ED 093 703

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO

PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME
SE 018 077

Smith, Nancy Woodland

A Question-Answering System for Elementary
Mathematics.

Stanford Univ., Calif. Inst. for Mathematical Studies
in Social Science.

National Science Foundation, Washington, D.C.
NSF-EC-443X4 '

19 Apr 74

161p.; Psychology and Education Series, Technical
Report No. 227

MF-$0.75 HC~-$7.80 PLUS POSTAGE

Computer Assisted Instruction; *Computers; Computer
Science; Cybernetics; *Educational Technology;
Elementary School Mathematics; *Language Ekesearch;
*Linguistic Theory; Mathematical Linguistics;
*Mathematics Education

This paper describes a project concerned with the

understanding of natural language by computers. The project involves
the development of both a theoretical model of natural language
processing by computer and an actual implementation of the theory.
The specific implementation chosen is a question-answering system for
elementary mathematics which uses unrestricted natural language
input. Details of the question-answering system are given and basic
features in the perspective of the theoretical model are discussed.

(JP)

1R

B

BEST copy AVAILARLE

(on
o
:fa‘ A QUESTION-ANSWERING SYSTEM FOR ELEMENTARY MATHEMATICS

Ny
B
A
3
i
el
<
X
: b
& Yy
]
ol
o
g
s
%
=
5
3
#3
t.'?,ri

Nancy Woodland Smith
US DEPARTMENT OF HEALTH.
: EDUCATION & WELFARE
NATIORALINSTITUTE OF
2 EDUCATION
MTHIS NDOCUMENT HAS BEEN REPRO
FOUCED EXACTLY A5 RECEIVED FROM
MTHE PERSON OR ORGANIZATION ORIGIN
ATING 1T POINTS OF VIEW OR OPINIONS
TATED DO NOT NECESSARILY REPRE
SENT OF F1CIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR ®OLICY

&

TECHNICAL REPORT NO. 227

April 19, 197k

PSYCHOLOGY AND EDUCATION SERIES

Reproduction in Whole or in Part Is Permitted for

Any Purpose of the United States Government

[\
r\
Q
o
L)
W INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCTAL SCIENCES
)
STANFORD UNIVERSITY
- STANFORD, CALIFORNIA

Table of Contents

Chapter Page
Section

Acknowledgments o o 8 a4 o v s o & 4 4 o v

I, Intreduction e & & & o s e o o & s o 1

1.1 General Introduction+ &+ « & + & o . 1

I.2 Basic Components of the System « . « « « o o« o 2

.3 Choice of Subject Matter . . -« +» o « o s s o 2

11, The Theoretical Modet . . o . + « &« + « « « o o 10
Il.1 Comparison with Other Systems 10
IT.2 Transformations . . - .« . .+ « + <« + .+ . . 38
II.3 Restructuring e e o s w2 e e waa s . 44
I1I. CCNSTRUCT and the Grammar . « o+ » o s s+ o o » 2 o 51
III.1 CONSTRUCT Y)
iII.2 The Scanner and the Dictionary-.+ - » . 53
IIT.3 The TRANSL File . . &« =« &« o o o o o » + = 57
I71.4 The Grammar o s e 4« s e s o s . & a2 . 59
A The Rules of the Grammar and their Semantic Functions . . 70
Iv.1 Introduction T A
v.2 S-Rules Y £
IV.3 TF-Rules O

Iv.4
Iv.5

1Iv.6

Iv.9

Iv.10
v, i1
V.12
Iv.13
V.14
IVv.,15
iv,1i6é
Iv.i7

iv.18

Top-Level EXP-Rules e e
Types of EXP's,
EXP i~Rules a0 e e e

Set~Expressions and Ntuples .
DATEXP and TIMEXP-Rules . .

ARTTHEXP~Rules

UNIT and NUNIT-Rules ., .,
Geometric Measurements s s
Relative Clauses e e e e
Prapositions o s+ s s

SUBST-Rules s e e s
Arithmetic Relations . .

Adjesctive Rules

CONVUNITS~-Rules . . .+ . .
CONVPREP-Rules .,
SPECFFEFPHRASE-Rules s s e

SPECPREP1~Kules » . .+ «
OXDERING-Rvies , . . . -«
Commands Using Special Verbs
Arithmetic Commands o s e
3as1ic Command Rule . ., . .
Special Ccnversion Commands .
Combinations of Commands . .
Declarazives . e v s

NP-Rules e e e

i1

78
80
81
83
85
85
86
88

89

97
100
101
101
102
103
103
105
105
106
107
107
108
109

110

IV.29 NP1-Rules .
IV.30 NP2-Rules e e e e e e e e
IV.31 NP3-Rules N N
IV.32 NP4-Rules for Set Nouns .
IV.33 NP4-Rules for Function Nouns
IV.34 2FCN-Rules s v e e s
IV.35 Existence Questions . e
IV.36 If Questions .
IV.37 Idiomatic Question Formats
IV.38 Questions With Introductory Clauses
IV.39 Questions Beginning with a Linking Verb .
IV.40 Questions Beginning with an Auxiliary Verb
IV.41 CHOICELIST Questions
IV.42 Q1-Rules C e e e
IV.43 HOWMANY Questions Involving UNITs and NUNITs
IV.44 Other HOWMANY Questions
iV.45 1Interrogative Questions .
IV.46 FCNHNP-Rules s e e e e
IV.47 HNPAS-Rules e 4 e .
IV;48 COMP 1HNP and COMP2HNP-Rules .
IV.49_ HAVENPF-Rules e e
IV.50 HAVENP-Rules
Appendix I

Examples of Questions and their Answers

iii

112
114
116
117
118
121
122
122
123
123
124
125
127
129
129
131
132
133
133
134
135

136

138

Index s e s e e ; e e e e s s . 147

References S Y

iv

Acknowledgments

I wish to express my deep gratitude to my husband, Dr. Robert
L. Smith, Jr. for all his help with the project. He also deserves
very special thanks for the typing of this dissertation, ﬁhe many hours
of babysitting with our daughter, and the large amount of advice and
encouragement that he provided me at all stages of the un&ertaking.

I would also like to thank Dr, Freeman L. Rawson, III for his
contribution to the question-answering system, Professor Patrick Suppes
for serving as my advisor and for providing the computer facilities for
this project, and Professors Dov Gabbay and J.M.E,; Moravscik for
participating on my reading committee,

This research was supported by National Science Foundation

Grant EC-443X4,

BEST COPY AVAILABLE

Chapter T

Introduction

I.1 General Introduction

This paper describes a project concerned with the understanding
of natural language by computers, The project involves the development
of both a theoretical model of natural language processing by computer
and an actual implementation of the theory. The specific
implementation that we have chosen is a question-answering system for
elementary mathematics which uses unrestricted natural language input.

A complete explication of the theoretical issues can be found
in [22] and additional information on the project 1is also given in
[17]. This papér is primarily concerned with describing the question-
answering system and then discussing 1ts basic features din the
perspective of the theoretical model.

In this chapter, I will give a general description of the
operation of the question-answerer and then discuss our reasons for
choosing this particular implementation of our theory. Chapter II
includes a discussion of the theory, a comparison with other systems,
and a section on transformations. Chapter III gives a more detailed
discussion of the components of the system and the final chapter

contains a 1listing of all the syntactic rules with theilr associated

semantic functions and a few brief comments on each group of rules.
The APPENDIX contains examples of questions currently answered by the

question-answering system.

I.2 Basic Components of the System

There are five basic components of the system. 1) CONSTRUCT is
a SAIL program which provides the interface between the components and
handles the actual parsing. 2) The Scanner which 1is a part of
CONSTRUCT preprocesses the input wusing both a dictionary of lexical
categories and a file, called the TRANSL file, of strings of words that
require special prepfocessing. 3) The grammar 1s a context-free
grammar (cfg) read into the program at runtime. 4) Each rule of the

grammar has an associated semantic function whose explicit arguments

are the meanings of the elements on the right-hand-side of the rule.
The function when evaluated returns the meaning of the left-hand-side.
5) The result c¢f the semantic paisse which is called the semantic

construction is passed to the Evaluator which is programmed din LISP.

It evaluates the semantic construction and returns the answer.

I.3 Choice of Subject Matter

Our decision to implement the ideas we had about natural
language processing 1in a question-answering system had several

motivations. First, the question-answering format provides a thorough

work-out for all the components of the aystem and also produces hard
results by which the correctness of the various components can be
judged. In order to answer a question <correctly each part of the
system must perform its job well. First the analysis by the syﬁtactic
and semantic components must correctly determine the i:aning structure
of the question; and then the evaluation routines together with the
data base must produce the answer based on the meaning structure
provided by the natural language processing components. If a system
does not implement question-answering, its analyses of individual
sentences may appear to be intuitively plausible and the data base to
be well-integrated, while in fact, the analyses may not be detecting
all the subtleties of meaning and the data base may not include all the
proper inter-relationships. For example, systems which on the surface
appear to be giving correct analyses of input sentences may not be able
to support adequately such constructions as quantification, infefence,
cr belief structures. Of course, a close theoretical study of a given
system will reveal its capacities and limitations regarding these sorts
of constructions and systemes shouid be so scrutinized, but implementing
question-answering provides an additional objective practical way of
gauging a system's power.

A motivation very similar to ours is given by Woods for his
airline schedule question~answerer in [27]:

The objective of the research described here
has been to develcp a wuniform framework for

performing the semantic interpretatiou of English
sentences. It was motivated by the ifact that,

although there exists a varilety of formal parsing
algorithms for computing the syntactic structure of
sentences, the problem of using this information to
compute their semantic content remains obscure. A
question-answering system provides an excellent
vehicle for such a study, because it forces
consideration of semantics from the point of view
of setting up correspondence between the structures
of a sentence and objects in some model of the
world (i.e., the contents of the data base).

Another obvious motivation for choosing a question-answering
system lies in the ultimate practicality of a working question-answerer
especially in our chosen subject area of elementary mathematics. And a
third crucial motivation is the desire to extend our efforts from the
analysis of natural language to the generation of natural language.
This has not yet been implemented, ®but the system that we have
developed thus far provides a good basis for the task of generating
naturalslaﬂguage answers to questions.,

Our next necessary choice was the subject matter for the
question—-answerer. Various subjects were u<onsidered and five main

aspects of each were evaluated:

1) The subject matter itself and how it could be
represented and dealt with as a data base;

2) The fragment of natural language commonly used
to pose questions and state facts about the subject;

3) The type of questions most commonly asked and
their amenability to computer-answering;

4) The ease of extendability of the finished system
to other subject matters;

5) And finally, the potential use that might be
made of a question-answerer in the area.

O

ERIC

Aruitoxt provided by Eic:

Elementary mathematrics 3is a good choice in each of these
respects. The subjact matter is well-defined and easily represented as
a data base. A wide range of questions can be answered withourt
requiring a large number of facts in che data base. The need for
massive factual data was our basic reason ifor rejecting such topics as
geography which are suitable in other respects, insky discusses the
reason why mathematics is so often chosen as subject matter in [10].

It 1is ncot that games and machematical problems
are chosen because they are clesr and simple;
rather it 1s that they give us, for the smallest
initial structures, the greatest complexity, so
that one can engage some resliy formidable
situations after a relatively minimal diversion
into programming.

Elementary mathematical data with the exception oI some tabular
information used for unit conversions, etc. is largely procedural. We
use two basic data types, sets and functions, This diviszion cuts
across the boundaries of rraditional parts of speech. Verbs like 'add'

and ‘'multiply', adjectives such a3 the comparative adjectives, and

1 1

nouns like 'factor' and 'acea' ave all represented as functions. Other
adjectives such as 'even' and 'prime' and nouns like 'number' and
"fraction' are dealt with as constructive sets which are represented by
characteriscic functicns. This m=2ans *hat every mathematically
substantive word in the vuzabulary {(with the exception cf those related

to tabular information) will be represented in the data base as a

function, either a primicive machematizal function which can be applied

wr

to 1ts argument(s) or the characteristic function of a set. (See
Chapter II for a discussion of other data types which can bg used if
the subject matter requires them.) To handle mathematically (although
not necessarily grammatically) simple questions, it is not necessary to
store any iInformation about the i1nter-relationships among these
functions or any composite functions. The semantic component handles
the Qarious combinations. TFor example, it is not necessary to have an
EVENFACTOR function. Consider the following two questions:

1) 1Is 2 an even factor of 67
2) Does 6 have any even factors?

In the first cése, the FACYOR function is applied to 6 and the
result is the set {1,2,3,6} v%!sh is intersected with the set of evén
numbers by the semantic function for intersection yielding the set
{2,6]; then the semantic funciion for subset checks if {2} is a subsst
of {2,6].

“fo answer the second question a transformational semantic
function is used. The argument to the FACTOR function, 6, 1is not
contained in the noun phrase and is inaccessible to it at the NP-level.
So a transformational semantic function creates an EVENFACTOR function
for use at the higher level. (For details of this type of semantic
function see Section II.3). Notelthat the EVENFACTOR function does
not need to be permanently stored in the data base rather it i1s created
at runtime. In order to handle more mathematically complex questions,
some heuristic information about the intersections of various sets will
be needed. For example, the system is now programmed to know that the

intersection of 'even' and 'prime' is the singleton set {2}.

O

ERIC

Aruitoxt provided by Eic:

Another desirable feature of elementary mathematics is that ?he
subject matter is self-contained. Previous implementations of this
approach to semantics [21] involved the analysis of corpora of child
utterances., It was discovered that doing any real work- with the
semantics would have necessitated the bullding of a model of the
child's interactions with her environment. The decision was made that
more intense study of the natural language itself should be the thrust
of the investigation at this stage. So we have chosen a project that
does not involve modeling of an individual's interactions with the
world, However the closely related problem of dealing with the context
of the complete dialogue with the computer cannot be avoided by choice
of subject matter. There is always the possibility in a question~
answerer that one question will be related to & previous question or
answer by an anaphoric reference. Again, while recognizing this as an
extremely important problem, we have decided that it is not a suitable
problem for our first stage of development. A survey of questions in
elementary textbooks proved that in fact we could compile a large
sample set of mathematical questions which were independent of their
context, iote that this doces not impiy that our semantic functions
will have more than the usual difficulties with these constructions
which are a problem for any system. Preliminary work has shown that we
will be able to write the appropriate gemantic functions for context-
checking,. It is simplv a matter of choosire o manageable set of

problems for the initial development of the systen,

O

ERIC

Aruitoxt provided by Eic:

The fragment of natural language used to talk about elementary
mathematics does contain all the traditional parts of speech and all
the varied sentence formats, Also, the vocabulary is limited enough to
be manageable but sufficiently rich to cover many linguistically
interesting constructions. We found very few grammatical constructions
that were peculiar to this subject matter. This means that to change
or extend the scope of the question-answerer will require extension
rather than replacement of the current grammar. For example, a large
part of our efforts have been devotad to prepositions and sentences
using the verb 'to have'. Both of these are surely problems common to
all substantial fragments of natural language. The fact that not all
senses of the verb 'to have' and only fourteen of the prepositions were
found to occur in an elementary text on mathematics [23] gives us a
workable starting point for these constructions.

It is desirable to have objective sources of sample questions
so that a wide range of sentence formats will be included. There are
two readily available sources of elementary mathematics queétions.
During the developmental stages, a good source of questions is
elementary textbooks. However, now that we have a working model, we
plan to develop a CAI program using the question-answerer so that we
can gather sample questions from elementary students. We expect the
new questions to be 1less standardized than those from the textbooks
with respect to vocabulary, grammar, and subject matter. This will

} .
previde raw data for the second stage of the project in which we will

be concentrating on such major problems as anaphoric reference,
habitability, learning and ambiguity.

Also, we expect that testing the system with elementary
students will confirm our hypothesis that elementary mathematics is a
suitable subject for a practical question-answerer. We conducted an
experiment with elementary students in which we simulated a question-
answerer for Black History and the results were discouraging. The
questions asked, in general, called for value judgments and causal
explanations that were well beyond the range of current work in

artificial intelligence.

O

ERIC

Aruitoxt provided by Eic:

Chapter ll

The Theoretical Model

II.1 Comparison with Other Systems

N Early programs for natural language processing were concerned
primarily with syntax. The <current trend 1s to place the primary
emphasis on semanrics. Our major ianterest 1is 1in clariiying the
relati~nship between syntax and semantics. This issue is discussed by

Katz in [8].

..».the semantic competence of a speaker
enables him to obtain the meaning of new sentences,
and other new compound syntactic constituents, as a
compositional function of the meanings of their
parts and grammatical relations. Since infinirtely
many pcssible sentences are novel arrangements of
familiar lexical items, «this assumes that the
speaker's semantic competence provides him with
meanings for each of rthe finitely many lexical
items of his language and & zet i ules for
combining the meanings of linguiscic coustruccions
tc compositionally torm the medning 01 gach
sentence ¢f his language and gach compound
constituent of each sentence,

Winograd |26) comments cthat "Orten the most imporrant clues
about what is being said are the syntactic clues." These ''clues" form
the basis ¢f our semantic functions. Each syntactic construction whizh

is repcesented oy a rule 1in the grammac has 1ts own semantic funcrion

that shows how €2 obtain the meaning of the construction from the

10

meanings of its parts., It is necessary to make a distinction not made
by Katz in the above passage between lexical items which have their own
"meaning" and lexical items such as determiners, auxiliaries, relative
pronouns, etc., which function like the syntactic structure as a whole
to give guidance as to how the meaningful elements are to be combined.
For example consider the following question and the rule which parses
it:

EX1: How many factors of 12 are even numbers?
RULE1: Q <~ /HOWMANY/ NP LINK NP (CARDINALITY (I ;2; 343))

[Note: CARDINALITY and I (intersection) are primitive
semantic functions.]

The numbers enclosed in semi-colons in the semantic functions
refer to the position of the elements on the right-hand-side of the
rule. The two NP's will be parsed at a lower level and the semantic
functions for them inserted in the proper position before the complete
semantic construction for the question is passed to the evaluator. The
important point to note 1is that each question which has this basic
syntactic form can be answered by intersecting the two sets and finding
the cardinality of the intersection.

The terminology here is perhaps misleading. The name 'semantic‘
function' can refer to one of three things depending on the context.;
We often refer to the primitive semantic functions such as CARDINALITY
and I as simply semantic functions. We also speak of each grammatical
rule as having an associated semantic function such as (CARDINALITY (I

323 343)) which was given above. And finally, each sentence parsed

11

will have its own final semantic function usuvally called the semantic
construction which is passed to the evaluator. For example, in this
case the semantic construction will be:
(QUS (CARDINALITY (I (APP @FACTOR (LST 12)) (I GEVEN @NUMBER)))).
[Note: QUS is the semantic function used to indicate
that the input was a question. APP is the semantic
function used for applying functions to their
arguments, in this case, the FACTOR function to 12,]
This semantic construction shows us how the four meaningful words in
the original sentence can be combined to find the meaning of the entire
sentence,

There are two basic types of primitive semantic functions. The
first type are the substantive semantic functions. Many of these are.
standard set-theoretical functions 1like cardinality, dintersection,
union, set difference, and set complement., There are also functions
for dealing with comparatives and ordinals. The function APP applies
mathematical functions 1like FACTOR that are found in the original
sentence to their designated arguments. A function called EXIST checks
~whether or not a set dis empty. The function ENMF checks the
cardinality of a set against a given number and is used for
constructions like 'the 6 factors of 12', There are also semantic
functions which are designed specifically for this subject matter.
These include functions for each of the basic arithmetic operations and
special functions for dealing with mixed numbers, percents, expressions
of units of measurement, etc. Many more of these various sorts of

substantive semantic functions will be discussed in the examples in the

following chapters.

