AUTHOR	Shapiro, Steven L.: Stein, Barry A.
TITLE	Student Evaluations Related to Frequency of
PUB DATE	Testing.
NOTE	17p.
EDRS PRICE	HF-\$0.75 HC-\$1.50 PLUS POSTAGE
DESCRIPTORS	*Academic Achievement; College Students; College
	Teachers; *Teacher Evaluation; *Testing
IDENTIFIERS	*Freguency of Testing

ABSTRACT
An investigation was designed tc determine the offects of frequency of testing on student perfcrmance. As a result of this experiment a relationship betueen student evaluations cf teachers was noted. The results indicated increases in teacher ratings as test frequency increased. It is assumed that the findings were produced by the independent variable, frequency of testing, nat by differences in subject matter, teachers, or methodology. (EE)

STUDENT EVALUATIONS REIATED TO FREQUENCY OF TESTING

By Steven L. Shapiro
Barry A. Stein

noted rocently as a result of an oxperiment designed to determinc the effects of
differences of fraquency of testing on the performance of students enroiled
under two different admissions policies in an urban community college. The
two policies are open admissions, which admits all high schoo graduates re-
gardess of average, and selective admissions, which in N.Y.C. prior to Fall

1970, required most high schoul graduates to have a 75 per cent average or
higher to gain admission to a community college.

DESIGN

The experimental sample was selected from those students registering
for Business Organization and Management for the Fall 1972 semester at

Dr. Steven I. Shapiro and Dr. Barry Λ. Stein are assistant professors in the department of busincss, Queensborough Community College, Bayside, N.Y. 11364 . The authors thank ?rofossor Sheldon Somerstein, Chaiman of the business department for his outstanding cooperation throughout the experiment.

Queensborough Community College. The sample was distributed into twelve classes, divided into three treatment groups - four receiving 10 tests, four : tests and four 3 tests during the term. Room and time assignments were mede at random. Each group was given the same 150 multiple-choice quer.ions during the semester to :neasure learning. Each class took the same 100 item multiple-choice final examination.

There were four instructors teaching the twelve classes in the inves-
tigation; each teaching a 10 test, 5 test and 3 test class (see Table 1). The instructors met weekly with the experiment leader to discuss the topics to be covered and methodology to be used.

Although all three treatment groups were composed of students from two different high school academic levels (below 75% and 75% or above), the
groups were proven to be comparable by a two way analysis of variance on the variables high school average and reading and English expression scores.

[^0]
RESULTS AND CONCLUSIONS

Through analysis of the data, it was noted that the students taking
more than three test (experimental groups) had significantly higher (.01) final examination scores and final course grades than those being given three tests during the semester (control group). To be precise, open admissions freshmon did best when tested ten times during the term while regular freshmen achieved most when tested five times throughout the semester (sce Table 2).

It was further observed that the students in the experimental groups rated their instructors higher in all categories of the student evaluation form used throughout the college. Although the nature of the evaluation instrument precludes identification of individual students, the overall findings found in

Table 3 indicate surface validity and again raise a question that has been
pondered for many years: What really is the relationship between students' achievement and teacher ratings?

In this experiment, the objective test results which show increased learning by students taking five or ten tests as opposed to three, agree with
the subjective student evaluations of teachers. Although differences in subject
matter, teachers and methodology affected the evaluations, all three groups
were affected due to selective manipulation in setting up the investigation. It
is assumed that the findings were produced by the independent variable, fre-
quency of testing, and not by differences in subject matter, teachers or
methodology.

The findings of this study support D. N. Elliot who in a study of a large introductory chemistry course, concluded that ". . . there is probably, in general, a positive relationship between the ratings given an instructor by his students and their achievement. . ." ${ }^{2}$ They also are compatable with H.H.

