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On the Expectations of Mean Squares Based

on Nonindependent Variates in Factorials

John F. Draper.

CTB/McCraw-Hill

Several procedures have been published for aiding an investigator who

wishes to perform an analysis of variance (ANOVA) on data which can be

assumed to have zero pairwise covariance (i.e., Cornfield & Tukey, 1956 and

Millman & Glass, 1967). Others have published methods for modifying basic

ANOVA procedures so that they may be employed on data which have nonzero

pairwise covariance between data elements associated with the levels of one

factor in a factorial experimental design (i.e., Greenhouse & CeiSser, 1959).

In all of these procedures it is essential to determine the expectation of

each of the mean squares associated with sources of variation in the design

both under null effect and non null effect conditions. Only if these expec-

tations are known can any appropriate variance ratio tests of effects due

to a source of variation be determined. For in order to assume a central F

distribution for a variance ratio test statistic which is testing a null

effect, it is necessary to assume with assurance that the numerator and the

denominator have identical expectations under conditions of null effects

associated with the source of variation being tested.

AF it will be shown with an example later in this paper, there are cases

of factorial experim:.ntal designs in which a variance ratio test statistic

has identical expectations for numerator and denominator under null effect

conditions when based on uncorrelated variates but which has unequal expecta-

tions for ;inure rater and denominator under null effect conditions when based

on variates whose patrwise covariances are not all identically zero. That
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is, a test statistic which is unbiased when based on uncorrelated variates

is biased when based on correlated variates. For this reason it is essen-

tial, if an ANOVA is being considered, to be able to determine the effect of

nonzero covariance among the variates on the expectation of mean squares in

factorials.

It is relatively well known that the n-dimensional array of variates for

an n-way factorial experimental design may be mapped into a one-dimensional

array or vector, (i.e., Y = z, the n-dimensional array Y is mapped into the

v,,ctor z) and that the ANOVA linear model may then be written in matrix form

as

( 1 ) z = X Y + e ,

where X is a "design matrix," Y is a vector of effect parameters, and e is a

vector of error variates.

If X i3 a full design matrix and is written in terms of zeros and

unities, it will be of deficient column rank. Therefore, unique values of

the elements of Y cannot be determined. However, if appropriate contrasts

are employed for the sources of variation, a reparameterized design matrix of

full column rank, K, may be specified and X factored into the matrix product

KL,

where

(2) X = KL ,

and where

(3) L = (K-K) -1K-X
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Then a new linear model for the ANOVA in terms of the contrasts may be written

as

(4) z = KL Y + e

(5)

or, say

z = KO + e

where 0 = LY and contains a new set of effect parameters which are linear

combinations of the parameters in Y.

The columns of K may be partitioneci into sets of columns such that

each partition is associated with a source of variation in the ANOVA and

the sum of squares associated with that source of variation can be expressed

as a quadratic form involving that partition of K and z. For example

(6)

(7)

SS = K (K" K ) z
A A AA A

or say

SS = z' FA zSSA
A '

where F
A

stands in for the idempotent matrix of the form.

The expectation of the mean square associated with the A source of

variation, NSA), is equal to the expectation of the sum of squares, E(SSA)

divided by the appropriate degrees of freedom,

(8) E(MSA) = df-1 E(SSA) .

The expectation for the sum of squares can be written in terms of the

quadratic form as
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n n

(9) E(SSA) =EX X f
ij

zi zj
i=1 j=1

or removing the constants from the expectation

(10) E(SSA) = G G
f..
13

E(z.z.)
i=1 j=1

Since the covariance of z. and z. , a. . , is expressed by the identities
1

a.. = E(z.z.) - E(zi) E(z.)
1 3

E(zizj) = E(zi) E(z.j) + aij,

The expression for the expected sum of squares may be rewritten as

n n
(13) E(SSA)

J
) = X X fi, (ij(zi) E(zi) Oii)

i =1

or as

n n n n

(14) E(ssd...XXf..E(zdE(z.).+ X X f.. a.. .