12

The other type of primitive semantic functions are wused to
establish a control structure £for the evaluation phase. We generally
refer to these functions as transformational semantic functions because
they, in our system, deal with the constructions which are often viewed
as more complicated transformations 'of simple constructions. The
transformed construction differs from the 'kernel" by having its
elements out of the standard order aﬁd/of having some of its elements
suppressed. There are of course other possible related features of the
transformed construction such as a change of voice £from active to
passive or a change of verb from 'is' to 'have'. I will discuss the
details of our handling of the various kinds of transformations in
Section II.Z2, The basic problem with handling non-standard word
orders is that the evaluator which is written in LISP uses recursive
inside-out evaluation. Therefore without the transformational semantic
functions to provide a control structure the evaluations would be made
in the wrong order. This is particularly obvious in questions like

Does 6 have a factor of 27
which is a "transformation' of the question

Is 2 a factor of 67
Special semantic functions are used for noun phrases appearing with the
verb 'to have'. Part of their job is to ensure that the evaluator will
not attempt to apply the function, which in this case is the FACTOR
function, at the innermost level because its argument dis 1in fact

somewhere else din the sentence. Through the use of these functions

13

O

ERIC

Aruitoxt provided by Eic:

transformations c¢at be handled without sacrificing the recursive
inside~out character cf the evaluaror.

I will first discuss the advantages of our approach to some of
the common problems of mnatural language processing; and then I will
discuss specific criticisms that have been leveiled against the wuse of
context-free grammars for natural language processing and show how the
addition of semantic functions enables us tc overcome the customary
problems with cfg.

This method of approach to the construction of a natural
language understanding and generation system has advantages in three
main areas: clarity, flexibility, and extendability, As mentioned
above, our major interest is in clarifying the relationship between
syntax and semantics. This does not mean that we believe there are two
sharply defined, distinct, and independent elements of language which

"syntax" and "semantics", It is clear

have traditicnally been called
that the two work together. Somé systems suth &as those of Winograd and
Woods, as a result of recognizing this interaction, have eliminated
discingt phases of analysis corvesponding te syntax and semantics.,
Instead syntactic and semancic soutines can call each other and the
results determine how the analysis'will ptoceaed, The disadvantage of
this total interaction is a loss in clarity. The actual mechanisms of
Interaction may be buried deep in the program. The basic structure of
sur system can be understocd without examining any of the specific

programs, The interaction between the syntactic and semantic features

of the language 1s captured in several ways,

14

First, rather than writing an adequate grammar for the language
we are dealing with and then imposing a semantics on the grammar, we
have instead developed a fairly nonstandard grammar which is completely
responsive to the semantic needs of the analysis. Each rule has been
written with a clear idea of which semantic function will be used and
consequently which elements of the input sentence need to be parsed at
that level for use as arguments to the semantic function., For example,
noun phrases containing the preposition 'of' 1ike 'factors of 6' and
'denominator of 1/2' should not be parsed as a noun followed by a
prepositicnal phrase. The important semantic insight about these
phrases is that they contain the name of a function which is stored in
the data base and the argument to the function both of which are needed
as arguments to the APP (apply) semantic function. Therefore we might
have the rule:

RULE1: NP <~ FCN /OF/ NP (APP ;13 333) .

[Notel: The acrual rule is more complicated to account

for modifiers and lists o¢f function names oOr
argumen:s, |

[Note2: /OF/ is the lexical category for the
preposition 'cf'.]
Howeve:, certain other prepositvions 1n this position can be parsed by
the rule:
RULE2: NP <~ N PREPHRASE (L 3715 325
[Note: The category FCN 1is used for nouns which name

funcrions and the category N for nouns which name
sets.)

15

O

ERIC

Aruitoxt provided by Eic:

Examples of this type of preposition are 'between' (ex. '4 is
between 3 and 5'), 'in' (ex. '8 iz in the set {7,8}%, and 'before' and
'after' (ex., '6 comes before 7'). These ptepositional phrases can
occur in several grammatical positions in the sentence, but in each
case the meaning of the prepcsitional phrzse itself can be determined
regardless .of the context. The result cf evaluating each of these
prepositional phrases will be a =z2t¢. Thus to handie the noun phrase,
"the prime between 6 and 10', we can usge RULE2 which will intersect the
set of primes with the set of numbers between 6 and 10, It 1is not
necessary to spell out at the level of RULE2 which parricular
preposition in this category will be used. The intersection function
will have the sets it needs passed up rz it from a lower level. In
RULE1, the APP function dces explicitly need to see that the
preposition is 'of' and it needs both the noun phrase before and the
noun phrase afrer the preposition tc use as arguments,

This recognition that all the relevanr arguments to & function
need to be parsed at the same ievel has lsad te a grammar with much
flatter trees than are usually associated with context-iree grammars
used for natural language processing. For example, this grammar does
not contain the standaxd rule:

S <- NP VP.

It would be extremely difficult to write a good semancic tunition for
this rule. It 1is necessary to know more about the ve:p in order to
determine which semanric funcricn is nseded, and mor-eover, 1f chere is

a noun phrase in the VP, the verb will be determining the relationship

O

ERIC

Aruitoxt provided by Eic:

between the two NP's so they will both be needed as arguments to the
semantic function established by the verb and will both need to be
parsed explicitly at the same level. |

A second way 1in which our system is able to have separate
syntactic and semantic components which act in parallel rather than
interactively at runtime Is by not holding the traditional conceptions
of syntax and semantics sacred when making the decision as to which
component will handle any given aspect of the language. For example,
we have not as yet needed to implement routines for checking agreement,
but they will be implemented as semantic functions rather thamn as part
of the grammar since a cfg cannot deal with agreement satisfactorily.
The semantic functions also handle transformations which is a
traditional syntactic function. The primary way in which the grammar
incorporates traditionally semantic features 1is through the use of
""semantic categories' rather than the standard lexical categories,

There have been several types of semantic categories used in
recent years, Katz [8) has proposed that the dictionary entries for
words should contain 'lexical readings" which include the various
"senses" of the word, for example, a given noun might be a physical
object, inanimate, etc. This information can then be wused for
disambiguation, A combination of 'selection restrictions" and
"projection rules'" eliminates those interpretations of sentences which
are based on inconsistent "'senses'. For example, Katz gives the
following reason for the rejection of the incorrect interpretation of

the sentence:

O

ERIC

Aruitoxt provided by Eic:

(1) The man hit the colorful ball.

¢ « « {1; has no meaningfu:l interpretation on

which 'ball' has the sense of a social activity,

even though it has this as one of its senses in the

dictionary, because of the cocnceptual incongruity

of relating a social acrivity to a physical accion

such as hitting by making 41t the object on which

the action is performed,

There have been waricus objactions to this approach. Palme
[i2] cbjects on two grouads. Firsct he points out that it cannot
handle disambiguaticn cf senteaczes like '"He went to the park with the
girl." which require contextual informaticn for disambiguation. Katz,
in fact, states that this aspezt c¢i his system is not intended to
handle this type of ambiguity. Palme's second cbjection may be more
serious. He believes that the very large complex dictionary needed for
this sort of system will duplicate information which neads to be in the
data base. . This cbjection can only be evaluated on the basis of a
particular implementaticn although it does seem, as Palme claims, to be
more nacural c¢o have all the information unified in a single data base.
Minsky [10] aisc believes that these semantic categories, which Katz
calls "lexical readings", are not truly "grammatical' categcries and
that the information which they convey should instead be included in
the form of a world model in the data base, Minzky's argument is that
while relations taken one ar a time could be handled these multiple

categories lead to interacting relations which requice a +very powerful

logic.

18

Katz' approach is the most common way of introducing semantic
information at the level of the dictionary, but it is not the approach
that we have taken. Our approach is rather a combination of two other
methods which have been used in recent systems. One method is for
functional words and the other for the substantive words. As noted
above, the grammar has been written to facilitate the writing of the
appropriate semantic functions. In line with this objective, each
functional word has its own lexical category assigned to it in the
dictionary. Thus, at the point that the word is parsed, the semantic
procedure associated with the functional word can either be applied
immediately as is the case in DEACON [24] [5], which also gives each
functional word its own lexical category, or encoded in the semantic
construction for the sentence as is done in our system. An example is
the preposition 'of'. The semantic function in our system for 'of' is
APP. The rule is:

NP <- FCN /OF/ NP (APP ;15 333) .

So the semantic construction for 'factors of 6' will be

(APP @FACTOR (LST 6)).

The data in the DEACON system are stored in ring structures.
The semantic procedure applied when 'of' is parsed ié to substitute for
the whole phrase the third member of the ring containing both the noun
preceding and the noun following the 'of' in the iuput. For example,
if the input is 'commander of the 638th battalion'', procedures will
first be used to eliminate the determiner and also to eliminate the

word 'battalion' as being redundant, thus leaving ''commander of 638th'.

19

In the data base, there will be a ring connecting 'commander', '638th',

and 'Jonathan M. Parker'. The rule for 'ot' will subsrituie 'Jonathan
M. Parker' for 'commander of 638ch’,
OQur handling of the classiiicaricn of substantive words is

based on insights very similar to those of Sager [18].

The discourse in a science subfieid has a more
restricced grammar and f£ar iess ambaguity than has
the language as a whole. We have found that the
resear.h papers in a given sciznce subiield display
such reguleriries of occurrence ove:s and above
those o¢f the language a¥ & wnhole that it 1Is
possible tc wriite a grammas of the language used in
the subfield, and that this specialized grammar
closely rerflects the infcormational structure of
discourge 1in the subfield.- We use the term
gublanguage fo: that part of the whole language
which can be desiribed by such & specialized
grammar,

The sublanguage grammar provides a method for
developing the particuiar word classes ({the
special-word sets) and the relations among these
classes which are cf special significance 1in a
given science subfield, 1 e., which are the
linguistic carriczrs cf the specific knowledge in
the subfield- Yet chese categcries and relarions
are nct determined a priosri for <the subiield.
Rather, they ares the in%erpretazicn ¢! the formal
grammatical caregories and relarions of tche
sublanguvage gr-ammar Thie, in rhe pharmaz:ilogical
sublanguage which wzs 1avestigated, ths two noun
subclazses I (containing, e:g. 1icn, K+, and 6
(containing, e.g., drug, digiralis, glycosides),
which in the subfiald have the aignificance "ions"
and '"phatmscological sgents," respectively, and
play crucially differ2nt roles in the physiological
mechanisms being described, are obrained s&s
separate classes because they cccur with different
classes of verbs: e.g., I as the sbject of such
verbs as transport, G as cthe subject of such verbs
as inhibit it then turns out that the sublanguage
word classes, which are established c¢n the grounds
of what other grammatizzl classes chey occur with

o 20
ERIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

(as subject, object, etc.), are the linguistic
counterparts of the real-world objects, events, and
relations which are studied and described in the
given subfield,
While the phenomenon she describes i1s certainly more pronounced
in subfields, we have found that it does occur in natural language as a
whole. Sager has performed several analyses which we have not that
have very interesting results. She claims that as a result of either
string decompositicn, tcansformatrional decomposition, or a
transformational lattice, the three kinds of vocabulary appear in three
distinguishable portions of the decomposition. The bottom nodes
contain the specific vocabulary of the subfield, the intermediate nodes
the general scientific vocabulary and the top nodes the vocabulary
expressing ''the scientist's conclusions, doubts, speculations, eis.”
She obtains another interesting result by comparing investigations of
current articles in the same scientific field performed at different
times. The discovery was that uertain words which were new to the
vocabulary at the time cf the initial study funcrioned as operators on
elementary sentences at chat time but later were found increasingly as
subjects of new elementary sentence types. Thus the evolution of the
grammar parallels the advance of the science, or as Sager puts it, is a
"representsticen' of the advance.
Our primary goal is to find how the grammar is related to the

meaning. Both our system and Sager's use the idea that categories can

be fcrmed which contain words that are both naturally related to each

21

O

ERIC

Aruitoxt provided by Eic:

other with regard to the subject matter and naturally related with
tegard to their grammatical vrole. This differs from Katz' approach
which 1s primarily concerned only with semantics, His semantic
categories are not the grammatical categories but rather are included
in the dictionary in addiction to the grammatical categories. Because
the words in his dictionary have multiple semantic categories it would
be very difficult to incorporate them into the actual grammar. Also,
whiie certain of his ''senses" such as the distinction between mass and
count nouns have a grammatical counterpart, in general unless all the
categories are built into an extremely sensitive grammar, there will
be no grammatical difference between twc semantic interpretations of a
given sentence. For example, there will be only one parse of

The man hit the colorful ball.

The disambiguation of this sentence is properly part of the
semantic component in his system and in ours it will be part of the
evalvation. There 1is no obvious way to expect help fiom the grammar in
disambiguating the sentence. We are, however, czoncerned with finding
theose areas where the grammar and semantics can help each other. Our
purpose for using nonstandard lexical categories is not to aid in
disambiguation but rather to aid in developing a grammar which will
produce the most correct parses with respect to the msaning of the
senctence, Of ccurse, as & mnatural by-product, this carefully worked
out grammar will eliminate a large amount 0f unnecessary zrammatical

ambiguity., Fox exampls, our system divides mnouns into two basic

o
.
£y

categories N (nouns that name sets) and FCN (nouns that name
functions). Given a list of noun phrases some qf which may themselves
be composed of lists and at least one of which contains the preposition
'of', without the distinction between N's and FCN's there will be
ambiguous parsings. The presence of 'of' indicates that there 1is a
funcrtion name or list of names and the argument(s) to the function(s).
Without the category FCN to pinpoint the function name(s) in the list
of noun phrases, ﬁhe rules would be

NP <~ LISTOFNP
NP <- NP /OF/ NP

thus allowing the grammar to parse very strange lists of noun phrases
by choosing incorrect sublists to £ill the two slots of function name
and argument., This shows how the grammar and semantics can help each
other, The two ctypes of nouns must be evaluated differently.
Identifying the type at the syntactic level thus provides very useful
information to the evaluator through the semantic function.
Historically in our system the discincrion was discovered while writing
the evaluation routines. However, the distinction is also a very
important one in the grammar. The ctwo types of nouns din isolation
never have the same grammatical role althcugh a noun phrase which
contains an FCN and its argument like 'factors of 6' will evaluate to a
set and therefore can be used in the same position as an N except that
it will never function as an appositive noun. Thus the distinction is

necessary in the grammar to prevent senseless ambiguities.

23

Woods in [27] points out the same distinction when he discusses
functional and non-fuuncticnal noun phrases. However, his airline
schedule program does not wutilize the grammatical features of these
phrases to determine the semantics. He lists seven of the N-rules for
functional noun phrases and one sample noun phrase for each. For
example,

N6 1-(G8: (1) = (departure time) and

2~(G10: (1) = of and FLIGHT ((2))) and
3-(G10: (1) = from and PLACE ({(2)))
=> DTIME (2-2,3-2):

e.g., ''the departure time of AA-57 from Boston'.
The entire seven sample sentences for the rules are:

N6 The departure time of AA-57 from Boston

N7 The arrival time of AA-57 in Chicago

N8 The operator cf AA~57

N9 The time zone of Boston

N10 The number of stops of AA-57 between Boston and Chicago

N11 The type of plane of AA-57

N12 One-way first-class fare from Boston to Chicago.

This indicates that each such noun-phrase has its own N-rule in
his system. In N10, Woods ctreacs ''mumber of stops'” as a single
function. Considering that borh '"number of'" and "stops of'' can be used
independently of each ocher, I believe that these examples contain
eight rather than seven funciion names. Thz examples do bring up a
problem that we have not had with our subject matter. At least some of
the function nouns in these examples can be used in other contexts as
set nouns. For example, time zone can be a function taking the name of
s place as argument and returning the time zone of the place, but time

zone can also be viewed as a set containing the names of all the time

zones as in 'List all the time zones!' To include these nouns in our

24

O

ERIC

Aruitoxt provided by Eic:

system would necessitate giving them the multiple lexical category of
N&FCN, but would probably nor lead to grammatical problems or to
problems in the evaluator if both representations, as a function and as
a set, were stored and the correct one selected on the basis of the
parse. However, a more serious problem would arise with questions like
'What are the time 2zones in the United States?' This clearly 1is a
function and yet our current grammar would parse it only incorrectly as
a set mnoun. The semantics of the sentence is clear which indicates
that our grammar does not yet include all the grammatical formats
associated with function nouns. All of the nouns which can only be
function nouns are found only with the preposition 'of' or in one of
several formats used when the main verb dis 'have' (see Section
11.3). However preliminary work in the area of time and calendar—
type problems shows that chere is an area of elementary mathematics
which does use nouns that have both representations and there are more
grammatical options associated with them. For example,

a) Which month comes after March? -- set

b) What is the number of months in a year? --- function

¢) What are the months of the year? -~ function

A preliminary guess would be that these nouns when used as

' or 'of', It is

function names can use either the preposition 'in
interesting, although not surprising since there is also a set
representation, to note that these funcrions seem to all be
implementable as table lookup procedures: This indicates another

correspcndence between the grammatical structures and the subject

matter.

25

O

ERIC

Aruitoxt provided by Eic:

By writing a separate rule for each functional noun phrase
found in his subject matter, as it appears he has done, Woods fails to
utilize the common grammatical features of these nouns phrases which
indicate the similarity of semantical treatment. ©Not only is this
inefficient but it also necessitates the writing of new rules as the
subject matter is extended. In our system, new function nouns need
only to be added to the data base and the dictionary. Four of the
eight examples that Woods gives could be handled by our current rule:

NP <~ FCN /OF/ NP (APP ;1 ;3;3)

These are: operator, time zone, number, and type of plane. The other
four examples contain an additional prepositional phrase which gives
the PLACE(s). A grammatical slot would need to be added to our rule to
account for this and probably some other modification made to prevent
ambiguous parsing of the prepositional phrase.

