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The purpose of this article is to briefly discuss the concept of scaled

achievement tests and to present a method of selecting those items of a test

that form the most "scalable" sub-set. "Most scalable" being used in the

sense of having the highest coefficient of reproducibility (Rp).

The underlying assumption of this type of test, sometimes called a

monotonic-deterministic model, is that the test items may be sequentially

ordered. Under this assumption a person who has a score of "m" on an "n"

item test will have correctly answered the first "m" items and incorrectly

answered all remaining items. It is thus possible to reconstruct a person's

entire response vector given only his total test score. While there are

many possible advantages to this approach to testing it would seem that one,

the determination of a "most" logical order in which a skill may be taught,

is directly relevant to the topic discussed by this symposium.

Almost all of the reported work that has been done using this model has

involved the measurement of attitudes and there is very little in the literature

concerning it's application to achievement tests. Cox and Gordon (1966)

developed a simple arithmetic achievement test based on the model: and Kohen-

Rox (1967), using a variation of the Guttman procedure (H technique), reported

very good results in his attempts to scale developmental sequences in infants.

The studies in the area typically suffer from two defects: they scale items

within a single sample and rarely attempt to replicate their findings on

another sample, and they fail to provide an estimate of the statistical signifi-

cance of the obtained R 's. And each of these is critical in studies of this
p

nature. In the first case the obtained scaling may be a non-reproducible situa-

tional artifact and hence meaningless; while in the second case the obtained

value of R , which is a representation of the degree to which the test items

have been scaled, may not be statistically significant. Regarding this last



2

point most researchers are content to simply state that a value above .85 or

.90 represents a significant R . Cox and Graham, for example, stated that a

value of .90 was acceptable and concluded that their obtained value of .92

was significant.

The continued use of such unsupported figures is no longer defensible.

Considerable work has been done in the area and numerous methods of estimating

the significance of an obtained value of R have been proposed. The earliest

of these, and the basis for all subsequent proposals, was presented by Goodman

(1956). This procedure was later simplified and extended by Sagi (1959) for

one method of computing R . Sagi's work was further simplified and generalized

by both Castellon (1969) and Cotton (1969). It is now possible, based on the

above research, to determine the significance of an obtained value of R that

has been computed by the method proposed by Goodman.

Using the procedures developed by the cited researcher's it is now

possible to determine the probability of obtaining a given R . Two statistics

are required for this evaluat:;_on: the expected value of the coefficient (and

it should be noted that the minimum value for a test consisting of dichoto-

mously scored items is .75); and the standard error. of the expected value.

Since the underlying rational for a scaled test is that successful

performance on any given item is dependent upon successful performance of the

preceding item, the first step in devising a method of scaling items is to

obtain a statistic that will estimate the statistical significance of the

differences between the difficulty indices (DI) of the items that make up the

test. An appropriate statistic for this purpose is the standard error of the

difference between correlated proportions.

The formula is used to construct a k x k matrix %) whose elements are

standard deviates 0: scores) and represent the "distance" between each pair
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of test items. Each element in the matrix is computed by dividing the differ-

ence between the corresponding pair of difficulty indices by it's associated

error term.

Table 1 contains the upper half of such a matrix formed from the ten

items of an experimental test in division.

Having formed the matrix the next step is to determine which of the "k"

test items fit the model. In simple terms this involves the F .imination of

those items whose vector contains a value that is less than the value

associated with the chosen level of significance. The procedure that is used

to eliminate the items that do not fit the model can best he described by

example and for this purpose the data presented in Table 1 will be used.

1. Choose the level of random error that is permissible and obtain

the z score that corresponds to the one-tailed probability. In

this case alpha will be equal to 0.05 and the corresponding z

score is 1.64.

2. Locate the item in the matrix that has the highest difficulty index

(i.e., the easiest item). In th,.! example this is item one.

3. Check each element in row one to see if One of the values are

greater than one minimum value (1.64). They are, so a 1 is placed

above column one. This is the baue item.

4. Locate the lowest value in the base row (1). In the example this

is 1.73 and is in column four. Check row four to see if all of it's

elements are greater than the minimum value. They are so a 2 is

placed above column four.

