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Curvilinear Extensions to Johnson-Neyman Regions of Significance

and Some Applications to Educational Research

Kenneth W, Wunderlich and Gary D. Borich

The University of Texas

Consider an experiment in which there are two treatments, one criterion
and one covariable, and that the researcher would like to detect a co-
variable by treatment interaction, In order to detect this interaction,
the researcher can (1) divide the covariable into any number of discrete
categories (i.e., blocks) and perform a Treatment x Blocks analysis of
variance (Edwards, 1968) or (2) leave the covariable a continuous measure
and test for the homogeneity of group regressions (Walker and Lev, 1953).
For the homogeneity of group regressions analysis the researcher employs
each covariable value as a discrete unit of measurement and thereby avoids
losing information by assigning different covariable walues to the same
block,

Cronbach and Snow (1973) have shown that for the case in which there
is a moderately strong interaction, the statistical power of the homo-
geneity of group regressions test is superior to blocking at the median,
blocking at the 33rd and 67th percentiles, or similar configurations that
may be employed in a Treatment x Blocks design. Classification schemes
such as these discard power by treating dissimilar data the same, causing
the risk of accepting a false null hypothesis to increase beyond that
which can be expected when the homogeneity of‘group regressions test is
applied.

When group regressions are heterogeneous, i.e., E chooses not to

employ a factorial design, Johnson and Neyman's (1936) procedure can be



used to determine the region(s) of covariable values for which treatments
are significantly different. These regions allow covariable scores to be
used to determine the treatment for which each S is best suited or if, for
any given S, there is no best treatment. This technique is used generally
in the study of aptitude-treatment or trait~ireatment interactions and is
considered the preferred methodology for such studies (Berliner & Cahen,
1972; Cronbach & Snow, 1973).

Considerable thought has been expended in an effort to determine
whether the assumption of a quadratic relation between a single predictor
and a criterion violates the assumptions which Johnson and Neyman (1936)
state for calculating regions of significance about interacting regres-
sions. In particular, there has been special concern for the assumption
of linearity. One may ask whether ”liﬁearity" refers to the functional
relation of the criterion and predictor or whether it is in the context of
a linear statistical model, if not both., The computational procedure,
however, reveals no need for the former assumption of linearity, thereby
providing the foundation for extending the Johnson-Neyman procedure for
determining regions of significance to the curvilinear case,

Johnson and Neyman (1936, p. 73) in discussing the difference, 9,
between the regression equations for two experimental groups as 8(x,y) =
fl(x,y) - fz(x,y) where fl and f2 are functions of predictor variables
x and y, comment:

Tie functions fl and f2 may be chosen arbitrdrily, according to the

conditions of the particular problem, with the only theoretical re-
striction that both functions fl and f2 must be linear with regard

to the unknown constants they involve. Thus we could assume that,

i
e.g., fl(x,y) = AO + Alcosxy + Azes nx but our method would fail 1if

it were necessary to assume fl(xy) = cosAlx + Azy since here the

dependence upon Al and Az is not linear.



Most crucial 1s the positicn of the coefficient of the variable term,
cosxy. When placed before the variable term as a multiplicative factor,
this term makes the equation consistent with what is known mathematically
as a linear equation. The fitting of curvilinear regression equations
defined by polynomials of the form Y = bO + blx + b2x2 + . ..+ bpxp is

in principle no different from the fitting of multiple regression equa-

tions.

Development of Curvilinear Formulae

Group Regressions

Given groups 1 and 2 with regression equations of the form ¥ =

Aj +BX+C X2 and ¥, = A, + B,X + C X2 where the subscripts 1 and 2

1 1 2 2 2 2 s
refer to groups 1 and 2 respectively, the first consideration in the
series of hypotheses related to the Johnson~Neyman prncedure is that of
homogeneity of criterion variance. The second consideration is that of
heterogeneity of regression. Johnson and Jackson (1956), in their two-
predictor case, provide the formula for computing the variance of the
actual scores about the predicted scores and the variance of the observed
scores about a regression line with a common slope in order to compute an
F-ratio for homogeneity of group regressions. If the probability level
associated with this F-ratio is found to be significant, then the Johnson-
Neyman test for regions of significance 1s recommended.

The points at which the regression curves intersect, indicating the

points of no difference, can also be determined. The computational forms

to be employed in this series of steps is as follows.



Regions of Sipmificance

v Tne difference in regression curves is expressed as (Al - A+

(8. - BZ)X + (Cl - CZ)X2 = D, Setting D = 0 ylelds a quadratic equation

2 _
(Al - AZ) + (Bl - BZ)X + (C1 - CZ)X = 0 which can be solved. Application
of the quadratic formula, - B % l BZ - 4AC, yields two zeroes assuming the

2A

term B2 - 4 AC is non-negative. If this term were negative, there would be
no point at which the two curves intersect. Such an occurrence is feasible

as shown in Figure 1.

Insert Figures 1, 2 and 3

1f B2 ~ 4AC = 0, then Figure 2 is most likely and, if B2 - 4AC > 0,
then Figure 3 is likely.

