AUTHOR Holland, Bill

TITLE
INSTITUTION
PUB DATE NOTE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

Learning Activity Package, Physics 124 e (LAP). Studies 45. 47. and 48. Ninety Six High School, S. C. [74]
38 p .
MF-\$0.75 HC-\$1.85 PLUS POSTAGE Autoinstructional Programs; *Energy; *Individualized Instruction; Instructional Materials; *Measurement; Physics; Science Fducation; *Secondary School Science; Self Help programs; *Time LAP; Learning Activity Package

ABSTRACT
Included are three Learning Activity Packages (LAP) studies for use in high school physics instruction: rime and Measurement Function; Force, Work, and Momentum; and Momentum, Work, and Energy. Each LAP contains a rationale for teaching the material included, student objectives (stated in behavioral terms) e a list of resources (readings, problems, laboratory activities, audiovisual aids), a student self-evaluation, and suggestions for advanced study. (PEB)

Previons matl and science coneses have taught you to use the concepts of time and measurement. You have learned to perform simple operations such as measuring the distance a moving body travels over a certain time interval.

This LAP will go beyond these elementary applications. It will enable you to heasure movement usjag multiple flash photography and the scroboscope. Also, it will intwoduce you to the function, a mathematical tool that is used extensively in physics.

When you have successfully completed this LAP, you will be able to use chrese concepts to aid you in the study of linear and circular motion.

BEHAVIORAL OQJECTIVES:

After you have completed the prescribed comse of study, you will be able to:

1. Use the concept of multiple flash photography to:
a. determine the speed of an object moving in a straight line.
b. determine the flosn rate needed to restrict a given object's movement a certain amount during the flash.
c. determine the flash rate needed to take pictures of a moving object at certain distance intervals.
2. Use the speed of a stroboscope to determine the speed of an object undergoing repetitive motion.
3. a. Express any given number in powers of ten (scientific) notation.
b. Perform the four fundamental mathematical operations on any numbers expressed in powers of ten notation.
c. Give the order of magnitude of any number expressed in powers of ten notarion.
4. a. Give a one half page discussion of the method of triangulation.
b. Measure distances using the method of triangulation.
c. Give a one quarter page discussion of a procedure that uses the method of triangulation to find distances to "near" stars.
5. Give a one page discussion that gives two argunents to show our world is three dimensional.
6. Solve problems using the concept of significant digits.

ตकण4erex

I. Reading and Poolems:
 20, 24-30; exs. pps, 37-30, 6-7, 19-20, 23-25, 27-30.
2. Williams, Modern Physics: ppc. 23-31, ers. A (5-8).
II. Laboratory

PSSC LAB Guide - Experiment i-1.

 between the two piotwes, what was its epeen? (Assume the speed remained constant)
2. A stroboscope is made up of four quarter sections: one clear, one opaque, one clear, and one opaque. A light js directed onto the stroboscope which is rotating at the rate of 50 revolutions per minute.
a) What is the rime interval fron the end of one light impulse to the end of the next light pulse?
b) What is the time interval. from the end of one light pulse to the beginning of the next ?
3. Simplify the following:
a) $3.2 \times 10^{-6}+4.6 \times 10^{-5}$
b) $7.4 \times 10^{3}: 3.9 \times 10^{-8}$
c) $2.1 \times 10^{5} \times 3.3 \times 10^{-4}$
4. Discuss the method of triangulation. In your discussion you should include a diagram and a sample problem illustrating the method of triangulation.
5. Present an argument that shows our world is three dimensional.
Setemiahation a anot'
6. a. A person measures a rectangular sold and finds the length to be 5.3 m. , the width to be 7.60 m . and the height to be 3.397 m . What is the volune of this rectangular solid?
b. The height and base of a triangle are 3.2 and 6.97 inches respectively. What is the area of the.triangle?

IF YOU HAVE SUCCESSFULLY MASTERED THESE GOALS, A PROGRESS TEST IS SCHEDULED.