5. Locate the next lowest value in the base row: 3.83 in column five.

Column five is checked and one entry, that in row two, is less than

the minimum value. Column two is then checked to see if it contains



TABLE 1

Matrix of Z Scores Representing the Differences Between
Ten Correlated Proportions

1 2 3 4 5 6 7 8 9 10

1 .857 4.56 7.64 1.73 3.83 8.78 10.78 10.27 8.63 11.24
2 - .746 5.35 3.00 0.15 6.64 9.55 3.69 6.74 10.06

3 - .582 6.93 5.25 2.71 7.04 5.84 2.15 7.31

4 - - .820 3.05 8.56 10.45 9.83 8.39 10.91
5 - .750 7.28 9.60 8.74 6.81 9.93
6 - - .504 4.99 3.71 0.13 5.42
7 - .357 1.29 4.45 1.34
8 - .393 3.61 2.83
9 - .508 6.34

10 - - - - - .316

NOTE: Item difficulties are given in the diagonals.

TABLE 2

Reduced Matrix Containing Those Items Having
no Entry Less Than 1.64

1(1) 2(4) 3(2) 4(3) 5(6) 6(8) 7(10)

1 .857 1.73 4.56 7.64 8.89 10.27 11.24

2 .810 3.00 6.93 8.56 9.83 10.91

3 .746 5.35 6.64 8.69 10.06

4 - - .582 2.71 5.84 7.31

5 .504 3.71 5.42

6 - - .393 2.83

7 - .316

NOTE: Original items numbers are in parentheses.
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more than one value that is less than the minimum value. It does

not so the entries in each of the columns are summed. The sum of

column two is 54.74 and the sum of column five is 54.64. Since

column two has the greatest average z this item is retained and a

3 is placed above column two. A line is drawn through row and column

five. Had the number of lesser entries contained in the two columns

been unequal, the column containing the greater number of lesser

entries would have been eliminated. This is the second of two

methods that can be used to eliminate items that do not fit the

model.

6. The next lowest value in row one is that contained in column three.

Since all of the entries in column three are greater than 1.64 a 4

is placed above column three.

7. Column nine contains the next lowest value in row one. There is

one entry in col.umn nine that is less than 1.64 so the associated

column, six, is checked and found to also contain one value that is

less than 1.64. The sum of column six is equal to 40.94 and the

sum of column nine is equal to 40.44: item nine is therefore elimin-

ated and a line is drawn through row and column nine.

8. Column eight is next in line and one entry, that in row seven, is

less than the minimum value. Checking column seven it is found to

contain two entries that are less than 1.64. The item is deleted,

a iinc is drawn through row and column seven, and a 6 is placed

above column eight.

9. The last column to be checked is column ten, which contains no entry
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that is less than 1.64. A 7 is placed above column ten and the

elimination of the items that do not fit the model is completed.

It has been possible, in this example, to retain seven of the original

items and use them to construct a test that should meet the assumptions of

the monotonic-deterministic model to a high degree. The reduced matrix,

with the original item numbers given in parenthesis, is presented in Table

2. The difficulty indices of the retained items are contained in the diagnosis

of the matrix.

The seven items that were retained have an average difficulty index of

.6025, a standard deviation of .249, and a pronounced positive skew. This

last is of importance since one of the criticisms most often leveled at

tests based on this model is that they can be constructed only if there are

large differences in the difficulty indices of adjacent items (Nunnally,

1967, pp. 64-66). This example would seem to offer partial refutation to

these criticisms, since five of the items have difficulty indices greater than

.5 and there are differences in the difficulty indices of adjacent items as

small as .0369 (D1 - D2) and the average difference between adjacent items is

.0898.

The procedure described above has proved useful in several different

situations. The author has used it to scale two achievement tests in arith-

metic and the results, obtained in grades 2-6 in one school system, were repli-

cated in another school system. The results of this study, as well as those

from a later replication in kindergarten, are given in the second part of this

paper. Although the procedure was designed primarily for the scaling of items

within a test it may also be used to scale other types of stimuli. For instance,
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King (1972) has used it to scale reading passages in the elementary grades

and Huntley (1971) has used it to scale tests representing the levels of

Gagne's hierarchy of learning.

Construction, Analysis and Cross-Validation of the Scales

The second part of the study involved three separate tasks: the con-

struction of the scales; the administration of these to a standardization

sample and the analysis of the resulting data; and the subsequent adminis-

tration of the resultant scales to a second sample, in order to determine if

the obtained results were stable. These three steps are described in the

following sections.