1=1 j=1 J J i=1 j=1
,3

If the covariances are all zero then the

n n
(15) E(SSA)=XXfE(zi"(z." X fii Gil

i=1 j=1 J i=1

Howcver, if the covariances are not all zero, Lice term

(n-1) n

(16) 2 y f .

ij 1.3
j=i+1



5

must be added to the expression which obtains under the usual assumptions of

zero covariance.

What has been sown up to this point is that the determination of the

expectation of mean squares based on variates with nonzero covariance can be

accomplished by employing the same methods which apply when zero covariance

is assumed, if a term irsolving the sum of products of the off diagonal

elements of an idempotent matrix of the form and the off diagonal elements

of the covariance matrix is added.

The development of this paper so far could be useful but is somewhat

computationally inconvenient. Fortunately, further development results in

considerable simplification, both computationally and conceptually.

It will be shown that an idempotent matrix of the form, for a given

source of variation, is a patterned matrix and has elements which come from

a small set of easily determined constants, and that because of the way in

which it is patterned the ranges of summation under which the elements do

not change are also easily determined, for most designs. Note, that for

ranges of the double summation,

n n

(17) G G f.. a.. ,

1=1 j=1 zJ 1J

within v:hich f. does not change in velue, the f. constant may be removed

from the summation a.,

(18) f.

If F is allowed to represent the expectation of the mean Square, E(MS
A

)

given no nonzero cov:117,aneu ill11011r, the variates on which it is based, and

there are k ran!;ce; of double summation within which f
lj

does not change,
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then an expression for the expected mean square, E(MSA), given some nonzero

covariance among the variates can be written as,

(19) E(MSA) = CA + df-1 n f (

p=1 P P np
X a ij

) 9

range
p of i
and j

where n is the number of elements in the p
th

range of summation, f is the

constant value of f.. in the p
th

range, and 1 0., is the average
n
P 1

covariance in the p
th

range of i and j.

Or if the product n
P

f
P
divided by the degrees of freedom is considered

as a coefficient for the p
th

average covariance term,

(20) c = df-1 n f ,

P P

and the p
th

average covariance is indicated by GP, then the general equation

for the expected mean square can be expressed as

(21)

k

E(N5A) CA 4- Gp

The above expression is the basic formula toward which the proceeding

development has been directed. With it and a knowledge of how F is patterned,

a concise expression for the expectation of a mean square can he determined

in terms of a familiar expression FA, plus a weighted sum of certain average

covariances.

It will be useful now to consider how to specify the unique elements of

a patterned "F" idempotent matrix and where they are in it. In order to do

this, first consider the nature of a partition of a reparamcterized design
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matrix associated with a given source of variation since an "F" matrix is

a function of such partitions

(22) (e.g.,
A

= K
A

(K
A

KA) -1 K
A
')

For any completely crossed and balanced n-way factorial design, the "K"

partition associated with any source of variation can be expressed as the

Kronecker or direct product of n full column rank matrices each respectively

associated with a factor of the factorial. The n full column rank matrices

arc ordered from left to right in the product in order of increasing "rapid-

ity of subscript change."1 for each factor in the n-dimensional "Y" array

elements from which the z elements were mapped. For example, if the source

A was in a 3-way factorial and its "subscripts changed most slowly," KA might

be equal to

(23) ( A 0 1 0 1 ),
-?

where 1 is a vector of q unities.

For any completely balanced design with nested factors a combination of

two or more partitions obtained from a full rank design matrix, created as

though the factors ..ere crossed, can be used to structure the appropriate

idempotent matrix of the form for a nested source of variation. For example,

say an "l' matrix is desired for the source, A nested with B. The "F" matrices

See Appendix A for an explanation.
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for the A source of variation and the A by B interaction source of variation

(assuming A and B were crossed) may be added to form the "F" matrix for the

A within B source.

That is

(24) F = FA + F
A:B A

FAB
'

since

(25) SS
A:B

= SS
A
+ SS

AB

or in terms of a sum of quadratic forms

(26) SSAB = z' F z + z' F z
'

therefore

(27)
(FA FAB) z- '

and

(28) = z' F z .

A:13

Of course unbalanced designs require partitioning of sets of rows with-

in the column partitions and are thus more complicated but tractable, if not

simple.

Now as an example consider the "F" matrix for the three-way interaction

A by B by C in a 3-way completely crossed factorial.