BEHAVIORAL OBJECTUES:
After the completion of the prectos couse of suty yn will be able to:
7. Desinc:
D. a direct propotion ralacton
D. an tnverse proportion relation
c. a function
d. the inverse square relation of light
e, Interpolation and extrapolation
E. ecajing
B. Use power laws and the concepts of sinjiar figures to determine the dimensions of one geometric figure given the dimensions of a similar figute.
9. a. Find tine distance from am object to a light given the intensity of the light and of ancther light whose distance from the object Is known.
B. Find the relative discances from two lights to an object between the Lighte, given the lutensity of the lfghte and the total distance between the Hghts.
10. Detemine in wiat proportion you must stremghen an object if you increase its linear dimensions and wish to mantain lhe same strength/weight ratio.
resuorces
T. Reading and Problems

1. PSSC, Phystcs: pps. 40-51, exs. 8-9, 11-12, 19-20, 24-25.
II. Laboratory (Consult your teacher).
2. Detime
a) Intorpohe: in and wasmourtan
b) the inverse sumase refathon of light
c) a direct proportion relation
3. The volume of one cylindex is eight times the volume of another similar cylinder, If the citcumfreace of the base of the smaller cylinder is 3 cur, what is the ciccumfonce of the base of the larger cylinder.
,
4. The diatance between two street lamps is 60 m . Where should an observer stand between the lamos if he wants one lamp to be four times as inrensp as the other?
 by 9, how muth do tetio of the following change?
1) volume
2) surface area
b. A steel ball is hanging from a rope 1 cm . in dameter that fust supports it. If you tncrease the volume of the ball 5 times, how much do you need to bucrease the diameter of the rope so it will continue to support the ball?

ADVAMCED STUOY

1. Calculate the dianeter of the moon. (Hint: See the exercises in your text).

R mbnembs

Textbooks

1. Physical Science sudy Gomitube, Wosics, End edrion (D. C. Heath and Company, 1965).
2. Williams, Metcalfe, Trinklein, Lefler, Modern Fhysjes, $2 n d$ Edition (Holt, Rinehart, and Winston, Inc., 1968).

Horkbooks

1. Physical Science Study Comaitree, Laboratory Guide, Physics, 2nd Edition (D. C. Heath and Gompany, 1965)

BATIOMATE

So far in our study of Physics, we have been primarily interested in how a body moved rather than what makes it move. We have constructed elaborate graphs to show the displacement and velocity of a moving body and from these graphs, we have been able to calculate the velocity and the acceleration of the body. Mo: Mere did we take into consideration what makes an object move or what makes it stop moving.

In this Lap we will study what makes an object move and what makesiit continue moving. From this ve will go into an analysis of the motion of objects "near" the earth's surface and the various forces acting on such objects. Finally, we will go into an analysis of centripetal motion and its applications for the motion of satellites.

BEHAVIORAL OBJECTIVES:

By the completion of the prescribed course of study, you will be able to:

1. a) State Galileo's Law of Inertia.
b) 'Give at least a one-half page explanation of the thought experiment that Galileo used to discover his law.
2. Demonstrate your understanding of the relationship between the mass of a body, the change in velocity of a body, the force acting on a body, and the time in which the force acts by being able to state an equation showing this relationship and being able to calculate the value of one of the variables given the value of the other three.
3. Demonstrate your understanding of the similarities of inertia and gravitational mass by writing a one-balf page paper comparing and contrasting them (your paper should contain the definition of the two temns, properties they have in common, and properties they do not have in common).
4. Take several forces acting on a body and resolve them into the net force acting on the body.
I. Readings:
 pps. 328-329; \%3 pps. 325-328; 144 pps. 329-331.
5. Taffel - Physics, Its Methods and Meanings: \#1 pps. 102103; 隹2 pros. 103-106: \#3 pps. 107-108; 74 pps. 54-58.
6. Milliams ‥ Modern Physics: \#l pps. 85-86; \#2 pps. 86-89; \#3 \qquad ; 74 \qquad
II. Problems:
7. PSSC - Physics: \#] \qquad ; \%2 pps. 332-333 exs. 3, 6-10,