To determine regions of significance there are several possibilities
based on which of the situations outlined above 1s considered. Given
Figure 1 or 2 one would most likely find a left and right boundary for the
region of non-gsignificance as indicated by the shaded portion. To &eter—

mine these points along the X-axis, consider the formula:

€ EZQ)/l/(NSfZG)

where Sa2 is the best estimate of the error variance obtained by pooling
2

the variances about the group regression lines and > is the variance

1T A

for the difference in regression lines where D = (A
(B, —IBZ)X + (Cl - CZ)X2 and where P + Q 18 a "scaling' factor used to
determine the variance for the difference between the regression equations .
for the two groups. The value of (P + Q) depends upon the values of the
basic characteristics of matching the x's and y's. Where x' and y' lie
near the population means of x and y, the value of (P + Q) becomes small

- 2

since (P + Q) becomes E i----when X, = x' = Eé and y, =y' =y,. D is of



3

the general form AX4 + BX~ + CX2 + DX + E so that the equation

2 £ 2 [ 2
D a (® + Q)s, ]
(P ” Q)/N = 6}= F_(5(1,N-6) expressible as D% - Fos ——F— =01sa

N-6

fourth order (quartic) equation, This 1s consistent with the illustrations
presented earlier. If four distinct solutions exist then two regions of
non-significance are defined as indicated in Figure 3. To find the solu-

tions to this equation, a method suggested by Standard Mathematical Tables

(1965) is available which requires finding a solution of a resolvent cubic
equation first but which in turn can be used to obtain all four roots of
the above fourth order equation. The following formulae are used in

finding these values,

Given the quartic equation (1) x4 +‘ax3 + bx2 + cxl +d =0, a form

which the equation obtained from D2 can assume, a resolvent cubic equation

2 2 2

of the form (2) y3 - by" + (ac - 4d)y - a“d + 4bd -~ ¢© = 0 is obtained.

A root of this equation is obtained by reducing equation (2) to the form

(3) z3 + fz + g = 0; the "second" order term is eliminated by substituting

(z + %9 for y in (2) where f = %-EB(ac - 44d) - bZ] and

3
g=53[2° - 9 (ac—4d)+27(-a2d+4bd-c2)]. Let A =] -g (f&> 4 £3
27 2 4 7
3 2 3
and B="Y-g g | £~ ; then A+ B =M is a root of equation (2) from
2 4 7

2
which the roots for (1) can be obtained. Consider R =!/%; -b+M, ifR # O,
2 ' a2
p =Jf3a2 L g2 - 2p & 4ab - 8c - a3 and E = 3a< RZ - 2% - 4ab - 8c -a3
4 S 4 4R g

4R
. 3a2 3a2
Otherwise D = - 2b + 2 - 4d and E = - - 2b - 2 M2 - 4d . The four

roots of the fourth order equation are then x = :—21- + %— + -lzland x =2 ._ R * -g- .

4 2

These roots are real dependent upon the arguments for the square roots above

N‘Hx

being greater than or equal to zero.




Research Applications

The above computations may be simplified through the use of a computer
program (Wunderlich and Borich, 1973) which,after solving the fourth order
equation for determining regions of significance, plots the data points,
within-group regressions and regions of significance for the case in which
there are two treatments, one criterion and one predictor. Before applying
the program, however, the investigator must consider the full range of
calculations, both linear and nonlinear, that may be required by any given

data set. These calculations are diagrammed sequentially in Figure 4.

Insert Figure 4 about here

Note that the sequence begins by testing the assumption of curvilinearity
and that criterion~-covariable relationships may be curvilinear for groups
separately or combined. In one case the combined groups may exhibit a
single underlying curvilinear relationship such that the two groups are
samples from the same population, i.e., regression slopes for the groups
are homogeneous. In a second case the relations between the covariable
and criterion may be curvilinear for each group separately, i.e., regres-
sion slopes for the groups are heterogeneous. Only for the latter case
are regions of significance tenable. Whereas the foregoing discussion
addresses both homogeneity of curvilinear regressions and regions of
significance, it does not cover a third opportunity to detect a curvilinear
relationship. In a third case regressions that are both linear and non-
intersecting (ordinal) may mask an underlying curvilinear relationship
in which linear slopes of both groups form a single curvilinear trend.

The continuity of separate linear slopes can take the form of a single

curvilinear regression that is easily missed when the efficiency of linear



and curvilinear models are not compared at the outset of the research.
This initial comparison and the sequence of steps representing the left
portion of Figure 4 are calculated by the curvilinear program. When
one or both within-group regressions are linear, i.e., a curvilinear
model fails to significantly improve prediction, the researcher is referred
to a linear program by Borich (1971) for the casa in which there is one
predictor or to a linear program by Borich and Wunderlich (1973) for the
case in which there are two predictors.

To illustrate the above computations, a research study conducted

by Hughes and published in the American Educational Research Journal (1973,

10, 21-37) was reanalyzed with the Wunderlich and Borich (1973) curvilinear

program.

