AUTHOR	Dahlea. Glenn G.
TIMLE	The Effect of Like Ethnic Qualities upon Reading Tutoring of Third Graders. Final Report.
INSTITOTION	Regis Coll., Denver. Colo.
SPONS AGENCI	National Center for Educational Research and
	Development (DHEM/OE) . Washington, D.C. Regional
	Research Program.
BURFAU NO	BR-1-H-C 18-FR
PUB DATE	Mar 73
GPant	OEG-8-71-0020(509)
NOTE	23p.
EDRS PRICE	MF-\$0.75 HC-\$1.50 plus postage
DESCRIPTORS	*Arithmetic; *Cross Age Teaching; *Cultural Factors;
	Ethnic Studies; Grade 3; Interpersonal Pelationship;
	Mexican Americans; *Reading: Remedial Instruction;
	Tucorial Programs; *Tutoring

ABSTRACT

In order to study empirically measurable
characteristics of the tutoridl relationship between an older student and a younger student, two separate investigations were conducted during two consecutive academic years, using different third graders as tutees and college or high school students as tutors in each study. The first research investigation compared reading pretest and posttest scores of Chicanos tutored by other Chicanos in English, Chicanos tutored by other Chicanos in Spanish. Chicanos tutored by Anglos, and a nontutored Chicano control group. Results showed that tutors of the same sex have a greater influence on scores than any other group and that chicano students did not perform significantly better with Chicano tutors. The second research investigation was not based on ethnic considerations and was devoted to arithmetic. concentrating on possible sex. school, and sub-test part-score differences. Findings comparing pretest and posttest scores of the experimental and control groups showed significant gains by the experimental group (tutored pupils) over the control group. (Appendixes include lists of schools providing tutees and tutors. materials used in the studies, and an arithmetic score sheet.)
(JM)

Us DEPARTMENT OF MEAKTM Cpucartom sithpane mational imgtitute of BDUEATIEN
IMIS DOCUMENT MAS BEEN REDRO OUCEO EMACPLY AS RECEIVED FROM THE PERSON OR ORGANIZATION OR GSIN ATING IP POINTS OF VIEWOH OVINIONS STATED DO NOT NECESSAGILV REPGE SENT OFFICIAL NATIONAL INSTITUTE O EDUCATION POSITION OR POLICY

FINAL REPORT
 Grant No. OEG-8-71-0020 (509)

The Effect of Like Ethnic Qualities Upon Reading Tutoring of Third Graders

Glenn G. Dahlem, Ph.D.
Regis College
Denver, Colorado
March, 1973

The research reported herein was performed pursuant to a grant with the Office of Educatioil, U. S. Departinent of Health, Diducation and wolfare. Contractors undertaking such projects under Government sponsorship are encouraged to express frecly their professtonal judpment in the conduct of the project. points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.
U. S. department of
health, education aid welfare.
Office of Education
National Center for Educational Research and Development

Project No. 1-H-018
Grant No. OEG-8-71-0020 (509)

Dr. Glenn G. Dahlem
Assistant Professor of Education
Regis College
Division of Social Sciences
West 50th and Lovell Boulevard
Denver, Colorado 80221

The Effect of Like Ethnic Qualities Upon Reading Tutoring of Third Graders

March, 1973

U. S. department of healtil, education and helfare
 Office of Education
 National Center for Educational Research and Development
 (Regional Research Program)

Chapter 1 - LNTRODUCTION

This study had its origins in the desire to shed light on empirically mensurable characteristics of the one-to-one helping academic relationship between an older student and a younger one. Or, to state this focus colloquially, how best do "little kids" learn from "bigk kids", and why? it was decided to conduct two sejarate studies, one after the other, during the eighteea month contractural period. This enabled the resciarch to be carried on during two consecutive acadcmic: ycars, (1971-72 and 1972-73). In both studies, third graders were used as tutecs, and college and high school students as tutors. ilso in each study, tutors and tutess were drawn from both public and church - related schools. No tutors or tutwes from the first study were allowed to participate in the second investigation.