The use of the two categories N and FCN is extremely useful
both to the precision and clarity of the grammar and to the correct
writing of the semantic functions. The semantic categories used by
Katz focus on the individual words in the vocabulary. Qur system
instead focuses on each of the categories like noun, verb, adjective,
etc., and tries to discover general patterns within the use of that
category which form the basis for interesting grammatical and
correlative semantic distinctions. Since Katz' semantic categories
operate on individual words and the words in a group like the noun

group may have overlapping categories, his system has little utility as

26

O

ERIC

Aruitoxt provided by Eic:

a grammatical device; it is intended to serve in the semantic phase of
analysis. There are undoubtedly large numbers of sentences like ''The
man hit the colorful ball." which must be disambiguated in the
evaluation phase on the grounds that one of the interpretations makes
no sense. (See Section III.4 for a further discussion of
ambiguity) . However before a given possible interpretation can be
ruled as either meaningliess or meaningful but not as appropriate in the
context as another possibility, the set of possibilicies must be
generated. One useful way of looking at the difference in emphasis
between ocur system and other systems is to say that many recent systems
have concentrated their efforts on c¢he analysis of the possible
interpretations while our primary emphasis is on their generation.
Winograd [26] discusses three models of semantics:
categorization model, assoclation model, and .prccedural model. Our
system like his falls under the procedural category. Both the
categorization and association models mske <velatively lintle wuse of
syntax. The categorization model is based c¢n the semantic categories
of Karz and TFodor and is used in systems I1ike Schank's conceptual
parser [20], Schank has extended che semantic category system to
include for each sense of a word how that word relates to other words,
for example, whether or not it takes an cbject and if so what category
the object must be. The association model which is used by Quillian
[14] [15] stores the content words in the vocabulary in a network with

links between the words to represent theily assoziations in the subject

O

ERIC

Aruitoxt provided by Eic:

matter. The meanings of phrases are found by finding the links between
the content words of the phrase. A third method not mentioned by
Winograd is the pattern recognition method. This was used in the ELIZA
program [25] and more recently by Colby et al. {4]. Here the input is
scanned for certain key phrases. The assumption being that a large
part of mnatural language is merely fillers and unimportant idiomatic
phrases. Each of these three methods concentrates primarily on the
semantics. The semantic routines simply pick out anything they might
need from a rough parse; there is no deep systematic grammatical
analysis done. Winograd characterizes this attitude by saying:
There dis also a «complexity of syntactic
parsing. The semantic connections might give clues
to the underlying structure which would change the
parsing task into simply checking the plausibility
of the relations, and cleaning up the details.
This is the approcach taken by both Schank and
Quillian.
We view the zrole of syntax as much more important than this.
Each grammatical structure indicates the semantic procedure necessary
to evaluate its meaning. Based on the grammatizal parse of a sentence,
a semantic construction is assigned to it. The purpose of the semantic
construction is to give the evaluator the necessary functions and the
control structure for applying them.. It is at the level of the
evaluator, which has access to the data base including the meanings of

words and the context of the conversation, that semantic disambiguation

can be done if necessary.

28

It is because of this close relaticonship between the grammar
and the semantics that the lexical categnries must be carefully chosen
so as to maximize the information that can be obtained from the parse.
The basic categories for nouns are N, FCN, and 2FCN. The category 2FCN
is for function nouns 1like 'intersection' and 'sum' which always take
more than one argument. In addition ;here are noun categories which
are analogous to FLIGHT and PLACE which were used in the example from
Woods' system. These are categories which add both clarity and
precision to the grammar. Examples in our system are: GEOFIGURE for
the names of geometric figures, i.e., 'rectangle’; UNITS for wunits of
measurement like 'ounce', 'foot', 'tablespoon', etc.; NUNITS for
'ones', 'fives', and 'tens', etc. which are evaluated differently than
regular units; and /3D/ for nouns like 'length', 'height', and 'width',
These categories are probably not necessary to prevent grammatical
ambiguity but for developmental purposes they make the grammar much
more readable and specific semantic functicns can be assigned to the
rules before the more general procedures are discovered.

The adjective caregories are: ADJ for regular adjectives like
'even', 'finite', and 'prime'; /OPER/ for 'square', 'cubic', etc..;
ORDADJ for ordinal adjectives like 'ftirst' and 'second'; COMPADJ for
the comparative adjectives like 'longer' and 'largest'; and MEASWORD
for dimension adjectives like 'wide' and 'high'. There should also be
a category for adjectives taking two or more arguments like 'disjoint'

and 'equal', Each of these has its own semantic functicn associating

29

it with the noun it modifies.

with the sets represented by the

chooses the appropriate element from

function for COMPADJ chooses the 1

alternatives, There is another fu

ORDADJ and a COMPADJ as for example
One important category

ct adjective

matter. These adjectives express

that they modify. Two examples give

"the little elephant" (it
it
"the bad teacher" (he
be

A discussion of a formal theory for
Montague [11].

The categorization of ver

speech, but has not been carefully

lack of variety of verbs in tha pres
One othe: important category

These include

arithmetic relations,

to' (and similarly for 'greater'),

'divisible by'. The variations like
and the various abbreviarions are

prepositions are also eliminated b

treated as functions. Thus 'less th

ARITHRELS <~ ARITHREL NP

30

The ADJ's are sets which are intersected

nouns - The function Ffor ORDADJ

a set based on its ordering. The

argest or smallest from a set of

nction for the combination of an

"the second largest factor of 12°'.

s has not occurred in our subject

relative judgments abocut the noun

n by Sandewail {19] are:

is little for an elephant, but
may be big for an animal)

is bad as a teacher, but he may
good as a facther),

these adjectives can be found in

bs is <c¢cruciai in conversational

worked on in our sysctem due to the

ent vscabulary.

in our system 1s ARITHREL for the
'less than', 'less than or equal
'equal to', 'equivalent to', and

'smaller than' and 'littler than'

handied by the TRANSL file., The

the TRANSL. The ARITHRELs are

»
an 6' will be parsed by the rule

)
b

{4PF 315 323)

The result of applying the LESSTHAN function to 6 d1is the set of all
real numbers less than 6 (represented of course by a characteristic
function since it is an dinfinite set). These phrases can appear in
several positions. Examples are:

EX1: Which factors of 12 are less than 67

EX2: List all the factors of 12 that are less than 67

EX3: 1Is 2 < 67
The primary semantic function for EX1 and EX2 will be intersection and
for EX3 will be subset. Basically these phrases which evaluate to sets
can be used in the same ways as NP's which are sets, ADJ's which are
sets, and the prepositional phrases 1ike those with 'between' and
'before' which evaluate to sets. This greatly simplifies the grammar.
All of these various phrases which evaluate to sets are included in the
grammatical category SUBST:

SUBST <~ NP

SUBST <~ ADJ

SUBST <~ ARITHRELS

SUBST <- PREPP .
Thus the three general rules used in the derivations of the examples
given above

Q <- INTER NP LINK SUBST

RELPRONS <~ RELPRON LINK SUBST

Q <- LINK NP SUBST
will parse a large variety of sentences. It is also possible by using
rules for lists of SUBST's to parse lists containing elements from the
different types of phrases, for example:

Which factor of 12 is LEQ 6, divisible by 3, and even?

In addition this structure provides a convenient way to handle

negation. The rule for 'not' is

31

SUBST _ /NOT/ SUBST (c ;z3) .
C is the semantic function for set complement. Examples of this are:

Give all the factors of 1Z which are not divisible by 3!
Which prime number is not odd?

Careful attention to the semantics of a given grammatical
construction leads to clarity in the grammar. The grammatical clarity
is aided by both the lexical categories 1like N, FCN, ARITHREL, etc.,
and the grammatical catregecries like SUBST which will be discussed in
detail in later sections. In both cases the motivation for creating
the categories is semantical as well as grammatical due to the close
relationship of the syntax and the semantics.

Our goal has been clarity not only within the components of the
system but for the system as a whole. The clear separation between the
components of the system has not only added to its clarity but also
furthered our other major goals cf flexibility and extendability.

Flexibility 1s desirable in a system not only during the
developmental stages but also as a property of the 'finished' product
because of course a system 1is never really finished; one of any
system's most important features z1s 1its extendability, The more
flexible a system is the mcre easily it can be extended.

There are two Dbasic types of additions that might be made to
our question-answerer. The first avre additions to the +wccabulary and
subject matter ranging frem the simple addition of synonyms which can
be handled entirely at the level of the TRANSL through the additicn of

new function words which need to be put in the dictionary and the

32

O

ERIC

Aruitoxt provided by Eic:

function stored in the data base to the addition of completely new
types of subject matter which would require new vocabulary, grammatical
rules, semantic functions, and evaluation procedures. These sorts of
additions should present no difficulties, The second basic type of
extension would include substantive changes in the power of the system
itself. These changes might be in areas like habitability, learning,
modeling of the world and/or context of the coaversation, and anaphoric
references.

In discussing the question of zlarity, examples were used from
the system as a whole and from the syntactic and semantic components
but not from the evaluation component. The evaluator is written in
LISP, and as might be suspected, clarity i1s nct its strong point.
However this is the only area of our program which might in any sense
be thought of as a 'black box' and it is certainly no less clear than
the comparable components of other systems. In fact the semantic
construction fcr a sentence 1is avallable as a sort of summary or
outline of what the evaluarcr will do; so in that sense our program

does provide a clear concise way to understand the general workings of

[

the evaluator, However, thea sctrongz psoints of the evaluator are its
flexibility and ite 1ndependence from tne natural language processing
components.

One advantage of the independence of the components is that

they can be programmed in different languages according to the

appropriateness of the programming language to the task. The

33

interfaces, the scanner and the parser are written in SAIL, which is
fast, efficient and less spaze consuming: The evaluator which deals
with recursive functions many of which are <created at runtime is
written in LISP, The system is run on the PDP10 with TENEX and the
fork structure of TENEX facilitates the running of separate components
possibly 1in different languages. The problem of needing different
programming languages for different tasks in the system is discussed by
Bobrow in [2].

There are other advantages to the independence of the
evaluation component from the mnatural language processing component.
One area in which interesting work is being done is the area of
representation of knowledge. As breakthroughs are made in this area,
it will be possible for question-answerers to deal with much broader
subject areas and in a much more efficient way. However, if the method
used in the language processing component is based on the properties of
the data base, then i1in order to taks advantage of new ways of
representing knowledge, the whole system must be rewritten. Woods
discusses the 1importance of the independence of these components in
[27] ?

It seems that for efficient processing,
different sorts of data require different sorts of
data structures., A promising method £cr achieving
reasonable efficiency in large less restricted
universes of discourse 1is to provide the system
with a variety of different types of data
structures and special purpose deduction routines
for different subdomains of the universe of

discourse. integrating a variety of special
purpose routines into a single system however,

34

O

ERIC

Aruitoxt provided by Eic:

dat

implemented in most systems. For examp.e, Quillian in discussing his

lres o uniform syutactic

4o interpretation have been ca

pa i & semantic
framewerk., In general 1t 1s only after parsing and

: :rrlad out
v & system would be able to t2ll whether a

that

sentence pertained to a given subdomsin or not,
Therefore, if the syntactic and semantic analyses
were different for each subdomain, then the system
weuld have to parse and interpret each sentence
geveral times by diffevent procedures in order to
determine the appropriate subdomain, Moreover,
there can be sentencas that simuitaneously deal
with two or more subdecuwains, requiring a semantic

fvamework in which phrases dealing wirch difs

subdomains can be combined.

Ancther important point raised hera is that "different sovts of

a require different sorts of data structures''. This has

Teachable Language Comprehender (TLC) says im [153]:

"O

ond important assumption is tha
s knowledge of ithe world 1s stored
nd of memory, that is, that all the

event

at all

ieces of information +n this memory are

=
ret rich enough to a2l
¥

a homogeneous, wall-defined formac.

nocatien and cerganizsifion constitute

te devaloep "Uuh a2 format, whi

nough ©£o be mznagaahle %y definable
!

ich is

low re..eseptation

of anything that can be stated in natu:al languzagze.
. . It amounts zisliy ©o a highiy
ted mnetwovk oI unodes zad lations

Histovicaelly, systems dealing with gqulite vest:

tters and using evaluation techniques peculiar to the
¢ been veasonaply successful while systams attem

diverse subiecrs usin a generalized technigue which
N 3+

35

b

ed subj

ll‘

rict

(2]

subiecr matte

(u

not been

P
“

-
\.

different types of knowledge have been less successful. Woods'
suggestion 1is that a general system instead of trying to find one
method which will work for everything should recognize the differences
in types of data and incorporate a number of different evaluation
procedures 1n one program.

Our evaluator has the facility to do this. The data in our
system can be stored in many different ways. Most of the data
currently used are elementary math functions and therefore are well-
suited to being stored as LISP functions which can be called when
needed. Data can also be stored in tables and procedures involving
table lookup implemented for determining measurement equivalences, etc.
As the subject matter expands a variety of other data structures are
possible. For example, Lindsay's SAD SAM program [9] was very
successful at dealing with family relationships stored in a tree
structure. Therefore, if we added family relationships to our program
we might store the data on families in tree: and program functions like
'father of' as tree search procedures. Another common way of storing
data dis on property lists; this could also be implemented. It 1is
however interesting to note that portions cf rhe use of property lists
in early systems are now obsolete due tc the newer technique of storing
data as functicns or procedures. For example, Raphael [16] gives as an
example for SIR the description iist for the number '3':

successor 4

cdd yes

shape curvy

Q 36

ERIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

It is a waste of space to store the successor and the presence or
absence of the property odd for every number. It is only necessary to
store the successor function and the odd function and call them when
needed. In fact it will probably someday be feasible to call a pattern
recognition routine to détéfmine the shape of a written number if that
is desired.

One method often used by general systems is a theorem prover,
Black [1) points out that theorem provers are designed for proving
theorems mnot answering questions., He and orhers have developed
deductive systems which are more compatible with the goal of answering
questions, However, it is still true that most simple questions can
easily be answered without any of the power of a theorem prover. In
fact, the powerful machinery may often‘get in the way. On cthe other
hand, certain questions are very well suited to handling by a theorem
prover, For this reason, we plan to add a theorem prover to our system
which can be called by the evaluator ouly when 1t is needed.

In the learning of elementary mathematics the student needs to
acquire a large amount of methodological knowledge therefore it is
reasonable to expect that a large portion of his or her questions would
be of a methodological nature, for example, 'How do you find the
factors of a number?' We have attempted in writing the evaluation
procedures for functions to program them the way a student would do
them rather than according to standard computer algorithms, We believe

that the -evaluator can therefore be made to answer methodological

37

O

ERIC

Aruitoxt provided by Eic:

questions by analyzing its own functions, This is similar to
Winograd's proposal [26] that his blocks program, in answer to a
question about how it does something, be able to look at its own
programs and convert them to an English description like "First I find

a space, them . . ., ."

1.2 Transformations

In the previous section, I discussed a variety of capabilities
that our system has and some of the extensions that might be made. 1In
this section, I will discuss the transformational abilities of our
system. It is generally believed that a system based on an unaugmented
context-free grammar cannot handle transformations. First I will
explain why we do have the ability to deal with transformational
constructions and then I will show how each of the constructions which
cfg without semantic functions cannot handle are dealt with in our
system.

It is of course true that a context-free grammar does not have
the power of a transformational grammar, but the addition of the
semantic functions allows one to 'rucognize' semantically a non-context
free set. Thus we have 'augmented" our grammar by the addition of the
semantic fuanctions rather than by the addition of further grammatical
apparatus., An example will make this point clearver. Consider the
grammar G whose productions are as follows, where S, A, AND B are

nonterminal symbols:

38

S <- AB

B <- 2

B <~ Bz

A<-xy

A<-xAy
nnn

where L(G)= {xy z | m,n > 0} .

This is a context-free language. However by adding semantics to
the grammar it is possible to tell for every string s, which is a
member of L(G), whether or not s is in the set

.nnn
{(xyz | n>0}

which dis a context-sensitive set. Thus the combination of the
grammatical rules with the semantic functions will recognize this

context sensitive set. The semantic functions are as follows:

S <~ AB T if v(A) = v(B), NIL otherwise
B <~ 2z 1

B <- B z 1 + v(B)

A<-xy 1

A<-xAy 1+ v(4)

hence, for s in L(G),

nnn
v(s) =T 1ff s is in {x yz | n > 0}

This example deals with context sensitive sets but the addition of
semantic functions also can give transformational abilities. Specific
examples will be given later in this sectiom.

There are several advantages to using a context-free grammar.
First, the format of the grammar is clear, easy to read, and

universally recognized. Second, extremely efficient parsing algorithms

39

exist for cfg. And finally, transformaticnal grammars traditionally
define a level of analysis called the syntactic deep structure which is
described as follows by Fillmore [6]:
It is an artificial intermediate level between

the empirically discoverable 'semantic deep

structure' and the observationally accessible

surface structure, a level the properties of which

have more to do with the methodological commitments

of grammarians than with the nature of human

languages-
Our system goes directly from the syntactic to the semantic
representation, thereby eliminating the level of syntactic deep
structure.

However, there are transformations which need to be made in the
process. Woods [28] sums up the types of transformations needed as
"reordering, restructuring, and copying of constituents',
Restructuring will be discussed in detail in the next section with the
examples being drawn from noun phrases with the verb 'have'. A simple

example of reordering is the following:

C <- /DIVIDE/ NP /BY/ NP (DIV 32; ;43)
C <- /DIVIDE/ NP /INTO/ NP (DIV ;43 323)

Thus 'Divide 6 by 3!' and 'Divide 3 dintc 6:i' will both have the
semantic construction (DIV (LST 6) (LST 3)) reflecting the fact that
they have the same meaning,

Copying can also be done quite simply, although it is not often
used in our system because of semantic functions Iike CHL which will be

explained shortly. An example of copying is the following rule:

40

RULE1: NP <~ DET ADP /OR/ DET ADP NP
(CHL (I ;2; 363) (I ;53 :63))

Ex, 1s 2 an even or an odd number?
The first occurrence of the word 'number' has been dropped by the
questioner but must be put back before it can be evaluated, The word
'number' which is the sixth element in the NP therefore appears twice
in the semantic function in the proper positions.

CHL (choicelist) is used for many of the ‘'or'

constructions
(see Chapter IV for a discussion of lists with 'and' and 'or'.) When
the argument to one of the semantic functions begins with CHL, the
function 1is performed on each of the arguments in the list and an
answer returned for each. In the above example the semantic
construction will be

(QUS (S (LST 2) (CHL (I QEVEN @NUMBER) (I QODD @NUMBER)))).

[Note: S is the subset function.]

{2} will be checked to see if it is a subset of the set of even numbers
and then to see if it is a subset of the set of odd numbers; and the
answer will be

(CHL (TV T) (TV NIL)).
The CHL is pushed outward as the evaluation proceeds. The reason for
this will be clear in the next example.

As I mentioned above, our system does not often use copying
because CHL can be used instead. The phrase 'an even or an odd number'
could be given the semantic function (I (CHL ;2; ;5;) ;6;). The result

of evaluating this portion, since the CHL is moved outward after the

41

O

ERIC

Aruitoxt provided by Eic:

two intersections are performed, will be the same as the result after
evaluating the two intersections in the semantic function for RULE1
above,

The CHL function cculd probably be viewed as either copying or
restructuring., Before I discuss more exampies of restructuring in the
next section, I should mention briefly several other common criticisms
of cfg.

Woods [28] points cut thac

The unaided context~free grammar model is

unable to show the systematic vrelationship that

exists between a declarative and its corresponding

question form, between an active sentence and its

passive, etc, Chomsky's thecry of transformational

grammar, with its distincticn between the surface

structure of a sentence and its deep structure,

answers these objections but fzalls victim <co

inadequacies of its own . . .
It should be clear from the examples used throughout this paper that
the semantic constructions for related inputs will show the deep
structure relationship,

Work has been done by Postal [13] and others to isolate
constructions found in natural languages which can be proven to be
beyond the capacity of c¢fg. Postal has done this for constructions
which have what he calls the property [xx!. His work was done with the
Mohawk language but he also cites as an example in English the
construction with 'respectively'. This construction is also mentioned
by Winograd | 26] as one that is impossible for a cfg. His example is

John, Sidney, and Chan ordered an eggroll, a ham sandwich,

and a bagel respectively.

42

O

ERIC

Aruitoxt provided by Eic:

We have not included this construction in cur gvammar but it could be
handled by a semantic functiou which c¢ostnted the =z2lements on both lists
to check that the input was correct and then formed the proper ordered
pairs with one element from each lisc.
Another serious objecticn tc ofg is stated by Chomsky [3]:
Immediate constituent analysis has been

sharply and, I think, correctiy criticized as, in
general, imposing too much structure on sententes.

