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On the Expectations of Mean Squares Based
on Nonindependent Variates in Factorials
John F. Draper

CTB/McGraw-Hill

Several procedures have been published for aiding an investigator who
wishes to perform an analysis of variance (ANOVA) on data which can be
assumed to have zero pairwise covariance (i.e., Cornfield & Tukey, 1956 and
Millman & Glass, 1967). Others have published methods for modifying basic
ANOVA procedures so that they may be employed on data which have nonzero
pairwisc covariance between data elements associated with the levels of one
factor'in a factorial experimental design (i.e., Grecnhouse & Geisser, 1959).
In all of these procedures it is essential to determine the expectation of
each of the mean squarcs associated with sources of variation in the design
both under null effect and non null effect conditions. Only if these expec-
taticns arc known can any appropriate variance ratio tests of effects due
to a sourcc of variation be detcrmined. For in order to assume a central F
distribution for a variance ratio test statistic which is testing a null
effect, it 1s necessary to assume with assurance that the numerator and the
denominator have identical expectations under conditions of null effects
asgociated with the source of variation being tested.

As it will be shown with an example later in this paper, there are cascs
of factorial experimontal desipns in which a variance ratio test statistic
has identical expectations for numerator and denominator under null effect
conditions when based on uncorrelated variates but which has uncqual expecta-
tions for numerator and denominator under null effect conditions when baged

on variates vhose palrwisce covariances are not all identically zero. That
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is, a test statistic which is unbiased when based on uncorrelated variates
is biased when based on correlated variates. Tor this reason it is essen-
tial, 1f an ANOVA is being considered, to be able to determine the effect of
nonzero covariance among the variates on the expectation of mean squares in
factorials.

It is relatively well known that the n-dimensional array of variates for
an n~way factorial experimental design may be mapped into a one-dimensional
array or vector, (i.e., Y = z, the n~-dimensional array Y is mapped into the
veztor z) and that the ANOVA lincar model mav tlien be written in matrix form
as
(1) z=XY+e,
where i is a "design maetrix,”" Y is a vector of effect parameters, and e is a
vector of error variates.

If X i3 a full design matrix and is writtcn in terms of zeros and
unities, it will be of deficient column rank. Therefore, unique values of
the clements of Y cannot be determined. However, if appropriate contrasts
are employed for the sources of variation, a recparameterized design matrix of
full column rank, K, may be specified and X factored into the matrix product
KL,

where

(2) X = KL ,

and where

(3) L = (K°K) =1K"x .
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Then a new linear model for the ANOVA in terms of the contrasts may be written

as

4) z=KLY+e
or, say

(5 z =K0 +e

where O = LY and contains a new set of effect parameters which are linear
combinations of the paramcters in Y.

The columns of K may be partitioneu into seté of columns such that
cach partition is associated with a source of variation in the ANOVA and
the sun of squares associated with that source of variation can be expressed

as a quadratic form involving that partition of K and z. For example

= P B =11r -
(6) 8y = 2" Ky (R7,K,) =K%z
or say
(7) SSA = z” F, z,

where FA stands in for the idempotent matrix of the form.

The expectation of the mean squarce associated with thie A source of
variation, A(NSA), is cqual to the expectation of the sum of squares, E(SSA)
divided by the appropriate degreces of frecdon,

(L = —1 MES
(8 Z(HSA) df L\SSA) .

The expectation for the gum of squares can be written in terms of the

quadratic form as



n n
(9) E(ss,)=E ) V£, =

=1 =1 M 13

oxr removing the constants from the cxpectation

(10) E(SSA) =

I~
it t~3

fij E(zizj) .

1 j=1

Since the covariance of z; and zj , oij’ is expressed by the identities

(11) cij = E(zizj) - E(zi) E(zj)
and
(12) E(Zizj) = E'(zi) E'(zj) + oij’

The expression for the expected sum of squares may be rewritten as

n n
1 = £.. (&(z.) E(=z .
(13) E(SS,) izl jzl PGICRRICR I
or as
n n n n
(14) E(sS,) = Y y fi E(z,) E(zj) + N £.. 0.. .

i=1 j=1 i=1 j=1 Y B

If the covariunces are all zero then the

n n

(15) E(ss) = ) ) f.. E(z) E(z.) +
N e R = > J i

i t~
+h
Q
L

i1 ii
1

However, if the covarlances are not all zero, ithe term
9’ 2

(n=1) n
(16) 2 ) ) £,. ©

=1 g=ier A




must be added to the expression which obtains under the usual assumptions of
Zero covariance.