The first rescarch effort focused upon the subject of reading, and in addition to asking the global question of whether tutoring "helped", also looked for possible effects of tutor sex and ethnic background. The second investigation contered on arithmetic as its academic area, and besides asking the global question, was also concerned with tutor sex and age effects, and possible differences among the academic subdivisions of the arithmelic field.

Both studics used the simple empirical model of control group and experimental group (s). Both used the same pre and post measure, the two forms of the reading and arithmetic sub-tests, respectively, of the Comprehensive rest of Basic Skills. Proper randomization procrelures were employed in assiguing tutees to groups, and tutors to tutees. As far as pessible, orientation of tutors and tutees to the study was standardized from school to school and between the two studies. Hypotheses may be simply stated as seeking to test the null hypothesis lietween control and experimental groups, and among any subdivisions within these groups.

The research was divided into two separate investigations of the tutorial relationship. The first, conducted from November through April of the 1971-72 school year, centered upon possible ethnic-related differences in tutor effectiveness for the subject of reading. The second, conducted from September through February of the 1972-73 school year, was devoted to looking into several possible tutor-effectiveness variables for the subject of arithmetic.

Before discussing specifics of each investigation, it's possible to note several commonalities which existed for both. For example, tutors were drawn from the ranks of Regis College students, and students of three nearby public and three nearby Roman Catholic high schools in both studies. Tutees likewise were drawn from the third grades of several public elementary schools of two nearby school districts (Adams County \#12 and $\$ 50$), and from several Catholic parochial schools of the same geographical area. (Fur a specific listing of schools, see Appendix " A ".) Tutor philosophy of approach was held constant as well. Tutors were instructed to do whatever they felt helped, to seek advice from the classroom teacher, principal, school district read. or mathematics consultant, and from the grant researcher. Many d':. They were all cautioned to avoid continuing any one activity for t.. great a time span, due to attention-span limitations of third git rs. Appropriate instructional aids, such as reading games and mathematics cards, were purchased and made available to all tutors. Sever.. 1 in-service programs were held, in winch the grant researcher cooperated with school district reading and mathematics consultants. Orienting instructions during tutor recruitment were held constant. In no case was a rigid schedule of required tutor activities proscribed. All tutors were asked to work four clock hours per week or equiv. lent with assigned totes whenever school was in session for the duration of their respective research investigation. Those thu submitted expense vouchers were reimbursed at the rate of tea cents per mile transportation costs, plus materials, such as 3×5 cards, which they had purchased. No tutors were paid wages. All tutors save one received some form of academic "reimbursement"; high school students were allowed one-half credit toward graduation by their respective administrations; Regis College students were permitted to count their service for the aide experience required of all education students. (The one exception was a college volunteer not taking education.: Stringent disciplinary action was taken against five high schoolers and one college student who tried to falsify school attendance and go elsewhere.

Instrumentation was likewise kept uniform. Tubes were nominated for each study by class room teachers, through their principals, on standard forms. (Sec Appendix "B".) As a courtesy to teachers and principals, lutes' pere and post test scores were reported back, using a standardized letter. (See Appendix "C".) Different sub-tests of the same standardized appraisal instrument, the Comprehensive Test of Basic Skills, were used exclusively for empirical data collection. Forms R1 and Q1 of the arithmetic computation, operations, and functions sub-tests were used in the second study. (For sample sub-tests, see Appendix "D".)

Statistical treatment of data was also similar in both phases. Each attached analysis through a two tailed analysis of variance conducted by Mr. Frank Farina, Assistant Professor of Economics, Regis College. In
each study, Mr. Farina looked for effects of several possible variables: sex, schnol type, sub-lest part scores, etc. A summary of his findings is contained in Chapter lil.

The first investifation sought to compare reading pre and post test scores of Chicano third graders who had been tutored in one of three ways. To have been studied were: Chicanos tutored by other Chicanos in English; Chicanos tutored by other Chicanos in Spanish; Chicanos tutored by Anglos; and a non-tutored Chicano control group. Each tutored group was held roughly equal for sane sex/cross sex, college tutor/high school tutor, and public/paruchial schoul attended variables. The second comparison mode had to be dropped, for a most interesting reason. Not enough tutees could be found (within reasonable geographical limits) who could, or at least admit they could, speak Spanish fluently. While an adecidate number of college and high schoul students were oriented and "ready to go" as tutors in Spanish, more than half of them reported that their assigned child protested that he or she could or would not converse in that tongue. Those tutors were instructed to switch to Linglish. This dropped the number of tulees spoken to in Spimish below the number needed for data analysis.

