AUTHOR	Hempstead, John Orson
TITLE	Media and the Learner: the Influence of Media-Message
	Conponents on Students' Recall and Attitudes Toward the Learning Experience.
POR DATE	73
NOTE	142p.; Ph.D. Dissertation, University of Uisconsin
EDRS PRICE	MP-\$0.75 HC-\$6.60 PLUS POSTAGE
DESCRIPTORS	*Abstraction Levels; Audiovisual Aids; Aural
	Learning; Educational Experiments; Filmstrips; Grade
	6; *Intermode Differences; *Media Research; *Media
	Selection; Middle Schools; Pictorial Stimuli; Recall
	(Psychological); Scripts; Student Attitudes;
	Taxonomy

ABSTRACT

The level of abstraction of the message and the educational effects of five media presentations (Print, verbal sound, print/pictures, print/rerbal sound, and pictures/verbal sound) were experimentally investigated. The media components were presented singly or in combination to 6th grade students in a uniformly controlled consistent environment. Measures of media preference, learning from media, and ε ttitude toward the scriptlearned were statistically analyzed in relation to the five media presentations, two reading achievenent levels of the students, and two different scripts. Resulis were traced to the media-message components of the media presentation. among the many findings were: students did not necessarily choose the mediun best suited for their own educational needs. Also, the results of print/sound presentation did not concur with results of previous research. However, high individual scores were obtained from each of the five media presentations, a fact which supports the inclusion of a wide variety of media in a media center collection to meet individual differences. (HCM)

Media and the Learner: the Influence of Media-liessage Components on Students' Recall and Attitudes Toward the Learning Experience

BEST COPY AVAILABLE

b"

John Orson Hemnstead

A thesis submitted in narial fulfillment of the renuirements for the degree of

DOCTOR OF PHILOSOPHY
at the

BEST COPY AVAJIABCE

ACKIINLEDCEME!ITS

Several neople have contributed th the succossful completion of this research pronram. I am mnst grateful to Professor Richard D. Walker for the many hours he contributed in nuiding my preliminary reading and literature review, and for nis advice and critical evaluations concerning the several drafts of the pronosal and the dissertation. Professor Mary L. Hoodworth provided the advice, enthusiasm and encouragement that heined make my coursework a meaningful and revardinn exnerience. Professor Joel R. Levin has generously furnished invaluable service with his exnertise in statistics, research desian, and research in reading and imanery. Professor James kirikelas helped to sharnen meritical faculties in several ways, particularly by guiding test construction and evaluation on a previous study. Professor gertrud B. lloman inspired me to particinate in several extracurricular nrofessional activities which made for a meaningful, wellrounded nrogram. All of these neople, who fomed my doctoral comittee, contributed several hours of time which could have been more enjovably snent in other wavs. Their cooneration and assistance can only be repaid in nart bu ennaqinn in similar service to others.

Hithout the assistance and cooperation of the Madison Public Schools, and most narticularly Ms. Angeline Bec'.with and Mr. Lee Hanson, this studv could nnt have been undertaken. It l'as enfovalile and relarding to worl, with the vonderfu? staff at Van life Mildde School and the many connerative staff reriters of Orchard Pidge Middle School
bFst PMpy available
and their sixth arade students.
Finally, the experiences shared with mv wife Marilyn and daughters
Laura and Mindy and their often unexpected encouragenent made the comnletion of this nrogran not onlv nossible but enjoyable.

BEST COPY AVAILABLE

TABLE OF COHTENTS

Page
INTRODUCTION1

1. backgroind, literature revien amd rationale 3
Literature Review 7
Rationale 9
Surmarv. 26
Hotes 27
1I. PROBLEM, HYPOTHESIS \& PROCEDUPES 31
Purpose of the Study 31
Media Presentations 32
Media-Message Components 33
Imnortance of the Study 37
Prohlem Statement 37
Hunotheses and Anticipated Results 39
Definitions 41
Pesearch Desiạn 43
The Ponulation of Subijects 45
Selection of Scrint Messanes 46
Develoning Measurement Instruments 47
Reliability of Heasurement Instruments 48BEST COPY AVAILABLEV
Develoning Constant Procedures: The Trial Experiment 49
Schools in the Study 50
Reading Achievement Giroups 51
Script Content Grouns 51
Treatment firoups. 51
Data Collection 52
Administration of Media Presentations and Mea surements 52
Notes 55
III. DATA ATALYSIS 56
Media Learning Scores 57
Post Hoc Analvs is 60
Media Preference Scores 62
Post Hoc Analysis 64
Media Attitude Scores 65
Post Hoc Analvsis 66
Correlation Between Scores 69
Cumulative Error Rate 72
llotes 73
IV. COHCLISSIDMS, ALTERHATE HYPOTHESES, PECOMMERDATIOHS FOR FIIRTHER RESEACCH AND SIPMARY in
nuestion
1 74
la 76
in 77
2rst mev Avallabll:
2 78
3 78
4 82
5 83
6a 84
6 84
6c 85
Limitations 86
Recommendations for Further Research 87
Summary. 88
MEDIAGRAPHY. 91
APPENDIX I: TESTIMI IMSTRIMENTS
A. Media Preference Test 98
B. Media Learning Test for Scrint 1 101
C. Media L.earning Test for Scrint 2 104
D. Media Attitude Test 107
APPERDIX II: SCRIPTS 109
A. Scrint 1 110
B. Scrint 2 117
APPEIDIX III: SAMPLE SIZE AMD PONER CALCULATIDIS 125
apperinix iv: pani data scones collecter hith the tlistilg IISTRI:H:HTS 127
A. Media Preference Poll Scores
B. Media l.earning Test Scores 129
C. Media Attitude iest Scores 133

DIAGRAHS AIID TABLES

DIAGRAis

1. LEVELS OF ABSTRACTION IN EXPERIEMCE AIID Ill
COMMUNICATION. 1624
2. A HYPOTHETICAL MEDIA TAXOHOHY
3. MEDIA-MESSAGE COMPDIIEITS: SEVERAL RELATIONS AMONG MEDIA PRLSEITATION MODES AND PAESSAGE CODES WHICH FORM INDIVIDUAL MEDIA-MESCAGE COHPOHENTS34
A. RESEARCH DESIGN: THEITY COMBINATIOHS OF MEDIA PRESENTATIONS, READIIIS ACHIEVEMENT LEVELS, AID STORIES FORH THE DIFFERENT TREATMENT COMDITIONS44

TABLES

1. analysis of variaice table with computations Ahalyzing maill effects of media PRESEITATION TREATMENTS AIID IITTERACTIOHS AHOHG TREATMEITS AHD READING ACHIEVEMEIT.
2. T SCORE MEANS AIID STAHIDARD DEVIATIONS FOR EACH CELL OF THE RLSEARCH DESIGN NIND MEAN SCORES FOR ROWS AMD COLIIMNS, CALCILLATIONS BASED Oll ImDIVIDIJAL SCORES 80

best comm available

InTRODUCTION

The proklems of predicting which medium is most effective in promoting student learning and which medium encourages the most favorable attitude toward the learning experience are examined in this studv. It is hynothesized that some media are more effective than print in promoting learning and in encouraging a favorable attitude toward the learning exnerience. The purnose of this study is to isolate factors which contribute to effective educational communi cations.

First a communication model is formulated consisting of seven elements: source of the message, sender, message, medium, channe 1 , receiver, and effects of the message. The weak links in many of the media research studies examined tends to center around two areas of the problem investigated: 1) message abstraction, the interaction of the source of the message and the sender which results in the message code, and 2) the effects of the ressage on the message receiver. Previnus attemnts have been made by others to develon a media taxonomy. This seems premature because manv cormun ion fiotors had not been included, in particular the following: 1) message codes, the products of message abstraction, and 2) media-message components, the products of interactions by message codes with sensory modality. Results of this study are intended to increase knowledge relevant to functions of selection, nroduction, nessage design and guidance in media use practiced by media snecialists.

Several factors related to the seven elements of the compunication model are examined in chapter one. In chapter two specific variables are selected for study; the variables under study are defined, preliminary procedures are described, questions are raised, and hypotheses are stated with anticipated results. Chapter three consists of data analvsis procedures and statistical decisions. Conclusions are presented in chanter four without the statistical data along with alternate hypotheses, limitations and recomendations for futher research.

CHAPTER I

BACKGROUII, LITERATURE REVIEW AND RATIOMALE

Historically there has been a division of labor within the professions administering educational media services to schools. An early text of school librarianshin by Fargo referred to audiovisual aids or just visual aids to instruction.' implying two accepted values: an emphasis on instruction rather than learning, and an attitude that a message conveyed by any means other than print was in some way inferior. An early AV text by Dent encouraged use of audiovisuals "to facilitate the understanding of the written or spoken word"2 rather than as information sources useful in their right. Fargo also sug. gested that poor readers were the primary beneficiaries of the use of audiovisuals. ${ }^{3}$ This siggestion is not supported bv this study which indicates that good readers benefit most from some audiovisual presentations.

The print orientation appears to date back to the Middle Ages when the emnhasts on citinn authority to 'ongitimatize one's thinking was crustalized. Saettler states that in medieval times the role of intellect in learning was stressed and the senses were held in suspicion because reports based on sensory exnerience differed among indivuduals and were therefore thought to be unreliable. At that time information based on the intellect as portraved in printed vorks was thought to be reliable because it was statile and denendable. ${ }^{4}$

The librarian's traditional prejudice against "sensory" or visual media was based on the mistaken notion, expressed by Ralph Ellsworth in his book on school librarianship as recently as 1965, that all cormunication can effectivaly be reduced to text. In Ellsworth's opinion, tanes are no more than spoken tc:at, microforms are text reduced, and all visual compunications are ultimately based on text. ${ }^{5}$ Similarly many librarians and othe: edicators have been blind to the realization that tape recordings can capture original sounds that defy translation into print, and that still and motion photography al?ow viewers to learn inductively from inferences based on iconic relationships presented pictorially (or aurally) rather than to learn deductively from symbols presented in a linear sequence on a printed page.

Many dudiovisualists, on the other liand, have regarded librarians as keeners of books unwilling or unable to provide learners with information in any form other thian the printed word, which they also renard as an inferior means of cormunication. The recently reported findings of Kittilison in his doctoral dissertation, may reflect a problem or preiudice of a more basic nature. He found that teachers viewed audiovisualists as educational leaders and librarians as clerical types. However, he found that teachers vieved male librarians as educational leaders. ${ }^{6}$ Clearlv there is need both for a role clange and a revised image based on broader media capabilities.

Several historical forces have contributed to a convergent course for the roles nerformed by professionals involved with print and nonprint media. Title II of the Elementary and Secondary Education Act
(ESEA) of 1965 encouraged the purchase of audiovisual media through established school libraries, This incentive nrovided the encouragement for school librarians to become actively involved in the process of selecting and administering audiovistal media and AV related services. The resulting expanded media services led to a re-conceptualizing of the role of the school librarian. Iltimately the terms "media specialist" and "media generalist" were adopted to convey to educators the expectation that the adrinistrator of the school media center (formerly school library) must be skilled in providing both print and non-print (audiovisual) media services. The 1969 Standards for School Media Programs adopted use of the term media snecialist. Approved jointly by the American Association of School L.ibrarians of ALA and the Division of Audiovisual Instruction of IIEA, these standards assigned the media specialist an active role in working with the curriculum and in nroviding greater skills and leadershin in the area of media production. 7

Increasingly there are resnonsibiifties indicated in the literature for the media snecialist to not onlv select educationally effective media, but to be able to design effective educational messages as well. ${ }^{8}$ While concern for the ideal of selecting effective material based on research findings which investigated user response has long been urged by library leaders, ${ }^{9}$ emphasis on des'gning and producing effective media has increased greatly since 1965 , culninating in the recomendations of the 1969 Standards for School Media Programs which established these duties for the school media staff in fmplementing the media program:
Serving as instructional resource consultants and materials specialists to teachers and students
Selecting materials for the mefia center and its program
Assisting teachers, students, and technicians to produce materials which sunplerient those available through other channels
Working with teachers in curriculum planning
Horking with teachers to design instructional experiences 10

The merging of roles of print and non-rrint media personnel has been accompanied by an increase in concern for the needs of learners as well as a more active role in aiding the programs of the instructional staff. These expanded service roles must necessarily be accompanied by expanded media utilization skills based on predictive knowledge concerning learning effectiveness of various media in a given learning situation.

Ideally a media. center would employ a staff with various capabilities for selecting, designing and nroducing effective learning media. However, with the current record of governmental agencies for reducing funds for educational programs, school media centers are increasingly being staffed by one media professional with professional education for competencies in both school library and audiovisual services. To support the educational programs that are evolving to provide these comnetencies, current research investigations could aim to synthesize theory and research findings of related educational fields with concerns identified by the school library and audiovisual fields.

LITERATURE REVIEW
Preparatory to identifying researchable problems relating to the media concerns of present and future media professionals, doctoral dissertations relating to school librarianship and school media were examined. Twenty-four dissertations investigated some aspect of audiovisual services. Most of these studies examined the role of the media person in the school's program, feasibility of setting up programs in a district, imnact of audiovisual teaching programs. and similar tonics. Two studies experimentally investigated learning from media, and related results to other factors involved in the communi. cation process. These two studies, directed by lim. H. Allen and conducted by Russell ${ }^{11}$ and Daelling, 12 were largely unsuccessful because of several weaknesses in conception of the research design and because of low reliability of the measuring instruments. However. the researchers isolated several areas of concern which are worthy of continued investigation.

An examination of related media research indicated many studies which have implications for the educational media professions. While none of these studies is directed toward solving the problems of the educational media professions, this research provides an effective base on which to design studies with direct application for professionals working with educational communications.

Early media research un to World Nar II was characterized by comparisons of learning from one given medium with learning from another medium or from a lecture. 13 During Norld War II and the immediate postwar neriod extensive research was carried on to investigate the several

BEST COPY AVAILABLE
effects of films, including psychological effects of propaganda, effective production techniques, and methods of film utilization, 14 Following these postwar film studies was a period of research into learning from programed instructional materials and instructional television. ${ }^{15}$ In 1958, Title VII of the National Defense Education Act and in 1965, Title III and o:her titles of the Elementary and Secondary Education Act, led to funding of numerous research studies. The effectiveness of the federally funded nondirective research grants offered through these acts is questionable when one examines the "isolated and independent studies" nroduced by grant recipients. ${ }^{16}$ While precise pronosals were reṇired to obtain a grant, no attempt was made to encourage in-depth research into the most relevant problems of the educational media professions. ${ }^{17}$ Hevertheless, this previous research has set the stage for a synthesis of concerns relating to educational media communications. with this synthesis, directed federal funding could support a concentrated in-depth effort to solve problems of educational media communications similar to the vast strides made in the physical sciences ${ }^{18}$ first by individual researchers such as Louis Pasteur, whe as a non-subject specialist was able to develon strong inference studies which solved problems of fermentation where subject specialists had failed, ${ }^{19}$ and later with federal programs, such as the Manhattan project which develoned the Atomic Bomb. An example of the low inference studies currently coming out of the media fleld, are studies with a concept of media which has allowed media presentation mode and message code variables to exist unrecognized as rival hynotheses within the same general concent. Identification of

BEST COPY AVAILABLE

these and other communication variables which must be considered before one can construct a strong inference study is continued below.

rationale

Examination of the limitations of previous research findings should indicate to educational media researchers the importance of specifically defining variables to be investigated, drawing up testable hypotheses, rigorously controlling the experinental environment and data analysis, arriving at conclusions which suggest new tesiable hynotheses, and communicating results with implications which satisfy the concerns of practicing media professionals.

Concerns of media center personnel persistently mentioned in current library literature, relate to the perfomance and/or supervision of the following onerations:

1. Selection of school media appropriate for learners of different abilities, in various subject areas, and for identified learning objectives.
2. Message design of appropriate code, content and form of communication to meet specifications of teachers and students in relation to curriculum needs.
3. Production or creation of media to meet instructional requirements. 20 Media selection and nroduction and messaye desian must result in communication tools which effectively elicit desired learning behaviors from students. To accomnlish the functions of providing effective communication tools, the media snecialist must be capable of making decisions based on unicue nualities of media and predictalile responses
of learners based on the relationships of several variables. In the literature of instructional technology, formerly called the audio. visual literature, much attention has been given to a "systems approach" to instructional media research. ${ }^{21}$ The scope of this research is involved with the entire communication nrocess. Traditionally the communication process is considered to have three variables: sender, message and receiver. With the development of communication technology, the number of variables is commonly incereased to five: sender, message, channel, receiver, and effects. This conmunication model is well illustrated with a statement by Lasswell:

Who
Says What
In Which Channel
To Whom
With What Effect? ${ }^{22}$
Two additional variables must be considered for an educational communication model: source of the message, and medium as distinguished from channel. The seven elements of this expanded communication model are as follows: source, sender, message, medium, channel, receiver, and effects. Lasswell's statemer.t can thus be expanded to read as follows:

> Who
> Savs What
> From What Source
> In What Form
> In Which Channe
> To Whom
> With What Effect?

In educational nractice, each of thesc variables has numerous subfactors which if not recognized are often intervening variables in an experimental situation. Particular attention must be naid to the
effect of the communication in present-day media research.
The sender-communicator variable mav include such factors as concepts or message the sender desires to communicate, intended outcome of the cormunication, psychological relationship of sender to receiver, and many other factors. If, for example, it is not recognized that the intended message and the message received are not identical, results of the cormunication are vulnerable to numerous misinternretations. ${ }^{23}$ Sender variables must be cither carefully varied and tested or held constant in anv successful experiment.

The message variable consists of the content of the communication: knowledge or information, understanding, attitudes, skills, or in fact anvthing that has meaning. For the media specialist we can add to this variable the subufactors of message design, code, content, and other factors. Message design begins with learning goals: defining the nature of the message to he cormunicated, establishing specific terminal behaviors of receivers of the message, selecting nresentation elements which will lead to desired beliavioral effects, assembling the most favorable media component coribinations and mediamix of presentation devices to commicate the message effectively, and arranging an effective presentation environment. ${ }^{24}$ Learning auals can be formulated after the model of the taxonomies of educational objectives: cognitive domain: knowledae, coriprehension, anplication, analvsis, synthesis and evaluation; ${ }^{25}$ and affective domain: receiving, res ronding, valuing, organization, characterization of a value sustem. ${ }^{26}$ or goals may be formulated after other models of tynes of learninn, such as Gagne's eight tvnes: signal learning, stirulus-resnense learning, chaining,
verbalmassociate learning, multiple discrimination, concept learning, principle learning, and problem solving. 27 Indoubtedly numerous experiments would be needed to discern which media would be most effective for each learning goal relating to the above objectives, even if all other factors are held constant.

Numerous other message factors must also be considered. The internal elements, arrangement and structure of a message offer additional nossibilities for research with implications for media production even more than for selection. The outcome of such research would lead to recormendations as to wisich aural, visual and verbal elements combine, sequence and compliment one another well to result in an effective learning tool.

Message code is another internal device which can result in a confounding of variables, !essane code, discussed more fully later. is the method of abstracting the communication from the source or reality base of the messane and the level of alistraction from the basic source of experience. Messanes may be coded in three ways (see Diaqram 3, nage 34) 1) Prinary or natural code messages are abstracted from sources which could be experienced directly by the learner. While these messages are not transformed by the recorder of the message, sensory imnressions are necessarily limited by the message recording devices which currently record onlv linited stimuli for senses of sight and hearing. Sound recordinas, still and motion nhotograplis, and viden tare recordings of natural sounds or olijects are exariples of primary code messanes. 2) sinthetic code messages are abstractions
once removed from the nrimary code. These messages may resemble the primary code message closely or be entirely unrelated to experiences obtained naturallv through the senses as thev are nroduced or transformed bv the message creator. Music and artistically created graphics or realia are examiples of sunthetic code messages. 3) Linguistic or sumbolic code messages are abstractions twice removed from the source of experience. Experience is first transformed into ideas in the mind of the creator and then translated into vords or symbols before the receiver has contact \quad uith the message. Snoken words and printed sumbols are examples of the symbolic code.

