and thas introduce the student not
only to the ordinary geemetrie theorems but also to their formula-
tion in terms of coneepts of analytie geometey.

Illustrative Examples, A simple illusteation will bring out
both of these points, Suppose that we are seeking the points on
the line segtnents which join pomt 000,00 to the point 8 (1, 1), If
P, gy represents any point of this segment, then, by the definition
above, AP - PB o AR aud

VETT 4 T AT B
1f now we transpose one of the terts on the left, square and sim-
plity, we find by a little ensy aluehra that

Ty V2 ‘;r‘_-+"-"}/"‘-.
It both wembers of thiz equation are squared again we obtain the
crpiation
X oY,

which defines the line upon which all points of the scgment must
lie. 1t is then easy to show that only those points are to be tiaken
for which 2 =y s numerivadly less than U and positive.  Here,
then, we Lave illustrated how the ratural definition in terms of
distanee leds to the formulation o the equation of a line in a
sitaple ease, From this point of view questions concern:ng inter-
weetiter limes and non-intersecting or parallel lues reduce them-
whves to aleebrade restions as to whether or not certain puirs of
Brear crtions in two ubhnownes o oawl y have or have not o
rll:l”ilin.

The Pythagorean Theorem. As another illustration we might
pofer to the Pytiaeorean theorem. How does the Pythagorean
theorem apoear Toon the Riciann an point of view? In the first
plice, we may res b the elementary formula itself as a formulation
of the Pythasorean theorenn, at bast when the triungle in question
lins two (.,|' pta stedes peneadied to the e iy ases, But more generally,
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we should ficst huve to define two perpendicular lines. Ta this end
we could define the nerpendicular P dropped from P to the line
I and meeting [ at the point M as that line for which the distance
PM is as xmall as possible. By purely algebraic manipulation it
turns out that given any two line segmen*s AC and CB such that
AC and CB are perpendicular, then (AB)? == (AC)* 4 (CB)*,

The Euclidean Method. Considering, then, these two contrast-
ing methods of appronch to clementary geometry', we may say that
the Fuclidean method proceeds from qualitative propositions called
postulates, not involving number at all (to which we therefore
attach the symbal 0), to other propositions involving linear and
angular measuremient (to which we accordingly attach the number
1), and finally to propositions which involve number in a two-
dimensional way (to which we therefore attach the number 2).
Of this last class the Pythagorean proposition and the theorem that
the sum of the three nngles of a triangle is 180° may be regarded
as the typieal and most important instances. Thus the processes of
development in the Furlidean approach may be indicated schemati-
cally by the following diagram:

0—1-2

The Riemannian Approach. In the Riemannian approach we
start with a formula which involves number in a two-dimeasional
way at the outset, for the fundamental formula really embodies the
Pythagorean theorem. Then from this formula, by means of suit-
able definitions and the use of ulzebraie methods, we deduce other
propositions, such as those dealing with linear and angular ineasure
and also the qualitative propositions with which we started in thé
Euelidean case. For example, the propoesition that two points de-
termine a straight line would involve first the definition of the
straight line as indieated above, second the proof that any equation
of the first degree in & and y represents a straight line, and finally
that one and cssentially only one equation can be found whieh is
satisfied by two given distinet pairs of numbers z,, ¥, and 2, ..
In consequence the diagram which we use to characterize this
method ol approaeh is the following:

251-0.
Disadvantages of Each Method. The disndvantages of both

methods are obvious. Euelid’s method is cireuitous and does not
take advantage of well known facts concerning number and linear
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and anguae meastieement in terins of number. Thege fucts, which
appear absolutely seli-evident at an early age under present
conditions of training, wust in this scheme be regarded as things
to be demonstrated, nt least if o purely logical point of view is
adopted. The method of Ricmanu, on the other hand, is totally
devoid of intuitive significunce and involves fuirly difficult alge-
braic munipulations at the outset.

Each method has, however, its advantages, which have been
referred to above.

A New Approach to Elementary Geometry, With these pre-
liminaries let us attempt to formulate a method of approach which
may possibly eliminate most of these disadvantages and at the
same time embody the fundamental ndvantages of both methods.
This method may in brief be characterized by this dingram:

012

In this case we take for granted ut the outse the notion of number
and assume that the student is eapuble of making simple compu-
tations by means of number.  Also we admit the self-evident fact
of linear and angular mensuration and seale drawing; that is to
say, we accept the simple facts familiar to any boy or girl who
knows how to uxe ruler and proteactor.  On the basis, then, of four
or five simple postulates of (his type, the most important geometrie
conclusions which are not seif-evident can be rapidly developed.
Among these would he the Pythagorean proposition and the
theorem that the sums of the aneles of o tvinngle is 180°, Further-
more, oh the basis of these postalates and these fundamental
theorems ull cther theorems in geometry can be derived easily and
naturally.

Fundamental Principles. ‘T'he fundamental prineiples neces-

sary to sueh wdevelopment may be taken as follows:

I. The Principle of Line Meusure —The points on any straight
line can Le mumhercd so that number differences measurce
distancrs.

1. There can e only ane steasyht Une through two given
points.

I1I. The Principle of Angle Measure.—All half lines having the
same ¢ndpoint can be numbered so that number differences
measure angles.

IV. All straight angles have the same measure, 180°.
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V. The Principle of Similurityt (Part 1) —~T'wo triangles are
simtlar, if an angle of one cquals an angle of the other and
the sides including these angles are proportional.

Basic Theorems. By mecuans of these five assuinptions we can
prove the following six basie theorems:

V1. The Principle of Similarity (Part I1)—Two triangles are
similar if two angles of one are equal to two angles of the
other.

VIIL. If two sides of a triangle are equal, the angles opposite
these sides are equal; and conversely.,

VIII. The Principle of Similarity (Part IIT).—Two triangles are
simtlar if their sides are respectively proportional.

1X. The sum of the three angles of a triangle 18 180°,

X. Through a point on a ling there exists one and only one
perpendicular to the line®

XI. The Pythagorean Theorem.—In any right triangle, the
square of the hypotenuse is equal to the sum of the squares
of th other two sides; and conversely.

Corollaries. As corollaries of XI we have the following:

XlIa. The altitudc on the hypotenuse of a right triangle 1is the
mean proportional between the segments of the hypot-
enuse.

XIb. If the hypotcnuse and side of two right triangles are tn
proportion, the two triangles are similar.

XlIc. The sum of two sides of a triangle s greater than the third
side.

XId. The shortest distance from a point to a line 1s measured
along the perpendicular from the point to the line.

XlIe. Of two oblique lines drawn from a poiat to a line, the more
remote 1s the yreater; and conversely.

A Principle V I8 very powerful. Thuugh stated In terms of similarity and propor-
tion, it evidently Includes the caxe of two congruent teiangles with two side. and
Included angle rexpectively equal. It Iy apparent from the content of themse five
fundamental prineipler what termx we must detine, or take as undefined.

*Theoremr X. should he tal. n for granted at the outset; for although it can he
derived from the basle prineiples, maost heglnners wonld hardly care to questlon It.
At the end of the courre they can eeturn to g conxideration of the basie principles
underiying thelr geometry and can prove thix proposition which formerly they touk
for geanted. Thix same procedure should be applisd to one or two other theorems
whore content sevmx obvinyg to the beginner.  He shonld miake a list »f all the

propositlons he taker for granted and compare it at the end of the course with the
minimum list ou which the geometry is based.
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Treatment of Parallels. The treaiment of parallels can be de-
rived from the principle of similarity. By means of this principle
also we can ghow that any two perpendicular lines (coérdinate
axcs), together with all the lines at right angles to them, form a
rectangular network; and that all the lines perpendicular to an axis
are parallel  The concept “slope of a line with respect to & nnt-
work” follows also from the Principle of Stmilarity and lends at
once to the equation of the straight line.

Area of a Triangle. The area of a triangle is a number, con-
stant for the triangle, and equal to k times the product of a side
and the altitude upon it. We may wssign any value we like to k;
g0 we choose such a value as will make the area of the unit square
equal 1. This means that k must equal Y.

Advantage of Pythagorean Theorem. It is a tremendous ad-
vantage to use the Pythagorean theorem from the very beginning
espeeinlly in connection with early propositions corearning the
circle.

Possible Constructions It is interesting to sce what construc-
tions were possible for Fuclid with onl'* uwimarked straight-edze
and eonmpasses; but it is comforting also to have scale and pro-
tractor always at hand rnd to know that it is good form to use
them.

Advantages »f the New Approach, Let us see how this pro-
gram stands in comparison with the Fuclidean and Riemannian
programs, from the standpo’ not only of mathematicai impor-
tance but of pedagogieal usefuluess, In the first place, it is severely
logical. In this respect it offers as satisfactory training as that
of Fuelid, and is much more direct. It lends itself admirably to
explicit conrideration of the place of undefined terms, definitions,
and assumptions in any chain of logical reasoning and leads to the
development of those same habits, attitudes, and appreciations
which all teacters of geumetry claim for their subject. In the sec-
ord place, it takes advantage of the knowledge of number and
of linear and angular mensuration which the student possesses, and
so does away with the fcoling of artificiality which is inevitable
when seemningly self-evident propositions are “proved.” In the
third place, it leads wvery naturally to the elementary facts of
analytic gcometry and wakes it apparent in this way that geometry

t Sep Birkhoff. Geargy D, The Origin, Nature, and Influence of Relattvity, p. 36.
Macmillan Co., 1925,
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i really a self-consistent discipline whether or not such things as
points, lines, and planca really exist.

Value of Study of Geometry. It is true that some of our pupils
scem to derive little or no profit from their study of zeometry. Per-
haps some teachers take comnfort in the notion that their subject
possesses a disciplinary something capable of “transfer” to situa-
tions outside geometry and forget that they must do their share
to encourage the transfer. The text usually fails in the same re-
spect. and has other shortcomings, us we have been at pains to
point out. But the remedy for these ills is not the present popular
made, complete abolition of the subject in question, or an almost
equally dire emasculation. For although it is difficult to prove that
the ctudy of geometry necessarily leads in large measure to those
habits, attitudes, and appreciations which its advocates so eagerly
claim for it, it is even harder to prove that under proper conditions
it cannot be made to yield these vutcomes, and more readily than
other subjccts o. instruction. Should we then aholish geometry
from the secondary sehool, or should we try first to reform it?

It is often said that the Fuclulean approach to elcmentary
geometry was designed for thoroughgoing scholars, and was nct in-
tended for the immature youth of to-day. That is of course true;
but it should not be taken to mean that geometry is beyond the ken
of pupils in secondary schools simply bceause it was not written
with them in mind. Youngsters in the grades to-day grapple with
crithimetic and algebraic intricacies, many of which were subjects
of debate smong adult Greeks of Fuclid's time, and some of which
it, was rererved for adults of relatively recent times to discover.
I.ater discoveries ofien shed light on ea:lier revelation and render
easy what once was hard. That has been true of algebra, and
could be equally true of geometry if we but dared to tuke the step.

We have suggested a modification of Kuclid in accord with
psycho'ogical and mathematical ideas which, though commonplaces
to u to-day, were not available to Iuclid. This modification
would at once simmplify the subject and give it greater significance.

In an age when the amount of material of scientific importance
which the student ought to lear: has becomc very large and the
demands upon his time are numerous, it would scem that the possi-
bilities of this new method of approach should be thoroughly in-
vestigated.



GRAPHIC METHODS OF TEACHING
CONGRUENCE IN GEOMETRY

By JOHN A. SWENSON
Wadleigh High School, New York City

Influence of Euclid. The sway which Euclid’s Elements has
held as a textbook for more than two thousand years is without
parallel in the history of mathematics. Even the invention of
Cartesian geometry in 1637 has not affected the teacting of the
so-called Euclidean geometry. An almost unlimited number of
textbooks have appeared in modern times but the on'y way in
which they have differed is in the sequence of the theorems, Euclid’s
treatment has in the main been retained and no modern mathemati-
cal methods have been introduced.

The Method of Proof by Superposition. The Report of the
National Cowmitice on Mathematical Requirements emphasizes
the function concept but there is nothing in the report to indicate
that even (his ultra-modern committee had in mind anything essen-
tially differeat from the usual Euclidean treatment. This treatment
may be best suited to the beginner’s requirements and t'.e one most
readily comprehended by him.

We can never be absolutely sure of this, however, until we have
experimented with ottier methods. Other considerations also enter.
The mathematician does not consider the method of proof by super-
position very satisfactory. The psychologist says we should in-
troduce no unnecessary habils in connection *vith the processes of
learning. The use of superposition is surely one of these unneces-
sary habits because it is barely introduced before it is discarded.

Teaching Congruence by Graphic Methods. In connection
with experiments to make variation the fundamental tool in both
algebra and geometry, I have substituted graphic methods for
superposition. After the first congruence theorem has been verified
experimentally by the actual cutting out and placing of one triangle
on the other, the other congruence theorems are treated graphically

in the manner indicated below.
96
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Variation in Triangle ABC. In Fig. 1a, ABC is a triangle in
which 4B =2 in.,* £BdC =30°, and £ ABC =18°. If we keep
AB and £ BAC fixed or constant (i.e., retain the values 2 and 30°,
respectively) and allow £ ABC to increase, say, by steps of 20° so
that £ ABD = 35°, £ ABE = 55°, and so on, then the oppoaite side
AC will also incrense and become AD, AE, AF, and so on, as shown
in the accompanying table.

Trisogle| Angle | Side 7
4 z

ABC 18° AC
ABD ®° AD
ABE 88° AR
ABF ([ AF

Fiouee 14
ABA | o | a4 eh vl

To show how these angles and the opposite side vary together
throughout the whole range of possible values, let us construct a

o 15 ey ov 76 o5 ue 1554
FiouRe 1h

graph, using /8 ABC, ABD, ABE, ABF, and the like, as 2's and

the opposite sides AC, AD, AE, AF, and the liVe, as y's. (See

Fig. 1b.)

® The figures in this chapter have been reduced In size from the original.
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In conatructing the geaph, the y's are taken by direct measures
ment from the trinngles, but the a's are laid off dircetly by letting
one linear unit represent 8°.  An inspection of the graph shows
clearly:

1. If we traverse the graph from left to right, r and y increase
together.

2. If we move from right to left, 2 and y decrease together,

3. To each value of one vuriuble corresponds only one value of
the other.

When these three conditions are fulfilled, we say that = and ¥
vary in the same scnse throughout the whole range of possible
values.

Variation in the Opposite Sense. Any two variable magni-
tudes may be used in construeting a graph. To obtain a graph of a
different nature from the geaph in the preceding figure, we shall
again keep AB and angle A in Fig. 1a constant and use BC, BD,
BE, BEF, and 0 on, as p's and AC, AD, AE, AF, and g0 on, as y's,
as indicated in the table below, ‘I'he graph from these data shows
plainly that as y inercases, ¢ deereuses for g vtile and then begins
to increase,

o e ctwpe L ¢

Triangle| Side Side
a z ¥
ARC BC ac | O
ABD 8D AD
ABE BE AE ot
ABF BF AR

L] L] . ‘ "

cf
>

o i ) ) 2
frovRe 8

The graph in Fig, 1b shows no such fluctuation, In that graph
r and y both vary in the same sense throughout tie who'a range
of values., In the graphin Fig. 2, 2 and y vary in the opposite sense
for a while and after that in the same sense, but there is no con-
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sistency throughout the whole graph such as we encountered in the
first graph,
Frercises.
1. Using the preceding graphs, determine
a. the values of z which correspond to ccrtain specific values
of .
b. the values of y which correspond to certain specific values
of 2,
c. the change in z which corresponds to certain specific
changes in y.

2. Specify that part of the graph in Fig. 2 which shows that z
and y vary (a) in the same sense; (b) in the opposite sense.

Use of Graphs in Proving Congruence. The preceding sec-
tions have shown the truth of the following principles:
If in a triangle one side and one of its adjacent angles remain
constant, then
1. the other adjacent angle and its opposite side vary in the
same sense through the whole range of possible values.
2. the other two sides do not vary together in a consistent
manner,

By using the first principle above we can prove the following:

Theorem. Two triangles are congruent if two angles and the in-
cluded side of one triangle are equal respectively to two angles and
the included side of the other.

Given AABC and AA’B’C’ in which AC=4'C’, /4 = 4,

LC=¢/C. R 4
Prove AABC = AA'B'(C". .A&, .z:ﬁ_/_ :'5,-

Proof. In pussing fromn the first triangle to the second, A¢’ and
£ C remain constant (AC =A4'C’, £C= £C’). Hence AB and
Z C vary in the same sense, which means that 4B must remain con-
stant when £/ C does. But it is given that £ C remains constant.
Hence AB remains constant, or AB = A’B’, and the two triangles
are congruent by the first congruence theorem,

Ezercise. Show that it is not possible to prove two triangles
congruent when two sides and an angle opposite one of them in one
triangle are equal respectively to the corresponding parts in the
other.
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Another Variation in Triangle ABC. In lig 3a. JABC iz a
trinmele in which AB == 1.5 in, AC 22 2 in, and | BAC 2252, I
we now keep AB and AC constant (ie., of the same length), and
allow . BAC to increase by steps of 20°, then we have the set of
triangles deseribed in the following table,  The geaph (Fig 3
shows that & and y vary in the sume sense, Henee: If two sides of

[ ()p}msiu-
Trinngle Angle ‘\.l,lh.!.-
I ! il
And REN R
ABD N BhH
ABL 65 IHA
ABF LA B
4"1‘1\. 16-’). l 1)'.\:
At w»: : BT P
ABM ___U_.__ ] .1.,._”_«- -
Fi6URE 3a
Y
atl
a5}k
a -
i16¢
[ y/
L 1 1 1

X

1 1 1 ] 1
(o] 25* 45° ©5° &5° 105° {25* {45° 165° 180°
Froure 3b

a triangle remain constant, the included angle and the third side
vary in the same sense.

From this theorem it follows readily that two triangles arc con-
gruent if three sides of one triangle are respectively equal to three

sides of the other.
Difference Between Alzebra and Geometry. Modern inven-

tions have produced such powerful tools that it is hardly excusable
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to confine onesell exelusively to those in use 2,000 years ago. If
Euclid lived to-day he wou'd no doubt take advantage of modern
algebraie methods, When the modern teacher of mathematics keeps
algebra and geometry in separate compartments, he saeritices much
that a union of the two subjects can bring out.

Summary. The above sketeh is a mere nint of how the two
subjects may be used to reinforee cach other in bringing out the
fact that mathematies iz fundamentally a study of varintion, In
nature and eversday Hie all things change, and it is the business
of mathenaties to study these changes and express the kows aceowd-
ing to which they take place. The topie Superposition hus been
chiosen purposely beeanse it ix generally argued that this is the topic
in geometry that least of all fuses with algebra,



THE USE OF INDIRECT PROOF IN
GEOMETRY AND IN LIKFE*

By CLIFFORD BREWSTER UPTON
Teuachers College, Columbia University, New York City

Indirect Reasoning in Life. Recently a valve on the steam
radiator in my office gave evidence of being defective; when the
vilve wus turned off, steam continued to flow into the radiator. 1
called the college engineer who removed the valve, cleaned it, and
then replaced it. This procedure, however, failed to remedy the
trouble for no matter how long the valve was closed, the radiator
remained hot. I called the engineer again and told him that the
valve was defective and that a new valve was needed. He con-
tended that the valve was a good one and that a new one was
unnecessary. That explanation didn't satisfy me since the radiator
was still hot though the valve hed been tightly closed all night
long. I then asked him, “If that were a good valve, could steam
leak through the valve when it is turned off?” He admitted that
steam could not leak through it if the valve were a good one; hence
he too was convinced that the valve was defective. The valve was
removed and replaced by a new one, and the trouble was remedied.

This is a good example of a type of reasoring that occurs rather
frequently in life. It is a natural kind of argument, it comes spon-
taneously, and in general it is convincing. We call it indirect rea-
~oning because we did not prove directiy that the valve was defec-
tive. We estublished this fact indirectly by showing that it was
not a good valve.

This indirect method of proof, which is often called the method
of reductio ad absurdum (reduction to an absurdicy) is also used
in our high school work in demonstrative geom rv. In fact, a few
of our basic theorems, and certain exercises, can be proved only
by the indirect method.

Some Criticisms of Indirect Proof. It is of intcrest, how-
ever, that though indirect proof is eusily understood when applied

¢ Copyright, 1030, by C. B, Upton.
102



INDIRECT METHOD OF PROOF 103

in many life situations, it is, on the contrary, considered by a
large group of teachers as more or less unsatisfactory when used in
geometry. Just why it is unsatisfuctory is not easy to explain,
vet the fuct remains that many teachers find indirect proof much
less convineing than direct proof. As evidence of this dissatisfac-
tion. T quote below the statements of a number of geometry
teachoers, recently attending the Summer Session courses at
Teachers College, who were asked to give their impressions con-
cerning indirect proof:

. Pupils feel that indirect proof “beats arouud the bush.”

. Indirect proof is not always convincing. It often seems absurd to pupils.

. The theorems proved by it are often 100 nearly self-evident.

. Indirect proof tends to produce reasoning in a circle because of the
informal way in which it is used.

. If the theorem is true, why can't a direct proof for it be found?

. The indireet method is hard to teach; it is not a natural methad.

. The use of the indireet method often results in memorizing the proof.

. Teachers do not really understand it.

. It is better to prove positively than to disprcve negatively.

. Indirect proof is usually taught too early when pupils have many other
things to learn.

11. The ability to disprove each of the false assumptions is b>yond most

of the pupils.

12. Pupils do not see all the poseibilitics; they draw eonclusions too soon.

13. Pupils do not seem to know when the proof is finished.

14. Pupils get the idea that we are dodging the issue.

15. The figure used to represent the false assumption cannot be accurately

drawn.
18. Pupils do not know when to apply indirect proof.
17. It is not really a proof.

o D D =

O © 00 ~F D N

This feeling that indirect proof is not as satisfying as direct
proof is not limited to high school teachers. Coffev, in his Science
of Logic, states that “indirect proof is obviously iess satisfactory
and less scientific than direct proof for it does not give the mind
any insight into the positive intrinsic causes or reasons why the
established proposition is really true. Nevertheless, it is of great
importance as a path to certain knowledge and it is used exten-
sively in every department of research.”! The famous mathema-
tician Augustus De Morgan, who wrote texts on formal logic as
well as on mathematics, states that “indirect proof is as logical
as direct proof but not of .o simple a kind, hence, it is desirable

1 Coftey, The Science vf Logto, Vo.. 1], p. 233.



Q

ERIC

Aruitoxt provided by Eic:

104 FIFTH YEARBOOK

to use direct proof whenever it ean be obtained.”? Dauzat, the
well-known French writer on methodology, states that “indirect
proof is a sure method, but although it is convineing, it is not illu-
minating, and should be used only as a last resort.”

Importance of Indirect Proof. It should be pointed out that
altliough the above comments indicate that indirect proof is not
as satisfving as direct proof, yet all logicians recognize the impor-
tance and logical soundness of the indirect method and certain of
them emphasize our great dependence upon it in everyday life. For
example, Jevong, one of the great authorities on logic. goes so far
as to say that “nearly half of our logical conclusions rest upon
its employment.” 4 Milnes, in his revision of De Morgan’s First
Notions of Logic, which was intended by De Morgan as an intro-
duction to geometrical reasoning, states that “the process of
reductio ad absurdum is of the greatest importance. 1t is the most
prominent of all the methods by which men learn those truths of
Nature that are unitedly known by the name of Science.”

In our high school work in demonstrative geometry it is impos-
sible to develop a syllabus of propositions all of which shall be
proved by dircet methods, To establish certain propositions, we
are obliged to resort to the method of reductio ad absurdum.® In
Fuclid’s Elements, the first great textbook on geometry written
about 300 B.c., we find in Book I that the indirect method is used
to prove eleven basic propositions.” Our modern American writers

* De Morgan, Formal Logie, p. 24
! Dauzat, Eléments de Méthuinlogie Mathématique, p. 10,
¢ The entire paragraph in which the above statement appears is here quoted :

“Some philogophers, especially those of France, have held that the Indirect
Method of Proof has a certain Inferiority to the direct methml, which should pre-
vent our using it except when obliged. RBut there are many truthe which we ean
prore only indirectly. We can prove that a number {8 a prime only by the purely
indirect methed of showing that it ix not any of the numbers which have divisors.
We can prove that the side and diagonal of a zquare are ineommensurable, but only
In the negative or indirect manner, by xhowing that the contrary supposition
inevitably leads to contradiction. Many other demonsteations in varions brauches
of the mathematical sciences procesd npon a like method,  Now, if there is only
one important truth which must be, and can only he, proved indirecnly, we may say
that the process i3 a necessary and suficient one, and the guestion of its com
parative excellence or usefulness Is not worth disenssion. A« a matter of foet 1
believe that nearly half our logical concluslons rest upon its employment,”- -From
Jevous, The Principles of Science, p. 82,

* Milnex, Elementary Notions of Logic, p. 93.

¢ Throughent this discussion the terms “indireet proof,” “indireet methad of
proof,” and “reductio ad absurdum® are used synonomuusly.

T Enelid was not the first one to use indirect proof in goometry. Endoxius, whe

lived about 370 B.e,, {8 known to have used this method of reasoning to prove
certain theorems,  Sce Allman, Greek Geometry from Thales to Euclid, p. 186,



INDIRECT METHOD OF PROOF 105

on demonstiative geometry tend to limit the use of the indirect
method as much as possible, though practically all of thom use
this method to prove at least five regular propositions or corollaries
in Book I of their textbooks on geometry.

Indirect proof is a very powerful instrument. To use it suc-
cessfully, one must be thoroughly acquainted with it and have
much practice in its use. The fact that the pupil encounters it so
seldom in geometry and hence has so little practice in using it,
probably accounts in large measure for much of the dissati-faction
expressed concerning it. Tr. our geometry classes to-day, we spend
considerable time explaining the nature of direct proof; we also
give considerable attention and practice in the method of analysis
as a means of discovering direct proof. Unfortunately, no corre-
sponding amount of attention has been given to the indirect method
of proof and it is this neglect, in all probability, that is the cause
of the trouble. Another element contributing to this difficulty is
the fact that the indirect method is most frequently used to prove
the converses of certaih propositions; it is the experience nf most
teachers that the notion of a “converse proposition” is, in itself, a
source of more or less confusion to many pupils.

Nature of Indirect Proof. Recognizing the fact that the in-
direct method is not entirely satisfying to many of our high school
teachers and pupils, and also accepting the fact that we are abso-
lutely dependent upon this method, not only to establish a con-
nected chain of propositions in geometry, but also in many life
situations, it seems important for us to examine carefully the
nature of indirect proof and to state its underlying principles from
the standpoint of the science of logic. This discussion is intended
for teachers with the hope of making available in a singie article
certain materials that would otherwise be obtainable only by
consulting a wide range of literature on logic and on geometry; in
many librarie: certain of the books quoted would not be found.

Perhaps the simplest way to illustrate the principles involved
in indirect proof will be to return to our illustration of the defective
steam valve, which was presented at the beginning of this article.
In that illustration we proved indirectly that the steam valve was
defective by showing that it was not a good valve. In this reason-
ing, we assumed that one of two things must be true, cither (a)
the valve is a good valve, or (b) the valve is a defective valve.
These statements (a) and (b) are such that “both cannot be true
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at the sanie time; likewise both cannat be false at the same time.
In other words, at the sate time only onc of these statements ean
be true and only one can be false, If (a) is true, then (b) must be
false, and if (a) is false, then (b) must be true; likewise, if (1) is
true, then (a) must be false, and if (b) is false, then (a) must be
true. There is no middle ground; there is no third possibility.”®
If we wish to prove that (b) is true, it suffices, therefore, to prove
that (a) is false; such proof is ealled indirect. On the other hand,
if we had established the truth of (b) without any reference to (a),
which might poseibly have been done by removing the valve and
discovering that one of its inner parts was broken, then oir con-
clusion would have been reachied by direct proof,

Indireet reasoning: of the kind just illustrated is also known as
the method of reductio ad absurdum, because it always leads to an
absurd conclusion. For examnple, in the illustration of the defective
steam valve, the assumption that the valve was a good one led us
to conclude that it would shut off the steam when tightly closed,
but thic was an absurd conclvsion because the steam continued to
flow when the valve was closed. Since to assume the valve good
led to an absurdity, we concluded that our assumption was false,
Hence the valve must have been defective since that was the only
other pussibility.