The second research investigation was not based on ethnic considerations, and was deunted to arithmetic rather than reading. It was originally planned to look at effects of tutors who were good mith students as opposed to poor math students, with half of each group revealing their true math ability status to tutees, and half falsely representing their math ability status to tutces. This approach was dropped for two reasons. First, many tutors protested they were neither "good" nor "bad" in math, but "middle" or "averagי". 'This caused the researcher to suspect that a resultant improper dichotomization might lead to a spurjous 2×2 matrix, rendering statistical results worthless. Second, a surprising number of tutors protested that they could not mislead a child. Even when it was made rlear to them that the "lic" was only for research purposes, and could be corrected after the study terminated, a great reluctance still persisted. The rescarcher decided to drnp this approach, and concentrate on sceking possible sex, school, and sub-test part-scorc diferonces.

Of course, the results of che first study were known prior to the start of the second. As Chapter IIl will point out, significant findings in the same sex/cross sex area had materialized for reading tutoring of Chicanos. This naturally focused the researcher on the question whether a similar finding would result for a predominatly non-Chicano tutor and tutee population in arlthmetic.

A. First Research Study

The quality of education differences between schools with high Chicano enrollment and schools with high Anglo enrollments has become evident because of the systematic elimination of Chicanos from opportunlties for higher education. One method of reducing this quality differential is to individually tutor those Chicano students and thus, hopefully, upgrade the quality of their education.

This study attempted to measure the effectiveness of tutoring as a method for upgrading students in the third grade or retained in second grade at selected schools in the metropolitan Denver area. Special emphasis was directed toward the type of tutor who might be most effective at tuturing.

Selcction of Schnols and Students
Thirtcen schools were selected based on a subjective analysis of the income levels in the Denver area. Seven of the schools were judged to be in lower income areas, four in middle income areas, and two from high income areas. The schools contacted showed a willingness to participate in the study. A list of the schools by income is given in Appendix A.

The principals in each school, in conjunction with the teachers in the schools, were asked to submit a list of ail students whom they thought would be in need of tutoring. All students chosen were Clicano. The students who were willing (because of parental pressure or self-willingness) were given the vocabulary and reading comprehension sections of the Comprehensive Tests of Basic Skills (CTBS). Either form R level 1 or form Q level 1 was administered depending on the age of the student in question.

Twenty-two students were randomly selected as a control group. The remaining sixty-threc students were then tutored for six months using either college or high school tutors who were either Anglo or Chicano. At the end of this time perjod, all eighty-five students were then retested using the same test.

Sample Size
Since there were sixteen independent predictors being used in the model, a total sample size of 90 would have been preferred with a similar number available for cross-validation purposes. Since only 85 students were available in total, it was decided to use 60 students for the original run and hold 25 for crossevalidation purposes. Of the 60,11 were control students and the remainder tutored students.

Variables in the Model

Five basic comparisons were judged important: 1) comparisons for all stuuents between pre and post tests for the control and experimental groups ; 2) comparisons between students who were tutored by Chicanos and those tutored by Anglos; 3) those tutored by persons of the same sex and those tutored by persons of the opposite sex; 4) those tutored in parochial schonis and those tutored in public schools; and 5) those tutored by high schnol students and those tutored by college students. The criterion variable was the retest scores. The list of variables is shown in Table I.