Remmers who, in essentially the same experimental design, concluded that
". . . there is warrant for ascribing validity to student ratings . . . as measured by what students actially learn of the content of the course." ${ }^{3}$

Some investigators have found a negative correlation between the
${ }^{2}$ D.N. Elliot, Purdue University Student Higher Education, 70,5 (1950). 3
H. H. Remmers, F.D. Martin, D.N. Elliot, Purdue University Student Higher Education, 66, 17 (1949).
amount learned from an instrustor and the students' evluation of his teaching
performance. Rodin and Rodin in a study of 293 students in an undergraduate
calculus course, concluded that ". . . the instructors with the three lowest
subjective scores received the three highest objective scores while the in-
structor with the highest subject rating was lowest on the objective measure. " ${ }^{4}$
R.F. Knapp found evidence that student evaluations, to a large extent,
tend to reflect the personal and social qualities of an instructor, "who he is"
rather than "what he does." ${ }^{5}$ The results of this investigation indicate that
"what he does" and not "who he is" determines to some degree the results of
the student evaluation. Testing frequency seems to have been measured
rather than individual teaching abilities. Each of the four participating instructors received their best evaluations as a result of increasing exam frequency. Collectively, they did not receive the ir highest rating in any of the ten categories from the 3 test group. The results indicate that students

[^1]taking :0 tests rate the instructors highest in categories $3,4,6,7,8,9$, and
10. Students in the 5 test group evaluate the insuructors best in categories 1 ,

2 and 5. While it must be noted that the teachers themselves may have placed
more emphasis on the experimental classes due to the nature of the study, these
findings do show a pattern which indicates the importance of course modification
in affecting student evaluations of teachers.

VARIATIONS IN RATINGS

The student evaluation of faculty is used today for purposes of re-
hiring, promotions and tenure. It $c \geqq n$ be an important determinant in the rel-
ative success or ultimate failure of a teacher's career. In examining the in-
dividual categories more closely, it appears that students are measuring their
image of achievement rather than teacher performance. By scanning column A
we see that alchough all four teachers were required to cover the same topics
during the term and all students received the same 150 multiple-choice items,
the differences in teacher ratings are quite evident. Overall mean final exam-
ination scores differ significantly by approximately three points between the 10
test and 3 test group (see Table 2) while student evaluations differ by as much as 36.9 per cent (category 7) between the same two groups.

Interestingly, the greatest variation occurs in the category: Evaluates students' work. Students in the $l l$ test group who ware constantly evaluated, indicated this on the rating form. While it was true, the students took the same number of test items during the semester as those evaluated less frequently
and the mean total items correct curing the term was 100.89 for the 10 test group
and 101.4 for the 3 test group.

The category: How would you describe instructor to others?, shows the second greatest variation of ratings (35.9 per cent). This category is a particularly important one. It shows that when the four teachers in the experiment gave three tests during the semester, 24 per cent of the studeits rated
them excellent. When five tests were used, 53 per cent responded excellent
and when 10 tests were given, 61 per cent described the instructors as excellent.

Accepting possible variations in teacher motivation toward the various groups,
the percentages still strongly favor the instructors when they used increased
test frequency.

Although the category: Rate your own performance; shows a relatively small variation of ratings (10.2 per cent), it is important to recognize that
students have a better self-concept when undergoing higher frequency testing.

It is even more evident when columns A and B are combined and the variation
incrases tn 25.7 per cent.

The student evaluations of instructors were conducted prior to the final
examination. At that time, students were not aware of final exam grades or final course grades. The only evaluations of students were in the form of exam grades. The mean total items correct from these exams for the three groups had a variation of .509 (the difference in mean total items correct between the 10 test group and 3 test group) which is remarkably small when considering the number of studentsinvolved and the number of test items administered. The 258 students responding 181.6% of the 316 finishing the semester in the twelve classes) should have rated the instructors practically the same in each frequency group since achievement had been virtually the same up to that point.

Since final examination mean scores show significant differences between the groups, higher ratings as exam frequency increases indicate a relationship between student learning (achievement) and teacher ratings. This positive relationship, however, goes further than merely stating a possible correlation. The real question becomes: Are teacher ratings subject to actual student achievement which may be created by one or more course variables?
"THE GREATER LEARNING IMAGE"

In this study, the conclusions of Eliiot and Remmers are substantiated
while those of Rodin and Rodin and Knapp are not. There does seem to be a relationship between achievement and ratings but certainly not a simple one.