Contradictory Propositions. In the above discussion, we sce
the statement that the valve is good contradicts the statement that
the valve is defective; such statements, in the science of logic, are
ealled contradictory propositions, beeause one of them contradicts
the conclusion of the other® Contradictory propositions may be
defined as follows: “Twe propositions are contradictory when
thev are exact opposites; ore must be true and the other must be
false' 10

Contradictory propogitions play such an important part in the

Y Jones, Lagie, Inductire and Detuctive, po 116,

* Other cxamplis of contradictory propositione are as follows: Anzle 4 equals
auzle By anels 4 deed pot equal angle B, Lines o and noare parallel s lines m oand
snoare not parallel. Tt fe ralning: it 19 not rainin:.

In couynection with the cantradictapy prop-tienz {8 {2 eatnlng nnl {t $e not
rafning, ane may 0 fivt hastily dechle that these tweo propo itons do not ensver
all the pos-ihilitles <inees §t may he anowing or 1t may be hailing; it will tee soep,
henenvap, thet {8 {2 wnueivg nnd {t e hailing both come wnlop the proposition, §# f<
not ealntiy, Hepee, the projeccitiogs {8 fe painferg awl it {2 nol raining repre et
the only twee pa dhilitle s Fhe o prope-itlon: are aleo kneh that when one of
them {4 teae, thee ather mnst bee Filoe, hence they see eontrivlictory propedtions In
pecagrdtiner vwath the defindthen glven ahove, '

¥ Junies, Lagle, Inductire and Deduethre, po 115,
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study of logic that we will now summarize certain important facts
concerning them which have already been brought out:

(1) Two contradictory propositions cannot be true together,

(2} Two contradictory propositions cannot be false together.

(3) Of two contradictory propositions, one must be true and the
other false.

These facts may be summed up in the form of a working prin-
ciple us follows:

If one of two contradictory propositions ts proved to be true, it
immediately follows that the other must be false; similarly, if one
of them 1s proved to be fulse, it immediately follows that the other
must be true.

This principle is applied when we prove a proposition by the
method of reductio ad absurdum, since we prove the proposition to
he true by showing that its contradictory proposition is false.

This discussion of eontradictory propositions and their use in
indirect reasoning is also closely related to two fundamental laws
of thought which are deseribed in most of the standard textbooks
on logic. These laws are as follows:

(1) The Law of Contradiction, which states that a thing cannot
both be and not be.

“The Law of Contradiction points out that nothing ean have at the
same time and at tne same place contradictory and inconsistent
qualities. A piece of paper may be blackened in one part, while
it is white in other parts; or it may be white at one time, and
afterwards become black, but we cannot conceive that it should be
both white and black at the same place and time. A door after
being open mayv be shut, but it eannot at once be shut and open.
No quality ean both be present and absent at the same time; and
this seems to be the most simple and general truth which we can
assert of all things. Aristotle truly described this law as the first
of all axioms—one of which we need not seek for any demonstra-
tion,” ®

(2) The Law of Excluded Middle, which states that a thing
must either be or not be. This is also called the Law of Duality.

“The Law of EFxcluded Middle asserts that at every step there are
two possible altornatives—presence or absence, affirmation or nega-
tion. It asserts also that between presence or absence, existence
and non-existence, affirrnation and negation, there is no third slter-
native. As Aristotle said, there can be no mean between opposite

4 Prom Jevons and Hill, Elements of Logio, p. 105.
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assertions; we tust either aflirm or deny, Henve, the inconvenient
name by which it has been known ~The Law of Excluded Middle.,”*

Another Important Principle. It will now be helpful to state
one other important principle upon which indircet reasoning is
based. This can best be done by referring to our first illustration
of the defective steam valve, When I called the engincer the
second time, T wanted to convince him that the valve was defective.
In other words, T wanted to prove the propusition: The valve 1s
defective. To do this, T proved that the contradictory proposition,
namely, that the valrve is good, must be falte. But the question
arises, how did I prove this contradictory proposition to be false?
I did so by proving that something which necessarily follows from
it must be false, In the discussion with the engincer, the con-
tradictory proposition, namely, that the valve 1s good, led me to the
conclusion that the valve when tightly closed should shut off the
steam. But I knew that this must be a false conclusion hecause
the steam continued to flow when the valve was turned off. Hence,
I concluded that the contradictory proposition, namely, that the
valre is good, must be false, since it led me to a false ennclusion.

Whenever the final conclusion of any piece of reasoning is
known to be false, then one of two things must have haprened,
either we hsve made some error in our process of reasoning or we
started from a false assumption. On arriving, therefore, at a con-
clusion known to be false, we may, if we have the slightest doubt
of our accuracy, reéxamine the process of reasoning by which we
were led to the false conclusion until there is no doubt of the
accuracy of that process. If the process is found to be accurate,
nothing remains to account for our false conclusion but the ralsity
of our original assumption,

The principle of logic illustrated by the above discussion may
be stated as follows:

If the conclusion of a correct process of reasoning be false, then
the premises from which 1t necessarily follows must also be false.'®

Summary of Principles Used in Indirect Proof. Let us now
summarize the principles of logie discussed above which are funda-
mental in all reasoning by the indirect method. These principles
are as follows:

12 From Jevons, Principles nf Science, pp. 5-6.
12 Coffey, The Science of Lagic, Vol. I, p. 339,
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Princiertk L The Law of Exeluded Middle, A thing must cither
he cr not be,

Puinciernk 1. If one of two contradictory proposifions is proved
to Le true, it immediately follows that the other
must be false; similarly, if one of them is proved fo
be false, it inemediately follows that the other must
be true.

Princivng 1L If the coneluxion of a corrcet process of reaxoning
be false, then the premises fiom which it neces-
sarily follows must also be false.

Definitions of Indirect Proof. In view of the entire discus-
sion up to this point. let us now redefine indirect proof with special
reference to its use in geometry:

When the truth of a proposition is established by showing that
to assume its contradictory as true leads us to a conelusion which
i= known to be false. the proposition whose truth is thus demon-
steated i eaid to be proved indirectly, or by reductio ad absurdum.
The conclusion resu.ting from assuming the contradictory propo-
sition true is con-idered false or absurd if it is inconsistent with
something previo 1ely aceepted as true, that is. if it contradiets the
siven data, som- axiom or postulate, or some previously proved
theorem.

The following lcseriptions of indireet proof which are quoted
from the works of =ame of the classic writers on logic and mathe-
matics are worthy of eareful study:

Aristotle Cibout 330 e refers to indireet proof by various terms such
ag redet v od ehsadam, proof ey impossihile, or proof teading to the impos-
etble. Mo deseribes it s follows: “Proof leading to the impossible differs
from diree. praof in that it assumes what it desires to destroy (namely the
hypothesic of <k filsity of the conelusion) and then reduces it to somethine
admitts dlv {-1-o, whepenrs, direet proof etarts from premises admittedly true.”
—From Heath, The Thirteen Books of Euelid's Elements, Socond Falition,
Vol. I, p. 136.

Proclus (abvmt 130 4.0, who wrote a1 cammentary on Fuelid, Book I, has
the following leseription of the indiveet wethod: “Proofs by redetio ad abar-
emin eviery ease pench a conelusion manifestly impoxsible. a eonelusion
the contradictory of which is adwmitted, In some e the conclusions are

wmind to conflict with the common notinns (axinm<), or the pastulates, or the
nvpotheses (from which we startedd: in others they contradict propositions
proviously established. . . . Every redwetin @l absurmbim assumes what con-
flicts with the desired result, then. us~ing that as a basis, proceeds until it

RIC
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arrives 1t an admitted obsurdity, and, by thus destroying the hypothesis,
establishes the result originally desired."—From Heath, The Thirteen Books
of Euclid’s Elements, Second Fdition, Vol."I, p. 136.

De Morgan (1847) defines indirect proof as follows: “When a proposition
is established by proving the truth of the matters it contnins, the demonstra-
tion is called direct; when by proving the falsehood of every contradictory
proposition, it i3 called indireet."—From Dc Morgan, Formal Logie, p. 24.

De Morgan also defines indirect proofl in another one of his books as
follows: “There are many propositions in which the only possible result is
one of two things which cannot hoth be true at the same iime, and it is
more easy to show that one is not the truth, than that the other 7s. This is
called indirect reaconing.”"—From De Morgan, The Study and Difficulties of
Mathemat-es, p. 22,

Jevons (1877) gives this description: “The method of Indirect Deduction
may be described as that which points out what a thing is, by shoutng that
it cannot be anything else. In logic we can always define with certainty the
utmoxt number of alternatives which are coneeivable. The Law of Excluded
Middle enables us always to assert that any quality or circumstance what-
soever is either present or absent. The Law of Contradiction is a further
condition of all thought; it cnables, and in fact obliges, us to reject from
further consideration all terms which imply the presence and absence of the
same quality. Now, whenever we bring both these Laws of Thought into
explicit action by the method of substitution, we employ the Indirect Method
of Inference. It will be found that we can treat not only those arguments
already exhibited according to the direct method, but we can tnclude an
infinite multitude of other arguments which are incapable of solution by any
other means."—From Jevons, The Principles of Science, pp. 81-82.

Applications of the Three Principles to Geomet ic Propo-
sitions. Let us now apply the three principles of logic given on
page 109 to one of the geometric propositions which is usually
proved by the indirect method. In the followng illustration, the
comments in small type are not to be cahsidered as a regular part
of the demonstration

ProrositioN: Two lines perpendicular to the samie line are
parallel.
A c

M b D

N

(siven: Lines AB and CD each perpendicular to line MN.
To Prove that: Lines AB and CD are parallel.
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Proof:
1. One of these propositions must be true: (1) lines AB and
1) ure pavallel, or (2) lines A8 and "D are nat parallel.

This follows from Principle 1, which is the Luw of FExcluded
Middle tpage 1091, Proposition (1) = the contrulictory of proposition
(21, henee ote of these propositions i= true and the other fulse.

2. Suppose the lines are not parallel,
‘I his assumes the contradictory proposition to be true,

3. Then AB und CD will meet at sone point, such as O.
Definition of parailel lines,

4. Then we woulil nave two lines fronn a given point both per-
pendicuiar to the sane line,

S0 But the conelusion of step 4 is absurd, since 1t Las previously
been proved that from a given point only one perpendieclar
can be drawn to a given line.

6. Therefore, the supposition in step 2 i= fals
‘T'his applies Principle 111 that if a correct process of reasoning leads

to 1 false conclusion, then the prewises from which it follows must
be fulse (page 109,

7. Therefore, lines AB and CD must be parallel.

The orinund proposition must be true, since it has been shown in
step 0 that the contradictory proposition is false. This upplies Prin-
ciple II that if vne of two contradictory propusitions is proved to be
fuise, the other must be true (page 109).

Let us now apply these prineiples to another typical proposition
which is usually proved by the indirect method.
Provosition:  If two angles of a triangle are unequal, the sidcs
opposite these angles are mequal, and the side opposite the
greater angle s the greater,

C

A b

Given: Angle B greater than angle A.
To Prove that. Side b is greater than side a.

ERIC
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One of these propositions must be true: (1) gide b is greater
than side «, or 12) gide b is not greater than side «.

This upplies Prinviple I. Propusmtion (2) is the comlradictory of
proposition (1),

. Suppose that b is not greater than a. Then b is either equal

to a or less than a.

This assumies the contrudictory proposition to be true. In thix
cuse, however, the contradictory propogition (namely, that b is not
grenter than a) represents two different possibilities, namely that
(1) b equals @ or that (2) b is less than . It is neeessary, therefore,
to show that euch of these possibilities leads to something fulse, in
order tu shuv that the contradictory proposition is false

Nuppose side b equals side a.

This nssumes one of the possibilities of the contradictory propusition
to be true

. Then angle B equals angle A. By previous proposition,

But the conclusion in step 4 is absurd, since it is given that
angle B is greater than angle A,

Hence the supposition in step 3 is false. Thevefore, side b
is not equal to side a.

This appliea Principle III,
Suppose side b is less than side a.

This assumes the second possibility of the contradictory proposition
to be true.

. Then angle B is less than angle 4. By previous proposition.

But the conclusion in step 8 is absurd, beeause it is given
that angle B is greater than angle A,

Hence the supposition of step 7 is faulse. Therefore, side b
is not less than side a.

This applies Principle II1.

And it was proved in step 6 that side b is not equal to side a.

1 See Hoeath, The Thirteen Honks of Euclid'a Elementa, Vol. I, Second Editlen,

p. 140.
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12, Theretore, side b s greater than side a.

The vrgital proposition st be true sinee it has been shown in
step 6 and step 10 that the two possibilities of the contradictory
proposition are vach fulev. This applies Prinviple I1

The rather full proof given above is for the purpose of illus-
trating further the principles of logie applied in a reductio ad
absurdum proof; it is not intended as o model to be used in intro-
dueing this proof to high school pupils. For the latter purpose, it
will be simpler, in general, to condense the proof somewhat, making
the steps less formal, and arriving at the conclusion more quickly.
If the pupil is required to dwell upon each sepuarate step too long.
he may lose the connection between steps and thus interrupt the
drift of the argument.

Euclid’s Proof of tlie Above Proposition. In introducing
the proposition mentioned ubove to pupils for the first. time, per-
haps us clear and as simple a proof us can be found is the
one originally given by kuclid. In fact, it is diflicult. to improve
upon any of Buclids original demonstrations so far as clear-
ness and simplicity of language are concerned. A translation
of the proof as it actually appears in Iuclid's Elements is given
below: 3
ProrositioN 19. In any triangle the greater angle is subtended by

the greater side.

C

A 5]

Let ABC be a triangle having the angle B greater than the
angle 4.
[ say that the side b is also greater than the side a.
For, if not, b is either equal to a or less.
Now, b is not equal to a; for then the angle B would also have
been equul to the angle A (I.5); but it is not;
therefore, b is not equal to a.

W The proof here given 1« taken from Heath, The Thirteen Books of Fuclid's
Elements, Yol. I, Second Kdi..on, p. 28+
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Neither i3 b less than a, for then the angle B would also huve
been less than the angle A (1. 18); but it is lhot,;
therefore b is not less than a.
And it was proved that it is not equal either.
Therefore b is greater than a.
Therefore, ete. Q. E. D.

[t ix scen that Euclid's proof fallows the same general plan as
the more detailed proof of this proposition given on pages 111 and
12, the third line of Enelids proof corresponding to step 2 on
page T120 I these particular steps of cach proof, it should be noted
thut & is assumed to be either equad to « or less than a; this is
merely another way of wssuming that the contradictory proposition
is true. Inother words, in cach proof the contradictory propo-
sitton wdmits of two possibilitics, namely. that b is either equal to
@ or less than a, each of which is assmed to be true, and then
proved to be fulse. In this way, the entire contradictory propo-
sition i shown to he fulse,

A Suggestion by De Morgan on Indirect Proof. Do Morgan
has pointed out that in indirect proof it is =ometines difficult for
the pupil to begin the actual armiment by assuming formally that
the contrudictory proposition s fruwe as wis done In step 2 on puye
112, A= De Morgan expresses it, “It is rather cimbarrussing to the
beginner to find that Lie is required to wdniit, for argmment’s sake,
oproposition which the argument irself goes to destroy, but the
dithieulty wouid be materially lessened, it instead of asswming the
contradictory proposition positiveiv, it were hypothetically stated,
and the consequences of it asseried with the verb wondd be instead
of #«” " It will be noted that the proof by Fuclid given ubove,
whiel was written over 2,000 vewrs hefore Do Morgan’s time, has
all these njeeties of statewent which De Morean wentions, The
third line of Euclid's proof (puee 1131 states thie contradictory
proposition hypothetically by the phrise f not; likewise, in hoth
the fourth and the seventh lines of Enelid's proot the CONSCQUENees
of the assumption are asserted with the verh would bare boon in-
stead of ds, It may scem trivial to cail attention v sucl; detail, but
it is retinements of this kind that do much to make ivdireet proof
clear to pupils,

Propositions Involving Three Relationships. In cuch of

Wik Morgan, The Study and Difrewt ivs nf Muathvmaties, po 227,
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the proofs discussed up to this point attentian has been centered
upon two major ideas, namely. that a thing is true or it is not true.
These major ideas were represented in each case by the two con-
tradictory propositions. Even in the cases of the propositions
proved on pages 112 and 113 attention was first. ceniered upon the
fact that b is greater than a or b is not greater than a; we then sub-
divided the idea that b is not greater than a into the two possi-
bilities that b is equal to a or b is less than a. In other words, the
statement that b is greater than a considered the proposition true,
while the statements that b 1is equal to a or b is less than a con-
sidered the proposition not true. Our object in bringing out these
two major ideas was to make clear certain fundamental principles
of logic which are essential in indirect proof.

In the propousitions on pages 112 and 113, however. before the
proofs were finally completed, we really had to consider three
relationships in all, namely, that b is greater than a, equal to a, or
less than a; but as was pointed out abuve, we did this by classify-
ing these three relationships in two groups, one relationship con-
stituting the given proposition, while the other two relationships
constituted the contradictory proposition. Instead of treating these
relationships in two groups, it would also have been possible, in
the very first step of the proof, to have centered attention imme-
diately upon all ‘hree relationships connecting b and a. Then our
proof would have started by pointing out that there are three
possibilities in all; namely, that b is greater than a, or b is equal
to a, o1 b is less than a. We could then proceed to show that two
of these possibilities lead to absurdities and hence the third possi-
bility must be true. As an illustration of this treatment, all that
we necd to do is to delete the third line of Fuelid’s proof. as given
on page 113, and replace it by the following: “Now b must be
either greater than a, or equal to a, or less than a.” The rest of
the proof would be exactly as Kuclid gives it.

This new method of approach, where all three possibilities are
outlined in advance, avoids any direet reference to two contradic-
tory propositions and, proceeds on the basis of immediately laying
all the cards on the table. Most of our modern textbooks in geom-
etry handle this particular proposition in this same way. This
procedure nas much in favor of it, particularly for propositions
where three possibilities are involved, and is probably the simiplest
aphruath when we have only a limited amount of time to devote to
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the indirect wethod. In this article we have purposely omitted
discussing this particular method of approach until this time, since
it is less suitable for illustrating the principles of logic involved in
indirect proof, It should be pointed out, however, that both these
methods of approach make use of the same prineiples of logic, and
that both may be regarded as essentially alike; such differences as
niy exist between them are largely ditferences in organization of
the initial steps of the proof.

The Method of Elimination. When a method of proof imme-
diately centers one’s attention upon all three possibilities, as was
done above, we have a form of indirect proof that is sometimes
called the method of caxhaustion or the mcthod of elimination, be-
cause the truth of one of the three possibilities is established by
climinating the other two possibilittes,  In such reasouing it is
absolutely essentinl, it the final conclusion be valid, that all the
possibilities be considered and that «ll but one of them be clim-
inated; the elmination of each of the possibilities (except one) is
aceotnplished by <howing that to assume the possibility true leads
to i conclusion whieh 1s wh=urd, because it is contrary to certain
known facts, The wetual elinunation of euch possibility is wecoms-
phshed, of course, by upplying Principle [ (page 1097, namely,
that i & conciusion ol & correct proeess ol reasoning be fiise, then
the preises from which it neeessarily follows mn=t alzo he false,

The miethod of elimination as we encounter it in geonetry is
practicaliy always limited to a torad of three possibilides, but in
he situations, where this wethod is otten emploved, there may
he many more possibilities.  The method of elimination leads to o
dependable tinal conclusion, no matter how mnay possibilities e
considered, provided we bave all the possibilities i mind and also
provided we cun eliminate ail but one of them.

Another diztinetion between the method of climination as used
in geometric propositions having three pessibilities and this =ame
wethod as applied to life situations 1s that in geometry, cieh of
the possibilities eliminated is usually shown to be false beeanse it
leads to conclusions coutrary to the given duta; while i lire, the
various possibilities eliminated may be false beeuuse they lead to
couclusions in violation of certain other observations, prineiples, or
facts which have previously been shown to be true. Of course, the
indirect proof given on page 110, where we proved that two lines
perpendicular to the sume line are parallel muy be considered as a
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case of elimination where only two possibilities are involved; in
this case, one of the possibilities was eliminated by showing that
it led to conclusions which violated a previous proposition, rather
than the given data. It is evident that the method of elimination
may be considered as another form of the proof known as reductio
ad absurdum.

The Law of Converse. In geometry the method of elimina-
tion is most frequently employed to prove the converses of certain
propositions. This leads us to consider what is known as the Lauw
of Converse, which was first stated by Augustus De Morgan in his
text on logic,'” and which is proved by indirect reasoning. The Law
of Converse may be stated as follows:

If the following three propositions have already been proved,
namely, that

(a) ITX <Y, thend <B.
(b If X =Y, thenA=D.
{¢) IfX>Y, thend > B.

then it follows logically that the converses of each of the ubove
propositions must also be true, namely, that

(a’) IfA < B, thenX <Y,

(b’) IfA =B, thenX =Y.

(¢’) IfA>B, thenX > Y.

In each of the above groups of propositions it should be noted
that the three relationships conneeting X and Y represent the only
three possibilitics that may exist and that one of these possibilities
must be true, The same is true of the three relationships connect-
ing A and B.!®

As an application of the above Law of Converse let X and Y
represent two sides of a triangle and let A and B represent the
angles opposite those sides; then, according to this law, the three
converse propositions ta’), (b’), and (¢’) are each immediately
true if we have already proved that the three propositions (a1,
(b), and te) are each true.

Proof of the Law of Converse. The proof of the Law of
Converse i= as follows: We know that propositions (a), (b), and
(¢c) are true; heirce propogition (a’). which states that if A is less

1 De Morgan, Formal Logie, 1, 35,
Wt fe assiined that 4 and B are comparthle with vespeet to mgenitade ;i 0 wern

a real number and B an imaginary number, the relations stated above would not
hold. This assumption I3 also made for X and V.,
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than B, then X is less than Y, must be true. For, if X is not less
than Y, it must be equal to or greater than Y: but X cannot be
equal to Y, since by proposition (&) it would follow that .4 equals
B, which is impossible, since it is given that A is less than B, Simi-
larly, X cannot be greater than ¥ without violating proposition (¢).
Hence X is less than Y, and proposition (a’) is true. The truth of
propositions (b’) and (¢’) may be established in a similar manner.

Other Forms of the Law of Converse. The Law of Converse
also applies if the original three propositions are stated as follows:

(a) HX <Y, thend > B,
(b) If X=1Y, thend =B,
(¢) HX >Y, thend < B.

Hence it follows logically that the converse of each of these propo-
sitions is true, In the above forin, the Law of Converse immedi-
utely applies to the propositions relating to chords of the same
circle and their distances from the center of the circle; thus X and
Y may refer to the lengths of two chords while 4 and B refer to
the distances of these chords from the center of the circle.

A third form of the Law of Converse is illustrated by applying
it to the Pythagorean proposition and its two related triangle
tt eoremns regarding the squares on the sides opposite an acute angle
or an obtuse angle. From these three triangle theorems we may
obtain the following statements, in which S equals the sum of the
squares of the other two sides:

(a) If the angle is right, the square on the opposite side = S.
(b) If the angle is obtuse, the square on the opposite side > S.
(¢) If the angle is acute, the square on the opposite side < S.

Hence the converse of each ¢f these three statements is true.

Notice that the angle relationships stated zhove in (a), (b), and
(¢) represent the only three possibilities, namely, that an angle is
acute, right, or obtuse.

The Law of Converse also ap-
plies in the following proposition:

If DC 1is the perpendicular bisec-
tor of line AB, then ail"points on the
Wisector are equidistant from A and
B, and all points not on the bisector

L
A C B wrenot equidistant from A and B.
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From this proposition we may easily cstablish the following
three statements:
(a) If D lies on the bisector, then 4D = DB.
(bY If D hes at the right of the bisector, then AD > DB.
(e) If D lies at the left of the bisector. then 4D < DB.

Hence the converse of cach of these statements is also true.

Notice that there are ouly three possible positions for the point
D, each of which is considered.

Difficulties Caused by Distorted Figures. Let us now dis-
cuss certain practical aspects of the teaching of the indirect method
of reasoning. There is no question that this type of reasoning is
difficult for pupils and also for teachers. Undoubtedly, somne of
the difficulty that pupils have with indirect proof is due to the fact
tha. the figures for certain propositions are often distorted and
misleading. The following proposition with its accompanying
figure illustrates this point.

Prorosition: W hen two lines in the same plane are cut by a trans-
versal, if the alternate interior angles are equal, the tuo lines
are parallel. '

A

It ix given that lines AB and CD are cut by a transversal ALV
so that angle x equals angle y. We are to prove that lines AB and
CD are parallel. The proof of this proposition is commonly given
by the indireet method, aecording to which we first assume lines
AB and €D to meet on the right of MV as at O, thus forming a
triangle FOF. It would then follow that angle r is greater than
angle y, which contradiets the given data.  Similarly, we assume
AB and €D toaneet on the left of MV, Since both these assump-
tions lead to abswrdities, it follows that AB and D are parallel.

The difficulty whicli the pupil experiences with this proposition
is that the figure above suggests that the lines AB and D can each
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bend so as to meet at O, but the pupil knows that this is impossible
since AB and CD are straight lines which could not possibly bend as
indicated. This difficulty could be avoided by omitting the dotted
lines BO and DO in the above figure and by supplementing this
figure by a second orne like that given below. The given facts could

M

then be stated with reference to the first figure, while the assump-
tion that the lines meet at O could be referred to the second figure
in which it is clearly seen that EOF is a triangle. A third figure,
which would show the lines meeting on the left of M.V, might also
be included.

The theorem that the line joining the midpoints of two sides of
a triangle is parallel to the third side is another proposition that
causes much confusion when an attempt is made to prove it by the

indirect method. In the indirect proof, it

is given that DE joins the midpoints D

and FE, and it is required to prove that

DE is parallel to BC. We first assume

that DE is not parallel, and that some

other line through D, such as DX, s

parallel to BC. Then X must be the mid-
¢ point of AC’ by a previous proposition,
Then since X and E are both the same point, namely, the midpoint,
we conclude that DE must coincide with DX and hence be parallel
to BC, since only one s.raight line can he drawn through two given
points. This last step is always unsatisfactory to the pupil.

It would be more satisfactory, if an indirect proof is to be used
for the proposition in question, to omit that step in the above proof
where we conclude that DE and DX must coincide and to say that
if DY ig parallel to BC, then X must be the midpoint of AC. Bu3
this is absurd since it is given that E is the midpoint of AC. (A
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line cannot have two midpoints.) Hence the supposition that DE
is not parallel to BC is false, Therefore, DE is parallel to BC.
Even this modified indirect proof is not satisfactory to many pupils,
due to the fact that DX is drawn in such a way that pupils can
easily see that it is not parallel to BC, yet it is assumed to be
parallel. They also feel that it is a waste of time to prove finally
that DX is not parallel to BC when this fact is self-evident from
the figure.

A still more satisfactory proof of the proposition under dis-
cussion is the one where we draw the figure without distortion as
shown at the right. The proof runs
as follows: DE is given joining the
midpoints D and E. We are to prove
that DE is parallel to BC. Draw DX
through D so that it will he parallel
to BC. Then DX bisects AC (by
previous proposition) and hence
passes through the midpoint E. B
Hence DE and DX must coincide
since both pass through the same two points. (Only one straight
line can be drawn through two given points.) On careful exam-
ination it will be seen that it would be more correct to classify this
demonstration as a direct proof rather than indirect.?®

Difficulties Due to Early Presentation of Indirect Proof.
One other cause for the difficulty that the pupil experiences with
indirect proof is related to the fact that this type of proof is pre-
sented too early in the course in demonstrative geometry, before
the pupil has scarcely begun to understand the nature of direct
proof. When the first incdirect proof comes up, it is usually pre-
sented abruptly without any preparation whatever for this type of
reasoning. - The result is that the pupil forms unfavorable impres-
sions concerning such proof that are more or less permanent. In
view of this situation, it seems to be pedagogical common sense to
delay the introduction of indirect proof until the pupil has become
quite familiar with direct proof.

