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Abstract

The relationship of sample size to number of variables in the use of

factor analysis has been treated by many investigators. In attempting to

explore what the minimum sample size should be, none of these investigators

pointed out the constraints imposed on the dimensionality of the variables

by using a sample size smaller than the number of variables. A review of

studies in this area is made as well as suggestions for resolution of the

problem.
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One of the baAc axioms of factor analysis is that the number of

variables (V) in the correlation matrix should not exceed the number of

observations (N). In fact, this axiom is so taken for granted by Thurstone

(1947), Guilford (1954), and Harman (1960) that they state it without any

supporting reasons.

Of course, the most obvious reason for having N greater than V is that

otherwise one restricts the maximum number of linearly independent factors

that can be extracted from the correlation matrix. This can readily be shown

by the following:

The rank of a matrix is the maximum number of linearly independent
row (or column) vectors of that matrix (Murdoch, 1957). The rank
of the product of two matrices is less than or equal to the rank of
either matrix. Whenever the number of rows is not equal to the
number of columns of a matrix the maximum number of linearly inde-
pendent vectors is equal to the smaller number of row or columns
of that matrix. Thus, the maximum number of linearly independent
factors that can be extracted from a correlation matrix R is equal
to the rank of either matrix that is used to generate R.

Now the correlation matrix R equals FF' and by a well -known theorem,

One rank of R is less than or equal to the rank of F' or F, whichever is

smaller. But F and F' are mutual transposes and so their ranks are equal

and, therefore, the rank of F equals the rank of R (for,example, .see Tatsuoka,

1971, pp. 133-134).

Furthermore, NR ZZ', where Z is the standard score matrix, and since we

are concerned only with the ranks of the matrices, the non-zero factor N is

irrelevant and the rank of R equals the rank of Z (for example, see Harman,

1960, pp. 62-63).

1
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Finally, since the rank of a matrix is never greater than its smaller

dimension (for example, sec horst, 1963, p. 334), the rank of Z is less than

or equal to the smaller of N or V. Therefore, the maximum number of linearly

independent factors that can be extracted from the correlation matrix R is

less than or equal to the smaller dimension, N or V, of the original standard

score matrix.

Humphreys (1964) in discussing Kaiser's rule of thumb for extracting only

as many common factors equal to the number of roots greater than one of the

complete correlation matrix (i.e., with ones in the main diagonal), suggests

that with a small N, even this criterion might result in retaining a factor

which is dependent only on chance. By using a small N, one may be capitalizing

on sampling error in interpreting factors.

Aleamoni (1964) factor analyzed 66 observations on 62 variables using the

Principal Axes procedure with Varimax rotation. Then, using a table of random

numbers, he selected three subsamples of N = 51, N = 33, and N 17,

respectively, and attempted to factor analyze them. The subsample of 17

observations could not be factored, however, since the communalities were

greater than one and were not acceptable. He attributes this to either the

small N of 17 or else computer error.

The factor analysis of the subsamples of sizes 51 and 33 did produce

interesting resultz,, though. The subsample of N = 51 gave several factors

quite similar to those of the total sample of N = 66. The subsample of

N 33, however, gave only two factors that were similar to those of the

original sample. Aleamoni concluded that as N becomes less than or equal to

V, the resultant intercorrelation matricies become less similar than those

where N is larger than V.
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Humphreys, et al., (1969) state that, as yet, no minimum N can be

specified, but that N should he as large as feasible so that factors al:, oased

on stable differences among correlations as well as on correlations that are

significantly greater than zero. They recommend including the smallest

number of variables which will still serve the purposes of the investigation,

and limiting the number of factors extracted to one-quarter of the number of

variables. They further suggest that a trade-off between the number of

observations, number of variables, and number of factors is a reasonable

procedure. IF, for example, only a limited number of observations is possible,

then the number of variables studied and factors extracted should also be

restricted.

Even when N is relatively large, however, extracted factors can still be

due to chance. Using N's of 48, 96, and 384, and V's of 12, 24, and 48,

Humphreys, et al., (1969) have been able to construct apparently well-defined

factors from intercorrelations of random normal deviates. They state:

Empirically :,here are a great many factor-analytic investigations
reported in which many of the variables have distributions of
correlations that do not differ markedly from random distributions,
(p. 268)

This does not mean, of course, that all such factors are necessarily

random, but only that better data are needed before one can confidently

conclude that they are nonrandom. Of course, large sample sizes reduc.a. the

probability that factors are attributable entirely to chance.