8. Tarfel - Phyios, Its Methods and Moarings: ith \qquad ; H2 ppe. Ifloll3 exs. 1(3-4, 6-12), 1(1-2, 7-10, 12, 1415) ; \#3 — : \#4 p. 59 बxs. J (1, 3-4).
9. Willians, Vodern Physies: HI \qquad ; \#2 pps. 94-95 1-3, 6-7, 12; 䒜3 \qquad ; $\#_{4}$ \qquad
III. Jaboratories:
10. PSBC - Iabonatory quide, pos. 35-lfo.
11. Taffel - Imboratiory Manlal, Mhysics, Its Methods and Mearings, pps. 27-33, 53-57.
IV. Visual:
12. McGraw Hill Filmstrip - Force ard Motion.
 his Lav of Inertis.
13. a) A railroad engine of mass la, ooo kg is rolling along the tracks at a speed of $35 \mathrm{~m} / \mathrm{sec}$. The brakes are applied and the enfine decelerates constantiy and stops in 25 sec , what is the maghtude of be brakimg force and in what directson dues it act?
b) If an object with mass m is acted on by a certain force to give it an acceleration of $20 \mathrm{~m} / \mathrm{sec} .^{2}$, and if another object ma is actied on by a force four times as great to give it an acceleration ar $15 \mathrm{n} / \mathrm{aec}$. , what is the ratio $O f m_{2}$ \#o m ?
14. Discuss gravitational masa and inertial mass.
15. Consider the folloning diseram:

What io tho not force acting on thje animot?

1. Consider the Pollowng abagran:

What is the resultant ronce actine on this object?
2. The retarding force of air resistance on a baloon is proportional to the square of the velocity. For a certain baloon, inflated s certain amount, thjs force is given in newtons by $\mathrm{F}_{\mathrm{r}}=.2 \mathrm{~V}^{2}$ where V is the velocity in $\mathrm{m} / \mathrm{sec}$. The baloon and the air insido have a combined mass of 10 gm . a) Drain graphs of the baloons acceleration as a function of velocity when you pull it with a 1.8-newton force and 7.2newton force.
b) What is the maximun velocity that the baloon will reach in each case?
c) If the mass were 5.0 gm ., how would this affeot the maximum velocity?
d) Whet do you think would be the effect on the maximum velocity in you inflated the beloon to a larger volume?

BEHAVIORAL OBUEGTIVES:

By the completion of the prescribed course of study, you will will be able to:
5. Demonstrate your understanding of the relationship between the mass of a bodys the gravitational force acting on a body, the air resistance acting on a body, and the amount gravity accelerates a body by being able to state an equation showing this relationship and being able to calculate the value of one of the variables given the value of the other three.
6. Demonstrate your understancing of projectile motion by being able to take an object projected at a given angle and;
a) detemine the horizontal and vertical displacement of the object'g velooity when it was projected and at any time thereafter.
b) determine the horizontal and vertical displacement of the object in a given time interval.
c) detemine the time of travel of the rrojectile.
d) draw a position time graph for the projectile's motion for a given time interval.
7. a) Derive a formula that will enable you to calculate the speed of an object moving in a circular path of radius R when the object's period of motion is T.
b) Use the formula derived in part (a) to calculate the value of one of the variables if the other tivg are given.
8. a) Derive a formula for centripetal acceleration in terms af

BEHAVIORAL OEDCQSE: Sec: an

(I) speed and perios at motion, ar
(2) speed and radius at the obrcle, or
(3) radius of the aircta and period of motion.
b) Use the fomalas derived in part ($:$) to calculate the value of one of the vaniobles is the other tro are given.
9. a) Derive a formule for centmpetal force in terms of:
(1) speed and radius of the oinole, or
(2) radius of the circie and neriod of motion.
b) Use the formilas derived in port (a) to find the value of one of the varables given the vajue of the other three.