[ well realize, however, that the sequence of propositions given

WInie to the digaatisfaction caused by the indirect proofs discussed above, which
relate to the propoxition conce:ning the line jolning the midpoints of two rlides of a
trinngle. uiany moidern texts in geometry are using a simgle direct proof of this
preposition which makes no mention whatever of the final coincidence of the twq
Hues DE and H X ; this s probably the wisest plan of all.
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in Book 1 of most geometries requires the introduction of indirect
proof fairly carly. There seems to be no way to avoid it when we
reach the proposition that if a transversal cuts two lines so as to
make u puir of alternate angles equal, the lines are parallel. In-
direct proof is also frequently used to prove the converse of this
proposition. It seems to me that it would greatly simplify matters
to assume these two parallel propositions as true without going
through the intricacies of indirect proof. Certain other early
propoxitions which are proved indirectly might also be assumed.
A little later in the course, after the pupil has a fairly thorsugh
understanding of direct proof, we could then introduce indirect
proof, going back and proving the propositions whose truth had
previously been assumed,

In this connection, I shiould mention that there is considerable
discussion to-day regarding the advisability of introducing a unit
in demonstrative geometry in the third vear of the junior high
school. So far, comparatively few schools have had much experi-
ence in teaching sach a unit. I am convinced that if a unit in
demonstrative geometry is to be generally successful in the third
vear of the junior high school, its success will depend upon a
marked simplificntion of the syllabus of propositions offered for
that unit. I believe we can safely say that an important element
in this simplification will be to asswme as true those propusitions
which require indirect proof, reserving for the first year of the
senior high school a thorough study of the indirect method.

Difficulties Due to Insufficient Practice. Still another reca-
=on why the pupil finds indirect proof difficult, which was ientioned
earlier in this article, is that indirect proof is used so little in the
entire conrse in geometry that the pupil does not get enough prac-
tice m applying it. In most all our textbooks in geometry, about
95 per eent of the theorems and exerciges are proved by direct
methods,  Further, stueh exercise as the pupil does get in indirect
proof iz fargely in Book T at a time when his shor, acquaintance
with geometry finds hit least prepaved to understand it.  The only
olution to this ditdiculty =eems to he for teachers to recognize the
faet that a mastery of this kind of rensoning will come only after
the pupil bas solved w large nuner of exercises miaking use of it
and hus come to understand the fundamental nature of indirect
proof us clearly as e understands that of direct proof. It ig a
fundamental principle of teaching that the mastery of a new idea
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or & new wuy of thinking, like the learning of a skill, comes only
through sufficient repetition and practice; the mastery of indirect
reasoning is no exception to this principle.

Indirect Proof as a Type of Analysis. In connection with
the difficulty just discussed, it is of interest to note that teachers
have been somewhat inconsistent in their great emphasis upon
direct proof and their comparative neglect of indirect proof. Most
teachers are devoting a considerable amount of time in the geom-
etry classes to-day in making clear that analysis is a fundamental
method of discovering direct proofs. It is surprising, however, that
these same teachers are giving practically no time at all to an
explanation of the nature of indirect proof, though “it too is merely
a case of analysis in which the subsequent synthesis, that is usually
required as a complement, may be dispensed with.” 2 TLooking at
this in another way, “analysis is nothing else but a method of re-
duction.” #* If analysis is so important, as all agree that it is, why
limit the practice of it almost exclusively to direct proof?

The fact that analysis is fundamental in each type of proof
may be seen more readily by comparing the usual procedure for
discovering a direct proof with that employed in obtaining an
indirect proof. These procedures are as follows:

(1) To obtain the direct proof of a proposition by the method of
analysis, we assume the given proposition to be true and then work
back until we arrive at the given data. We then reverse the order
of these steps to obtain the direct synthetic proof.

Let fact C represent the conclusion of the given proposition which is
assumed to be true. In working back to the given data, we reason as follows:
Fact C ir true if fact B is true; fact B is true if fact A is true; but fact 4
is true because it represents the given data. Hence, by reversing the order
of these steps we obtuin the synthetio proof.®

(2) To obtain the indirect proof of a proposition, we assume the
contradictory of ihe given proposition to be true and then work
ferward until we arrive at something that conflicts with the given

© Allman, Ureek Geometry from Thales to Euclid, p. 140. See also eath, T'he
Thirteen Buoks of Fuclid's FKlementa, Yol, 1, Second Edition, p. 140,

n“I'Analyse n'est donc autre chose qu'une méthode de réductlon.”"—Duhamel,
Des Méthodes dans lea Sciences de Ratsonnement, prtemitre partie, 3rd Edition, p. 41,

The method of analysis might alsv be called the methud of reduction or the
method of successive substitutions.

33 For a full discussion of analysls and synthesis, see Heath, The Thirteen Buoks
of Euclid’s Hlements, Second Editlon, Vol. I, pp. 137-142,
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data (or some other previously established or accepted fact). Tt
then follows without reversing the steps that the contradictory
proposition is false and hence that the given proposition is true.

Let fact R represent the conclusion of the contradictory proposition which
is assumed to be true. In working forward, to a step which conflicts with the
given data (or some other known fact), we reason as follows: If fact R is
true, then fact S is true; if fact 8 is true, then fact T is true; but fact T can-
not be true since it conflicts with the given data (or some other known fact).
Hence, the contradictory of the given proposition is false; and the given
proposition is true,

It is thus seen that analysis is as characteristic of indirect proof
as it is of direct proof. Hence, to be consistent, we should give
far more time than we do now in seeking opportunitics to apply
analysis in indirect proof. The result of such a practice would do
much to assure a mastery of the method of reductio ad absurdum
and thus remedy one of the prominent difficulties mentioned above.

A Thorough Treatment of Indirect Proof. To instruct the
pupil thoroughly in indireet proof will require about five to ten
times as much time and effort as is ordinarily given to this type
of proof in high school classes to-day. All textbooks in geometry
and most teachers of this subjeet now give very little attention to
this topic. For a thorough treatment of the subject, it is really
necessary to give the pupils in very elementary form an acquaint-
ance with certain simple notions of logic. A professor of logic in
one of our large universities recently deplored the fact that logic
is no longer & required subject in our college courses, whereas some
thirty vears ago, logic was pructieally always preseribed for college
students, This logician scemed to feel that the only solution would
be to introduce the teaching of elementary logie in our high schools.
While it may be many years hefore such a hope is realized, it does
scetn essential that certain fundumental notions of logic should he
discussed in the geometry class preparatory to the study of in-
direct proof. The notions I have in mind are simple enough and.
provided they are given sufficient repetition, the pupils should easily
get them,

These simple notions are really the three principles of logie
which were stated on page 109 of thix chapter. It is not necessary
that these principles shonld he stated formally by the pupils, but
it is essentiul that the idens involved in them should be appreciated.

The first important idea to be made clear to the pupils is that
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every proposition is true or it is not true. By careful questioning,
pupils will grant that Mary cither has a pair of skates or she does
not have a pair of skates; that John either weighs 100 lbs, or he
does not. weigh 100 1bs; that angle A either equals angle B or it
does not equal angle B, Thus, in a simple way, by repeated illus-
trations, we ean make clear Prineiple I, which is stated on page 109.

The pupil is now ready to see that the statements just made are
of such a nature that one contradicts the other, beeause one says
that a thing i so while the ather savs that it is not so. We then
tell the pupil that sueh statements are called contradictory propo-
sitions. Numerous examples of contradictory propositions should
be given, not only examples of contradictory geometric propositions,
but also examples of contradictory life propositions.

We are now ready to point out that if we have two contradictory
propositions, one must be true und the other must be false. Tf
we prove that one of them ix true, it follows that the other must
be false. Likewise, if we prove that one of them is false, it follows
that the other must be true, By a certain informal discussion of
this idea, we make clear Principle 1T, as given on page 109.

We are then ready to present some of the simpler geometrie
propositions which are proved by the indireet method, such as the
one given on pages 110 and 111, At first the proposition should
be presented much as it is usnally done, without any reference to
the logical principles that are applied, Then the proposition can
be repeated, ealling attention in the various steps of the proof
to the faet that we have used the ideas developed above. After
several such proofs, we ean then probably best present, Prineiple
ITI. which we have been vsing in our proofs, but which we do not
point out definitely until now.,

Undoubtedly the bust wayv to get pupils to appreciate the nature
of indirect proof is not first to state all the logical principles in-
volved and then to apply them in proofs, but to alternate, firet
presenting a simple proof, next pointing out the nrinciples applied.
and then, in turn, illustrating these principles hy further proofs.

In this thorough treatment of the indirect method propositions
involving three passibilities will be introduced in much the same
way as they were presented on puges 112 and 113, starting with the
simpler form of the proof given on page 113 and then pointing ont
the prineiples applied as on page 112, After this iz mastered, then
the method of elimination may be presented and finally coordi-
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nated with the treatment given on page 112, the relation between
contradictory propositions and the method of climination being
discussed as on pages 115 and 116, In all this work, applications
of the indireet method, including the method of elimination, will
be made not only to geometric propositions, but also to life situa-
tions, I teachers are willing to spend enough time to give such
horough and detailed presentation of indireet proof and its prin-
ciples, T am sure they will be repaid for their (Jorts,

A Brief Treatment of Indirect Proof. If tenchers cannot
spare the time necessary to give a very full treatment of indirect
proof az outlined nhove, T will suggest the following briefer treat-
ment of this topie. Probably the simplest approach will be to
start with u proposition like the one given on page 110, having the
pupilz o through the various steps of the proof without reference
to the principles of logic involved. It will be helpful in this presen-
tation to point out for n proposition like that on page 110 that only
two possibilities are involved, namely, that the lines are parallel
or that the lines are not parallel. Show the pupil that if one of
these possibilities leads to an absurdity, then the other must be
true. The next step will be to procced to the method of eliminu-
tion, giving a proposition involving three possibilities in all, these
three possibilities being pointed out at the very beginning of the
proof as was suggested on page 115, This means that in discussing
the method of elimination no refeyence will be made whatever to
contradictory propositions; in fact, contradictory propositions will
not be mentioned at all in this briefer treatment.

In teacling the method of elimination along the lines just indi-
cated, where all three possibilitiex are brought to the pupil’s atten-
tion at the beginning of the proof, it will be found that pupils
often ask how to tell which oue of the three possibilities is to be
left until the last.  In other words, they want to know how to tell
which two of the three possibilities are to be eliminated. The
answer to this is that we keep until the last the possibility whieh we
wish to prove true; in other words, we keep until the last the possi-
bility which is represented in the statement of the given propo-
sition, eliminating the other two possibilities,  The question = 1o
which possibility to keep to the last is not likely to arise in the
more thorough treatiment of indireet proof, outlined above, where
the fundamental principles are studied and where the whole treat-
ment is related to the idea of contradictory propositions, In the
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briefer treatment, pupils will be interested to see the method of
elimination also applied to life situations,

All our high school textbooks in geometry give what I would
call the briefer treatinent of indirect proof. In most of these
books, however, the pupil is given simple directions for attacking
exercises by the indirect method, Probably the simplest directions
of this *ne are to assume, for the sake of argument, that the con-
clusion of the given proposition is not true and to show that this
assumption leads to an absurdity. It should be pointed out that
these directions amount to the same thing as assuming that the
contradictory proposition is true and showing that this assumption
leads to an absurdity (which amounts to proving the contradictory
proposition to be false). In our briefer treatment of the indirect
inethod, however, we cannot speak of contradictory propositions.
Hence the directions given above in italics will be the simplest
that we can use in the absence of a knowledge of contradictory
propositions. It will be found that these directions are particularly
serviceable where the exercises to be proved involve only two pos ii-
bilities. They are likewise serviceable in cases involving tloee
pussibilities, but for such cases, if we are giving a brief treatment
of the indirect method, it will probably be simplest first to pick out
the three possibilities and then to proceed to eliminate.

In making the above suggestions for a brief treatment of the
indirect method, I do 8o merely as a compromise in case the teacher
can afford only a limited amount of time to devote to the study of
this topic. On the other hand, I strongly recommend the more
thorough treatment of indirect proof, which includes a study of
certain principles of logic, as the most desirable course to follow.

Importance of the Study of Indirect Proof. My aim in
urging this more elaborate instruction in indirect reasoning is not
for the sole purpose of enabling the pupil to understand the few
indirect proofs which he usually encounters in his work in geometry.
I have also in mind to enable him better to appreciate indirect
proof as it is applied in life situations. After the pupil has finished
his study of geometry, he will still have many opportunities to use
indirect proof in life. If Mr. Jevons’ statement is correct that
“nearly half of our logical conclusions rest upon its employment,” ¥

1 Jovons, Ths Principles of Sclence, p. 82, It Is Important not to mlisinterpret
Mr. Jevons' statement. e says that nearly half of our logieal concluvions depend
upon indirect rearoning, bnt this <hovld net be understood to mean half of all
our thinklng; we do murh thinklug that doex not result in logical conclusions,
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then the time spent upon indirect proof in the geometry class will be
an investment of permanent valae,

I should add also that I am convinced that i1.struction in indi-
rect proof of the type I have outlined will carry over into life
situations; in other words, I believe in the transfer of training in
the case of a study like demonstrative geometry, Apparently the
educational psychologists have given up their severe attacks upon
the theory of formal discipline, which have been so frequent during
the past twenty years, and are now admitting that certain school
subjects do have disciplinary value and that transfer does take
place.** Hence there is more hope than ever that skill in indirect
reasoning gained in the geometry class will also function in the
affairs of everyday life. To make ceitain that it™will function,
however, the instruction must be of the right kind.

Illustrations of Indirect Reasoning in Life. In order to
emphasize the fact that indirect reusoning does occur in life, a few
illustrations of its use in everyday situations will now be presented.
One such illustration, describing an attempt to tell whetlier a steam
valve was defective or not, was given at the beginnirg of this
article. The additional illustrations given below represent situa-
tions that have actually occurred.

First, let us consider the legal device by which an accused per-
son shows that he is innocent by proving an alibi, this being su
excellent illustration of indirect reasoning. For example, suppose
a man is accused of stealing a watch from Room 10 of the Adams
Hotel between 7 and 8 p.M. on November 15. He proves his inno-
cence by showing that he was dining at a friend’s home five miles
distant from the Adams Hotel during the entire hour when the
theft occurred.

The indirect nature of this proof is easily seen by putting it in
steps, similar to those used above in geometric proofs:

Proposition:  John Doe (the accused) s innocent of the crime of
stealing a watch between 7 and 8 P.M. on November 16 from
Room 10 of th: Adams Hotel.

Given:  Detuils of the disappearance of the wateh from Room 10
of the Adums Hotel between 7 and 8 p.a. on November 15,

To Prore that: The accused is innocent of the erime.

¥ Nee Orata, The Theory of Tdentionl Plements, Chaps, 9 und 10, See also Gates,
Paycholagy for Studenta, Revised Edition, Chaps. 11 and 13,
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Proof:

1. One of two things is true: (1) the accused is innocent, or
(2) the accused is guilty.

2. Suppose the accused is guilty (this assumes the contradic-
tory proposition to be true). Then, he must have entered
Rooin 10 of the Adams Hotel between 7 and 8 p.M. on No-
vember 15. But this is absurd since the accused was dining
at a friend’s home, five miles distant fiom the Adams Hotel
during the entire period between 7 and 8 p.M. on Novem-
ber 15.

3. Hence the supposition in step (2) is false. Therefore, the
accused i8 innocent.

A second illustration is that of Henry Jones, a child about ten
years old, who had spent many hours in making a pretty calendar
which he presented to his mother as a Christinas present. His
mother appreciated the gift and placed it upon her dresser. A few
days after Christmas, Henry's Uncle John came to visit the family
and the mother showed him all her Christmas presents except the
calendar. The child noticed the omission but said nothing. A day
later, the child went to his mother’s room, took the calendar, and
tore it into bits. He then picked up the pieces, took them to a
room where his mother was sitting, and threw them into her lap,
saying, under great emotional strain, “There's your calendar, you
didn’t like it anyway!” Tle mother -vas greatly surprised and
asked Henry why he did that. He replied, “Well, you didn’t like
it, because you didn’t show it to Uncle John yesterday when you
were showing him your presents!” This is a good example of indi-
rect reasoning, which readily reduces to tws contradictory propo-
sitions, namely, that (1) the mother likes the calenaar, or (2) the
mother does not like the calendar, The child reasoned that if the
mother had liked the calendar she would have shown it to Uncle
John along with her other prescuts, but she didn't do this, hence she
did not like the calendar.

A third illustration relates to an experience of Mr. Brown who
owned three cars, a Cadillae, a Buick, and a Ford, which he kept
in a garage at the rear of his residence. As he was leaving home
one morning to go to his office, lie told his son Toin that he wanted
him to drive to Meadeville, some 40 miles away, that afternoon
to do an errand for him, to which Tom agreed. During the after-
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noon, Mr, Brown telephoned home and asked the maid what car
Tom had taken when he left for Meadeville. The maid replied
that she did not know, =ince she did not see Tom drive out. She
suid she knew that Mary had taken the Ford about a half hour
previously to go to a tennis match. Mr. Brown asked the maid to
step out to the garage to see what car was there; the maid reported
that the Cadillac was the only car left in the garage. Henee, Mr,
Brown deeided that Tom was driving the Buick.

A Tfourth illustration is that of two men taking a walk in the
woods, within a hundred miles of New York City, on a day in
early June. One heard an inseet chirping and said, “I wonder if
that is a cricket.” The other replied, “They say that {rost comes
six weeks after one hears the first crickets of the season.” To
which the first instantly replied. “Then that isn't a ericket.” This
argument is an illustration of reasoning by climination, which is,
of course, indirect proof. In this case, the possibility that the insect
could be a cricket was eliminated since it was assumed as true that
frost eomes six weeks after the first crickets of the season. This
argument, however, did not establish what kind of an insect it was,
since all the other possibilities were not available for consideration.
In life, however, it is often quite as important to prove that a thing
s not true as it 1s to prove that something else is true.

As a final illustration, let us consider an experience of one of
my friends who had been suffering from attacks of pain which
seemed to originate in the stomach. He consulted a specialist in
discases of the stomach who proceeded to determine the cause of
the pain. The physician reasoned that, according to his experi-
ence, pain in the stomach of the particular kind from which the
patient was suffering might be due to one of four causes: (1) gall
stones, (25 an uleer of the stomach or the intestines, (3) adhesions
ahout the stomach or the intestines, or (4) a chronically inflamed
appendix.  He made the usnal physical examination, but that did
not give information of a sufficiently definite kind to point to any
of these factors us the probuble canse of the trouble. The physician
thes ordered a =eries of x-ray plates which showed that no uleer
wius present and that no wdhesions were present; hence, items (2)
and (31 were eliminuted as possible causes of the pain.  Another
specinl test combined with a second x-ray examination indicated
that there were no gall stones; hence, item (1) wus eliminated.
This left the chronically inflamed appendix as the only remaining
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possibility, and he told the patient that he believed that that was
the cause ol hix trouble.  This =urprised the patient, because he
said he had never experienced any soreness or discomfort in the
region of the appendix, and even during the physical examination
which had just been made there was no tenderness whatever about
the appendix. In spite of the absence of local symptoms, the phy-
sician suid that it was his firm belief that a chronically inflamed
appendix was the cause of the pain in the stomach. He pointed
out that during the attacks of pain the inflamed appendix was
muking repeated efforts to rid itself of the accumulated pus, thus
indueing spasms which in turn traveled upward along the intestinal
triet, causing sympathetie spasms in the stomach, and that it was
the spusms of the stomach that produced the pain that was felt;
these spasms caused no pain around the appendix because the
appendix is so small, but in a large organ like the stomach such
spasms did produce pain which was caused by t; - violent muscular
contractions which were set up in that organ, In other words, it
was a caxe of the tuil wagging the dog. The physician advised
my friend to bave an operation for the removal of his appendix.
The advice was ollowed and the surgeon discovered a chronically
inflamced appendix, whicli had probably been in that condition for
many vears. A few weeks after his recovery from the operation,
the putient’s pain had disappeared.

Reasons for Teaching Demonstrative Geometry. In closing
this dizcussion. I wish to state that T firmly believe that the reason
we teuch demonstrative geometry in our high schools to-day is to
give pupils certain ideas about the nature of proof. The great
majority of teachers of weometry hold tuis same point of view.
Nome teachers may at first think that our purpose in teaching
geotetry is to acquaint pupils with a certain body of geometrie
fucts or theorems, or with the applications of these theorems in
everyvday life, but on =ccond reflection they will probably agree
that our great purpose in teaching geotetry is to show pupils how
facts ure proved,

I will co =l further in elarifying our aims by suyving that on
the part of the more progressive teachers to-duy, the purpose in
teaching ceametry 15 not only to acquaint pupils with the methods
of provine scometrie facts, but also to fumiliarize them with that
ricorous Kiinl of thinking which Professor Wevser has so aptly
called “the H-Then kind, a type of thinking which is distinguished
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from all others by its characteristic fo.m: If this is so, then that
is 0.”2 Our most famous model of this kind of thmkmg is
E1 »lid's Elements, but, as Professor Keyser has so clearly pointed
out, Tuclid’s great contribution was not to geometry but to
a method of thinking which is applicable not only in mathematics,
but also “in every other field of thought—in the physical sciences,
in the moral o1 social sciences, in all matters and situations where
it is important for men and women to have logically organized
bodies of doctrine to guide them and save them from floundering in
the conduct of life.” 2@

The fact that the teaching of proof and deductive thinking are
our main objectives in the teaching of demonstrative geometry in
the tenth year of the high school is much more true to-day than it
was twenty-five years ago, before the junior high school movement
started. With the devclopment of the junior high school came the
introduction of work in intuitive geometry in the seventh and eighth
years where the main concern is to familiarize pupils experimentally
with certain important geometric facts and their applications in
everyday life. Hence, in the senior high school, we are primarily
interested in teaching pupils something new ratiier than in review-
ing those things that they have already learned in intuitive geom-
etry. Our great aim in the tenth year is to teach the nature of
deductive proof and to furnish pupils with a model for all their
life thinking. Iveryday reasoning will be rigorous and conclusive
to the extent to which it approaches that ideal pattern for thought
that Euclid has given us.
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THE ANALYTIC METHOD IN THE TEACHING
OF GEOMETRY

By W. S. SCHLAUCH
New York University, New York City

I. THE ANALYTIC METHOD AND THE LoGIC OF (ZEOMETRY

Why We Teach Demonstrative Geometry. Modern educa-
tors justify the presence in the school curriculum of geometry or
any other school subject on two grounds: first, that it gives the
student an outlook upon a great field of human thought; second,
that, if properly taught, it gives him v.luable habits of thinking
and ideals of method which have transfer value and which help
him in orderly and systematic thinking. Geometry seems, of all
secondary school subjects, best adapted to initiate a student into
the meaning of mathematics as the science of necessary conclusions.
A training in logical processes and a knowledge of what is meant
by a complete proof of a proposition, based on given data, are as
necessary for the average citizen as a study of economices or civies.
How can he draw valid conclusions in these fields unless he has had
some training in logical processes? Geometry furnishes the best
available material for this training, varying from the simplest to
the most complex; starting with a few assumptions or axioms, and
building a logical system which results in a body of established
truths which can be used to establish further truths. In geometry
morc than in any other school subject, the learner is led to a belief
in reason, and is made to feel the vilue of a demonstration. The
appeal is to the authority of logically established propositions, run-
ning in a series back to the simple and accepted axioms, and not
ta arbitrary authority.

This attitude toward the value of mathematics is taken by both
modern educators and the world's greatest mathematicians. Smith
and Reeve in their book say ! that the real purpose of demonstra-
tive geometry is suggested by the word “demonstrative” rather than

t Smith, David Eugene and Reeve, Willum David. The Teaching of Junior High

Sohool Mathematics, p. 229. Ginn and Co., 1326,
134
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by the word “geometry.” In geometry we come in contact with a
body of truths bound together and unified by logical processes into
a perfect whole. The beauty, purity, and perfection of the subject
enable us to realize what it is to function in an ordered cosmos.
where the reign of law is absolute and where the series of situa-
tions and probleins presented vary from the simple and easy to the
most difficult. When a student is engaged in the analysis nevessary
to discover the demonstration of a theorem in geometry, or in
reasoning out a construction problem, he has entered this ordered
cosmos and is tasting the delights of pure reason. He is becoming
acquainted with the inner nature of that vast body of human
thought, built up through the ages.

The Analytic Method of Attack. But to be truly initiated into
the spirit and meaning of logical processes, he must acquire the
mastery that comes only from analytic thinking. The mere com-
mitting to memory of thcorems and their demonstrations is not
mastering geometry in this sense. The student has nov reached
this mastery until he has learned by analytic processes to discover
proofs for himsel{ and to assemble them in elegant deductive argu-
ments, Only when he has received sufficient training to attack
confidently & new proposition or probiem, starting at the goal or
conclusion, working backward step by step to his previously estal-
lished body of truth, can he be said to have mastered the spirit of
geometric reasoning. He must be able to say:

“I can prove X if I can prove Y,
And I can prove Y if I can prove 4,
But I can prove A if B is true.
I have already proved B; hence I can prove X.”

Then he must be able to reverse the process in his syn:ihetic
demonstration, starting with B and proceeding through A and Y
to X, which was to be proved.

Analysis a Method of Discovery, Analysis is the method of
discovery, and the only nethod of organizing the subject matter
of geometry which gives sufficient command of the logical processes
to justify its study. In many of our schools, even to-day, theorems
are committed to menory and recited by ihe pupils. A student
does not see why each statement in the proof is made, although hLe
may see that it is true, and may follow thie meaning and admit the
truth of each statement, withcut seeingz how the author knew what
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statement to make next. He seems to be led step by step into a
trap, and the trap sprung at the end with the Q. E.D.; but he him-
self is not able to lay such a logical train, because he has not been
taught to analyze, working his way from the unknown, or truth to
be demonstrated by logical steps, to his previously established
body of truth. Such training takes time, and progresses slowly at
first. But the mastery thus acquired enables a class to make up
for lost time in the second half of the term’s work, and the conse-
que.at joy in the work that comes with the sense of mastery, the
consciousness of the pure and austere beaucy of the subject that
comes with this intimate mastery of the logical processes, more than
compensate for the time and effort required.
Value of Geometric Training. Guometric training is valuable
if it gives:
1. Clear gvometric concepts through drawing, measurement, ex-
periment, in the early stages.
2. A clear voncept of and practice in logical proof, cast in the
synthetic form.
3. Training in the analytic method of attack for the discovery
of such synthetic demonstrations.
4. An ability to resolve practical problems into the geometric
elements involved, and to solve them by analysis.

The analytic method is thus the heart of geometric work. A
student thus trained should be uble to originate proofs of his own,
different from those of the text, and should be encouraged to orig-
inate additional proofs. His discovery of proofs for originals must
not be a blind groping for a proof, following remembered models
and analogies, but must be a consistent, confident, systematic,
analytic attack; otherwise he has neither mastered geometry nor
acquired the most valuable fruit of logical training. an ability to
analyze.

1I. EXAMPLES OF THE ANALYTIC METHOD

Illustrative Examples. To make the above generalizations
clear, it may be well tu take specific examples of the three principal
tvpes of logical exercise in geometry—a theorem to be demon-
strated, a construction to be performed, and a problem (of compu-
tation) to be solved—and trace the steps of analysis that a student
reasonably well trained in this method might be expected to take.
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Original Theorem. As an example of an original theorem, let
us take the following:

If the altitude BD of AABC 1s intersected by the altitude CI in
G, and EH and HF are perpendicular bisectors of AC and AB, re-
spectively, prove that BG = 2HE and CG = 2HF.

The first step called for is to translate the words of the theorem
into a figure similar to this figure:

A

Analysis,

1. I can prove that CG =2HF and BQ=2HE, if I can prove that
$CG = HF and 3BG = HE, or if I can double HF and HE and then
prove that the doubles are equal to CQ and BG, respectively. Let us
try the first method. Thic suggests bisecting CG and BG at J and K.

2. I can prove that JG = AF and KG = HE. if I can prove that they
are corresponding parts of congruent triangles. This suggests draw-
ing JK and EF, forming AJGK and HEF.

3. I can prove these triangles congruent if I can show that three parts
of one are equal respectively to tiree parts of the other in certain
orders.

4. Therefore I survey the figure and find:

(a) That JK and EF are both equal to #BC and parallel to BC, as
they join the midpoints of the side of the ACGB and CAB,
respectively.

(b) That /G = £H, as they have their sides parallel, and extend-
ing in opposite directions from their vertices.

(¢) That /K == /F for the same 1eason.

5. Therefore AJGK =< AHEF because s.a.a.==sa.a.

The analysis is now complete, but the student should cast the
proof into the elegant and convincing form of the synthetic presen-
tation, giving statements and reasons in strictly logical fashion.
The analysis outlined above may be carried out codperatively by
the class and the teacher when difficult originals are developed, but
the work must be done heuristically. The teacher should ask such
questions as the following.
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“How do we usually prove that one line is the double of
another?” The substance of step 1 in the analysis above should
come from the class in response. When the lines JK and L'F have
been drawn, the question should be:

“How do we usually prove that a line equals another line?” and
in response the class should announce step 2 above. True heuristic
teaching will develop in the class the habit of asking themselves
the appropriate questions of the analysis, and this is greatly helped
by developing outlines of methods of attack as the term progresses.