Pessage can also be analyzed in regard to level of abstraction of concepts communicated. Diagram 1, nage 16, shows two nossible methods of abstracting knowledge from experience. It should be noted that at the nrimary level of reality, here called the process level, the message receiver has n definite knowledge or even experience. According to Hayakava, scientific inference has alloved most observers to conclude that the objects cf our sensory experiences consist of possibly an infinite number of particles which are bevond the range of our unaided senses, and are much smaller tian molecules, nrotons or electrons. 28

Concrete oijejects of our experience interact with our nervous system in such a manner as to convev a finite nattern of sensory imnressions. Thus sensorv experiences of humans are relatively similar even though lirited by our individual senses, just as the senses of the human snecies are 1 faited wen coripared to the senses of other animals as for exarnile the hearing ranue of dogs. Furtherriore, Havakalia states, our sensory exneriences are linited thy our cultural expectations.

According to Havakawa, our senses often reject what our culture feels is unimportant or imnroper. Before our sensory exneriences can be communicated, they must be subjected to another limiting factor that mav lead to further distortion: our thought processes. Ideas and concepts result from our experiences, but these ideas are never comnletely comminicated by the words or images selected to convey our messages. The ideas are less than experience because our senses do not record all of experience in a way the brain can translate into words, and ideas are more than experier ie because the brain contributes associations not inherent in the exnerience. ${ }^{29}$ If the sender-comnunicatorrecorder of a message chooses the print nethod of cominuication, he must translate his ideas of experience into words, thereby discarding many details of the experience level as the vords he chooses are necessarily based on his ideas of the exnerience. Similar objects of exnerience mav be grouned together by use of words, when successively more abstract terminolony is used. For examnle, a horse named Secretariat may be called a horse, which eliminates many details about that narticular horse. Other details would be eliminated if he were referred to as a thoroughbred, a nuadruned, an animal, or an organism. Collectively he could he grouned with racehorses, property, assets, investrients, vealth or even the gross national product.

This process of abstracting may be counterproductive when examined in light of our educational goals, if print is the only method of communication utilized. Hot infrequently, so many details are abstracted out of a print message that the original experience is conipletely eliminated.

Using newer media, the nrocess of abstracting knowledge follows a similar pattern with an important difference. Diagram I shows that communications consisting of media-messane component combinations are still based on Ideas of experience which may not be entirely conmunicated by the verbal and iconic components selected to convey the massane, but these components also include sensory experience details eliminated by the print medium. If Secretariat is the subject of a film about horses, he is also likely to be nresent when other horses are shown. The concept of racehorse is created by showing him in action. The nroriertv concent is created by shovinn Secretariat in relation to the nroud owner. Wealth is also inferred from a concrete relationsifp and higher order abstractions can result from the use of montane, the piecing together of sections of film in a mearingful nattern. The incidental details included either accidentally or intentionally in nictures or on a sound track allow the message receiver to place additional values on, or even formulate his own internretation of, the exnerience which is the trasis of the nessage. This fact accounts in nart for the revolution in lifestyle evidenced by sonie members of the first generation to be raised with continuous access to television and film as sungested bv Mcluhan. ${ }^{30}$

As Jussim points out neither print nor the net:er mass media are able to record for more than two of our senses, and it is beconiting increasingly obvious that the method by which we receive our nrimary source of knowledge lielns to sliane our thinking natterns. ${ }^{31}$ The addition of artificial or sinthetic code sensorv stinulf, such as a sound track of mood nusic, riay increase the cultural bias or nronalanda effect of

DIAGRAII I

levels of abstraction III EXPERIENCE AIID IN COMIUNICATIOH

Read from the botiom UP
for increasing levels of abstraction

PRINT LADMER

With each successively more abstract concent, vords convey successively fewer characteristics of the object of experience.

MEDIA PDSIAC
Words used in combination with iconic representations of experience, include the primary objects of experience and thus fever characteristics are eliminated.
fross llational Product
Wealth
Pronertv
Racehorse
Horse

Montage of Secretariat's winnings/ other wealth indicators
Picture of ouner receiving winning monev check
Picture of Secretariat with his ouner
Picture of Secretariat racing
Picture of Secretariat with other horses

WORD IDEITIFICATION LEVELS
hame inemtification level

iden or thouriht level
experience level
_Senşorv_interchanges
PP.OCESS I.EVEL.
:10lecules, atoris, etc.
our nerception of the recorded experience. The use of print with anglish and other El:ronean languages results in letters following each nther to form words, sentences, naragraphis, nages and chapters all arrangeci in a left to right linear sequence which has resulted in a detachment which has enabled us to think in fragmented assembly-line terms and thus develor modern technology. (in ihe other hand it has resulted in a society which is able to talk peace and make war simultaneously with no obvious contradiction to sone receivers of official messages because words actually take precedence over action. The nress release rationalizations have more nower of conviction than do bombing missions. McLulian's theoretical discussions suggest several hypotheses for research into the effects of mediamassage components as well as the message carrier (media) on both the tiagaghis and attitudes that are stimulated or created hy media use. ${ }^{32}$ The message factor can also be examined from the aspects of subiect matter or topic, tvne of story such as narration or exposition, and difficulty level. It is conceivable, as evidenced hy some learning research, that both messane code and media nresentation mode should varv with subject matter. ${ }^{33}$ Synthetic codes such as line drawing aranhics may nrove to be consistently more effective for abstract subjects such as mathematics or chemistry, while nrimary code messages mav produce more effective results with subjects such as the natural sciences. ${ }^{34}$ Difficulty level may show similar trends with simbolic codes encouraning hetter results for more difficult material. The less concrete messang codes mav also favor exnosition over narration, ill of these factors are as yet largely untested.

Media variables are frequently analyzed from the vtenpoint of presentation mode characteristics, which range from three-dimensional obfects and realia to either still or motion rrojected visuals to signs, sumbols, concepts and words. Combinations of. sound and projected visuals result in different learning potentials and McLuhan suggests that researchers can expect to find subtle differences in psychological responses toward an identical message presented by sound motion pictures or by sound video visuals because of the difference in definition of the image. ${ }^{35}$ Diagram 3, nanei 34 helps demonstrate a relation between messaje code and media presentation mode. Message code may become a confounding variable for researchers investinating media nresentation modes in several ways. Some of the wavs this confounding can occur are discussed helow.

For research purnoses it is inadenuate to classify media by sensory media nresentation modes alone. By exanining Diagram 3, page 34, it can readilv be seen that an "audiovisual" may consist of several messane code combinations: two linquistic codas (spoken words and nrinted words), two synthetic codes, or two nrimary codes; one sunthetic code and one linguistic code (music and print, or spoken words and picture nraphics), one primary code and one linguistic code (natural sound and nrinter mords, or snoken vords and photographs). one primary code and one synthetic code (natural sound and graphics, or music and notonranis), etc. These are but a few of the nossible simnle conininations of media-message comnonents, all of which could be lumned under thon headine of tro comnonent audiovisuals or sometimes called two channel audiovisuals hecause one audio and one visual
presentation device are used to present the message to the learner. In addition, numerous triple or multiple combinations of components may be used together to form an "audiovisual".

Previous field research with educational media ilas too often failed to recognize that message code is potentially a confounding variable for media presentation modes. ${ }^{36}$ It is insufficient to conclude that tivo component or two channel audiovisuals are more or less effective in promoting learning than a one component medium without identifving which message codes were emploved with each of the media. It is not uncommon for media nroducers to include messages of all three codes on a single sound track, hut researchers doing field studies have not yet sufficiently probed the effects of message codes used singlv or in combination to attribute differences in learning effectiveness to use of specific audio message components. Visual components offer even more of a challenge for the educational media researcher to insure control of extranenus variables. Not only must he consider presentation factors of still or motion or graphic triages, but graphic images mav be in two or three dinensions. Also motion pictures present moie images than a similar presentation of still pictures. Motion pictures nresented on a screen in a darkened room have a clearer and more highly defined image than motion pictures nresented on a television screen. Images in color or in black and white have alsc been frund to produce different le.:rning natterns, ${ }^{37}$

In regard to granhics, the researciler riust consider detail of the tmages. line dralings have leen shoun to he more effective than elatinrately detailed iniages for concent learning in sole experiments. ${ }^{38}$

The factor of image size for visual messages enters into studies where print or nictures are used. ${ }^{39}$

The number of possible exneriments invoiving comparisons of mediamessane components alone, numbers in the hundreds of thousands if approaclied haphazardly. Researchers must use strong inference studics to arrive at useful conclusions in fewer experinents. Even using strang inference comnarisons, many carefully controlled and coordinated experiments must be conducted to approach the goal of predicting learning effectiveness based on the use of specified nedia-message cominents. It would also be desirable to relate results of mediamessage component exneriments to channel and receiver-learner variables.

Channel variables are often thought of as the machinery or devices that nresent the medium to the receiver. Channel mav, however, also include the nhwsical facilities and the nersonal elements which contribute to completion of a comunication nrocess. Analvsis of audiovisual enuinment variables is the most mechanical of media study variables. While nractitioners are continuallv evaluating and reevaluating enuipment as new items reach the consumer market, there is still room for more research on the effects of equinment on the learning process. Variahles such as volume, intensitv, distortion, and other phvsical characteristics of botil sound and visual messaqes as vell as size, weight, ease of oneration in units of time or number of mistakes, and other factors relatinn to oneration of enuinment are readilv available for comarative nurposes. Additional eouipment ontions, such as a zoon lens, which offer flexitile use of enuinment in different setting̣, may he examined in relation to both physical and channel factors.

Equinment and nhysical facility variables tend to merge into a single variable as one considers such factors as built-in speakers, sound-proof projection booths, rear screen projection centers, listening centers or stations with earphones, study carrels, remote control devices, etc. The nhysical aspects of channel variables such as room size, heat, liahting, ventilation, presence of doors and windows or carneting, color, texture, and materials of the surfaces enclosing the space used for the media nresentation, and other tangible factor.., form nitfalls because of nossible extranesus variables unless calculated as factors for investigation. Other channel variables include size and comnosition of the groun using the medium; learning can be exnected to differ when use is individual rather than group. Size of group may alter learning differences as potential for distractions increases and sense of individuality is lost in the group. Heterogeneous sex groupings may produce differences in learning on some sublects when comnared to grounings of a single sex. Similar findings mav be expected from grounings by mental ability, subject achievement, ane, maturity or other factors.

As vet it is unclear what effect interaction of users has on cognitive and affective resnonses to media. Subtie group interaction may heighten enfoyment of film and television communications that are well matched to receiving audiences and increase disturbances when communications are not well matched to audiences. Hedia users reading nrinted words may be better hehaved because thev are less able to interact with other users. In the case of nresentations to children, the nerson nresenting the media may have a rounounced effect on the receiver-
learner's relation to the medium. Research has concluded that some learners achieve more for a teacher with thon thev can identify in regard to sex, race, or some other factors. ${ }^{40}$

Enuipment utilization techniques, learning cues or strategies, teacher expectations, and other presentation interface techniques or devices are all channel factors to be controlled or tested to reduce extraneous variables and to increase generalizability of results.

Receiver-learner variables are potentially the most important variables in educational media research if the media professions are concerned with the goal of predicting media use as a tool for individe ually nrescribed instruction. Learner variables most commonly considered in educational research are such factors as age, grade level, mental abilitv, subject achievement (such as reading achievenent), and other factors baser on standardized tests. External factors such as socioeconomic standard (SES), race, national origin, marital status of pareits, hone environment, etc., are also used to correlate to learning factors. I!ninue nersonal characteristics such as motivation level, extrovert-introvert tendencies, verbal tendencies, media preferences, etc., are some factors considered for testing in relation to learning and media. ${ }^{41}$ At nresent there are few measures of uninue nersorial characteristics that are sufficientlv obiective to serve as a basis for exnerimental studv.

Develonment of innroved measurement criteria and tools must be high prioritv if researchers are to measure the effectiveness of media as motivational devices to substantiate such claims as the one that film is a mntivational tool nsveholngically related to the drean. 42

Media "taxonomies" have been developed in tentative form by some media theorists. The nurpose of these attempted "taxonomies" has been to relate the unique characteristics of specific media to identified instructional goals. To date the attemnts to develon a media taxonomv have met with little success. Brigns, et. al., based their taxonomy on fagne's eight tupes of learning. ${ }^{43}$ Allen hased his attempt on six other tunes of learning. ${ }^{44}$ Others have taken different approaches based on the phisical characteristics of the equinment renuired for media use. 45 There has been lit.tie consistency in annroach and the work has been based on insufficient identification of media characteristics. Thus no media taxonomiv has been created which meets renuirements of media theorists and practitioners.

Logically a media taxonomv should relate existing learning taxonomies if it is to he an effective tool for sug̣esting use of medianessaṇe components in an educational stuation. Such a relation might be similar to one depicted with Diagram 2, after Douglas \& Douqlas ${ }_{9}^{46}$ in relation to Bloom's Taxonomv of Educational Objectives: Comnitive nomain: ${ }^{47}$ and Krathwolh's Taxonoriv of Educational Objectives: Affective Domain. ${ }^{48}$

Were a media taxonoriv to effectivelv relate to the cognitive and affective taxonomies, it uould form an additional len in the third dimunsion directly above the ideal learning path. The media mix - or combination of nrint, aural and visual media-riessane cormonents - hest lends itself to attaining connitive and affective noals desired for the learner to achieve. However, for media to forn sucil a relation, it we.ual be necessary for nediaminssane comonents to form a linear

DIAGPAM 2

A HYPOTHETICAL MEDIA TAXOIOMY

A media taxonomy that related effectively to the learning taxonomies vould form a third dimensional len directly above the ineal learninn nath. 46_{2}
relation among themselves. At present there is little evidence to indicate that such a relation exists. In addition, relation among comnonent variables rould have to reniain constant as other sender, messane, channel and receiver factors vary.

The nossibility of other cormunication variables remaining constant as media variables clange, seems remote when one considers such educational theories as Pianet's observations on child develoment. ${ }^{49}$ It seems hiahly likely that preschool and early primary school children, going through the developmental neriod of nreparation and organization for concrete operation, respond differently to media mixes from children over age seven or eight who have passed into the developmental stane of formal or concrete operations. Rather than a linear relationshin among media variables, research is more likelv to sunport a developmental theory of media use similar to the educational nractices developed and utilized by Maria Montessori, 50 which allow a child to maninulate concrete objects until his psychological develonment allows him to graduate to more abstract means of commication.

The above discussion suggests little possibility of develoning a media taxonomy based on the relation of media factors alone, not because media offer fey possibilities for analvsis, but because so many other variables must be considered alony witlo media variables. It is more nossible that strono inference research investigating the entire range of cormunication variables will nrovide a solid base for developing a taxonomy of educational media cormunication.

BEST COPY AVAILABLE

SIUMYARY
The literature suggests that school librarians must become media specialists capable of making decisions concerniṇ̣ media selection and production and message design based on unique characteristics of media-message comnonents and nredictable responses of learners.

Source, sender, messane, media, channel, receivers and effects variables relating to educational media conmunications research vere examined from a divergent viewpoint to nresent a broad overview of several possible factors which must be considered in any research investigation. Uhile this overview was in no way intended to be comprehensive, a sufficient number of variables were identified to suggest that media nractitioners will not be successful if they consider only media variables. Media researchers must contrast and relate the entire range of educational communication variables to create evidence of the nossibility of develoning a taxonomv of educational communications.

Notes for Chanter I

1. Fargo, Lucile, The Library in the School, Chicago: American Library Association, 1933, p. 219.
2. Dent, E.C., Audio-Visual Handbonk, Society for Visual Education, Inc., 3d ed. , 1939, n. .
3. Farno, 4th ed., 1947, n. 192.
4. Saettler, Faul, History of Instructional Technology, New York: HcGraw-Hill, 1963, n. 24.
5. Ellsworth, Ralph E., The School Librarv, Mew York: Center for Anplied Research in Education, lnc., 965 , p. 32.
6. Kittilson, Bruce Joseph, "School Librarians' and Audiovisualists' Conceptions of Media Programs: Consensus and Dissensus," (unpublished Ph.D. dissertation) University of Minnesota, 1971.
7. American Association of School Librarians and Department of Audiovisual Instruction, H.E.A., Standards for School Hedia Programs, Chicago: Anerican Library Association, 1969, P.7-9.
8. McIntyre, Charles J., "The Librarians Role as an Educator in the Production of Mon-Print !laterials," Library Trends, October, 1967, 16(2):266.
9. Fedder, Alice N., "Research in the School Library Field," Library Trends, January, 1953, 1(3):386.
10. American Association of School Librarians..., n. 8.
11. Russell, N.N., IV., "Comnarative Effects of Seven Verbal-Visual Presentation ! 0 des IInon Learning Tasks," (unnublished Ed.D. dissertation) University of Southern California, 1970.
12. Daehling, W.A., "The Learning Effects of Seven Visual-Vertial Presentation Modes on Making Identifications and Comnarison.:," (unnublished Ed.D. dissertation) University of Southern California, 1970.
13. Lumsdaine, A.A., "Instruments and Media of Instruction," in N.L. Gage, ed., Handbook of Research on Teaching, Chicago: RandMcilally, 1963, n. 583.
14. Allen, Wm. H., Instructional Media Research: Past, Present and Future," NV Communication Review, Spring, 1971, 19(1):6.
15. Ibid. P. B.
16. Ibid., D. 11.
17. Ihid., n. 14.
18. Platt, J.R., "Strong Inference," Science, 1964, 46:347.
19. Bereiter, Carl, "Issues and Dilemmas in Develoning Training Programs for Educational Researchers," in Eqon ruba, ed., The Training and Nurture of Educational Pesearchers, Phi Delta Kapna, 1965, Chanter V.