Background. Hughes set out to establish that differences in regidual post-

test achievement are a function of pupils responding to teachers' questions

(a) randomly, (b) systematically and (c) in a self-selected style in
which the pupil has the choice of whether or not to respond. With three
schools available for experimentation, E chose a 3 x 3 factorial design
with schools as the first factor and type of responding as the second.
Criterion performance was established with a 222-item posttest based upon
the content of the treatment, a wildlife lesson directed to seventh- and
eighth-grade pupils. In addition, E collected scores on nine covariables
with the foresight that these may confound pcsttest perfofﬁance. Among
these E included the most likely predictor--that of pretest achievement
on the criterion instrument. E chose to remove posttest variance attrib-
utable to differences on the pretest by using as the criterion the differ-

ence between predicted and actual posttest scores (i.e., the residuals).




Hughes' data provided the opportunity to uncover nine aptitude-
treatmﬁnt interactions. For our illustration, however, thne reanalysis was
limited to one of the nine covariables, that of the pretest and to only
one pair of treatments, that involving the self-selected and systematic
response groups.

Results. These data, while previously reanalyzed by Jorich (i974)
with the assumption that covariable—criterion relationships were linear,
were reanaliyzed a second time assuming that relationships between covariable
and criterion were curvilinear. Application of the curvilinear progran
to these data, however, revealed no significant improvement in prediction
from that obtained from a linear model for either the systematic response
or the self-selected response groups and therefore thne investigator was
referred to the more suitable linear program (Borich, 1971). In the
interest of providing a real data illustratiomn of the curvilinear tech-
nique, the program then was forced subsequent to the model comparisons
test to continue as though curvilinear regressions had been found in one
or more treatments. The program, therefore, calculated the homogeneity
of group regressions test for curvilinear regressions, the test for a
common intercept and regions of significance rather than "exit" as would
be expected after the model comparison test for lack of a significant
improvement in predictive efficiency with the curvilinear model. The
resulting plot from the curvilinear analysis of these data is reported
in Figure 5 and the resulting plot from the corresponding linear analysis

by Borich (1974) is reported in Figure 6.

Insert Figures 5 and 6 about here

ERIC
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Note that for both analyses a region of significance is indicated
to the left of the data mass. While the region of significance for the
curvilinear plot begins at the covariable value of 14.20 (taken from
the printout) and the region of significance for the linear plot at the
covariable value of 13.20, both regicrs lie in approximately the same
area and encompass approximately the same range of covariable values.
These ranges represent those covariable values for which the treatments
are significantly different at or beyond the .05 level. For this example
the curvilinear plot lends little new information to the study and, if
employed, might needlessly complicate its interpretation. Using the
linear plot, we might conclude that those subjects scoring below 13.20 on
the pretest should receive the self-selected response treatment while those
falling above this value are likely to :c¢'_’.ce equally well from either
treatment and therefore should receive ' .: least costly of the two treat-

ments,

Other configurations. Lest the reader receive the impression from
this example that the present data represent the only configuration of
curvilinear regressions and corresponding regions of significance, other
hypothetical distributions have been analyzed and plotted and are reported
in an appendix to this report. A listing of the program used to generate

these plots is also provided.
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Figure Captions

2
B - 4AC = 0.
B? - 4AC > 0.
Sequence of linear and curvilinear calculations for ATI analyses.

Region of significance (< 14,21) and nonsignificance (> 14.20)
for Hughes (curvilinear analysis).

Region of significance (< 13,21) and nonsignificance (> 13.20)
for Hughes (linear analysis).



Appendix

© ' o
g
g g
8 g
% ¢
- w
Be Ba
« & «q
U1 x 29
@ S
> H >
z | z
Sq £
[+ @
= e
| =
“yi g
a] <)
gl 8
K 1.
|
L
V.00 .00 8.90 i0.00 12.00 14.00 “u.00 .00 V.00 6.00 2,90 10.00 12.00 14.00
PREDICIOR YRRIABLE PRLOICTOR YRRIRGLE
a. A positive linear regression b. Two slightly curvilinear positive
and a moderately strong curvilinear regressions with a moderately sized
regression with small left and Jeft and large right region of
right regions of significance significance
8 -8
2 8
'.'.+ . - »
. -
i '
wl w
- -
g 2g
g £ o™
& og
§ ga M 'i
5 ES //.'
g v 8
° s
8 g
: 3
2 3
L) <.Co V.08 t.00 620 10.00  12.00 14.00 oo 1.00 5.00  8.00 v.00 10.%u 12.60  19.00
PREJICTOR VARIASLE PREDICIOR YARJABLE
¢. Two moderately strong curvi- d. A slightly curvilinear regression
linear regressions in opposite and a moderately strong curvilinear
directions with a small left and a regression in opposite directions with
moderately sized right region of a small left and a large right region
fignificance of significance

ERIC

Aruitoxt provided by Eic:



PROGRAM CUrRVATI(INPUT,0UTPUT,PLOUT)
(PRELIMINARY VERSION,4/5/74)
LONTROL CARDS AND THE DATA ARE ARRANGED IN THE FOLLOWING ORDEK
FIRST CARD: (COLS, 1®5 & NUMBER OF SUBJECTS IN GROUP |
COLS, 6«{@ = NUMBER OF SUHBJECT3 IN GROUP 2
COLS,15 = MISSING DATA OPTION
IF LERC, ALL DATA IS INCLUDED IN THE ANALYSIS
IF ONE, BLANKS ARE NOT INCLUDED BUT ZERDES ARE
IF TWO, BLANKS AND ZEROES ARE NOT PROCESSED
COLS, 16028 = ALPHA (P) LEVEL USED Y0 DECIDE
WHETHER A LINEAR OR CURVILINEAR MODEL 18 APPROPRIATE
BECOND CARD; COLS, 15 = FeVALUE ASSOCIATED WITH P, ABOVE(DS®)] AND New3)
THIRD CARD: GROUP { FORMAT(PREDICTOR MUSY PRECEDE CRITERION)
INSERT GROUP §{ DATA HERE
FOURTH CARD: GROUP 2 FORMAT
INSERT GROUP 2 DATA HERE
PROGRAMMED BY KEN W WUNDER(LICH AND GARY D BORICH, RESEARCH AND DEVELOPMENT
CENTER FOR TEACHLR EDUCATION, THE UNIVFERSITY OF TEXAS AT AUSTIN
DIMENSION Y1(238),X3(238),X12(238),Y2(230),X2(238),%x22(238),Y(450)
P X{458) , X02(45D) ,FRMTL(B),FRMT2(8),A(4@0),8(4B8),C(402),NSC(1Q),YP
AMUL) XX {d),PXIU) pXPTLNLC3S) pYPTUNL(3S), XPTLN2(3S),YPTLN2({(35),XPT(
33%),¥PT(35),
4eX1(4), QYL (4),0Xx2C4),0Y2C4),AX3(4),QAY3(4),0xX4C4),QYdC4),AA(5),2(4)
COMPLEX Z
READ /NI ,N2,mISS5,PBLY
1 FORMAT (ZIB,MX'ZI;FS.S)
READ 27,F S0
27 FORMAT (F6,3)
READ 2,(FRMTI(I),151,8)
e FORMAT (8A10) '
READ FRMT1,(X1C1),Y1(13,181,N}Y)
CALL AMISDAT (X1,Y1,N1,MI88)
DO 3 K®Bi,Ni
I X12(K)BXL{KIAXE(K)
CALL SUMDATACY1,X19X12,YIMaXiM, X12M,Y1SD,X18D,X128D,Y183,X188,X128
18, RYXL)RYX12,RX%12,RS8SYX1,RESYX12,RS8XX12,NY)
READ &2, (FRMT2(1),Is1,83
READ FRMTZ2,(X2(I),Y2{(1),I=1,N2)
CALL AMISDAT(X2,Y2s,N2;MI88)
DO 4 K=i,N2
4 X22{K)=X2(K)xX2(K)
CALL SUMDATA (Y2,X2,X22,Y2M,X2M,X22M,Y28D,X28D,X228D,Y285,X285,X22
1SS RYX2sRYX22,RXX22,RS53YX2,)RS8YX22,RSSXX22,N2)
NSN{#N2
PO v K=1,N1
X{K}=XY1(K)
Y(K)3X2(K)
S XPe(K)=x12(K)
DO 6 K=1 N2
X{N1+K)I=X2(K)
Y{Ni1eK)SY2(K)
b XP2(Ni+K)=sX22(K}
CALL SUMDATACY,X,X02,YMyXM,XB2M,YSD,XS8D,X028D,Y88,XS3,X0288,RYX,RY
1XB2,RXXB2)RSSYX,RSSYXOR2,R88XX22/,)N)
PRINT 7
7 FORMAT (1{H1)
PRINT B,NI,N2,N,YIM,Y2M,YM,Y18D,Y2SD,Y8DsXiM,X2M, XMy X1SD,X28D,XSD,
IRYX1,RYX2,RYX
8 FORMAT (28X, *SUMMARY STATISTICS%//,29X,%#GROUP I #8XaAGROUP 2%w9X&TOTAL
Q 1%//:5X*GROUP N#28X,T1Uri1X,18,18X,14,//7,SX*CRITERION MEAN#9X,FB8,3,7
FRIC 2XsF8,3,6X,F8,3,//,5Xs*CRITERION 8T, DEV #5X,FB,3,7X/FB 5/6XsFBy3,/
e 3/, 5K g *PREDICTOR MEANNYX,FB 39 7XsFBy3,6XsF8,397/+5X,*PREDICTOR 8T,

elalnlslalasNaNelis Nel o NeNeNaReNul gl




UDEV WX FB, 3 TR FE,3,6X,FB8,3,//7+5Xs%CQORRELATION Y AND X*6X,Fb,4,
SYXsFO 4rBX,Fa,4)

ANSN

ANDFSAN®G &

AN BN

AN{DFSAN =30

ANZBNZ2

AN2DF3AN2w3 0

c MODEL COHPARISON

16
18

17

RSQ{S(RYXI*#RYX{ +RYX{2WRYX$ 202 ,@%RYXI*RYX{2uRXX{2)/(1,0"RXXL12*RXX12
1)