Synthesis. The synthetic proof reverses the order of the steps
given above in the analysis, Thus we proceed in the synthetic®
proof as follows:

Proof
Statements Reasons
Biseet CG and GB at J and K, re- 1. A line joining the midpoints of
spectively, Draw JK and EF. two sides of a triangle is | to the
Then in the triangles JGK and third side and equal to half the
EFH, third side,
1. JR =3B and is | to CB 2, Same reason,
2 FEF =3B und is || to CB 3. Being equal to half and || to the

3. . JK=EF and JK iz || to EF same line,
4. Also BD) is || to HE and CI is 4. Being L to the same straight lines.
I to HF 5. Because their sides are | and ex-
5 S 2G=y¢ H tend in opposite directions from
their vertices,
Same reason.
. .6.6.= 8.a.a.
. Corresponding parts of = A are =,
. Doubles of equals are equal,

. Also /K= (/E

. AJGK = AHEF

..»JG=HF and GK=HE

, And hence GC =2HF and GB
=:2HE

jr=e BN Be-)
© Wao,

Until the student can go through the analytic process outlined
above mentally, when presented with a new theorem to be proved,
and then proceed to write the synthetic proof, he has not acquired
a sufficient mastery of the logical processes involved in geometry
to give him that acquaintanceship with logical reasoning at which
we aim in teaching him the subject,

Construction Problems. Construction problems should never
be solved by the student by an unguided trial-and-error method.
He should first draw a diagram. representing approximately the
finished product. Fven a free-hand drawing of the finished job
will enable him to mark on his fizure of analysis the given parts,
and to discover from the diagram of the finished figure the steps
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scessary to build up that figure from the given parts. Let us tuke
a specific example:
Construct a triangle, having given an angle, an adjacent side,
and the diffcrence of the othcr two sidcs.
Using the usual method of designating the parts of a triangle,
we have given,

Analysis. We draw a triangle. A’B’C’, to represent the finished
figure, thus:

Since the given parts must all be represented in our figure of
analysis, we extend A’B’ tc X*, muking A’X* = A*C*. Then, B'X"
represents the difference of b and ¢ and is marked b’ — ¢’ on the
diagram of analysis. We now feason analytically thus:

1. I can reproduce the figure, which must be like this model (using the
given parts), if I cun find a triangle in the model containing three known
parts. I therefore examine the figure of aralysis to find this basis of
construction.

2. T notice that AX'/3’C’ contains two known sides, b’—¢’ and a’, repre-
senting h—c and «a, respectively. Also £ X'B’C’ is the supplement of
2B, and is thercfore known.

3. I can therefore reproduce AXBC, using the given parts. The construe-
tion cun be completed if I can reproduce the rest of the figure from
this basis. Therefore I examine the model.

4. Prolongiug X' B will give a line corresponding to X'B’A’. To locate the
point A, I notice that AA’X’'C” is isosceles. Thercfore £ X'C7A" == /X"
Hence, on the figure to be constructaed, I must cut the line XB pro-
duced by a line drawn at point C, making £XC4 = £X. The con-
struction then proceeds thus:
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Construction. On any indefinite line BM, lay off BC ==a. At B con-
struct ZKBC equal to the given /B, giving the indefinite line RK. On KR
from B, construct BX equal to b—e¢. Draw XC. At C construct LACP =
£X. Extend CP to meet RK at A. Then AABC is the required trinngle.

Proof
Statements Reasons
1. BC=aq By construction.
2. /X =¢XCA 2. By constructiopn,
3. AX = AC 3. If the base angles of a A are equal,
the A is isoscelcs.
4. "AX —AB=AC —AB 4. Equals from equuls give equals.
5. XB=AC —AB 5. By subatitution.
6. But XB=b—¢ 6. By construction.
And
7. £ABC = the given /B 7. By construction.
8. .. AABC is the required triangle 8. It has the required parts.

Solving Problems. Too often pupils solve problems by trying
one thing after another, without much system. A teacher who is a
master of the analytic method will train his pupils in regular ana-
lytic methods of thinking out the solution of problems. Problems of
computation in geometry should always be solved by following a
general plan, thus:

1. Draw a diagram, if possible, marking on the figure the given

data.

2. Represent the parts of the figure to be computed by the ap-
propriate algebraic symbols.

3. Apply theorems to the figure, which give relations connect-
ing the given and required parts, and derive equations from
them.

4. Solve the resulting equations.
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Illustrative Example. The cye of an observer at sea on the
deck of a vessel is 40 ft. above the water line. The entire hull of a
boat has just become visible on the horizon. Assuming the di-
ameter of the earth to be 8000 miles, how far away from the
observer is the boat?

Solution. 1. We first draw a diagram representing the conditions of the
problem,

In the diagram, AC represents the elevation of the observer above the
water line, at C. Since the hull of the boat has become entirely visible, it
must have advanced from the position B’ to
B, where the line of sight AB is tangent to
the surface of the water. DC = 8000 mj,,
AC = 40 ft.

2. The length of AB (at sca, AB = CB
practically) is to be found. Let us repres
gent it by =z,

3. (a) We can solve for z if we can bring
z into an equation connecting it with the
given quantities, AC and CD.

(b) To do this, we must express 4C aund
CD in terms of the same unit of measure,
Therefor., we select a mile as the unit.
AC = 40 ft. = 0.0072 mi., and CD = 8,000
mi. /]

(c) In the diagram, AD is a secant, AC is its external segment, and 4B is
& tangent from A. Therefore, we can bring z into a proportion {equation),
with AD and AC, both known quantities:

A
QOFT { TN\

AD __ =z

z AC

or 8000.0072 — T
x 0.0072

4. Since in such a proportion the product of the means is equal to the
product of the extremes, we have:

2= 0.0072 X 8000.0072
and 2 =576 mi. approximately.

It is easy to get the student to see that in his solution the
decimal 0.0072 added to 8000 does not appreciably affect the product
67.6. He sees that practically the same result is obtained if we
write

8000 : £ = x : 0.0072.

He is now in a position to solve the PrOBLEM:

“Derive a formula for the distance in miles to the visible horizon,
if the eye of the observer is h ft. above the carth’s surface.”
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He casily writes
8000 _ 2
z ~ A
5280
and firds by solving for z that
2 = V' 1.54 h approx.,
or roughly, z = vV 3/2h.

Students trained to think analytically do not waste time in
fruitless attempts, false starts, and discouraging and worthless com-
putation. The solution proceeds in most cases with the certainty
and ease of a logical machine.

. II1. CoxcLusions For CurricuLuM MARING IN GEOMETRY

Emphasize the Analytic Method. The first conclusion that
emerges from the above brief survey seems to be that if the analytic
method is the heart of logical training in geometry, sufficient time
must be given to the presentation of the subject to enable the
student to master this method of organizing the subject matter.
Six or eight weeks devoted to committing to memory from twelve
to eightcen theorems with their demonstrations will not give the
student any insight into the true nature of geometric thinking. It
would be much better to cover the first three theorems of con-
gruence and the theorem about the base angles of an isosceles
triangle, with numerous original erercises, developed analytically,
than to have the student memorize any number of demonstra-
tions. Of course, after the analysis, the synthetic demonstration
should be given in every case, oral and written forms being em-
phasized.

Summary of Experience with the Aralytic Method. Experi-
ence in teaching geometry by ihe analytic method and study of
the results of numerous tests of the students' ability to analyze,
extending over a period of more than twenty years in the High
Qchool of Commerce, New York City, have convinced me of the
following facts:

1. A comprehension of analysis and some mastery of the system
begin to emerge in the minds of the brighter pupils after six or
eight weeks’ instruction and practice in the method. The class as
4 whole begins to feel sure of the method wfter about ten weeks.
Adequate mastery with accompanying pleasure and a thirst for
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original excreises comies in the second scmester. A school year
should be devoted to the subject.

2. The student needs training in analysis applied to the various
tvpes of geometric subject matter found in the conventional five
books of plane gcometry. This need not be given in the order con-
ventionally followed, but all the types shiould be included: con-
gruence, similarity and proportion, cireles, areas, constructions, and
loci all call for analytic thinking, and help to clarify the method.

3. Teaching the method of analysis is difficult in the carly
stages.  After it is begun, it should be continued until a clear con-
cept of the method begins to emerge in the minds of the pupils.
My experience, observation, and study convince me that at least
twenty weeks of consecutive work in the subject matter should he
given without a break of serious length. If a break comes then,
it should mean the introduction of subject matter which is closely
allied and which permits a continuation of the analytic method
of attack, My own conviction is that a year’s consccutive work
produces the best results with the type of students entering our
high schools. The continuous exercise in analysis and synthetic
demoustration thus acquired leads to such a mastery that the
students generally find a joy in geometric thinking.

4. To master plane geometry, using the analytic method of
attack, requires about a year for the majority of pupils. If an
introduction to demonstrative geometry is given in a regular junior
high schiool, in which the analytic method has been used, then the
remainder of piane geometry as well as solid geometry can be
covercd successfully in one year in the senior high school.

A One-Year Course in Plane and Solid Geometry. If, how-
ever, the attempt is made to begin plane geomcetry and teach both
p'eme and solid geometry in one year, all in the senior high scl.aol,
the following results are almost certain to appear:

(1) The amount of subject matter in both plane and solid
geometry will huve to be cut to such an extent that the student’s
view of both sciences beeomes inadequate. He will not have a
feeling of mastery of either at the end of the veur's work.

(h) Beecause of the eagerness of teachers to cover a fair portion
of both plane and solid geometry, a representative selection of
hoak propositions with their proofs will probably be presented to
the clusses, the proofs committed to .iemory, an. the chief value
of the logical training sacrificed. It takes tin ¢ to develop analytic
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thinking, and under the urge of covering ground quickly the
analytic method stands small chance of being used.

The difficulties of visualizing the figures of solid geometry are
greater for the ordinary student than are those of plane geometry.
Under the year plan for both, instead of acquiring confidence and
mastery in the plane geometry field, the student is almost certain
to meet discouragement because of the added difficulties of the
solid geometry concepts and the rapid pace necessary to cover the
ground. For the analytic method is not mastered except by analyz-
ing numerous originals covering the various types of geometric
subject matter. Sufficient variety is offered by plane geometry for
this purpose, and a thorough mastery of the analytic method in this
field takes about a year’s time.

Preserve the Analytic Method. Whatever is done in rearrang-
ing the subject matter of geometry, we must hold fast to the
analytic method of attack if we would preserve its value as a train-
ing in logic and in original thinking, and inspire the confidence
which lies back of the bravery necessary to attack its difficulties.

Only the brave may look on Beauty’s face,
Search out her secrets, stand before her there
In temple vast, of number, time, and space.
Austere and cold, she guards her treasures fair,
Flashing a blinding light upon the race

Of rash, heroic creatures of an hour,
Searching infinity, whose dazzling haze
Confounds Philosophy with Beauty’s power.
Only the brave will wander far by choice

In Euclid’s realm, and in that wondrous maze
Of pew relations hear that thrilling voice
Proclaim the reign of law, necessity;

E'en here perfection, lost each petty choice,
Surrendered in the law’s great majesty.



SYMMETRY

By JOHN W. YOUNG
Dartmouth College, Hanover, N. H.

What is Symmetry? Symmetric forms abound in nature and
in art. If we confine ourselves to bilateral symmetry, i.e., symmetry
with respect to a line (axis-axial symmetry) or with respect to a
plane, we find it exemplified in the external form of the human body
and in that of most animals, in the shape of leaves and, approxi-
mately at least, in the growth of most plants; we see it in the con-
struction of most articles of furniture, in many buildings, in parts
of buildings such as windows, doorways, arches; we observe it in
the designs of wall paper, rugs, linoleum, and the shapes of orna-
ments. The child grows up with symmetrm forms all about him,
even though he may not know the word “symmetry,” and may find
it difficult to give a precise definition of it. He will approach his
first study of geometry with the idea of symmetry already present
in his mental equipment.

It is for this reason that European schools have for some time
made use of this idea in the introductory work in geometry. The
fact that axial syrmetry can be used as a tool, a8 & method of
proof, in plane geometry does not appear to be so well known in
this country. This must be the justification for the few pages that
follow. They contain nothing in the slightest degree original.
They will, it is hoped, offer something of interest to those teachers
who have not as yet thought along these lines.

Axial Symmetry. If a plane be rotated about one of its lines
as an axis through an angle of 180°, we will say that it is turned
over about the line. We then define axial symmetry in the follow-
ing way:

If a plane figure is such that, if it be turned over about a certain
one of ite lines, the new position of the figure coincides with the
original, it is said to be symmetric with respect to the line. The line
is called the axis of symmetry.

The axis evidently divides the figure into two halves ea-h of
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which comes to coincide with the other when it is turned over about
the axis. Two points A, A7 of the figure (Fig. 11 which are simply
interehanued by turning the figure over about the axis XY are said
to he corrcsponding points of the figure. Every point of the axis
corresponds to itself.

Results from the Definition. Certain results follow immedi-
ately from the definition:

1. The aris of symmetry bisccts the segment joining any two
corresponding points and is perpendicular to it

For, by turning the figure over about the axis, it is seen that
the two segments MA and M4’ we cqual, and the two supple-
mentary angles YMA andYMA” are also equal.

a
N

FISURE L FIGURE 2

More gl‘l)l‘l‘:lll}' we have:

2. Any part of a symmeltric fipare is congruent to its corrcspond-
g part,

In proticular, the segmient joiuing iy two points of a sym-
metrie fienre is congruent to the segment joining the corresponding
points: any angle or trinngle B deterine] by three points s
conarent to the ansle or trianele determined by the corresponding
poiuts B0 As a speeind cise we note that the segment 04
joining auy point O ol the axis to any point A of the figure is equad
to the =egieent joining O to the corresponding point 47, and these
two seginents O, .1 make equal »ngles with the axis.

The resder should note that we draw the ahove conelusions
withont any previous knowledge of geometrie theorems. We as-



SYMMETRY 147

sume only a knowledge of the meaning of point, of straight line,
of angle, of right angle, of perpendicular, of equal or congruent
(by superposition), and of the fact that two distinet points deter-
mine & straight line. Such considerations as the above, stripped
perhaps of some of their formality, may therefore be presented to a
class very near the outsct of its study of geometry. They would
indeed scem to have their chief pedagogical value during the int.o-
ductory parts of the subject.
We muy now note the converse of 1:

3. The perpendicular biscctor of a line scgment is an axis of
symmetry of the scgment,

This gives us at once:

4. Any point on the perpendicular bisector of a line segment is
equidistant from the extremitics of the segment; and the lincs join-
ing any such point to the cxtremities of the segment make equal
angles with the bisector. The reader will note further that certain
fundamental theorems on isosccles triangles also follow at once.

The further use of symmetry as a method of proof depends on
the fo'owing fundamental proposition:

5. A circle is symmetric with recpect (v any straighi line
trrouwgh its center,

Hence, we have:

6. The figure jormed by two circles is symmetric with respect
to the line joining their centers. If the cireles intersect, the points
of intersection are corresponding points of the figurc. (Fig 2)

This gives us:

7. The common chord of two circles is perpendicular to the line
juining their centers and is bisceted by it.  (Lig. 2)

Two Examples. We will close this brief sketeh by noting how
two of the important elementary conzieuedons may be justitied by
considerations of symmetry.

1. To draw the perpendicular bisector of a sejpment.

By whuat precedes, the problem will be solved if we can draw
two circles interseeting in the extremitics A and B of the segment.
For then the line juining the centers of these circles will be the
required bisector. (Seec Fig. 2, above) To this end, then, with
A ar< B as centers and with any convenient radius let us describe
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two ares of circles intersecting at M, N (Fig. 3). Circles with
centers at M and N and the same radius will then pass through
Aand B, Henee MN is the required bisector,

2. To bisect a given angle.

The usual construction consists in drawing a circular arc with
center at B, the vertex of the given angle ABC cutting the sides in
D and E, resvectively; then, with any convenient radius and with
centers at D and £, deseribing ares intersecting in M (Fig. 4). The

D < e
8/ \/m
6 A
™\ A
PIGURE 2 FIGURE 4

line joining the vertex B to M is the required bisector.  For we have
a cirele with center B puassing through D and F, and the construc-
tion shows that there is a sccond cirele with center at M passing
throngh D and £, The figure is then svnnetrie with respect to the
line of centers BM, and thus BM bisects the ungie ABC,

Enough hus been suid, it ix hoped, to indieate how the idea of
symmetry can be e d in elementary instruetion in geometry. Other
possibiiities will suggest themselves to the progressive teacher. It
mayv be expected that the work in intuitive geometry especially can
be benefited by the use of syunetry,



THE TRANSFER OF TRAINING, WITH PAR-
TICULAR REFERENCE TO GEOMETRY *

By WILLIAM BETZ
Specialist in Mathematics for the Public Schools of Rochester, N. Y.

Foreword. Demonstrative geometry, as everyone knows, has
become a highly controversial subject. Once regarded as the road
par excellence to all scientific and philosophical thinking (Plato),
it is 2ow denounced by a chorus of self-appointed critics as a
species of Greek philosophy that should be eliminated from the
crowded curricula of our secondary schools. Geometry shares with
algebra and Latin the fate of being on the defensive. Its enemies
claim that as a school subject it is kept alive artificially either by
the requirements of blind tradition or by obviously false pretenses
that are said to have their roots in the “exploded” theory of mental
discipline. The practical phases of the subject, it is asserted, could
be covered in a few lessons or taken care of incidentally in the in-
tuitive geometry course. And uas to the alleged cultural and dis-
ciplinary values that have always been axsocinted with demonstra-
tive geometry, there is no disposition on the part of the crities
even to argue the question in the light of expert testimony or of a
scientific exposition of the real nature of geometrie training,

This condition of affairs has been accentuated by the revolu-
tionary educational changes and the mmerous transforming influ-
ences of the past generation. The spectacular increase in the en-
rollment of our high =chools has produced difficult administrative
and pedagogic problems whiell thus far have been solved but
imperfectly or not at all. Teachers have been put to it to “justify”
every lesson they teach, The endeavor to protect the child against
“unessentials™ is rapidly leading to enrious and unsuspected con-
sequences.  Gieonietry, in particular, ix a popular target of abuse.
Being rated as a “high mortality”™ subject, its position in the pro-
gram of studies is becoming inereusingly delicate and precarious.

¢ This monograph was prepared in conncetion with the curriculum revision pro-

gram of the elementary and usecundary schools of Rochester, N. Y,
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How much justice is there in the wave of condemnation that
appears to be engulfing so time-honored a subject?

Unfortunately, the teachers of geometry, who should have been
its most enthusiastic and successful exponents, have only too often
been its worst enemies by their lack of acquaintance with its his-
tory and its distinctive characteristics, and by their apparent in-
ability to formulate and to realize the immediate and the ultimate
objectives of the subject.

To make matters worse, our textbooks, courses of study, and
examinations convey hardly a hint of the astounding scientific
transformation which mathematics, including geometry, ha. been
experiencing during the past century. Thus the arrival of non-
Euclidean geometric systoins, the creation of projective geometry
and of hyper-spaces, has made it clear that it is impossible, as
(iauss suspected, to state with finality an exclusive body of truths
concerning “absolute space.” What we can do is merely to pro-
ceed from certnin significant spatial assumptions to logical conse-
quences of these assumptions. We can merely say—"If this is true,
then that is true.”

It would seem at first that with the disuppearance of the abso-
luteness of Euclid's systein of propositions, its chief claim to serious
consideration as a basic school subject had vanished. There are,
however, two crucial reasons why demonstrative geometry will
remain for all time a necessary subject of instruction,

In the first place, we do not stop teaching any one of the physi-
cul sciences when it is discovered that certain of its underlying
hypotheses must be modified. Neientists have been quarreling over
the nature of light, the mystery of gravitation, the constitution of
matter or of electricity, and the like, for many years, And yet we
go on teaching each generation of pupils “the basic scientific facts”
as we understand them. There is nothing dishonest in this pro-
cedure, provided we refruin from making dogmatic assertions in-
stead of expounding provisional hypotheses. In like manner, since
space is a permanent category of our thinking, we shall always
have to scudy and formulate, to the best of our ability, the spatial
truths that seern to account best for the segment of reality with
which we can deal. And Kuclid's system thus far has proved to
be the simplest and most convenient one for creryday use.

But there is a very much deeper reason for a continued emiphasis
on geometry in the curricula of our schools. It has been set forth

/
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recently in almost elassie fashion by Professor C. J. Keyvser.!
Fuelie's Elcments of (feometry, though by no means without flaws,
was the first instanee in human history of autonomous thinking.
In this houk the human mind gave its first evidence of complete
seientific awakeness, for in it we find the earliest example of the use
of a postulational system for purposes of careful deduction. As
Professor Kevser points out, this colossal achievement remained
unique for many centuries, but it has since hecome the prototype of
all valid seientifie investigations,  And thus geometry has given to
the world its one reliable method of thinking. Postulational think-
g 1= now scen to be of hasie importance in any field of human
endeavor.,  Fven a cursory anulvsis shows that demonstratire
geometry offcrs the simplest and most convenient introduction to
postulational thinking which has yet been devised. Hence it may
he eluimed that the teaching of demonstrative geometry is not only
justifiable, but absolutely essential, because of its permanent devo-
tion, in a singularly pure and significant forn, to the one procedure
that promizes vulid conclusions on the basis of clearly formulated
assumptions,

The aceeptance of this thesis is seen to depend, however, on
the payvehological guestion whether training in postulational think-
ing, in errtieal thinking, und in consecutive thinking, when admin-
istered In geometrie form, can be made available in other fields
of work. That i, how fur s geomcetric training capalile of
“transfor’?

Obviously, thiz question i= of fundamental importance. Only a
reassuring answer will resene geometry ag @ required school =ubject,
Sueh an answer can no longer be based entirely on subjective opin-
lons,  Tnsteqd, it presupposes a painstaking scientifie examination,

[t is the pnrpose of this chapter to offer a brief account of the
present statuz of the problem of transfer. A comprehensive review
of this question would naturally have to include a large number of
highly teehnieal considerations,  In this report we are primarily
cancerned, however, with the practical aspects of the problem of
transfer, especiaily in 20 fur as these affect the teuching of
Leanietry,

The opinions of out=tanding pyehologists and cdueationad spe-

N, wspaecinlly, the tollowinge thres treatiges by DProfessor Keyser:  hinking
eyt L hinkrswg. 121 Dutton aud Co, 102050 T he Hvman Wertle of [gurane Tiink
frg, Cabuati:bhe o Dinversity Urees, W0 amd Mathematioal Phdosaphy, B Dutton
wnd Ca, Juc2,
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cialists will be quoted at length, in order that the reader may have
a more objective basis for an independent appraisal of the conclu-
sions that will be subniitted, The free use of italics, even when not
suggested by the original text of the quotations, seems desirable for
the sake of emphasis, After a brief summary of the progress of
the mental discipline controversy. followed by a review of certain
assumptions and definitions which underlie the testing movement,
we shall examine the experimental cvidence as to the extent of
transfer, It will then be necessary to analyze the principal theories
as to the mode of transfer., From this dual foundation we shall be
able to derive the pedagogic consequences in which we are pri-
marily interested.

It will be found. at the end of our discussion, that there is
excellent reason for an optimistic attitude with reference to the
reality of “mental discipline,” and—in particular—for a continued
belief in the permanent cultural significance of geometrie training.

I. Tue MenTaL DisCIiPLINE CoONTROVERSY

Nature and Importance of the Controversy. During the past
four decades no question has occupied a more prominent place
in educational literature than the one which we are to study in
this chapter. For a long time it was known as the problem of
“mental discipline” or of “formal training.,” More recently, it is
being referred to as the “transfer” or “spread” of training, or as the
problem of “generalized experience.”

As originally advocated, the dogma of mental discipline as-
serted that the formal training or the mental power gained from the
study of certain school subjects carries over to all other activities.
“No educational theory has ever exerted the profound influence
upon curriculum-making and methods of teaching as this doctrine
has done.” 2

Believers in this doctrine maintained that “the ehief, if not the
sole, value of the educative process consists in the formal develop-
ment of the mind’s powers, in producing a fund of mental force
or strength, and in establishing certain generalized habits. Con-
tent or intrinsic vulues are either disregarded altogether, or are
given a secondary position. It makes little differénce what is
studied so long as it is studied right. The benefit rece.ved comes

1 8¢e Turner, E. M, and Betts, G. H., Laburatory Studies in Educational Pasy-
chology, pp. 174:178, D, Appleton and Co., 1924,
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from the process of acquisition rather than from the content ac-
quired. The powers and habits onee developed may then be applied
in the various activities of life with little or no loss of offect. The
power of reasoning developed in mathematies or logie may later be
used in law, medicine, or business; and the habit of conrentration
developed in solving problenis in cube root or in translating Greek
may be likewise extended. Observation, memory . diligence. aceu-
racy, and other habits and powers ure taken to be subject to the
same rule. . .. From thix point of view the mind may be likened
to a storage battery that may be charged, and the power accumu-
lated may then be used quite independent of its origin.” 3

The following more recent formulation shows a tendency toward
a cautious limitation of these sweeping claims:

The problem muy be stated in the following words: Will the formation of
one habit either help or hinder in the formation of another? Will the ac-
quiring of one bit of knowledge he'p or hinder in acquiring other knowledge?
.. . does the learning of one language muke the learning of a different lan-
guage easier? Will the study of history make the acquisition of mathematics
easier? In general, are the results of learning narrow and specific, or are
there general effects also?*

Again, a reinterpretation of the problem in the direction of
“generalized training” is reflected in these interesting queries:

What would be the effect of four years’ earnest effort to excel in classical
languages and mathemativs upon one’s ability to master the intricacies of
banking, or upon one’s persistence and doggedness in the face of any other
complex problem? What is the effect of four years’ work in the high school
and four years in the university upon the probability that one will continue
to master new problems afterwards—that is, upon the probability that lifé
will be a career instead of mercly the holding down of a job? What would
be the effect of writing a first class doctor's dissertation, say on education,
upon one’s ability to organize the advertising department of a great industry?
To what extent will prolonged and intensive mental effort tend to inure one
to the onerousness of mental effort? Does extensive experimentation in
finding solutions of difficult problems tend to make one more enterprising
and persistent in casting about for the solitions of other problems?*

There can be no doubt that “the problent reigsed here iz of far-
reaching theoretical and practical significanee. It involves the very
¢ Ruediger, W. C., The Principles of Edurvation., pp. 91.82. Houghton Miflin Co.,

1910.
¢ Pyle, \W. H.. The Paychalogy nf Learning, po 214 Warwick and York. Ine., (o021,

*Leaner, N. J. “A Mathematician on the DPresent Statns of the Parmal Dis-
cipline Controversy." Schoul and Socdety, Vol. XVII, p. 69, January, 1923,
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foundation principles of edueation, mind we must faee it at every
turn in practice.”  To quote Pyle further:

It involves our fulieental coneeption of the nature of mind. . . . Our
answor to these questions will volor our whole scheme ol adueation. Tt the
pesults of training are speestie, then we should b those things which we
must necd to kaow, without any referonee to their general eets. 10 the
resultz of teining are ooerel, then we should pick out as the sindies for our
enrriculine, those hranehs ~ whieh are best fur the exereise of the mind?

Development of the Controversy. ‘'l uctrine of fornul dis-
cipline has been beld, in one form or another, throughout eduea-
tional listary,  Dts odern farm ey be traced toSohne Locke
(1623-17040 . Thus, in his “Conduet of the Understanding™ we
firnd passnees sueh as the following:

Would vou bave aoman reason well, you must use him to it betimes;
exereise i< mimd i obeorvime the eonneetion of ideas and following themn
in tean. Nethine docs thies hetter than matheomaties, which therefore should
he traeht all those who Lo the time and opportunity, not <o much to make
the i misthe matici-ns as to make them resonable creatures, oL 0 Not that
I think it nevessaey that adl nen shonid be deep mathematicians, but that,
having got the wav of roasoning, which that study necessarily bring< the
mind to, they miglt Lo able to transfer it 1o other parts of knowledee as
thoy shall have veeasion®

Similar ideas were widely prevalent. for a long time. 1= might
be proved by an extensive series of quotations from educational
literstire® A sinele ilnstrat st suffice, Sayvs Josepl Payae:

The stady of the Latin Janmage itseli does eminently diseipline the
fneultive amed seemie £ o0 e ot dogree than that of the other subjecets we
huve disensasl, e foroetion ~nd vrowth of those mental qualities: which
are Hoo bodd et s foe the ipgeipe s of ifeo . L

The renction awinet these extreme views beaan in Germany
amoee the Herbartinns, espeeidiy throueh the writings of Tuiskon
Ziller,  <timudated by Ziller’s eritivisiis, Do BEhoer Flsworth
Biown, Tormer United Stares Cormnissicna e od Ddueation, poLdished
the (i<t eritivad disenssion in Nmevien, ina paper entithed “How is
Formal Caltinve Possible? ju the Pl o Sebood Journad or Deevin-
Ber, 1803, The fivst pager, conever, witel scedaed b drawine

e, op oo, po 21
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the attention of American educators to this question was that of
Hinsdale, on = "The Dowma of Formal Diseipline.” which was read
before the 1884 mecting of the National Fidueation Association at
Asbury Park, New Jersexy, The doetrine has been under diseussion
ever since  As aoresult, aovast lterature on the =subjeet has sprung
up. Above all, the question has been attacked seientifically, so that
we now huve an imposing mass of objeetive laboratory data in-
steadd of anarey of un=npported opinions 1

The arvival of the measurement movement greatly stimulated
interest in the question. It furnished important. techniques of
investimarion and <howed the need of ereater moderation with
reference to the alleged veality of formal training, For a time. it
Inoked nx it all belief in ‘general” diseipline had ta he abandoned,
and ag if ondy “speeitie” training resulted from any (vpe of learning.