2n. American Association of School Librarians.... n. 8.
21. Saettler, n. 268-282.
22. Lasswell, Harold, "The Structure and Function of Communication in Society," in Wilbur Schranm, Mass Communication, 2d. ed., Urbana, Ill.: University of Illinois Press, 1960, p. 117.
23. Hayakawa, S.I., Language in Thought and Action, New York: Harcourt, 1964, D. 82ff.
24. Brigas, L.U., and others, Instructional Media: A Procedure for the Design 0: Multialledia Instruction, A critical keview of Research and Suggestions for Future Research, pittsiburgh: American Institutes for Research, no. 2, 1967, n. 16.
25. Bloom, Denjamin S., ed., Taxonomv of Educational Objectives, The Classification of Educational Finals, Handiook: I: Cognitive Domain, Hew York: David McKay, 1956, n. 62ff.
26. Krathwoll, D.R., B.S. Bloom \& B.B. Masia, Taxnnomy of Educational Ohiectives, The Classification of Educational Goals, Handonok II: Affective nomain, New York: David McKav, 1964, r. $95^{\circ} \mathrm{ff}$.
27. Faane, Robert $\%$., The Conditions of Learning, New York: Holt, 1965, ก. 33.
28. Havakarı, D. 86.
29. Ibid., ก. 181, n. 23-32 \& p. 179.
30. McLuhan, Marsliall, Understanding Media: The Extensions of Man, How York: Meßray/Hill, 1964, D. 308.
31. Jussim, Estelle, "Confronting Our lledia Biases: The Social Dimensions of Media Theory," School Libraries, Summer, 1972, 21(4):12-17.
32. McLuhan, r. 7ff.
33. Conwav, J.K., "Channel Versus Modalitw," in Nm. H. Allen, ed. Readings in Educational Media Theory and Pesearch, Hashington, D.C.: Office of Education, 1968, $\mathrm{p}_{\mathrm{C}} 258$.
34. Howe, H.B. \& F. W. Bnguslavsky, The Develonment of Animated Films to Facilitate Creative Snace Perception, Troy, N.Y.: Rensselaer Polytechnic Institute, 196].
35. McLuhan, n. 313.
36. Convav, n. 260.
37. Dryer, F.M., "Color as an Instructional Variable," AV Cormunication Review, Winter, 1971, 19(4):399.
38. Fleming, M.L. \& M. Sheikhian, "Influence of Pictorial Attributes on Recognition Memory," AV Communication Review, Winter, 1972, 20(4):423.
39. Monre, D. M., \& E.B. Sasse, "Effect of Size and type of Still Proiected Pictures on Immediate Recall of Content," AV Communication Reviev, Winter, 1971, 19(4):437-450.
40. Flanders, Ned A., "Teacher Effectiveness," in R.L. Ebel, ed., $^{\text {E }}$ Encyclonedia of Educational Research, 4th ed., Toronto: Macmillan, 1969, n. 1423-1437.
41. Haskell, Poner W_{0}, "Effect of Certain Individual Learner Personality Differences on Instructional Methods," AV Communication Revielw, Fall, 1971, 19(3):287-297.
42. Worth, Sol, "Asnects of Visual Communication," in Vm. H. Allen, Readings in Educational Media Theory and Research, Washington, D.C.: Dffice of Education, 1968, 7. 124.
43. Briggs, 0.32.
44. Allen, Hm. H. : "Media Stimulus and Types of Learning," Audiovisual Instruction, ?anuarv, 1967, 12(1):27-31.
45. Tosti, D.T., \& J.P. Ball, "A Behavioral Approach to Instructional Desinn and Hedia Selection, Final Report," Albuquerque, N.M.: Westinahouse Learning Corn., 1968.
46. Douglas, Jeanne \& Harlan, "Balancing the Taxonomies," Audiovisual Instruction, February, 1972, 17(2):7-8.
47. Bloom, n. 201-7.
43. Krathwohl, n. 95.
49. Ginshurg, Herbert, \& Syivia Onner, Piaget's Theory of Intellectual Develonment: An Introduction, Englewod Cliffs, M.L.: Prentice-llall. 1969.
50. Montessori, Maria, The Montessori Method, Cambridne, Mass.: Robert Bentlev, Inc., 1965.

BEST COPY AVAILABLE

CHAPTER II

PROBLEEH, HYPOTHESES \& PROCEDURES

PUPPOSE OF THE STUDY
This study was designed to investigate both media presentation mode and message code characteristics of a media presentation with a goal of investigating possible relations between tyne of media presentation and reading achievement characteristics of the student media user.

Three tynes of data were collected for analysis in this study: a preference score, a learning score and an attitude score. The learning portion of the study examined the comnarative overall effectiveness in nromoting learning of five media presentations which consisted of combinations of three cells on the media-message component diagram, Diagram 3, nage 34. These five media presentations were chosen to allow the researcher to make inferences relevant to questions posed in the problem statement below.

The learning nortion of the study was based on a recall and comnreliension test qiven to compare the relative effectiveness in promoting learning of the five media nresentations. Effectiveness of the media presentations was in turn traced to the cominonents from which the presentations were formed. Effectiveness of media presentations was also analyzed in reiation to the reading achievenent level of media users, and two cerint, wessames were used whech for consistency of results.

Previous to administering the nresentations, a preference poll was taken of the participants, and following the learning test an attitude poll was taken. These nolls were administered to check for correlations between 1) students' preference for a medium and learning outcomes, 2) students' media preference and their attitudes toward material learned, and 3) effectiveness of media in mromoting learning and students' attitudes tovard material learned.

MEDIA PRESENTATIONS
The five media nresentations were based on two conmercially produced sound filmstrins. They were composed of three media-message comnonents: vertial sound, verhal print, and realistic graphic art pictures. The sound and nictures were unchanged from the commercially produced version, and the nrint was transposed fron the verbal sound track. The media presentations were composed of the three components used senarately or in combination as follows:

1. PRINT: slides of a printed nage of the verbal message were projected on a screen at the front of the roon for students to read. 2. SOUMD: a tape-recorded verbal narration of the scrint message was nlayed to the students through carphones.
2. PRIIT/PICTURES: the picture slides which accompanied the verbal messaqe of the original sound filmstrin were nrojected simultaneously with the print slides used for (1).
3. PRINT/SOUIID: the urint (1) and sound (2) messaṇes vere presented simultanususly tirough the use of a tape recorder with an automatic advance signa 1 sonchronized with the sildes.
4. - PICTURES/SOIND: the nicture sildes of the rriginal sound filmstrip were presented in sunchronization with the uriginal sound track (2) using an inaudible advance.

MEDIA-MESSAGE CDMPDIELITS

A descrintive analysis of the media-message components which form the basis of a media communication is included at this point because media are most frenuently categorized by their physical characteristics: a) by sensory mode, usually only as either audio or visual; or b) by enuipment needed for presentation. For the purposes of this study, message code is also recognized.
! Media-message components are identified as a combination of one snecific media nresentation mode and one specific message code. As shown in Diagrani 3, the media nresentation code may include one or more of the following types of presentations: audio, still or motion projected visuals, or still graphic visuals. Message codes include 1) nrimarv or natural code messages which are abstracted from information sources that could be experienced directly by the learner, 2) synthetic code messages which are abstractions once removed from the primary code; as these messages are produced or transformed by the message creator, the message source is not available to he experienced directly by the learner, and/or 3) linguistic or symbolic code messages which are abstractions twice removed from the message source because they are translated into a form which camot tie urlerstood without a learned knowleḍ̣e of the cods.

By traci.. f effectiveness of media presentations wack to mediamessage components rathier than just to presentation andes, precision

DIAGRAN 3

MEDIA MESSAME COMPONENTS:
SEVERAL RELATIONS AMOHİ
MEDIA PRESEITTATION HODES AMD MESSAGE CODES WHICH FORH INDIVIDUAL MEDIA-MESSAGE COMPOHENTS

Messaṇe Code	Media Presentation Mode			
	AUDIO	VISI'AL		
		PROJLCTED		GRAPHIC
		STILL	HOTION	
Primary or Natural Code	Natural Sound A	01	$\begin{gathered} 0 \text { to arap } \\ 02 \end{gathered}$	s 03
Sunthetic Code	Music. e.. B	E1		E3
Linguistic or Symbolic Code	$\begin{aligned} & \text { Snoken } \\ & \text { Hords } \\ & c \end{aligned}$	Pr Fl		$\begin{aligned} & 01 \mathrm{~s} \\ & \mathrm{~F} 3 \\ & \hline \end{aligned}$

DIAGRAM KEY
A. "llatural" sound
B. "Created" sound
C. Snoken words

D1. Profected still pictures
n2. Projected motion pictures
D3. Photographic prints
E.1. Projected still granhics

E2. Projected notion araphics (animated films)
E3. Graphic art vorks or nrints
F1. Projected still nrinted words
F2. Proifected timod or animated irinted words
F3. Bools and works or nrinted words
in analyzing ingredients of a successful media presentation is ina creased. To keep the sample size small for the present study, only three components are examined in this exneriment. Additional experiments are needed to continue an analysis of the interrelationships of the components identified as well as to supnort the results of the nresent study.

The three component cells examined in the nresent study are as follows: C (snoken words), El (nrojected still graphics) and Fl (projected still printed words). The three cells are used in five combinations to form the five media presentations: 1) C is spoken words or sound, 2) F1 is orinted vords or print, 3) E1 and F1 form print/pictures, 4) C and Fl form spoken words with pictures or nictures/sound, and 5) C and El form spoken words with pictures or pictures/sound. Other media presentations which could be created from combinations of the three component cells were not used in this study because of limitations of time, subjects, and resources avallable to carry out the experiment.

EXPLAIATION OF DIAGRAY 3 CELLS

CELL A
Pecordings present sound messages in their primary or natural form. This mav include animal sounds, machine notses, etc. The receiver of the message needs to know no intellectual code to adequately experience the message, esrecially if the sound is synchronized with related visual messanges ($01,12,13$). The message may be enhanced by audio or visual verbal descrintion of the message content (C, Fl, F3).

BEST COPY AVAILABLE
CEI.L B
Recordings present sound messages created to evoke sone resnonse from the receiver of the message. Music or sound effects may be used alone to create a mood or with visual or audio messages as background or cover sound. Understanding of the synthetic code may enhance the meaninn received but is not necessary to exnerience the message. The role of synthetic audio messages in nromoting cognitive learning is a nroblem ripe for investigation.

CELLL C
Recordings present linguistic messages which have the desired effect on the receiver only if he understands the linguistic code. CELLS D1, D2 \& D3

Photogranhs nresent a message in natural code. There is evidence that the receiver needs an intuitive knowledge of the codinn selection process to understand the message content, iut he needs no intellectual knowledge of the code. Whether the message is projected with still (DI) or motion (D2) nictures or graphically printed or produced on a more nermanent surface may influence learning because of inage size, selection ontions, montage, and nresentation environment as well as number of images nresented to the learner.

CELLS E1, E2 \& E3
Graphics differ from nhotographs in that they may be embellished or more selective of details, therehy increasing attention to desired objects. Natural photogranis mav also be transformed or combined to achieve a learning effect different than was available in the original photograplis. A knowledge of the sunthetic (granhic) code mav increase learning from granhic code presentations.

CELLS F1, F2 \& F3
Printed sumbols are presented for the receiver-learner to comprehend at his own rate and with his own capabilities (F1 \& F3), possible Within a given tine limit. Timed or animated controlled presentations of printed symbols (F2) are presented in a sequence so that the receiver can attend to only a selected nessage at any given time as done on the Sesame Street television proaram.

IMPORTANCE OF THE STUDY
Bv tracing results about effectiveness of media to the mediamessage comnonents which make un effective media, this study mav benefit media professionals involved in media selection, message design and media nroduction bv increasing knowledge of contributions made by different comnonents toward creating an effective media communication. Examination of media effectiveiless in relation to reading achievement focuses on nroblens related to selection tasks, guidance in media use, and creation of educationallv effective media productions.

The correlations between nairs of measurements: media preference, media learning and media attitudes, have implications concerning the extent to which students are able to effectively choose media which contribute to their own learning goals and tra extent to which they can be more effectively quided tiv media professionals to sources of knowledge which meet their nersonal learning needs.

PROBLEM STATEMENT

ihree media-message connonents are used sinnlv or in conibination to form five redia nresentations adninistered to test the effectiveness
of the comnonents' contributions toward promoting positive affective and cognitive learning resnonses relative to the reading achievement level of the learners. The purnose of the study is to progress toward answering the questions stated below:

1. Do students learn more effectively from some specific medium relative to other media? Are media learning scores equal?
a. Are two component media nresentations more effective than sinnle component presentations?
h. Are two component audio and visual presentations different in effectiveness than a two visual corponent nresentation utilizing tivo different message codes? (With two component nresentations, is the number of modes relativelv more or less important than the number of message codes in the presentation?)
2. Are there interactions among media presentations and reading achievement levels? Are some media relatively more effective for one reading achievement level than for the other level?
3. Are results consistent from one scrint messane to another?
4. Do students indicate nreference to use snecific media in a media center? Are media preference scores equal?
5. no students' attitudes toward a scrint vary according to then mediuri from which thev learn the scrint? Are media attitude scores equal?
f. Are there correlations lietween sets of data: media preference scores, media learning scores, and nedia attitude scores?
a. Do students learn relativelv better from a mediul for wich thev indicate a use nreference?
h. Do students' attituder, toward a scrint vary accordiny to tion
media preferences they indicated prior to learning the scrint?
c. Do students' attitudes toward a scrint vary according to the effectiveness of promoting learning of the medium from which they learned the scrint?

hYPOTHESES AND ANTICIPATLD RESILLTS

1. Media learning scores are expected to indicate that media presentations composed of different media-nessane components and used to present nearly identical script messages, protuce different learning effects.

These differences are expected to be found:
a. Single comnonent media: print alone and sound alone are expected to be the least effective media presentations because fewer sensory stimuli are availahle to present information cues to the learner. Predictions are based on surveys of research reported bv Briggs.
b. Two component media with nictures: media with both verbal and nictorial messanes are exnected to result in the most effective learning of the five media based on reading studies of visual imanerv usinu verbal and nictorial paired associations. These studies remorted and amalyed by Levin found that recall was better if material was more concrete than aistract and if the learning strategv facilitated formation of a dynanic, active rela ionsilin hetmen nairs of vords or nictures. ${ }^{2}$ Thus visual inages counled with vermal messages vere exnected to contribute to a notentially dynanc relatiunshin retween messages to facilitate recall.
c. Two component nedium without nictures: for high achievement readers the simultaneous nresentazion of tivo verbal stimuli is expected to result in an inhibiting effect which reduces learning when cormared to the two component media with nictures. This nrediction is based on an interference effect herothosized in researcin rerurted by Levin and Kaplan. ${ }^{3}$ For lon whifuchent readers the literature left considerable doubt as to mat. resulis to expect. lomically and intuitively it is expectell that: heint/sound provides an easier learning task for low achicuripht readers than does either print or sound alone, as the sound would atd them in maintaining a reading nace that facilitates comprehension and urint provides an additional stinulus for verlenbering.
2. Interactiuns among media presentations and reading achievenent levels are expected to indicate that presentations with print are more effective for himh achleverrent reajers and nresentations with verbal sound dre more effective for $70 y$ achievenent readers, if other factors are erual.
A. Hiah achevinn readers wer: expectod to lrarn relatively better from nrint and low ach ieving readers relativelv better from sound. This nredicted interaction was indicated by data renorted fiv Levin ${ }^{4}$ and Cuoner and Caeth. ${ }^{5}$
h. An interaction of nictures/sound and neint/nictures related to readiny achieverent. of students is exnected to correspond to the interaction nredicted for the single corinonent media above.
3. Treatment effects due to differences in scrints arc equal for nearly

BEST COPY AVAILABLE

equivalent scrints.
Similar scrints are used as a check for consistency of effects of media. Decause similar scrints are used no interactions among scrint, reading achievenent, and media presentation factors are exnected.
4. Students are exnected to indicate nreferences as to with of the five media they would nost nrefer to use in a media center. Intuitively, it is anticipated that students' most prefer to use media with nictures.
5. Media attitude scores are expected to indicate that students' attitudes toward material learned vary according to the medium from which the scrint was learned.

Intuitively, it is expected that scudents' attitudes toward material learned tend to be more favorahie if media with nictures presents the material.
6. Correlations between nairs of data sets are expected to indicate relations between media nreference, learning, and attitudes resulting from the learning exnerience. Correlations are calculated and stated only to nrovide sore basis for continuing research reiated to students' preferences, learning and resulting attitudes. Carefully designed statistical sthailies must be nerformed before inferential conclusions may the stated.

dEFEIHTIDAS

1. Menia fremrencl scores (P): These are the ralle scores of students' indicated nreference for using eacll mediur relative to the other four media.
2. Menta learning sCoris: These are scores based on items of the recall and comprehension test given inmediately after exposure to one of the five media nresentations.
3. MEDIA ATTITUDE SCORES (A): These are scores based on nositive or negative resnonses to nositive or negative statements about the script as related to the media nresentation, implying the influence of the media presentation for promoting favorable attitudes toward the scrint learned.
4. MEDIA PRESENTATIOH: This term is used in preference to the term channel, which includes more variables, to indicate the specific combination of media-message coniponents and form of the message presented to the learner.
5. MEDIA PRESENTATIOII MODE: This refers to the either audio or visual mode of contacting the senses of the message receiver and the method of nresenting the visuals, as still or motion projected pictures or as more nemanent graphic vorks.
6. MESSAGE CODE: This is the snecific trne of abstraction of knowledge utilized by the nessage sender to form a cormunication of infomation content. Three message codes are identified below:
a. PRIMARY OR HATURAL CODE: These messages are audio or visual records of sound waves or light rays exactly as they are received from the messane source.
b. SYithetic CODE: These messayes are audio or visual records of sound waves, graphitss or three difensional obifects produced or transformed by a ressage creator.
C. SY:HOLIC DR L.IMCMISTIC CODE: These ressages are audio or visual
records of words or sumbols which stand for the ideas from the mind of the nerson who experienced the message source.
7. MEDIAm!MESSAGE COMPOREMTS: As a media presentation may be formed from a number of media nresentation modes and a number of nessage codes, a commonent is identified as an intersection of one media presentation mode with one messaqe code on Diagram 3, page 3c. Thus the media-message cornenent is seen as a basic unit of a media presentation; tious a thorough analysis of the commonent must serve as a basis for understaniuita media effectiveness.
B. MESSAGE: This is the iontent or finfomation of the comiunication experience.
8. MEDIMA: This is the material which forms the physical shape that convevs the content of the total commuication.

RESEARCH DESION
The exneriment vas llainned to test the relutions amom three factors in learning an identical scrint messaye from different nedia mrosentations: Factor 1: Media prespintations: Five media were comparod to ascertail their relative effectioness; for nroroting learnina of the same mersamiz.

Factor 2: Reacirig achieforent: stasien's were rivided into niove the.
 compare the elative effectiveness of riedia fur stucler:ts lith different reading doliemenent chancteristics.

 for scrimb acsiates with stinitar charact.cristics and could

DJAGRAM 4
RESEARCH DL IGN:
TWENTY COMRIINATIONS OF :MEDIA PRESLITATIONS (A). READIMG ACHIEVEMEHT LEVELS (R), AND SCRIPTS (S) FORII THE DIFFERENT TREATHENT COHDITIONS

		Media Presentation Modes				
Readinq Achieve- ment	Scrint	M_{1} Print	M_{2} Sound	M_{3} Print/ nictures	M_{4} Print/ sound	M_{5} Pictures/ sound
R1 High	S_{1}	111	112	113	114	115

$n=16$
$\mathrm{N}=32.0$
thus be generalized beyond the materials used in the study.
A $5 \times 2 \times 2$ analvsis of variance desian was the basis for calculating sample size. Allowing a 5% nossithility of error in falselv rejecting the hvnothesis under test ($\alpha=.05$) and a 90% chance of supporting the alternate hypothesis when it should in fact be sunnorted ($1 A=90$), it was calculated that sixteen subjects would be needed for each cell in the desion ($n=16$) for a total of 320 subjects ($(i=320)$. Dianram 4, nage 44, nortrays the research design for which the samnle was calculated (see Anpendix III for the calculations).

THE POPILLATION OF SUBJECTS
Subjects were dravn from the sixth arade classes of two Madison, Wisconsin nublic middle schools. STEP scores (Standardized Tests of Educational Progress) of reading achievement served as a basis for blocking students into reading achfevenent groups of equal numbers. Within the reading achievement blocks, subjects were randomly assigned to one of the five media nresentations and then to one of the two scrints within the media presentation condition. Bovs and girls were assigned in equal numbers within each reading groun and within each treatment as nearly as nossible. Enual assignments of the sexes was emploved to control for nossible differences in interest to lard the subject matter but vas not analyzed as a factor in the design. New students without STE: reading achievenent scores were assigned by their reading teachers to reading achievenent grouns. Some sturtelits were reassianed to a different reading bilock because their teacher; were convinced thev had hromesed or follen lanind since STEP teets vere adininistered.