RSQ2=(RYX2ARYX2¢RYX22#RYX2202 ,D*RYX2ARYX22#RXX22)/ (1 ,A=RXX22*RXX22
1)

RIZSRYX1%RYX1

R23RYX2*RYX2

VAYXX1zY{SD*Y1SD~(1,0=R3QG1)

VAYXX22Y28D*Y25D%(1,B8=RSGR)

VAYX1 =YiSD»Y{SD2(1,8=RYX1#%RYX1)

VAYX2SY2SDAY2SD* (1 ,8«RYX2*RYX2)

FGPi= (RSG1wRi)/((1,0=RSQL)/ANIDF)

FGP2= (RSU2eR2)/((]1,0%R5Q2)/ANEDF)

ANDF {SNle2 @

ANDF 2aN2w2 0

SLMODI=PREBF (L ,@,ANIDF 4FGP1)

SLMOD2=PRBF (1,09 AN2CF)FGP2)

IF(SLMUDL LE,PBLY,OR,SLMODELE,PBLV)LT,16

PRINT 18,P8BLV

FORMAT (/,5X*A COMPARISON OF A LINEAR AND QUADRATIC MODEL FOR EACH
{0F GROUPS § AND 2 SUGGESTS#,/,S5X,»NO SIGNIFICANY DIFFERENCE AT THE

2 *Fh5, 5% LEVEL AND THUS USE OF A LINEAR MODEL AND #/,5X,%ANALYSIS I
35 SUGGESTED, SEE BORICH, EDUCATIONAL AND PSYCHOLOGICAL MEASUREMEN

AT,%,/,5%,*1971,31,P2519253,%)
GO TO 1pi
BXIS(YISD/XISD)*(RYX1oRYX12¥RXX12) /() ,0eRXXI2*RXX12)
BX2313(Y180/X12SD)I*{RYX12=wRYX{WRXX{2)/(t,BeRXXi2*RXX12)
AQISY IMmBXInX{MeBX2 ¥ X{2M
BX2s(YSD/X2SD) * (RYX2»RYX22%xRXX22) /(] ,0=RXK22¥RXX22)
BX222{Y25D/X228D)x(RYX22eRYX2¥RXX22) /(] ,BeRXX220RXX22)
LO2SYCMwBX2¥X2M=BX224X22M
PRINT 12.A81,8BX1,BX21,A62,8X2,BX22

12 FORMAT (////+5X,*THE REGRESSION EGQUATION FOR GROUP 1 IS Y & =»¥8,.4

14

Q

14 ¢ #FB Uk X + #FB, 4% XX % //)5X,*THE REGRESSION EQUATION FO
2R GROUP 2 I8 Y = #FB,4% 4 xFB 4% X 4 #F8 4% XX, %)
PT1=PT2E8,D

ERRORZVAYXX1+#VAYXX2

SYYwsY158+Y2SS

SXXW=X15S+X2S88

SXX2W=X1288+X22855

RYXSSWSRSSYXI+R35YX2

RYX2SSWaRSSYX12+R3SYX22

RXX2SSWSRSSXX12+RESXX22

VAREGRSSSYYW» ( (RYXSSWARZASXX2W+SXXWaRYXQSINRn2e2 PARXX2ESWHRYX2SSW
FXRYXSSW) / (SXXKNAEXX2WeRXX2SSHR%2) )

ANOS ANDF/2,8

FREGRES =ANOW(VAREGRS#ERRQR)/ERROR

PREGRESSPRHBF (2,d,ANDF ,FREGRES)

PRINT 14)FREGRES,PREGRES

FORMAT(//)5X2THE FeRATIO FOR A TEST OF HOMOGENIE'Y OF REGRESSION I
1S *FB,34/,5X,*WITH AN ASSOCIATED PROBABILITY LEVEL OF %F8,3)
VINTERSYSD#YSDw ((§,0wRYXARYXwWRYXVZARYXA2wRXXB2HRXXB2+2, ﬂtRYX*RYXGZ

ERICy#rxxe2)/ 1, PeRXXD2XRXX02) )




FINTER=(ANMDF/3,8)%x(VINTER=ERRQR)/ERROR
PINTERS PRHF(3,d,ANDFFINTER)

PRINT 15, FINTER,PINTER

15 FORMAT(//,5X,*THE HYPQTHESIS OF CUMMON REGRESSION CONSTANTS 1S TES
ATED BY AN FeRATIO OF *FB8,3/5X,»* WHICH MAS AN ASSOCIATED PROBABILIT
2Y LEVEL OF #F8,3)

AD=AQi=ADR?
8XDaBX i=BX2
Bx2Danx2i=8x22
QUADZBXD*BXD=d ,0*BX2D*AD
IF(QUAD,GE,0,08)20,19