The ratings seem to have been made, to a great extent, according to the stu-
dents perception of learning throughout the semester. This "greater learning
image" may be the result of several factors. Perhaps increased test frequency
as opposed to three major examinations reduced test anxiety and made no one
test critical. Another reason may have been the personal contact between
teacher and student which developed as a result of constant item discussion
and grade distribution throughout the term. A. third possiblity could have been that as a routine of testing was established, students liked having fewer topics on each exam, and found studying to be easier. All or any of these factors may have had a much greater effect on the student evalautions
than the actual increased achievement which is evidenced by the final exam-
ination mean scores.

SUMMARY

The variable testing frequency seems to have a $\mathrm{g}^{\text {r...at }}$ influence on
teacher evaluations. Results show tremendous increases in ratings as test
frequency increases. "Who the teacher is" as opposed to "what he does"
seems to be unimportant. What is important is how student achievement and evaluation of faculty are affected by frequency of testing. There is a significant relationship between test frequency and student achievement on the
final examination. From this standpoint, the appraisal instrument used to -
evaluate the teachers is valid to some extent. There appears to be a striking relationship between the "greater learning image" created in this investigation
by increased test frequency and student evaluation of instructors.

Wit! the student evaluation becoming a more and more important part
of the success or failure of the college teacher, there is no doubt that a great
many questions concerning these evaluations are still only vaguely answered.

The researcher must no longer be concerned with only teacher effeciveness
but also concentrate on the ingredients that contribute to the overall effective-
ness of instruction.

The instructor, on the other hand, anxious for a high rating in category

9 as well as all the others, must begin to seek out various means of stimulating
the ratings. In the sense that this may lead to experimentation and educational
advances, this is fine. If, however, this pursuit leads to the use of teaching
gimmicks, designed only to improve image and not instruction, the teacher
evaluation idea fails. Those using the evaluations must read them carefully
and always remember that while numbers don't lie, they do sometimes exaggerate!
1 olqei.

	10 Tests	5 Tests	3 Tests	Total Number of Business Crg. \& Mgmt. Classes Taught
Teacher A	,	,	1	3
Teacher B	1	1	1	3
Teacher C	1	i	1	3
Teacher D	1	1	1	3
Total classes	4	4	4	12

TABLE 2
FINAL EXMIMATION AND FINAL COURSE GR-DH RESULIS COMPARED TO TOTAL ITEAC CORFECT

High School Average	$\begin{gathered} \text { Prequency of } \\ \text { Exam } \end{gathered}$	Number of Observations	Final Examinution		Final Course Gi"de	
			Lean	S.D.	Me:n	\therefore D.
Under 75%	10 Fests	57	72.895	10. 304	2.304	0.726
Under 75\%	5 Tests	59	69.678	10. 505	1.988	1).829
Under 75\%	3 Tests	49	67.939	1.0 .792	1.691.	0. 84.2
75\%\% or above	10 Tests	S	75.519	11481	2.655	1). 67
75\% or above	5 Tests	\% 44.	78.318	8.515	2.799	0.6y
75\% or above	3 rests	56	74.318	10.697	2.534	1.891.
Over ic under 75\% combined	10 Tests	103	74.11:33	- -	2. 4.724	
Over \& under 75\% combined	5 Tests	103	73.3591	-	2.3345	
Over \& under 75\% combined	3 Tests	105	71.3140		2.1406	