SELECTION OF SCRIPT MESSAGES

To provide a link between media experiments in the field of reading and audiovisual media experiments, ts was decided to base the present research on comercially produced materials but to compare results with those obtained using iaboratorv materials. Sound filmstrips were chosen as base materials hecause they could readily be broken down into sound, pictures and print commonents. Criteria for selection of the material to be used were the following considerations:

1. Materials not curreitly available to students for media center or classroom use were examined. Materials with a 1972 copyright were previeved and collections in the district's schools were checked. Materials not currently in the school's IMC's vere considered for use in the study.
2. Subjects were examined only if not included in the school curriculum for at least two years, not used as a special interest topic in the classrooms studied, and not a focus of interest for recent mass media newscasts.
3. Narrative and expository matarials were to be tested on the children in a pilot study.
4. Two scrints with mos: "haracteristics nearly equivalent vere to be commared for the nurnose of checking for consistency of results. Nev materials sent to the Madison Schonl District for nreview were examined to select the two sound filmstrins which best met the above criteria as the hasis for the five media mresentations. Of materials avallalle for nervif", those on tlative Natrican Indians most nearly fit the alove remirement.s. Native Auericans were not
studied in ine Madison curriculum after third grade. Since only recall and comnrehension items were included in the measurement instruments, pre-testing procedures were able to minimize the possibility that remembered material would confound results. The rre-testing described below outlines nrocedures ernployed to prevent confounding of test results with information nreviously learned.

dEVELOPIHG MEASUREMENT IHSTRIMEITS

Two filmstrin series, "American Indian Legends" (narrative) and "American Indians of the Plains" (expository history), were tested on sixth arade children not involved in the final study. The process of selecting the snecific titles of filmstrins to be used in the study was tied in with the develonment of measurerients which could effectively measure dependent variables for use in analysis of the studv.

1. Sound filmstrins vere shown to students to detemine whether interest level was suitable for the sixth grade aqe level. Four filmstrins, two from each series, were selected as having met the interest level requirement. A measurenent instrument for each of these filmstrins was develoned.
2. Measurement instruments for one lenend and one history were tested on different arouns of children randorily assigned to the groups. A ceiling effect was evident for the test of the legend. As additional test items could not readilv be added, the legend filmistrips were eliminated fron consideration.
3. Measurement instrufients of 30 iters ench for the two historical scrints :ere tested on a grour of tilirty students whe had not seen the sound fimstrins. All 1 terns that students knel; or quessed
rinht were eliminated from the test.
4. Hew test items were added to bring the number of itens on each test to fifteen. All items vere tested on an additional thirtv students. If more tilan one nerson of the total sixtv got a test iter correct, it was eliminated from the final version of the test.
5. Tro additional tests, a media nreference noll and a script attitude scale, were created. After sinilar nre-testing procedures, the number of items on the scrint attitude scale was reduced from sixteen to einht.

Annendix I includes the tests and related information.

RELIABILITY OF MEASUR:HEIT IISTRIME:ITS
Scores from one hundred nretest subjects vere analyzed using the Kuder-Richardson reliability coefficients formula. Reliability coefficients for three tests are qiven below:

IIISTRIM4EMT	r
American Indians of the PlainsTheir listorv	
	. 85
How Thev Lived	. 68
Attitude Poll	. 79

The reliabilitv coefficient is internreted bu Ebel as an expression of the ratio of the variance of true or accurate scores to the variance of obtained scores. Tests with the above reliabilities would net 81 to 87 rer cent aqreenent on assiqning subfects to ti:o grouns. For a five cateqorv distribution such as a aradinu svstem, f.hel nredicted about a fifty-nine to seventy-two ner cent agreement. ${ }^{6}$

developing constant procedures: the trial experiment

The exneriment t!as nlanned so that each subject would be administeren the treatment and tested individuallv. However, since federal funded grants for annlicable educational research were frozen before the exneriment was imnlemented, the hiring of exnerimenters to complete the research as nlanned was not nossithe; so students were treated and tested in orouns of anproximately six at a tine, the researcher administerinc̣ all treatment and tests. The trial exneriments described in this section were conducted exactlv as the final experiment was to be conducted so that irregularities would be eliminated from the procedures.

The trial nresentations with $\|=60$ subjects were made to develop a nrocedure for administering treatrient presentations which would be uniform regardless of which presentation was administered. Chairs were nlaced in two rows so tlat students could not see the face or naner of the student ahead of or beside them. Earphones were used with all nresentations, to listen with during the nresentations with sound and to eliminate distractions during the nresentations without sound. Linhts were on during the testing neriod and off during the neriod when students were exnosed to the message. Elinds were drawn at all times.

A tane recorder with a synchronized inaudible slide advance was used as the timing device for all nresentations. [ven when sound was not nlaved aloud, the inaudible track of the tane was used to advance slides. This enuinment assurred that nach groun of students would receive the nresentation in the same lenath of time renardless of which mediun was used.

An opening statement was developed to impress students with the desirability of beinn as truthful as nossible on the nuestionnaires and to be as accurate as thy:y could on the test, not for good grades but so thev would heln the school district discover which media were best for them. A closing statement requested students not to discourse with other students about the study. If asked what they did, students were instructed to answer onlv that "we answered some nuestions."

At the conclusion of the trial experiment, the researcher was satisfied that the opening and closing statements were uniform for all presentations, that equinment would operate smoothly to present each of the ten media conditions, and that the enviroment was consistent for all presentations. The two hundred subjects used durina the development of tests and treatments were from the sanie schools but from different classrooms from those used in the finai study to minimize nossible discussion of the experiment.

SCHOOLS IN THE STUDY
As indicated by a meftian score of 61.5 on the reading section of the STEP test, students tended to score higher than average in reading achievement. The ran!e of scores, however, reflects evidence of a wide range of educational development in the student body. Scores ranged from one to 99 with a disporportionate number of 90 plus scores dravin from the immediate neighborhood of the two schools where many students come fron homes of university faculty members. Other students, hussed to the school from another area of the citv, tended to contribute to a more balanced distribution of scores.

As the population of students tended to have better than average reading achievement skills, results of the studv may have tended to minimize treatment differences due to differences in reading achievement skills. While this may have reduced chances of finding interactions hetween reading achievement and other factors in the study, there should have been no effect on comparisons among media nresentations excent to make results more easilv generalizable to better readers and therefore noss thly older students.

READING ACHIEVEMENT GROUPS
As the median STEP reading achievement score for students involved in the study was 61.5, students above that score were classified as high achievement readers. Those below the median were classified low achievement readers. Within the two achievement groups, students were assigned to narticinate in one of the five media nresentations and only one scrint. qroun.

SCRIPT COHTENT GROUIPS

After students were divided into reading achievement groups and randomly assigned to media presentations, thev were randorily assigned for exposure to one of the two scrints. An absence of interactions among media presentation, reading achieverient and scrint messace factors was looked for as evidence of consistency of results to allow generalization of conclusions beyond materials used in the studv.

TREATMENT GR(I

In the experineni, each terallent aroun consisted of an averaye of six suljects from two different classoom, usually includng three
high achieving readers and three low achieving readers and both boys and girls. However, random assignment resulted in some variation in composition of the treatment grouns.

To minimize the possibility of discussion of the experiment among past and future participants and for administrative convenience, all subjects in a given classroom vere tested during two nearly consecutive class da.vs. Thus the second day of experimentation vas in some measure denendent urion the first day chosen, but time of day was chosen entirelv by random assignment.

TATA COLLECTIOT:
The researcher was narticularly relieved that the current confrontation at Hounded Knee, S.D. hegan after the study was completed. Data collection occurred between the inclusive dates of Monday, Feb. 5 and Thursdav, Feb. 21, 1973. Occupation of Hounded Knee by Native American tribesmen began on Feb. 27, 1973. Students in the study were coincidentallv nrovided with a timely historical background for the confrontation. Had the confrontation occurred during the course of the studv, it may have provided an intervening historical variable which would have destroved the credibility of the study.

administration of media presentations mid mensurements

Subjects reported to the testing roon according to a schedule atven to the teacher at the beginning of the dav. Each group was confronted with treatmentis and tests in this, order:

1. A media ireference noll was administeres to eacir yroun to identify a rantimg of relative neferemce for tach of the five riedia. The
test, included in Appendix I, was administered orallv and students were asked to choose which medium they thought they would like to use best in a media center, second best, and so on down to least. The resulting scores are referred to as media preference scores. Time of administration was three minutes.
2. Subilects were exposed to one of the two scrint messages via one of the five media nresentations. The enviroment of the room was consistently similar for each of the five presentations regardless of equipment or conditions required. Students wore headsets, lights were out, and they faced a projection screen at the front of the room at each session reqardless of whether sound or visual images were used in the nresentation. Students vere seated in two lines of chairs over three feet anart to minimize visual and social interplav. Projection and recording equipment was located at the rear of the room aviav from students' line of vision. Thus it was inconvenient to watch anvthinn other than the researcher when he vas administerin! tests or the screen when the media presentation vas made. The timed media nresentations lasted tivelve minutes.
3. A factual test vias presented orally to the students to measure irmediate recall and comprehension. Students were encouraged to answer in a fey words or short phrases to mininize differences in viriting abilitv. Test administration time vas ten minutes.
4. A noll was ẹven to conparis sudent attitudes tuward statelients about the sorint content. Frosi dificrences in scors, the influence. of the madian tiat mesentid tite soriat on encomranima stadents'
nositive or negative attitudes toward the script could be inferred.

Notes for Chapter II

1. Briggs, L.J., and others, (see footnote 24, chapter I).
2. Leven, Joel R., "Organization, Comnrehension, and Some Evidence "How", Madison, Hisconsin: lisconsin Research and Development Center for Cognitive Learning, 1972.
3. Levin, Joel R., and others, "Verbal and Visual Processes in Children's Learning: II. Facilitation Differences as Related to Tasl: Variations," Hadison, Wisconsin: lifsconsin Fesearch and Develonment Center for Cognitive Learning, 1971.

Kaplan, Sandra A., "Elaboration and Reading Achievoment as Factors in Children's Learning of Text Materials," Madison, R'isconsin: Wisconsin Research and Develonment Center for Cognitive Learning, 1971.
4. Levin, Joel R., "Some Thoughts About Coqnitive Strategies and Reading Coripreliension," Madison, Wisconsin: Wisconsin Pesearch and Develoment Center for Cognitive Learning, 1971, p. 3.
5. Cooner, J.C.. and J.H. rianth, "Interactions of Modality With Age and With Meaninnfulness in Verbal Learning," Journal of Educational Psucholonv, Fehruary, 1967. 58(2):41-4
6. Enel, R.L., 'Yeasuring Educational Achievement, Englewood Cliffs, N.J.: Prentice-llalt, Th65, n. 318, 33n, 337, 336.

BEST COPY AVAILABLE

CHAPTER III

DATA ANALYSIS

The material in this chapter includes primarily a description of statistical procedures used, data summaries, analysis of data, and a brief statement of results. Numbering of hynotheses tested in this chanter corresponds to numbering of nuestions and hypotheses stated in Charter II and questions discussed in Chapter IV. This is done to pernit the reader to proceed directly from Chanter II to Chapter IV to examine internretations and conclusions, facilitating reference from conclusions back to results of data analvsis.

Hunotheses are stated before each test in the form of predictions rather than in null hynotheses form to indicate not the statistically tested hymothesis but rather the results that are exnected.

HYPOTHESIS I:
Media learning scores are expected to indicate that media presentations composed of different media-message components and used to nresent identicalscrint messaqes, nroduce different learning effects. HYPOTHESIS ?:

Interactions amonn riedia presentations and reading achievement levels are exnected to indicate that nresentations with print are more effective for iitan acnitevenent readers and aresentations witi, vertial sound are nore eifective for low achieverient reaters if other factors are enual.

MEDIA LEARNING SCORES
Immediately after the media presentation was completed, a media learning test of recall and comprehension was administered to each student in the studv. The annendix has a cony of the tests for each of the two scripts. Raw scores vere transfonmed to T scores before the tests were analyzed to nut all scores on the same scale. A T score is a standard score based on data with a mean of fifty (50) and a standard deviation of ten (10).

A snlit-plot analysis of variance design was used as the basis for analyzing and renorting results. Data were also analyzed by a three-way analysis of variance design as originaliy planned, but administration of treatments in grouns rather than individually resulted in a violation of the indenendence assumption for individual scores which necessitated a change in the anpropriate exnerimental unit to aroun scores (see No. 3 below).

Assumntions for the snlit-plot design include neeting the following conditions:

1. Random selection of subjects from the treatment population.
2. Random assignment of subjects to trea ments.
3. Independence in administering treatments to treatment units.
4. Independence in assessing performance of subiects.
5. Homality of tire distribution of the treatment nopulations or large samnle size.
6. Equal variances and revarimess.

Fell experirents valdy utiliza randen seloction fiom the poriulation for with the results are to tie !emerdized. This eaperiment fiat.cs no
claim in that regard, but randoli assignment has been maintained scrue nulously with the exceptions noted in the previous chanter.

The indenendence of administering treatments applies to treatment arouns rather than to individuals with this design and is not violated; independence of assessinq nerformance of subjects was maintained strictly bv the nrocedures described nreviously.

Homality of the distribution of the parent population is compensated for by large sample size as discussed by Donaldson as he describes his studies on the robustness of the F-test. ${ }^{2}$

The test statistic used with the split-plot analysis of variance design is as follows: $F=\frac{\text { Mean Snuare Treatments }}{\text { IISan Square Error }} \frac{\text { MSTr }}{\text { MSE }}$.

Data comnutations are based on scores included in Appendix IV, Reading level cells in the split-plot design were nroportionate even thounh treatment aroun numbers differed. Roman numerals are used as sumbols for calculation formulas as described below: Im $2 X^{2}=$ (individual groun scores squared then summed) $I I=\frac{\left(\sum X\right)^{2}}{11}=($ groun scores summed then snuared and divided by tine number of individual grouns, 88)
III $S^{=} \frac{\sum S^{?}}{T_{R}}=\left(\begin{array}{c}\text { media group sums snuared then sumned ann divided by the } \\ \text { number of reading achievement }\end{array}\right.$ III $=\sum T_{T}^{2}=\begin{gathered}\text { (treatment level sums snuared and divided by the number of } \\ \text { individual } \\ \text { grouns in that treatment, } 16 \text { or } 20 \text {) }\end{gathered}$ $I I I_{R}=\frac{\Sigma R^{2}}{\prod_{G}}=$ (reading level totals snuared then sumimed and divided by $I V T R^{=}=\frac{T R^{2}}{\prod_{T R}} \begin{gathered}\text { (treatnent bv readinn level cell totals squared then } \\ \text { divided by the number of arouns in the cell. } 8 \text { or } 10)\end{gathered}$

BFST COPY AVAIIABLE
Data computations are as follows:

$$
\begin{aligned}
I & =228,841.579 \\
I I & =220,264.079 \\
I I I_{S} & =222,933.177 \\
I I I_{T} & =221,172.499 \\
I I I_{R} & =224,520.817 \\
I V_{T R} & =225,566.321
\end{aligned}
$$

Sum of squares beti:een grouns = IIIS $=$ II = 2669.098
Sum of squares treatments $=I I I_{T}-I I=908.42$
Sum of squares error between grouns $=11 I_{S}-$ III $=1760.678$
Sum of squares within grouns = I - $11 I_{S}=5908.402$
Sum of snuares $\quad{ }^{1} \mathrm{ing}$ achievement $=I I I_{R}-I I=4256.738$
Sum of squares $T \times R=I V_{T R}-I I I_{T}-I I I_{R}+I I=137.084$
Sum of squares error within grouns $=I+I I I_{T}-I I I_{S}-I V_{T R}=$ 1514.580

Sum of squares total $=1-I I=8577.50 n$
Calculation of mean square valurs are obtained bv dividing the sums of squares by the appropriate degrees of freedoril. These calculations are most easily reported by including the calculated scores on an anasis of variance table. This table begins at the ton of the next pag̣e. The decision rule for rejecting the hypothesis under test is as follows: With $\alpha=.05$ and four degrees of freedom for treatments and thirty-nine error degrees of freedom, reject the hunothesis under test if
$F>F_{4,39}(.05)-2.62$.

TACLLE I

ANALYSIS OF VARIAHICE COMPUTATIONS ANALYZING :MAIII EFFECTS OF MEDIA PRESENTATION TREATMLITS Ail! IITERACTIOHS MMONI TREATMENTS AND RFADIMG ACIIIE!ENENT

Source of variance	Degrees of Freedon:	Sum of Squares	Mean Square	F
Between arouns	43	2669.098		
Treatments	4	908.420	227.105	5.03*
Error	39	1760.678	45.145	
Within groups	44	$59 \cap 8.402$		
Reading achievement	1	4256.738	4256.738	$\begin{aligned} & \text { (not } \\ & \text { tested) } \end{aligned}$
T $\times R$	4	137.784	34.271	<1
Error	39	1514.580	38.835	
Total	87	8577.500		

Decisions: 1) As 5.03 is greater than 2.62, reiect the hypothesis that there are no differences amon treatments.
2) As the $T X R$ effect is less than 1, do not reject the hypothesis that interactions among treatnents and reading achievernent grouns are statistically eṇual.

Fost Hoc Analvsis: Tuliey's nrocedure for making nost hoc comparisons hetween pairs of means is used to isolate differences between effects of media nresentations. Tukev's irmula for detersining a critical value is as follows: C.! $=\sqrt{r_{\alpha}, v \frac{\text { MSE }}{n}}$.

Decision rule: Within the $\alpha=.05$ hypothesis error rate, 39 error degrees of freedom, MSE=45.145, and the harmonic mean $(\tilde{\mathrm{h}})=5 \div(1 / 8+1 / 8+1 / 8+1 / 10+$ $1 / 10)=3.695$, assume a statisticallv significant difference between pairs of means if the difference is areater than the critical value, where C.V. $=\sqrt{(4.045) \frac{45.145}{8.695}}=4.583$.

Data: Means in T scores

$$
\begin{aligned}
& \bar{X}_{1}(\text { nrint })=46.385 \\
& \bar{X}_{2}(\text { sound })=46.815 \\
& \bar{X}_{3}(\text { nrint } / \text { nictures })=48.827 \\
& \bar{X}_{4}(\text { nrint } / \text { sound })=53.376 \\
& \bar{X}_{5}(\text { nictures } / \text { sound })=54.045
\end{aligned}
$$

The higher scores indicate that greater learning bas been achieved. Pictures/sound was thus found to foster the most effective learning. To find statistically significant differences, the critical value may he subtracied from the highest mean score. For nictures/sound, 54.045 $4.583=49.46 \%$, and as this number is larger than the mean scores for print, sound, and nrint/nictures, it can be assuried that nictures/sound was more effective in this exneriment than the two single component media and nrint/nictures.

The next hinhest score was for nrint/sound. Subtracting the critical value from the mean, $53.376-4.583=49.793$, it can be noted that the mean for nrint/sound is statistically hinher than the means for print and for sound, but not hioher than the mean for nrint/nictures.

No other statistically significant differences were found between nairs of the five means. Print and sound may be assumed to ne equal, and nictures/sound and nrint/sound mav also te assumed to be equal. Print/nictures was midway between the two more effective and the troo less effective media nresentations, hut statistically different from nictures/sound onl $\%$.
hYPOTHESIS 3:
Treatment effects due to differences in scripts are enill for nearly equivalent scripts.

Scrint factor: Using the Kruskal-Wallis nonnarametric analysis of variance by rinks described in the next section, no statistically sianificant differences were found between the two scripts or among interactions of the scrint factor with the reading achievement or media presentation factors using an error rate of $\alpha=01$.

Results of these analuses were essentially the same as findings of a threc-way analysis of variance of individual scores.

HYPOTHESIS 4:
Students are exnected to indicate nreferences as to which of the five media they would most prefer to use in a media center?

Media prefepence scores
Qefore the media presentation was adriinistered to each treatment yroun, a media preference poll was comrieted bv each student in the studv. A cony of this noll is included th Annemdix 1. Pankinus for each of the media choices were sulad aciuss the 3il stiojects rankiny
the cholces for a total media preference score. The Friedman nonparametric rank test vas the procedure used for statistical analysis. The Friedman test is anpropriate for use if the following experimental assumntions are met:

1. Random assignment is used to nlace subjects in treatment levels.
2. The underlving probabilitv distribution is continuous.
3. Data (numbers) contain at least ordinal fnfonmation concerning the effects of the indenendent variable.

The following test statistic was used in data analysis:

$$
\underline{x}_{r}^{2}=\frac{12}{n k(k+1)}\left[\Sigma(\Sigma R)^{2}\right]-3 n(k+1), \quad x_{r}^{2} \text { is the Chi Square }
$$

value of matched ranks.