TABLEE I
CRITERICN AND predictor variables - reading

1.	retest scores	No. of Students 60
2.	pretest scores	50
3.	students tutored by Anglo tutors	34
4.	students tutired by Chicano tutors	26
5.	students tutored by tutors of the same sex	35
6.	students tutored by tutors of the opposite sex	25
7.	students tutored in public schools	41
8.	students tutored in parochial schools	19
9.	students tutored by high school students	37
10.	students tutored by college students	23
11.	students in the tutored group	49
12.	students in the control group	11
13.	interaction of pretest scores and firglo tutors	
14.	interaction of pretest scores and Chicano tutor	
15.	interaction of pretest scores and tutors of the	
16.	interaction of pretest scores and tutors of the	ite sex
17.	interaction of pretest scores and public school	
18.	interaction of pretest scores and parochial sch	udents
19.	interaction of pretest scores and students tuto	high school students
20.	interaction of pretest scores and students tuto	college students
21.	interaction of pretest scores and the experimen	tored) group
22.	interaction of pretest scores and the control g	

Analysis

The analysis was divided into two general areas: 1) to determine if the pretest scores were significantly different from the post test scores in terms of the control group and the tutored group; 2) to determine if the types of tutors and types of students had any significant effect upon post test scores. If there are significant differences between the control ind experiment group, then the control group can be dropped to analyze the types of tutors and students in the experimental group.

Correlation Analysis
Tables Il and III show the product moment correlations for the control and experiment groups and for the experiment group alone.

Pretest scores explained about 72% of the post test scores uniquely, while the type of school tended to explain 44%. As will be discussed later this tended to create some problems, although the result was not surprising.
first comparison of reading control. and experimental groups

[^0]

Control $\lambda=49$
Experiment $\quad N=11$

	1	2	3	4	5	6	7	8	9	10	11	12
1	1.00											
2	.72	1.00										
3	-.25	-.34	1.00									
4	.25	.34	-1.00	1.00								
5	.21	.10	-.18	.18	1.00							
6	-.21	-.10	.18	-.18	-1.00	1.00						
7	-.17	-.04	-.14	.14	.31	-.31	1.00					
8	.17	.04	.14	-.14	-.31	-.31	1.00	1.00				
9	-.06	.01	-.10	.10	.04	-.24	.84	-.84	1.00			
10	.06	-.01	.10	-.10	-.24	.24	-.84	.84	-1.00	1.00		

In the tutored group the pretest scores explainci 72% of the post test scores, with the effects of the types of tutors relegated to explaining the remainder.

Angla tuturs (3) showed an inverse relationship for hoth retent and pretest scores, which was predlctable since virtually all subjectis were Chicanos. Opposite so: tutors (6), surprisingly, showod an inverse relationship, although it was very weak. The correlations betwenhigh school and college tutors and pre and post test scores were very low (.06) but directionally, the signs changed from pre to post testing.

Means and Standard Deviatinns
Jable iv shows the means and standard deviations when comparing pre and post test scores in the experimental and control group. Table V then shows the manas and standard deviations for the experimental group alone.

Variable	TAbise IV		Number of Subjects	Varsable	Mean	Std. $\begin{aligned} & \text { Pable } \\ & \text { Dev. }\end{aligned}$	v
	Mean	Sta. Dev.					Number of Subjects
1	34.38	12.94	60	1	33.63	12.77	49
2	25.72	11.03	60	2	25.94	11.50	49
	$=3.945$				=3.132		

Thus, when the control group was dropped from the analysis, the post scores tended to become slighly mure tightly clustered about a mean score, which was slightly lower. This might be expected after tutoring. Both t values were significant.

Regressinn Analysis
The First Comparison. The first comparisou was made to make certain that there was a significant difference between pre and post test scores between the control and experiment groups. Chart 1 gives the sequence of testing. The numbers in each box show the variables which were retained in the model along with the appropriate coefficient of determination (RSQ) and F ratio score. The full model was compared to the zero model to note any significant differences between the full model and a mean value estimate of the criterion variable (the unit vector). As shown in the chart the $R S Q=.6428$ with an F ratio $=5.28$. The second comparison was between the full model and model 2 which had variables 11, 12, 21, 22 dropped from the equations to determine whether they uniquely
contributed f: the full model. The RSQ $=.5844$, but the F ratio $=2.40$, EEST CO:S: AlULIABLE
which was sig,n: ficallt at the .0797 level.
Although : 10 gencral level of $K S Q^{\prime} s$ in the full model is relatively low, and althouth the restrictud mudel "explained" only approximately 6% of the variation, the more important puint here may be the significamce, because this indicates a difference between experiment and control group scores.