RESOUROES

I. Readings:

1. PSSC - Physics: :F5 pps. 335-336; \#6 pps. 338-340; \#7, 8, 9 pps. 340-347.
2. Taffel - Physicg, Its Methods and Meaning: \#5 pps. 77-79; \#6 pps. 84-89; 77, 8, 9 pps 90-94.
3. Williams - Modern Physice: : : 5 \qquad ; to pps. 102-103; \#7, 8, 9 pps. 203-108.
II. Problems:
4. PSSC - Fhysics: \#5 p. 354 exs. 1-2, 4, 7; \#5 p. 354 exs. 8-15; 47 : 8,9 pps. $354-355$ exs. 16-21, 24-25.
5. Taffel - Physicss Its Methods and Meanimgs: \#5 \qquad ; \#5 pps. 84-29 0xs. 1(1,3), 2(9), 1(4-9(, 2(16-19); " 7 7, 8, 9 pps. 98-100 1(6), 2(10-12, 1(10-13), 2(20-22).
6. Willians, Hodern Physics: \# 45 \qquad ; M6 \qquad ; \#7, 8, 9 pps. 1111-112 exs. 1-7.
III. Laboratories:
7. PSSC - Laboratory Guide: pps. 42-45.
8. Taffel - Laboratory Manual, Physies, Its Methods and Meanings: pps. 67-70.
 0.8 kg at a point on the anry mate ne nechesation of gravity is 9.81 m/sec. and bo net lome ating on the object is 6.8 nt?
9. An artillery piece is fired at an angle of 30° witin the horizontal fith 2 muzalo velocity of $20 \mathrm{~m} / \mathrm{sec}$.
a) Ahat are the X and r coordinates of the shell after l. 2 sec.?
b) How long wil the sheln be in the eir (assume the muzale of the gun is oven inth the ground).
c) Ho:s far horizontally wil the shell travel?
d) Jran a position time gion foi bisia sholl from the time It wes fimed to the that iti jeachad ito anex.
 and goes it of the way oround the circle in 0005 sec., what is the speod of tho proton'
10. a) Derive formata for contripetol acoblombion in terms of speed and period of motion.
b) An object moves in a circuluspath rith radius $7.3 \times 10^{-2} \mathrm{~m}$ with a speed of $2.7 \times 10^{4} \mathrm{n} / 300$. wati is the centripetal acceleration of the object?
11. a) Derive a formula for centripetal lorce in tems of radius of the circle and period of motion.
b) An object of mss agk moves around a cirele of radius 10 m in .9 sec . What is the contripotal lorce acting on this object?

 angle of 60° with the mons onter and nolesess a bamb and hits a target mies is m romenatalu in fort of him, what should the altitude of the plane be?
2. A mortar ia fined at an angle of 30° unth the horizontal and at: an angle of 60° rith bhe howizontal. the muzzle velocity both times wa 200 misec. Determine whether the projectile traveled the same disuence horizontally in both cases.
3. A cannon is situntex on \therefore onifi 500 m hig pointing at an angle on 30° ith the horizontar. It is has a muzze velocity of $300 \mathrm{~m} / \mathrm{sec}$.

b) How far homzontably wis tae mojectile heve traveled at the end ot tian: tig:.

4. A rifle is pointed opu-s a ande of 45° aith the horizortal ame sighted om obleet thet is 350 m horizontally from bhe end of he fithe browameousy, the rifle is fired and the object is aroper fron rost. If the muzze velocity of the gifle is $150 \mathrm{~m} / \mathrm{moc}$.
a) At whet time will bue whet mit tho object?
b) What will be their venuical height; at that time?
Boction III

BEHAVICRAZ OBUECTUES:
By the completion of mo meswaber couret of sonder, you nill. be able to:
10. a) Derive formula that will anable you to detemine tho restoring force actin on er object that is undergoins simple harmonic motion.
b) Use the formula denived in part (a) to calculate the value of one of the variabies given the value of the other three.
11. a) Derive a formula that dill enable you to determine the period of an object thet is in stmple namonic motion.
b) Use the fomma denived in part (a) to celculate the value of one of the variwhes given the value of the other two.
12. a) Derive a comula that will enable you to determine the restoring force acting on tre bob of a pendulum.
b) Use the formula derived in part(a) to calculate the value of one of the variabies given the value or the other two.
13. a) Derive a Cornula tiot wili erable you to determine the period of a panduibar.
b) Use the fomuliz derived in otrto (o) to calculate the value of one of the varisbles tiver the value of the other two.
14. Give a detailed argumet thet will determine whether there is such a force as centrifugal forec.

wounces

I. Readings:

1. PSSC - Phyaics: 410 , 11, 12, 13 pps. 347-350; 114 pps. $350 \div 353$.
2. Taffel - Physics, Its Methons and Leanincs: \#10, 11, 12, $13 \mathrm{pps} .94-97$; :714 p. 122.
3. Williams, Hoaern Fhysics: "10, 11, 12, I3 pps. 119-122; 1714 \qquad
II. Froblems:
4. FSSC - Physics: $\# 10,11,12,13$ p. 355 exs. 26-32; Hit \qquad
5. Tarfe - Thysics, Ite iethode and Meaninss: f10, 11, 12, $13 \mathrm{pps} .98-100$ exs. 1(7-8), 2(13-14), 1.(14-15), 2(24-25); $: 14$ \qquad
6. Wiliams - Kodern Physics: " 10 , 11, 12,13 ppsx 122-123 exs. $A(1-4), 3(6-10), \dot{B}(1-2), B(4)$.
III. Laboratories:
7. Taffel - Laboratory Manal, Physics - Ita Methods and Meaning3: pros. 19-21, 41-44, 49-52.
8. If an object of mass 8 kg is undergoine aimple harmonic motion and has a period of 1.8 sec., that will be the re. storing force acting on the object if it is displaced 3 m from the origin?
9. Derive a formula that will give you the period of an object that is undergoine simple harmonic motion.
10. a) Derive a fommle that will enable you to determine the restoring force acting on the bob of a pendulum.
b) Consider the following diagram:
11. If the mass of the ball at the end of the pendulum is 20 kg , what As the magnitude of the linear restoring force acting on it :hen it is at the top of i.ts arc?
12. What is the period of the pendulum?