To-day, “neither the extreme view supporting the theory of
mental diseipline in all respeets aned unlder all cireumstances, nor
the opposzite view rejecting it completely and utterly. is in good
repite.  Instead, a compromise theorv-—an intermediate judament
~-holds swav." ' Thiz newer belief still maintaing that mental
dizeipline and intellectual and meral powers “are the very ends for
which education exist= bt it does not expect the attainment
of this broad training to result either automatically or from the
mechanieal cultivation of a Jew highly favored activities,

IT. Turories oF THE MIND aND Basic DEFINITIONS

Permanent Educational Pioblems. FEvery human being ix
born into o universe of apparentiy infinite dimensions, of incon-
ceivably eomylex relationships and correspondinely varied possi-
hilities,  The eurrieulumn ix the prineipal means of interpreting the
world of nature and of man to this frail and limited being.  Viewed
in this light, the =chool faces a program of overwhelming magnitude,
‘OF neeessity, the eurrienlim ern never offer more than a very
modest cross zection of all possihle experience; and yet this eross

¢ For a brief accennt of the mental giseiptine controversy In America, see Rue-
diger, op. eit., pp 26 Lot

A extensive Bibliceraphy of the pecent litergtupe on the teansfer of training
Ia given in Mead, Arthur Raymeoewl, Learving and Teaching, pp. 1141220 J. RB.
Lippineott Co, 10230 Ree also Whipple, Goy M., * The Transfer of Training'' in
The Tiwenty-xeventh Yearlhonk of the National Socicty for the Study of Lducation,
Part 11 pp. 179 204,

1t Davis, 0 O, Our Dal-ing High School Curvicalum, po 132, World Book (‘o

-
1927,
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section—however fragmentary—is the pupil’s primary tool for edu-
cational progress and potential growth. Hence the constant debate
about educational values, about objectives and the organization of
materials of instrucetion; henee also the perennially imporiant prob-
lem of explaining how a limited human mind can cope with the
inexhaustible edueational resources which modern society has accu-
mulated.

Theories of the Mind.'* The older doctrine of mental disci-
pline was based on an erroneous “faculty psvehology.” It assumed
that the mind was composed of variouz compartments, each of
which functioned in its entirety and could therefore be made the
object of intensive training by any pertinent activity., This simple
but naive and unscientific view was held aimost universally until
quite recently. It had to be abandoned when experimental psy-
chology showed unmista’™ubly that any one of these alleged “facul-
ties" in reality represents a very diversified domain. Thus it was
found that a person may have a gool memury for words, but a poor
memory for spatial forms, Discoveries of this type led to a violent
reaction against the older view. Instead, the doctrine ol extreme
specialization of mental functions hecame popular among psvehol-
ogists, It became the fushion, especially among those who were
uneritical or merely umnformed, to speak contemptuously of the
»exploded myth of mental diseipline,”  The result was an almost
hopeless confusion of ideas. For, if all learning can be shown to he
strictly specifie, the eurriculum must abandon all hope of securing
worth-while educational results on the basis of the “spread” or
“earryv-over” of broad enltural fields of work. Such a conclusion
scemed utterly at variance, however, with conimon sense and with
the experience of the ages,

12 Par abvious rensons, the perennial debate among psyehologists and philosophers
as to the nature of soul, mind, inteligenes, consciousness, meaning, reality, vulue,
and o host of eelated problems, can anly be alluded to in thess pages. 1t i»
certainly trae that “psychology nat peesent ix a seene of confusion and violent
disngroement.  Phere is o steadily monuting mass of data, but we do not know what
they mean’ It has even been safd that at pheent “there I8 no such thing as
psyehology.  ‘Plhisre ars only psyehologins ™ Generally speaking, we now have as
many psychologios of learning as there are diferent theories of the mind. It is a
matter of geeat importanee which of these theories the teacher adopts. Sneh of
them leads to g distinet coneeption of the lsarhing process and of the problem of
transfer which we are eonsidering in thiz chapter. Honce any o .clusions” which
may he submitted in oa study HEe this will appeal only to those who accept the
author's fundamental assamptions,  Nevertheless, the peevailing divergeneirs af
opinion need not prevent s trom ageeebne that the question of mind {¢ of central
fmportanes, both for teaching methal and for aur whaole program of sduention.”
(See Bode, B, H., Conflicting Prychologics of Learning. Do G Heath and Lo, 1929.)

-
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The two theories of the mind referred to ubove may be pictured
by diagrams such as the following:

Theory of the Faculty Psychology

T
Perception | Thought will Memory | Emotion |
Theory of Specialized Mental Functions
Memory
Words Number Color I Sound ‘ Forms ‘ SRLLLI

It is now known that neither theory states the ease completely.
A compromise theory is seen 10 be necessary, if we would aecount
adequately for observed facts of transfer. As Colvin put it:

The faculty psychology assumed a number of fabulous entities which
wo. ked out the destinies of the individual. while the doctrine of absolute
localization of nervous function hag made the brain a machine of relatively
unreluted parts and has ereated a doctrine of psychic atomism which is as
untrue as it i3 impossible of practien]l application. . . . In =hort, if we try to
overthrow the doctrine of transfer on the ground of absolute localizativn of
nervous functions, we are doing =0 on dubious theoretical grouuds, and
holding to a theory which runz counter to what we krow of menta! elements
and mental organization. If, on the other hand, we aceept the doetrine of
relative rather thun absolute localization, of colligation of remote funetional
areas. and of viearious functioning (as does Wundt), we find that such an
hypothesis, instead of niaking against the possibility of transfer, gives a clear
basis and reacon for such transfer, Indeed. n rational hypothesis of cerebral
localization suggests codperation und transfer of the widest possible sort®

The Mechanism of Thinking and Learning. Any adequate
discussion of “mental training,” “transfer.” and the like, presup-
poses a tentative aurcement as to the meaning of certain psyeho-
logical terms =uch ag “learning.” “mental functions,” “efficiency”
“improvement " and =0 on.  For detailed and compreliensive defini-
tions of these terms the reader must he referred to authoritative
seientific treatises on the psvehology of learning,  Certain funda-
mental explanations are, however, essentinl at this point.,

The brain, universally regarded as the organ of thinking, is now
known to be an instrument of stupendous complexity. This fact

(XY

¥ Colvln, 8. 8., The Learning Process, pp. 212, 237, Macuillan Co., 1917,
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has recently heen stressed by Professor ¢ . Judd in the following
manner;

There ix nothing more complex or more highly integeated than human
thinking. There is nothing ore original in the world than human combina-
tions of ideas. . . . In the case of inan there hax appeared as the es<ential fact
in his bodily equipmeat a larger and more highly organized cerebrum than
that possessed by any other animal. In this cerchrum sensory and motor
impulses unite in associntive con:binations. Im every normal human betng
trere 18 an mner worlid of ideas and of reeognitions of values, for which tnner
world of rativonal thuuyht there ix no countorpart in the world stwdicd by the
physicist or in life below the human leel. .. . He uses a cerebrum in which
the associative pracesses, which commbine and recombine nervous impulses, are
the typical and significant faetxin his life. . . . We must coneeive of the irner
processes of reasoning as related (o elaborate systems of organized tracts in
the cerebrum similar to those iniolied in speech. 1t is through the function-
ing of such cerebral tracts that man has heen able to uchieve through mechan-
feal invention and setentific thought the supreme place whieh he oceupies in
the world. It ix in the cerchrum, rather than in the lower reflex and automatie
centers, that the new combinations of senszory and motor impulscs have been
worked out which give to man the degree of mastery of his environment which
he has thus far achieved.®

It ix with the aid of this elabarate cerebral equipment that all
higher forms of learning take place'® But what is “learning’’?
Without committing ourselves in every detail to a “stimulus-re-
sponse” pryehiology of learning, we may vet aceept for our present
purpoase—in @ purely provisional wayv-—Professor Thorndike's well-
knewn definition:

Loarning i< conaueting, and man s the great learner primarily beeause he
forms =0 many connections, The processes deseribed in the last two chapters,
et a2 an of averige capaeity to learn, and under the eonditions
of molern enadized NG sonn change the man into a wonderinlly claborate
amd imvieate system of conneclinns, There are millions of them. They
inchide conneetions with subth abstmet elements or aspects or constituents
of thimes and evenrs, as well s with the conerete things and events them-
solves, L,

Any one thing or clement has nony Lfferent oo 00O the connee-
tiong to be stiedp in man's Iarning an enormous majoiity bevin and end with
some state of affairs within the man’s own brain—are bonds belween one

Nee The Nature of the Weorld and of Man, . 11, Newman, Felttor, Chapter
NVIL "Mind in Evolution” pp. 5327 f. University of Chicago Presy, 1926,

3The npest determined recent attempt to deseribe the processes of thinking in
the light of upsabern nearelagieal resenreh is represented by the following three
volttges weitten by Protesser 0 00 Herriek © An Introduction to Nearolugun, W, B,
Naauders Company, 19220 Brains of Rats und Men, University ol Chicago Press,
1926 The Thinking Mack ne, University of Chiecago Press 1920,
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rcnlal fuc! and anoticr, The Liws whereby these conneetions are made are
sigmiiicant for edneation sind all wther branches of lmman engincering.  Learn-
vy et el o] teaehing is the aremngoment of sitgations which will lead
to desivable bowds and neke them sadstving™

Mental Functions and Related Terms. In the light of the
browd detinition of “learning”™ suggested above we may now turn
to related psyehological terms which arve of importance in a seien-
tilie =tudy of the problem of transfer of training,

Montal Functions. Let us use the term mental funetion for
any group of connections, or for any feature of any group of con-
neetions, or for ay segment or featire of behavior, which any
competent ~td ot has chosen or may in the future choose to study,
as o part of : e total which we eall @ man's intelleet, character,
~kill, aml tCaperament. By =0 catholie a definition we shull have
i convenicat term to mean any learnalde thing in man, the psychol-
ogy of whose learning anybody has investigated. . . . Mental fune-
tiors may be *wide® or *nurrow’. . . . A mental function may in-
volve w single set, or a series of sets, of bonds --may be ‘short’ or
long’. o0 0 A mental function may relate primarily to the form
ol what 1 done, or to the content in connection with which sonie-
thing ix done. . . . A mental funetion may consist primarily in an
attitude or primartdy inoan ability,” ¢

Intclligcner. The term ‘yeneral intdliyence’ should be pro-
visionally neeepted as connoting the most important function of
mind,—-numnely the ability to control behavior in the light of ex-
perience.’” ¥

Efficierey. We may say that “the efficioncy of a mental fune-
fion is the stutus of that funetion at any given time with regard
to its quantity and quality,  For examnple, @ pupil can get sums
of Tour four-place numbers to-day at the rate of 2 per minute and
65 pereent of his sums are aceurate. “T'wo per minute” iz the quan-
Lity, *65 percent accurate’ is the quality.” i

Improvement or Detertoration.  “lwprovement of u mental
funetion 1s an increase in its quantity, itz quality, or inercise in
both.  For example, the pupil referred to above, after o week's
practice, had the following efliciency: 3 per minute und 75 pereent
acenrate, Phe change was 'L per wmime” and 10 pereent aceu-

Vo hmrhdihe, opo eit, ppe 173174,
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18 Bagley, W, G Determiniam in Ddaealion, po 137, Warwel amd York, 1925,
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rate’. Both coustitute improvement. Likewise, detcrioration is a
deerease in quantity, quality, or both. Suppose that the pupil’s
efficiency after practice had been ‘1.8 per minute’ and ‘40 percent
aceurate’.  Then the loss would have been ‘0.2 per minute’ and ‘25
percent accurate’.  These two losses would constitute deteriora-
tion.”*

Definition of **Transfer.” Let B, in the diagram, represent a
pupil's equipment. say in mathematics, at the beginning of a certain
period, while BC' is his improvement in that subject after a period
of much drill. Also, let XY represent a collection of other mental

+ ? i
: t 4
X Y //

functions, while Y'Z is the supposed improvement in XY due fo the
improvement BC in AB. This improvement Y7 is the real or al-
leged “general mental training” resulting from the activities whica
aused the improvement in AB.*

Transfer of training may therefore be defined as “the influence
which un improvement or change tn one mentul function has wpon
other mental functions.”

The relation of BC and YZ in the diagram above, formerly a
matter of dogmatic astertion. is now xeen to be a problem requiring
careful investigation. We must therefore turn to the evidence for or
against *transier” which experimental psychology hus accumulated
by the application of “sejentific” wethods,

[11. The EapEriMENTAL [NVESTIGATION 0F TRANSFER
Possible “Transfer” Relations of Mental Functions. Suppose
that A and B are two mental Tunetions which are to be investigated
with regard to transfoer, A being the funetion improved by training,
the influneing function,” while B is the untrained function, the
“function to be influcnecd.” We nay then have the following pos-
sible cases:
Case 1. Dmprovement in A improves B.
Case 11, Deterioration in A weakens B,
- Ml ap ertoope U4

" fhid , pp. U293,
< rhoradike, op. cit., p. 269,
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Case III. Improvement in A weakens B.
Case IV. Deterioration in A improves B,

Case V. [Either improvement or deterioration in A is of no
influence on B.*?

These relations may be summarized by a diagram such as the
following:

I
A|+|—|+|—:
B +

The literature of experimental psychology abounds in illustra-
tions of these various cases.** We are mainly interested, however,
in the question of the relation of improvement in one mental func-
tion to an increased efficiency of other functions. That is, Case
I is the primary object of our discussion. We shall therefore pro-
ceed to examine the technique by means of which an improvement
in a certain function A and its resulting relation to a second func-
tion B may be investigated.

Method of Investigation. The tyvpical procedure now followed
in the experimental determination of transfer involves the existence
of two groups of *“subjects,” say high school pupils, which must
be as nearly as possible of equal ability, The sclection of these
groups is based on eareful preliminary intelligence tests. Group 1
1s called the “practice” group, while Group Il isx the “control”
group. Both groups are then given an initial test in the abilities to
be investigated, =ay in A and B, thus determining their respective
“base lines” in these abilities.  Then Group I is given speciul prac-
tice in ability A, while Group 1I is rnot given such practice. At the
end of the training period both groups are again tested in the same
abilities,  The scores of cach group in these finul tests are noted.
If Group I scores a greater relative gain in B than Group 1I, all
other things being equal, this superiority may be attributed to the
special training enjoyed by Group L.

The necessity of a “control” group was not realized in the earli-
ext experiments. It is now seen to be of crucial importance, as the
following stutement suggests;

@ Nee Mead, op. cit,, pp. U7 ff.
* Thus, for a diseussion of negative transfer, see Judd, . H., Paychology of
Nevondury Rducation, p. 4380, Ginu and Co, 1927,
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suppose there we ten aspeets of menory, and we wish o lern whether
traming in aspeet Nuwber 5 will itprove all the other nine aspoets. We take
a group of people aid measure all 10 aspeets of memory; we then train the
group in axpeet Number § until there is great improvonent and then measure
again in the other nine agpeets. Suppose we tind that there is nnprovement
in all the vther nine aspeets; we cannot say that i is doe to the practice in
Number 5, beeause, for all we know to the cantrary, the group myht have
mede this improvement wtthont the practice, 1t ney be that if we give the
ten tests and then wait o Tew weoeks sud give ten shmibae tests again, there will
be considerable mnprovement. I feet, suel is tsually the case, We must,
therefore, in an experine nt of this hind, fake feo groups el give one group
the witial and finad tesis and @ive the other Hrotp thee e initial and finad
tests and the specwd practiee boesido o Then, whatever differonees i the final
tests are not otlirwise accounted for, may be consiilered to be due to the
practice®

DebBatable Assumptions Underlying the Technique of Mental
Tests. T'he investigation of transter by meuns of mental tests of
the usual type is subject to certain inherent weakuesses, It i only
too true, ax Inglis reminded us that “the =cience of experimental
psycholugy, in spite of its rapid and promising development within
tecent vears, i< stllin it infaney. Henee the tools which experi-
mental pedazozy must employ are us vet of the erwdest,” 1o
particilar, one iy have serious misgivings as 1o puiely granti-
tatiee evaluation of wental phenomen:, With evident disregard
of age-old philosophie speculutions and diffieulties, prominent ex-
ponents of the measurement movement in education do not hesitate
to propose “theses™ such us the following:

1. “Whatever exists at all, exists in some anount.” (Thoru-
dike)

2. “Anvthing that exists in wmount can be nmeasured.™

3. “Meuwsurcinent in education 1= in general the same as neas-
urctient in the physical setenees, "7

Reeently Thorndike wnd his colleagnes of the Tnstitute of Fdu-
cational Researel of Toekers Colleze, Cobnnbia University, issued
an extensive repott on Fhe Moaewrome nt of Intoii-genec, in which
this quantitative doetrine is reasserted with greas condidenee, Thus,
Ch:lptvl‘ NV contmns the wollowing shentlicant Jrivssnues]

PRl AW PEURPY 7R LTSS FRRRS RN
Anelis, N Proneage s s sooudary dgealion, pootos B 2leen Matllin Ca,

1ls
SN Metzall, VN Hew Ze Moawwre in Lodetteon, Chagese o T Macnalian

o, Tl
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The ~tandard orthedex view of the sarfuee wature of indclleet has been that
it s divided wather slareply dnto o Loves Lalf, meve eorne etion=farniing or the
aarglione af Divae, whiek g Cacs information and speelized habits of
thinking : wal a hivchy e half claras topizod by ab<traction. general zation, the
pereeption aned wec of rlatioes and the seloetion and cantrol of habits in
inforenee ar reasondivg, and abd’ty to manage worel or orginal tashs, The
orthodox view of its decper natuees so far s this has receeived aitention, has
been that the mere vonnection or association of ideas depends upon the
vhysiologicai wechanisi wherd by o nerve stimulis is condueted 1o and exeites
action in nenrones A, B, Cooratlor than any others, bt that the higher proe-
esses depend upon something quite diferent. There would be litte agreement
as to what this something was, indeed little offort to think or imagine what it
could be, but there would he much confidenec thate it was ot the mechanism
of habit formation,

The hypothkesis which we prosnt and shall defend admits the distivetion
i respret of surface bohavior, hut asserts that tin their dos por nature the higher
forms af intellectual aperation are Sdenlical with mere assoctation ar come
nectiom forming, dvepewding wpn Lhe saome surt of physiolugieal eonn etions
but requiring many more of om, By the sune wrgument the persan whose
intelleet is grescter or higher or bertor than that of another persen didfors from
him in the List analysis in hoving, not a vew sort of physiciogieal § roeess, bat
simply a Targer qommdie = of covn ctions af oo urdoury sart. . . .

The essential element of onr hypethesis is that it offers a purdy peantita-
tive faet, the number of oS [eonncctions], s tlee eanse of aualititive differ-
ences o Dher i the Rind of ape rition reg, nesocmtion versis veasonimn or in
the qrahty of the result obraned cex nath versus error, wisdom versis folly),
=0 far as these qualitative dithr nece are corsed by arigimal nature, .0 We
~hall not disenss meneral areier ws pro and eon in this meport, b will simply
note that both the phvlowny el the ontoreny of relleet sen to us ta
show sclection, awadys's, abdreeSoe, goneradization, and roasueing coming s
0 dire et cony (Joe bt n}' dnetara e o nider I/j CoInhe (‘HH"-\‘,‘ and that what
little is known of the <t ase o e eurnes in very dull individuals is in
barmony wizh the gt o sl ogy ™

Withant comunentive fotiaor ot this point on the basie philo-
saphic questions raised by suel o perely meelanistie orfentation,”™

lhorwlike, BT, ThHe Mecoaiin om af L detigenee, Clapter XY Toae bers
Colle L) Cobnnhitag Unidveraey,

N for exaompdes MeToepoa -
tnli=ta” el the “mechanizt< in Lis Clark Univiersity botypes oy "Me or Rotmte”
pethlioshond dn Pxachglagics ot e ppe 270000 Clien Undverstty, e, Says Unie
frossor MeDinuenl) .

CEven il M Cgith o the el st cwepe wo b e ceded el Justited, even B0 we
ool svane dmgeassitile, soane ~ape rpnt ceals oo snrane e o0 thes, it wodald sl be oo
procstabdie tiaw ctad Tor o Late tirpes do codioe Lo g tive soaee of o poenntali-t, the fenly
pavpesive, interpretation of bebnvier; For o we dre ocoey, vory Sr fram ouny delegudte
veechagieql gty bl gen | ated We oty hoajee T oarertve o theeln et tigpeediy by

Peonn araady -2 or dhe aprreeel b twien the “nuen

vontino e b dee gnel too ptaprene oo e st dpterpro e o bo tormeilate laws

of bebaviar in suentabst toem, et pening the traneia e ol thetn tute ko of
mevhitosin sintll sueh e s il mterpretation way beoao possthilnny aml nal
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let us turn to a brief survey of the literature dealing with the ex-
perimental determination of transfer.

Experimental Studies of Transfer. FEven a brief sketeh of the
principal experimental studies of transfer would completely trans-
cend the scope of this monograph. Besides, such summaries are
now readily available. Thus the Keport of the National Commit-
tee on Mathematical Requirements includes, in the form of supple-
mentary plates prepared by Dr. Harold Rugg and Miss Vevia Blair,
a synoptic review of the “experimental literature of mentul disei-
pline.” to accompany Chapter IX of the Report, on “The Present
Status of Diseiplinary Values in Education,”™  Plate I presents an
outline of nine studies dealing with memory, beginning with the
classical experiment of William James (1890), and ending with
Sleight's well-known investigation (1911).  Plate II epitomizes
ten studics dealing with sensory and perceptual data, all issued
between 1901 and 1914. Plate LII refers to fourteen stwdies dealing
with associative-motor habits and special school activities, re-
ported between 1897 and 1920. Plate IV summarizes ten investi-
gutions into the rclations of rarious ficlds of intellectual activities,
as reported between 1901 and 1920, With the aid of the references
given in the Report, the reader may personally ucequaint himself
with the exact details of each of these investigutions. Brief ac-
counts of many of these studies may also be found in the recent
treatises on experimental psvehology .

Since the publication of these studies some very extensive inves-
tigations of special interest to high =chool teachers huve been car-
ried on. The monwmental Classicul Investigation, sponsored by
the American Classical League, tested the validity of certain aims

erely a mislewding pretense. g at peesent it iso 0 T may be that the tidth of
the mechanist ix altowether ill based and Hlusory.,  To all appearance the hite.
procosses of living things are fundamentally Gfferent from inorpanie processes

and we have ho guarantes, no adequate geonud for belleving, that this appearance
v lnsory,  And, It we uneritically adopt this wechanistie falth, and anpder irs o
thience slaborate a picture of the world in mechanistie terms, we inevitably arrive
at an absurd positlon, as the history ot thotcht abandantly shows: we find we
have ereated a picture of the world which leaves out of the picture entirely thnt
mental process, that purposive striving, that crentive activity, which has prodieed
the picture; ocur conseious steiving to construet the pleturs, our consvions apprevia
tion and understanding of It when construeted, remain oatshle it ax something
whoxe relation to the picture 1s entirely anintelligible,  And zo we have 1o start
all over aptin, and strive to *remoull {t nearer to the heart’s desine the desire to
understand man's place in the universe.” (0Op. cit., p. 303.)

» Noe, for example, Starch, D Educational Psyehology, pp. 103211, Macmillan
Co., 1920 Pyle, op, e, pp. 217220 Gates, A, L, Pzycholugy for Students of
Educgtion, pp. 255-264, Macmlllan Co., 1823,
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or objectives in the teaching of Latin, with particular reference to
transfer effects in the field of EFnglish. Thousands of pupils were
tested and noteworthy conclusions were obtained.$* At about the
same time an extensive study of “Mental Diseipline in High School
Subjectz’ was condueted by Professor I, L. Thorndike. His report
was published in the Journal of Eduecational Psycholoyy, Vol. XV
(1924).  Over cight thousand pupils were involved in the tests.
Significant findings resulted.®  More recently, a similar study was
undertuken by the Institute of Fdueational Rescearch of Teachers
College, Columbia University, with the participation of Professor
Thorndike, which took into account the earlier investigations and
¢ =tablished important relationships between individual high sclool
subjeets, or groups of subjects.®

A review of these investigations impresses one with the gradual
extension of the machinery which appears to be necessary to arrive
at worth-while conclusions,  ‘The later studies involved thousands
of children, required an expensive research organization, and de-
pended on the application of highly technieal statistical devices,
Only the future can determsine whetlier a further extension of such
intricate methods s feasible or significant,

Evaluation of the Experimental Investigations, A summary
of significant inferenees whiclh may be drawn from the results of
all but the most recent of these studies is given in Chapter IX of
the Ieport of the National Committee on Mathematical Require-
ments®t These inferences are based on the replies of twenty-four
psyehologists to whom a special questionnaire suggested by all the
available experimental data had been submitted. We must limit
ourselves to u list of the outstanding conclusions:

1. The Gro extreme viows for and against disciplinary walues practically
no longer enist. As the question now stands, as transfer of training, the
psychologists quoted here vTmo-t unanimously agree that transfer does erist.

2. A large majority agree that there is a possibility of negative transfer,
and of zero trunsfer, caused by interferenee etfeets.

3. Very few if any experiments have shown the full amount of transfer
between the fields chosen for investigation.

81 See General Report, Part I, of The Clasxical Investigation, pp. 38 54, Prineeton
University Presw, 1024,

A summary of this report may alse be fonml in Rewdinge in Ddvweationgl P
chulogy, by Skinner, Gast and SKmner, pp 635 6as [ Appleton nnl Co, 1006,

3 The results of this stidy weee submitted in the Jowrnal of Edueqtional Psy
cholagy, Vol XVIIL, ppo 377 1o b sSeplember, 1927,

S For an abstract of this chajter see SKinner, Gast anl SKinner, o7 eif., pp. 658
658,
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4. The amount of transfer in any case where transfer is admitted at all,
18 very largely dependent upon methods of tcaching. This is probably the
strongest note struck by the psychologists in thoir comments,

5. A majority of the psychologixts seem to believe that, with certain
restrictions, transfer of tratning is a valid aim in teaching.

6. Transfer 13 most evident with respect to general el ments—ideas, atli-
tudes, and ideals. These act in many instances as the curriers in transfer.
Often they form the common element so generally held to be the sine qua
non of transfer®

The Report then submits in detail the personal replics of these
twenty-four psychologists, in alphabetie order, thus giving an inter-
esting symposium on the present status of the m-ntal discipline
controversy. After a perusal of these opinions, it is no longer pos-
sible to justify the careless assertion that “mental discipline is a
myth.” This impression could be greatly strengthened by other
significant quotations from current educational literature. We
must limit ourselves to a few striking passages which may serve
to dispel any latent doubts that may have remained in the minds
of critical readers.

The fact of transfer cannot be doubted. The factors involved in such
transfer, the extent to which transfer can take place under any given set of
conditions, and the best methods of sceuring such transfer will long doubtless
remain questions for investigation and dizeussion™

The “dizciplirary” funection of systematic education is probably far more
significant than is usually granted by the current interpretations of the experi-
ments in “transfer of training” Wlhile it would be most unfortunate to go
buck to the naive conception of formal discipline that prevailed in the past,
it would be the part of wisdom to go forward to a new conception which
would uim to correct the unquestionable wesknesses, not to say, flabbiness
of the position taken on this important issue by contemporary educational
theory W

No une can doubt that all of the ordirary fortns of home or school training
have some influence upon mental traits in addition to the specifie changes
which they make in the particular function the improverzent of which is their
direct object. . . . The real question is not, “BPos mprovens ot of oue function
alter others?” but *T'o what extent, and how, does @17 ®

Specianl emphusis may be luid on the fact that thore & wo one who denies
that some kind of transfer takes place. The real questions at issue are what is
the degree of transfer und what is its method?*®

B Repurt uf the National Committee on Mathematical Requiremenls, pp. 905 Q4.