Since sufficienz sigaiffance was indjated, an interaction test was made by comparing model 7 to mulel 3. The interaction variable accounted for only .0122 of the variation but again $F=1.52$, which was significant at the 22% level. This indicated a relatively low level of interaction, bat yet enough to raise concern. One possible coplanation is that the schools in which the students wore rested reilected different levels of student: abilities and these tended to distort pre and post test scores. In order to check this hypothesics, model 5 was compared to model 6. Parochial and public school vectors wore now included with the experiment and control variables. When the lattur variables were dropped frum the model, the unique contribution was only 0185 , whith tice F ratio $=0.78$. Apparently, there is no significant difference between the experinuintal and control group and parochial and public school students. A check of the students in the control group indicated that 12 had been terited in public schools, while 10 had been tested in parochial schools.

Another possibility is that the better students hid been inadvertently placed in the control group, and thus the higher experimental scores correlated with these. There was no way to test this possibility without rechoosing the control studeuts.

In any event further study is recommended to study the tutoring effects between schools.

The somewhat unsatisfactorily high level of interaction tends to distort the true mean differences between the experiment and control group; despite this, however, it was decided to test for main effects. Model 3 was collapsed into model 4. Only .0183 was uniquely explatited by dropping group membership; however, the F ratio $=2.23$, which was significant at .1371 . When the pretest scores were cropped, this accounted for most of the RSQ and was highly significant.

The impurtant point to be made here is that the level of signiffeance is the important critcrion by whith this model is to be measured. Post test scores are not to be predicted based on experiment or control grouping. The only thing that was necessary for this model was that there be a significant difference between the control and experimental group to allow further analysis to be conducted on the experimental group. Cross validation was not deemed necessary here because prediction was not per se the issue.

The Second Comparison. Despite the interactions which were generated in the first set of comparisons, it was decided to perform further analysis on the experimential group only. The object here was to determine if membership in any one of four groups weuld predict post test scores. The groups were: (1) Anglo tutors vs. Chicano tutors; (2) tutors of the same sex vs. tutors of the opposite sex; (3) parochial school vs. public school students; and (4) college tutors vs. high school tutors.

Chart 3 shows the development of the analysis for this set of comparisons. Each of the above groups was systematically dropped from the full mode. Whether the tutor was Chicano or not and whether the tutor was a high school tutor or not was immaterial. The RSQ's and Fratios are shown on the chart.

The unique contribution of the difference between public and parochial school students was .0437 with an F ratio $=1.41$, which was significant at .2561. Since the previous analysis showed that further research was necessary to isolate the individual school contributions, this group was dropped from the analysis.

SECOND COMPARISON OF VARIABLE LiMtERICTION OF READING SUBGROUPS

Tutors of the opposite and same sex explained 5.75% of the model with an F ratio $=1.85 \mathrm{significant}$ at .1545 . This group had greater significance and a greater unique contribution than any of the other groups. It was therefore decided to test this group ior interaction and main effects. Model 11 was compared with model 9. This test retained the sex membership vectors but eliminated the interaction variables. The unique contribution was only 0024 with an F ratio of 0.24 . These results allowed the main effects testing wherein model 9 was compared to nodel 7. The unique contribution of sex group membership was 0.231 or 2.31% with an F ratio $=2.31$, significant at .1313 . Thus of the four compirisons in the experimental group, only tutors of the same sex showed any reasonaile amount of significance.

By eliminating all groups except for the sex group membership and the pretest variable, the model explained 54.17% of the 62.68% of the full model; only approximately 8.5% of the predictive power of the model was lost. The best model. ior predicting experimental post test scores would then be:

Post test scores $=$ Pretest scores + Tutors of the same sex - Tutors of opposite scx.

Cross Validation

Cross vilidating the data against the above model gave an RSQ=.32. This poor showing may well be because an $n=14$ was used.