(29) K
ABC

=A0B0C
and

(30) F
ABC

= (A0B0C) [(A0B0C)' (A0B0C)]-1 (A0B0C )'

(31)

(32)

(3:3)

= (A0B( C) [A'AOB'BOC'C]-1 (A0B0C)

= (A0B0C) [(A'A)-1 0 (B'B)-10(C'C)-1] ( LOBOC)

= [A (A'A)-I A-] 0 [B (B -B) -1 B'] 0 [C (C'C)-1 C'] .

in a similar manner any idempotent "F" matrix associated with a source of

va;:iation in a balanced n-way factorial desin can be expte:wed as a Kroneker

product of n separate idompotent matrices. Now the contrasts of the levels
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of any factor may be specified so that, without any loss of generalization

with respect to an overall ANOVA test of effects, there are at most two

unique elements in an idempotent matrix such as

(34) A (A'A)-1 A' .

This means that an n-way balanced factorial will have patterned "F" matrices

with a number of unique elements less than or equal to 2n.

Now I will present an example from which I hope generalization will be

apparent since I have not yet set up any "rules of thumb" for these proce-

dures. Consider again a three-way factorial. Let the factors be completely

crossed, balanced (n = 1) and be labeled A (for subjects) with levels

i = 1,2, ..., s; B (for occasions of measurement) with levels j = 1,2, ..., r;

and C (for measures) with levels k = 1,2, ..., t. Further let factors A and C

provide random sources of variation and B a fixed source of variation. A

. linear model for the dependent variates in a three-dimensional array may be

written as

(35) Y.. = p + a. + dij + fik + gjk + hijk + eijk ,

where t j
th

he effect due to the occasion, is the only fixed effect. Or

if a vector z is formed of the variates y
ijk

such that the three dimensional

array y is napped into the one dimensional array z, where z' =

( 3 (i) [z
1'

z2"." z
rt:f;J Iv

Y2,1,1 f;,r,t
I ,

the linear model may be written in terms of a design matrix X, a vector of

parameters 1 and a vector of errors e.
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That is

(37) z = XY + e ,

where e has elements

they were for
Yij

(38) Y =

(39) X=

I
S

corresponding to the e
ijk

with subscripts ordered as

[P,a', 6', c', d', C.', E.', h'], and

1 1

1 0 1 0 1 1 1 0 1 0 1 1 1 01 01 4-srt-

-Sr S -r -t I -s r -t I -s -r t

I t I

I I I

0 I 0 1 1 1 0 1 0 I 1 1 0 I 0 I 1 I 0 I 0 I
r -t 1 s -r t 1 -s t 1 s r tr

where 1 is a vector of n unities, and I is an identity matrix of order n.
-n n

Now for a moment examine in Table 1 the sources of variation, degrees

of freedom, anJ the expected mean squares associated with each source of

variation under an assumption of independent variates as elements of z, that

is, assume z N ((51,c2I) under conditions of all null effects.

Then consider how the additions to the E(MS)s required under assump-

tion; of nonzero covariance are determined.

In matrix notation the linear model for the reparameterized ANOVA is

(40) z = K 0 + e where

(41) K =

1 I
I

1

1 I U 0 1. 0 1 1 1. 0 V 0 1
I

. , .1 0 1 0 W . U () V 0 1
-srt

(
-r -t 1 -s

I
-t

)

I I 1 I

-1

U01 01.11] OVOW 1 UOVOX
-r 1 -s
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Table 1.

SOURCES, DECREES OF FREEDOM, AND EXPECTED MEAN SQUARES FOR THE ANOVA
UNDER AN ASSUMPTION OF ZERO COVARIANCE AMONG THE DATA ELEMENTS.

Source df E(MS)

A s-1 o2 + r,s 2 + rto2
e t a

r

B r-1 rte c2 + sc2 + to2 -1. st(r-1)-1 y 0.-T
e
+ .)2

ng d
j=1

02 4_ r02
f
+ sro2C t-1

e c

AB (s-1)(r-1) 02 + 02 + t0-,)
e h d

s02BC (r-1)(t-1) 02
e
+ 02

h
+

g

ABC (s-1)(r-1)(t-1) 02 + 02
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with the c,,ntrast matrices U, V, and W each of full column rank.