¥Bitolvin, 8. 8., The Learning Procesz, p.o 281, Macemillan Co., 1917,

¥ Bagley, op, cit., p. 160,

® Thorudike, K. L. The Psyehalogy  of Learning, po 355, Teachoers College,
Coliimbia Univeesity, 1014,

wJudd, Q. H., 3ychology of High Sehgol Suhjeets, po 404, Ginn and Co., 10915,
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The Extent of Transfer. The carliest transfer experiments, be-
cause of obvieus imperfections in the technique adopted, often
vielded eontradictory and non-conclusive results. Generally speak-
ing, the evidenee in favor of a liberal amount of positive transfer
wus not uniformly reassuring. The Classieal Investigation made
ont aomueh more favorable ease, though only in two very closely
related fields of work, English and Latin, Thorndike’s most recent
studies, \\'h}('h are mentioned above, again stress the relatively
meager amcunt of meusurnble transfer resulting from a study of the
vnstnnmry/high school subjeets. Thus Thorndike finds that “one
vear's study in either algebra or geometry as now organtzed does
increase one's ability to think, by a small degree.”” He attributes
the apparent superiority of Latin and mathematics to the fact that
evidently the good students eleet these subjeets. “When the good
thinkers studied Greek and Latin, these studies seened to make
good thinking.” Hence, Thorndike believes that “after positive
correlation of gain with initial ability is allowed for, the balance
in favor of any study is certainly not large.  Diseiplinary values
may be real and deserve weight in the curriculun, but the weights
should be reasonable.”

We shall see below that there are excellent reasons why school
subjects “as wow organized™ shonld lead to sueh a “sniall degree”
of transter. We do not secure transfer wunless we train for transfer.
In the meantime, the conclusions reached by Stareh as to the ex-
tent of transfer. though dating back to 1919, are still sufficiently
tvpieal to warrant o restatement:

1. Practieally every investigation shows that imjprovement in one mental
or neartl funetion is anceompanied by a greater or lexs amount of modification
in other functions.

2. This madification is in most instances 4 positive transfer, that iz, an
imprors ment, Negative lransfer, thit iz, lose of efficiency in other fune-
tions, or interfcrence, has been reported prineipally among  sensori-molor
hahits,

3. Th~ amount of improvement in the eapacity trained is probably never
aceompanicd by an equal amount of improvement in other capacities, with
the possible exception of a few isolated instanees whose actuality may he
questioned,

A< woneral estimate, on the basis of experimental work done thus far,
the uonnt of transferonee betwesn the extremes of 10098 and 05+ of transfor
lies nearer to the zero end and is grobably in the neighborhood of 206 to 36Ce

¢ Tharsdihe, L B UMental Diseipline In High  Sehood Stodes Joawraal of
Lduentional Pspelalegy, Vol XV, pp. 122, 83 98, Jannary, 1024,
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of transfer to closely allied functions and from that point on down to 0%
uof transference to more unlike functions.

4. In the fourth pluce, the improvement spread to olher funclions dimin-
txhes very ramdly in amount as these olher functions become more and more
unlike the function specifically trained. This diminution occurs at a sure
prisingly rapid rate®

Now, even if the actual, measurable transfer effect arising from
the training of any mental function should consistently turn out
to be small, it would still be necessary to guard against the error
of underestimuting the value of that small amount. Thix important
fact is granted without lesitation by Professor Thorndike. To
quote:

It must be remembered that o very small spread of training may be of
very great eduentional value if it extends over & wide enough field. If a
hundred hours of truining in being scicutitic about. chemistry produced only
one-hundredth as wmuch improvenient in heing scientifie about all sorts of
facts, it would yet be a very remuneritive educational force. If a gain of
fifty percent in justice toward clussmtes in school affairs increased the general
equitablenesy of 4 boy's behavior only one-tenth of one percent, this diseipli-
nary effect would still perhaps be warth more than the specific habits®

We muy symbolize this view in a very simple manner. Suppose
that ¢ denotes the hypothetical extent of transfer of & mental fune-
tion. Let u,, aq, @3, @n, denote the number of potentinl opportunities
of applying ¢t in various fields. Then the total transfer effect of ¢
may be indicated by the formula

T=t (ay +a,+a,4+ ........4a,.

Thus it appears that nnless t is negative or zero, the value of T
may be very considerable. These preliminary considerations will
assume greater significance in the hight ot our subsequent dis-
CHERION,

Critical Evaluation of Current Experimental Procedures.
Whitever one’s attitude may be with reference to the present. find-
ing= of experitnental pxyehology on the existence or the extent of
transfer, it is impossible to deny or to overlook the obvious flaws
in the prevadling experimental teehniques and in the interpretation
of allesed results.

But very few experitments have been dene with sufficient tharoughness and
artention to seientifie detail to merit the respeet of an unpartial investigator.
A< one reads the experimentad litrrature, one sceldom feels, with reference

extarch, op ef, L 2120
< Tharwlihe, Educational Peychology, Briefer Coyrse, p. D82,
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to any experinient, that it iz fir a® that it settles that aspeet of the question
with which it deals. Few experimenters have repeated their experiments
again and agiin, to see if every result confirued every other. Too often
the article reporting the oxjeriments is only a “preliminary report.”” One
usually gearches the literature in vain to find a “full report” of the “main
swtudy.” In more than one ease, an experimenter has 1eported his results and
given his inferences, while another psychologist would elaim that different
inferences were warranted from the results  Thorndike's inferences have been
g0 questioned by Judd: Wineh's, by Sleight. If educational psychologists
are to command the respeet of o scientific world. they must do their work
with such thoroughness tha it will stand the tests of repetition and eriticisin,
Too often n elass exporiment that is seareely worth anyihing ax a mere detuon-
stration ix published as having seientific value®

The whole gquestion of technique ix ably summed up by Pro-
fessor J. W AL Youne, i the following interesting statements:

The pevchological researches that have been made ar  valuable, but ‘hey
are as vet mere ceratebes on the surfaee of 2 field that needs to be mined deep.
Mental acts at their simplest are caplis. Good psychologists would be the
first to tell us how lthe has vet heen done in the direction of reaching
an ultimat analvsis of tiese complexes, or in the direction of determining
to what extont the psyehie jowors ot wok sn diferent mental acts are the
game. . . . The results reached by psveholegists warking in the seientific apirit,
when reeeived and mterpreted in the sime spivit, can do only good. But
danger liex in the aceretions and distoctions bt the deseriptions of these
results undergo when handed down the line e science to rhetorie, from
first to tenth hand. . .. The various analyses of <he xpeeialized and narrowly
limited experiments that have been made e« wich the statements just
quot-l; in the mathematieal or laboratory o= of the wood “proved”
nothing has heen proved ene way or the other on general questisps like that
cited. For sweh guesticns we st must be guided by the results of the
crpe=ienees ol doen the eenturme s in the eracting laboratory of peactyeal life;
by mevads of practionl erpericaces like the following by one of the psy-
chedignsts of the st Gin the Report of the National Committee exjeriences
that e at least s sipnifieant (to put it mildly) as counting dote o= epassing
off o' W O Bagley “is econvineed that students who eome firt hix elase
in nsvehalogy after completing thorough courses in the higher mithematics
do far better work than thes who have not had this ‘trainme.’ Nomething
has been ecarried over from one study to the othe. It ie errtainly not the
hebs'r of stidy nor are the points that mathematies and psychology have in
eatnzon =ufficient to account for the difference.”

We stadl net tind it sieprising, therefore, that there is a marked
feeline nmiong competent erities that the cntre phitosophy of men-

vl e et p DA
ey nar JOWL N, The geacling o' Melhomerteee, pp 375 0 Longmang, Green
and Co, 1ad4,
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tal fostine 1= in need of mnel ereater cnitication * and that the
te<t= themseles Teave el to he desived, To gquotes

O tests are ol present tofdly feede quate for making iy mensurement s
songht Ters Furthereoro, 1o abeoluto by sure that any suel tost ix totally
irr.~l- I el 1l prat i(‘:xl .-idl‘.“

Ther i Bude eonerad seroone nf o this whede topde, still less, if one
pecans by trensfor the effiet of ehesreom waonk in any =ubjeet tpon genorl
abebity o (Foetiveess i any other molation, Al agree that habits may
bee roemesd oamd that any habits e be used in duferent conneetions
whe the e elibl vonbd roasen bertter in polities beennse he Bad hesd a0 thorongh
trcmne it Neatle mties for exvanpde, s not provad by any actuil work or
miersir g it oso far e Do foniline with thee it rature @

Ohiir pteosee foses e oedoqute not only i testime ¢ eeifie habits which
are Lo d, Lt also the v ddo et an ane way o sresent te<st general attitades
towards b s weak or eone s e thedds aof hondbne material and of thinking.
It ie ey opinion that the higher the intelivone of the individual the more
pos<ibeliny of traefeor, aned thee more ths S oe witl Gike s bee i ihe reahn
e menesd ot < el b des Seecd e cther w10 e Ho it

af b e e s ! S Bleecd o Lol e e evims

TR A

The et b Seeesae Do o e e s e v et when conn-
H RN | with thee faeets \\?1:-'11 | SRR n Jote srnine o] 1 Tare W el ae el e s

urepp < S e st cr corcnt of antroved ieieney i des ease of sehonl
Soadire or cles e e of B o0 The moalte of evpariental investico-
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We npay conelide that experimentad evidenee, while suggestive and indien-
tive tha oldee notions of generad di<eipline are unterable, b as vet done
relatively Tt to dercemine either the mods or exter o the transfer or
spread of ey roved cthefoney, We are then fore foreed oack on the field of
generad cdueationd tleors fooa considerable extent, However unsatisfactory
that may be, for the trosent we eannot do otherwise than consider frs jmpli-
eations, with the lope awd faith that ‘myprov thods of experimental
pavehoboey moy soon afford more satisfactory cvigenee ®

IV, Psaycntonoaieal, THEORIES As To THE Mobk ot TRANSFEK

The Range of Mental Functions. Much of the uneertainty
and confusion of thinking which iz so apparent in the literature
on the transter of training is undoubtedly caused by our ignorance
of the neurnl mechanisms which may be regarded as the physical
foundation of mental phenomena.  In spite of gome proeress in the
field of nenrolouy, even the most common of these phenomena, such
as the operations of the memory, are largely shrouded in wystory,
“We do not know exactly the way in which this process of retaining
traces of past experience goes on,  Nome change in the minute
moleenlar arrangement of narve cells undoubtedly oceurs,” *t The
extreme compuxity of even the “simplest™ pereeptual vosponses
shoadd be suffieient warning aguinst too nurrow an interpretation
of any form of “speeifie” training. A better understandinge of the
mental cosmos mway indeed change radicadly our entire coneeption
of “speettie”™ aud Coeneral”™ teainine, These considerations are of
fundimental significanee when we fnee the question of explainine
Pows trunsior takes pliee, The hicrarchy of mental fauetions is
o inrrieate that no theory of trans<fer will earry convietion which
fails to give doe attention toosts many ramifientions.®t Ar the rizk
of some repetition, we shall therefore 1 d i protitable to rehearse
thi= et more detinitely by followine MeDonsdl's splendi] ex-
]ln.\:.ffl“::

There ds e the sreneture of any wdd sonsthie the endanes as the
wenel e b v etuy of thonkimg of e b s oeite Beves which ean b
el o b ahar il L L0 Perhiaps the Test e By owhinde ta o sertbae
Bore ol s oy Tor it i< the which dispos s e o sb e e o 1o
ik of or tooxeretse s frenlih <) coamive, atoetive . e cone e, Hien .t
corre el cbfeers L0 Al ninds of which wo Love any Rioahodin poseees
aotre disp osttens, and the mind of cvery novnod Lo o colelt §ossesses 0vast
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number. Tl mind of & man is, in fact, a nmicrocosm in which the world,
in so far as e can be said to know it, is represented in detail, a disposition
for overy kind of object and every kind of relation of which he can think.
If, for exaniple, he can think of a horse, or a cube, or heat, or joy, or the
causal relation, it is in virtue of the existence in his mind of a disposition
carresponding to vach of these objects.

The many dispositions of any mind do not merely exist side by side;
rather they must be conceived as functionully connected to form a vast and
elaborately organized svstetn; and this systemy is the structure of the mind.
The more perfectly organized the mind, the nmiore fully are the objects
which compose the world and the relationz between them represented in the
niind by the dismositions and their funetional relations. The total system
formed by all the cognitive dispositions of the mind constitutes what is
commonly called the kngwledge possessed by that mind. . . . We have to
conceive the coguitive dispositions as linked together in minor svstems and
these minor systenis as linked in larger mental systems, and these again
n still larger systems; and so on, by many steps of superordination, until
the whole multitude are linked in the one vast system™®

The important thing in the siniplest process of perceiving, ~avs
MeDougall, 12 not merely the fact that “there is evoked in my con-
sciousnesa 1 certain field of sensations of particular qualities and
spatial arrangements.” It is, rather, the “mcantng” we attach to
such a sensation,

This "meaning” i3 the expression in consciousness of the coming into
activity of a vast sy=temi of dispositions, built up in my mind through my
thinking since the time I was a voung child. . . . No dizposition is an alto-
gether new croation; every one arises rather as a specialization within some
pre-existing disposition; and in this way, by the specializations within it of
a number of minor dispositions, « disposition becomes a system of disposi-
tions. And, when the constituent dispositionz of such a system in turn
become systems through the diferentintion of new dispositions within theni,
the parent system becomes us it were a grandparent, and later by further
similar steps a great-grandparent The mental system may, then, be likened
to a fumily the successive geperions of which continue to live and work
contemporaneously. . . . This iz an over-=simplified accoant of the growth
and relation of mental systems®

Another factor, which psvelologieal mechanists have =0 often
ignored. ie the intricute relation of intellectual reactions to the
emotional and rolitional life of the individnal.

Hitherto we have considered the structure of the mind only in so far
as it conditions cognition; bt we have seen that all thinking is affective and
conative a8 well as cognitive.,  And Awawing os but the scrvant of feeling and

8 NMeDomzll, W., Payehology, pp <2 s tleary Holt and Co, 1912,
M Jhid., pp. 88 £,
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acting; it ia the process by which the will works towards its end and the
satisfaction which comes with the attainment of the end; and all the complex
development of the conditions of the cognitive life . . . is achieved through
the efforts of the will to attam its emls®

These considerations have tremendously important edueational
implications,  I= it not true that we have viewed the curriculum
in too narrow and therefore unproductive a sense? 1In the light of
the “new”™ psvchology, must we not regard a given school subject
as a fleld of ahmost unlimited complexity, of countless interrela-
tions, and therefore of endless “transfer” possibilities?  Such an
analysis leads us to the theoretical conelusion that transfer is pri-
marily a question of method.  Absenee of transfer, after a period
of “specific”™ or “general™ training, is almost certain, then, to be
a consequence of aimless or otherwise inefficient classroom pro-
cedures.

The Doctrine of Identical Eleinents. The view which explains
the possibifity of transfer solely on the basis of similar mental re-
actions or like neural reflexes Lias met with wide aceeptanee beeause
it appears to offer 4 very plansible explanation of the mode of
transfer.

Let us compare the potential richness of a school subject to the
complete spectrunm of ordinary sunlight.  The “spectrum’ of a
subjert ix made up of inninuerable elements, just as the speetrum
of light contains innumerable “line<"  In this analogy, the “pri-
mary colors™ would correspond to =uch azpeets as knowledge, =kills,
attitudes, appreeiations, ideals, types of thinking, and the like.

, ; . L, l 1 1,
; ] | ; ' ‘
S PR U - SO
Knowledge Skills Attitudes Ideals Thinking

Any partrewlar skill, suen as L would signify a narrow strip of the
speetrinm (that is.a particular renetion meehanism of the brainy,
Now, let N, and S, represent the “speetra”™ of two d.fferent school
subjects or types of activity,  (Sec page 1740 In view of the close
interrelations of the hizker nervous meckanisnis it 1= not only pos-
sible. hut Lighly probuble, tist wt some points in the domains of
knowledge, or of skills, or of attitndes, and so on - the two speetra
8 [hid., pp. 104 105,



O

ERIC

Aruitoxt provided by Eic:

174 FIFTH YFEARBOOK

poszess conmon lines such as ¢ (that is, e« mon nearal bonds), In
that ease the stimulation of the commion bond in «ither field of wark
wotld nesessartly affeet the other,

r———

—
s§\\
-~
S ~

S,

This theory has been endorsed especially by Thorndike. It is
clearly deseribed in the following statements:

By identical elements are meant mental processes which have the sune
cell action in the brain as their physieal correlate. It is of course often not
possihle to tell just what features of two mental abilities are thus identieal.
Bat. as we shall see. there is rarely much trouble in reaching an approxinate
deeision in those eases where training s of practical jmportance,

These identical elvments may be in the stuf, the duta _concerned in the
triinive, or au the wftiond o the mothed  taken with it The  former
hed may be eallid Ghontitiie of substanee . and the latter, fdentitivs of pro-
rodore,

The answer which T shall try to defend ix that a change in one function
alfers any other only in <o far as the two functions ke as foctors identical
elomsritz. The change in the second function is in amount that due to the
change in the eclrments common to i and the first. The change is simply
the neeesaary result npon the xeeond fanetion of the alteration of those of jts
factors which were clements of the first funetion. and so were altered hy itx
training ™

Srarch maintaing that experimental data appear to he in bur-
mony with this doetrine. He =avs,
=

The evidence on spread of training in school material {ends to support
for the most part the theory of idintieal elements. The effeets are the
largest where there is similarity or identity of material, 1= for example, in
the case of the effeet of the study of Lainn upen the study of Ssanish, or
upon the kuowbsdge of Fnebish gromner. The fact of identity ov matirial
or atailric of proecdure makes possible aogrenter control of the spread of
improvement through methods of toeching wheeeby the idintity or the uxe
of ddentical materad way be emphasized m s many desirable relations aa
poseible®

*Thorndik s, The Pevechohigy of Learni g, p. 308,

= Reareh, ope et poo 253
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A eriticism ol this theory must be postponed nntil we have ex-
atined ingreater detail the réle which identicn! elements seem to
play s aeeneies of transfer.

The Relation of Dissociat.on to Transfer of Training. Sup-
pose that a pupil is confronted with a mmber of siations that
imvolve a conunon constant element 4 (knowledze, =kill, attitude,
atnd the diker, but are otherwize made up of varving clements, as
lutlows;

’ Yy ABCD B) ARST
2y A LMN 41 4N Y Z

The presence of the identieal element 4 in adl these situations tends
to impress itself upon the mind of the keomner. The very faet thi
the other elements ave all ditferent cmphasizes the clement W40 That
15, the “stinados 4™ is eventually felt as o distinet and separate
stimmlus. Henee it dissociates itzelt trom the other “concomitant™
stimuli. When that Bappens, the element A Eas been given a sepa-
rte existeler in llc wand: it has been ooweralized, Tt 1s then
ciaputhle or independent assoeiation with any =uitable ~ct ot accom-
panying elements, That st can now be “transferred™ to other
sitnntions, Thes Thorndike =avs, “Any clenient of mental lire
whieh s Telt ws wpart of many total mental states, ditfering in all
clse suve it presence, comes thereby to be felt as an idea by itself,
and any movement which has been made as o part of muny
cotplex movenients ditfering in all clse =uve its presenee cotes
thereby to be nnele ax a4 movement by sl

“Teas npon this process of dissociation,” savs Teeliso cthit the
shatietion of why general Luw, ddea, }ll‘ill('i})ll_'. method, or the like
L=t rest, amd the process of d l\tm dne abstraet or cenerid ddeas
I~ process of dissnettion, Sinee the o iseif is bt o CNPLeSSion
ol e teode of mentad Bte wideh B fnste 3 terey expresses dhie
et of goneralizal ond which s innate mothe Binnsn mind and

st be cotisidered as an orvicinal data \\n..u itowiie b srowth
of incttin Life would be ftapossabic, The uels of the vanstor op
.-[‘l‘r:vi or ilu[)l‘n\‘l--l vlﬁl‘irh(‘_\‘ 1= fonnd in (hb w0l dissaciation
ar wenerabizdon,”

Frove the st Tpoint o transter, then, the eldine tssie appeats
to Latee spon tle U aetiad prosetpes o0 o e e oy
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variety of situations; 121 the dissoctation of this element by the
learner. We shull see, however, that Thorndike's ideas require an
important extension or precaution which has been most clearly
formulated by Judd in his doctrine of generalization as the real
basis of transferse

The Doctrine of Generalization, Tl history of science is full
of instances =howing thut the common underlying cause of appar-
ertly unrelated phienomena was not ehserved until quite recently.
The law of gravitation i w case in point.  Similarly, @ pupil nay
he contronted with situations exhibiting identical elements, with-
ont ever observing themn, Henee Judd is led to formulate a theory
of transfer which stresses the importance of w conseivus recognition
of the identical element, und the deliberate scurch for identical ele-
ments, a8 the busig of generalization.  He says,

When one =studivs the peychology of generalization he becones aware of
the uselesstiess of some of the formules which have been proposed by those
who huld that transfer of training takes jlace in cases where there are iden-
tical elements proaent, The dderdical demend (s wunlly cordributed by the
generalizing mind. On the other hand, there may be identical elements
potentially present 1n various situations, but wholly unobserved by the un-
trained or lethargic mind. In fact, the diccovery of the identical element in
g sttuation s ‘n some caste s Lhe whele problem of training®

In the same fashion we may show that the principles of intelle2tual
economy which Thomdike irequently includes in his statement of identical
modes of procedure. namely, the prineiples that one can learn to avoid dis-
tractions of all sorts, or that he can refuse to give up a piece of work oven
when 1t is uncomfortable. represent generalized identities of proeedure which
are not alwavs realized. In all these cases we must distinguish sharply
hetween the possibility of identical modes of procedure and the actual achieve-

* o\ very asteeral alistimetion <henld be o made hetswesnr the ale of the fdentieal
eloment 4 in any specifie learning process and the Tunction of 4 as an ageney of
seaneder. CThusy i A is 0 eeneeptsal elemeent <steh ag CtiveS" the moerely mechauenl
pepetition of 4 does et narantes an aottemeatie madtery of it Cmeantnet Real
vomprete o or yaderstandisg of 1 is gente o different psyeholosieal peabilem. ns
Prswaev punited oo in his ente eriteism of  the dectrine of identienl elements,
The develeprear of ‘meeaning i a eomplicatsd procese which involves real thin
ing U Thormlike i on wolid ground fu arkuing for cidentities’ of some gort, byt
this benves us with the task of tnterpreting these adentitnes ™ 1 Bode, B H, Mol rn
Foelgeational Thewrics, poo20v Macmillnn o, 1027 0 Thee task of giving richness
of CmeanunsT e 4ommay aettnally o nvelve puany nelared neental fanctions and thus
prectto 4 heanl basis foe traasfer This et ceqas o constitnate a4 oattfleient refuta
titgr of The exXt!reme e of spewsilive trarnee 20 oor Cthe law of o speeifeity,” as
reiterated recontly hy f. srs oof Paviev, o 8ee POOMD Rymonda, “The laws of
Foarning.” in The Journg! of Fdueaqtionagl Pesel o gy, Vol XV po 408, Reptesa.
her, 1927.) Henee the problem of transfer {g inexirieably “heanml up with the prob-
Loy of training in thinkmg (Biwde, op ot | p 21501

® Judd, Paychology of High Sehool Subpects po 1L
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ment of this identity. Such an achieve nent depends upon the exercise of
trained intellicenee  The existence of pexsible modes of procedure does not
invariably lead to theiv realization in fact.®

A Composite Theory. Fortunately, the two theories presented
above are not necessarily “diametrically opposite.”™  Their supple-
nentary nature is characterized by [nglis as follows:

No two situstions in life calling for action on the part of any individusl
are ever exactly alike in all respects. Hence training for an absolutely fixed
and specific reaction to any given situation is an impossible and valueless
process. Strictly speaking there is no suca thing as specific discipline. For-
tunately for the economy of mental life and efliciency in behavior it is
possible for the niind to seleet certain pargs of any total situation and react
to those parts with a mininium of attentica to other parts of the total situa-
tion. Since such parts of total situstions may be essentially the sume it is
possible to establish what in ull importent respects are specific situation-
response connections, and hence it is possible to asign values to xpecifie
discipline. However, through this same characteristic of the human mind
comes also the possibility of abstracting frem a nutuber of total specific situa-
tivns. differing with respect to most of their constituent ~lements, any given
elenmient which may be commnion to all the total situationas »r a majority of
them. Thus we get the law ol disso.iation expressed by Thoradike.®

In any given situation, “whether or not dissociation ov general-
ization taukes place depends on two fictors—the mental attitude
or ‘mind-set’ which the individual brinzs to the situation, and the
character of the situation experienced. Subjective clements are no
less important thax objective elements. It is perfectly possible for
generalization to be potential in any set of situations without that
generalization taking plice because of the mind's wttention to other
elements than those involved in the dissociative element. On the
other Land, it is perfectly possible for the mental attitude to projeet
into objective situations a generalizing factor that is not highly
fostered by the situation itself apart from subjective elements,
though always there must be something in the objective situation
to which the mind-set may be attached.””

Hence, following Inglis, we may formulate a composite theory
of transfer that combines the views of Thorndike and of Judd. The
essential factors which foster and facilitate transfer are now readily
scen to be the following:

9 thid,, p. 414,

o 1o lis, op. cit., pp. 397.308.
-+ 1bdd., p. 389,



O

ERIC

Aruitoxt provided by Eic:

178 FIFTH YEARBOOK

LA mmmber of total situations nmust bhe experienced in which (a) the
element to be dissociated and generalized is present in prominence, and
(hy the other elemeuts of the situation vary;

2. The elonmeut to be dissociated and generalized must he brought into the
field of foeal attention;

8. The clement 1o be dissociated and genemdized must be of stich o clar-
seter that it may be held in the mind as a separite eloment, This is
conunonly facitituted when a distingtishing nane or otuer symbul may
be attached, or when o netahzed desinitzon or Low 1< fornlanad ;

4 Pruetice maust be given in applying the dissoetated amd goneralized
tlement in new situations™

The theory outlined above may be sunuuarized by the following
key words: (1) Jdentical clemonts: (20 conseious dissoctation; (3
generalization; 4y wide application,

A Transfer Formula. ‘I'he curriculun: of o school offers many
opportunitics which may be used to foster transfer.  Following
Inglis, we may even symbolize “the possible extent and lnportance
of the transicr or spread of improved efffeiency by a simple
formula™ I we neree that the transter value of the lnproved
etliciency of any mental funetion i< to be measured by “the sum
total of its applications.” we may fet ay, de e o . . . an represent.
the amounts of the transfor i rorions qetivitics, while &, ta s,
o o oty represent the wunda s of occasions i cach case. Then
the totad tramster vadue inthe case of any ability or habit may be
measured by the Tormula

Toaty -=apty4-at, -, . .. = ity

This formnia is ilbiminating. For icstows thar in proportion as
the number of «'s or the mnber of O i< rodiead, the vatie of T
ahso deereases, This faet 12 of the crentest eduentional tentlicance,
sinee it serves (o give the reisol o Ue gsicd tentet ness of trhs-
fer as l‘l‘p()l‘lt-(l l)}‘ most ol e eXpreniin ~9ndes mentioned
shove, et transier and pos 20 Tt ave tva very different
tirnes,  This l_)l‘ill_&:‘.* Us 1031 cobsidrat,ol of (i ]H‘li:;'_‘n:i(‘ Aaperts
ol the problem of traester.