Construction of the Scales

It was decided to construct tests to measure two very simple skills:

elementary addition and elementary subtraction. Although any success that

might be attained using such simple skills would not serve as proof that the

method would be successful if applied to other, more complex skills, failure

on these simple tasks would strongly indicate that the basic concept. of

scaled achievement tests is impractical.

A listing of the hypothesized tasks involved in addition and subtraction

was compiled ana arranged in the expected order of difficulty. There were 20

tasks in the addition list and 23 in the subtraction.

The listing was constructed by starting with the simplest possible task

in the skill and defining the next task as that which required the smallest

possible increase in knowledge. For example, in addition the easiest possible

task is to add two 1 digit numbers together to obtain another 1 digit number.

The smallest possible increment in required knowledge would be the addition of
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a third digit while retaining the constraint that the sum be less than 10.

The process was continued until no further meaningful increments could be

made.

The basic concept of this approach is that it is possible to determine

whether an individual can perform a stated task with only a specified amount

of random error. This requires that we have several samples of a person's

performance on the task rather than the typical single sample of performance.

The number of samples required will be determined by the amount of random

error that the experimenter is willing to accept. This was set at the 0.05

level for this study and, since it was desired to have four-alternate multiple

choice items, it was decided that four items would be a sufficient sampling

of the behavior. Under these conditions correct answers to three or four of

the items would be accepted as an indication of "mastery" of the sampled

skill (p = .0547).

Experimental forms of both the addition and subtraction test were

constructed: the former containing 4 similar items from each of its hypo-

thesized tasks, for a total of 80 items; and the later containing 4 similar

items from each of its hypothesized tasks, for a total of 92 items.

Analysis of the Data from the Standardization Sample

The tests were administered to the pupils in grades 2 through 6 in two

elementary schools in Wakulla County (Florida). Both are rural schools and,

although both are integrated, one school (Shadeville) is primarily black

while the other (Sopchoppy) is primarily white. The number of pupils who took

each of the tests, broken down by grade and school, is contained in Table 3.
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TABLE 3

Description of the Wakulla Sample by Grade, School
and Test

Addition Subtraction

Shade- Shade-
Grade ville Sopchoppy Both ville Sopchoppy Both

2 22 19 41 23 24 47

3 27 26 53 25 28 53
4 29 24 53 28 28 56
5 22 20 42 21 21 42
6 30 26 56 30 19 49

Total 130 115 245 127 120 247

Each test served as its own answer sheet. This method was chosen over

separate answer sheets, even though it required more time to score the tests,

since research (Cashen & Ramseyer, 1969) indicates that there is a marked and

significant lowering of scores when separate answer sheets are used earlier

than the 4th grade.

Two matrices of scores were created: A, the matrix for the addition

test, being n
a

x 20 and
/1/1

the matrix for the subtraction test, being n
s

x 23.

Each element in a matrix represents the number of items that were correctly

answered on a given task. For example:

a.. = Ir x.ij.
ij k where k = 1,2,3,4

represents the score of the ith person on the jth task of the addition test.

The obtained matrices were then transformed by substituting a 1 for each

element that was> 3 and a 0 for those that were < 3.
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These matrices were then analyzed, using the procedures previously

described and 9 items from each of the two experimental forms were found to

meet the requirement, a minimum z of 1.64, for inclusion in the final test.

The resulting matrices are presented in Table 4. The tasks corresponding

to the 9 items, for each of the tests, are given in Table 5.

It was necessary, in order to compute the coefficient of reproducibility,

to determine a total score for each subject. This was defined as the number

of the first item that preceded the second zero and which contains a 1. This

was an arbitrary choice on the part of the experimenter and several other

scoring methods (i.e., the sum of the l's, the sum of the l's that preceded the

first 0, etc.) could have been chosen. To illustrate how the method works

consider 3 subjects, A, B, & C, who have the following items scores:

Items
1 2 3 4 5 6 7- 8 9

Subject A 1 1 0 1 1 1 0 0 1

Subject B 1 1 0 0 1 0 0 0 0

Subject C 0 1 0 0 0 0 0 0 0

Subject A would receive a total score of 6: this being the number of

the last item preceding the second zero that was scored as a 1. Subject B

receives a total score of 2, as does Subject C.

Since there was only a single administration of the two tests the only

reliability coefficients that could be computed were estimates based on the

internal consistency of the tests. Table 6 gives a complete listing of the

obtained estimates of test reliability.