Summary and Conclusions
The mosi striking feature of the analys is was the low RSQ values which were gelerated with the full model. Since the pretest scores contributed so heavily to the prediction of the post test scores, one must assume that certain key variables wire left out. One such variable may be the schools in question. The interactions generated between the experimental and control groups clearly shovs, in my view, the need for school comparisons.

Tutors of the same sex apparently have a greater influence on scores then any other eroup. Thus, when at all possible, boys should be tutored by boys and girls by girls. This conclusion must be tempered by the lov RSQ's which attach to the model.

Most surprisingly, Chicano students did not seem to perform significantly better with Chicano tutors. One possible explanation is that the Chicano student is so mutivated (by self or parent) that he will respond to anyone who can teach him. Further study is worthwhile here. Perhaps it would be important to know whether Chicano tutors improve post test scores by tutoring in Spanish.

A school-by-school comparison of scnres would prove worthwhile, as would a more in depth analysis of the language barriers between Chicano tutors and students.

B. Second Thase

The arithmetic, or second phase of the tutorial study took place from the onset of school in September, 1972, until February 28, 1973. It y:elded significatat findings of a positive nature, f.e. that comparison of pre and post test scores of the experimental and control groups showed the experinental group gaining significantly over the control group. This was established in the following manner. Multiple regression technique was used to estimate post-test scores for each group for cach test section and their composite total test score. This resulted in these F-ratios and their corresponding probabilities:
table VI

$\begin{aligned} & \text { Pre-Test } \\ & \text { vs. } \\ & \text { Pust-Test } \end{aligned}$	F-Rat io	$\begin{array}{r} \text { Probabili } \\ P(F \geq F \end{array}$
Arjthmetic Test		
Computation subtest	4.25	. 0396
Concepts Subtest	2.61	. 1059
Applications Subtest	10.14	. 0024
Total Seore	9.17	. 0035

Of course, because a sequent ial r-testing process was used, these probabilitics must be considered a guide only. However, these results do appear sufficiently convincing so as to allow assumplion of significant, non-chance differences bitween experimental and control groups.

The Asotd rultiple rugression approach was applied to the data in an attempt to isolate possible variables having an effect upon tutoring. The following were investigated: sex of tutecs, sex of tutors, interaction, by sex, of tutor and tutie (m to m, m to f, $f 0 \mathrm{~m}$, f to f), schools attended by tutecs, schnol of origin of tutors. None of these variables were found significant at a level worthy of reporting here. Slight trends toward significance for sex and school may prove useful as guides toward further rescarch.

It may be summarized that for the arithmetic tutorial research, the only significant finding was the global one. That is, tutored pupils performed significantly better on the CTBS arithmetic subtests than did their control group peers.

Appendix E lists all arithmetic rescarch data. To preserve anomymity, all tutors and tutees are listed by their initials only, followed by an m or f in parentheses to indicate sex. Those children without a tutor listed in front of their names are control group members. Only data from thase tutecs who are sequentially numbered was used in the statistical analysis.

Looling back, probably the most surprising finding, in light of the major original investigative thrust, was the lack of difference between Anglo and Chicano tutors in reading. This may be due to a number of factors, such as poseible lack of concern among third graders for the ethnic identities of older students, or the failure of tutees themselves to have strongly developed ethnic identities. It could also be that on over-riding concorn with reading for its own sake on the part of tutees cast ethnic and other ancillary tutorial relationship factors into the background. The fact that very few tutees could speak. Spanish or would admit to this ability may well be related to the lack of ethnic variable significances in the reading study.

A second rather surprisiag finding was the greater success of some sex as opposed to cross-sex reading tutors. This runs in the face of some published rescarch in the counseling field which showed cross-sex counseling more successful than same-sex. It also partially clashes with some time-honored subjective beliefs alleging that primary pupils prefer male teachers. The most likely explanation for this finding is that tutees looked upon their tutor as a "pal" (hence same-sex preference), rather than as an educational professional, similar to teachers and counselors.