Again without los,, of generalization with respect to an overall ANOVA test

for effects let,

(42) 1 1 1 . . 1

-1 1 1 1

0 -2 1 1

. 0 -3 1

. 0 '. 1

(43) 1. 1 1 .

-1 1 1

0 -2 1

0 -3

. 0 '.

. 1

1

1

1

1

-

00
V=

0 0 0 . . . 0 -s 0 0 0 . . . 0 '-r ,

(44) 1 1 1 . . 1

-I 1 1 1

0 -2 1

0 -3 1

1

. .
14=-- . . .

. . . . .

. . . .

0 0 0 . . . 0 -t

Now the diagonal elements of U (U'U)-1 U' arc all identically S-I (S-1) and

off diagonal elements are all equal to -S-I. For the matrix V(V'V)-1 V' the

diagonal and off diagonal elements are respectively r-1(r -1) and -r-1 and for

W(W'W)-1 W' the two elements are t-1(t-1) and -t-I. Where the unity vectors

are involved the result obtains that all of the elements of l (1 '1 )-I 1

are identicalYy n-1.

and
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For this 3-way design any "F" matrix is a "super-super matrix" and has

at most 23 = 8 unique elements and thus there are ranges of summation

within which "f.." does not change, no matter with which source of variation

the "F" matrix is associated. The above-mentioned summation ranges are

coherent ranges and are specified in Table 2 by super matrix notation in

terms of the overall variance-covariance matrix which is itself a super-super

matrix as shown in Figure 1.
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Table 3 contains the eight values of unique elements of the "F" matrices

for each of the seven sources of variation indicated in Table 1, and Figure 1

shows a model for the variance-covariance matrix which assumes zero covari-

ance between elements involving different subjects. Let the average covariances

defined by ranges 2, 3, and 4 in Table 2 be indicated respectively as ;2, 03,

and a4 (ol, is an average variance and 06, 06, 07, and 08 have been assumed to

- - -
be identically zero). The symbols 02, 03, and 04 represent respectively the

average covariance between measures within occasions, the average covariance

between the same measure on different occasions, and the average covariance

between different measures on different occasions.

The values in Table 3 and expression (20) were used to create coeffici-

ents for the average covariances and the coefficients are tabulated in Table 4.

Now by employing coefficients from Table 4 and the general equation for

an expected mean square which was previously developed

4

(45) (e.g. E(MS A) =
A
+ c

m
0m) ,

m=2

for each of the sources of variation, the expected mean squares in Table 5

can be determined.
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Table 5.

SOURCES, DEGREES OF FREEDCM, AND EXPECTED MEAN SQUARES FOR THE ANOVA UNDER
THE ASSUMPTION OF NON-ZERO COVARIANCE AMONG DATA ELEMENTS OBTAINED FROM

THE SAME SUBJECT.

Source df E(Ma

A s-1 02 + ro2 + rto2 + (t-1)02 + (r-1)(73 + (r-1)(t-1)0- 4

B r-1 02 02 sag to2 st(r-1)-1 /
e

j=1

03 + (t-1)(02 - 04)

C t-1 02 + 1.02 sro2 - 02 (r-1)(03 04)

(s-1) (r-1) 02 + 02
h d
+ tag - 03 + (t-1)(02 04)

BC (r-1) (t-l) 02 ail
g

so2 03 + (-1) (02 04)e

ABC (s-1)(r-1)(t-1) 02 + 02 03 + (-1)(G2 G4- )
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Examine Table 1 and Table 5 and consider the formation of a variance

ratio test .statistic to be employed in testing the effects due to occasions.

Using either table it appears that a Quasi-F ratio (Satterchwaite, 1941) can

be formed as

(46) MS
B

+ MS
ABC

MS
AB

+ MS
BC

The Quasi-F ratio will at least have equal expectations for numerator and

denominator even if an exact distribution for the statistic may not be

known at present.