The obtained coefficients were acceptable and, considering the number of

items in the tests, the small sample sizes in the individual classroom estimates,

and the restricted range within classrooms, most of them could perhaps be

called large.
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TABLE 5

Task Descriptions

Addition

Task 1 - add two 1 digit numbers to obtain a 1 digit number.

Task 2 - add three 1 digit numbers to obtain a 1 digit number.

Task 3 - add three 1 digit numbers to obtain a 2 digit number that is
greater than or equal to 20. Carrying is required.

Task 4 - add two 2 digit numbers to obtain a 2 digit number.
No carrying is required.

Task 5 - add two 2 digit numbers to obtain a 2 digit number.
Carrying is required.

Task 6 - add three 2 digit numbers to obtain a 2 digit number.
Carrying is required.

Task 7 - add three 3 digit numbers to obtain a 4 digit number.
Carrying is required in all 3 columns.

Task 8 - add two 4 digit numbers to obtain a 5 digit number.
Carrying is required in the 1st two columns.

Task 9 - add 4 numbers, one each of 2, 3, 4 and 5 digits, to obtain a 5 digit
number. Carrying is required in the 1st 4 columns.

Subtraction

Task 1 - subtract a 1 digit number from another 1 digit number to
obtain a 1 digit number.

Task 2 - subtract a 1 digit number from a 2 digit number to obtain
a 2 digit number. No carrying is required.

Task 3 - subtract a 1 digit number from a 2 digit number to obtain
a 1 digit number. Carrying is required.

Task 4 - subtract: a 2 digit number from a 2 digit number to obtain
a 2 digit number. No carrying is required.

Task 5 - subtract a 2 digit number from a 3 digit number to obtain
a 3 digit number. No carrying is required.

Task 6 - subtract a 1 digit number from a 3 digit number to obtain
a 3 digit number. Carrying is required.

Task 7 - subtract a 2 digit number from a 2 digit number to obtain
a 1 digit number. Carrying is required.

Task 8 - subtract a 2 digit number from a 3 digit number to obtain a 3 digit
number. Carrying is required in the 1st 2 columns.

Task 9 - subtract a 4 digit number from a 4 digit number to obtain a 3 digit
number. Carrying is required in all columns.
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The next step was to determine how well the tests had been scaled. The

usual procedure is to calculate a Coefficient of Reproducibility (Rp) and

use this figure as an index of the ability to reproduce a subject's item

responses given only his total score. The computation of the coefficient is

a simple matter, requiring only 3 operations per subject (Goodman, 1956).

The main problem with Coefficients of Reproducibility has been, until

recently, determining the significance of an obtained value. Guilford (1954,

p. 461) has suggested that the obtained value of R should always be greater

than .85, and preferably greater than .90, to be considered significant.

However, recent research in the area by Castellan (1969), Cotton (1969),

Goodman (1956) and Sagi (1959) has produced methods that make it possible to

determine the exact probability of obtaining a given value. Two steps are

required: (a) computing the lower bound of the coefficient for the sample

R ; and (b) computing the standard deviation of the sample value (SR p).

The formula for the lower bound of the coefficient is:

(1)
k-1

11; = 1 X: Pig (i+1)

where: pi = probability of a correct response on the ith item

qi = probability of an incorrect response on the jth item

k = number of items in the test

As can be seen, the value in the numerator will be maximized when all

pi = .5 at which time:

(2) R = 1 .25 (k-1)
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which will give values of R that range from a upper limit of .875 for a

2 item test to a lower limit of .75 for a test having an infinite number of

items. For a 9 item test Rp is .7778 when all pi = .5. However, since both

these tests have p
i

that range from .2 to .8 we can expect their R to be

considerably higher. Goodman (1956) has shown that the statistic

(3) R - R

SR_

has a distribution that approximates normality with (0,1). The expression

in the denominator is the standard deviation of Rp and is equal to

(4) k-1
Si (s2

(i+1) )1
i-1

nk 2

where: S.
2

= variance of the ith item and all other terms
are as defined previously.

Using these two statistics it is possible to estimate the significance

of any obtained value of R ; although, as Castellon (1969) points out, a

difference as small as .025 between the Rp and the R
1

will be significant

at the .05 level whenever the difference is obtained from a test having 10

or more items that was administered to 30 or more subjects.

Coefficients of Reproducibility were computed for schools, classrooms

and classrooms within schools and the obtained values are given in Table 7.