13. Is centrifugal force a fictitious force? Justify your answer.

I. Books:

1. Physicsl Science study Comittoe, Physics, and edition (D. C. Heath and Co., 2065).
2. 'Paffel, Physics, Its' Fethods and deaninge (aliyn and Bacon, Inc., 1965).
3. Wilians, Ketoalfe, Trinklein, fefler, Modern Physics (Holt, Rinehart, and wirston, Inc. 1969).
II. Lab Manuals:
4. Phyaical Science Stury Comntiee, Physics Laboratory Guide, 2nd edition (D. C. Heath and Co., 1965).
5. 'maffel, Physics, Its Metrods and Eenings Laboratory Hanual (Aliyn and Bacon, Inc., 1.965°).
III. Filmstrips:
6. Force and Hotion (McGraw Hill Book Conveny)
n

RATIUNAJE

Abstract

In the previous LAP we studied the dynamics of motion. What causes an object to change direction, or to accelerate, or to stop. We studied the types of forces that cause such behavior.

In this LAP we will concern ourselves primarily with three things: momentum, work, and energy. We will determine why a car does more damage than a baseball when they hit an object even if they are traveling at the same speed. We will learn what is meant by work and various ways in which work is performed. FInally, we will study energy and see why we say that it is the ability of an object to do work.

Behavioral Objectives
By the completion of the prescribed couse at study you will. be able to:

1. Define impulse of a force and work problems relating to this definition.
z. Define monentum of a body and work problems relating to this definition.
2. Demonstrate your understanding of conservation of momentum by:
a. Writheg a one-page paper describing experiments that have been performed to denonstrate that momentum is conserves.
b. Working problems relating to conservation of momentrm in the interaction of several bodies.
3. Defiae the center of mass of two fateracting bodies and work problems relating to this definition.
4. Demonstrate your understanding of the relationship between conservation of momentum and velocity of center of mass by being able to derive a Cormula showing this relationship.
5. Demonstrate your understanding of rocket propulsion by stating a formula involving the total mass of a rocket, the nass is ejected, and the change in velocity of the rocket and wozking problens relating to this formula.

Resources

1. Readings:
 14 pps. $387-388$; if pys. $388-391$; 76 pps. $393-390$.
2. Taffel - \#1, \#2 pps. 113-114; \#3 pps. 114-116; \#4, \#5, \#6 \qquad
3. Williams - \#1 - \#3 pps. 0)-92; \#4, \#5, \#5, \qquad .