Now examine Table 1 and Table 5 and consider testing the subject by

occasions interaction source of variation. While Table 1 provides the

straightforward ratio

(47) MS
AB

MS
ABC

as a candidate, an examination of Table 5 indicates the expectation of the

numerator is

(48) 0e2 a 2 t u
d
2 - 03 + (t-1) (02 - G4)

and the expectation for the denominator is

(49) 0 2 + (3. 2 + (-1) (02 - 01,) .
e 11
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Thus the two expectations differ by

(50) tod2 t - 04) .

Which means that if 0d2, the source of variation being tested, is zero, the

numerator would still have an expectation which exceeded the denominator

by t (72 - J4) .

Therefore the ratio

(51) MS
AB

MS
ABC

could be a biased test statistic unless 02 = 04 which would cause the term

(52) t (02 04)

to vanish, but that could only result if the average covariance between

measures on the same occasion was equal to the average covariance between

different measures on different occasions, which is unlikely.

Implications

The obvious implication of the developments in this paper is that an

investigator who collects complicated repeated measures type data should he

very careful when it: comes timie to decide what type of analysis is to be

employed. There in a wide range of techniques from which to choose, from
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a simple graphical display to complicated multivariate numerical iteration

approaches, some of which provide maximum likelihood values along with the

descriptive reorganization the others provide.

Univariate ANOVA procedures however do have considerable appeal. The

numerical procedures involved in an ANOVA and its base of inference are

widely understood. Almost anyone can do one, and a large number of inves-

tigators will not badly misinterpret one. Fortunately the bias terms such

as

(53) t (02 -

can be estimated with assurance if the number of data elements is large and

thus the mean squares can be "corrected" so as to form a ratio like

(54) MS
AB

- t (e2 - 04)

MS
ABC

which would be an unbiased test statistic. And although I can't give the

exact distribution of the above ratio when o
d
2 = 0 at present, I can report

that my simulations indicate that the Box "conservative test" for the ratio

(Box, 1954) appears to be indeed conservative.

This means that a conservative investigator could use the relatively

simple univariate ANOVA techniques and the developments of this paper to

test hypotheses and make inferences from complicated repented measures type

data
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Rapidity of Subscript Change

If the elements of an array of data for an n-way factorial design are

subscripted with n subscripts, one for each factor in the design, where each

subscript indicates the level of the factor with which it is associated, a

coherent mapping of the elements of the array with n subscripts into an array

of elements with one subscript requires a rule for subscript correspondences.

The usual rule can be shown with an example if a five-way factorial is con-

sidered with five-dimensional data array elements which are to be
Yi,j,k,m,n,

mapped into a one-dimensional array with data elements z . If lower bound

values of subscripts i,j,k,m, and n are uniformly unity and the upper bound

values respectively are specified as a,b,c,d, and e, then the correspondences

for a balanced design can be shown by the formula

p = (i-1) bcde + (j-1) cde + (k-1) de + (m-1) e + n

or by the example

Y1,1,e,d,e

Ya,b,c,d,e

zl

z
2

z
e

z
e+1

z
e+2

z
2.e

z
d.e

zC d C
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As can be seen from the example, the rightmost subscript of y changes most

rapidly as the subscript for z changes, and the next rightmost subscript of

y changes next most rapidly and so on.
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Determination of F Elements

The values in Table 3 are easily determined once the pair of unique

elements for each idempotent matrix in the Krnnecker product expression for

an "F" matrix analogous to expression (33) are known.

(33) = [A(A' A)-1 A') 0 [B(B' B)-1 B1 0 [C(C' C)-1 C'l .

Let the main diagonal elements of an idempotent m_:.rix in (33) be subscripted

with a unity and let the off diagonal elements be subscripted with a 2, then

the unique elements of the "F" matrix in the eight ranges are determined as

shown below,

Range F Element

1 a
1
b

1
c

1

2 a
1
1)

1
c

2

3 a1132c1

4 a
1
13

2
c

2

5 a
2
1)

1
c

1

6 a
2
1)

1
c

2

7 a
2
13

2
c

1

8 a
2
1)

2 2

from which generalization can be seen.

Note also in Table 3 that when the "F" elements for the main effects

have been determined, the numerators of the elements for interactii "F"

matrices can be formed from the products of the numerators of the "involved"

main effect "F" elements.