All coefficients were significant at or beyond the .05 level.

Analysis of covariance was performed, using the absolute deviation of

each subject's total test score from 4.50 as the covariate, on the obtained
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values of R to see if there were any differences between the values obtained

by the different schools, the different classrooms of the different classrooms

within schools. The covariate was employed in order to partial out the

portion of the obtained coefficient that could be attributed to a person's

total score; for, as discussed earlier, Rp is a direct function of the average

difficulty level of the items within a test, which in turn determine the

average total score obtained by the subjects. In other words, we may expect,

by chance alone, to obtain higher values of Rp on those tests that have either

an extremely high or an extremely low average difficulty index. It would have

been possible to have used the R or the b- of a group as the covariate - however,

since these would have been the same for all members of the group, the absolute

deviate was deemed the better choice.

The results of these analyses are given in the two source tables contained

in Table 8. There were no significant differences attributable to either

schools, grades or schools by grades; and, oddly enough, only in the sub-

traction test was the covariate significant.

The Cross-Validation (Moore) Sample

This portion of the study was carried out in order to determine if the

obtained ordering of tasks was stable across settings. The school chosen was

Moore Elementary, a school within the Leon County (Tallahassee) Florida School

District. Moore is a new school and has been integrated since it was first

opened in 1966.

Since it was desired to obtain information concerning the test-retest

and alternate forms reliabilittes, an alternate form of each of the two tests

was constructed. This was accomplished by writing 4 new items for each of



16

TABLE 6

Internal Consistency Estimates (KR-20)
of Test Reliability

Grade

Addition Subtraction

Shade-
ville Sopchoppy Both

Shade-
ville Sopchoppy Both

2 .7737 .7888 .7901 .7771 .6928 .7618
3 .7647 .7435 .7662 .8340 .7789 .8062
4 .9363 .9007 .9375 .9352 .8910 .9244
5 .9087 .8147 .8891 .8999 .8976 .9036
6 .8720 .9371 .9162 .9034 .9002 .9059

All .9062 .9997 .9073 .9304 .8950 .9177

TABLE 7
Obtained. Coefficients of Reproducibility and

Associated Values of Z

Grade

Addition Subtraction

Shade-
ville Sopchoppy Both

Shade-
ville Sopchoppy Both

2 .9546 .9415 .9496 .9227 .8982 .9102
17.30 14.51 15.91 9.00 14.59 11.44

3 .9603 .9573 .9589 .9487 .9008 .9239
25.00 23.44 24.23 10.09 12.22 14.31

4 .9333 .9213 .9267 .9226 .9524 .9352
10.75 10.00 10.38 11.97 14.39 13.17

5 .9444 .9557 .9497 .9630 .9153 .9392
10.05 11.46 10.65 12.34 8.09 10.31

6 .9606 .9402 .9513 .9148 .9474 .9347
14.07 11.51 12.52 6.74 10.42 8.85

All .9514 .9430 .9487 .9346 .9216 .9323
30.20 27.86 28.97 25.75 25.70 25.72

TABLE 8

Source Table for the Analysis of Covariance on the
Coefficients of Reproducibility Obtained

Addition Test

Source df SS MSS

Mean 1 188.99963
Schools 1 .00003 .00003 .005

Grades 4 .04188 .01047 2.292

S x G 4 .01065 .00266 .582

Covariate 1 .00243 .00243 .532

Error 234 '1.06107 .00453

Total 245 190.00000
Subtraction Test

Mean 1 216.67032
Schools 1 .00075 .00075 .079

Grades 4 .02458 .00615 .653

S x G 4 .08800 .02200 2.332

Covariate 1 .31263 .31263 33.327

Error 236 2.20000 .00939

Total 247 219.00000
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the 9 tasks that are sampled by each of the tests (a total of 72 new items)

and placing these, along with the original 72 items, in an item pool. Four

items from each task were drawn at random from the pool and placed in Form A,

and the remainder in Form B, of the appropriate test. Although each of the

new forms contains items taken from the original test they are both different

from the form that was administered to the Wakulla sample.