Number of Responses 89 3 Test Group
5 Test Group
Nor

Number of Responses 3 Test Group 89 5 Test Group 85 10 Test Group 84		Perc	age of Response 3 Test Group 5 Test Group 10 Test Group	$\begin{aligned} & 84.76 \% \\ & \varepsilon 2.76 \% \\ & 77.7 \varepsilon \% \end{aligned}$	
Category	A	B	C	D	E
1. Communicates subject to students 3 Test Group 5 Test Group 10 Test Group	$\begin{aligned} & \text { Very clearly } \\ & 36 / 40.5 \%^{\mathrm{b}} \\ & 64 / 75.2 \% \\ & 59 / 70.2 \% \end{aligned}$	$\begin{aligned} & \text { Fairly ciearly } \\ & 44 / 49.4 \% \\ & 19 / 22.4 \% \\ & 25 / 29.8 \% \end{aligned}$	Sonitwhat: confusing $7 / 7.9$ $2 / 2.4 \%$ $0 / 0 \%$	$\begin{aligned} & \text { Very } \\ & \text { confusing } \\ & 3 / 2.0 \% \\ & 0 / 0 t \\ & 0 / 0 \% \end{aligned}$	$\begin{aligned} & 1 \mathrm{n} / \mathrm{da} \mathrm{a}^{\mathrm{a}} \\ & 0 / 6 \% \\ & 0 / 0 \% \\ & 0 / 0 \% \end{aligned}$
2. Demonstrates interest and enthusiasm. 3 Test Group 5 Test Group 10 Test Group	Great extent $\begin{aligned} & 37 / 41.5 \% \\ & 66 / 75.2 \% \\ & 63 / 75 \% \end{aligned}$	Somewhat $\begin{aligned} & 38 / 1+2.7 \% \\ & 16 / 18.8 \% \\ & 21 / 25 \% \end{aligned}$	$\begin{aligned} & \text { Rarely } \\ & 11.12 .4 \% \\ & 2 / 2.1 .1 \% \\ & 0 / 0 \% \end{aligned}$	$\begin{aligned} & \text { Not at all } \\ & 5 / 3.4 \% \\ & 0 / 0 \% \\ & 0 / 0 \% \end{aligned}$	$\begin{aligned} & \mathrm{Dn} / \mathrm{da} \\ & 0 / 0 \% \\ & 0 / \mathrm{O} \% \\ & 0 / \sigma \% \end{aligned}$
3. Knows sunject. 3 Test Group 5 Test Group 10 Test Group	Very well. 62/69.7\% 65/76.4\% $71 / 84.5 \%$	$\begin{aligned} & \text { Fairly well } \\ & 23 / 25.8 \% \\ & 19 / 22.4 \% \\ & 13 / 15.5 \% \end{aligned}$	$\begin{aligned} & \text { Poorly } \\ & 2 / 2.25 \% \\ & 0 / 0 \% \\ & 0 / 0 \% \end{aligned}$	$\begin{aligned} & \text { 100t at all } \\ & 2 / 2.25 \% \\ & 0 / 0 \% \\ & 0 / 0 \% \end{aligned}$	1)n/da 0/G層 1/1.2\% 010%
4. Uses class time productively. 3 Test Group 5 Test Group 10 Test Group	Always 40/44.9\% $51 / 63.5 \%$ $56 / 66.67 \%$	$\begin{aligned} & \text { Frequently } \\ & 30 / 33.8 \% \\ & 22 / 25.9 \% \\ & 20 / 23.8 \% \end{aligned}$	$\begin{aligned} & \text { Sumetines } \\ & 11 / 15.7 \% \\ & 3 / 3.5 \% \\ & 2 / 2.4 \% \end{aligned}$	$\begin{aligned} & \text { karely } \\ & 3 / 3.1 \% \\ & 0 / 0 \% \\ & 2 / 2.4 \% \end{aligned}$	$\begin{aligned} & 1 m / 3 \mathrm{a} \\ & 2 / 2.2 \% \\ & 6 / 7.1 \% \\ & 4 / 4.8 \% \end{aligned}$
5. Heips students understand assinnments and materiais. 3 Test Group ; Test Group 10 Test Group	Always $\begin{aligned} & 35 / 39.3 \% \\ & 55 / 64.7 \% \\ & 51 / 60.7 \% \end{aligned}$	Frequently $\begin{aligned} & 27 / 30.3 \% \\ & 22 / 25.9 \% \\ & 25 / 29.8 \% \end{aligned}$		kavely $\begin{aligned} & 12 / 13.5 \% \\ & 1 / 1.2 \% \\ & 1 / 1.2 \% \end{aligned}$	$\begin{aligned} & 1 \mathrm{bu} / \mathrm{ja} \\ & 0 \%(\pi) \\ & 2 / 2 \cdot \operatorname{sit} \\ & 0 / 0, \% \end{aligned}$

TABLE 3 - Continued

験。

Number of responses/Percentage of response

[^0]: ${ }^{\text {l }}$ Queensborough Community College is a branch of the City University of New York.

[^1]: ${ }^{4}$ M. Rodin and B. Rodin, Science 177 , 4955 (1972).
 ${ }^{5}$ R.H. Knapp, The American College, N. Sanford, Ed. (Wiley, New York, 1962), pp. 290-311.