The next area for speculation is this-if same/cross sex factors influence reading tuturing, why didn't a like trend appear for arithmetic? The most logical explaiation occurring to this writer is that tutoring of reading is probabl: a more affectual process than that of arithmetic. Thus, tutor variables such as sex (the "pal" effect) maybe more important in the learning of reading than in that of arithmetic, where purely cognitive functions are stressed to a higher degrec. This expianation also could occount for the lack of any other tutor variable effects being present in arithmetic tutorial relationships.

In closing it must be explained why no attempt was made to report tutee gitins in grade equivalent scores, although these are easily computable from the datil utili\%ed. This was not done for three reasons. 1) Tutces were initially chosen in a subjcctive manner, i.e. teacher belief that they were "behind" in reading or arithmetic. Therefore, it is consistent with this approach to report statistical findings as well in a more giobal manner. 2) The thrust of this entire study was to investigate factors within the tutorial process, not to decide the worth of tutoring itsclf. 3) Reporting of grade equivalency scores in edncational research often tends to create illusions of false accuracy, causing utilization of statistical information in ways test producers never intended.

Finally, directions for further research maybe delimited. One likely tack is to atiempt replication of the same sex/cross sex finding with other pupil populations, perhaps using different grade levels, tutor typis, and academic subjects. Another possible project would be a follow-up study of the experimental and control groups of the present study when they are in grade 5 or 6 . For instance, do the reading and arithmetic gains found among tutees in the present study erode over time? This has been the finding of some follow-up studies in the counseling and guidance ficid, and it would be interesting to determine whether this gradual diminution of gains also occurs over time in the tutorial relationship.

APPENDIX A
THE LIST OF SCHOOLS FROM WHICH STUHENTS TO BE TUTORED IUERE DRAWN

School
Assumption (both studies)
Baker (both studies)
Berkeley Gardens (first study only)
Fairview (first study only)
Gregory hill (first study only)
Guardian Angcls (both studies)
Holy Cross (second study only)
Holy Trinity (second study only)
Mcelwaine (both studies)
Metz (first study only)
North Star (second study only)
Prcsentation (both studies)
St. Catherinc's (both studies)
St. Doninic's (both studics)
St. Patrick's (first study only)
Sherrelwood (both studies)
Thornton (both studics)
Westminster (second study only)

Type of School Area level of Income

Parochial	low
Public	low
Public	low
Public	middje
Public	high
Parochial	low
Parochial	high
Parochial	middle
Public	middle
Public	middle
Public	high
Parochial	low
Parochial	middle
Parochial	low
Parochial	low
Public	middle
Public	middle
Public	middle

the list of schools from which tutors were drahn

Institution

Iregis College
Westminster High School.
Ranum ligh School
Meritt Hutton High School
Marycrest High School
Holy family high school
Regis High School

Type
Parochial
Public
Public
Public
Parochial
Parochial
Parochial

Study
boLh
both
first only
both
second only
second only
second only

TEACHER'S NAME:
SCHOOL: \qquad

TEACIMER PRE-QUSSTIOMNAIRE

"Do you have any boys or girls in your class or pod bhom you believe are performing in arithmetic below grade level or experiencing some form of arilhmetic problem: if so, list their names and birth dales below, and after each, please comment upon his or her specific arithmetic problem."
MME
BIRTH DATI.
ARITHMEIIC PRORLEM DESCRIPITON

1. \qquad
2. \qquad
\qquad
\qquad
\qquad
\qquad
3. \qquad
\qquad
\qquad
\qquad
\qquad
4. -__ \qquad
\qquad
\qquad
\qquad
5. \qquad
\qquad
\qquad
\qquad
6. \qquad
\qquad

\qquad
\qquad
7. \qquad
8. \qquad
\qquad
\qquad
\qquad
\qquad
 \qquad

REGIS COLLEGE WEST 50TH AND LOWELL BOULEVARD DENVER. COLORADO 80221 433-8471

February, 1973

Dear Principal.
Below you will find the results of the arithmetic section of the Comprehensive Test of Basic Skills which was given to a group of your third graders envolved in our tutorial program.

CTBS Arithmetic form \qquad , given COMPUTATION COHCEPTS APPLICATION TOTALS NAME \%ile grade equiv. \%ile grade equiv. \%ile grade equiv. \%ile grode eq

Thank you for your cooperation with our program. If you have any further questlons regarding the test scores or any other aspect of the study, please feel free to call this office (433-8471, ex. 341).