A counter-balanced design was used in order to determine what proportion

of the test variance could be attributed to the various treatment effects:

sequence, test-retest vs alternate forms, grades and the interactions. This

procedure required that each subject be administered the test twice. One-half

of the subjects in a classroom took Form A on the first administration and

the other half taking Form B. On the second administration one-half of the

subjects received the same form that they had taken on the first administration

and the other half received the alternate form. This meant that a quarter of

each classroom, or as close to that proportion as classroom size permitted,

took the tests in the following sequence: Form A - Form A; Form A - Form B;

Form B - Form A; and Form B - Form B. The tests were given by the experimenter

and another graduate student. The first administration was on a Tuesday morning

and the second was on the following Thursday morning. The pupils marked their

answers directly in the test booklets and these were later handscored by the

writer. A breakdown of the number of different pupils in each classroom that

received each of the four testing sequences is given in Table 9.

TABLE 9

Number of Subjects That Received Each Test Sequence

Grade AA AB BA BB TOTAL

2 6 5 8 6 25
3 6 7 6 7 26
4 6 7 7 5 25
5 5 6 7 5 23
6 6 5 6 5 23

Total 29 29 30 34 122
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The results of two analyses's of covariance, using the score obtained

on the first test administration as the covariate, indicate that there are

no significant differences in the adjusted mean scores obtained by the

various treatment groups on the second administration. These results are

given in Table 10.

Since there were no significant differences it is permissible to compute

pooled estimates of the reliability of the two tests: these were .8533 for

the addition test and .8678 for the subtraction test. These values are

slightly lower than the internal consistency estimates of test reliability

which are given in Table 11.

The obtained values are in very close agreement--the largest difference

being - .0082 between the coefficient obtained for the two administrations

of Form A of the addition test. There is also very close agreement between

these values and those computed (see Table 6) for the Wakulla sample.

The next, and most important, step in the analysis was to determine if

the ordering of tasks hypothesized from the Wakulla sample had been obtained.

Since there had been no significant effects introduced by the various treat-

ment groups the matrix of Z scores was computed using the pooled data from the

two administrations. This gives an effective sample size of 244 for each test.

The values obtained and the difficulty indices of the items are given in

Table 12. The entries above the diagonal are for the addition, and those

below the diagonal are for the subtraction test.

The mean value of the addition test is some 25% higher than that obtained

for the Wakulla sample while the mean value of the subtraction test differs

from that obtained by the Wakulla sample by less than 6%. The hypothesized
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TABLE 10

Source Tables for the Analysis of Covariance Performed
on the Test Scores Obtained on the Two Administrations

Source df SS MSS

Addition

Mean 1 4679.123

Treatments 19 58.913 3.101 1.457
Grades 4 16.642 4.161 1.938
TRT-Alt 1 7.077 7.077 3.324
Form A First 1 .027 .027 .013
Form B First 1 .266 .266 .125

TRT-A x Grades 4 8.649 2.162 1.008
Form A First x Grades 4 10.225 2.556 1.189
Form B First x Grades 4 7.833 1.948 .911

Covariate 1 731.923 731.923 383.696

Error 101 215.041 2.129

Total 122 5685.000

Subtraction

Mean 1 3020.074

Treatments 19 46.834 2.465 .809

Grades 4 11.126 2.782 .913
TRT-Alt 1 .053 .053 .018

Form A First 1 1.287 1.287 .422

Form B First 1 4.943 4.943 1.622
TRT-A x Grades 4 9.654 2.411 .798
Form A First x Grades 4 4.118 1.030 .338
Form B First x Grades 4 3.453 .863 .283

Covariate 11 1080.268 1080.268 307.699

Error 101 307.824 3.048

Total 122 4455.000

TABLE 11

KR-20 Internal Consistency Estimates of Test Reliability

Administration

Addition Test Subtraction Test

Form A Form B Form A Form B

First .8924 .8975 .9275 .9276

(59) (63) (59) (63)

Second .9002 .8929 .9340 .9303
(63) (59) (63) (59)
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ordering of tasks for the addition test was reproduced perfectly and there was

only one minor reversed, between items 3 and 4 in relation to item 7 on the

subtraction test. This is a very minor difference and is not deemed to be a

serious defect in the replication.

The values of Rp that were obtained for the various grades, administrations

and grades by administrations, are given in Table 13. These were higher than

those obtained by the Wakulla sample.

The results obtained from this replication of the experiment were much

the same as those that had been obtained in the original study. The KR-20

internal consistency estimates of test reliability were almost identical for

both of the tests; and, although the values of Rp obtained in the replication

were higher than those in the original study, this cannot be considered a

defect. The most significant result of the replication was the demonstration

that both of the hypothesized orderings of tasks was stable across samples,

the importance of which has already been covered.