2. Problems:

1. PSSC - $11, y, 397$ ex. 1-7; \#2 pes. 397-398 ex. 8, 10-13; \#3, рре. 398-399 a夫. 13-14, 16-18, 26; \#4 pps. 399-400

 43 pp. 117-119 (ex. 1 $(3-4), 2(6-8) 1(4,6-7), 2(10-11) ;$ H+, in, \#5 \qquad ,
2. Willianas - \#1-f3 pps. 92-93 B(16-17), E(12-14, 16); \#4, \#5, \#6, \qquad .
3. Laboratories:
4. Physics, Its Methods and Meanings: Lab Lí
5. Physics, Its Mubods and Meanors: Lab i5
6. Physics: Lat ITI - 7
7. Physics: Lab ILI - 8 .
8. An 1800kg. car increases its mead at a-matiom rate in a straight line from 15 athec is $50 \mathrm{n} / \mathrm{sec}$ in 7 sec .
(a) What impulse acred on tins cay?
(b) What force produced inis acceleration?
9. A motorcycle traveling at $7 \mathrm{~m} / \mathrm{sec}$ increases its speed to $18 \mathrm{~m} / \mathrm{sec}$ in 10 sec .
(a) What was the initial monentum of this motorcycle?
(b) What was the final monentum of this motorcycle?
(c) What fimpulse acted on this motorcycle?
(d) What was the magnitude of the force acting on this motorcycle?
10. A bomb having a mass of 100 kg . asplodes in the air into two pieces that fly out vertically in opposite directions from one another. If the mass of one piece is 33 kg and the mass of the other piece is 67 kg , what is the ratio of the velocity of the first piece to the velocity of the secund plece?
11. a. Define center of mass.
b. A 5 kg ball is moving towards a 20 kg ball at rest with a speed of $3 \mathrm{~m} / \mathrm{sec}$.
1) If the balls are 72 mapart, how far is the center of mass from each ball?
2) What is the velocity of the center of mass?
5. Derive a formula that demonstrates the relationship between conservation of momentum and center of mass.
6. If a rocket of mass 5 kg ejects 100 g of fuel through the exhaust nozzle with a speed of $100 \mathrm{~m} / \mathrm{sec}$, what is the change in velority of the rocket?

ayan at subx

 orbits. Your report should incinde diagrams ant zables of data to illustrate each of these flifet iaws.
2. Write a three page paper explaning three different theories concerning the structure of our solar system.
3. Write a paper explasaing the Law of Unfvarsal Gravitation. Your paper should include a statement of the law, a mathematical. derivation of this law, iaboratory tests of the law, and some applications of the law.

Behavioral Obyectives
 able to:

2. Demonstrate you: wanoratanaine at bnezo sumgy by deriving a formula thet wis. arabie you to caloujate the kinetic energy of a body and work problems relating to this formula.
3. Demonstrate your undexstanding of the change in kinetic energy that cceurs when two bodies interact and the force of interaction Is a constant repulesve foree by:
a. deriviry a fomula that snows tios relacionship and working problems relaing to this formala.
b. presenting is one-quarte: page arsument that shows the total kinctic emeray ehanged during the intaraction but is tie same altax fhe inceatlion as it was before the

 energy telactue to the uncor of mass of the two bodies and wonkiag probicms relatjri to tinis Eomala.
d. deriving fommias that will give the velocities of the bodies after the interaction and working problems relating to these formulas.

RESOUFCEG

1. Readings:

1. PSSC - \#1 pps. 402-406; :12 pps. 406-407; 13 pps. 407-417.
2. Taffel-\#1 pps. 136-137; /12 pps. 155-156; \#3 pps. 156-157.
3. W1111ams - \#1 pps. 124-i26; \#2 pps. 131-132; \#3 \qquad .

2. Problems:

1. PSSC - \#1 p. 418 ex. 2-5; \#2 pips. 418-419 ex. 6-11, 13; 1F3 pps 419-421 ex. 15-16, 18-25, 28-31.
2. Taffel-\#1 pps. 146-148 ex. $1(2), 2(9), 1(1-2,4) 2(12,13,15) ;$

非2 pps. 168-170 ex. $1(1-2), 2(11-14), 1(1,6), 2(15)$;
\{3 pps. 159-170 ex. $1(8), 2(15,2(17-18,22)$
3. Willams - 11 pps. 120-130 A (1-4), A(1-2,i), $1(9,11-12)$
\#2 pps. 135-135 ex. $\mathrm{B}(7), 1(3-4), \mathrm{B}(8-9) ; / 3$ \qquad .

1. a. Define mork.
 an angle of 60° with the turazotak and moves the puck 5 m . How much wotk is dors liy this foree?
2. What is the kinetic energy of a proton (mass $=1.7 \times 10^{-27} \mathrm{~kg}$) When it is moving at a speed of $3.5 \times 10^{8} \mathrm{~m} / \mathrm{sec}$?
3. Derive a formula that shows the total change in kinetic energy that occurs when two objects interact and the force of interaction is a constant repulsive force depends on the magnitude of the force and the change in separation of the objects.
4. A ball of wast 5 kg is moving towards a ball with mass 25 kg which is at rect at a speec of 20 m/sec.
a) What are the initial kinetic energies of both bodies?
b) What are the velocities of each mass after the collision?
c) What are the final kine:te energice of hoth bodies?
5. A set of pulleys kith an foga hat of 12 as wed to raise a 240 lb safe a heighe of 6 f :
a. Draw a diagram of the net at alles.
b. If there in no fricionad iose, wiat effort must be applied?
c. How much cord will be gulled in by the effort?
d. What is the work imput?
e. What is the work output?
6. A wheel and axle whose radii are 1 m and .25 m respectively is used to lift a wieght of 50 nt .
a. Assuming it is an ideal machine, what effort will be required to operate it?
b. If the effort really needed is 17.5 nt , how much force is used to overcone friction?
c. What distance must he afort move co raise the weight 8 m ?
d. What jis the owrk output?
e. What is the work input?
7. A 9 ft . board is ased to make an inclined plane to roll a barrel to a platform 3 ft . above the floor.
a. How much work would be riquited to raise the barrel directly - from the floor to the plation?
b. If friction is neglected, whet effort would be required to roll the barrell up the incino?