“lneles opl eit., ppe Gva b
[TV N P g,
oAt intetestend tranaot bertriba Los daes ool sl e Plavis, This foer
el daay by enperesses] s Tolhows:
I ooy,
oowhie o 0 e aneeanng and valae Lo Proosstor: o He putive ability of U
I troer; I the et e of varied engoe e s the nambep of

e atiens of ectinedt elvients ol s e e et tiees il then engndone el
Tt e teepis nr e mdisatiens o il o e sinde v gnd Liwds of wass in

REE TN I
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V. EDUCATIONAL ASPECTS OF THE PROBLEM OF TRANSFER

Transfer Not Automatic. The majority of psychologists at
present are of the opinion that transfer is not automatic.®® That is,
there must be conscious attention in the classroom to the factors
which favor transfer. Professor Judd has stated the case with
admirable clearness:

I do not think that any subject transfers automnatically and in every case.
The real problem of trunsfer is a problem of so organizing training that it
will curry over in the minds of students into other fields. There is 8 method
of tesclhing a subject so that it will transfer and there are other methods of
teaching the subject so that the transfer will be very small. Mathematics
as & subject cunnot be described in my judgment us sure to transfer. Al
depends upun the way in which the subject is handled. . . . Transfer is a
form of generalization, and training can be given so us to encourage general-
ization, or training cun be of such a type as to hinder generalization™

If this be correct, we must regard the teacher and the organiza-
tion of the curriculum as crucial factors in the trausfer problem.

Since dissociation is the basis of the transfer or spread of improved
efficiency and since the extensive operation of dissociation is fustered by these
fuctors, it is ciear that any subject of study which dves not permit the
organization of materials in teaching so as to meet the cunditions suggested
cannot be expected to offer the most favorable opportunities for transfer.
Further, it is clear that, as fur as indirect vulues ure concerned, subjects of
study may to some extent be mieasured according to the degree in which
those conditions can be met. Moreover, since the method by which materal
18 presented i3 also involved in meeting those conditivns, it follows that
transfer cannot be expected to operate most effectively, unless buth subject-
matter and the method of teaching are adapted to the conditions favoring
the process of dissociation and generalization ™

The Teacher and the Curriculum as Factors of Transfer. ‘The
fellowing five factors, according to Daviz, ure essentials of any

which the new generalization S applicd to specitie sitnations ot problems in Life.
(See Daavis, op. eit., pp. 187 1380

Here, mmin, the value of 7° i divectly proportional to the factors A 1N D, K.
thu~ givig v cepelusions sinndar to those suggesied above.

8 The Classival fnvestigation peporis (Part 1, pp. 560 that of the nfoy nige
paychologists who expressed au opinion as to the antomatie natare of transfer,
thirty-three statel that no antonatic tranafer oceurs at all, or that it is slight or
negligible. Only nine beliovid that trausfer I8 (o a conxiderahle erten? or alnio-t
entirely antematic. The ravainings seventeen replios mdaintnined an internuelinte
position or admitbad g caretully qualitied mount of antomatie transier.

® ¢ M Judd as quoited dn the Keport of the National Committee un Mathe -
matical Kequiremesta, pp. 88 oo,

¥ Inglin, or o, p. $00,
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educational process designed to yield worth-while returns of a
formal disciplinary sort:

(1} Syvstematized knowledee; (2) likeness of the knowledge elemients and
the thougln process entering into the content material of the several fields of
study involved; (3> the native ability of the learner—particularly in respect
to the ability to dissociate elemenis—to note likenesses and differences and
to generalize from the dats given; (83 the dertness and resourcefulness of the
teaeher m osuagestnnz relationships amd the possibilities of van<ter; and (3)
contmued practice in the art of relating thought and action to different fields
of interests”

Douglis is convineed that “any teacher will be benefited by
examining his courses of study and methods in the light of the
theory of transfer of training . . . each subject should be so twsslt
as to insure the greatest amount of transfer . . . wpon the teacher
rests the ehicf responsibidlity for the indircet valucs reecarad from
Lis courscs *#

If the channels of transfer are identical clemems of substanee, method, and
ideal, precautions must be taken to see that alee course weludes elemenis
which will be found in out-of-schoul situation<. The facts leaorned and the
prineiples developed must be “identiead™ with the facte and principles en-
countered in daily work, in the duties of the home, or o suctad antoreourse,
scrutiny of the coutse from this pot of virw will result in the climination
of nuterial of little or no recopzed socnd vidue, the rearrunegement of
ertain topics, and the addition of otliers. Likewise, o dezree of eertainty
and decision heretofore lacking with respeet 10 the mental habits and ideals
to be developed is demanded if these are 1o be intluential in shaping instrue-
tion. Such an attitude will be of the greatest assatanee in definitizing and
vitalizing the instruetor’s daily work, for there can be no  contradietion
between the crganization of & subject frow the standpoint of adentical ele-
ats and s arrangement on the basis of social values,

In order to insure maximum transfer, the teacher must not only have
his immediate and ultimate aims of instruction elearly formulated, but he
must see to it that his pupils shave his views on the objectives to be gained.
AMany teachors never diseuss with their pupils the reasons for which assigned
\\m'k. 1< grn, nor say anythimg of the pirposes or cinds of thewr eoipses, The
metnbers of their ciasses are thus left to grope blindly for the meming of 1t
all, their fechugs being but slightly relieved by the general statements which
ey hear to the effect that they are “training their minds,” or that they
.~:hn.uld “tabe advantage of their wonderful opportunities to prepare fur life'®

me
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Insufficiency of Specific Training, The advocates of the doe-
trine of specitic training appear to have overlooked the startling
educationad insutlicicrey of their position.

Fortunately—or unfortumately——no two situations or expericnees in life
are ever exactly abke. Henee 1o attempt to train an individual to meet life's
problems solely by means of tixed and unvarving responses would be an ime
possible and Truitless tas. The mumber of needed responses would be infi-
nite.  Here, therefore, the edueational thoory which seeks to rest its case
on a basis of absolutely unique and speenic diseiphnes is reduced to absur-
dity. Time and cierey mever would permiit a mortal being to propare himself
speatieally 1o medt adi eonecivable stuations o life, His ounly hope and
salvation if to ceoneanize cort by making use of general diseiplines,

Hapiily, too, as has adso beonindicated above, most situations in life are
shet theoush and throwsh wish commion elements. Tt is possible to abstract
s o these il 1o neke than the cloments for building Ui+ Lirger con-
cepts amd wenerabzations which wotumn ¢ be employed in ww sitiations.
In particular, the < Hi capertoner s furnish specific common elonents out of
which piy be formcd @l netions of meay common everyday aeenrrences,
standards of toce] BLods setonoss, winudes, methods of procodure, habits
of work or plarsaed possdy other desieble webheve e s, Tho develoge these
19 the s asad e oso of Lol discishne o unilize the et ralized abilities
in munerous Sobis o thousht and aetan s the ond sought m the transior of
these powers™

Method as a Vital Factor in Transfer. We siall vow seree
[llllt. l.llllli.'xi..l'l.i::::_\'. e l'i-il'('li\'L']:('.\.\' of fortad l“.\('.!il.!m' i~ tloo-
pendent wpon the prpti e teacher, aand Uhe SUDJeCT 0F st o,
Sinee obvioy e e alway s viainble forees, the extent i
vadue of ceneral tmnnine ase execcdineiv o variablo onteones, It
cannot, wowever, be repeated ton oiten thar the justifieation for
Torma} ll;..*t‘ipgil:l' rests Lot i e g o ! H :l}li!ll_\‘ transterred bt
in the rars ol netivities 1o whien it s sanlied when tae ool
I‘.lll"lu'l‘. \\'i:('ll.v!' ur bt TrnnsCeredes uf Y ('n!:-':-sl':':.f-!v vialite

t:l]\‘(-ﬁ }li'.'('l' 1< lil';ll'l:«irl:' 1w toa alerthos uf ':i)in]'(l.:u';. ot are

apeied tos e it of the negrancd ato e, T oae e
GO hodl beoeoge l.\'Ilil;.:‘:',l'li i-_\' TSV, TZ.I_\' ENINL g ! t'n
Bocattse oo externnd stinnlis dinected to e estahl <ient s

TR ENTRH TR I SERY t!.t*_\' an- lu-rs:sh-nxf_v l':ili‘!“:\l"s.“ :

Those cansiderdions are in aoreement with Ihons” contention
theaet iy attempt o dissociate nmieri’ s Trong et hods af exXpert-
civitg thene s croncons aed ssedesss From o podicoziend point
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of view the character of objective material is inextricably associ-
ated with the way in which it is experienced. Things, objects,
ideals, and so on, have no meaning for the individual other than
as he experiences them. To say that generalization and transfer
Liave no importance with respect to the values of educative mate-
rials but are important with respect to nicthod ignoves the fuet that
the character of materials in part determines method of training
and that methods of training in part determine the character of the
materials as far as their effect on the individual is concerned.  An
antithesis of materials and methods is psychologically and pedu-
gogically false.” ™

Habit and Thinking in Their Relation to Transfer. One of
the greatest sources of confusion in the whole »~vtal dixeipline con-
troversy may be traced to vagueness as to the meaning and the
function of “habit.” A narrow or mechanistic interpretation of
habit formation inevitably leads to a virtual denial of transfer.
And clussroom procedures whieh are based on such a psychology
of learning will almost inevitably result in a corresponding meager-
ness of a measurable “spread™ of truining. A brief examination of
this psyehological question is therefore unavoidable at this point,

The “spectrum™ of a school subject involves certain tangihle ele-
ments such as information (knowledye)r, and sl ills, and certain far
more subtle elements such s attitudes, wdeals, and types of think-
ing. Let the diagram suggest these five aspects of the classroom

<o fafr]r]

work in any subject-matier field. Suppose that we picture in this
manner the spectra of the various school subjects. They all have
their K’s, their 8, A's, I's, 772, and so on. 11 the teacher stresses

K, &iA:l[iiTti ;Ki,S: A:llalTs

First Subject Seeond Subject
merely the K or the N clements of any subjeet, there is likely to
be “transfer” only in that narrow range of the speetrum. A
“mechanical” teacher gets only “mechanical” results.  Above all,

™ Ingls, op. ot., p. 410,
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habits which revolve around the S elementa alone will not lead to
an extenrive "spread” of training,

It is not an exaggeration to say that wrong notions on the rela-
tion of habit formation to the higher aspects of learning constitute
the most outatanding single cause of the prevalent discase of edu-
cationa!l barrenness. Twenty years ago Dewey pointed a warning
finger to the danger of overdoing the mechanical and automatie
phaxes of xchool work, He said,

In some educational dogmaa and practices the very iden of training
mind sectw to be hopelessly confused with that of a drill which hardly
touches mind at all—or touches it for the worse—anince it in wholly taken up
with training skill in external execution. This method reduces the “tenin-
ing” of human beings to the level of animal training. Proctical skill, modea
of effective technique, can be intelligently, non-mechanically used, only when
intelligence has played a part in their acquintion.”

Dewey never ceases to emphasise the importance of concepts,
“meaning,” and understanding. In sharp contrast with Thorndike
he rejects in toto the procedure which would hase meanings on the
technique of identical elements. To quote:

Conceptions are not derived from a multitude of different definite objecta
by leaving out the qualities in which they differ and retaining those in which
they 1 gree. . . . Conceptions are general becanae of their use and application,
not because of their ingredients. The view of the origin of conception in
an impomible sort of analysis has na its counterpart the idea that the con-
ception in made up out of all the like elementa that remain after dissection
of & number of individuals. Not 20; the moment & meaning is gained, it is
a working tool of further apprchensions, an instrument of understanding other
things. Thereky the meaning ir cxtended to cover them. Generality resides
in application to the comprehension of new cates, not in conatituent parts.
A collection of traita left as the co:nmon reaiduum, the caput mortuum, of a
million objecta, would be merely a collection, an inventory or agrregate,
not a general idea; a striking trait emphasizsed in any one experience which
then merved to help understand some one other experivnce, would become,
in virtue of that service of application, in so far general. Synthesis i not a
matter of mechanical addition, but of application of something discovered
in one case to bring other cases into line."

In his treatise on Human Nature and Conduct (1922), Dewey
examines the function of habit in its relation to intelligence and to
conduct. He shows that habiv is “an essential element in thinking
and not simply the ability to do things in the abgence of thinking.”

" DeweY, John, How We Think, p. 64, D, C. Ileath and Co., 1010.
"W Idid., pp. 127 2,
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these idear hnve recently been elaboeated with great foree aml
clearness by Bade, whose searching analveia uf this diffienlt subject
deserves o b studied carefully by every progressive teactier, His
pxposition is 4 continous conunentary on the danger of applying
blindly w dubeous peyehology of learning.™

Bode points out that learning is not merely “analytic,” a8
Thorndike seetns to believe, but alsa “synthe i’ His views on
the relation of habit and thinking to transier may be inferved from
the fullowing quotations:

Our task in teaching ia not the eaphasizing nad isolating of conndctiona
which nre alrcaldy present, but the construction of wmething that ie new,
It in not just a matter of analysis, but of synthesis as well. ... Hahit formn.
tion in Thormdike's sense is rolatively unimportunt, whereae the cultivation
of thinking ax n creative process or as the reconstruction of akl habits is of
fundumental importance, A paychology which reduces all thinking to habit
encournges teachers to put all the emphasis on the kind of readiness which
springs from rote learning. In terma of curriculum making it emphasises
the selection aml organisation of materlal for the purpose of mechanieal habit
formation. to the negleet of selection and arganization designed to promote
thinking. Such a peychology is not an ally of demoeraey, but un enemv. ..,
Thorndike shares with behaviorism the disposivion to reduce wll changes in
behavior to mechnnieal habit,

The adaptation of n habit to a specific situation requires some sort of
“siging up” of the situation. . . . In proportion ax conduet ix directed by the
meanings of thinge we say that it is intelligent,  As our store of meanings
increases, our habitual renctions are changed. . . . When the discovery of
wennings eadls for o pecial procedure of reflection and inquiry, it s ealled
thinking. We think beeause our foriner habits of response are inndequate,
and the resulty of thinking show themselves in the madifieation of our hubits.
Thinking may be defined ¢ a process of fouling and testing meanings. . . .
Habit formation and thinking are not contrasting proccsses, na teaditional
psvchology taught ua to believe, . . . Thinking is a process of remaking old
hahit.- and forming new ones.

A conecpt ropresents a wide range of possible bohavior in condensed and
coneentented form. . .. At this point onr disevasion of thinking trenches on
the problem of the transfir af tedning. Frone onr present stamdpoint this
problent eenters on the develeer toof eenespts Mechaneal Tabits, e
regonses enltivated in isolation, lo not cem to feilitare teansfer, but nay
even provide obstacles to transfer, . . But when our habits interpenetrat »
nnd form svstems of vesponse, which on highor lovels grow into coneepds,
we get the flexibility and adaptabalitye that we have inomind when we speak
of transfor of traming. This is simply to sy that transfor tages place through
meanings, or that Oansfrr of traming is just ancther name for intelligenee.

WNee evpuec e, the fellaving three tevatises by 1010 Thade s Maodern Rluea
tionnd Thowice, Muendlnn Co, 10270 Pandameatals of Education, Macmitlan Co,
1021 Canflicting Payehulogive af Learning, .G Heath and Co, 1920,
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The mora® of all this is that if we devote ourselves to the proper develope
ment of concopte, tranefor of training will ceane from troubling. We Aave
Aad a prollem of transfer because we Auve failed to develop concepls ao ae
to give them proper wacfulness ouleide of tAe claaeroom. The fact that the
problem of transfer is, in the fiwt inxtance, & "schuol problem” riscs the
suspicion that we have this problum . our hande beeause of the cleavage
between the school and the life outside of the school. In the workl of every.
day affuim we ds not scem to be troubled so much by the problem of
transfer.  But a schaol subject which in Judd's Ianguage in “'s0 organized that
it rotates around it own center” does not earry over, and this calls fur
explanation. The remedy lies obviously in the reorganigation of the eur-
riculum and tenching method so as to remove the cleavage. The problem of
traneflir is symptomatio of & acfect in our educational aime and ideals. If
we can bring the »chool into right relationn with the life outvide of the
school, the prublem of transfer will take eare of itaclf.

1/ transfer is symonymous with intelligence, it ta futile to inquire whether
there is such a thing as tranafer of training. It is more to the point to
conrider why or how the application of old meanings to new situations is ao
limited. . . . The problem is how to secure a wider range of application for
intelligence. . . . ‘This problem iv not disposed of by repudinting the whole
idea of tranafer and multiplving the subjecta in the curriculum so aa to
minimize the need of tranafer. No education, however cxtensive, is vory
profitable if it dnce pot bestow the power to deal with new situations.  In
order to facilitate transfer, our first concern must be to improve the quality
of the concepta that are developed. . . . In a word, the problem of transfer
is bound up with the problem of training in thinking®

Subject Matter as Related to Transfer. Only too often the
work of the classroom i limited to a recital of factual material
and to the cultivation of mechanicn! skills, We forget. that this is
but half the story. There will be little or no transfer, if we peor-
sistently ignore the basic considerations outlined above.

According to Judd, “the most promising subject in the curricn-
Inm ean he turned into a formal and intellectually stagnant dnll
if 1t is presented by o teacher who hine no breadth of outlook nnd
no desire to teach pupils how to genernlize experience. On the other
hand, a teacher who has the ability to train pupils to look heyond
particular facts and to see their relations and their bronder mean-
ings can stimulate thinking with any materinl of instrietion that
comes to his hand.” %

i like manner, “when we eoncern ourselves with the enltivation
of attitudes and ideals, we nve confronted once more with the need
of a guiding principle or social ideal.  How should any given sub-

® Rode, Modern Bduratéonal Theoyice, pp. 194 f1,
9 Juidd, Paychology of Sreonduary Eduration, p. 422,
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jeet he taught?  We can present the subject in either of two ‘vays.
Weo can treat it as though it were & separate and distinet thing,
carefully fenced in from everything clse. Qur aim then will be to
impart a certain axpertness in handling the facts and laws or for.
mulae within that field. This is the sot of training that produces
the expert or the technician; and such training, when rigidly ad-
hered to, reduers education to a glorified bag of tricks. Or. in con-
traxt, we ean recognize the fuet that cevery subject in the curriculum
ix interwoven with life, and we can make it our aim to show ita
broader meaning for mman experience.  On this basis teaching
take+ on o very different charaeter and aim.  When mathematics
ix targht, not only =0 ax to show the nhatract relations of numbers,
but also to revenl its bearing on practical wffais and on the great
discoveries that have revolutionized our conceptins of the uni-
verse, it will loxe ita formal and technical character and become
invested with vital interest,”

It cannot he repeated too often, therefore, that “no subject of
instruction guarantees mental training.  Anyvone who asserts that
mathematics or Latin or acience is a mind-trainer makes a super-
ficinl statement which is not in keeping with experience nor defen-
sible in theory. These subjects may, if properly treated, be very
useful in training the highest intellectual powers, but they cannot
guarantee that fortunate result. . . . There is no guaranty in its
content that any subject will give general training to the mind.
The type of teaining which pupils receive is deternained by the
method of presentation and by the degree to which self-activity is
induced rather than by content. It is net far from the truth to
assert thut any subject taught with a view to training pupils in
methods of generalization is highly useful as a source of mental
trainine and that any subject which emphasizes particular items of
knowledge ana does not stimulate generalizatioa is educationally
barren.” ®

We may conelude these comments by submitting the following
corrohorating quotations:

Whether and to what extent habits, knowledge, ideals, and attitudes func-
tion in a new experienee depends to a large extent upon their organisation,
.. For us to profit frotn our experienee with a phenonmenon, ve must k iow
tty relations. Truly knowing the phenomenon means knowing these relat ona.
.+ The important thing about o fact is its meaning, its relation to the world

SR, ap e, pp.o 212 8138,
O Tk, op, oit,, pp. 422 2,
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of other facta. . . . Brictly, we are alwave to aek in the face of & new fact,
what doce it mean? What new light dues it throw on iy world? What
are its consequences?  What fucta are related to it? Ly what generaligation
does it find & place?  What are the uses to be mnde of 1 ®

Application in. *owever, A most difficult mental process and necds to be
learned just ae the original principle iteclf has to be loamed. . . . Those who
oppose | the doetrine of formal discipline by waying that the achool subjects
at the present time do not give a generalised trnining are undoubtedly eriti-
eising not the human mind. bt our methoda of insteuction. . . . The cultiva-
tion of this pawer of genernlization is the most important achjevement in the
student's education. It will not come without special embeavor on the part
of the student und on the part of the tencher®

Thinking in not like a xuuxage machine which reduces wll matariale indif
ferently to one marketahle commodity, but it is & power of follonsng up and
linking together the apecific auggestions that specific things arouse™

To make ideals and attitudes operative in all fields the teacher must give
them exercise in atl loast several ficlds®

The Relative Educational Values of School Subjects. After
all, the problem of transfer is epitomized ir the following practieal
question: '"How does the edueation which the pupil receives in
school affect his subsequent thinking and conduct?”®  Heace the
quarrel as to the relative superiority of this subject or that is
lurgely beside the point,

A harmonious corre'ation of subjects is a higher achievement thun ia a
mere study of each without reference to the others. Correlation cun be
achbieved only when instruction rises to the level of teaching pupils how to
ge.eralise. It in to he expected, therefore, that wherever subjecta are tanght
at the lower levels of mental achievement, there will be competition bhetween
the various subjecte and a corresponding waste of mental energy rather than
training in generalization®™

Nevertheless. in view of the fact that transfer is not automatie,
it behooves each teucher to have clear notions on the divect and
indirect educational poszibilities of each impertant type of school
activity.® He will then realize that “it is not a matter of indif-

S Ivle, wp. it pp. 200 M

8 Judd, Paychology of High Schal Subjecta, pp. 422 2,

8 Lowey, op. cit., p. iy,

$Tharndike, W L Phe Drineiples of Teaeching, po 240,

8 Judd, Payehadagy of Secondary Edweation, po 425,

wIbid, p. 420

® For a valunlle diteusston of direct and dndieeet vnlues, ses Tnglis, op ol
chapter X1 A fornmln for wensirlng the direet edueational valis uf a suhjeet
1s given by Davis. op. oit,, p. 130,
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ference from the standpoint of mental discipline whether the stu-
dent clecta, far example, Latin, mathematics, philosophy, and ehiem-
istry on the one hand, or short stories, clementary agriculture,
woudshop, and bird study on the other.”  In other words, there is
danger in the assumption thuat “any one study is ng good as any
other fur wental discipline.” *

Bagley and Colvin have emphuzized the probable superiovity
of pure mathematics over applied matheiaties, and of pure science
over applicid seience. In a practical age. this is likely to be an
unpopular view,

In general, the great discoveries of science have been mnde by those who
were primarily rcientists; who were dominated in their actions by the seien-
tfie ideal.  Applied seicnce ns a rule comes luter than pure science. . . . On
the otlor hed, the supporters of pure xcicnce sooner or Inter must feel the
need of applying theory to practice. A science that has no human signifi
cance, that has no ultiniate use, cannot exist in & world of human values®

Pure scionce, says Colvin, is of greater disciplinary value, be-
cause

1) through the facta which it presents, ideals of procedure and of truth
may be developed which function in a wider human experience, greatly to
the uplift of the race; 2) the content and method of pure science is such
that it haa a broader ficld of application than has applied science, and can
function aa an identical or aimilar elemnent in more situations than can
applied acicnce; 8) the emotion which the pure seeking after truth arouses
is higher und less likely to be deadened by other emotions than are the
ideals of cconomic improvement and social betterment, which are the aima
of an applied science. These latter are apt to conflist with each other and
to obseure the greater issue™

Fdueators must be ever watchful lest the currieulum becotne
a conglomerute of unrelated and unproductive morsels,

There nre ro many specinl interests that just now scem to be clamoring
for recognition, practical, humanitarinn, acsthetie, that our school programs
are in danger of being overerowded with a variety of sub} ots which cannot
well take the pliee in point of mental training of those which have for years
been fiunly established in the eurriculuin,  The very multiplicity of the sub-
jects that have enriched our progrnms offers w distraction, und furnishes a
training in dispersed rather than concentrated attention, a training which is
not necded nnd should not be desived. “Che trend of popular opinion is such
that the new must comie in, and it is not maintained that this opinion is

" (Colvin, op. cit., p. 247,

* Ihid., pp. 248.240.
8 Ibid., pp. 240-250,
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not on the whole sound; but lst us sce to it that this new element is assigned
ita proper place and given ita just value. In this time of rapid change we
need sanity in educational doctrine and practico as scarcely ever before™

In estimating the potentinl richness of a school subject, and its
relative rank in the curriculum, the teacher should take into ac-
count the entire spectrum of the subject, its X, 8, 4, I, T elements;
the range and the frequency of its possible applications within the
classroom and in later life; its actual cr potential appeal to the
learner; its available resources as a type of learning or as an Activ-
ity; and the like. When these factors are consciously realised and
constantly kept in mind, it will appear that in the hierarchy of
learning there are mountain peaks and valleys, giants and dwarfs,
and that all things will contribute to the consummation of creating
in the learner a broadly cultivated mind that is a source of happi-
ness to himself and of benefit to others,

VI. GEOMETRY A8 A FIELD OF TRANSFER

A Challenging Situation, e shall undoubtedly agree v ith
Inglis that “it is futile and criminal to establish the study of sec-
ondary-school mathematics on the basis of extensive transfer values
and then to fuil to meet the conditions necessary if any extensive
amount of transfer is to be necomplished.” *

The first condition for the suceeseful transfer of improved efficiency is that
the trait which it is desired to transfer be developed in cunnection with the
content of the truining study. In the general discussion of transfer values
it was suggested that subjects of study differ in the degree in which favorable
conditions are afforded for the excrcise of the desired trait and ithat the
transfer of improved efliciency is primarvily conditioned by the character of
the original training minterial. Sccondary-schvol studies differ in the extent
to which desirable mental truitx may be exercised, in the fitness of the
materials for purposes of munipulution in teaching, and in the character of
the materials as alrendy organized for teaching. In these three reapents
mathematics possesses advantages over many subjecls of study. The ma-
teriala of nathetatics, ranging nll -the way from the simplest to the most
complex, may be manipulated altost at will, thus permitting the arrange-
ment of conditions most favorable to dissociation. The organization of
matorials in the ficld of muthematies has been determined fro'a the start for
purposes of teaching. With regard to the ready manipulation of materinls
for the purpose of fustering transfer values mathematics shares prominence
with the langunge studies, With regard to the certainty and accuracy of sla

“ Colvin, op, oit, p. 250,
* Iiglis, op, cft., p. 400,
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date it supersedes all other subjects, With regard to the opportunity which
it affords for the exercise of valuable mental traits moat desirable to transfer,
if possible, it i equaled by few and surpassed by none of the other eubjects
in the program of (Ae secondary school®™

This fiank admission of the superior transfer value of muthe-
matics, when contrasted with the open hostility of many educators
to all forms of mathematical training beyond the unavoidable rudi-
menta, represents a stirring challenge that should no longer he met
with a helpless silence. Since we are limiting our discussion to the
case of geometry, we are therefore forced to conaider carcfully at
least thrce major questions:

1. Precisely what are the “disciplinary” and “cultural” aims of
mathematics, and—in particular—of geometry?

2. Can the materials of instruction which are characteristic of
geometry be so organized as to give preater prominence to these
disciplinary and cultural elements?

3. What are the principal difficultics which appcar to have pre-
vented a more general realization of the potential transfer value
of geometric training, and how may these difficulties be over-
come?

The Disciplinary and Cultural Aims of Mathematics. The
National Committee on Mathematiral Requirements gave consid-
erable attention to a significant formulation of the disciplinary and
cultural aims of secondary mathematics. We shall find it helpful
te use the following passages of its Report as a basis for our subse-
quent discussion:

Disciplinary Aims. We should include here thos: aims which relate to
mental training. as distinguished from the acquisition of certain apecific akills
discussed in the preceding section. Such training involves the development
of certain more or less general characteristics and the formulation of certamn
meatal habits which, besides being directly applicable in the setting in which
they are developed or formed, are expected to operate also in moure or less
closely reluted fields—that is, to “transfer” to other eituations. . . .

In formulating the disciplinary aims of the study of mathematics the
followiug should be mentioned:

1. The acquisition, in precise form, of those ideas or concepls in terms
of which the quantitative thinking of the world i+ done. Among these idens
and concepts may be mentioned ratio and measurement (lengths, areas
volumes, weights, velacities, and rates in general, ete.), proportionality and
similarity, positive and negative numbers, and the dependence of one quantity
upon another.

* Iuglis, 0p. cit., pp. 496-497.
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3. The development of ability to think elearly in terme of sueh ideas ond
conospts. This ability involves training in:

a. Anolysis of a complex situation into simpler parts. This includes the
recognition of essentia' factors and the rejection of the irrelevant.

b. Tho recognition of logical relations be-ween interdependent factors and
the understanding and, if posible, the exprousion of such relatious in precise
form,

¢. Generalisation; that is, the discovery and formulation of & general law
and an understanding of its properties and applications.