Solomon (1966) followed this general approach of getting additional data to

confirm the existance of factors in his study of teacher behavior dimensions.

Solomon (Solomon, Bezdek, and Rosenberg, 1964; and Solomon, Rosenberg, and

Bezdek, 1964) first of all factor analyzed 24 observations en 169 variables

and extracted eight factors. He stated that he realized he had violated the
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N greater than V requirement, but that this study was exploratory and twat the

number of variables was kept large "...so that the possibility of obtaining

n'w and/or more subtle dimensions than have emerged previously would be

maximized" (Solomon, Bezdek, and Rosenberg, 1964, p. 32). As has already been

pointed out, however, with N less than V, it is the size of N that determines

the number of possible dimensions and not V.

Solomon (1966), however, does go on to attempt to show that his factors

are nonrandom. He factor analyzed 69 variables (items which were selected

according to their loadings on the questionable factor analysis of the previous

study) with a sample of 229 observations. Solomon reports that seven of the

eight previous factors appeared again, in addition to four new ones.

This use of replication to show that results are nonrandom is, of course,

a common and accepted practice. Cohen and Guthrie (1966), for example, in

studying motivation patterns of college attendance, factor analyzed 105

variables on two samples of 105 and 95 observations, respectively. Although

both sample sizes were probably much too small, they attempted to use the

results of the smaller sample to confirm the results of the larger. They

report that only six of the ten factors described in the first Tnalysis were

confirmed by the second analysis.

Although it appears on the surface that replications may help somewhat

in confirming that factors defined from analyses with small N are nonrandom,

Humphreys, et al., (1969) strongly caution:

Replicability, which is the mainstay of the scientific method, is
hopeless in factor analysis studies unless hedged about with more
controls than is commonly the case. It is clear that with appropriate
values of N, n [number of variables], and m (number of factors extracted
the Procrustes method, either oblique or orthogonal, could replicate
random factors endlessly. (p. 269)
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Thus, investigators seem to know that sample sizes should be larger

than the number of variables before legitimately doing a factor analysis, but

it appears from these studies that they frequently do not understand why this

is the case and so tend to violate the constraint. Nor (ices replication

seem to be an entirely satisfactory way to compensate for a small sample

size.

The only recourse seems to be for investigators more strictly to adhere

to the restriction of not using factor analysis unless the sample size is

considerably larger than the number of variables. Even though previous

investigators have stated that no minimum N can be specified, if one is

interested in maximizing the number of possible dimensions underlying V,

then N must be at least greater than V.



6.

References

Aleamoni, L. M. Analysis of personality measures and measures used to predict
success in science. Unpublished master's thesis, University of Utah, 1964.

Cohen, A. G., & Guthrie, G. M. Patterns of motivation for college attendance.
Educational and Psychological Measurement, 1966, 26(1), 89-98.

Guilford, J. P. Psychometric methods. New York: McGraw-Hill, 1947.

Horst, P. Matrix algebra for the social scientist. New York: Holt, Rinehart,
and Winston, Inc., 1963.

Harman, H, H. Mbdern factor analysis, Chicago: University of Chicago Press,
1960.

Humphreys, L. G. Number of cases and number of factors: An example where N is
very large. Educational and Psychological Measurement, 1964, 24(3), 457-466.

Humphreys, L. G., Ilgen, D., McGrath, D., & Montanelli, R. Capitalization on
chance in rotation of factors. Educational and Psychological Measurement,
1969, 29(2), 259-271.

Hurdoch, D. C. Linear algebra for undergraduates. New York: John Wiley 6
Sons, 1957.

Solomon, D. Teacher behavior dimensions, course characteristics, and student
evaluations of teachers. American Educational Research Journal. 1966, 3(1),
35-47.

Solomon, D., Bezdek, W., & Rosenberg, L. Dimensions of teacher behavior.
Journal of Experimental Education, 1964, 33(1), 23-40.

Solomon, D., Rosenberg, L. & Bezdek, W. Teacher behavior and student learning.
Journal of Educational Psychology, 1964, 55(1), 23-30.

Tatsuoka, M. M. Multivariate analysis: Techniques for educational and
psychological research. New York: John Wiley & Sons, Inc., 1971.

Thurstone, L. L. Multiple factor analysis. Chicago: University of Chicago
Press, 1947.