Decision rule: With $\alpha=.01$ and 4 degrees of freedman anong the five media choices, reject the hynothesis under test $\left(H_{0}\right)$ if $\underline{x}_{r}^{2}>\underline{x}^{2} 01$, $n=$ 13.277.

Data: The data needed for the test statistic are the sum of ranks(£R) for each media choice, the number of subjects (n) and the number of choices (k). These data are sumarized as follows: R_{1} (print)=723; Γ_{2} (nictures/sound)=765; R_{3} (sound)=1n02; R_{4} (print/nictures)=1121; R_{5} (nrint/sound)=1189; $n=320 ; k=5$. Test: $\quad x_{-r}^{2}=\frac{12}{320(5) 6}\left[(723)^{2}+(765)^{2}+(1002)^{2}+(1121)^{2}+(1169)^{2}\right]$ $-3(320) 6=217.9$

Decision: Reifect H_{6} as $217.9 ; 13 . ? 77$, assme tinat students do in fact

isolates these preferences.

Post Hoc Analysis: These procedures are used to make simultaneous comparison of all mean ranks ($\overline{\mathrm{R}})$ of the five media preference choices without exceeding the .01 error rate of the hypothesis. Chi Square (x^{2}) value used in the decision rule for testing the hupothesis and the estimated variance of the contrasi $\operatorname{Var}(\hat{\psi})$ using the formula C.V. $=\sqrt{\frac{x_{k-1}^{2}}{k}(1-\alpha) \operatorname{Var}(\hat{\psi})}$, where $\operatorname{Var}(\hat{\psi})=\frac{k(k+1)}{12 n} \quad a_{k}^{2}$ and $a_{k}^{2}=2$. For pairwise contrasts of mean ranks, $\operatorname{Var}(\mathcal{\psi})=\frac{(5)(6)(2)}{\frac{1}{2}(320)}=.0156$. Thus C.V. $=\sqrt{13.277(.0156)}=.455$.

Data:

$$
\begin{aligned}
& \Gamma_{1}(\text { nrint })=2.259 \\
& \Gamma_{2}(\text { nictures } / \text { sound })=2.390 \\
& F_{3}(\text { sound })=3.131 \\
& \Gamma_{4}(\text { nrint } / \text { nictures })=3.503 \\
& \Gamma_{5}(\text { nrint } / \text { sound })=3.715
\end{aligned}
$$

Decision rule: Within the $\alpha=.01$ error rate for the hypothesis under test, assume a statistically significant difference between pairs of mean ranks $\left(\bar{R}_{j}-\bar{R}_{1}.\right)$ if differences are greater than . 455.

Bv adding the critical value to the lowest score which is for nrint, an upner level of a statistical confidence interval is obtained. Scores greater than that number are statistically different from the lowest score. For nrint, $2.259+.455=2.714$. Thus with $\alpha=.01$ it can be assumed that stirients' preference foll inturespsind is no differcont than their mefcrence for gitint as tha man rank for nicturusbound is less than /.714. The thre mean ratik, for sound, brintinictures and
print/sound are greater than 2.714, so we can assume these media are less preferred than print.

For nictures/sound, $2.390+.455=2.845$. This value likewise indicates nreference for pictures/sound over the three less preferred media, The only other statistically siqnificanc difference in preference showed sound, $3.131+.455=3.586$, to be statistically preferred over nrint/sound, 3.715.

HYPOTHESIS 5:
Media attitude scores are exnected to indicate that students' attitudes toward material learned vary according to the medium from which the scrint was learned.

MEDIA ATTITUDE SCORES
The final measure collected from each treatment groun was the media attitude score. A test of attitudes toward statements about the scrint learned was niven inmediately after the media learning tests were collncted.

The statistical nrocedures used for analvsis of this data was the Kruskal-Nallis onemav analysis of variance by ranks. Scores for the media presentations were summed ard ranked and the following iest
statistic was used:

$$
H=\frac{12}{\pi(\mid=1)} \quad\left(\sum \frac{\left.\sum(R)^{2}\right)}{n}\right)-3(N+1)
$$

Assumntions for the Kruskal-Mailis test are the same as for the Friedman test used in the first sectini of this chanter. ihe firiednan test is used for matched nata scores or choices aid the kruskal-hidlis

RFST COPY AVAIIABLE
is used with unmatched date.

Decision rule: To analvze main effects of media attitudes with $\alpha=.05$ and 4 degrees of freedom amona the five media treatments, reject the hypothesis under test $\left(H_{0}\right)$ if $\left.H\right\rangle \underline{X}^{2} \cap 5.4=0.49$.

Data needed to conduct analysis are the total number of subjects (N), the number of subjects per treatment (n), and the sum of the ranked scores for each treatment (ΣR).

Data:

$$
\begin{aligned}
& \Sigma R_{1}(\text { print })=11,490 \\
& \Sigma R_{2}(\text { sound })=12,027 \\
& \Sigma R_{3}(\text { print } / \text { nictures })=10,723 \\
& \Sigma R_{4}(\text { print } / \text { sound })=7830.5 \\
& \left.\Sigma R_{5} \text { (pictures/sound }\right)=9289.5
\end{aligned}
$$

$$
N=320
$$

$$
n=64
$$

Test:
$H=.0001168(8,425,985.914)=963=21.15$.

Decision: Reject H_{0} as $H=21.15 \geqslant \underline{x}^{2}=9.49$, assume that different attutudes result from the use of different media presentations. Post hoc analvsis of pairs of means isolates the differences in attitude as related to specific media preseritations.

Post hac analysis: Memenvis mocedure for most hoc analysis of results allows for simultaneious colinarison of all contrasts without exceeding the , 05 error rate for ali the liviothesis. The critical value
determined b. Nemenvi's procedure is C.V. $\sqrt[-]{\frac{x}{j}_{2}^{a}-k-1 \operatorname{Var}(\hat{\psi})}$ where $\operatorname{Var}(\hat{\psi})=\frac{\mu(1+1)}{12} \sum_{k=1}^{k} a_{k}^{2}=\frac{8560 \sum_{a}{ }^{2}}{64}=133.75 \sum a_{k}^{2}$ with $\sum a_{k}^{2}$ or just a^{2} is the coefficient of means used in the contrast.

For the contrasts tested below both simple and complex comparisons are used. ($a^{2}=2$) is the coefficient for a simnle contrast of two means. ($a^{2}=1,25$) is the coefficient for a complex comparison of four means with one mean. ($a^{2}=1$) compares two means with twn others and ($a^{2}=833$) comnares three means with two others. Examples are in the next section. Therefore, four contrast variances and four critical values are calculated below.

Variances of contrasts:

$$
\begin{aligned}
& \operatorname{Var}(\hat{\psi})\left(a^{2}=2\right)=267.5 \\
& \operatorname{Var}(\hat{\psi})\left(a^{2}=1.25\right)=167.188 \\
& \operatorname{Var}(\hat{\psi})\left(a^{2}=1\right)=133.75 \\
& \operatorname{Var}(\hat{\psi})\left(a^{2}=.833\right)=111.44
\end{aligned}
$$

Critical values for contrasts:

$$
\begin{aligned}
& \text { C. } 1 .\left(a^{2}+2\right)=\sqrt{9.49(267.5)}=50.384 \\
& \text { C.V. }\left(a^{2}=1.25\right)=\sqrt{9.49(167.188)}=39.832 \\
& \text { C.V. }\left(a^{2}=1\right)=\sqrt{9.49(133.75)}=35.627 \\
& \text { C.v. }\left(a^{2}=.833\right)=\sqrt{9.49(111.44)}=32.503
\end{aligned}
$$

Decision rule: If the difference between riean ranks of the contrasts exceeds the critiral yalues calculated ahove, assume significant differences in attitude scores fur the curitrasts within the $\alpha=.05$ error rate for the hrowtesis inder test.

Data:

$$
\begin{aligned}
& \bar{R}_{1}(\text { nrint })=179.531 \\
& \bar{R}_{2}(\text { sound })=187.922 \\
& \bar{R}_{3}(\text { nrint } / \text { nictures })=167.547 \\
& F_{4}(\text { nrint } / \text { sound })=122.352 \\
& \bar{R}_{5}(\text { nictures } / \text { sound })=145.148
\end{aligned}
$$

Tests of contrasts: These significant differences were found among the contrasts tested.
$\hat{\psi}_{1\left(a^{2}-2\right)}=\bar{R}_{1}-\bar{R}_{4}=57.18$. As $57.18>50.384$, assume that
attitudes resulting from nrint/sound were different from
attitudes resulting from nrint alone.
$\hat{\psi}_{2\left(a^{2}=2\right)}=\bar{R}_{2}-\bar{R}_{4}=65.57$. As $65.57>50.384$, assume that
attitudes resulting from print/sound were different from
attitudes resulting from sound alone.
$\hat{\psi}_{3\left(a^{2}=1\right)}=\frac{\hat{K}_{1}+\bar{R}_{2}}{2}-\underline{K}_{4}+\bar{\Gamma}_{5}=49.98$. As $49.98>35.627$, assume that attitudes resulting from print/sound and pictures/ sound were different from attitudes resulting from print

$$
\begin{aligned}
& \quad \hat{\psi}_{4\left(a^{2}=1.25\right)}^{\text {alone and }}=\frac{\frac{\bar{S}_{1} \text { ound }}{}+\frac{\dot{R}_{2}}{2}+\bar{R}_{3}+\bar{R}_{5}}{4}-\bar{R}_{4}=47.68 \text {. As } 47.68>39.832 \text {, }
\end{aligned}
$$

assume that attitudes resulting from nrint/sound were different from attitudes resulting from the other fou: media nresentations.
 assume that ati, tudes resulting from print/sound and picturesl sound were different from attitudes resulting froil the other Lirve nielia.

In all of the above cases lower scores indicate a more favorable attitude toward the scrint. Therefore, most favorable attitudes toward the scrint resulted from the print/sound presentation followed by the nictures/sound media.

Interactions: Using the method described bv Bradlev, ${ }^{3}$ three analyses were conducted at $\alpha=.01$ to look for interactions among media, reading achievement, and scrint factors. Inclusion of the reading achievement factor produced a sianificant H, but no interpretable interactions were found.

HYPOTHESIS 6:
Correlations between pairs of data sets are expected to indicate relations between nedia nreference, learning, and attitudes resulting from the learning experience.

CORRELATIOHS BETUEEN SCORES
The Kendall Tau Cocfficient was used to correlate results of the three previouslv analvzed measurerients. Assumntions for the Kendall Tau include continuouslv distributed ranks, no tie scores, and that all possible nemutation of scores are equally likely to occur.

The Kendall Tau test statistic is as follows:
$S=$ (number of times rankings agree in order about a pair)(number of disdqreerients in order or rankings about a pair).

Decision rule: Internretation of the Kendall Tau will be done as recompended in Hays ${ }^{4}$ by stating directlv the obtained nositive or neqative correlation and explaining whether the two scores conpared serve as favorable or unfavorable indicators for anticinating a correlation.

Data: Rumbering for the medi? presentations utilized for the purpose of making the correlations is as follows:
$1=$ rrint
$2=$ sound
3 = print/nictures
$4=\mathrm{print} / \mathrm{sound}$
$5=$ nictures/sound
A. Preference and learning score correlations

Preference:

Learning:

Inversions in scoring order are fcund bv counting the number of tifues lines to choices cross. On this table there are eight aversient.

Thus: $\quad S=\left(\frac{5}{2}\right) \cdots ?(8): i 6-16+-6$

$$
\tau=-\frac{6}{10}=-.6
$$

f. riegative correlation findicated mint: it is mrbuil: that the
 best lceris frem.

B, Preference and attitude score correlations

Preference:

Attitude:

Eight inversions are also resesent in this table.
Using the same nrocedure: $\mathcal{T}=-.6$
Again the neqative correlation indirates that it is probable that the medium a student nrefers to use will not be the medium that will result in the best attitude toward the scrint learned.
C.

Attitude and learning score correlations

Attftude:

Learning:

Two inversions are rresent on this table.
Thus: $\quad S=\binom{5}{2}-2(2)=10-4=6$

$$
\tau=\frac{6^{6}}{10}=
$$

The nositive correlation of.t indicates that it is probable students will have the best attitude toward a script learned from a medium that is effective for ther.

CIMHILATIVE ERRDR PATE

The error rate associated with the hvnotheses tested hy the above nrocedures are as follows: $\quad \alpha=$

Media Preference Scores . 01
Media Learning Scores
Treatments . 05
Treatments x Peading Achieve. . 05
Scrints (interactions) 01
Media Attitude Scores . 05
Interactions .01

TOTAL
.18

The cumulative error rate indicates that there is less than one chance out of five that one or more of the decisions resulting from the above analyses was based on the false rejection of the hypothesis under test.
BES: Crltr AVA/MABIE

Notes for Chapter III

1. Kirk, Roger E. , Experimental Design: Procedures for the Behavioral Sciences, Belmont, C.: Brooks/Cole, 1968, D. 492.
2. Donaldson, T.S., "Robustness of the F-Test to E.rrors of Both Kinds..." in E.F. Heermann \& L.A. Braskamp, eds.. Readings in Statistics for the Behavioral Sciences, Englewood Cliffis, T.J.: Prentice-Hall, 1970, n. 85-102.
3. Bradlev, James V., Distribution-Free Statistical Tests, Englewood Cliffs, H.J.: Prentice-Hall, 1968, p. 138-141.
4. Havs, Hm. L., Statistics, N.Y.: Holt, 1963, n. 649.

CHAPTER IV

CONCLIUSIOHS, ALTERNATE HYPOTHESES RECOM:ENDATIONS FOR FURTHER RESEARCH AIID SUMMARY

By examining the questions nosed and hypotheses stated in Chapter II in relation to the siatistical decisions stated in Chapter III, conclusions for the experiment are formulated and stated below.

1. Do students learn more effectively from any media relative to other media?

Based on analysis of the media learning scores, media presentations nictures/sound and nrint/sound can be assumed to be more effective than either nrint or sound alone but not more effective than the print/ nictures presentation. Because the conclusions regarding pictures/ sound presentation was a predicted result and the finding concurs with the results of Levin's research, on which the prediction was based, there is no reason to question the finding by posing alternate hypotheses. There are, however, trenas in the data which suggest further comnarisons of this medium with other media. These trends will be discussed in a later section discussing interactions.

Findings related to the print/sound presentation were not predicted and did not corresnond with results of reading experiments upon with the predictions were based. Trend results of the print/nictures. and nrint/sound ! inesentalions were reversed fron results of the reading studies, although statistical analysis showed mif difference. in
important difference in administration of presentations between this experiment and the reading studies may explain differences in trend results. This experiment included no attempt to induce a strategy for learning based on instructions as to how to utilize the message of the medium concentually. As a strategy was instructed to students in the reading experiments, the difference in results may have been due to the fact that the presentations were administered without instructions. Other alternate plausible hypotheses must be considered which may account for the difference between trends and nredictions.

Alterr. \therefore hynothesis 1:
The timed nresentation favored the nrint/sound presentation over the print/pictures nresentation for scrints of the length used in this studv. Because advancement of the slides was keyed on a track of the sound tape recording, the print/sound presentation was advanced at an optimum rate which mav have encouraged ontimum attention by many students usinq the presentation. The nrint/pictures presentation was changed too nuickly for slow readers to have time to examine the pictures beneficiallv. In fact it is possible that students who looked at the nictures first were diverted from reading the print message completely. Another exneriment would be needed to test this alternate hypothesis adequatelv.

Alternate hynothesis 2:
Randomization procedures resuilted in a chance assignment of unequa? samples. The only method of testing this possilility available to the resealliter was to exaingn the shel suores wich served as the basis for
random assignment. While trends indicated that the subjects assigned to the print/pictures presentation did in fact have a slightly lower mean score than subjects assigned to the other presentations, there were no significant differences among the five mean scores. Thus it must be assumed that randomization nrocedures were effective and did not result in biased samples.

Alternate hynothesis 3:

The type of question asked on the learning tests favored the print/sounit nresentation. This possibility was analyzed by examining the answers to all of the test questions. It was found that students answered about half of the questions with specific words or phrases which were included in the written and spoken texts of the print and sound media-message components, but were not necessarily evident from an examination of the picture component alone. These questions did in fact tend to favor the print/sound presentation over presentations with a picture component. Th. other half of the questions could be answered with more general words an rirases which could be based on impressions received from anv one of the three components. The nrint/nictures presentation tended to he as effective as the pictures/sound presentation for those nuestions. Thus this hypothesis provides a basis for further experimentation ifth the three douhle comnonent presentations.
a. Are tio-comnonent media nresentaiions nore effective thar single comonent mesentations?

Results she: that lath the print/sound and tho nicturns/snund
nresentations were more effective than print or sound alone. Results concerning the print/nictures nresentation were inconclusive. The finding that pictures/sound was more effective than print/pictures suggests that irint/pictures has greater similarity to single component media than to the more effective nictures/sound.
b. Are two-component audio and visual presentations different in effectiveness than a two visual component presentation utilizing two different message codes?

Pesults of this study were not conclusive on the auestion of modality versus code. The finding that nictures/sound was more effective than print/nictures nlus the nearly significant difference between the latter and nrint/sound suggests that bi-modal media are more effective than a medium with two codes received hy the same sense organs. It is nossible that the brain cannot process information efficiently if two messag̣es are received by the same sense organs, in this case the eves. Results may indicate that processing of one audio and one visual message results in more effective learninn.

As an alternate hunothesis, it is nossihle that media with an audio and a visual combonent were favored bv the fact ihat all nresentations were timed and cued by the audio component. For both of the AV media the 2 idin started automaticallv. For the print/pictures medium there mav have been a time lag nurely hecause the student had to inedin to read the messade of his uin volition, for this reason a study with nore fiexible thas weditions andior winn asks questions

different trends or conclusions. The time conditions were desirable for this first study, but a future study could utilize more flexible conditions which more nearly approxinate conditions of media center use.

Two further observations should be mentioned at this Juncture. First, the fact that the sound or spoken word component was a common component of the two most effective media, suggests that the spoken word mav nlay a kev role in promoting effective retention for immediate recall. Second, the fact that no consistent differences were found among the three double cormonent media supports the assumption stated earlier that it is insufficient to analyze media in relation to the audio or visual sensory presentation mode alone. Future research must examine effects of the message code also to avoid a potential confounding variable,
2. Are there interactions among media presentations and reading achievenent levels?

Results of this exneriment indicate no interactions amonq media presentation treatments and reading achievenent blocks. Table 2 included in the following section indicates some trends which could be investigated in future exneriments.
3. Are results consistent from one scrint messane to another?

Tin answer this mustim, tests were culducted tu investigate a)
 ment interait.ma, and (i) serint bimedia mesentatiuil bu reading
achievement three way interactions. Results of these analyses indicate no statistically sianificant interactions are present. Due to the presence of some interesting trends, however, a simplified data table is nresented below to allow for examination of trends which may lead to further studies. The reader is cautioned that data i_{1} Table 2 are based on individual scores rather than groun scores. Thus inconsistencies mav be noted when comparing Table 2 with results of yost hoc analvsis of learning data.

As numbers have been rounded off to one decimal point, Table 2 is less accurate than nost hoc data. Table 2 is included here onlv for purposes of drawing attention to trends within the data which could insnire formulation of hynotheses to be tested with future experiments.

An additional factor should he mentioned at this point. While every effort was made to select scrints as nearly identical as possible, it was necessary to utilize scrints of slightly different length and contents because of limitations imposed by the use of commercially produced materials. Scrint 2 (Their History) vas approximateiy onethird longer in the printed version than script 1 (How They Lived) even though the nresentation times varie by less than one minute. Length as well as scrint content are factors which must the considered when examining trend differences.