What has been shown up to this point is that the determination of the
expectation of mean squares based on variates with nonzero covariance can be
accomplished by cmploying the same methods which apply when zero covariance
is assumed, if a term irsolving the sum of products of the off diagonal
elements of an idempotent matrix of the form and the off diagonal elements
of the covariance matrix is added.

The development of this paper so far could be useful but is somewhat
computationally inconvenicnt. Fortunately, further development results in
considerable simplification, both computationally and conceptually.

It will be shown that an idempotent matrix of the form, for a given
source of variation, is a patterned matrix and has elements which come from
a small set of easily determincd constants, and that because of the way in
which it is patterned the ranges of summation under which the elements do
not change are also easily determined, for most designs. Note, that for

ranges of the double summation,

(17)

o2

o~
h
Q

i=1 j=1 i3 i3

within which fij does not change in vaelue, the fij constant may be removed

from the summation as,

iy *

(18) fij z § g

If CA is allowed to represent the cxpectation of the mean square, E(HSA)
glven no nonzevro covarsance anony, the variates on which it is basced, and
thoere are k ranpes of double summation within which flj docs not change,
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then an expression for the expected mecan square, E(bSA), given some nonzero
covariimce among the variates can be written as,

k

A = =1 \ - 1
(19) EQMS,) = €, + df z n £ { = Z Z o ),
p=1 p i 3]
range
p of i
and j

. . t . .
where np is the number of elements in the p h range of summatioil, fp is the
- . th 1 _ .
constant value of fij in the p range, and Y Z 2 Oi' is the average
th P i
covariance in the p range of i and j.

Or if the product np fp divided by the degrees of freedow is considered

.. th .
as a coefficient for the p average covariance term,

(20) . ¢ =df~t n £
P p p’
and the pth average covariance is indicated by Ep’ then the general equation

for the expected mean square can be expressed as

k
(21) EQS,) = £, + N ¢ G .

The above expression is the basic formula toward which the precceding
development has been directed. With it and a knowledyge of how F is patterned,
a concise cxpression for the expectation of a mean square can be determined

in terms of a familiar expression ¢ plus a weightced sum of certain averape

A,
covariances,
Tt will be usceful now to consider how to specify the unique clements of

"yen

a patterned Ldempotent matrix and where they are in it.  In order to do

this, Tirst conslder the nature of a partltion of a reparameterized desipn
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matrix associated with a given source of varlation since an "F" matrix is

a function of such partitions
(22) (e.g., F, = K, (K

For any completely crossed and balanced n-~way factorial design, the "K"
partition associated with any source of variation can be expressed as the
Kronecker or direct product of n full column rank matrices each respectively
associated with a factor of the factorial., The n full column rank matrices
are ordered from left to right in the product in order of increasing "rapid-
ity of subscript change"! for each factor in the n-dimensional. "Y' array
elements from which the z elements were mapped. For example, if the source

A was In a 3-way factorial and its "subscripts changed most slowly,' K, might

A
be equal to

)s

(23) (A0 01
v 7P
where 1 is a vector of ¢q unilties.

!

For any completely balanced design with nested factors a combination of
two or more partitions obtained from a full rank design matrix, created as
though thie factors were crossed, can be used to structure the appropriate
idempotent matrix of the form for a nested source of variation. TFor cxample,

say an "I matrix is desired for the source, A nested with B, The "F'" matrices

]
Sce Appendix A for an explanation.



for the A source of variation and the A by B interaction source of variation
(assuming A and B were crossed) may be added to form the "F'" matrix for the

A within B source.

That is

4 o = T . F
(24 Faeg © A ¥ Fap
since

. e = ,
(25) “SA:B SSA + SSAB

or in terms of a sum of quadratic forms

(26) SSA:B =2z” FA z +z” FAB'i s
therefore

(27) =z (F +F) z,
and

(28) =z Rz

0f course unbalanced designs require partitioning of sets of rows with-
in the column partitions and are thus more complicated but tractable, if not
simple.

Now as an example consider the "F" matrix for the three-way interaction

A by B by C in a 3-way completely crossed factorial.