=lil

The most fraquently citad examples as evidaence for this c¢laim are
constructions with an unbounded number of immediate constituents. It
is impossible for a cfg to handie these constructions correctly without

an infinite number <f rules of the foym:

In order to handle these <constructions in a finite grammar, rules are

written c¢f the faovm:

which put the elements ot the input =zt diiferentv levels of the parse
tree rather than all on the same levei, thereby imposing a structure
which was not in the original Zinpuc. The cocmmon example of this for
natural languages ic a string of adjectives. Here, again, the probiem
is solved by the semantic fuanctions., This scrc of string of adjectives
will be a string ¢f adjectives vepreseunting s=ts and they should be

intersacred, for example, 'the even prime numbers'. The intersection

function will appear only once with the arguments passed up to it as
they are parsed.

ADP <- ADJ

—a

313

ADP <=~ STRINGADJ ADJ (IER ;13 323)
STRINGADJ <- ADJ 31
STRINGADJ <- STRINGADJ ADJ 315 323

[Note: IER is a special intersection function which
uses heuristics to perform the intersections.]

II.3 Restructuring

The most complex semantic functions are those associated with
restructuring. Woods [28] describes the contrast between the ordinary

control structure associlated with cfg and the structure in his system.

In ordinary context-free recognition, the
strvuctural descriptions are more or less direct
representations of the flow of control of the parse
as it analyzes the sentance, The structural
descriptions assigned by the structure building
rules of an augmented transition network . . . are
comparatively independent of the fiow of control of
the algorithm. This is not to say that rchey are
not determined by the fiow of ccntrol of the parse,
for this they sucrely are; rather we mean to point
out that they are not isomorphic to the flow of
control as in the usual context-free recognition
algorithms,

Our approach differs from Wcods' but the purpose is the same.
The order of the content words will be rcughly the same in the semantic
function as in the original input rceflecting the order in which they

were parsed, but for those sentences requiring restructuring the

primitive semantic functions used will provide the evaluator with a

44

control structure for dealing with the arguments which reflects the
deep structure semantics rather than the surface parse. The need for
this sort of semantic function was first discovered when dealing with
the following examples:

EX1: Which is a factor of 4: 2 or 87 answer: 2
EX2: Which has a factor of 4: 2 or 87 answer: 8

The words are identical except for the verb yet the evaluation
procedures are quite different. In EX1 FACTOR 1s applied to 4 while in
EX2 it should be applied instead to both 2 and 8. The problem is to
block the application of FACTOR to 4 in EX2, Our initial 1dee was to
add a semantic function when the verb was parsed which would alert the
evaluator to change the order of the arguments for the remaining part
of the semantic function. There are at least three major drawbacks to
this approach., First it has no flexibility and would require a large
amount of coding for all the possible noun phrases and hence semantic
functions that might fill the remaining slots in the sentence. Second,
it would destroy the straightforward character of the semantic
construction since portions of the construction would not be what they
appeared to be, Third and most dimportant it would destroy the
recursive inside-out nature of the evaluator. The alternative that we
have cliosen 1is to use separate noun phrase rules and hence separate
semantic functions to parse the noun phrase f'factor of 4' in the two
examples. This adds to the size of the grammar but does reflect the
difference in meaning of the noun phrase in the two examples. We
therefore have two sorts of NP rules in our grammar: the regular NP's

and a type that we call HNP's., We expect that the use of the HNP's

45

will be wider than merely in connection with the verb 'have' (for
example with relative possessive pronouns), The rule that parses EX2
is

Q <- INTER /HAVE/ HAVENP PUNCHOICE CHOICELIST

[Note: PUNCHOICE allows a varizty of punctuation
marks.]

There are several types of HNP's, one of which is HAVENP. The
semantic functions for some of them create sets and for others
functions. In this case a set will be created which contains all the
numbers that have 4 as a factor, then the singleton sets containing 2
and 8 respectively can be checked to see 1f they are subsets of this
set,

This approach appears to be compatible with a comment made
about 'have' by Winograd [26]:

The interesting thing about "have'" is that it
is not used to indicate a few different
relationships, but is a place-marker used to create
relationships dependent on the semantic types of
the objects involved.

The simplest kind of MNP is called FCNHNP:

(44,5) Q1 <- INTER FCNHNP AUXIL NP /HAVE/
(APP ;2; ;43)

EX3: What factors does 12 have?
EX4: Which even factors that are less than 6 does 12 have?

The rules that parse FCNHNP's are:
(123,1) FCNHNP <- FCN 31
(123,2) FCNHNP <- ADP FCN (FCNMK ;2;

b
(123,3) FCNHNP <- FCN RESTRICT (FCNMK ;1; ;
(123,4) FCNHNP <- ADP FCN RESTRICT (FCNMK ;2; (

46

In the simplest case 1l’ke EX3 where there is only the name of a
function, nething unusual needs to be done. Rule (44,5) applies the
FACTOR function to its argument which is 12. EX4 is more complicated.
Through the semantic function FCNMK, a new function is created at
runtime which can be applied to 12 by Rule (44,5). FCNMK takes two
arguments. First the name of the function, i.e., FACTOR and then a set
representing the various restrictions given by the adjective modifiers
and the other restrictive clauses (RESTRICT) which can be relative
clauses, prepositional phrases or arithmetic relations. Each of these
restrictions is a set so they can all be intersected into one set to
f111 the second argument slot for FCNMK. To standardize the nctation
in this and the following examples, I will give the format for FCNMK as

(FCNMK £ s)
meaning it has two arguments the first f a function and the second s a
set. From these two arguments it creates a new function, In the case
of EX4 it will create the fumction which when applied to a number
returns all its factors that are both even and less than 6.

There are four types of HAVENP's which creace sets. The first
type contains an existential quantifier either fmplicitly or
explicitly. Examples are:

EX5: Does 6 have any odd factors that are not divisible by 37
EX6: Does 5 have an even factor?

The examples studied indicate that the indefinite article 1in these
contexts should be treated as an existential quantifier. The semantic
function with its argumeunts is

(EXTHNP £ s) ,

47

The first argument is a function which will be parsed by
FCNHNP, discussed above, and therefore is either a function in the data
base or a new function to be created at runtime by FCNMK which
incorporates the restrictions on the function, for example, in EX6 the
function will be the EVENFACTOR functicn. The second argument is a set
and in this particular case it will always be by default the universal
set. The new set created by EXTHNP is

{x | £(x) INTERSECTION s is nonempty}
which is lsgically equivalent to

{x | (BXISTS y in f(x)) (y in s)}
Note that intersecting a given set with the universal set has no
effect. The second argument to EXTHNP is used in cases where there ic
an exception given, for example

EX7: Does 12 have any odd factors other than 37
Here the first argument to EXTHNP is again the function, perhaps one
created by FCNMK, and the second argument 1s a set which is the
complement of the set given in the exception clause. We do not
consider 1 to be a factor of any number since factor was the first
function we programmed and there are not as many interesting questions
that can be asked if 1 1is considered a factor of every number,
Therefore in EX7, f is the ODDFACTOR function and thus £(12)={3} which
intersected with the complement of {3} equals the empty set. Therefore

12 does not belong to the set created by EXTHNP,

48

The universal quantifiers used are 'all' and 'only', as in

EX8: Does 9 have all odd factors?
EX9: Does 12 have only even factors except for 37

The function UNVHNP is more complicated than EXTHNP because FCNMK
cannot be used. FCNMK makes new functions by dincorporating the
adjective and other restrictions into the function. With the universal
quantifier this cannot be done. For example, in EX8 we do not want to
know 1f 9 has any odd factors. Instead we want to first find the
factors of 9 and then make sure that ali of them are cdd. This adds to
the grammar because all of the rules given for FCNHNP above which parse
the various kinds of modifiers must be duplicated here. The format for
UNVHNP is

{(UNVHNP £ Sr)
where f is a function in the data base and Sr is the set of
restrictions. UNVHNP creates the set

{x | £(x) is a subser of 5r} .,
A separa*e semantic funciion is used for universal quantifiers where an
exception set is given as in EX9.

(UNVHNPXCT f Sr 5x) .

It has 3 arguments, a function 1in the daﬁa base, the set of
restrictions, and the exception set. it creates:

{x | (£(x) - Sx) is a subset of Sr}
In EX9, £(12)={2,3,4,6,12)} and the =cet difference of this with {3} is

{2,4,6,12}, which 1s a subset of the set of even numbers.

49

The third type of HAVENP's use a numerical determiner. For
example

EX10: Does 12 have 2 odd factors?
uses the semantic function

(EXPHNP <number> f)
which creates the set

{x | CARDINALITY(f(x)) = <number> }

Here f may again be a function created by FCNMK.

The final type of HAVENP are called ANSHNP because the desired
result of the application of the function is included in the HNP, for
example

EX11: Does a 2 inch square have an area of 4 square inches?

EX12: Does 4 have 2 as a factor?

EX13: Does 1/2 have the denominator 2?

EXTHNP which was discussed above in the section on existential
quantifiers is used also for the ANSHNP. The function f is handled by
FCNHNP using FCNMK and the set s is the desired result given. The set
created is again

{x | f(x) INTERSECTION s is not empty)

In EX12, £(4)={2} and {2} INTERSECTION {2} is not empty, so the answer

to the question is TRUE.

Chapter III

CONSTRUCT and the Grammar

III.1 CONSTRUCT

CONSTRUCT is the master program for the question-answering
system. It is written in SAIL and provides the interface between the
natural language processing component and the evaluator, It also
contains the SCANNER and handles the actual parsing. The grammar is
read in as a file and compiled before it is run for greater efficiency.
When the parse is finished, the semantic construction is in abbreviated
notation. It is then prepared for the evaluator by a macro expander.

In addition to its function of running the question-answerer,
CONSTRUCT also provides interaction with the user at runtime. The user
has an option of several modes of operation. The basic choice is
between rile or teletype input and output. It is also possible to run
without either the TRANSL, the dictionary or the evaluator. This might
be wuseful for testing whether a list of lexical forms will parse,
however, basically it is designed for the work that CONSTRUCT does with
other forms of grammatical analysis rather than for the question-
answerer, CONSTRUCT is a versatile program which is part of a package
of programs for natural language processing, written by R. Smith, that

have served a number of users for a variety of purposes.

31

O

ERIC

Aruitoxt provided by Eic:

Another useful option is the output of a cleaned-up version of
the grammar file. With several pecple working on the procject, the
grammar file often becomes overloaded with comments and notes and the
rules out of any intelligibie order as additions and deletions are
made. CONSTRUCT will print out the grammar without comments and witch
the rules grouped according to the left-hand~side symbol. It also
automatically provides a numbered 1abel for each rule.

ile the program is vunning, CONSTRULCT provides for editing of
the typed input in case of ¢ypographical erwroces. The experienced user
can also go into DDT and change stovage and other parameters and then
return, The TRANSL file can be veplaced with a different wversion. A
word can be added to or deleted from the dictiomary or given a new
category; and 1if the <change is to be permanent, the program can be
requested to wrifte the new version of the dictionary con the file
storage device sc that it will mnot be lozt when the program 1s exited

Trom.

iy

Other features of the pregram are designed to aid in debugging
the grammar., The gtart symbol can be changed so that various vhrases
can be tested. A printout of a group of rules can be requested. The
printcut of a particular derivation tan be aborted and the next
dexivation begun or control can be returned Immediately to the user.
The previnus input sentence can be redone by a single character command

rather than retyping the sentence. This is useful on a display

texminal where there is nc paper printout to zzfer back to.

52

Often while running the question-answerer, Interesting features
are discovered about the way the system handles certain questions. If
a particular derivation is noteworthy for some reason, CONSTRUCT can be
requested to send the question to a file of the user's choice. In this
way, separate files can be maintained for questions which are good
examples of the question-answering system at work, questions which
parse correctly but are evaluated incorrectly, and questions which fail
to even parse. The latter fil=s can be used for diagnostic purposes

and the former to demonstrate the system to visitors.

I1I.2 The Scanner and the Dictionary

The acanner used by CONSTRUCT is similar to the scamners found
in compilers. It preprocesses the Input before passing 1t to the
parser in the form of & string of lexical categories., The punctuation
and arithmetic signs in the input are passed on untouched. A table of
break characters is used to identify the word boundaries. Numbers are
assigned theilr lexical category, either INTEGER or REAL, directly by
the scanner. The lexical categories for other words are looked up in
the dictionary. If & word has multiple categories in the dictionary,
all the alternatives are entered in the lexical representation for the
string. For example

2 18 a prime.
will be represented g&s

INTEGER LINK /A/&VAR ADJ&N .

53

O

ERIC

Aruitoxt provided by Eic:

[Note: VAR is the category for variables and /A/ for
the indefinite article.]

There are currently over 300 words in the dicticnary and only
30 have multiple categories. 0f these, 11 have been satisfactorilﬁ
worked out in the grammar and cause no real problems. They include:
1) 5 ADJ&N like 'real' and 'prime';

2) 3 variables:

a) a ——— VAR and indefinite
article;
b) x —-—— VAR and /BY; as in '2x4

inch rectangle';

c) n —--- VAR and notation for
cardinality as in 'n {a,b,c}=3";

3) 'Which' as both an interrogative and a relative
pronoun;

4) 'Square' as GEOFIGURE as in 'a 2 inch square'
and as /OPER/ as in '2 square feet':

5) 'May' as either the name of the month or a
modal verb (note: some rerminals cannot distinguish
between uprer and iower case)
The other 19 are in areas of the grammar that are unfinished.
Six of the words with multiple catepories are verbs. Our vocabulary
included too f[ew verbs to dc extensive cateporization con the basis of
the underlying semantics. These categories are therefore somewhat
makeshift, but cause no problems. Two of the words are 'intersection'
and 'union' which nave separate catepories for the two possibilities:
1) the function name with a 1list of arguments as in 'the wunion of

{a} and {b}' or 2) the function name in infix notation as in "{a} UNION

{b}'. Three of the words (and there are probably many more) are 'day',

54

O

ERIC

Aruitoxt provided by Eic:

'week', and 'month'. These examples wecrz discussed in Section II.1.
They can apparently be either N's or FCN's, but more work may show that

3,

creating a new single categoyry wouid be a better approach. No rules
have been developed in the grammar yet for them. The remaining eight
multiple category wcrds are all some variation of written out numbers,
We have chosen eight of the more common ones to put in the dictionary
for the purpose of testing the grammar. Algorithms exist for easy
conversion of written numbers and this conversion should properly be
pexformed as part of the scaaner., The difficulcy lies in the ambiguity
of certain forms. For example, 'one' can be used in two ways:

EX1: There is only one even prime number.
EX2: 231 = 2 hundreds 3 tens and 1 one.

Similarly 'fourth' has two uses:

EX3: The fourth largest factor of 12 is 3,

EX4: 1 fouxrth = 2 eighths.

w

It is interesting to note that in both EX2 and EX4 the problem only
arises in the singular and fcor the OGORDADJ's it only asises beginning
with the <¢hird, i.e., first, second, third wvs. ..., half, third.
Informal questioning of foraign speakers indicates that this is not a
problem in every language.

The vast majority of words ia the dictionary, however, have
only a single lexiceal categery. The multiple categories caused a large
amount of grammatical ambiguity with early versions of the grammar. As

the precision of the grammar has i1ncrzased these have virtually

55

O

ERIC

Aruitoxt provided by Eic:

disappeared. The only zemaining ambiguicy is for the multiple category
ADJ&N, for example,

EX5: Lu 2 prime?

EX6: 1Is 2 a prime?

EX7: Are 2 and 3 prime?

EX8: Are 2 and 3 primes?
EX6 with the determiner will have only a single parse, but the other
three examples will parse 'prime' as both & ncoun and an adjective.
There is no ambiguity for the native speaker because of the verb cense
and the determiner used with the singular to make 1t agree with the
verb and the 's' ending used with the plural for agreement. Our system
uses only the singular form of nouns and verbs (the standardization is
done by the TRANSL) and hence has no facility for checking agreement.
The mathematical subject matter has no semantic need for tenses. The
rammar would be more precise if they were inciuded, but the processing
time would be increased ocut of proporvtion cc the advantages gained.
Note that the samaniic construction wil: be the same for both parses in
each of the above examples, therzfore. the amhiguity is no problem.
The use oif tenses and agreement in & framuar suppiies ic with the power
to convey certain features of meaning. These features of meaning are
not present in elementary mathemacice whicsh might be called
'tensaless’. The features remain In ihe grammar but cheir potencial
power 1s not actualized for the semantics, therefore, we have chosen to
ignore them thereby losing some of the ability to discriminate between
grammatical forme that have the same mezning. Mote thar this also

means that the input grammar cannot distinguish between 2urrect syntax

and certain forms of incorrect syntax. For this reason, tenses and
agreement wiil need to be included in the output grammar so that it

will produce only grammatically correci sencences.

III.3 The TRANSL Tile

The scanner checks to see if any word or group of words in the
input is in the TRANSL file before it loocks up the lexical categories
of the words in the dictionary. The TRANSL contains strings which are
to be substituted for and the substitution which may be the empty
string. There are five basic uses of the TRANSL in the current version
of the system. 1) All plural forms are TRANSL'd to the singular. 2)
All abbreviations are TRANSL'd to the full word singular form. 3)
Synonyms are TRANSL'd to the most commonly used one of the group. 4)
Two or more words which always occur tagether, one or more of which may
have nc meaning alone in the particular subject matter, are TRANSL'd to
a single word representation, for example, 'wholenumber'. And 5) noise
words are eliminated. Some of +the noise words are in the nature of
interjections which have little meaning in any subject matter. Others
are words like 'also' and 'both' which in ordinary conversation add
precision and shades of meaning but are unneeded in mathematics which
already uses a precise rigid approach to the determinatior of meaning.
It dis for this reason that so few adverbs are used at all in

mathematical language.

57

O

ERIC

Aruitoxt provided by Eic:

EXi: 7Find the even number which i3 & factor of 4 and 6.
EX2: Find the even number which s 2 fzactor of both 4 and 6.
EX3: Tind the even number which i3 a factor of 4 and also

a Yactor of 6.
The use of 'both' and 'also' in these examples adds nothing to the
meaning so they are sliminated st the level of the TRANSL,

Some analogies can be made bstween the function of our TRANSL
file and certain features of other natural language processing systems,
in particular, pattern recognivion systems. YBobrow [2Z] distinguishes
between 'structural' transformations and 'definitional’
transformations. He gives as examples of definitional transformations,
the substitution of "twice' for '2 times' and 'cne half of' for '.5
times'. In our system, the TRANSL handies these surts of 'definitional’
transformations. The TRANSL also periorms anzther fuaction in the same
way as a system based on the patrerm recogaition technigue. Colby and
Enea [4] give the examplie:

Could you tell me your name?

'

The 1iitewal analysils s cobviously incorvecty. Rather, in polite
conversation, certain standard phraser snich add no meaning are used to
introduce questions, Colby and Enee use «<he foilowing rules to deal
with these phrases:

RULES OF SENTENCE =
<QUESTION-INTRODUCER>:) <NI uN“HHRAgE~:Y
~ IS N YARTTVE)y
RULES OF QUESTLON-INTRODUCER
COULD YOU TFLL ME «-,
WOULD YOU TELL ME «-,
PLEASE TFLL ME -,

Our TRANSL includes the two striags 'do you kaow' snd "can you' which

o0

4

™

are very similay to ihese examples, Iv 1s diataresting to note that

58

O

ERIC

Aruitoxt provided by Eic:

their system which is designed for the pattern recognition technique
requires as many rules to deal with the question-incroducer as ours
does, We need one line in the TRANSL for each cf the phrases as they
need one rule for each; and we also need one grammatical rule for each
sufficiently different construction of the question following the
phrase. We have the two rules:

RULET Q « /DOYOUKNOW/ NP
EX1: Do you know the sum of 2 and 47

RULE2 O« /DOYOURIGY/ INTER MP LINK
E¥2: Do you know what the factors of 12 are!?