19 PRINTY 2%
23 FORMAT(//:5Xs*THE REGRESSIDON CURVES FOR GROUPS § AND 2 DO NOT INTE
{RSECT %)
GO TO 22
29 IF(QUADEQ,2,@2)23,24
23 PT1i3 «BXD/(2,0%x8X2D)
PRINT 25,PT1
25 FORMAT(//»SXexTHE REGRESSION CURVES INTERSECT AT A POINT WHERE X I
15 EQUAL TD * Fé6,3)
GO Y0 22
24 PTLIS(SART(QUADY=BXD)/(2.8%BX20)
PT2=(eBXDwSERT (QUAD))/(2,08%xBX2D)
PRINT 26,PT71,PT2
26 FORMAT(// 5% s *THE REGRESSION CURVES INTERSELT AT THE POINTS WHERE®
1/7%xX 1S EQUAL T0 *Fb,3% AND WHERE % IS EQUAL TO »Fé,3)
22 Ri=z],0/(1,0~RXX{2*RXX12)

R2S1,08/(1,U=RXX22xRXX22)
$152,04RXX{2/8SQRT(X155%X1288)
$222,0*RXX22/8QRT(X283%X2288)

FACTOR=FSLAERROR/ANDF
X4CQEF aBX2D#BX2Dw FACTOR*(RY / X1288 + R2/X%X2288)

X3COEF =2,8»BXD*BX0D2D +FACTORw( RinS1 + R2w82)

X2CQEFF aBXDaBXD+2,dxADABX2DeFACTORN( R1/X1SS ¢ R2/X28S w RixSiwX]
IM @ R2ASZ2aX2M @ 2 BaX{2MA¥RL{/X1255 = 2,084X22M*R2/X2288)

X{COEF =2,B%ADABXD wFACTORA(RI#SixX12M ¢RINS24X22Mmw2 ,DARIXIM/X15S
{e2  UnR2AX2M/X258)

CONSTAS AD®AD w FACTOR w( 1,80/7ANf +1,0/AN2 ¢X{MaXINMARL/X{8S + R2«
IX2MAX2M/ X285 & RI*SiaXiMaXi2M © RZuS2AX2MaX22M + RInXi2MuXigM/ X128
28 + RewX22MxX22M/X22S58)

AA(1)= X4COEF

AA(2)= X3COLF

AA(3)= X2COLF

AA(4)= XLCOEF

AA(S)x CONSTA

CALL ZPOLYR (AA,4,Z,2)

PRINT 55,2

55 FORMAT (8(2X,F8,4))

NST1=NST2=233

CALL AMINMAXCX,NyXMIN,XMAX)

PRINT 208088, XMIN,XMAX

2800 FORMAT (SX,*XMIN = *xFB,3% XMAX = nF8,3)
28 CALL PARAB(BXZ21,BX1, A0 ) XPTLNL ) YPTLNL)XMIN,XMAX)AAL,NSTY)
31 CALL PARAB(BX22,BX2,A02,XPTLNZ,YPTLN2)XMIN,XMAX,AA2,N§T2)
33 CALL BGNPLT

CALL PLT(1,0,1,0,=3)

CALL SCALE (X(1),18,8,N,1)

CALL SCALE (Y(1), 9,8,N»1)

GX1(3)=QX2(3)8AX3(5)30X4(3)SXPTLNLIINSTL{+1)SXPTLN2(NST2#+1 )X (N+1)

O GX1{4)=0X2(4)=QAX3(4)=AXL(U)=XPTULNLI(NST142)8XPTLNZ (NST2¢2)sX(N+2)
ERICaY1(3)3@Y2(3)=QY3(3)50Y4(3)BYPTLNI (NST145)EYPTLN2(NST2%1)aY(Ne1)
e QY (4)FQY2(L)ZQYICL4)BAYL(U)IBYPTLNL(NSTI42)BYPTLNQ(NST2+2)8Y(N+2)