Possibly due to the different length or content of the print presentation of scrint \therefore., it mav be noted that with print low achiever ment leaders tended to sume lover on script ? than the did on sci ipe
 scored lower on soriti 1 thall un sorints. An atitiade liv treathent

TABLE 2

T SCORE MEANS AND STANDARD DEVIATIOMS FOR EACH CELL. OF THE RESEARCH DESIGN AND MEAN SCORES FOR ROUS AND COLUMNS, CALCULATIONS BASED ON IIIDIVIDUAL SCORES

		Media Presentation Mode					
Reading Achievement	Scrint	Print	Sound	Print/ Pictures	Print/ Sound	Pictures/ Sound	Row Mean
1	1	$\begin{gathered} 52.5 \\ 8.88 \end{gathered}$	$\begin{gathered} 49.3 \\ 8.98 \end{gathered}$	$\begin{gathered} 53.2 \\ 6.99 \end{gathered}$	$\begin{gathered} 55.4 \\ 7.43 \end{gathered}$	$\begin{gathered} 61.3 \\ 6.74 \end{gathered}$	54.3
	2	$\begin{gathered} 54.4 \\ 7.69 \end{gathered}$	$\begin{gathered} 53.7 \\ 9.15 \end{gathered}$	54.9 10.36	58.0 6.7	$\begin{gathered} 54.9 \\ 7.28 \end{gathered}$	55.0
High Mean2		53.5	51.5	54.1	56.7	58.1	54.7
	1	$\begin{aligned} & 45.0 \\ & 11.23 \end{aligned}$	$\begin{gathered} 44.5 \\ 9.13 \end{gathered}$	$\begin{gathered} 44.1 \\ 9.72 \end{gathered}$	$\begin{gathered} 46.3 \\ 7.78 \end{gathered}$	$\begin{gathered} 48.4 \\ 7.43 \end{gathered}$	45.7
	2	$\begin{gathered} 39.8 \\ 5.85 \end{gathered}$	$\begin{gathered} 44.0 \\ 9.76 \end{gathered}$	$\begin{gathered} 43.7 \\ 6.33 \end{gathered}$	$\begin{gathered} 51.3 \\ 8.82 \end{gathered}$	$\begin{gathered} 46.2 \\ 9.96 \end{gathered}$	45.0
Low Mean		42.4	44.3	43.9	48.8	47.3	45.3
Column Mean		47.9	47.9	49.0	52.7	52.7	59.0

Grand Mean, $\bar{X}=50.0$
Stundard Deviation, $S=10.00$
Cell $n=16$
Total $11=320$
interaction was al ticinated with the print and sound presentations. This trend suggests that an exneriment which added a factor of script length or content difference to reading achlevenent and media factors, could nossibly isolate a three-sav interaction arionn print and sound. reading achievement, and a scrint factor such as length or content differences. It must be stresse: He the rossibilitiv of a trend is coniecture hased onlv or trends. Siatistically this trend is explained as a chance occurrence.

Hext, it mav be noted on the table that the print/nictures presentation did not tend to benefit low achieverient readers in comparison to the print or sound presentations. High achievement readers, however, showed a slight trend tovard benefiting from the addition of pictures. Given a less restricted time factor, the addition of pictures may prove to be better for both high and low achievement readers.

Last, trends ton:ard two and threewav interactions may be noted when comparing cells of the nrint/sound and pictures/sound presentations. Pictures/sound tended to clicit greater henefits from low achievement readers. This trend is magnified even more when one takes into account the scrint factor. The most effective treatment cell for high achievement readers, 61.3, was for the first scrint presented ly pictures/ sound. The most effective treatment cell for low achievement readers. 51.3, was for the second scrint presented by print/sound. Within each readinn achievement level this same treatment be script interaction trend may be notor. lifhile these trends mav be exnlained by clance with. in the narameters of this eyreriment, trends sungest further exoerinients

lenath or content.
One additional asnect may be noted relating to trends of the presentations including the nicture component. Contrary to popular exnectation, trends do not sunport the contention that pictures must be included in media collections for the benefit of noor readers. Converselv, trends indicate that the picture component primarily benefits high achievement readers when counled with nrint. These trends concur with McLuhan's suggestion that neonle must be highiy literate to utilize nictures effectively.
4. Do students indicate preference to use specific media in a media center?

Based on analvsis of nedia preference scores, print and pictures/ sound media can be assumed to be preferred bv students over the other three media. Students probably show a high preference for use of print in a media center, because print is still the most familiar metiod of storing knowledge utilized by school library media centers. Pictures/ sound media are also familiar to students because of TV and film viewinn activities nursued after school hours. Both of these media could have been highlv nreferred because of greater familiaritv rather than any other expectation on the part of the student. The other three media could have been given lower preference ratings by students because they were aware of use of such media only in educational settings. It should be stressed that the quesifon ashed tue students was, "Which choice winld youl like to ust best in a mexia cetiter" If the question had betn, "which choice do vou thinh rou culld learn best trun?" it is
nossible that rankings could have been different.
5. Do students' attitudes toward a script vary according to the medium from which they learn the scrint?

The answer to this nuestion must be modified by cons!deration of twn elements of the exneriment which mav have influenced results. First, the attitude measurements were adninistered after the students had completed the learning tests. Thus students were in effect influenced by two variables: 1) the med'a presentation and their reaction to it , and 2) the learning test and their reaction to it . Therefore, their attitudes toward the script learned from these two media mav have been due to some extent because they felt they did well on the learning test. Second, as previously noted, students tended to answer some nuestions with answers worded identically to the verbal text. These nuestions tended to favor the print/sound nresentation. Knowing that they had exact answers to some nuestions may have given students additional confidence which influenced their attitude favorably toward the scrint as learned from the print/sound presentation.

Within the constraints explained above, it can be assumed based on analysis of media attitude scores that the nrint/sound medium encourages a more favorable astitude ta:ard the scrint learned than do
 by a test. Pictures/sound also encouraned a favorable attitude toward

results are conclusive that media with audio and visual components encourage more favorable attitudes toward material learned. Rather it is intended that these findings nrovide a basis for further studies which focus secifically on media and attitudes tolyard learring.
6. Are there correlations between sets of data: media preference scores, media learning scores, and media attitude scores?
a. Do students learn relatively better from a medium for which they indicate a use preference?

Based on the negative correlation between media preference scores and media learning scores, media preference as indicated by student users tended not to be a good indicator of how effectively students can learn from a nreferred mediur1. Stated differentiv, one cannot expect the best learning to occur if student grouris are left entirely to their own nreferences. Some form of guidance in media use for grouns may be assumed to be desirable to nrorlote effective learning. Further studv is needed to see if the same tendency is true for individuals as ras found by examining mean scores.
b. Do students' attitudes toward a storv iry according to the media nreferences thev indicated nrior to icarning the scrint?

Based on the neqative correlation between media preference scores and media attitude scores, students' media mreference choices tended not to he aood indicators of which medium would encourage a favorable attitude toward the material learned. Again solk fom of quidance in
media use for groups and nossibly fore Yhd desirable to encourage a favorable attitude toward the subject of study.
c. Do students' attitudes tovard a script vary according to the effectiveness of nromoting learning of the medium from which they learned the scrint?

Based on the nositive corrclation between media learning scores and media attitude scores, students tended to express the most favorable attitudes toward scrints learned from the mosteffective media. Going bevond the scone of the present experiment, the positive correlation between learning and attitude suggests additional research based on individual differences. llost of the cells in the research design included a wide range of individual scores indicating that some individuals benefited fron each of the different media presentations. Reading achievement was not a favorable indicator for selecting media in this experiment; there is no evidence that In or other indicators would be anv better.

Media researchers may discover that the best indicators of nedia effectiveness relate directly to the media. Media tests could he devised to enable a media snecialist to predict which media hest contribute to an indiv idal's lemrninn or to developing a favorable attitude tolard
 on attitudes he conducted indenendentlv, it is also desirable that results be relaced so miedia can be iemimbended with faumable effert: on bitir ladninu and attitudes.

Some results of this exneriment mav have been biased hecause of exnerimental methods. One of these methods was the use of grouns rather than individual treatrients. Four of the five media presentations included a visual message consisting of either a nicture or print. The fact that students in these qroups had sonething on the screen to look at discouraged then from looking at each other or at other distractions from the message. The sound nresentation, however, did not provide students with a visual message. The fact that their eyes were free to roam may nossibly have denressed their nerformance because of lack of an attention holding del:cc.

Similarlv, media nresentations without sound, nrint and nrint/ pictures, mav have been effected bv lack of a timing device. The timing device was connected to the sound track and could not cue students in these resentation grouns to start reading the messag̣c. Just a short time lan could cause disoroanized readers to fall behind and not finis: the message.

The experiment was set un to test the influence of the scrint amonn the five nedia nresentations at $\alpha=.01$. Ho sionificant differences were found on this test. However, there would be areater power to reject a hynothesis under test if two media nresentations had been compared. By examining Tahle 2 on rage 80 , it can he seen that the print/sound and nictures/sound nresentations show a trend toward a nedia by script interaction wich would not allow neneralizahility for these tro nresentations from one scrint to another. Further studv would be needed to isolate what scrint factors are resnonsihle for this interaction.

Use of a timed nresentation limits generalizability to flexible student use natterns currently encouraged in school media centers. A study with flexible timing almost surelv would introduce intervening variables.

The decision to use recent commerciallv produced materials, reduced the atility to snecifv which types of questions could be asked about the material covered in the scripit. Use of locally produced materials would allow careful construction of test questions which would increase ability to ask specified types of questions. However, it would not allow generalizability to media selection tasks which was sought in this studv.

It must be cautioned that generalizing of these results would be most applicable for students at or near the sixth arade level. Because of differences in maturity at different age levels, entirely different results may be obtained from much younger or much older students. Also it was noted that students in the study were of areater than average reading achievement level. Results may change for students with lesser reading abilitics.

RECOMHENDATIONS FOR FIIRTHER RESEARCH

The problem of predicting which medium is most effective and which is most enjoyable for an individual student must still be extensively investigated. lleither reading achievement nor media preference were shown to be effective prognosticators for media use recomnendations. It is sugaested that media tests be develoned which measure directly how well a student learns from various media and how favorable the.
student's attitude is toward the experience of learning from given media. If effective tests were developed, they would be invaluable to the media snecialist and the educator in providing guidance to individual media users.

In addition, further research is needed to isolate the influences of message codes and media-message comnonents toward creating media which promote effective learning and favorable attitudes toward the learning experience.

SUMPMARY

The educational effects of five media presentations were experimentally investigated with sixth grade middle school students. Mease ures of media nreference, learning from media and attitude toward the scrint learned were statistically analyzed in relation to tise five media nresentations, two reading achievement levels of the students, and two different scripts. Results were traced to the media-message comnonents of the media presentation. Media-message components consist of the audio or visual sensory mode of presentation which can include graphic or nroiected still or motion visuals, counled with the primary synthetic or linquistic code of the message.

The oninion that students nrefer to use the medium best for their own educational needs was not supported bv this research. The negative correlation between student preference and resulting learning and attitudes was best demonstrated by the neint/sound presentation which was low in proference bit resulted in effective learning and favorable attitudes toward the lcarining einerience. Because of this result it should not be assuritid that educators sliould dictate choices to stidents.

Rather, it is suggested that students are able to recognize when they are learning effectively fron a medium only after they have used it. Results of this research should heln to dispel: the print orientation which is still maintained by a few librarians and educators. All media tested were at least as effective in promoting learning as print alone. Audiovisual media not only promoted learning more effectively than print, but also nromoted a more favorable attitude toward material learned than did print. Results also suggest that additional research be conducted on media-message components to learn wore about effects of components in various combinations.

The five media presentations used in the studv were print, verbal sound, print/pictures, nrint/verbal sound, and nictures/verbal sound. The five presentations consisted of three components: print, verbal sound, and nictures. The components were presented singly or in combination in a uniformly controlled consistent environment.

Results indicated that only one media presentation, pictures/sound, was consistently high for all three measures: high in student preference, high in effectiveness of promoting learning, and high in encouraqing a favorable attitude toward the material learned. Another presentation, nrint/snund, was found to be high in effectiveness of promoting learning and high in the resulting attitude toward the material learned but low in student nreference. As results of this study in regard to the nrint/sound rresentation do not concur with results of previous research, this medium can only tentatively be given a high reconmendation until future research sunnorts or conflicts with these findings. Noting that the tro most effective niedia included in the verbal sound
component in conjunction with either a picture or print visual component, suggests that the verbal sound component may be highly desirable to combine with visuals to promote effective recall learning and a favorable attitude toward material learned. It should also he noted that verbal sound by itself promoted neither effective learning nor a favorable attitude toward material learned for average scores. However, high individual scores were obtained from each of the five media presentations. This fact sunnorts the inclusion of a wide variety of media in a media center collection to meet individual differences.

MEDIAGRAPHY

1. Allen, Wm. H. "Instructional Media Research: Past, Present and Future," AV Communication Review, Spring, 1971, 19(1): 5-18.
2. Allen, Wm. H. "Media Stimulus and Types of Learning," Audiovisual Instruction, January, 1967, 12(1):2731.
3. Allen, Wm. H. Readings in Educational Media Theory and Research, Washington, D.C.: U.S. Dept. of HEW, 1968. ED 031952
4. American Association of School Librarians and Department of Audiovisual Instruction, N.E.A. Standards for School Media Programs, Chicago: American Library Association, 1969.
5. Bereiter, Carl, "Issues and Dilemmas in Developing Training Programs for Educational Researchers," in Egon Guba, ed., The Training and Nurture of Educational Researchers, Phi De1ta Kappa, 1965, Chapter V.
6. Bloom, Benfamin S., ed. Taxonomy of Educaicional Objectives, The Classification of Educational Goals, Handbook I: Cognitive Domain, New York: David McKay, 1956.
7. Bradley, James v. Distribution-Free Statistical Tests. Englewood Cliffis, N.J.: Prentice-Hal.1, 1968.
8. Briggs, L. J., and others. Instructional Media: A Procedure for the Design of Multi-Media Instruction, A Critical Review of Research and Suggestions for Future Research, Pittsburgh: American Institutes for Research, no. 2, 1967.
9. Campbell, D. T. \& J. C. Stanley. Experimental and Quasi-Experimental Designs For Research. Chicago: Rand MeNally, 1963.
10. Case, R. N. School Library Mnnower Project, Phase I$\frac{\text { Final }}{\text { tion, }} \frac{\text { Report }}{1970 .}$ Chicado: Americar Inbrary Associa-
11. Conway, J. K. "Channel Versus Modality," in Wm. H. Allen, ed., Readings in Educational Media Theory and Research, Washington, D.C.: Office of EducaEIon, 1968.
12. Cooper, J.C., Jr., and J.H. Gaeth, "Interactions of Modality With Age and With Meaningfulness in Verbal Learning," Journal of Educational PsycholOgy, February, 1967, 58(2): 41-4.
13. Coronet Films, American Indians of the Plains: Their H1story, Ch1cago: Coronet, 1972 . (Sound Filmstrip).
14. Coronet Films, American Indians of the Plains: How They Lived. Chicago: Coronet, 1972 . (Sound Filmstrip)
15. Daehling, W. A. "The Learning Effects of Seven VisualVerbal Presentation Modes on Making Identifications and Comparisons," (unpubilished Ed.D. dissertation) University of Southern California, 1970.
16. Davies, R.A. The School Library, A Force for Educational Excellence, N.Y.: Bowlser, 1969.
17. Davis, H. Instrustional Media Center, Bold New Venture, Bloomington: Indiana University Press, 1971.
18. De Kieffer, R.E. Audiovisual Instruction, N.Y.: Center For Applied Research in Education, 1965.
19. Dent, E.G. Audio-Visual Handbock, Society for Visual Education, Inc., 3d. ed., 1939.
20. Dewey, B.E. Media and Instructional Technology in the Library, Syracuse, N.Y.: Center for Instructional Communication, 1970.
21. Donaldson, T.S. "Robustness of the F-Test to Errors of Both Kinds..." in E.F. Heermann \& L.A. Braskamp, eds., Readings in Statistics for the BehavIraral Sciences. Englewood Cliffs, N.J.: PrenticeHall, 1968, pp. 138-141.
22. Douglas, Jeanne \& Harlan. "Balancing the Taxonomies," Audiovisual Instruction, February, 1972, 17(2): 7-8.
23. Dwyer, F.it. "Colur as air Zhstructional Variable," AV Commindeation Feview, w!nt-r, 1971, 19(4):39.-
24. Ebel, R.L. Measuring Educational Achievement, Englewood Clif's, N.J. : Prentice-Hall, 1965.
25. El-Hagrasy, S.M. "The Teacher's Role in Library Service," Journal of Experimental Education, June, 1962; 30(4):347-354.
26. Ellsworth, Ralph E. The School Ifbrary, New York: Center for Applied Research in Education, Inc., 1965
27. Erickson, C. W. H. Administration of Instructional Media programs, N.Y.: Macmillan, 1968.
28. Fargo, Lucile, The Library in the School, Chicago: American Library Association, 1933.
29. \qquad , 4th ed., 1947.
30. Flanders, Ned A. "Teacher Effectiveness," in R. L. Ebel, ed., Encyclopedia of Educational Research, 4th. ed., Toronto: Macinilian, 1969, p. 1423-1437.
31. Fleming, M. L., \& M. Sheikhian, "Influence of Pictor1al Attributes on Recognition Memory," AV Communlcetion Keview, Wirter, 1972, 20(4):423.
32. Fedder, Aljce N. "Kfsearch in the School Library Field," Library 'rends, January, 1953, l(3): 386.
33. Gagne, Robert M. The Conditions of Learning, New York: Holt, 1965.
34. Ginsburg, Herbert, \& Sylvia Opper. Pjacet's Theory of Inteliecturl De elopment: An Int oduction, Enclewoodinifs, liout Prentice -Hall, 1969.
35. Glogan, L. Develowire A Buccessful Elementary School Media Center, Wrat Myack, N.Y.: Parker, 1972.
36. Haskell, Roger W. "EPCet of Certain Indjvidual Learner Personality Differerces on Instructional Methods," AV Colimunication Review, Fall, 1971,