RULE1 is analogous to their rule and they would need to add RULE2

before they could handle EX2.

I11.4 The Grammar

The grammar is a concext-free grammar. Winograd {26] in
discussing augmented transition networks says
The advantapes lie in tha ways in which these
augmented networks are close to the actual
operations c¢f languare, and ~ive a natural and
understandable representation for prammars,
This is also the goal of our grammar and associated semantic functions.
By writing the rules so that appropriatc semantic functions can be
assigned to them, the rules themselves are more natural and closer to
the "actual operations of languare. 'he trees are considerably flatter

than the trees for parses by more conventional context-free grammars

59

O

ERIC

Aruitoxt provided by Eic:

used for natural language processing. The start symbol S parses an
input sentence according te its type: Q for questions, D for
declaratives, C for commands, and F for arithmetic formulas. At the
top level for each of these categories, the sentence will be parsed by
a rule that shows its basic structure 1n considerably mocre detail than
the usual S « NP VP. Because the grammar needs to 1) determine the
correct semantic function and 2) locate all its arguments, there will
be no categories in the grammar like VP which are complete 'black
boxes'.

Montague [11] argues against the approach of attacking syntax
first and then considering semantics,

Such a program has almost nc prospect of
success. There will often be many ways of
syntactically generating a given set of sentences,
but only a few of them will have semantic
relevance; and these will sometimes be less simple,
and hence less superficially appealing, than
certain of the semantically uninteresting modes of
generation., Thus the cocnstrucrcion of syntax and
semantics must prcceed hand ZIn hand.

A word of caution is also needed for those who would attack
semantics first. The guidelines <for semantic 1nterpretation are
established by the syntax. If an attempt is made to analyze meaning in
isolation from the syntax, there is also almost no prospect for
success. It is possible to write a jumbled prosram that will handle
bits and pieces of the input that it p:cks cuc, and even do fairly well

on the limited set of sentence types for which it was designed, but no

60

O

ERIC

Aruitoxt provided by Eic:

organized, flexible, general semantic approach can he constructed which
is not closely guided by the svntax. .

Montague says that the rules with semantic relevance may be
"less superficially appealing™. Our experience has shown that the
appeal of semantically poor rules is very osuperficial indeed. For
small portions of the grammar, more efficient and appealing rules can
certainly bhe written, however, the c¢cnly way to keep the various areas
of the grammar from causing grammatical ambiguities and other
difficulties when they work together is by considering the semantics at
every step. This is the structure that grammar has. If an attempt is
made to parse natural language with a grammar that is appealing on some
other ground, it simply cannct be mace to fit the language.

Therefore, our primary consideration in writing the rules of
the grammar is to facilitate the wziting of semantic functions for the
vules. The next consideration 1is to write rules which minimize
grammatical ambiguity. Given that these two condirions are satisfied,

other factors such as the number of rules required to parse a

n,

particular construction can he coasidered.

At this point, an illustrative examplie of this grammar writing

procedure will he heilpful. Consider the tollowing questions:

Al Is 2 odd?
Ts 2 an even numbex?
Is 2 greater than 17

Is Z between 1 and 127

Bt: Which factors of 12 ave odd?
Which factors of 12 ace even numberas?
Which factors of 12 are preater than 17
Which factors of 12 are between 1 and 127

61

B2: Which factors of 12 are not odd?
Which factors of 12 are not even numbers?
Which factors of 12 are not between 1 and 127
Which factors of 12 are not between 1 and 127
First we can notice that the adjective 'odd', the noun phrase
'an even number', the arithmetic relation 'greater than 1', and the
prepositional phrase 'between 1 and 12' each have the same semantic
role in the A-group questions and also have the same role as each other
in the B-groups. The primary semantic function for the A-group is
subset and the primary semantic function for the Bl-group is
intersection. So we can write the following rules for use in these two
contexts as well as many other contexts:
SUBST <- NF
SUBST <~ ADJ
SUBST <- ARITHRELS
SUBST <- PREPHRASE

[Note: Only a few of the prepositions fall under this
particular category of prepositional phrases.]

Next, we can consider how to handle the occurrence of 'not' in
the B2-group. There are four plausible ways of writing these rules if
only the syntax is considered.

(N () <- INTER NP LINK SUBST
Q <- INTER NP LINK /NOT/ SUBST

(2) Q <- INTER NP LINKNOT SUBST
LINKNOT <- LINK
LINKNOT <- LINK /NOT/

(3) Q <~ INTER NP LINK SUBST
ADP <- /NOT/ ADP
NP <- /NOT/ NP
ARITHRELS <~ /NOT/ ARITHRELS
PREPHRASE <- /NOT/ PREPHRASE

(4) Q <- INTER NP LINK SUBST
SUBST <- /NOT/ SUBST

62

The last proposed set of rules is the one we have chosen. The
second would be the worst choice because no semantics could be written
for the rules. TFailure to support a semantic analysis is the worst
problem that a grammatical rule can have. The 'not' in the second
alternative is simply buried too deeply in the grammar. It cannot be
semantically attached to the SUBST or to the relationship between the
NP and the SUBST.

The first set of rules could form the basis for a workable
semantics for 'not' although the rammar would mneed to be longer
since each rule containing a SUBST would need to be duplicated with
/NOT/ inserted before SUBST and a new semantic funqtion written. For
example here the semantics for the positive case would be intersection
and the semantics for the negative case could be either intersection
with the complement or set difference. Also a complete set of listing
rules like

Q <- INTER NP LINK /NOT/ SUBST /AND/ /NOT/ SUBST
would be needed at each top-level position. Using the fourth
alternative the listing (and choice) rules need to be given only once
at the SUBST-level.

The third alternative has the same end result as the preferred
fourth alternative, but it can be rejected on the grounds that it is
longer. Also it would 1lead to syntactic ambiguity in the case of
SUBST's which are noun phrases containing an adjective. For exampie

'not even numbers' could be parsed as either:

63

SUBST SUBST
| I

NP NP

I\ I\
NOT NP ADP N
/N [\
ADP N NOT ADP .

All of the groups of rules in the grammar will be given and
briefly described in the next chapter. In the remainder of this
section, I will discuss the general problem of ambiguity. There are a
variety of types of ambiguity. Thexre are also a variety of approaches
available for disambiguation. No single approach can handle all types
of ambiguity. Our intention i1s to disambiguate by combining several
approaches in a natural way so that the disambiguation for any given
sentence will correspond as closely as possible to the way a native
speaker would perform the disambiguation. Because our grammar cannot
hope to be as complex or the heuristics in the evaluator as broad in
scope as a person's, certain of the disambiguation techniques which are
of minor imporctance for a person will carry a disproportionate share of
the workload in our system. Two of these techuniques which are probably
not as oftan used by native speakers may unfortunately play a large
role in our system. The first is the case where a person is so unsure
of the intended meaning that he or she must ask for clarification. The
second case is where the person is fairly sure of the intended meaning

but does recognize that there is another possible interpretation which

has some plausibilty. In this case, the person may ask the speaker if

64

the more probable interpretation is in fact the intended meaning or ,
especially in the case of written speech, may adopt the interpretation
with the highest probability subject to revision if further input shows
it to be the wrong assumption.

I will distinguish three types of ambiguity and call them
lexical, grammatical, and semantic ambiguity. At the surface level
before any syntactic or semantic analysis has been done, there may be a
fair amount of lexical ambiguity, i.e., words with multiple lexical
categories. The vast majority of these cases are disambiguated on the
basis that only one will parse. If there is more than one parse,
there will still be no problem, as in the case of ADJ&N, if both parses
yleld the same semantic construction. Even if there is no lexical
ambiguity, an input may have more than one syntactic parse. If the
derivations all produce the same semantic construction, I will call it
grammatical ambiguity, and if different semantic constructions are
produced, I will call it semantic ambiguity. It is also possible to
have semantic ambiguity even 1f there is only one parse as in Katz'
'colorful ball' example. This ambiguity cannot be detected by the
natural language processing component of the system. It will be
detected and resolved by the evaluator on the basis of context and
worid knowledge. Therefore I will not discuss this form of ambiguity
in this section. The ambiguity we are concerned with here is
ambiguity in which the meanings of words are not in dispute only the

way of combining them. As grammatical ambiguity 1s naturally resolved

65

O

ERIC

Aruitoxt provided by Eic:

"
by the semantics 1in the case where only one semantic construction is
produced, similarly, semantical ambiguity is naturally resolved by the
evaluator when either the evaluation 1is the same or only one of the
semantic constructions can be successfully evaluated. These sorts of
disambiguation, the grammar settling lexical ambiguities, the semantics
settling grammatical ambiguities, and the evaluator settling semantic
ambiguities, are a natural by-product of the structure of the system.
The ambiguities which remain require additional measures. Sometimes a
sentence will have two or more parses with different semantic
constructions and the output from the evaluator is also different for
each., The addition of context checking and world knowledge to the
evaluator will cut down the number of these remaining ambiguities by
discarding more possible interpretations as unacceptable at the level
of evaluation. Also certain heuristics can be added which are based on
insights about the sorts of questions that people are likely or not
likely to ask. TFailing any cf these measures: 1) the user can be asked
what was meant, 2) the interpretation which has the grammatical
structure with the highest probability based on a probabilistic f£fit of
the grammar with a corpus of sample questions can be tentatively
chosen, or 3) the wuser can be presented with the most probable
interpretation selected in this way and asked if if is correct. Work
by R. Smith [21] with probabilistic grammars shows that in many cases
they can be used very successfully for disambiguation. Through the use

of complicated analysis and statistical programs which will not be

66

discussed here, probabilities can be assigned to each rule on the basis
of 1its group membership determined by left-hand-side symbol (the
probabilities of the rules iIn each group summing to 1) so that the
probability assigned fo each derivation when there are multiple
derivations of a grammatical construction will accurately reflect the
percentage of times that it was the correct derivation on semantical
grounds in a large sample set of sentences containing that grammatical
construction. Thus by analyzing large numbers of sample questions, we
can know for a given ambiguous sentence type which grammatical parse is
more frequently the correct one. The CONSTRUCT program is prepared to
handle ¢the addition of probabilities to the grammar. The use of
probabilities has an analogue in human processing. A person will first
understand a sentence according to commonly used grammatical
constructions and then if there is a problem reevaluate it with more
uncommon grammatical rules. I will conclude this section with an
example of the handling of the ambi{rnity problem for lists of units.
The rules for lists of IINIT's need to be written carefully to

avoid unnecessary grammatical ambiguities and detect genuine semantic

ambiguities., Consider the followins lists of units:
EX1: 5 yds 3 ft 2 4n
EX2: 2 1b 3 oz, 4 1b, and 5 oz
EX3: 2 yds and 2 ft

Lists with no commas, such as EX1. are clearly intended to be
compound units rather than a list of single units. These are parsed by

a grammatical category called JOINUNITS with the semantic function

67

UNITJOIN. The evaluation procedure for UNITJOIN adds the units together
and forms a single new unit for the evaluator to work with. EX2 1is a
list of three elements (one of which is a compound unit) and no further
joining should be done among the three top-level elements. EX3 can in
some contexts be genuinely ambiguous. There is no method in our system
for attaching two possible semantic functions to one rule of the
grammar. It is also not either possible or desirable for one semantic
function to be evaluated in two completely different ways. So the
solution chosen here was to write syntactic rules which would be known
to generate two-way ambiguities in certain cases with each of the
ambiguous derivations assigned a different semantic function. Consider
the command

Convert 2 yds and 2 ft to inches.
The answer could be either

(CMD (CHL 72 INCHES 24 INCHES))
or

(CMD 96 INCHES) .
The first answer results from parsing by LISTOFEXP which uses the CHL
semantic function and thus gives an answer for each of the elements on
the list. The second answer results from parsing by SUMUNITS which
like JOINUNITS uses the UNITJOIN semantic function and thus adds the
units together before it performs the conversion. Sentences like these
will be derived in both ways thus reflecting the genuine ambiguity.
EX2 will be parsed only by LISTOFEXP because SUMUNITS does not allow a

joined unit as an element since the presence of a compound unit on a

68

list blocks further joining. However, sometimes there are other clues
in the input which allow the native speaker to disambiguate it.
Consider the following commands:

EX4: Convert 5 yds, 3 ft, and 2 in to inches!
EX5: Convert 5 yds, 3 ft, and 4 ft to inches!

These commands are easily understood by the native speaker.
The derivation using SUMUNITS is the correct one for EX4 and the
derivation using LISTOFEXP is correct for EXS. In this case,
heuristics should be added so that the evaluator will reject the
incorrect derivations and eliminate them at the evaluation level rather
than trying to eliminate them at the syntactic level. For example, it
would be an error when the evaluator was asked to convert 2 inches to
inches in EX4, and an error when asked to join 3 feet and 4 feet into a
compound unit in EXS.

There is one other possible source of unacceptable ambiguity.
Consider:

EX6: A line 2 yds, 1 ft, and 10 1in long
EX7: A triangle with sides 2 yds, 1 ft, and 10 in

The units in EX6 should be joined and those in EX7 should not. The
evaluator will reject the incorrect parses on the basis of the number
of arguments that it expects for working with lines and triangles. It
might be possible to put these argument slots into the grammar

explicitly, but it would lengthen the grammar too much to be practical.

69

O

ERIC

Aruitoxt provided by Eic:

Chapter 1V

The Rules of the Grammar and their Semantic Functions

Iv.1 Introduction

The grammar contains 642 rules. As I discuss the rules, I will
note areas where additions are planned. Some groups of rules are known
to be incorrect and I will point these out and indicate what remedies
are needed. Other parts of the grammar do mnot yet have associated
semantic functions so their correctness cannot be tested. A rule of the
grammar can be incorrect in either of two ways. First it can fail to
parse the constructions it was intended to parse or second it can parse
in an unnatural way so that no semantic function can be written for the
rule. It has generally been true that writing the semantics brings to
light problems with the grammar -- some of them trivial probiems but
others have been major, unexpected, and in general very revealing about
the nature of the language that we are dealing with. One striking case
where this happened involved sentences containing the verb 'have'. [See
Section I1I.3].

In the next sections I will go through the grammar one group of
rules at a time and give a short description and explanation of the
rules in the group, including examples and any information about their
evolution through the various revisions of the grammar that might be of

interest.

70

The rules are labelled by an ordered pair of numbers enclosed
in parentheses. Each rule with the same left-hand-side (lhs) has the
same first number in the label and the various rules in the group
receive consecutive s2cond numbers. This structure was created to
handle probabilistic grammars where groups with the same lhs need to be
distinguished. If and when we decide to implement probabilities the
CONSTRUCT program is prepared to handle them.

The rules of the grammar are given in standard context-free
rule format with the lhs and rhs separated by '<-'., Each rule is
followed by a tab and then its associated semantic function. Numbers
enclosed in semi-colons in the semantic function refer to the position
of elements in the rhs of the syntactic rule. Numbers without semi-
colons are passed directly to the evaluation program and are usually
default values for argument slots. Perhaps the best way to show how
the semantic functions work is by a simple example which uses only the

following rules:

(1,2) S <= F (FML ;13)

(2,1) F <= F2 313

(2,2) F <- LISTOFF (ANDER (LST ;13))
(3,4) LISTOFF <- LISTOFF , /AND/ F2 ;1; ;4;

(3,2) LISTOFF <~ F2 , F2 315 335

(4,2) F2 <~ EXPP ARITHREL EXPP (S 31; (APP (FCN 3;2;) ;3;))
(7,1) EXPP <~ EXP1 (LST ;13)

(13,1) EXP1 <~ EXPT 313

(14,1) EXPT <- EXPF 313

(15,2) EXPF <- TERM 313

(16,1) TERM <- INTEGER C I

71

To show how the semantic construction which is to be passed to
the evaluation program is built up, I will go step by step through the
syntactic parse and show what information is added to the semantic
construction at each step. I will use two examples:

EXT1: 2<3
EX2: 2<3, 3<4, and 4<5 ,

For this purpose I will abandon strict left to right processing and
instead process the integers simultaneously by multiple use of the
rules where possible. When an argument in the semantic construction is
not yet specified I will represent it by []. And when a terminal
symbol in the grammar is reached and there 1is a corresponding [] in
the semantic construction, I will put the symbol in the brackets, for
example, [integer]. Before this is passed to the evaluation program,
the actual integer in the input sentence will be substituted into the
formula by a macro expander. Terminal syntactic categories 1like /AND/
which serve to give structure to the input sentence do not explicitly
appear in the semantic representation. Instead the appropriate basic

semantic function, in this case ANDER, is added to the semantic

construction,
EX1: 2<3 result of scanner processing:

INTEGER ARITHREL INTEGER

STEP1: (1,2) S <= F

STEP2: (2,1) <- F2

STEP3: (4,2) <~ EXPP ARITHREL EXPP
STEP4: (7,1) <- EXP1 ARITHREL EXPI
STEP5: (13,1) <— EXPT ARITHREL EXPT
STEP6: (14,1) <- EXPF ARITHREL EXPF
STEP7: (15,2) <- TERM ARITHREL TERM
STEP8: (16,1) <- INTEGER ARITHREL INTEGER

72

STEP1 tells us that we have an arithmetic formula (FML) and

need to compute its truth value, The semanctic construction at the end

of STEP1 is:
(FML[1)
STEP2 is the identity function. The semantic construction

remains unchanged.

STEP3 is really the heait of the parse both syntactically and
semantically, For each construction parsed there will be a step of
this sort where each meaningful component will appear in as fully
specified a form as necessary so that the correct semantic function can
be assigned. Here 1t is the subset relation (S) which is important.
{2} is a subset of the set of numbers that are less than 3. It would
not actually be necessary at this level to know what the argument to
the arithmetic relation 4is. That is, we could have written the rules:

F2 <- EXP ARITHRELS (s ;13 323)
ARITHRELS <~ ARITHREL EXP (APP (FCN ;13) 323)

rather than
F2 <- EXP ARITHREL EXP (s ;1; (APP (FCN 3;23) :33)).

[Note: FCN specifies that the argument given is a
function name. For function names which are nouns, the
FCN will be added to the semantic construction at the
NP-level.]
The important point is that SUBSET is the basic semantic function for
the construction and at this level i1t needs tc locate both its
arguments. It is unimportant how fully specified the arguments

themselves are at this level; that decision can be made in terms of

convenience. The semantic construction is now:

(FML (S[] (APP (FCN [ARITHRELD){ 1))).

[Note: As explained sbove, the actual arithmetic
function which in this case is the LESSTHAN function
will be inserted by the macro-expander.]

STEP4 adds LST to the integer arguments. Like FCN, the LST
function is used to give the evaluator iInformation about the type of
the argument. The semantic construction is now:

(FML (S (LST[]) (APP (FCN [ARITHRAL]) (LST[1)))).

STEPS5-7 are identities., The large number of wuses of the
identity function in this parse reflects the simplicity of the input.
For example, in order to parse '2+3 < 343", the rule

(13,2) EXP1 <- EXP1 + EXPT (ADDER ;1; 333)
would be used instead of

(13,1) EXP1 <- EXPT 13
The use of the identity function allows us to drop down through levels
of rules which are not needed for a given input.