Cali AXIS (V.09 d,0¢ i 8HPREDICTOR VARIABLE,»18,10,0,8,8,X(N+31),X{Ne2
1))
CALL AXIS(Q,0s0oM, EHCRITERION VARIABLEp1899,0,90,8,Y(N¢{j),YIN®2))
X1{Nt1+i)SX2(N2#1)2X{N+1)
XP(NT+2)=X2(N2+2)=X(N#2)
YI{Nf¢1)BY2(N2+1)SY(N+1)
YI{N1+2)BY2(N2+2)aY(N+2)
DO 902 K & {,N{
PRINY 9@3,X1(K),Y{(K),X
903 FORMAT (2ax,F8, SpSX:FB 31,2Xx,12)
982 CONTINUE
PRINT 910
DO 994 K = {,N2
PRINT 985,X2({K),Y2(K),X
904 CONTINUEL
9190 FORMAT (SX,xTHIS IS GROUP ONE DATAx)
PRINT 9%
91l FORMAT(» THIS IS GROUP TwG DATAX)
Call LINE(X1,Y1,N1st,=i,11)
CALL LINE(X2,Y2:N2sirv1,9)
PRINT 9008, (XPTLNICJY»YPTLNI(J))J=L)NSTY)
98B FORMAT (5(2X,FE8,3,2X,F8,3))
PRINT 998, (XPTLN2(J),YPTLN2(J),J=1,NST2)
CALL LINE{XPTLNY,YPTLNI;NST1,1,0,0)
Catl LINE(XPTLN2,YPTLN2,NST2,4,0,0)
SX12 (XPTLNI(H)=X(Ne13)/X(N+2)
SYia (YPTLUNL(6)wY(Nel))/Y(N+2)
§X25 (XPTLN2(6)wX(N¢1))/X(N+2)
SY2= (YPTLN2(6)=Y(N#i))/Y(Ne+2)
IF (AAL,GE,D,8)34,35
34 ANU1Z90,0
GO TO 36
35 ANGiI=278,0
36 IF(AA2,GE,B,0)37,38
37 ANBG2590,0
GO YO 39
38 ANG2®270,0
39 CALL SYMBOL(SX1,SY1,).287)94GROUP ONE,ANG1,9)
CALL SYMBOL(SX2,5Y2,,87,9HGROUP TWO,ANGZ2,9)
TT310,0%X(N+2)+X(N+L)
TY2 9,8aY(Ne2)+Y (N1
PRINT 912,TT,TY
912 FORMAT(SX,* TT = aF8,4% TY = #F8,4)
AxX10(1)3QX20(1)3@X3(1)=2@XL&(1)8X(N+1)
EX1(2)=2@X2¢2)=Qx3(2)=aX4(2)= X(N+1)
GY1(1)=QY2¢1)=QY3{1)=2QY4(1)eY(N+1)
PY1(2)=0Y2(2)8QY3(2)=QY4(2)= Y(N+1)
DO 70 JL = 1,4
FX(JL) = B,
IF (AIMAG(Z(JL)) EQ, B,8) 7,72
71 PX{JL) 8 REAL (Z2(JdL))
GO 70 72
12 PX(JL) = TT ¢ 18,0
78 CONTINUE
PRINT 913,(PX(JL),JL3L,4)
913 FORMAY (2X,4(2X,F8,3))
IF(PX(L) GEXIN®#1) JANDPX(L)LE,TT)4O,41
HHIQX1(1)=UX1(2)=PX(IJ
1Y§(LISY(Ne])
e YL (2)STY
41 IF(PX(2) qGEX(N®1) JANDPX(R)LE,TT)d2,43




42 GX2(2)=GX2(51)1=PX(2)
GYe(1)=Yineg)
QY2¢2)=TY
43 TFCPX(3) GE X(N#1) o AND,PX(3) o[ E,TT)0EU,45
44 GX3(1)=GX3(2)=PX(3)
GY3(1)3Y(N+1)
QY3(2)=TY
4S IP(PX(8),GE X(N+1),ANDPX(4),LE,TT)G6,47
46 GX4(1)=0XU(IXPX(4)
QY4 (1)aV(Net)
QY4 (2)=TY
47 CONTINUE
PRINT 981, (0X1¢1),QY1(1),I58,2)
PRINT 904,(QX2(1),QY2(1),I=8;2)
PRINT 981, (0X3(1),QY3(1) I81,2)
PRINT 981,(0X4(¢1),0Y4(1),1=1,2)
991 FORMAT (/,2(5X,F8,3})
CALL LINECOX1,G8Y1,2,1,8,0)
CALL LINE(GX2,QY2,2,1,2,0)
CALL LINE(GX3,8Y3,2,1,¢,0)
CALL LINE(GX4,0Y4,2,1,8,0)
CALL ENDPLT
141 CONTINUE
END
SUBROUTINE AMISDAT (A,B,NS,MISDATA)
DIMENSION A(20@),8(208),ILL(208),AA(200),88(209)
IF (MISDATA,EG,@)RETURN
1JK=Q
DO 758 NG=1,200
758 ILL(NO)=AA(NQ)=BB(NQ)38,d
DO 200 Naf,NS
IF CACN) (EG,2,8,0R,B(N),EQ,8,0)202,200
202 IF(MISDATA,EQ,2)203,204
203 1JKa1JK+}
ILLCIJK)aN
GO TD 208
204 IF ((NOT,A(N),OR,,NOT,B(N))208,205
285 1JXKSIJx+1
ILL{IJK) =N
208 CONTINUE
IF CILLCY) EQ,@)222,211
211 ICOONT=0
DO 246 JC=1,NS
00 207 Jv=1,1JK
IFCJC,EQ, ILL(JV)) 208,207
207 CONTINUE
AACJC=ICOONTISALJIC)
BB (JCeICOONT)=B(.JC)
GO TO 206
208 ICOONTSICOONT#{
206 CONTINUE
NSBNS=]1JK
DO 2089 JT={,NS
ACJTISAAGIT)
229 B(JT)3BE(JT)
222 CONTINUE
RETURN
END
SUBROUTINE SUMDATA (A,B,C,AMEAN,BMEAN,CMEAN,ASD,B8D,C8D,85A4,S88,58
© C,RAB,RAC,RBC,RSSAB,RSSAC,RSSHC,M)
ERICoIMENSION A(400),C(402),8(408)
T A M3 M