General Discussion

The primary goal of the study, to construct two simple sealed achievement

tests in arithmetic, was attained and the obtained scales proved to be stable

over groups. Although these results cannot serve as proof that it will be

possible to construct scalable orderings of the tasks involved in higher

order skills it does indicate that it may be possible to do so for those skills

whose component tasks can be precisely defined.

The benefits of such tests to education could be quite large. At the

individual level it would be possible to use the test as a diagnostic instrument

sin,..e each task requires the knowledge of one operation not needed to perform
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TABLE 12

Matrix of Z Scores Representing the Significance of the Difference
Between the Difficulty Levels of the 9 Items in the Two Groups

1 2 3 4 5 6 7 8 9

1 1.00 4.95 6.14 8.63 9.43 10.54 10.95 11.62
2 6.01 4.49 5.77 8.56 9.27 10.39 10.82 11.49
3 6.79 1.67 2.14 6.31 7.14 8.80 9.29 10.16
4 6.85 2.04 .16 5.18 6.51 7.90 8.56 9.39
5 7.39 3.32 1.77 2.29 1.64 4.43 5.35 6.62
6 8.78 5.53 4.26 4.87 2.97 - 3.67 4.52 5.34
7 9.91 7.76 6.65 7.02 5.94 4.00 1.66 3.70
8 10.63 8.55 7.41 7.88 7.15 5.25 2.12 2.24
9 11.15 10.12 9.99 9.59 8.77 7.09 5.13 2.61

NOTE: Values for the addition test are above the diagonal
Values for the subtraction test are below the diagonal

Difficulty Indices of the 9 Items in the Two tests Mean

Da .9528 .9329 .8186 .7788 .6199 .5779 .5098 .4563 .4045 .6713

Ds .8170 .6632 .6201 .6176 .5711 .4908 .4028 .3548 .2427 .5311

TABLE 13

Values of Rp and the Associated Z Scores Obtained
for the Moore Sample

Grade

Addition Subtraction

1st
Admin.

2nd
Admin. Both

1st
Admin.

2nd

Admin. Both

2 .9861 .9722 .9796 .9954 .9815 .9887

24.12 17.37 20.03 17.03 14.55 15.29

3 .9671 .9506 .9589 .9630 .9712 .9671

19.39 16.39 17.81 15.34 15.86 15.61

4 .9511 .9378 .9444 .9556 .9467 .9511

15.03 13.13 14.12 16.47 13.50 14.87

5 .9420 .9710 .9565 .9565 .9710 .9638

8.03 11.08 9.37 12.22 13.80 12.90

6 .9710 .9807 .9759 .9565 .9710 .9638

6.09 9.43 7.84 9.09 12.25 10.67

Total .9636 .9622 .9628 .9654 .9681 .9668

31.04 30.48 30.76 29.71 29.92 29.84
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the preceding task. It would even be possible, by examining the responses

made to those items that were failed, to determine the nature of the errors

that were being made. In addition, by the use of the proper statistical

techniques, it might be possible to ascertain what minimum level in one skill

is required to be able to successfully acquire another allied, but more

complex, skill.

Since the difference between the entry score and the exit score is an

exact statement of the tasks that have been learned during a given period of

time it would be possible to make more accurate evaluations of the relative

effectiVeness of schools, programs, methods of instruction and teachers.

Another advantage of this approach is the reduction in the overall amount

of time that would be required for testing; since, having once determined the

highest task that a child can successfully perform, we can begin all future

test administrations with the last task that was successfully passed in the

previous administration. A final advantage of the method is the case with

which parallel forms can be constructed. Given the descriptions of the tasks

that are to be measured and the nature of the incorrect alternate responses

it should be possible for any classroom teacher to produce an infinite number

of different, but equivalent, forms. This would also serve as a check on

how well the tasks had been described and could easily be checked by having

two teachers construct forms of the test and then administer both tests to

the same sample. The correlation between the two test scores, corrected for

attentuation, would be an indication of the degree to which the tasks had been

defined (Cronbach, 1969, p.44).

The proposed methodology is very flexible and is capable of constructing
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stable orderings of items that have difficulty levels much closer than was

the case in this study. The determining factor is the amount of Type II

error that the experimenter is willing to accept.

Additional research in the area, designed so as to determine the

applicability of the procedure to the scaling of higher order skills, appears

to be warranted.
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