(29) Kipe =A@BoOC

and

(30) Fuc=(AOBOC ) [(AnB8RBC)Y" (AG@BGBC)]I"L(ABBBC)”
(31) = {(A@BROC) [ATAGBBGCC]™Y (AaBocC)

(32) =(AODBOC) [(AA)"o B~ a (o] (LeBaC)
(33) = [A (A" A"l a (B @)~ Bl e (c(olcy.

In a similar manner any idempotent "B matrix associated with a source of
vasiation in a balanced n-way factovial desipn can be expressed as o Kronecker

product of n separate idewpotent matrices. Now the contrasts of the levels



of any factor may be specified so that, without any loss of generalization
with respect to an overall ANOVA test of effects, there are at most two

unique elements in an idempotent matrix such as
(34) A (AT A,

This means that an n-way balanced factorial will have patterned "TF" matrices
with a number of unique elements less than or equal to 2n.

Now 1 will present an cxample from which I hepe generalization will be
apparent since I have not yet sct up any "rules of thumb'" for these proce-
dures. Consider again a three-way factoriul. Let the factors be completely
crossed, balanced (n = 1) and be labeled A (for subjects) with levels
i= l,é, .., 83 B (for occasions of measurcment) with levels j = 1,2, ..., r;
and C (for neasures) with levels k = 1,2, ..., t. Further let factors A and C
provide random sources of variation and B a fixed source of variation. A
lincar model for the dependent variates in a three-dimensional array may be
written as

(35 Y =u+ai+8j+c

. +d.. + £, + h
ijk ij .

K R I T

. Lt , , o
where Bj, the effect duc to the j ! occasion, is the only fixed effcct. Or

if a vector z is formed of the variates yijk such that the three dimensional

-

array y is nmapped into the one dimensional array z, where z7 =

(3()) [xl’zz,.'.,zﬂl’.'[_'] = [yl,l.,.l’yl,l,;f"'"yl,l,t’yl,z,l’yl,z,Z"“’yl,r,t’

y2,l,l""’>:;,r,t] ’

the lincar model may be written in terms of a design matrix X, a vector of

parameters foand a vecetor of errors oo

ERIC

Aruitoxt provided by Eic:
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That {is
(37) 2= X +e,
vliere e has elements corresponding to the e, ., with subscripts ordered as

1jk

they were for yiik ’

(38) Y= (ba', 8%, ¢ d5 £, 87 171, and
| | | |
! = I ] ' 1 1 ! !
(39) X —srL,IsglrgitllsGIrc:c5%91 eI . -
| ) | |
| l |
|
I 81T @1 1181 61 ,1 @I 61 1 I @I 0TI .
s r =L i s =r t o , s r t
| t |

where ln 1s a vector of n unities, and In is an identity matrix of order n.
Ngw for a moment cxamine in Table 1 the scurces of variation, degrees
of freedom, and the expected mean squares associated with each source of
variation under an assumption of independent variates as elements of z, that
is, assume z v N (Ejoezl) under conditions of all null effects.
Then consider how the additions to the ¥(¥MS)s requlred under assump-

tiong of nonzero covarlance are determined.

In matrix notation the lincar model for the reparameterized ANOVA is

(40) z =K+ ¢, vhere

1L 0val ] 61 6W . UoVvVoel
-8 -t -8 ~r -t

-s8rt

1
|

({4]) K = 1 Ul 01
l I ~L
[

-
Uovaex .

&

I
|
Uu g lr €V A B O BV A O I U
— I -t
I
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Table 1.

SQURCLES, DECRELS OF FREEDOM, AND EXPECTED MEAN SQUARLS FOR THE ANOVA
UNDER AN ASSUMPTION OF ZERO COVARIANCE AMONG THE DATA ELEMENTS.

Source daf E(MS
A s~1 02 + r-s?:_ + rto?
e £ a
T
- 2 2 2 2 .. ~13)-1 T 82
B -1 ne+0n+sog+tod4 st (r-1) R (BJ B.)
j=1
C t-1 %2 + ro2 + sro?
e £ c
- . 2 2 2
AB (s-1) (v-1) o + oy + tod
- - - 2 2 )
BC (r-1)(t-1) oL + Ciy + bUg
ABC (s-1) (r-1) (t~1) % + g?




with the contrast matrices U, V, and W cach of full column rank.