AMEANSBMEANSCMEANE §
REABaRKSAC=RSBL = @,8
DO 2 J = §,M
AMEANZAMEAN®A(J)
BMEANSBHMEAN+B(J)
2 CMEANSCMEANSC(J)
AMEANIAMEAN/AM
BMEANZBMEAN/AM
CMEANSCMEAN/AM
DO 3 K = §,M
SSASSSA+ (A(K)wAMEAN) x a2
SSB=SSB¢(B(K)eBMEAN) a2
SSCeSSCH+{(C(K)=CMEAN) #%2
RSABZRSAB®A(K)»B(K)
RSSAB=RSSAB+ (A (K)mAMEAN)® (B(K)wBMEAN)
KSACESRSAC+A(KIxC(K)
RSSACSRSSAC+(A(K)~AMEAN) R (C(K)nCMEAN)
RSBCZRSHBC+B(KI*C(K)
3 R35BL2RSSBLC+ (B(K)=BMEAN) AL (K)o CMEAN)
ASD= SORTF(SSA/(AM=i ,8))
3802SARTF (8587 (ANl ,0))
CS5D=8ARTFISSC/ (AMe1 ,3))
RAB=(RSAB/AMe AMEANXBMEAN]) / {ASOABSD)
RBCa(RSBLC/amMeBMEANNCMEAN) / (BSD*(LSD)
RAC=(RSAC/AMeAMEAN®CMEAN) 7 (ASDnCSD)
RETURN
END
FUNCTION PRBF (DA,DB,FR)
PRBF={,0
IF(OA*XDB#FR,EQ,2,8)RETURN
IF(FR,LT,!,8)6G0 TO S5
A=DA
Bape
f=FR
GO 10 1@
5 A=DB
saDA
Feld/FR
10 AAS2,9/({9,8x4)
BB=2,8/7(9,6xB)
Z=ABRS(((1,0wBB)xFxn3,3533333e] ,0+AA)/SART(BBAFARE ,66666/+AA))
IF{BLT,4,0)Z32Zx(1,0+2,08xZ2xx4/Bxn3)
PRBF:B.S/(&.@#Z*(B,196854¢Z*(0.115194#2*(G.G39300+Zt9.81§527)J))**
14
IF(FR,LT,1,0)PRBFal ,8«PREF
RETURN
END
SUBROUTINE AMINMAXCA M)AMIN,AMAX)
DIMENSION A(400)
AMINSACL)
AMAX3AC(Y)
PO 2 J = 2,M
IF (ACJ)LTLAMINIAMINSA(J)
IF (A(J),GT AMAX)AMAXSEA(J)
2 CONTINUE
RETURN
END
SUBROQUTINE PARABCAA,BB,CC ) XPT,YPT,AMIN,AMAX,AAA/NST)
DIMENSTION XPTI(33),YPT(33)
O TF{AALEG,B)4,5
[]{l ')RINT S
: "ORMAT (5S4, 2THE COEFFICIENT OF Xe8QUARED 18 ZERQ,w)

SAZ5SB=SS(=hAdsRAL=RBCERESABERSSBLsRSS5AC=2,8 .

Full Tt Provided by ERIC.




RETURN

3 ns(eBB)/(AAR2,@)
AKS(wAA) R (BB#BAny B%AARCC) /(4 ,8mAAXAA)
AAAST .0/ (4,0%AA)
YPT (1)=YPT (33)3AK+b,0%AAA
YPT (2)2YPT (32)3AK+5,5%AAA
YPT (338YPT (31)23AKe5,8nAAA
YPT (W4)SYPT (30)3AK+d,TnAAA
YPT(S)IRYPT(29)5AK+4,BaAAA
YPT (n)BYPT (28)5AK#3,S%AAA
YPT (7)3YPYT (27)=AK+3,BwAAA
YPT (8)3YPT (26)=AK42,5%AAA
YPT (9)BYPT (25)=AK#2,0%AAA
YPT(1¢)sYPT (24)=AK+1,5¥AAA
YPT(11)BYPT (23)=AK+|,B%AAA
YPT(12)3YPT (22)3AK+0,83%xAAA
YPT(13)8YPT (21)3AKeQ,67*AAR
YPY(14)3YPT (20)3AK+B,58%AAA
YPT(15)2YPT (19)sAK#B33%AAA
YPT{i161SYPT (1B)ZAK#06,17T*AAA
YPT(17)=AK
DO & L=1s10
FTs SQRT{4,8xAAAX(YPT(L)wAK])
LN =34e],
XPT(L)aHeFT

6 XPT(LN)IBH#FT
XPT{17= H
ICeJC=e
DO 7 K 3 1,16
LEKS3de=K
IFCXPT(K) JLT AMIN)ICSICH!

T IF(XPT(LK),GT,AMAX])JCaJC+1
IF(IC,67,0)9,:1@

9 NSTa33elC
DO 8 M=1,33
JKLSM+IC
XPT(MISXPT (JKL)

8 YPT(M)=YPT(JKL)

10 IF (JC,6T7,@8011,12

11 NSTENST»JC

12 CONTINUE .
RETURN
END
END