STEP8 completes the syntactic parse and the semantic
construction by specifying the two integers. The semantic construction
is

(FML (S (LST [INTEGER]) (APP (FCN [ARITHREL]) (LST [INTEGER])))).
[Note: this step by step analysis is not meant to be
an accurate representation of any actual program
implementation but rather a conceptual aid in
understanding how the semantic functions work.]
EX2: 2<3, 3<4, and 4<5
result of scanner processing:

INTEGER ARITHREL INTEGER , INTEGER ARITHREL INTEGER ,
AND INTEGER ARITHREL INTEGER

74

O

ERIC

Aruitoxt provided by Eic:

The only difference bhetwean the pavse of this example and EXI
is the use of the iisting feature. Instead of
STEP2: (2,1) <~ F2 $

for this exampie we have:

STET2: {(2,2) <~ LISTOFF (FML {ANDER {LST[1))}
STEP2A: (3,4) <~ LISTOFF , /AND/ F2 {&ML (ANDER (LST[I[1))
STEP2B: (3,2) <~ F2 , F2 , /aND/ F2 {FML ZANDER (LST[][][1))

These rcle emantic functions

(7]
n

provide an example of the use of

to handle correctly constructions involving wunbounded branching of

immediacte constituents. The basic semantic function ANDER is inserted
at STEP2Z and then STEP2A and STEP2B simply pass the arguments up to it
as cthey are parsed; thus preserving in the semaniic construction the
structure of <the original input rather than adoprting the artificial
structure of the context—free;parse.

One other feature :f the semantic functions needs to be
discussed here. If we have not yer written the semantic function for a
particular rule, it will be marked UNDEFINED, However, some syntactic
rules deliberately do not hzre semaniic functions which iz represented
by the slect for the semantic funccion being blank., Blank semantics on
a rule indicates cne of twe things. The word or phrase in question may
be ncise. Mzuy noise words arve eiiminzited in the scanner phase but
there are words thatc have meaning in some concexts but are noise in

others. For exampie, 'of the' in questions like 'Which of the factors

of 12 are cdd?' is a ncise phrase. So we might write the rules:

|3V

N Q <- INTER! NP LINK SUB3T {1323 343
2) INTERT <- INTER

3) INTER1 <- INTER ,Q0F/ /THE/

The semantic slot for rules 2 and 3 is blank. The INTER ('which' or
'what') has been taken into account at the level of rule 1, and if the
phrase 'of the' occurs, it is noise,

However, blank semantics does not always indicats the presence
of noise words. For example, cousider the following questions:

How many tens does 50 equal?

How many tens does 50 name?

Does 51 name 5 tens?

Does 50 equal 5 tens?
In these contexts 'equal' and 'mame' have the same meaning so we might
write the rules:

1) Q <~ /HOWMANY/ EXP AUX EXP VEQUAL

2) Q <~ AUX EXP VEQUAL EXP

3) VEQUAL <- =

4) VEQUAL <- /NAME/
Any other verbs which have the same meaning in these contexts can be
added to the category VEQUAL. 'Equal' and 'name' do not have the same
meaning in every context, so we cannot associate them by means of
either the TRANSL or the dictionary. However, the semantics of the
construction is clear at the level of the (Q-rules independent of which

of the two verbs is used thereciore the semantics for the VEQUAL-rules

can be blank.

iv.2 S-Rules

(1,1) S <= F . (FML ;13)
(1,2) S <~ F (FML ;13)
(1,3) 8§ <-Q7? (Qus ;13)
(1,4) s <-cC! (CMD ;13)
(1,5 S <~ D . (DCL 31;)
(1,6) € <-D {DCL ;13;)

These are the highest 1level rules. Their purpose is to
determine what sort of sentence the input is: an arithmetic formula, a
question, a command or a declarative, The period 1is optional for
formulas and declaratives., Questions use a question mark and commands
an exclamation point. I believe tﬁat the grammar can parse correctly
without final punctuation if necessary for speech recognition. The

semantic functions encode the type of the input sentence.

Iv.3 F-Rules

(2,1) F <~ F2 13

(2,2) F <- LISTOFF (ANDER (LST ;13))
(3,1) LISTOFF <~ F2 /AND/ F2 313 33;
(3,2) LISTOFF <- F2 , F2 315 333
(3,3) LISTOFF <- LISTOFF , F2 315 533
(3,4) LISTOFF <- LISTOFF , /AND/ F2 ;1; ;4;
(3,5) LISTOFF <- LISTOFF /AND/ F2 I H
(4,1) F2 <- EXPP ARITHREL EXPP (ANDER (LST

ARITHREL EXPP (S ;1; APP (FCN ;2;) ;33))

(8 33; (APP (FCN 343) 353)))

(4,2) F2 <- EXPP ARITHREL EXPP (8 5;1; (APP (FCN 323) 333))

The F-rules parse arithmetic formulas like:

2+2=4
2+2=34+1=4
2<3<4
{a,p} wnioNn {b,c} = {a,b,c}
1 1b. = 16 oz,
2 tens = 20 ones = 20 .

The rules also parse lists cf these formulas. The evaluation program

returns the truth-value. The semantic functions for the F-rules were

discussed in Section IV.1,

77

V.4 Top-Level EXP-Rules

(6,1) EXP <~ EXPCHOICE (CHL ;13)
(6,2) EXP <- LISTOFEXP {CHL ;13)
(6,3) EXP <- EXPP 313
(40,1) EXPCHOICE <- EXPP , EXPP s1; 333
(40,2) EXPCHOICE <- EXPP /OR/ EXPP 315 333
(40,3) EXPCHOICE <~ EXPCHOICE , EXPP ;13 333
(40,4) EXPCHOICE <~ EXPCHOICE , /OR/ EXPP 315 34
(40,5) EXPCHOICE <- EXPCHOICE /OR/ EXPP i1 33;
(12,1) LISTOFEXP <- EXPP /AND/ EXPP s13 33
(12,2) LISTOFEXP <- EXPP , EXPP 315 33;
(12,3) LISTOFEXP <- LISTOFEXP , EXPP A H
(12,4) LISTOFEXP <- LISTOFEXP , /AND/ EXPP 315 343
(12,5) LISTOFEXP <- LISTOFEXP /AND/ EXPP 315 333

LISTs have been a major problem. Initially, we believed that
'and' and 'or' should be given the same treatment as in formal logic.
Thus a choizelist (disjunction) would have the value TRUE if the value
for at least one member of the disjunction were TRUE and an ordinary
list (conjunction) would be TRUE only if the values for all its members
were TRUE. It immediately became obvious that this was not workable.
Consider the following questions:

EXl: Is 2 or 3 even?
EX2: Are 2 and 3 even?

Using the standard logical interpretation, the answer to EX1 is TRUE
and the answer to EX2 is FALSE. This is clearly unacceptable., Instead
we have created the semantic function CHL (choicelist) which returns a
separate answer for each member of the 1list. Given this output from
the evaluator, it 1is a further question to decide exactly what

information should be included din the final answer. Since CHL is

78

assigned at the top -level in Rules (6,1) and (6,2), there is no need
in this case to have Rules (40,1)-(40,5) as an exact duplication of
(12,1)-(12,5). Instead they could be combined in a new category
EXPLIST/CHOICE using the sfrcammatical category AND/OR.

llowever the use of 'and' does not in every context call for
this type of treatment. The following question:

EX3: 1Is ja} the intersection of {a b} and {a c}?
cannot use the CHL semantic function. The list in EX3 is a 1list of
arguments to the INTERSECTION function which always requ%fgé more than
one argument. The lexical category for these functions is 2FCN. The
semantic function used for the list of arguments to a 2FCN is LST.

(87,9) NP4 <- 2FCN /OF/ LST/EXP (APP ;1; ;33)
(88,2) LST/EXP <- LISTOFEXP (LST 313)

Since the arguments to a 2FCN are never 1listed using 'or', the
LISTOFEXP-rules could not be combined with the EXPCHOICE-rules for this
case.

Ti:e rule for ordinary FCN's is

(87,6) NP4 <- FCN /OF/ NP (APP ;1; ;33)
If the argument is a list as in

EX4: What are the factors of 2, 3, and 47
Rule (6,2) with the CHL semantic function will be used to further parse
the NP. For EX3, LST will be assigned by rule (88,2), Thus LST or CHL
ig assigned at a higher 1level and then FX3 and EX4 will both use

(12,1)-(12,5) to perform the parse of the actual list. Lists using the

I and U semantic functions will be discussed in Section IV.14.

79

These recursive rules for lists need to be carefully written to
prevent ambiguities. For example, the following rules

1) A <- LISTOFA

2) LISTOFA <- LISTOFA /AND/ A

3) LISTOFA <- A /AND/ A
are unacceptable because by performing the recursion on A itself,
elements of the 1list can jump back to the top level thereby creating
sublists. Thus

A and A and A

can be parsed in the three following ways:

A ? A
[|
LISTOFA LISTOFA LISTOFA
/1N /TN / 1\
LISTOFA AND 4 A AND A A AND ?
/TN ! |
A AND A LISTOFA LISTOFA
/TN / '\
A AND A A AND A

For this reason, in the LISTOFEXP and EXPCHOICE rules, the recursion is

on EXPP rather than EXP.

1v.5 Types of EXP's

(7,1) EXPP <— EVXPT (LST ;13)
(7,2) EXPP <- SETEXP 13
(7,3) EXPP <— DATEXP 13
(7,4) EXPP <- NTUPLE 13
(7,5) EXPP <— TIMEXP $1:
(7,6) EXPP <— ARITHEXP (LST ;13)

We have divided noun phrases into tws categories. The NP1

category parses the more flexible natural language noun phrases and the

80

EXP-rules parse the phrases which have a predefined format dn
mathematical language. Thus all the rules for parsing constructions
peculiar to this subject matter are segrepated in one portion of the
grammar which makes the grammar more readable. EXP is the category
which could be eliminated if the subject matter were changed and
arithmetic was not needed. It is also the category which will need the
most work as new topics in elementary mathematics are added to the
scope of the program.

The different types of EXP's will be discussed in the next
sections. Only six categories of EXP's are given in the EXPP rules
listed at the beginning of this section, There are in fact other
equally distinguishable categories which appear in the TERM rules below
rather than here with the EXPP's. One example of such a category is
UNITS (expressions of units of measurement). These categories need to

be TERM's because they can function as terms in arithmetic expressions

like

2 feet + 4 feet = 2 yards.

iv.6 EXP1-Rules
(13,1) EXP1 <- EXPT 113
(13,2) EXP1 <- EXP!1 + EXPT (ADDER ;1; ;33)
(13,3) EXP1 <- EXP1 - EXPT (SUBBER ;1; :33)
(14,1) EXPT <- EXPF 313
(14,2) EXPT <- EXPT * EXPF (MULTER ;1; ;33)
(14,3) EXPT <- EXPT / EXPF (DIV ;135 ;33)
(15,1) EXPF <- (EXP1) 123
(15,2) EXPF <- TERM 313
(16,1) TERM <- INTEGER 313

81

(16,2) TERM <~ REAL 313

(16,3) TERM <- RNUMERAL :1;

(16,4) TERM <- INTEGER INTEGER / INTEGER (MAKEMIXED :1; ;23 :43)
(16,5) TERM <~ VAR 1:

(16,6) TERM <- CARDOF SETEXP (CARDINALITY ;2;)
(16,7) TERM <- NUNITS 13

(16,8) TERM <- UNITS :1:

(16,9) TERM <- /NUMBER/ /PERCENT/ (PERCENT ;1;)

(16,10) TERM <~ /NUMBER/ /PERCENT/ /OF/ EXP (PERCENTAGE ;1; ;43)
(16,12) TERM <~ INTEGER /OF/ INTEGER /PART/ (DIV ;1; 333)

(16,13) TERM <- INTEGER /OUTOF/ INTEGER (DIV 313 333)

(17,1) /NUMBER/ <- INTEGER H
(17,2) /NUMBER/ <- REAL 5
(17,3) /NUMBER/ <- INTEGER / INTEGER (D1
(17,4) /NUMBER/ <- INTEGER INTEGER / INTEGER (MAKEMIXED ;1; ;2; 3;43)

These rules are standard rules for parsing arithmetic
expressions. The substance of the rules was taken from [7]. The rules
are designed to reflect the ordinary precedence rules for arithmetic
operators. The category /NUMBER/ is defined for use in rules such as
(16,9) and (16,10) where only single numbers (integers, decimals, mixed
numbers, and fractions) can appear rather than arithmetic expressions
like 2+4.

The scanner recognizes integers and reals but the current
semantic functions ignore this information since no evaluation
procedures have vyet been written that are specifically designed for
reals. The evaluation program uses predefined LISP functions whenever
possible. The standard LISP functions for arithmetic work well for
operations on integers, but the evaluator should not use them for
operations on reals. LISP uses floating point for reals thus causing

the answer 3.999... to be given tuo the question 'What is the sum of 1

82

and 3.0?'. This 1is one of the areas whare the evaluation propram
simply has not yet been completed, A procedure needs to be written
which does decimal arithmetic in the same way as an elementary student
rather than the same way as a computer. Note that when the evaluation
program is ready to deal with the information that a number is a real,
it will be given this information through the semantic functions on
rules (16,1), (16,2), (17,1), and (17,2).

Rule (16,4) parses mixed numbers. Mixed numbers can be
identified by the grammar, but unfortunately no way has been
implemented to distinguish fractions from ordinary division. This
problem is created by the limited character set of the teletype., We
have chosen to use '/' for both division and fractions rather than to
designate an arbitrary character for one of these purposes. The
representation of fractions as a division operation requires special
techniques for their handling in the evaluation program. Rule (16,6)
derives the expression for cardinality of sets, for example, n [a b c]
= 3, Rules (16,7) and (16,8) parse expressions involving percents and
(16,12) parses expressions iike '36 of 100 parts'. Of course, EXP1
will derive each of these types of TERM's singly as well as combined by

the arithmetic operators.

Iv.7 Set-Expressins and Ntuples

(21,1) SETEXP <- SETEXP /UNION/ SETEXP (U 315 333)
(21,2) SETEXP <- SETEXP /INTER/ SETEXP (I ;715 33;)
(21,3) SETEXP <- SETEXP ~ SETEXP (SD ;1; :3;)
(21,4) SETEXP <~ {)} NIL

(21,5) SETEXP <- { ELELIST } (LST ;23)
(21,6) - SETEXP <- { ELELIST? } (LST ;23)

83

(21,7) SETEXP <- { VAR : F } (ABSTRACT ;2; (3;43))
(21,8) SETEXP <- { VARA : F } . (ABSTRACT 323 (343))
(22,1) ELELIST <- ELEMENT , ELFMENT ;15 13

(22,2) ELELIST <- FLELIST , FLEMENT $13 13

(23,1) ELELIST1 <~ ELEMENT H I

(23,2) ELELIST1 <- RLELIST1 ELEMENT sy 123

(24,1) ELEMENT <- PN 113

(24,2) ELEMENT <- EXP1 113

(24,3) ELEMENT <- SETEXP i1

(11,1) NTUPLE <~ < ELELIST > (NTUPLE ;23;)

The evaluation procedures for NTUPLEs and SETEXPs have not been
worked on extensively yet. The rules and semantic functions which
appear here need some revision. For example, precedence rules will be
needed like those for arithmetic operators.

The elements of a set are parsed by ELELIST if they are
separated by commas and ELELIST1 if they are not. To avoid ambiguity,
the singleton set is parsed only by ELELIST1. We have not yet decided
what sorts of objects should be allowed as elements of sets. Clearly
SETEXP's, /NUMBER/'s, and VAR's should be allowed but the category EXP1
is probably not too broad. Proper names (PN) would be desirable since
they are often used in examples in elementary textbooks, but they
present a problem with the dicticnary. 4Common nouns that are
frequently used in sets, for example, {2 apples, 3 banannas, 5 pears]
are also not in the dictionary and would be hard to distinguish from

nouns which are not likely to be so used.

84

iv.8 DATEXF and TIMEXP-Rules

(10,1) TIMEX? <- INTEGER : INTEGER APM (TIMER ;13 :3; 143)
(10,2) TIMEXP <- INTEGER APM (TIMER ;%3 0 :23)
(10,3) TIMEXE <- INTEGER /0O'CLOCK/ APM {TIMER ;1: O ;3;)
(10,4) TIMEXP <- INTEGER /O'CLOCK/ (TIMER ;1; O @AM)
(38,1) DATEXP <- MCNTH INTEGER (DATE (UNT ;1; :23))

(38,2) DATEXP <- MONTH INTEGER , INTEGER {DATE (UNT ;1; ;23 34;))

Again, no work has been dene ¢n the evaluation of these
expressions, but these are the vules which will pzrse dates and times.
Depending on the method beth syntactic and semantic that is adopted for
dealing with calendar-cype questions the DATEXP rules may need to be
moved to another portion of the grammar. Mathematical questions
dealing with time &appear t2 be 2ither requests for ccnversion (for
example, from 24 to i2-houer time, or comparisons {for example, 'Which
is earlier?'). These funccion like other units of measurement except

that they zannot be TERM's in arithmetiz expressions.

iv.9 AKITHEXP-Ruies

(9,1) ARITHEXP <- NP /DIVIDEDBY, NP {DIV ;1: :3})
(9,2) ARITHEXF <- Ni /ADDEDTG/ NF (ADDER ;713 333)
(9,3) ARITHEXP <- NP /SUBTRACTEDFROM, NP {SUBBER ;3: ;13)
(9,4) ARITHEYP <- P /MULTIPLIEDBY/ NP (MULTER ;1; :33)
(9,5) ARITHEXF <- 'IP /DIVIDEDLNTO/ MP (DIV ;3; :13)

The ARITHEX®? rules parss arithmetric expr:as:slons in which the
operater 1is written out as & varp with a preposicion. The TRANSL
portion of che scanner is used to convert 'plus', 'minus', and 'times'

to '+', '-", and '*'. 'Divided by', 'multiplied by', and 'added to'

85

could also be handled by the TRANSL, but 'subtracted from' and 'divided

into' camnot since they need their arguments reversed in order to use

w

the regular subtraction and division semantic functions. The scanner

could be made to perform of the

the conversion including the reversal

arguments, but this does not seem to be a natural function to expect

the scanner to perform. All five ARITHEXP's have been included in the

grammar to maintain uniformity of treatment.