3. The acquintion of mental Aabits and altitudes which will make (Ae
above training effective in the life of the individua’. Among such habitua!
reactions are the following: a weeking for relations and their precise expres-
aion; un attitude of inquiry; a desire to understand, to get to the bottom
of a situation; concentration and persistence; a love for precision, accuracy,
thoroughness, and clearness, und a distaste for vaguencas and incompleteness;
a desire fur orderly and logical organisation as un wid to understanding and
mecmory.

4. Many of these disciplinary aims are included in the broad senss of
the idea of relationship or dependence—in what the mathematioian in his
wechnical vocabulary refers to as & “function” of one or more variables.
Training in “functional thinking,” that is thinking in terms of and about
relationships, is one of the most fundamental disci: linary aims of the tesch-
ing of matk.ematics.

Cultural Aims. By cultural aims we mean those somewhat less tangible
but none the less reai wud important intellectual, ethical, acsthetic or
spiritual aims that arc involved in the development of appreciation and
innght and the formation of ideals of perfection. As will be at once apparent
the reulisation of some of these aims must await the later stages of instruc-
tion, but some of them may and should operate at the very beginning.

More specifically we may mention the development or acquisition of ;

1. Appreciation of beauty in the geomstrical forms of nature, art, and
industry.

3. Idea!s of perfection as to logical structure, precision of statement avd
of thought, logical reasoning (as exemplified in the geometric demonstration),
discrimination between the true and the false, eto.

3. Appreciation of the power of mathematice—of what Byron expressively
called “the power of thought, the magic of the mind”—and the role that
mathematios and abstract thinking, in general, haves played in the develop-
ment of civilization; in particular in science, in irdustry and in philosophy.
In 1his connection mention should be made of the religious effect, in the
broad sense, which the study of the infinite and of the permanence of laws
in matematics terds to establish”

It is at once apparent that geometry has a prominent share
in the :~nlization of each of these airas which harmonize at every
point with the educational theories presented previously. Together

" The Report of the National Committee on Mathematical Requirements, pp. 810,
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with the direct cr practical values of geometry they constitute the
cducational pla‘formi on which geometry must rest its case as a
school subject.

The Reorpanization of the Course of Study in Geometry,
While a mere cnumeration of the possible values of any school sub-
ject does not guarantec their realisation in the classroom, a clear
statement of the general and specific objectives of every phase
of school work is the /rst step townrd the achievement of worth-
while results, Once these objectives are formulated, adequate pro-
vision must be made for them in terts of classroom procedures and
of time allotments. Tlie course of study in geometry thus far hins
centered alinost entirely on content and logical sequence. Only
crude beginnings have been made in the direction of genuine moti-
vation and appreciation from a standpoint of generalised experi-
cnce. Too often geometric training has amounted to little more
than a “bag of tricks.” We have not kept in mind that “reasoning"
must become a much more vital performance if it is to contribute

to a "liberal” education,

Logical method is more than the mere knowledge of valid types of
reasoniug and practice in the concentration of mind necessary to follow
them. . . . More than this is wanted Lo muke a good reasoner, or even to
enlighten ordinary people with knowledge of whut constitutes the emence of
the art. The art of reasoning conaists in getting hold of the subject at the
right end, of seizing on the few general wdeas which dluminate the whole, and
of persistently marshalling aoll s bsidiary facts round them Nobody can be
a good reasoncr unless by constant practice he has realized the importance
of getting hold of the big idcas and of hanging on to them like grim death™

If geometry is to vetuin u respected place in the curriculum, its
busic facts, concepts, skills, hubits, attitudes, and the like must be
conscivusly explored and developed in .he direction of generul
training. ‘This can be done, but it will take much time and efiort
on the part of progressive teachers.

Who can deny that the world in which we live is & museum of
form? The concepts of equality, of congruence, similarity, and
symmetry arc implanted in the very natice of things. The “mass
production’ so characteristic of our machine age is based on the:e
same idens. Measurement has truly been called the “master art.”
Indirect measurement underlies the art of surveying and of naviga-

o Whitehend, A, N., Tho Aima of Bducdation and Other Eaxays, pp. 127-128. Mac-
millan Co., 1828,
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tion. Without it the depths of fathomless space would forever re-
main a closed domain, and astronomy would again become an im-
potent chronicle of displacciments.  Exact geometric construction
is the very foundation ot many practical activities. Our imposing
skyscrapers, our bridges, tunncls, locomotives, automobiles, our
floating ocean palaces, our airplunes, and many other mirucles of
modern science and engineering—all owe their existence in largo
measure to the idens, skills, and modes of reasoning which are char-
acteristic of geometry. The blueprint is the language of the trades,
and the map is the universal pussport of the traveler. Geometry in
the joint creation of many races and climes, the common heritage
of all mankind. Philosophers, artists, scientists, craftsmen,—all
aave contributed to its present structure,  As & model of perfect
thinking it has no equal. As the science of space it will endure
forever,

In short, at every turn geometry opens large horizons, invites
generalization, and beckons the mind to new ecnquests. Have we
not allowed the mere logician, the systematic “thinker,” and the
conventional recitation, to clowd the issue, to rob school geometry
of ite many rumifications, its inherent beauty and potential rich-
ness? Who can doubt that as soon as coursen of study and clags-
room methods cun be readjusted in harmony with the true role of
geometry in the modern world, its legitimate poaee in the curriculum
will any longer be questioned?

Geometry as a Unique Laboratory of Thinking. It has been
asserted previously that geometry is a training ficld par excellence
in the most. busic types of thinking. These may be characterized
as postulational thinking, critical thinking, and consceutive orv
cumulative thinking, ‘The constant necessity, in geometry, of du-
riving the ultimate validity of an argument from its fundamental
assumptions, the challenging opportunity of testing the correctness
of every step, und the cumulative perforiuance of building up an
urganically interwoven system of truths,—these and the related
aspeets of geometric “reasoning™ constitute the distinetive glory
o a subject which has fascinated a legion of enthusinstic admirers
throughout the ages.

And yet, there arises the natural query whether all this training
~—granting its reality and importance for the average pupil—could
not be obtained from a less forbidding background. Above all,
would not these types of thinking be developed anyway, without
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specific effort, by any intelligent person, in the great “school of
life"?

The thesis that we mway incidentally wequire all the mental
training we need by “randam movements,” until we finally have
learned how to make the necessary “aduptations,” secms contrary
to the verdict of common sense and of overyday experience. Ac-
cording to Dewey,

Up to a certain point, the ordinary conditions of life, natvmwl and social,
provide the conditions requisite for regulating the operutions of inference.
The hecessities of life euforce a fundamental and pervistent discipline for
which the most cunningly devised artifices would be ineflcotive substitutes.
The burnt child dreads the fire; the painful consequencs emphasiscs the need
of correct irference much more than would learned discourse on the prop-
ertics of heat. Soocial conditiona also put a premium on corrggt inferring
in matters where action based on valid thought is scninlly important. Thess
ssnctions of proper thinking may affect life itslf, or at least a life reasonably
free from perpetual discomfort. The signs of encmies, of shelter, of food,
of the main social conditions, have to be correctly apprehended. But this
disciplinary training, efficucious as it in within certain limits, does not carry
us beyond a restricted boundary®

The world s important work, for the most part, is done by men
and women who have disciplined minds, who succeed in attacking
and solving new problems by a persevering application of tested
methods. Geometry does not guarantee, any more than any other
subject, an automatic transmission of superior mental ability.
There is no magic by which we may acquire such an equipment,
But geometry is a unique laboratory of thinking, and as such it
fosters the persistent and systematic cultivation of the meuntal
habita which are so cssential to all those who would claim mental
independer~e and genuine initiative as their birthright.

A shallow appraissl of geometry is likely to emanate from an
equally uninformed conception of the rdle of “thinking" in the
economy of our daily routine. Such critics may be referred for
corrective treatiuent to o cureful perusal of Dewey's classic mono-
graph on How We Think. We shall therefore close these {rag-
nentary references to geometric types of thinking by a final quota-
tion from that masterpiece of America’s most noted educational
philosopher:

While it is not the business of education to pruve every statement made,
any moie than to teach every posible item of information, it is ita busines

®» Dewey, How We Think, p. 30,
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to cullivate dcep-seated and effective Aabits of diacriminating tested beliefs
from mere assertions, guesses, and opinions; to develop a lively, sincere, and
open-minded preference (or conclusions that are properly grounded, and to
ingrain into the individual's working habits methods of inquiry and reasoning
appropriate to the various problems that present themselves. No matter
how much an individuzl knows as a matter of hearmay and information, if he
has not attitudes and habits of this sort, he is not intellectually educated.
He lacks the rudimenta of mental discipline. And since these Aabite are not
a @/t of nature (no matter how strong the aptitude for acquiring them);
since, morcover, the casual circumstances of the natural and social environ-
ment are not enough to compel their acquimtion, the mnin office of education
is to supply conditions that make for their cultivation. The formation of
these habits is the Training of Mind*

The Crucial Question: How can Geometric Training be Gen-
eralized? To muke available for general use the distinctive modes
of thinking employed in geometry is now seen to be the most crucial
problem of geometric instruction. As u rule, these types of think-
ing remain imbedded in a purely geometric backgrouud. They
rarely emerge in the pupil's consciousness ws tools available for use
outside the field of geometry,  This ditficulty has been described
with great clearness by Inglis, He says:

Assume that it is desired through the study of gimetry to develop a
generalized method to be employed in the reflective thinking (reasoning)
invoived in problem solving—un clement which is certainly involved in the
processes uof geometry and in every other field of mental activity. Cull that
element 4. If we wish to facilitate the process of its dissociation it muat
be kept constant in the teaching of geometry. But also other clements in
the total situntions must be made to vury, It is here that difficulty arises,
since it is extremely difficult to prevent certain other clements from remaining
constant, Thus there is always present an clement which makes it possibls
fur us to recognize that we ure dealing with geometry—certain concepts of
space an:d number relations, and certain clements peculiar to the mathematics
“class,” classroom, or teacher. Some of those clements remain constant in
spite of atlempte to vary elements of specific content, exercises, problems, ete,
Hence the normal situations in teaching geometry may be represcnted by
such combinations of elements as

(L ABCD
(A BCQa
(A BCJ

and & a result conditions favor not the disweintion of the desired element A,
but the constunt association of ABC. Thus in the great majority of cases

w Dewey, op. oft., pp. 27-28.
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the teaching of geometry in our secondury schools tends to favor, not the
isolation and geueranlisation of general methods of 12flective thinking related
to problem solvivg, but the close sssociution of such methods to elements of
geomet:.cal coplent—a situation to some extent interfering with the process
of tratsfer™

We must not infer, however, that such dissociation and subse-
quent transfer is impossible,

Any such conclusion would imply that all the individual's experiences in
reflective thinking and problem-solving outside the geometry classroom are
isolated from his experiences in that classroom, and would leave out of
wccount or minimise the innate capacity of the mind to generalizse on the
busis of such other expericnevs—-u cupucity differing among individuals
apparently according to original endowment. It would also leave out of
account the possibility that the desired method, principle, ur the like, may
be isvluted by the teacher or other iadividual and raised into consciousness
in terms ol a general law, rule, maxim, etc., expressed in terms which do not
specifically associate content elencnts. Hence the bearing of Bagloy's state-
went; *

“Unless the ideal has been developed conseiously, there can be no certainty
that the power will be inervased, no matter how intrinsically well the subject
may have been mastered.” '™

In view of the difficulties pointed out above, it is not surprising
that in the average classroom very little has been done thus far
by way of generalizing the geometric types of thinking. But the
issue can not longer be evaded if geometry is to remain a prescribed
school subject. It is certainly an inviting tield of work which, like
any other virgin soil, needs to be cultivated for years before conclu-
sive procedures can be recommended. In the meantime, a reassur-
ing message from the able pen of Professor J. W. A. Young will
serve to allay the fears of teachers who may shrink from a task
which at first might appear to transcend their insight or their
ability.

If the teacher himself has clear concepts of method and ideals of pro-
cedure, and if with a thorough mastery of the subject matcer he exemplifies
these concepts and ideals concretely in his work, though without any explicit
discussion of them, has he then done all that he can or should do to secure
the maximuin measure of assimilation of these concepts and ideals according

to the native capacity of each pupil? If he aims con.ciously at exhibiting
the mathematical thought processes clearly and effectively to the pupil,

W Ingline op. oft., p. 402.
19 Bagley, W. C,, The Kducative Process, p. 218. Macmillan Co., 1905.
W Inglis, op. oit,, p. 403.
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beginning with the simplest steps such aa are used in psychological tests,
end proceeding gradually to the more complex as the pupil's mastery of the
simpler ones warrants, has he done his full duty? If in his teaching he tries
0 make the pupil attain ar large a measure of mastery as pomible of the
mubject's processes, results, and spirit, may he rest content in the belief that
the methods of instruction which are most ronducive to mastery of the
subject iteelf are also the most favorable to the spread of its ideals and
methods to other situations? Pending evidence to the contrary, I should
ll:.:u.:‘)oud to assume an affirmative answer to these questions as a working
SuMMmaRY AND CoNCLUSION

It has been suggested again and again, in the preceding pages,
that the problem of transfer of training 1s fundamentally one of
good teaching. In teaching, as in every other field of human en-
deavor, “we can expect to reap no more than we sow, for the law
of compensation operates in the realm of mind no less than else-
where. Results in mental training follow surely only upon the
expenditure of definite and intelligent effort, but with this they
seetn everywhere commensurate.” 198

But whereas the “born” teacher may obtain excellent results
by an instinctive application of the principles on which transfer
depends, there is no doubt that in the average classroom the ef-
ficiency of the work could be greatly increased by a conscious culti-
vation of these cardinal principles. The following findings which
have at last emerged from the mental discipline controversy might
well be incorporated in the creed and the daily practice of every
progressive teacher:

1. Training for transfer is a worth-while aim of instruction;
from the standpoint of life it is the most important aim.

2. Transfer is not automatic. ‘““We reap no more than we sow.”

3. Every type of “specific” training, if it is to rise above a purely
mechanical level, should be used as a vehicle for generalized ez-
perience.

4. “The cultivation of thinking ts the central concern of educa-
tion.” 108

Someone has defined “education” as that which remains after
everything that we have learned in school is forgotten. There is
much wisdom in that whimsical statement. Unless we keep in mind

1% Young, op, ost., pp. 377-378,

1% Ruediger, op. cit, p. 116.
¢ Dewey, J., Democracy and Educatfon, p. 179. Macmillan Co.
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that the daily routine activities of the classroom can be justified
only if they lead, however slowly, to a permanent enrichment of the
lives cntrusted to our care, we shall have failed in our educational
stewardship.

And so, the essence of our discussion is a more precise definition,
and a glorification, of real teeching. Hence we may conclude our
report by endorsing the stimulating and hopeful outlook which has
recently been pictured so ably by Professor Whitehead:

The study of the elements of mathematios, conceived in this spirit, would
constitute a training in logical method, together with an acquisition of the
precise ideas which lie at the base of the scientific and philosopbical inves-
tigations of the universe. Would it be easy to continue the excellent reforms
in mathematical instruction which this generation has already achieved, so
as to include in the curriculum this wider and nore philosophio spirit?
Frankly, I think that this result would be very hard to achieve as the result
of single individual efforts. For reasons which I have already briefly indi-
cated, all reforms in education are very difficult to effect. But the continued
pressure of combined effort, provided that the ideal is really present in the
minds of the mass of tqachers, can do much, and effect in the end surprising
modification. Gradually the requisite books get written, still more gradually
the examinations are reformed so as to give weight to the less technical
aspects of the subject, and then all recent ezperience has shown that the
majorily of teachers are only too ready to welcome any practicable means
of rescuing the subject from the reproach of being a mechanical discipline ™

1! Whitehead, op. oft.,, D. 1385,



SOME DESIRABLE CHARACTERISTICS IN A
MODERN PLANE GEOMETRY TEXT !

By L. E. MENSENKAMP
Senior High School, Freeport, liinois

Origin of Geometry Texts. The difficulties which beset the
writer of a satisfactory text in plane geometry can best be appreci-
ated if we approach the problem from the historical point of view.
Let us briefly review, then, some of the facts concerning the origins
of our geometry texts.

Almost all the important theorems and constructions of our
elementary plane geometry are found in the Elements of Euclid.
Euclid lived about 300 B.c., and his contribution was that he
gathered together all the essential facts of geometry which were
known at his time and arranged them in logical system. That
he was not a mere compiler of results obtained by others, however,
is seen from the fact that he invented new proofs for theorems when
his sequence made earlier proofs inapplicable* His ideal, only
imperfectly achieved to be sure, was to have all his propositions
follow as necessary conclusions from certain axioms, postulates, and
definitions explicitly stated in the beginning. Here originated the
concept of a “hypothetico-deductive system” which was destined to
play such a prominent réle in modern mathematical thought.

The important place occupied by the Elements in the history
of human thought is attested by the fact that it has gone through
over one thousand printed editions since 1482.% Sir Thomas Heath
says of it, “This wonderful book with all its imperfections, which
indeed are slight enough when account is taken of the date at
which it appeared, is and will doubtless remain the greatest mathe-
matical textbook of all time. Scarcely any other book except the

! This chapter 18 substantially the same as an address given by the writer before
¢1e Third Annual Conference of Mathematics Teachers at the Unlverdity of Iowa,
October 12, 1828, under the title, 'Some Puluts Concerning the Nelection of a Text
in Plane Geumetry,” and before the Mathematics Section of the Unlversity of
Illinois High School Conference, November 22, 1029, under tne present title,

* Heath, T. L., Greek Mathematics, Vol. I, p. 857.

¢ Smith, D, R., History ¢ Mathematics, Vol, I, p, 103.
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Bible can have circulated more widely the world over, or been more
edited and studied.” ¢ y

The nature of Fuelid’s Elements is made clear by the following
words of Professor David Eugene Smith: “He has no intuitive
geometry as an introduction to the logical; he uses no algebra as
such; he demonstrates the correctness of his constructicns before
using thenm, whereas we commonly assume the possibility of con-
structing figures and postpone our proofs relating to the construc-
tions until we have a fair body of theorems; he does not fear to
treat of incommensurable magnitudes in a perfectly logical manner;
and he has no exercises of any kind.”® The important point for
us to note in connection with the discussion that follows is that
here was a book meant for mature, highly intelligent men—a
systematic treatise for scholars, How inevitable were the difficul-
ties which must arise when such’a book was made the basis for the
instruction of youth!

Early Tendencies in Teaching Geometry. The teaching of
geometry during the past two hundred years has exhibited two
tendencies which have a bearing on our discussion. First, there
was the tendency to place it earlier in the curriculum. In 1726
geometry was mentioned as a subject studied by Harvard seniors.®
During the latter part of the eighteenth century Euclid was taught
to lower classmer. at Harvard and Yale. This downward trend
has gone on until to-day we find geometry offered to sophomores
and even freshmen in our secondary schools.

The second tendency, which was an outgrowth of the first, was
to modify Euclid in such a way as to make it more acceptable
to immature learners. This was to prove a long and arduous task,
as might have been expected in the case of a book with such
prestige and wealth of tradition back of it. Among teachers and
textbook writers there were conservatives who regarded a rigid
adherence to the original Euclid as a sacred duty, and for a long
time they seemed to dominate the situation. Such conservatismn
led all too frequently to a tragic formalism of which we cite but
one illustration taken from England. In 1901 Perry ™ “criticized

¢ Hteath, T. L., lnc. ctt.

s smith, D, B, op. cit.. p. 106,

¢ Final Report of the National Committee of Fifteen on Geometry Syllabua
(1912), p. 29, Horelnafter called simply “The Report.” This valuable document
Is now out of print. The part we are using here {8 the historical section by
Professor Cajori.

* The Report, p. 28,
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Oxford because, for the pass degree there, two books of Fuclid
must be memorized, even including the lettering of the figures, no
original exercises being required.” Only in recent years has the
movement for reform made genuine progress, and even now the
task is not complete.

Present Factors to be Considered. I.et us now turn to some
factors connected with our present-day school situation which make
the problem of securing a satisfactory text more urgent, and at
the sume time more difficult, than ever before.

First, there is the pupil himself. The number of pupils en-
rolled in the high scheols to-day constitutes a much larger pro-
portion of that part of the total population which is of high school
age than it did a deeade or so ago. This means that there are now
present in our tenth grade elasses many more students representing
the lower levels of mental ability than was formerly the case.
Mozt students of this tvpe do not intend to go to college, and it is
hard to interest thera in a ditlienlt subject like geometry, especially
if the textbook pre: entation is o) an abstract and formal character.
It ix not surprising, therefore, to hear the cherge made that there
is a greater percentage of failures in geometry than in any other
subjeet in the curriculum.

The poxition of seometry ss a schoo! subject has also been im-
periled by the more varied course of study in the modern school
which has brought it into competition with many other subjects
claiming large practical and utilitarian values. The opponents of
the theory of transfer of training have challenged the right of
geonietry to a place in the school on the grounds that the abilities
involved in its study (for example, the ability to think logically)
do not carry over into other fields of thought. Fortunately, the
consensus of competent opinion now takes a more favorable view
of transfer. Studies such as that undertaken by Miss Vevia Blair®
for the National Committee in Mathematical Requirements show
(1) that transfer does exist, and (2) that the amount of transfer
is largely dependent on the methods of teaching. The second of
these findings has large implications for all those who teach
geometry.

All recert attempts to adjust this most venerable school subject
to modern schoel conditions were foreshadowed by the famous re-

* Blair, Vevin, “The Present Status of Disciplinary Valuea in Education™ in The
Renrganization of Mathematica in Secondary Education, pp. 89-104.
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form program recommended by Professor Felix Klein of Germany
more than twenty years ago.® He urged (1) that the instruction
should “emphasize the psychologic point of view which considers
not only the subject matter but the pupil, and insists upon a very
concrete presentation in the first stages of instruction followed by
a gradual introduction of the logical element”. (2) that there
should he “a better selection of material ‘from the viewpoint of
instruction as a whole”; (3) that there should be “a closer align-
ment with practical applications”; (4) that “the fusion of plane
and solid geometry, and of arithmetic and geometry” should be
encouraged.

How very modern all this sounds! Even to-day a committee
sponsored by the Mathematical Association of America and the
National Council of Mathematics Teachers is just heginning to
work on the fourth point. In this regard the Europeans are far
ahead of us.!®

The two reports which have given direction and sanction to
reometry reform in this country during the past several years are
The Reorganization of Mathematics in Secondary Schools, A Re-
port by the National Committee on Mathematical Requirements
(1923), and a report. of the College Entrance Examination Board
on geometry requirements. Progressive mathematics teachers are
by this time thoroughly familiar with the contents of these reports
and they need not be discussed in detail here.

The final stage in carrying out a reform movenment is reached
when the recommended changes and improvements are embodied
in texthooks for classroom use. Books written with this object in
view are now appearing in considerable numbers. In addition to
modifving the content and organization of their subject in con-
formity with the recommendations of the National Committee,
recent authors. are attempting to take advantage of the findings of
educational psychology and the results of careful classroom experi-
mentation by expert teachers in order to secure a more effective
presentation of their material. Much has already been done to
make the student’s work in geometry more interesting and more
profitable, and the outlock is bright for still further improve-

ments.

*'The Repurt, p. 18. The reference 13 to Klein's Elementarmathematik vom
hoheren Standpunkte aus. Theil 11.; Geometrie. Pp. 435, 437.

1 See the British Assoclation Report on The Teaching of Geometry in Schools.
G. Bell and Souns, London, 1925.
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Guide Needed in Evaluating Texts. The teacher should find
it helpful to have some sort of guide to aid him in evaluating
texts in the light of the recent progress which has been made. It
is hoped by the present writer that the outline which follows will
be of some service in this way. In arranging this outline he
has used the sources referred to above, and has borrowed some
suggestions from rating scales for texts in subjects other than
mathematics and also from a certain anonymous rating scale which
has appeared in connection with the advertising for a well-known
geometry,

The limitations of the outline will be obvious to any one who
studies it. Different points in it are not all of the same wvalue.
There has been no attempt to weight these points according to
their relative value so as to enable one to “score” a text. The out-
line is subjective. Different teachers using it would not all choose
the same geometry text. Perhaps this is a good point, after all,
because it will allow play for the personal preferences of teachers.
Some of the points in the outline are difficult to apply because of
their generality. Perhaps further analysis would make it possible
to split some of these up into sub-points of greater definiteness
and applicability. With these preliminary explanations the out-
line itself is offered for consideration.

AN OuTLINE FOR JupginG GEOMETRY TEXTS

I. Points pertaining to the book as a whole
A. Recency
1. When written. If a first edition, was it tested in the
classroom before publication?
2. When revised.
B. Author or authors
1. Educational experience
a. Has he {or have they) taught pupils of the
same age and experience as those for whom the
book is intended?
b. Has he taught other pupils than these?
c. Other educational experience,
2. Scholarship
i a. Degrees. When and where received,
b. Books and articles written.
c. Starding as a scholar.
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C. Conformity with requirements

1. The Report of the National Conunittee

a. As to objectives.

b. As to content.

c. As to terminology.

2. The College Entrance Examination Board's Report

3. Local requirements

D. Is the book sound from a mathematical point of view?
E. Method of presenting the material

1. Style of writing

a. Is the vocabulary simple?

b. Are the explanations clear?

c. Is the text addressed directly to the student?

2. Is the presentation such as to maintain the student’s
interest?

a. Does the book attempt to awaken in the
student the desire to make geometrical dis-
coveries for himself?

b. Is the approach to new topics psychological,
with concrete and intuitive work first?

II. Points pertaining to specific phases of the work
A. The introductory course. This refers to all work up
through the first three or four theorems of Book I.

1. Motivation. Does the author attempt to interest
the student from the very beginning by showing
him something of the value of the study of geom-
etry?

2. Definitions

a. Are they restricted to those really needed?

b. Are they introduced gradually in connection
with constructions and drawings rather than in
large groups?

c. Are they correct and clear?

d. Does the author test the student’s understand-
ing of the definitions with questions and
exercises?

3. Constructions, drawings, and measurements. Work
of this kind, especially the constructions, is very
important because it fixes the fundamental concepts
in the pupil's mind through concrete experience.




HOW TO CHOOSE A TEXT 205

Nome paper folding and cutting to fix the idea of
congruence may be helpful. The following construc-
tions have been used in introductory work:
a. Constructing a perpendicular to a line through
a point on the line, and also from an exterior
point.
. Bisecting lines and angles.
Constructing an angle equal to a given angle.
. Bisecting an arc of a circle.
Trisecting a right angle.
Inscribing a regula- hexagon in a circle.
Constructing a triangle congruent to a given
triangle by making certain parts equal.
4. Is the transition from intuitive to demonstrative
geometry made gradually and naturally?
5. Does the author show the need for a logical proof

a. By means of optical illusions?

b. By showing the inaccuracy of measurement?

¢. By showing the exactness and generality of a
logical proof?

6. Does the author make clear the ideal nature of geo-
metri¢ things?

B. Theorems

1. Provision for individual differences. Does the
author give a list of theorems for use in & minimum
course?

2. Does the author help the student to master
theorems

a. By giving general methods of attack applicable
to all or to large groups of theorems?

b. By as.img preliminary questions before each
theorem, leading the student to discover for
himself the method of proof?

c. By giving a plan of attack for each theorem?

3. Does the author challenge the pupil to attempt an
independent prooi?

4. Does the author compel the student to think when
studving a theorem?

a. By omitting some of the reazons or sonie of the
statements in the theorems?
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b. By merely indicating the method of proof in
the case of some of the easier theorems and
requiring the student to supply the details?

c. By asking questions about subtle points in the
proof?

5. Does the author make the proofs of the most diffi-

cult theorems as easy as possible
a. By explaining the difficult points with greater
thoroughness?
b. By producing a simpler proof than most texts?

6. Does the author ever follow up the important

theorems with a discussion of their broader signifi-
cance and their relations to other theorems?

C. Exercises

1.

Are the oral exercises numerous and well chosen?
It seems desirable to introduce more simple exer-
cises involving but one, twe, or three steps with the
lettered figures in the text.
Provisions for individual differences

a. Are the written exercises grouped according to

difficulty?
b. Are the difficult exercises marked?
c. Are any “hints” given for the difficult exer-
cises?

Is the selection of exercises based on the principle
that many easy exercises are preferable to a few
difficult ones?
Is the selection of exercises such as to emphasize the
basal theorems?
Is there a sufficient number of good numerical exer-
cises based on each of the following:

a. Similar triangles.

b. The Pythagorean theorem.

¢. The areas of rectilinear figures.

d. The mensuration of the circle.
Is there a sufficient number of exercises representing
good practical applications?

. Are there comprehensive lists of review exercises

and questions at appropriate intervals?