37. Hays, WM. L. Statistios, N.Y.: Holt, 1963.
38. Heermann, E. F. \& L. A. Braskamp, eds. Readings in Statistics for the Behavioral Sciences, Englewood Clifis, N.J.: Prentice-Hall, 1968 .
39. Hempstead, J. O. "Internship and Practical Application in Educating School Lib:rary Personnel, "Journal of Education For Librarianship, Fall, 1971, 12(2):116-132.
40. Hicks, W. B., \& Tillin, Developing Multi-Media Libraries, N.Y.: Bowker, 1970.
41. Howe, H. B., \& G. W. Boguslavsky: The Development of Animated Films to Facilitate Creative Space Perception, Troy, N.Y.: Rensselaer Folytechnic Institute, 1961.
42. Johnson, H. H. \& R. L. Solso. An Introduction to Experimental Design in Psychology: A Case Approach. N.Y.: Harper, 1971.
43. Jones, J. P. "Intersensory Transfer, Perceptual Shifting, Modal Preference, and Reading," Newark, DE: International Reading Association, 1972.
44. Jussim, Estelle, "Confronting Our Media Biases: The Social Dimensions of Media Theory," School Libraries, Summer, 1972, 21(4):12-17.
45. Kaplan, Sandra A. "Elaboration and Reading Achievement as factors in Chiluren's Learning of Text Materials," Madison, Wis.: Wisconsin Research and Development Center for Cognitive Learning, 1971.
46. Kerlinger, F. N. Foundations of Behavioral Research, Educational and Psychological Inquiry, N.Y.: Hoit, 1964.
47. Kittilson, Bruce Joseph. "Schnol Librarians' and Audio-visualists' Conceptions of Media Programs: Consensus and Dissensus," (unpublished Ph. D. dissertation) University of Minnesota, 1971.
48. Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences, Belmont CA:Brooks/Cole,
49. Klapper, J. ''. The Effects of Mass Communications. Giencoe, Ill: Free Press, 1960 .
50. Krathwohl, D. R., B. S. Bloom \& B. B. Masia. Taxonomy of Educational Objectives, The Classification of Educational Goals, Handbook II: Affective Domain, New York: David McKay, 1964.
51. Lasswell, Harold. "The Structure and Function of Communication in Society," in Wilbur Schramm, Mass Communications, 2d. ed., Urbana, Ill.: University of Illinois Press, 1960 .
52. Levinson, E. "Effects of Motion Pictures on the Response to Narrative," (unpublished Ph. D. dissertation) New York University, 1962.
53. Lowrie, J. E. Elementary School Libraries, Scarecrow, 1970.
54. Lumsdaine, A. A. "Instruments and Media of Instruction," in N. L. Gage, ed., Handbook of Research on Teaching, Chicago: Rand-McNa11y, 1963.
55. Levin, Joel R. "Some Thoughts About Cugnitive Strategies and Reading Comprehension," Madison, Wis.: Wisconsin Research and Development Center for Cognitive Learning, 1971.
56. Levin, Joel R., and others. "Verbal and Visual Processes in Children's Learning: II. Facilitation Differences as Related to Task Variations," Madison, Wis.: Wisconsin Research and Development Center for Cognitive Learning, 1971.
57. Levin, Joel R. "Organization, Comprehension, and Some Evidence 'How'," Madison, Wis.: Wisconsin Research and Development Center for Cognitive Learning, 1972.
58. McIntyre, Charles J. "The Librarian's Role as an Educator in the Production of Non-Print Materials," L1brary Trends, Dctober, 1967, 16(2):266.
59. Mackworth, N. H. "Seven Cognitive Skills in Reading," Reading Research Quarteriy, Summer, 1972, 7(4): 679-700.
60. MoLunan, Marshall, Undepstanding Media: The Extensions ot Man, New York: McGraw-Hili, 1964 .
61. Mahar, M. H. The School Librany fo A Matenials Center,

62. Marascuilo, L. A. Statistical Methods for Behavioral Science Research, N.Y.: McGraw-H111, 1971.
63. Montessori, Maria. The Montessori Method, Cambridge, Mass.: Robert Bentley, Inc., 1965.
64. Moore, D. M., \& E. B. Sasse. "Effect of Size and Type of Still Projected Pictures on Immediate Recall of Content," AV Communication Review, Winter, 1971, 19(4):437-450.
65. Penland, P. R. "Communication Science," p. 421-465 in V. 5, A. Kent \& H. Lancour, eds., Encyclopedia of Library and Information Science, N.Y.: Marcel Dekker, .971.
66. Penland, $P \cdot R_{i}$ "Educational Media and Technology," p. 488-543 in V. 7, A. Kent \& H. Lancour, eds., Encyclopedia of Library and Information Science, N.Y.: Marcel Dekker, 1972.
67. Platt, J. R. "Strong Inference," Scierice, 1964, 46: : 347.
68. Prostano, E. T. Audiovisual Media and Libraries, Selected Readings. Littleton, Co.: Libraries Unlimiter: 1972.
69. Prostano, T. Schnol Media Programs, Case Studies in Management. Metuchen, N.J.: Scarecrow, 1970.
70. Reid, J. C. \& D. W. MacLennan, Research in Instructional Television and Film, Washington, D.C.: U.S. Govt. Printing Office, 1967.
71. Russell, J. J., IV. "Comparative Effects of Seven Verbal-Visual Presenta":ion Modes Upon Learning Tasks," (unpublished Ed. D. dissertation) University of Southern California, 1970.
72. Saettler, Paul. History of Instructional Technology, New York: McGraw-H111, 1968.
73. Salomon, A. "What Does It Do To Johnny, A CognitiveFunctionalistic View of Fesearch on Media," Educational Resources Information Center, 1969. (M1crofiche: ED 034 734)
74. Schramm, Wilbur. Mass communicatluns. 2d ed. Urbana, III.: Didversity of Illinos Press, 1960.
75. Schramm, Wilbur. The Procese and Effects of Mass Communications, Urbana, Ill.: University of Illinols Press, 1960.
76. Srygley, S. K., ed. "School Library Services and Administration at the School District Level," Library Trends, 16(4) April, 1968.
77. Sullivan, P. Problems in School Media Management, N.Y.: Bowker, 1971.
78. Sullivan, P., ed. Realization: The Final Report of the Knapp School I1braries Project, Chicago: American Library Association, 1968.
79. Swarthout, C. R. The School Library as Part of the Instructional System, Metuchen, N.J.: Scarecrow, 1967.
80. Tickton, S. G., comp. To Improve Learning; a Report to the President and the Congress of the United States. U.S. Govt. Printing Office, 1970 .
81. Tosti, D. T., \& J. R. Ball. "A Behavioral Approach to Instructional Design and Media Selection, Final Report," Albuquerque, N.M.: Westinghouse Learning Corp., 1968.
82. Travers, R. M. W. Research and Theory Related to Audioirisual Information Transmission, Utah: Bureau of Educational Research, 1964.
83. Walker, Richard D. Availability of Library Service and Academic Achievement, Kesearch Series, No. 4, Springfield, Ill.: Illinois State Librar :763.
84. Wisconsin Department of Public Instruction, D_vision of Library Services, Standards for School Library/Media Programs, 1972-75, Madison, Wis.: WDP1, 1972.
85. Worth, Sol. "Aspects of Visual Communication," in Wm. H. Allen, Readings in Educational Media Theory and Research, Washington, D.C.: Office of Education, 1968.

APPENDIX I

TESTING INSTRUMENTS

A. Media Preference Test

Before students were given the media preference test, this opening statement was used as a means of gaining the students' confidence and cooperation.
"I am conducting a study in cooperation with the Madison public school system. We nee your help so we can find out what kinds of library media you like best and what you learn from best. Right now you will be given a media poll so you can tell us what media or kinds of material you would choose to use in an IMC. Next you will learn a story from one kind of material, and las': we will give you two sets of questions to answer. We hope your answers will help us to make the -MC's more enjoyable and useful for you. So we want you to answer the questions as truthfully and accurately as possible."
A. Media Preference Test

MEDIA POLL

This poll gives you an opportunity to indicate how well you like different types of library media. You may indicate how well you like the media by ranking the five choices from one to five. Write one (1) by your first choice, two (2) by your next choice and so on down to five (5) for your last choice.

EXAMPLE: During winter vacation I like to do these activities:
\qquad Toboggan
\qquad Travel
\qquad Ice Skate
\qquad Rest
\qquad Ski

Media poll: wite the number of your choice in the blanks below.
\qquad READ: read a book or printed …rds.
\qquad LISI'EN: listen to a tape recording of words.
\qquad VIEW/READ: view picture sildes with printed words deseribing the pictures.

VIEW/LISTEN: view picture slides with tape recorded words.
\qquad READ/LISTEN: read a book while listening to tape recorded words.

B. Medla Learninn Performance Test for Script : :

American Indians of the Plains: How They Lived

Directions:

"I will read each nuestion aloud twice. Write vour ansker below the guestion after vou have heard it read at least once. Try to answer briefly in from one to five words. The words don't need to be snelled right or to make a sentence if you have the riaht idea. Try to do the best you can."

AMERICAN INDIANS OF THE PLAINS: HOW THEY LIVED

1. Indian women used beads for decoration. What else was used to decorate warrior's shirts?
2. What animal no longer alive in America was hunted by early Indians?
3. Why did early Indians make rock paintings or pictographs?
4. What invention made by the Indian helped him nunt better?
5. What did Indians call the horse?
6. When did Indians start using horses?
7. Indians had many uses for parts of the dead buffalo. Why was buffalo skin folded into parfleshes?
8. What was the buffalo's stomach used for?
9. What was the buffalo's neck skin used for?
10. How did the Indian use buftalo horns?

BEST COPY AVAILABLE
11. Name a game devised by Indians.
12. How was an Indian tribe governed?
13. When did Indians go to reservations?

C. Media Learning Performance -ast for Script 2.

Directions:

"I will read each question alnud thice. Write your answer below the question after you have heard it read at least once. Try to answer briefly in from one to five words. The words don't need to be spelied right or to make a sentence if you have the rignt idea. Try to do the best vou can."

AMERICAN INDIANS OF THE PLAINS: THEIR HISTORY

1. Why were the Spanish disippointed in Indian territory?
2. What did Spanish explorers call the buffalo?
3. What did La Salle do when he canoed down the Mississippi River?
4. Why were Lewis and clark sent through Indian territory?
5. What did settlers call the covered wagons they took to Oregon?
6. What did a trader tell hungry Indians that led to killing of settlers?
7. What did Indians call a trail used by settlers coming to Indian territory?
8. Who was the "Glory Hunter"?
9. Why did whites win the Wagon Box Fight?
10. What Indian Ghiefs fought viith Sitting Bull against the whites"?

11. What generals led armies defeated by the Sioux and Cheyenne?

12. What whites were even more effective than the army in making the Indians "go to the reservations or starve"?
13. Why did Indians start doing the Ghost Dance?
14. Why did Indians quit doing the ghost dance?
D. Media Attitude Test

ATMITUDE POLL

This poll is an opportunity for you to indicate how you feel about the Indian story you have just learned.

Respond to every 1tem by circling the choice that best expresses your feelings.

You may respond by circling one of four choices: $S D$ D A SA

$$
\begin{aligned}
S D & =\text { Strongly disagree } \\
D & =\text { Disagree slightly } \\
A & =\text { Agree slightly } \\
S A & =\text { Strongly agree }
\end{aligned}
$$

As practice circle your choice for the statement below:
0 . I would rather ski than 1ce skate. SD D A SA

1. This was a dull story. $S D$ D $A \quad S A$
2. I learned a lot from this story. $S D$. D A SA
3. It was hard to pay attention to this story.

SD D A SA
4. It was easy to follow the thoughts in this story.

SD D A SA
5. Tiais story wasn't as eood as most otnries.

SD D A EA
6. This story got me to want to know more about Indians. SD D A SA
7. This story took too long.
8. I like this kind of story.

$S D$	D	A	$S A$
$S D$	D	A	$S A$

$$
\text { SD D A } \quad \text { SA }
$$

BESI COPY AVAJLABLE

Appendix II: Scripts

The scripts included in this appendix are based on the sound filmstrips produced and published in 1972 by Coronet Films, Chicago, Il. entitled:

American Indians of the Plains How they lived

American indians of the Plains Their History

best copy avarable

A. Script 1.

AMERICAN INDIANS OF THE PLAINS
 HOW THEY LIVED

For many of us the name Plains Indians brings to mind images of camp cirles with warriors in shirts and leggings of deer hide splendidly decorating with beads and porcupine quills.

We see a plains village as a group of gracefully decorated teepees, the women and children of the village waiting pat1ently for the return of their braves.

Most of all, we see in our minds the proud hunters of the Plains racing their ponies after a herd of stampeding buffalo.

While these pictures capture the romance and beauty of Plains Indian life, we should remember that the culture they depict lasted only a short time, from roughly 1700 to 1880, less than 200 years

By 1880 almost all Plains Indians were conped up within reservations and the free life of the Prairies which began thousands of yeirs earlier bever : fitrace the past.
 pone, he hunted witr :

bones of mammoths, fur-covered ancestors of the modern elephant.

For the most part, however, these early men in America hunted animals familiar to us, such as deer, elk, and of course buffalo.

A successful Indian hunter needed great skill to get within a spear's throw of the graceful antelope, the fastest an1mal of the Plains.

With his primitive weapons, the prehistoric hunter had to be very brave to take on the buffalo. One vay to hunt the huge animals was for the whole tribe to cooperate in stampeding a herd over a steep cliff.

Such a cliff is called a buffalo jump. Rock paintings of men and animals mingled with geometric designs can be found on some of these cliffs.

These paintings called pictographs were not made for art's sake. They were thought to be a form of magic. To an ancient hunter, a picture of a buffalo or deer with a spear or arrow drawn through it assured the successful outcome of his hunt.

Often the hunier returned empty-handed. Life :as hard for the early Plains dwellers. A famfly needed a larce hinting
territory of many square miles to sustain itself. The early nomads had to be constantly on the move following the game.

Before 1700 the Indians were primitive hunters roaming the Plains on foot. Although some tribes learned to plant corn, beans and squash, they had no horses or tools made of metal.

Before the arrival of the white man, dogs were the only domestic animals. The people of the Plains used to attach a frame made of two sticks to a large dog's back. Bundles were tied to it which the animal could drag along.

No great material culture could develcp under these conditions. People lived in caves or primitive brush shelters because they had no way to transport large teepees of heavy hides and lodge poles.

The invention of a spear throwing stick, called an ablotol, was a big step forward from the crude bone and stone weapons used earlier. With it a spear could be hurled farther and more accurately than before.

A giant step forward in human development was the discovery that plants could be cultivated for man's use. Tribes now havirs learned to practice agriculture as will as hunting, were no longer dependent on luck in finding game and were able to settle down in permanent villages where it was much easier to accumulate material wealth.

But it was the acquisition of the horse around $1 \% 00$ which almost overnight transformed the life of the Plains Indians from primitive hunters into proud, hard-riding lords of the Plains.

The Indians also obtained metal tools and inearms, first from neighboring tribes and then ?ater from white traders who ventured into the Plains.

The horse qave rise to the typical Piains culture of the 18th and early 19th century.

The Indians, who had no name for the horse called it the spirit dog, could now hunt buffalo from horseb:ck. Suddenly the supply of buffalo seemed limitless.

During this period the economy of the Plains Indians depended almost entirely on the buffialo. The shaggy, magnificent animals roamed the Plains in enormous herds that covered the Prairie from horizon to horizon.

The buffalo furnished the Indian with most of the things he needed for his livelihood. As soon as the animal was killed and skinned, the women busied themselves stretching, scraping and tanning its hide.

The skins furnished covering for the teepees. A small teepee consisted of eight skins. For the Chief's teepee or the
medicine lodge as many as 21 buffalo skins were used. Sixteer. $2 . c d g e$ poles were needed to support such a large teepee.

Skins were not the only part of the buffalo to be utilized. Their bones had many uses. A flesher was used to scrape hides clean. The knife was sharp and deadly; it was made from a buffalo's leg bone.

The buffalo's bladder was used as a water bag. Pleces of hide were folded into so-called parfleshes, huge envelopes in which people carried their possessions.

Extra thick pleces of skin from the neck of the buffalo were used for shields. Other parts were made into drums.

The buffalo's stomach served as a natural stewing pot. Water was boiled in the stomach which was tough enough to resist fire.

The horns were made into spoons and ladies. No part of the animal was wasted. It is almost impossible to exaggerate tie buffalo's importance for the Flains Indian. It has been estimated that no fewer than 87 differert articles could be made fiom a buffalo's body.

Life wasn't ail work for the Plains Indian, however. They had time to play. They devised various sports and games such as lacrosse.

They spent much of their time dancing. Most Indian dances had religious meanings, such as the buffalo dance. Performing it was like praying for a successful hunt.

Many old dances are still performed today. Indians are as fond of their dances now as they were 100 years ago.

Indian men lived in a democratic society. A man became Chief through his bravery and wisdom. He had to follow the advice of a council of old and experienced men. Obedience to h1m was voluntary.

Essentially the Plains were a man's world. A man risked his llfe every day. He might be gored by a buffalo or thrown from his horse or he might be killed in a war against an enemy tribe.

For this reason the man was not expected to work at home, and because so many men did nct return from a hunt or a raid, warriors often had more than one wife. Woren always outnumbered the men and the Indians beileved that, none of them should lack the protection of a husband or be denfed the joys of rearing a family.

While men ruled the affars of the tisibe, the women ruled tio lowes. A provert sat: a rondrat teone is like a
 tion dealn ahi bruw.

Thus domest'.c work was for women. They made the teepees. They also cooked meals, tanned hides, made warshirts and moccasins. They spent much time decorating the things they made, and they made sure the man was always fed first.

The life of the Plains Indians before they settled on reservations was often harsh and dangerous, but it was also full of excitement and splendor. It gave the people of the Prairie a wonderful sense of freedom which perhaps has never been surpassed.

An old Sioux chief said:
When the Prairie was covered with buffalo, nobody was hungry.

Without jails, we had no crime.
Without locks and keys, we had no thieves.
Without written laws, we had order.
Without fences and barbed wire, we were free.
B. Script 2.

AMERICAN INDIANS OF THE PLAINS: THEIR HISTORY

In the far North near the Arctic Circle, America and Asia almost touch. Here, many thousands of years ago, men crossed in search of a better land in which to hunt and fish. These men were the ancestors of the American Indians.

- Spreading out over the cuntinent after many generi.tions they arrived on the Great Plains.

Skillfully made spearheads have been found with the bones of extinct animals, proof that man inhabited the Great Plains at least 10,000 years ago.

The Spaniards, searching for gold, came to the new world in the 1500 s . Irdians interested them only for plunder or as slaves.

The first whit.' man known to have entered the land of the Plains Indians was Coronado. Looking for the fabled seven sities of gol.d, he instead found the Pieblo villages of the Zuni and then those along the Rio Grande River.

Not finding any fold, Coronado and his men marched north, penetrating the plains of what is now Kansas, finding villages of grass buts belonging to the hichita Tribe.

They were also the first white men to encounter buffalo, which they called Indian cattle.

During some of the early Spanish expeditions, some horses escaped from their European masters and in the course of time formed large herds of wild mustangs. The importance of the acquisition of the horse to the Indian cannot be overstressei. It transformed him from a slow-moving wanderer into the swift proud horseman of the Plains.

It was the French and the English who discovered that there was gold in furs, and that the Indians would trade a valuable pelt for a few shiny glass beads.

Traveling in canoes, the exp dition of Messieur de La Salle salled down the Mississippi River late in the 17 th century establishing a string of trading posts reaching from the Great Lakes to the Gulf of Mexico.

Traders following in La Salle's footsteps brought rifles, thread, sewing needles and knives and blankets which they traded for furs.

Late in the 18 th century a new kind of hat made of beaver fur becane popular in Europe. As the price of beaver pelts skyrocketed, more white trappers than ever bet'ore ventured into the Western Plains where they culid obtain the desired fur's.

These so-called mountain men were mostly Americans. Although trappers and Indians were after the same thing, beaver skins, the red man could get along with the trapper who lived and dressed like an Indian and often married an Indian woman.

In 1804 President Jefferson sent Lewis and Clark to find a route to the Pacific Ocean. The explorers needed the help of a brave l6-year-old Shoshone woman, Sacagawea. Carrying her newborn baby on her back, she was the expedition's guide and translator.

Lewis and Clark gave Americans a better knowledge of the Plains Indians. They described the various tribes and mapped their territories at the beginning of the 19 th century.

At first only a handful of trappers had ventured beyond the Missouri. But starting in the 1840 s mounting waves of white settlers on their way to Oregon rolled across the Plains. They traveled in covered wagons called prairie schconers.

After them came the 49 ers , miners on their way to the newly discovered gold fields of California.

To rotect the travelers from uririendly Indians, the army builit a number of forts from which the soldiers controled the surproundrig plains. Some gold seekers and settlers chanked thetr minds afuat gulag on to the west Coast.

Instead they settled down near forts in Coloradc and the Dakotas.

Some tribes, such as the Sioux and Cheyenne, decided to fight for the lard they were losing. One chief said: "They told us they only wanted a little land, as much as a wagon could take between its wheels. You can see now what it was they wanted.

Other tribes reckoned that they would do better if they helped the whites. Among these were the Crow, the Arikera, and the Shoshone. Disunity among the Indians helped the white sonquerors.

The battles between whites and Indians who defied the white man's authority are generally well known and resulted in atrocities on both sides.

In 1862 when the Sioux waited in vain for food supplies promised by the government, a trader told them to "eat grass". Grown angry, the starving Indians killed many settlers and stuffed their mouths with grass.