Again without loss of generalization with respect to an overall ANOVA test

for effects let,

(42) 1 1. .
-1 1 1
0 -2 1
. 0 -3
. . 0 °.
U= e e e Tt
O 0 0...0
(44) | '1 1 1 . .
-1 1 1
0 -2 1
. 0 -3
. . o °.
W= . . T
0 0 0...0

Now the diagonal elcements
off diagonal elenents are

diagonal and off diagonal

—_ — —
. 1 (43) 1 1 3 |
1 -1 1 1 1
1 0 -2 1 1
1 . 0 -3 1
1 . o °. 1
. V= . . et .
) R 0 0 0...0 fer s
. 1
1
1
1
1
‘-t
of U (U°U)”! U” are all identically S=! {S-1) and
all cqual to -5~1,  For the matrix V(V’V)'1 V” the
¢lements are respeetively r=1(r-1) and ~r=! and fer

WA T W7 the two clements are t=1(t-1) and -t=!. Vhere the unity vectors

arce involved the result obtains that all of the elewents of 3 (1 71 )71 1~
- 1 =n

are identically n™lh,

-

and
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For this 3-way design any "F'" matrix is a "super-super matrix" and has
at gt 23 =8 i Celement s o hus there are ei - ss of g
at most < unique clements and thus there are eisht ranges of summation

" does not change, no matter with which source of variation

within which "f, .

1]
the "¥'" matrix is associated. The above-mentioned summation rauges are
cohercnt ranges and are specified in Table 2 by super matrix notation in

terms of the overall variance-covariance matrix which is itself a super-super

matrix as shown in Fipgure 1.
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FIGURE 1

The super-super watrix representatlon of the complete variiance-covariance
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Q  clement 2,1 of a super matrix which Is element 2,2 of a super-super matrlx,

ig clement 1L,t of a matrix which ls
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Table 3 contains the eight values of unique elements of the "F'" matrices
for each of the seven sources of varfation indicated in Table 1, and Figure 1
shows a model for the variance~-covariance matrix & which assumes zero covari-
ance between elements involving different subjects. Let the average covariances
defined by ranges 2, 3, and 4 in Tablce 2 be indicated respectively as 82, 53,
and 34 (51, is an aveorage variance and 55, 66: 57, and 58 have been assumed to
be identically zero). The symbols 52, 53, and Sq represent respectively the
average covariance between measures within occasions, the average covariance
betwcen the same measure on different occasions, and the average covariance
between different measures on different occasions.

The values in Table 3 and expression (20) were used to create coeffici-
ents for the average covariances and the coefficients are tabulated in Table 4.

Néw by employing coefficients from Table 4 and the general equation for

an expected mean square which was previously developed

(45) (c.g. E(MS,) =g, + ) ¢ o) ,

for each of the sources of variation, the expected mean squares in Table 5

can be determined.
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Table 5.

SOURCES, DEGREES OF TFREEDCM, AND EXPECTED MEAN SQUARES FOR THE ANOVA UNDER
THE ASSUMPTION OF NON-ZLRO COVARIANCE AMONG DATA ELEMENTS OBTAINLED I'ROM
THE SAML SUBJECT.

Source

A

BC

ABC

r~1

t-1

(s-1)(r-1)

(r-1)(t-1}

(s=1)(r-1)(t-1)

E(MS)

2+ 1o + reol 4 (t=1)0, + (r-1)o5 + (r-1)(t-1)o,

a

r
2 2 2 2 -13-1 _R. Y2 -
o + ol + S0 + tof + st (r-1) 'Z (Bj B.)
j=1
o3 + (t=1)(op - oy)
02 + ro% + sroi - 0y + (r=-1)(o3 - oy)
2 2 2 -5 - Gn — G
ag + oy + tcd o3 + (t=1)(o; ay)
2 2 2 -3 - Gn = G
Oe + Oh + SOg 03 + ( l)(Oz Oq)

2 ya
g + 0o
h

- a3+ (-1)(a, ~ oy)
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Examine Table 1 and Table 5 and consider the formation of a variance
ratio test statistic to be employed in testing the effects duc to occasions.,
Using either table it appcars that a Quasi-T ratio (Satterchwaite, 1941) can

be formed as

ABC

+
MSAB MSBC .

(46) MS, + NS

The Quasi-F ratio will at least have equal expectations for numerator and
denominator cven if an exact distribution for the statistic may not be
known at present.

Now examine Table 1 and Tatle 5 and consider testing the subject by
occasions intcraction source of variation. While Table 1 provides the

straightforward ratio

(47) MS

as a candidate, an examination of Table 5 indicates the expectation of the

numerator is

(48) 0 2+4+0 24+t 0,2 =05+ (t-1) (0, - o)

d

and the expectation for the denominator is

(49) oc7~ + un? -~ Gq + (-1) (05 = Gy) .