V.10 UNIT and NUNIT-Rules
(25,1) NUNITS <- JOINNUNITS (NUNITJOIN (NUNT ;1;))
(25,2) NUNITS <- SUMNUNITS (NUNITJOIN (NUNT ;1;))
(26,1) UNITS <- JOINUNITS (UNITJOIN (UNT ;1))
(26,2) UNITS <- SUMUNITS (UNITJOIN (UNT ;13))
(27,1) JOINUNITS <- UNIT1 ;13
(27,2) JOINUNITS <- JOINUNITS UNIT1 313 323
(28,1) JOINNUNITS <~ NUNIT1 _ 13
(28,2) JOINNUNITS <- JOINNUNITS NUNITT s13 323
(29,1) SUMNUNITS <- NUNIT1 /AND/ NUNIT1 s 33
(29,2) SUMNUNITS <- SUMNUNITS , NUNITI i1 33
(29,3) SUMNUNITS <- NUNIT1 , NUNIT1 313 33
(29,4) SUMNUNITS <- SUMNUNITS , /AND/ NUNIT1 ;1; ;4;
(29,5) SUMNUNITS <- SUMNUNITS /AND/ NUNIT1 ;1; ;3;.
(30,1) SUMUNITS <~ UNIT1 /AND/ UNITI i15 33
(30,2) SUMUNIT3 <~ SUMUNITS , UNITI i1y 333
(30,3) SUMUNITS <- UNITI1 , UNIT1 313 33
(30,4) SUMUNITS <- SUMUNITS , /AND/ UNIT1 313 34
(30,5) SUMUNITS <- SUMUNITS /AND/ UNITI 313 33
41,1) UNIT! <- /NUMBEKR/ /OPER/ UNIT GTs 25 5335))
(31,2) UNIT1 <- /A/ /OPER/ UNIT (MAKEUNIT (1 (323 ;3:)))
(31,3) UNITI <- /NUMBER/ UNIT Gl G2
(31,4) UNIT1 <- /ja/ UNIT (1 (;23))
(32,1) NUNIT!1 <- INTEGER NUNIT GTs G25)
(32,2) NUNIT1 <- DET NUNIT (1 (525))

86

O

ERIC

Aruitoxt provided by Eic:

-

Again The evaluation precedurea for these have not yet been
written so the rules have not been axtensively tested. I Thave created
the category TMWNLTL for ones, tens, hundreds, eic. Their evaluation is
sufficriently different from other UNITs {li{ke inches, teaspoons, etc.),
that this distinction which can easily be made by the grammar provides
ugeful information to the evaluation program.

These rules were discussed in fectiom I¥1.4 a® an example of
the handiing of the arbiguity preblem. The rules as they appear here
will produce &ll of the derivations dfscumsed in Section II1.4 but,
unfortunacely, they will also produze az few unacceptable ambiguities.
The expreasion

5 vds., 2 f¢., and 3 in, aud § yds., 2 ft., and 5 in,
iz a two-elwment list thal needs to be parsed by LISTOFEXP with the two
elements on rhe list each parsed by SUMUNITS which forms lists of units
into 2 asingle =compound wunirt. Howswyer, allowing sublists of the
LISTOFEXP expreesion to be parsed by SUMUNITS has catastrophic results.
The way the rules nuvw olend SUMUNLIYS can pirk off almost any sublist in
addition %o the ouner thet it {5 supposed to handle. As the lists
beceme inger the emblyuitiles wulilply rzapidly, These rules wunzed very
careful rewriiing bafore vhey will work properly.

Single unite will be parsed oy STININILI, A single unit,
either aloneg or as an element of 4 1ist, must a&lwsys consist of at
least two pacts -- the type of the unit and the aumber, for example, '3

feet', Unit names slone z2re noct parsed by these ruies, The determiner

/A/ in, for example, 'a foot equals 12 inches' means one so the '1' has

been inserted in the semantic function. The category /OPER/ contains

the words 'square', 'cubic', etc. This method was chosen in preference

to our original method of using the TRANSL to join 'square' and 'cubic'

to the unit name. Due to abbreviations of the two words with and

without periods, 'square feet' alone took twelve entries in the TRANSL.

The current method also reflects the more proper approach to the

evaluation of the construction.

Iv.11 Geometric Measurements
(33,1) UNITLIST3 <~ UNITS MEASWORD
(33,2) UNITLIST3 <- UNITLIST3 , UNITS MEASWORD
(33,3) UNITLIST3 <~ UNITLIST3 /AND/ UNITS MEASWORD
(33,4) UNITLIST3 <~ UNITLIST3 , /AND/ UNITS MEASWORD
(34,1) UNITLIST4 <- UNITS /BY/ UNITS
(34,2) UNITLIST4 <- UNITLIST4 /BY/ UNITS
{34,3) UNITLIST4 <- UNITS MEASWORD
(34,4) TUNITLIST4 <- UNITLiST4 /BY/ UNITS MEASWORD
(35,1) UNITLISTS5 <- UNITS
(35,2) UNITLISTS <~ /NUMBER/ /BY/ /YUMBER/ UNIT
(35,3) UNITLISTS <~ /NUMBER/ /BY/ /NUMBER/ /BY/ /NUMBER/ UNIT
(36,1) UNITLIST6 <- /3D/ UNITS
(36,2) UNITLIST6 <~ /3D/ UNITS /AND/ /3D/ UNITS
(36,3) UNITLIST6 <~ /3D/ UNITS , /3D/ UNiTS , /AND/ /3D/ UNITS
(36,4) UNITLIST6 <~ /3D/ UNITS , /3D/ UNITS /aND/ /3D/ UNITS
(37,1) UNITLISTS <- UNITLIST3
(37,2) UNITLISTS <~ UNITLIST4
(37,3) UNITLISTS <- UNITLISTS
(37,4) UNITLISTS <- UNITLIST6
The semantic functions for all of these rules are currently
UNDEFINED. The UNITLIST rules parse the measurements of peometric

88

figures. These measurements can be given a) in an adjectival form ('a
2 ¥ 3 inch rectangle'), h) in a relative clause {'a rectangle whose
dimensions ace length 3 inches and widch 2 dinches'), or ¢) 1in an
appositive position {('a recrangle, 2 inches wide and 3 inches long').
The noun phrase rules f£2r thase three cases are:

a) NP6 <- UNITLISTS GEOFIGURE

b) NP6 <- GEOFIGURE RELPOSPRONS

¢) NP6 <- GEOFIGURE , UMITLISTS ,
GEOFiGURE 1is the lexical <category for nouns like 'sguare' and
'rectangle'. The purpose of tne semantic functicns for che UNITLIST
rules will be to put the measurerments and their associated dimensions
into a standardized format regardless of the format of the dinput. The

measuremencs will then be attached to the name of the geometric figure

at the NP6 level.

IV.12 Relative Clauses
(52,1) RELPOSPRONS <— RELPRON RLPR 12
(52,2) RELPOSPRONS <— RELPOS RLPS 323
(52,3) RELFOSPROMS <— RELPRON RKLPR /aND/ RELPRON RLPR (I 325 353)
(52,8) RELPOSPRONS <- RELPRON RLFPR /aND/ RLPR - (L ;23 :143)
(54,1) RLPR <- LINK SUBST/ENF 323
(54,2} RLPR <— LINK UNITLISTS 323
{(534,3) RLPR <= JUASE/ [DiNENSIONS, PUNCHOLCE UNITLISTS UNDEFINED
(54,4) RLPR <-~ =[P 323
(54,5) ERLPR <- /HAYE, UNITLLST6 UMDEFINED
154,60 RLPR <= fHAv©D/ /DLI7ISL008, MUICHGLCE LISTOFEXP UNDEFINED
(54,7) TRLPR <- jHAVE/ LAVENP 123
(54,8) RLPR <- RNPAS HIH
(54,9) RILPR <= JHAVE/ COMP1HIIP UNDEFINED
The relative pronvdans (RELPRON) are "that' and 'which' and the

relative possessive (RELPOS} 1s 'whose'. The relative clauses using a

89

relative pronoun have been fully implemented (except for those
involving units), but the relative possessives which are much more
complicated semantically have not yet been implemented and may be
disregarded here. Their treatment will be similar to that for HAVENP's
which they strongly resemble. The semantic function for noun phrases
containing a relative clause 1is intersection. For example, 'the
factors of 12 that are prime numbers' are found by intersecting the set
of factors of 12 with the set of prime numbers.
I will give an example for each of the RELPOSPRONS~rules that
use relative pronouns:
(52,1) that are less than 35
(52,2) that are less than 5 and that are greater than 2
(52,8) that are less than 5 and are greater than 2.
[Note: 'that are less than 5 and greater than 2' will
be parsed by (52,1) in comhination with (54,1) because
'less than 5 and greatcr than 2' is parsed by SUBST.]
These rules only allow two elements in a list. If this is found to be
inadequate, recursive listing rules can easily be written, Phrases of
the form RELPRON RLPR RELPRON RLPR ('an even number that is less than 5
that is greater than 2') will be parsed by successive applications of
RELPOSPRONS in the NP rules.
Rules (54,2), (54,3), (54,5) and (54,6) are used for relative
clauses which give geometric measurements (see Section IV.11 above).

Rule (54,1) is the most common form of relative clause. The SUBST/EXP

may be any one of the following:

90

(1) a noun phrase:

'that is a prime number'
(2) an adjective:

'that is even'’
(3) a prepositional phrase:

'that is between 5 and 10'
(4) a unit-conversion phrase:

"that is in lowest terms'
(5) an arithmetic relation:

‘that is less than 5'
(6) an EXP:

"that is 2% of 20’

Examples of Rules (54,4) and (54,7)-(54,9) are:

(54,4) an improper fraction that equais the whcle number 21
(54,7) a fraction chat has 2 as denominator

(54,8) the odd number that 12 has as a factor

(54,9) numbers that have more than 2 factors

Iv.13 Prepositions
(55,1) PREPHRASE1 <- /BETWEEN/ NP /AND/ NP (BETWEEN ;2; :4;)
(55,2) PREPHRASE1 <~ /BEFORE/ NP (BEFORE ;23;)
(55,3) PREPHRASE1 <~ /AFTER/ NP (AFTER ;2;)
(55,4) PREPHRASE1 <~ /IN/ EXP UNDEFINED
(55,5) PREPHRASE1 <- /IN/ DET APPOSN EXP UNDEFINED

(56,1) PREPHRASE <- PREPHRASE{ /OR/ PREPHRASE1 (CHL :;1; ;33)
(56,2) PREPHRASE <- PREPHRASE1 /AND/ PREPHRASE! (I 3;1; ;3;)
(56,3) PREPHRASE <~ PREPHRASE1 113
(56,4) FPREPHRASE <- /NOT/ PKEPHRASET (C ;23)
(56,5) PREPHRASE <- /NEITHER, PREPHRASE! /NOR/ PREPHRASE1

(NOR 323 ;43)
(56,6) PREPHRASE <~ /EITHER/ PREPHRASE1 /OR/ PREPHRASE]

(U ;25 3435)

I studied the use of prepositions in the entire corpus of [23],
both in the questions and in the exposition. I discovered that the use
of prepositions in the exposition was significantly broader than the

use in the questions. The number of prepositions and the variety of

use of each is sufficiencly small in questions to be manageable in the

91

first stage of our program. Certain preposition uses like the use of
'by' and 'to' in 'Count by fives to 1001' are integrally related to the
verb. I will discuss these in Section 1IV.22, Another common wuse of
prepositions in elementary mathematics is to indicate ordering, for
example, 'in order from largest to smallest'. The ORDERING rules will
be discussed in Section 1IV.21., And the use of prepositions in the
expression of arithmetic operations like ‘'added to' and 'divided by'
was discussed in Section IV.9.

I found fourteen prepositions used in the complete corpus of
[23]. Of these the four least frequently used prepositions (about, on,
over, and without) have not been included in our grammar. Also,
certain infrequent uses of another six prepositions (by, for, from, in,
into , and to) have not been included, but the majority of uses of
these six have been included. And the remaining four prepositions (as,
between, of and with) have been completely implemented. I will discuss
each one of the fourteen prepositions and indicate which uses of it we
have impleménteda

i) About has not been implemented. It was found only in the
contexts 'talking about' and 'asked about’.

2) As is used in conversions, for example, 'Express .04 as a
percent!’' and will be discussed in Section IV.18.

3 Be;ween was found to have only the mathematical meaning of
a number being between two other numbers.

4) By is wused in the context of arithmetic operations

92

('multiplied by'), with other verbs ('count by'), and in giving
geometric measurements ('2 by 4 in.'). Also certain instances of 'by'

are handled by the TRANSL file. 'Divisible by' is TRANSL'd to DIVBY

which is an arithmetic relation. 'Divisible by 5' creates a set in the
same way that 'greater than 5' does. I have also TRANSL'd 'can be
divided by' to 'is DIVBY'. 'By size' is TRANSL'd to 'in order'. There

were other uses of 'by' like the following:

a) Check by using the inverse operation

b) We can check subtraction by addition

c¢) Find an equal fraction by multiplying the numerator

and denominator...
d) Solve each equation by rewriting it as an equation
using division.

There seems to be a common pattern in these examples, but we have not
yet implemented this use of 'by'.

5) For is being treated as equivalent to 'of' except in the
phrase 'except for' which is TRANSL'd. Some examples of this use are:

1) Write the simplest name for 300+40+6!

2) Find the answer set for {3,4,5} - {4,501

3) What is the least common denominator for 1/4 and 5/6?

4) Find a solution for the equation 5+X = 10!
The semantic function for 'of' is (APP ;1; ;3:). TFor example, 'the
factors of 12' are found by applying the FACTOR function to 12. Thus,
"the solution for the equation 5+x=10' will be found by applying the
procedure for solving equations to the given equation. Another wuse of
'"for' in mathematical contexts which will have to be considered is the
use of 'for' in phrases like 'for any number N'. We might also write a

rule for the following format which is used frequently in {23]:

We write: in. for inch or inches.

93

Other uses of 'for' were found in [23]). Some of the phrases were:

1) A reason for

2) Distributive law for nultiplication over addition

3) Standard unit of measure for area

4) TFor many purposes

5) Symbol for zero

6) From is used in ORDERINGs. It is also used with the verb
'convert' as in 'Convert 3/5 from a fraction to a decimal!'. The only
other use found in [23] was with the wverb 'obtain' and this has not
been implemented.

7) In 4dis a very common preposition. The following are the

uses which have been implemented:

a) The rule NP1 <- /THE/ EXP1 /IN/ EXP1 has been
written for expressions 1like 'the 9 in 891', This
expression evaluates to 9 tens which seems to be the
intended meaning in the text where questions like 'What
is the 9 in 8917' are asked.

b) 'In' 1is used in requests for conversion, for
example 'Write 42 in Roman numerals!' and ‘'express the
answer in cubic inches!'

¢) The two expressions 'in lowest terms' and 'in
expanded form' appear so frequently that we have
TRANSL'd them to single words and made them terminal
categories in the grammar.

d) 'In' 1s often used to mean membership. Two
examples are 'Is 8 in {6,7,8}?' and 'Rename a fraction
in the pair...'.

e) 'In order' as in 'list in order' is TRANSL'd to
a single word and used in ORDERINGs.

£) Expressions like ‘'earlier in the day' are
TRANSL'd to 'earlier' since 'in the day' provides no
needed information to the evaluator.

g) 'In' is used to state or request measurements,

for example, 'How many days are there in September?'
and 'There are 12 inches in a foot.'

94

There are other uses of 'in'. We would like to find a common

method of dealing with at least some of the seven uses above, as well
as many which have not yet been dealt with at all,
8) Into is used with the verb 'divide'. FExamples 1like the
following were found in [23]:
a) If we divide a set of things into two sets
having the samz number of things, each of the small

sets i1s one half of the whole sec.

b) When we divide something into three parts the
same size, each part is one third of the whole thing.

c) If we divide a set of things into thirds, we
make three small sets.

This use of 'divide into' has not been implemented, but we have
included rules which handle 'divide into' when it is used for ordinary
division, for example, 'Diyide 7 into 56%7,

9) Of is the most commonly used preposition in the context of
elementary mathematics. It is used for specifying funciions and their
arguments, for example, 'factors of 12', 'union cf {a} and {b}', 'sum
of 2 and 3', 'subset of {a bl}', 'set of numbers less than 3',
"numerator of 2/3', 'area of a 2 inch square’, ‘'number of days in
September', and 'member of { b}'.

10) On has not been implemented in this grammar. lf was found

in phrases such as: "Show 4+2 on a number line', 'perform the union

\ \

operation on.-.', 'the operations on sets', 'on each side', and 'on a

thermometer’.
11) Over was found only in specifications of the distributive

laws, for example, 'multiplication over division’.

95
O

ERIC

Aruitoxt provided by Eic:

12) To appears with the wverbs: count, equal, round, change,
and convert. It is also used in ordering ekpressi&ns, e.g., 'from
largest to smallest'. There were two sSther phrases that we have not
dealt with, 'common to' and 'to the right of'.

13) With is TRANSL'd to 'that has'. Some examples are:

a) The set with no things in it...

b) The volume of a box with length 7 inches...

¢) Fractions with the same denominator...

d) A number with exactly two factors,..
When other uses of 'with' (note that no others were found in [23]) are
implemented it will no longer be practical to use the TRANSL in this
way. Hopefully, there will be a clear-cut grammatical way to
discriminate between the uses.

14) VWithout was found in the sentence, 'We can multiply the
dividend and divisor by the same number without changing the wvalue of
the expression.'

The prepositions 'before' and 'after' did not appear in [23]
but we have Iimplemented them with the meanings successor and
predecessor, for example, '2 comes before 3',

Of all these prepositions, only 'between', 'before', 'after',
and 'in' (in the sense of membership) are included in the category
PREPHRASE given at the beginning of this section. Sets can be
constructed by the evaluator from these prepositional phrases, for

example, the set of numbers between five and ten. PREPHRASE's are one

of the types of SUBST's.

96

Iv.14 SUBST-Rules

(58,1) SUBST <-- SUBST1 013

(58,2) SUBST <~ SUBST1 /AND/ SUBST1 (I :1; 33;)
(58,3) SUBST <- SUBST! /OR/ SUBST1 (CHL ;1; ;33)
(58,4) SUBST <~ SUBST1 , SUBST1 , /AND/ SUBST1 (IER ;1; ;3; ;63)
(58,5) SUBST <- SUBST1 , SUBST1 /AND/ SUBST1 (IER ;1; ;3; ;53)
(58,6) SUBST <~ SUBST1 , SUBST1 , /OR/ SUBST1 (CHL ;1; :3; ;6;)
(58,7) SUBST <~ SUBST1 , SUBST1 /OR/ SUBST1 (CHL ;1; ;335 ;53)
(58,8) SUBST <~ /NEITHER/ SUBST1 /NOR/ SUBST1 (NOR ;2; ;4;)
(58,9) SUBST <- /EITHER/ SUBST1 /OR/ SUBST1 (U ;23 343)

(59,17) SUBST1 <~ NP1 31
(59,2) SUBST1 <~ NP3 313
(59,3) SUBST1 <~ ADj 313
(59,4) SUBST1 <~ PREPHRASE] i1
(59,5) SUBST1 <- ARITHREL NPVARA (APP (FCN ;13) 32;)
(59,6) SUBST1 <- SPECPREP1 ;1
(59,7) SUBST1 <- V SPECPREP1 ;2
(59,8) SUBST1 <- /NOT/ SUBST1 (C

323)
I will give an example of each of the types of SUBST's given in
rules (59,1)-(59,8).
(59,1) Is 5 an odd number?
(59,2) Are 5 and 7 odd numbers?
iNote: The need for two rules here in
order toc parse all the SUBST's which
are noun phrases 1is caused by the
failure to distinguish singular from
plural,]
(59,3) Is 5 odd?
(59,4) 1s 5 between 1 and 107?
(59,5) 1Is 5 less than 107

(59,6) 1Is 2/5 in lowest terms?

(59,7) Is 1/2 expressed as a fraction, a decimal,
or a percent?

(59,8) 1Is 5 even or not even?

97

The category used in (59,4) is PREPHRASE1 rather than PREPHRASE., 1In
this as well as the other SUBST-rules, the substantive element is taken
at a level which does not allow 1listing of the elements or the
complement of the element. Thus the list and complement contained in
the question 'Is 5 odd and not between 1 and 5?' will both be handled
by the top-level SUBST rules. This is necessary when the elements of
the list of SUBST's are mnot from the same grammatical category. If
PREPHRASE rather than PREPHRASE1 were used, the list in 'Is 8 between 5
and 10 and after 7?' could be parsed by either the PREPHRASE or the
SUBST rules and thus would be ambiguous.