Following their attack on the settlers, 38 of the Sioux were hanger in reprisal.

And when a U.S. Army Colonel, S. II. Chittincton, attacked a peaceful Cheyenne village, he told his troups: "Kill and soalp all, big and small. Niffs make life." By this he

best cop avallable

meant that it was smart to kill little boys before they could grow up to fight back.

In 1865 the great Sioux Chief Red Cloud tried to halt the construction of a new road through Indian territory. This was the Bowsman Trail. The Indians called it "thieves road", knowing that 1 i would bring more settlers and miners to steal their land.

Determined that the road building should go on, a hot-headed army captain, William Fetterman, said: "With 80 men I could ride through the whole Sioux nation." Fetterman had exactly 80 men when he and his entire command were wiped out by warriors under Red Cloud and another famous S:Loux Chief, Crazy Horse.

The Indians had won a victory. But the soldiers then obtained a new kind of rifle that could shoot five times as fast as the Indians' older models. With the help of this weapon, the soldiers killed many Indians during the socalled Wagon Box Fight.

Soon after, a new figure appeared on the Plains, Colonel George Armstrong Custer. This is how one writer described him: "His broad sombrero turned up, his golden locks dangling to his shoulders, a pistol in his boot and a ponderous sword at his side, so rode the wild daredevil with his pack

3FST COPY AVAILABLE

of 30 dogs braying at his heels."

Custer was nicknamed the Glory Hunter. In the winter of 1868, he surprised a village of peaceful Cheyenne killing hundreds of Indians. The C.eyerne had been flying a large American flag, but it proved to be no protection.

The Black Hills of South Dakota were sacred to the Indians as the dwelling place of their gods. Custer led an expedition into the Black Hills in violation of treaties made with the Indians. Soon the general sent back word: "There is gold in the grass roots."

The gold rush was on. The Indians saw their last hunting grounds overrun. The free life of the Plains Indians was coming to an end. They were told to settle on reservations or die.

In 1876 Sitting Bull, not a war chief but a great spiritual leader, rallied the Sjoux and Cheyenne for one last battle saying: "The areat Spirft did not make me a reservation Indian."

In this battle, three army columns converged upon the Indians. One led by General Crcok met the Indians at the Rosabud fiver. The great warrior Crazy Horse jeit the brayos shouting: "Tt's a enod daj to dic." Crock was defeated and retumed to his bado.

Now it was Custer's turn. The Glory Huntei had been told to wait for the third army column commanded by General Terry, but instead he attacked as soon as he found the Indians encamped along the Little Bighorn River.

Custer had been lured into a trap. Suddenly a mass of red horsemen led by Crazy Horse, Gaul and other chiefs rode over Custer and his men. There were no survivors. This fight is called Custer's Last Stand, but in reality it was the Indians' last stand.

For the whispering wire and the iron snake, the telegraph and the railroad, soon criss-crossed the Plains making Indian resistance to the white man hopeless.

The buffalo was disappearing. General Sheridan said: "The buffalo hunters have done more to settle the Indian question than the entire regular army. They are destroying the Indians' commissary. They have to go to the reservations or starve."

Chief Joseph of the Nez Pierce 'Tribe summed up the Indians' plight: "I am tired of fighting. My man are dead. The little children are starving. My heart is sad. From where the suri now stands, I shall ficht no more forever."

Great chiefs and warriors became circus performers in Buffalu Bill's Wild Weist Show as the hunting days came to an
end. The first years on the reservations were hard. The soil was poor and rations were often late or insufficient.

In 1890 a prophet from the Piaute Tribe preached a new belief called the Ghost Dance Religion. It was to bring back the dead Indians and slaughtered buffalo. The Ghost Dance spread quickly from tribe to tribe.

Many whited falsely believed that the Ghost Dance was the signal for a major Indian uprising. At wounded Knee, South Dakota, a band of ghost dancers were surrounded by soldiers of Custer's old regiment. In the massacre which followed over 200 Sioux, mostly women and children, were killed.

Wounded Knee was the end of one chapter in the history of the Plains. But it was not the end of the Plains Indians. Today they are busy writing a new chapter of how to be part of modern America while remaining true to their cld proud heritage.

APPENDIX III: Sample size and Power Calculations

A. Using a formula developed by Levin, Walster and Cleary to find sample size based on a 2 (normal) distribution, an approximate sample size was calculated.

Formula $A: \quad n=\frac{\sum_{k=1}^{k} a_{k}^{2}\left[z(1-\alpha)-z_{\beta}\right]^{2}}{\psi_{\sigma}^{2}}$

$$
\begin{aligned}
& \text { where: } \sum_{k=1}^{k} a_{k}^{2}=2 \text {, the sum of coefficients for a contrast } \\
& \text { of two means, } \\
& z_{(1-\alpha)}=z_{(.95)}=1.96 \text {, the cumulative } \\
& \text { probability for } \alpha=.05 \\
& z_{\beta}=z_{(.10)}=-1.282 \text {, the cumulative prob- } \\
& \text { abllity for } \beta=.10 \\
& \psi_{\sigma}=.58 \sigma \text {, the difference between two means } \\
& \text { the researcher wishes to detect. }
\end{aligned}
$$

B. As the F test is not based on the z distribution, n was increased to 64 and a variation of a formula found in K1rk, p. 107-109 was used to ascertain the power of the F test for $\mathrm{n}=64$.

Formula $B: \phi=\sqrt{n} \sqrt{\frac{\psi_{\sigma}^{2}}{2\left(v_{1}+1\right)}}$ for contrasts of pairs of

$$
\phi=\sqrt{64} \sqrt{\frac{(.58)^{2}}{2(2)}}=2.32
$$

Reading from Table D. 14 in Kirk, p. 540:

$$
\phi(\text { for } \alpha=.05)=2.32 \text { gives a power of } .90
$$

Further calculations were conducted to determine power at lower differences between means to see whether trivlal differences were likely to be detected.

Relations between power and difference of interest that can be detected between pairs of means are shown below:

Difference of Interest	Power $1-\beta$	Calculation Formula
$.58 \sigma$.90	B
$.35 \sigma$.50	B
$.30 \sigma$.40	B
$.12 \sigma$.10	A

As the split-plot analysis of variance (ANOVA) design used for analysis of learning data was more conservative than the 3-way ANOVA design for which these calculations were conducted, it is unlikely that trivil differences of less than $.2 \sigma$ could be detected.

APPENDIX IV: Scores Collected For The Three Testing Instruments
A. Students Responses on The Media Preference Poll

1. In parentheses find the number of students who chose each ranking for each media choice of the total 320 students.

PRINT:	1(161),	2(46),	3(30),	4(35),	5(48);	$\Sigma \mathrm{R}=723$
SOUND :	1(29)	2(79),	3(83)	$4(79)$	5(50);	$\Sigma R=1002$
VIEW/READ:	1(19),	2(47)	3(85),	4(92),	5(77);	$\Sigma \mathrm{R}=1121$
VIEW/LISTEN:	1(91),	2(92),	3(71),	4(53),	5(13);	$\Sigma \mathrm{R}=765$
READ/L」STEN:	1(19),	2(57),	3(52),	4(60),	5(132)	$R=1189$

2. Each five digit set of data listed below constitutes the five choices of one student. For example, 15433 shows this student ranked media in the following order: Print-1, Sound - 5, View/Read-4, View/Listen -3, and Read/Listen-2.

15432	14325	23415	14325	45312	32415	12435
45312	53421	15324	42135	15342	13524	15234
15432	13542	12435	24135	42315	13245	21534
13425	12543	54312	34215	15324	24513	34215
51324	32415	41325	53214	15423	12543	52314
13542	15342	13245	53214	15324	15432	51324
12345	12534	45312	23514	12453	42315	54132
31425	13425	12345	21435	15432	53214	54312
14325	12345	54213	13254	54213	23415	53214
14532	13524	13524	31524	43125	12543	54321

12435	14325	25431	35241	43215	15432	42315
34125	13425	14523	12435	12435	32415	13425
23415	13542	12435	42351	13542	13425	32415
12354	14532	12534	54312	21354	43215	54312
12435	34125	42531	54321	14523	14523	13524
35412	24315	23415	21435	12543	15342	15432
53214	14325	14523	53214	35241	24315	21345
51234	14253	15234	13425	21345	12435	52413
12534	14523	14325	13425	14532	13524	43125
12435	14523	13542	12543	12435	14532	54312
15342	13542	12435	14325	13425	15432	32415
52314	12534	52341	41523	13542	12543	14253
23514	14523	15432	15243	15432	12435	53214
13425	43521	13452	54312	13524	14235	14325
43512	14325	13425	14325	12453	23514	34521
52413	42513	13542	51324	15243	32415	54213
25143	31425	12345	52314	14325	43512	15342
52314	13245	34215	42135	13245	52413	12534
52314	12543	13425	14532	14325	34215	13524
43215	14235	12534	15234	15423	32415	12435
45312	51324	15423	23514	14532	13245	23415
25431	54312	13425	15342	32514	13524	24315
24531	54312	41325	14325	14325	12534	12435
13524	24135	34512	43215	14325	34215	51324
15432	2345	12435	54213	12453	12354	21543
11532	43215	15423	13425	45213	25413	25134
23415	15243	13542	14235	34521	14325	54132
34125	41523	25431	43521	51234	15342	21435
12453	43215	32415	15324	15324	12435	54312
45213	12543	23514	34521	13524	21435	32514
14325	25143	52143	32514			
54123	22541	23145	51423			
21345	45312	23145	34215			
12435	13425	54213	13425			
21435	23514	23145	41325			
23415	12345	54312	15432			
14325	12435	14325	52413			
12543	23415	14325	13452			
24315	12435	51324	12345			
42315	12435	23415	43521			
103						

B. Student Scores on the Media Learning Tests

1. Individual raw scores in appropriate research design rell for 3 way $5 \times 2 \times 2$ analysis of variance.

Reading Achievement	Script	PRINT 1	SOUND 2	$\begin{aligned} & \text { PRINT/ } \\ & \text { PICTURES } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PRINT/ } \\ & \text { SOUND } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { PICTURES/ } \\ & \text { SOUND } \\ & 5 \end{aligned}$
1	1	$\begin{array}{rr} 11 & 6 \\ 10 & 5 \\ 9 & 5 \\ 9 & 4 \\ 8 & 4 \\ 7 & 4 \\ 7 & 4 \\ 7 & 3 \end{array}$	$\begin{array}{rr} 10 & 5 \\ 5 & 5 \\ 9 & 5 \\ 8 & 4 \\ 6 & 3 \\ 6 & 3 \\ 6 & 2 \\ 6 & 2 \end{array}$	$\begin{array}{ll} 9 & 7 \\ 9 & 7 \\ 8 & 6 \\ 8 & 6 \\ 8 & 6 \\ 7 & 5 \\ 7 & 5 \\ 7 & 1 \end{array}$	$\begin{array}{rr} 11 & 6 \\ 10 & 6 \\ 10 & 6 \\ 10 & 6 \\ 8 & 6 \\ 8 & 5 \\ 8 & 5 \\ 6 & 5 \end{array}$	$\begin{array}{rr} 12 & 8 \\ 11 & 8 \\ 11 & 8 \\ 11 & 8 \\ 10 & 8 \\ 10 & 7 \\ 9 & 7 \\ 9 & 5 \end{array}$
1	2	$\begin{array}{rr} 13 & 8 \\ 11 & 8 \\ 10 & 6 \\ 10 & 6 \\ 9 & 5 \\ 9 & 4 \\ 8 & 3 \\ 8 & 3 \end{array}$	$\begin{array}{rr} 13 & 7 \\ 12 & 7 \\ 11 & 6 \\ 10 & 5 \\ 10 & 5 \\ 9 & 3 \\ 8 & 3 \\ 7 & 1 \end{array}$	$\begin{array}{rr}13 & 7 \\ 12 & 7 \\ 12 & 6 \\ 12 & 6 \\ 10 & 4 \\ 10 & 4 \\ 10 & 1 \\ 9 & 1\end{array}$	12 10 12 9 11 8 11 7 11 7 11 5 10 5 10 5	12 8 11 8 11 7 10 6 10 4 9 4 8 4 8 4
2	1	$\begin{array}{rr} 10 & 4 \\ 10 & 3 \\ 9 & 3 \\ 6 & 3 \\ 5 & 2 \\ 5 & 2 \\ 4 & 0 \\ 4 & 0 \end{array}$	$\begin{array}{ll} 9 & 4 \\ 7 & 3 \\ 7 & 3 \\ 6 & 3 \\ 6 & 3 \\ 6 & 2 \\ 5 & 0 \\ 4 & 0 \end{array}$	9 4 7 4 7 3 6 3 6 1 6 1 5 0 4 0	9 4 8 4 7 3 7 3 6 3 5 3 5 2 5 2	$\begin{array}{rr}10 & 5 \\ 5 & 4 \\ 9 & 4 \\ 8 & 3 \\ 6 & 3 \\ 6 & 3 \\ 5 & 2 \\ 5 & 1\end{array}$
		(continued or next page)				

(table continued)

2. Individual raw scores in appropriate research design groups for a split-plot analysis of variance design analyzing treatment main effects and treatment by reading achievement interaction effects.

Media Presentation	Script	Group	$\begin{aligned} & \text { Reading } \\ & 1 \end{aligned}$	hievement 2
1	1	$\frac{1}{2}$ 3 4	$\begin{aligned} & 11,10,5,3 \\ & 9,6 \\ & 8,5,4,4 \\ & 9,7,7,7,4,4 \end{aligned}$	$\begin{aligned} & 9,5,4,4,3 \\ & 4,3,4,0 \\ & 10,6,3,2 \\ & 10,5,0 \end{aligned}$
	2	5 0 7 7	$\begin{aligned} & 13,9,8,4,2 \\ & 8,3 \\ & 11,10,9,3 \\ & 8,8,6 \end{aligned}$	$\begin{aligned} & 6,0,0,0 \\ & 3,3,1,1,1 \\ & 6,5,0,0 \\ & 4,3,1 \end{aligned}$
2	1	9 10 11 12	$\begin{aligned} & 6,9,2,2 \\ & 10,6,3 \\ & 8,5,5,4 \\ & 9,9,6,6,5 \end{aligned}$	$\begin{aligned} & 9,6,5,3,0 \\ & 6,3,3 \\ & 7,7,3 \\ & 6,4,4,2,0 \end{aligned}$
	2	13 14 15 16	$\begin{aligned} & 11,10,7,5,5 \\ & 12,7,1 \\ & 8,6,3 \\ & 13,10,9,7,3 \end{aligned}$	$\begin{aligned} & 5,1,0 \\ & 11,8,7,2,1 ; 0 \\ & 4,3,1,0 \\ & 10,5,1 \end{aligned}$
3	1	17 18 19 20 21	$\begin{aligned} & 8,8,7,5 \\ & 9,7,7 \\ & 7,7,6,6,5 \\ & 8,1 \\ & 9,6 \end{aligned}$	$\begin{aligned} & 4,4,1,0,0 \\ & 6 \\ & 5,1 \\ & 7,6,3 \\ & 9,7,6,4,3 \end{aligned}$
	2	$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & 10,7 \\ & 13,4 \\ & 12,10,9,6,1 \\ & 12,4 \\ & 12,10,7,6,1 \end{aligned}$	$\begin{aligned} & 4 \\ & 8,0 \\ & 6,4,3 \\ & 6,5,5,4,1,1 \\ & 5,4,1,0 \end{aligned}$

(tishle continued on following page)
(table continued)

Media Presentation	Script	Group	Reading Ac 1	ievement 2
4	1	$\begin{aligned} & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 6,6,6,5 \\ & 10,10,10,6,6 \\ & 11,8,8,6,5 \\ & 8,5 \end{aligned}$	$\begin{aligned} & 8,6,3,2,2 \\ & 7,4,4,3 \\ & 9,7,5 \\ & 5,5,3,3 \end{aligned}$
	2	31 32 33 34	$\begin{aligned} & 10,10,8,7,5 \\ & 12,12,5 \\ & 11,11,11 \\ & 7 \end{aligned}$	$\begin{aligned} & 7,7,6,5,1 \\ & 11,3,3 \\ & 8,8,2,1 \\ & 9,5,2,1 \end{aligned}$
\%	1	35 36 37 38 39	$\begin{aligned} & 9,7 \\ & 11,8,5 \\ & 11,10,9 \\ & 12,8,8,7 \\ & 11,10,8,8,6 \end{aligned}$	$\begin{aligned} & 4,3, ? \\ & 9,3 \\ & 8,5 \\ & 10,9,5,1 \\ & 6,5,5,4 \end{aligned}$
	2	40 41 42 43 44	$\begin{aligned} & 12,10,4,4 \\ & 11,9,8 \\ & 10,8 \\ & 10,8,4,4 \\ & 11,8,7,6 \end{aligned}$	$\begin{aligned} & 11,4,4 \\ & 9,3,0,0 \\ & 5,2 \\ & 11,9,1 \\ & 6,4,2,1 \end{aligned}$

Reading Achievement: $1=\mathrm{High}$
$2=$ Low
Script: $1=$ How They Lived
$2=$ Their History
Media Presentation: $1=$ Print
2 : Sound
3 = Print/
Pictures
4 = Print/
Sound
$5=$ Pictures/
Solind

RFST COPY AVMMMnIF
C. Attitude Scores

Individual Raw Scores on attitude test in $5 \times 2 \times 2$
Research Design Format

MEDIA PRESENTATION MODE						
Reading Achievement	Script	Print 1	Sound 2	$\begin{aligned} & \text { Prizat/ } \\ & \text { Pictures } \\ & 3 \end{aligned}$	Print/ Sound 4	Pictures/ Sound 5
1	1	29 18 28 18 26 18 23 17 22 15 20 14 20 14 20 13	26 18 25 17 24 16 19 16 19 15 19 15 19 13 18 8	31 20 28 20 26 19 26 19 24 16 23 16 22 15 21 14	31 22.5 30 22 29 20 29 20 27 20 27 19 25 16 24 16	32 21 31 21 30 20 29 19 27 19 26 17 23 15 23 13
1	2	28 21 28 21 26 21 26 20 25 18 25 16 25 14 24 13	25 22 25 19 25 18 24 15 23 14 23 14 23 13 22 12	31 23 30 22.5 28 22 28 20 25 16 25 15 25 13 25 10	31 24 30 22 28 22 28 22 27 18.5 27 17 26 15 26 13	30 22 29 21 29 21 28 19 27 16 26 15 25 13 24 12
2	1	29 20 26 19 24 18 24 17 24 17 23 15 22 14 20 11	32 21 28 21 27 20 26 19 25 18 25 17 22 14 21 14	26 19 24.519 23 16 23 15 23 14 22 14 20 13 20 11	28 23 27 22 27 22 26 22 26 21 26 18 25 12 25 10	31 23 31 23 30 22 28 21 27 20 25 17 25 15 23 11

(table continued on rext page)
nret rapy Avallarlf
(table continuation)

Reading Achievement	Script	Print 1	Sound 2	Print/ Pictures 3	Print/ Sound 4	Pictures/ Sound 5
2	2	$\left\lvert\, \begin{array}{ll} 30 & 16 \\ 26.5 & 15 \\ 25 & 14 \\ 24 & 12 \\ 23 & 10 \\ 18 . & 10 \\ 18 & 8 \\ 18 & 8 \end{array}\right.$	$\left\|\begin{array}{rr} 27 & 17 \\ 26 & 15 \\ 24 & 14 \\ 23 . & 14 \\ 22 & 13 \\ 21 & 13 \\ 19 & 9 \\ 18 & 9 \end{array}\right\|$	26 19 24 19 23 18.5 23 18 22 18 22 16 21 16 21 13	31 24 29 23 28 20 28 20 28 20 25 17 25 17 24 12	32 17 29 17 28 15 28 14 24 14 21 14 20 13 17 13