O

ERIC

Aruitoxt provided by Eic:

21
Thus the two expectations differ by

(50) to 2+t (Gy - 0y) .

d
Which means that if Odz’ the source of variation being tested, is zero, the
numerator would still have an expcctation which exceeded the denominator

by t (O, - 04) .
Therefore the ratio

(51) MS

MSapc

could be a biased test statistic unless 52 = Bq which would cause the term
(52) 1. (02 - 04)

to vanish, but that could only result if the average covariance between
measures on the same occasion was equal to the average covariance between

different measures on different occasions, which is unlikely.

Implications

The obvious implication of the developments in this paper is that an
investipgator who collecrs complicated repeated measures type data should be
very carcful when it comes time to decide what type of analysis is to be

employed.  There is a wide range of techniques from which to choose, from
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a simple graphical display to complicated multivariate numerical itecration
approaches, some of which provide maximum likelihood values along with the
descriptive reorganization the others provide.

Univariate ANOVA procedures however do have considerable appeal. The
numerical procedures iavolved in an ANOVA and its base of inference are
widely understood. Almost anyone can do one, and a large number of inves-
tigators will not badly misinterpret one. Fortunately the bias terms such

as

(53) t (o, - 0y)

can be estimated with assurance if the number of data elements is large and

thus the mean squares can be 'corrected" so as to form a ratio like

(54) MS,, = t (02 = 94)

MSABC

which would be an unbiased test statistic. And although T can't give the

d2 = 0 at present, I can report

exact distribution of the above ratio when o
that my simulations indicate that the Box "conservative test' for the ratio
(Box, 1954) appears to be indeed conservative.

This means that a conservative investigator could use the relatively
simple univariate ANOVA techniques and the developments of this paper to

test hypotheses and make inferences from complicated repeated measures type

data.
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Rapidity of Subscript Change

If the elements of an array of data for an n-way factorial design are
subscripted with n subscripts, one for each factor in the design, where each
subscript indicates the level of the factor with which it is associated, a
coherent mapping of the elements of the array with n subscripts into an array
of elements with one subscript requires a rule for subscript correspondences.
The usual rule can be shown with an example if a five-way factorial is con-

sidered with five-dimensional data array elements Y. which are to be

i,j,k,m,n,
mapped into a one-dimensional array with data elements z_. If lower bound
values of subscripts i,j,k,m, and n are uniformly unity and the upper bound
values respectively are specified as a,b,c,d, and e, then the correspondences
for a balanced design can be shown by the formula

p = (i-1) bede + (j-1) cde + (k-1) de + (m-1) e + n

or by the example

— e — -
¥1,1,1,1,1 21
Y1,1,1,1,2 )
¥1,1,1,1,e Ze
Y1,1,1,2,1 Zot+1
Y1,1,1,2,2 = Zat2
1,1,1,2,(.’ zZ-e
Y1,1,1,d,¢ “doc
Y1,1,¢e,d,c Zeudee
y.’l,b,(:,d,u 7’:1.}).(:.(1-(:
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As can be scen from the example, the rightmost subscript of y changes most
rapidly as the subscript for z changes, and the next rightmost subscript of

y changes next most rapidly and so on.
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Determination of F Elements
The values in Table 3 are easily determined once the pair of unique
elements for cach idempotent matrix in the Kronecker product expression for

an "F" matrix analogous to expression (33) are known.

(33) Frpe = [AA7 A"l A" e [B(B”B)-1B") @ [c(crc)-lcy .
Let the main diagonal elements of an idempotent rn:.rix in (33) be subscripted
with a unity and let the off diagonal elements be subscripted with a 2, then

the unique elements of the "F'" matrix in the eight ranges are determined as

shown below,

Range F Element
1 al"bl-cl
2 al'bl-c2
3 al'bz-cl
4 al'bz-c2
5 az'bl'cl
6 a2°bl'c2
7 az'bz'cl
8 az'b2°c2

from which generalization can be secen.

Note also Iin Table 3 that when the "F'" elements for the main effects

have been determined, the numerators of the elements for interacticoa "F”

matrices can be formed from the products of the numerators of the "involved"

H]'\II

mafin c¢ffect clementrs,
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