By the completion of able to:
 energy in an Interaction betbeen a maes and a spring bumper and work problens reforing to chis fombia.
2. Demonstrate your umerstamine of the gravitational potential energy and kinetic energy of a boiy that is suspended at height h above the earth by:
a. deriving a formula that will enable you to determine the grapitationif potentiai masy of a body at height h. b. stating a formbin that shuts the relationship between
 syatem and woxany pondrins relating to chis formbla.
3. Demonstrate your understanding of gravitational potential energy for an object at aze suparation from the earth by deriving a fomma that when ente got io detormbe the gravitational poternai thetey as fis offect and working problems relating to chat formula.
4. Demonstrate your undexetaning of the iorces reguired to put an object fin orbit avornd the earth or to free it from the earth's gravitational pull by being able to:
a. deteroine the escape kinetic energy of any given object oin the earth's surfece.
b. derfve a numertimal value for the escape volocity of any object from the surface of the earth.
c. determine the binding energy of any given object to any other given object.

Resources

1. Readings:
2. PSSC - \#1 pps. 422-426; 72 pps. 426-433; 73 pps. 433-434; \#4 pps. $434-437$.
3. Taffel - \#1 \qquad ; \#2 pps. 157-161; \#3 pps. 161-162; \#4 pps.

162-164.
3. Williams - \#1 \qquad ; \#2 pps. 130-131; \#3 \qquad ; \#4 \qquad .
2. Problems:

1. ㄹSC - \#1 pps. 438-439 ex. 1-5, 7-8, 14-16, 19; 非2 pps. 441$442 \mathrm{ex} .20-21 ; \| 3 \mathrm{p} \cdot 442 \mathrm{ex} .22-23 ;$ \#4 p. $442 \mathrm{ex} .24-26$, 28-30.
 2(16,21); 13 p .170 1(11); \#i p. 170 1(11).
2. Williams - \#1 \qquad ; \#2 pps. 13.5-136ex. A(1-2), A(1-2), B(7) ; \#3 \& 14 \qquad .

3. Laboratories:

1. Physics: Its Methods and Meanings, Lab 1 lo
2. Physics: Lab III - 12
3. Physics: Lab III - 13
 on a fricrionless aura cilles with apotig bmber winich has a force constant of 5.3 incir.
a. What is the kinetfo chergy befovi the collision?
b. What is the maximum compession of the spring?
c. What is the potential energy when the spring is compressed one-quarter of the way?
4. An object is suspended 25 m above the earth. What will be the kinetic energy and gravitational potential energy of the object when it drops 20 m?
5. What is the gravitational potential energy of an object that is $1.8 \times 10^{5} \mathrm{~m}$ above the surface of the earth if the radius of the earth is $6.37 \times 10^{6} \mathrm{~m}$ and the mass of the earth is $5.98 \times 10^{24} \mathrm{~kg}$?
6. What is the binding energy of a 2200 kg satelizite to the earth?

I. Books:
7. Physicel Soisuce Study Gomiteea - Ehysiss, Second Edition (D. C. Heath and Co., 1965).
8. Taffel - Physics, Its Methods and Meanings (Ailyn and Bacon, Inc., 1965).
9. Willians, Metcalfe, Trinklein, Lefler - Modern Physics, (Holt, Rinehart, and Winston, 1968).
II. Laboratory Manuals:
10. Taffel - Physics, Its Methods and Meanings Laboratory Manual,
(A1lyn and Eacon, linc., 1965).
11. Physical Science Study Conmittee - Physics Laboratory Guide, (D. C. Heath and Co. 1965).