The CTBS Comprehensive Tests of Basic Sincerely, Skills - Readtng, removed due to copyright restrictions

Dr. Glen G. Dahicm

Tutor	School		School	PREAEST RAN SCORES				POST TEST RAN SCORES			
		Child S		Comn	Con.	App.	Tot.	Comp.	Con.	Anp.	Tot.
J. A. (f)	Merritt Hutton Public	1. L. P. (f)	Thornton Pub:ic	15	3	3	21	16	11	9	36
J. A. (f)	Merritt Hutton	2. B. M. (f) T	Theriton	18	5	3	26	18	21	7	46
		3. J. L. (f) T	Thoraton	22	6	4	32	15	6	8	29
J. T. (f) :	Merritt Hutton	4. G. K. (m)	North Star Public	27	4	3	34	36	21	4	52
C. W. (f) M	Merritt Hutton	5. G. C. (m)	North Star	13	9	0	22	41	9	6	50
M. C. (E) \%	Merritt Hutton	6. R. S. (m) ,	North Star	15	8	6	29	23	11	7	41
S. H. (f)	Merritt Hutton	7. J. H. (m) :	:orth Star	15	9	3	27	20	12	8	40
D. D. (E) i	Merritt Hutton	8. C. C. (f)	arorth Star	17	7	3	27	23	12	6	41
J. A. (f) :	Merritt Hutton	9. J. M. (f) \}	Sorth Star	15	5	7	27	49	13	5	67
		10. R. J. (m) N	Nortir Star	37	20	13	70	40	18	14	72
		11. D. G. (f)	North Star	19	13	0	32	32	21	7	60
		12. C. A. (f) N	Nortin Siar	15	9	6	30	30	13	6	49
		13. J. M. (f) N	North Stir	15	5	7	27	23	8	4	35
M. S. (f) R	Regis College Catholic	14. A. T. (in) B	Baker Pu'slic	4	1	0	5	27	4	3	34
D. F. (f)	Westminster High Public	15. L. H. (f) E	Eaker	16	10	5	31	14	5	6	25
M. A. (f) R	Regis College	16. S. S. (m) B	Baker			4	22	13	4	5	22
		17. J. R. (m) B	Baker	1	0	0	1	23	7	5	35
		18. D. M. (f) B	Baker	13	1	0	14	36	8	0	44
		19. R. D. (m) B	Baker	21	6	4	31	31	8	5	44
		20. L. B. (f) B	Baker	18	6	4	28	19	11	7	37
		21. S. M. (f) B	Baicer	12	7	4	23	23	4	3	30
		22. J. T. (f) B	Baker	12	6	4	22	23	6	3	32
		23. R. D. (m) B	Baker	19	4	5	28	27	19	12	58
M. A. (f) R E. B. (f) R	Regis College Regis College	24. P. D. (m) B	Baker	16	1	0	17	29	13	9	51
E. B. (f) R	Regis College	25. C. T. (f) B 26. D. S. (f) B	Baker	16	1	0	17	20	7	8	35
J. M. (f) R	Regis College	27. R. L. (m)	Baker Baker	11	8	4	25 26	32	6	3	41
C. S. (f) Vi	Vestminster High	28. R. H. (m) W	Westminster Public	25	10	4	39	31	11	10	52
		29. S. B. (m) W	Westminster	19	6	7	32	30	10	10	50
		30. D. B. (f) W	Westminster	22	20	13	55	32	25	12	69
K. Z. (m) N W. T. (f) W	Westminster High Westminster Higi	31. S. M. (m) W	Westminster	15	7	5	27	13	4	5	22
W. T. (f) W	Westminster Higa	32. P. V. (f) W	Westminster	13	9	3	25	19	24	10	53
		34. D. M. (m) W	Westminster	15	9	8	33 30	29	10	5	44 46

[^0]: * Numbers refer to variables indicated on Table I
 ** RSQ - Refers to Regression Step-down Quotient
 *** F refers to the F ratio of significance