Rules (58,1)-(58,9) parse lists of SUBST's. In Section IV.4
above I discussed the wuse of CHL and LST as semantic functions for
lists. CHL can be used for 1lists and choicests of SUBST's. For
example, if CHL is used, the answer to

EX1: 1Is 2 a factor of 2 and also a multiple of 2?
will be

(QUS (CHL (TV T) (TV T))).

There 1is, however, another approach which can be taken for
lists. In this approach I (intersection) is used for 1lists and U
(union) for choicelists, Thus EX1 would be interpreted as meaning

Is 2 in {x | x is a factor of 2} INTERSECTION
{x | x 1s a multiple of 2} .

This use of the set~theoretical functions I and U is similar to the
logical approach suggested in Section IV.4 and has the disadvantage

discussed in that section of not providing a complete enough

98

specification of the answer for yes/no questions like EX1. However,
there are constructions involving lists which do require the I or U
functions.

EX2: Give a number that 1s less than 6 and greater than 2!
EX3: 1Is any number divisible by 6 and not divisible by 3!

The rule we have been using for questions like EX1 and EX3 is

RULET: Q _ LINK NP SUBST (S ;7135 333)
This rule 1is too general. The specific determiner used for the NP
should determine the semantic funccicn to be used at the 1level of
RULE1. The existential quantifier, as in EX3, will require the I
function rather than the S (subsetr) function. Since EX2 contains the
list in a relative clause which also uses the I function, we might form
the hypothesis that constiuctions using the I function should use I or
U for any lists contained 1in the construction and similarly, if the
semantic function i3 S, lists containsd in the construction should use
CHL. In order to implement this hypothesis, we could create the two
categories CHLSUBST and I/USUBST which woula be used at the level of
RULE1 instead of the current category SUBST. This change has not yet
been made for two reasons. first the determiners which give us the
information about which semantic function should be used for rules like
RULE?' have not yet been worked out. And second, a more serious problem
is that this approach really does not work satisfactorily.

EX4: Is 2 a factor of 2 or 37

EX5: Is any number thac is a factor of 2 or 3 also
a factor of any other prime number?

99

In these examples, the list '2 or 3' is buried several levels
down in the grammar. In EX4 the levels are SUBST and FCN. In EX5,
they are SUBST, RELPRONS, and FCN. To implement the suggested
approach, a pair of grammatical categories would be needed at each
level in order to carry down the information as to whether CHL or I/U
were needed.iz This would result in an unnecessarily complicated
grammar. Problems of this sort are much more efficiently handled by
the semantic functions which are more flexible and more powerful than
the ~grammar. The evaluator works inside-out. A semantic function
needs to be created which will postpone evaluation of the 1list until
the appropriate time when the information is known as to which function
to use. Until this can be implemented, we have assigned a semantic
function to each of the SUBST-rules and other 1listing rules which

reflects the most common case for the particular rule,.

Iv.15 Arithmetic Relations

(74,1) ARITHRELS <- NOT/ARITH i1

(74,2) ARITHRELS <- ARITHRELS , NOT/ARITH (T ;15 333)
(74,3) ARITHRELS <- ARITHRELS , /AND/ NOT/ARITH (T ;135 343)
(74,4) ARITHRELS <~ ARITHRELS , /OR/ NOT/ARITH (CHL ;1; ;4;)
(74,5) ARITHRELS <- NOT/ARITH /OR/ NOT/ARITH (CHL ;1; ;33)
(74,6) ARITHRELS <~ /EITHER/ NGT/ARITH /OR/ NOT/ARITH (CHL ;2; ;43)
(74,7) ARITHRELS <- /NEITHER/ NOT/ARITH /NOR/ NOT/ARITH (NOR ;2; ;4;)
(76,1) NOT/ARITH <~ ARITHREL NPVARA (APP (FCN ;1;) 323)
(76,2) NOT/ARITH <~ /NOT/ ARITHREL NPVARA (C (APP (FCN ;2;) ;3;)

[Note: For a discussion of the arithmetic relationms
see page 30.]

100

V.16 Adjective Rules

(80,1) ADP <- /NEITHER/ ADP /NOR/ ADP (NOR :2; :43)
(80,2) ADP <- /EITHER/ ADP /OR/ ADP (CHL ;2; 343)
(80,3) ADP <~ ADP2 HH

(80,4) ADP <~ /NOT/ ADP2 (C :23)

(80,5) ADP <- ADJANDOR ' (CHL ;13)

(80,6) ADP <~ ADJANDOR ADP2 (CHL ;13 ;23)
(81,1) ADP2 <- ADJ (STS ;13)

(81,2) ADP2 <- ADP2 ADJ (T ;15 (STS 323))
(81,3) ADP2 <~ ADP2 , ADJ (I 31; (STS ;23))
(82,1) ADJANDOR <~ ADJ /OR/ ADJ (STS ;1;) (STS ;3;)
(82,2) ADJANDOR <- ADJ /AND/ ADJ (STS ;13) (STS ;3;)

(Note: For a discussion of adjectives see page 29].

Iv.17 CONVUNITS-Rules

(67,1) CONVUNITS <- /NEITHER/ CONVUNITS /NOR/ CONVUNITS
(67,2) CONVUNITS <- /EITHER/ CONVUNITS /OR/ CONVUNITS
(67,3) CONVUNITS <~ LISTNAMESU '

(67,4) CONVUNITS <~ LISTNAMESNU

(67,5) CONVUNITS <- LISTOFCONVUNITS

(67,6) CONVUNITS <~ CONVUNITSCHOICE

(67,7) CONVUNITS <- CONVUNITSI

(67,8) CONVUNITS <~ DET CONVUNITSI

(68,1) CONVUNITS1 <~ N
(68,2) CONVUNITS1 <— N RELPOSPRONS

(104,1) LISTNAMESU <- UNITT

(104,2) LISTNAMESU <- LISTNAMESU /AND/ UNITT

(104,3) LISTNAMESU <~ LISTNAMESU , UNITT

(104,4) LISTNAMESU <~ LISTNAMESU , UNITT , /AND/ UNITT

(105,1) LISTNAMESNU <- NUNIT

(105,2) LISTNAMESNU <~ LISTNAMESNU /AND/ NUNIT

(105,3) LISTNAMESNU <- LISTNAMESNU , NUNIT

(105,4) LISTNAMESNU <- LISTNAMESNU , NUNIT , /AND/ NUNIT

101

Many questions and especlally commands in elementary
mathematics call for conversion of an expression from one form to
another, for example,

EX1: Give 1/4 as a decimal and as a percent!

The rules in this section deal with the forms being converted to, which
in EX1 are 'decimal' and 'percent'. The semantic functions for all of
these rules are currently UNDEFINED. The CONVUNITS rules parse lists
and choicelists of form names and also rule (67,8) allows an optional
determiner before the form name. There are several lexical categories
of nouns. The relevant noun categories for these rules are UNIT,
NUNIT, and N. UNITs and NUNITs were discussed in &uction IV.10. N's
are nouns which name sets represented by a <«'isracteristic function.
Examples are number, fraction, decimal, Roman numeral, and whole
number. Someﬁimes the N will be modified by a relative clause (rule

(68,2)) as in 'Give .10 as a fraction whose denominator is 100!’

Iv.18 CONVPREP-Rules

(66,1) CONVPRED <- /AS/ UNDEFINED
(66,2) CONVPREP <=~ /TO/ UNDEFINED
(66,3) CONVPREP <- /IN/ UNDEF INED

These are the prepositions wused in the phrases giving the
CONVUNIT. Certain prepositions are commonly used with certain verbs,
for example, 'express as', 'change to', and 'write in', but they can be
treated as equivalent here because the verbs are all changed to 'give'
either by the TRANSL if that 1is their only use or the dictionary if

there are other uses of the verb.

102

IvV.19 SPECPREPHRASE-Rules

(61,1) SPECPREPHRASE <
(61,2) SPECPREPHRASE <
(61,3) SPECPREPHRASE
(61,4) SPECPREPHRASE <
(61,5) SPECPREPHRASE <
(61,6) SPECPREPHRASE <
(61,7) SPECPREPHRASE <
(61,8) SPECPREPHRASE <
(61,9) SPECPREPHRASE <
(61,10) SPECPREPHRASE <

'SPECPREPHRASE /OR/ SPECPREPHRASE
SPECPREPHRASE /AND/ SPECPREPHRASE

V SPECPREP1

/NOT/ V SPECPREP1

/EITHER/ V SPECPREP1 /OR/ V SPECPREP1
/NEITHER/ V SPECPREP1 /NOR/ V SPECPREP1
SPECPREP1

/NOT/ SPECPREP1

/NEITHER/ SPECPREP1 /NOR/ SPECPREPT
/EITHER/ SPECPREP1 /OR/ SPECPREP1

A
[Z N T N A A)

(62,1) V <= =
(62,2) V <~ /EXPRESSED/

These rules parse lists of the special prepositional phrases
which are used to give CONVUNITS, and they also parse the complements
of the phrases. Note that here as in several other places in the
grammar the syntax for 'not' when it appears in various positions in a
list has not been carefully worked out. There is a problem in deciding

when an initial 'not' should be forced to extend to all members of the

list and when it should not, The category V includes the verbs
'expressed' and ‘'equal’, These verbs may optionally precede the
SPECPREP1. Examples are 'expressed as a fraction' and 'equal as a
fraction'.

IV.20 SPECPREP 1~Rules

(63,1) SPECPREP1 <- /INLOWESTTERMS/
(63,2) SPECPREP1 <- /INEXPANDEDFORM/
(63,3) SPECPREP1 <~ CONVERSIONS

(64,1) CONVERSIONS <- CONVPREP CONVUNITS /OR/ CONVPREP CONVUNITS
(64,2) CONVERSIONS <- CONVPREP CONVUNITS

(64,3) CONVERSIONS <- CONVPREP CONVUNITS CC1

(64,4) CONVERSIONS <- CONVPREP CONVUNITS , CCi

(64,5) CONVERSIONS <- CONVPREP CONVUNITS CC1 CC1

103

(64,6) CONVERSIONS <- CONVPREP CONVUNITS , CC1 , CC1
(64,7) CONVERSIONS <- CONVPREP CONVUNITS , CC1 CCf
(64,8) CONVERSIONS <- CONVPREP CONVUNITS CCt , CC1
(65,1) CC1 <- CONVPREP CONVUNITS

(65,2) CC1 <~ /THEN/ CONVPREP CONVUNITS

(65,3) CC1 <- /AND/ CONVPREP CONVUNITS

(65,4) CC1 <- /AND/ /THEN/ CONVPREP CONVUNITS

'In lowest terms' and 'in expanded form' are very common
phrases that I have TRANSL'd, but often the word 'form' appears with
other CONVUNITs, for example, 'Is 2 in decimal form?' Another rule is
needed.

I will not discuss the details of Rules (64,1)-(64,8) and
(65,1)-(65,4). A wide wvariety of syntactic formats is used in these
expressions and I have tried to write rules that will parse all the
different formats. The following are examples of commands which will
use these rules in their syntactic derivation:

a) Express 2 3/4 as a fraction}

b) Express 19 % as a fraction and then as a
decimal!

c) Write 92 of 100 parts as a fraction, as a
decimal, and as a percent:

d) Write 478 of 1000 parts as a fraction whose
denominator is 100, 1000, or 10000, then as a decimal
and a percent!

e) Convert 3,1 m. to decimeters, centimeters, and
millimeters!

f) Find the sum of 1/5 and 3/5 and express the

answer as a mixed number or a whole number, if
possible!

104

V.21 ORDERING-Rules

(69,1) ORDERING <- /INORDER/
(69,2) ORDERING <- /INORDER/ ORDERING!
(69,3) ORDERING <~ ORDERINGT
(70,1) ORDERING1 <- /STARTINGWITH/ EXP
(70,2) ORDERING1 <- /STARTINGWITH/ DET COMPADJ
(70,3) ORDERING1 <- /STARTINGWITH/ DET COMPADJ L/CNP3
(70,4) ORDERING1 <~ /FROM/ COMPADJ /TO/ COMPADJ

Certain phrases used to request an ordering of the answer have
been TRANSL'd to ‘'inorder'. This phrase is essentially meaningless
since the evaluator always orders the answer. The important element
when present is the actual specification for the ordering. Rules
(70, 1) to (70,4) will parse several ways of giving these

specifications. Examples are:

a) List the factors of 12 in order starting with
the least factor!

b) List the factors of 12 in order from greatest
to least!

¢) Arrange 1m., 1 cm., and 1 km. by size from
smallest to largest.

IV.22 Commands Using Special Verbs

(60,1) C <~ /COUNT/ /TO/ EXP /BY/ LISTNAMESNU

(60,2) C <- /COUNT/ /TO/ EXP /BY/ LISTNAMESNU /AND/ /TO/ EXP /BY/
LISTNAMESNU

(60,3) C <~ /COUNT/ /BY/ LISTNAMESNU /TG/ EXP

(60,4) C <- /COUNT/ /BY/ LISTNAMESNU /TO/ EXP /AND/ /BY/ LISTNAMESNU
/TO/ EXP

(60,5) C <- /REGROUP/ NUNITS /AS/ NUNITS

(60,6) C <- /REGROUP/ NUNITS /AS/ NUNITS /AND/ /AS/ NUNITS

(60,7) C <- /REGROUP/ NUNITS /AS/ NUNITS /AND/ NUNITS /AS/ NUNITS

(60,8) C <- /SOLVE/ /THE/ /EQUATION/ F

(60,9) C <~ /SOLVE/ F

(60,10) C <~ /ROUND/ EXP /TO/ UNITS

(60,11) C <- /ROUND/ EXP /TO/ UNITS /AND/ EXP /TO/ UNITS

(60,12) C <- /ROUND/ EXP /TO/ UNITS /AND/ /TO/ UNITS

105

Certain verbs wused in commands need to be dealt with

individually. I have dincluded rules for 'count', ‘'regroup’,

and 'round'. The semantic functions are currently UNDEFINED.

of these rules are:

1) Count to 100 by fives!

2) Count to 10 by ones and to 20 by twos!

3) Count by fives to 100!"

4) Count by fives and tens to 100 and by hundreds to 1
5) Regroup 1 ten as 10 ones!

6) Regroup 1 hundred as 10 tens and 1 ten as 10 ones!
7) Regroup 1 hundred as 10 tens and 1 ten as 10 ones!
8) Solve the equations b+c=6 and b-c=21

9) Solve at+5=121

10) Round .6854 to tenths!

11) Round .853 to tenths and .9637 to hundredths!

12) Round .7596 to hundredths and to tenths!

'solve',

Examples

000!

The rules need to be consolidated so that separate rules are

not needed for multiple specifications of arguments in the commands.

Iv.23 Arithmetic Commands

(60,22) C <- /ADD/ NP /TO/ NP (ADDER ;23 343)
(60,23) C <- /SUBTRACT/ NP /FROM/ NP (SUBBER ;4; ;23)
(60,24) C <- /MULTIPLY/ NP /BY/ NP (MULTER 3;2; 343)
(60,25) C <- /DIVIDE/ NP /BY/ NP (DIVVER :;2; 3:43;)
(60,26) C <- /DIVIDE/ NP /INTO/ NP (DIVVER 343 3;23)

Often these expressions are found not as commands but embedded

in other sentences, Examples are:

a) TFind a fraction equal to 1/2 by multiplying the
numerator and denominator by the same number!

b) To find an equal fraction, we can divide both
the numerator and denominator by the same number.

These complex sentences have not been considered at this stage.

106

IV.24 Basic Command Rule

(60,21) C <~ GV NP 323
(71,1) GV <~ /GIVE/
(71,2) GV <~ /GIVE/ PERSP

This 1is the most common form of command. Many verbs are
included in the category /GIVE/. Rule (71,2) allows commands to be
prefaced by 'give me'. Some illustrative examples are:

a) Give 2 pairs of even numbers whose sum is 12!

b) Find the set of whole numbers N such that N < 7.!
c) Find the members of the set {n : n < 5}!

d) Write the sum of 84, 57, and 76!

e) Name the numerator of 3/5!

f) Give 4 fractions equal to 1/4!

g) Give the set of the first ten multiples of 1!

h) List all the factors of 11!

1) Give the prime numbers between 65 and 80!

The evaluator simply outputs the result of evaluating the NP.

IV.25 Special Conversion Commands
(60,13) C <- GV CONVERSIONS NP
(60,14) C <- GV , CONVERSIONS , NP
(60,15) C <- GV CONVERSIONS , NP
(60,16) C <~ GV NP ORDERING
(60,17) C <~ /CONVERT/ NP /FROM/ CONVUNITS /TO/ CONVUNITS

Most of the commands involving requests for conversion are
parsed by the basic command rule

(60,21) C <- GV NP
in combination with the following NP-rule:

(84,3) NP1 <- NP SPECPREPHRASE . .
Some examples are:

a) Express 4/16 in lowest terms!

b) Write 2 3/4 as a fraction!
c) Convert 3' centigrade to Fahrenheit!

107

The semantics for rule (84,3) will be to convert the NP to the
form named in the SPECPREPHRASE. So here again the evaluation is
complete at the NP level.

However, 1in certain commands the order of the arguments is
reversed so rules (60,13)-(60,15) have been written which allow
optional use of commas. An example is:

d) Write in Roman numerals the number of months in a year!

Rule (60,17) parses conversion commands which include the type
of the original expression as well as the type to be converted to. For
example:

e) Convert 3/5 from a fraction to a decimall
The semantic function Qill need to check that 3/5 is indeed a fraction
before it converts to decimal.

Rule (60,16) parses commands which contain a request for the

ordering of the answer. For examples see Section IV.21,

IV.26 Combinations of Commands

(606,18) C <- C /AND/ /EXPRESSANSWER/ SPECPREP1
(60,19} C <- C /AND/ /STATEIFEACH/ LINK SUBST
(60,20) C <~ C /AND/ C
Many commands include subcommands which are dependent on the
main command, for example,
Write 3.7 + 2.1 in column form and find the sum!

We have not dealt with problems of reference either within a sentence

or between sentences in this stage of the project and thus cannot

108

handle most of these complex subcommands. However, rules (60,18) and
(60,19) do handle two forms of subcommands. The first allows the
questioner to state the desired form of the answer, for example,

Find the sum of 2/5 and 3/5 and express the answer
as a whole number!

The second allows & further question to be asked about the answer to
the main command, for example,
Find all the factors of 15 and state whether each is prime!
Various phrases are TRANSL'd to /EXPRESSANSWER/ and /STATEIFEACH/.
Rule (60,20) will handle compound commands which are complete
in themselves, for example 'Give all the even factors of 12 and give

all the prime factors of 15!'

Iv.27 Declaratives

I will not list any of the rules for declaratives, We have
concentrated our efforts at this stage on questions and commands.
There are two primary reasons for working with questions before
declaratives. First, a study of [23] shows that there is less variety
of syntax and vocabulary in questions than declaratives. Declaratives
contain more 1) idiomatic expressions, 2) ﬁistinct uses of
prepositions, 3) verbs, 4) phrases with no mathematical representation,
5) pronouns, and 6) references to other sentences in the text. Second,

‘declaratives require a more sophisticated data base which can be added

to or revised on the basis of the input and which can provide temporary

109

storage for information. Temporary storage is required by some
questions also (namely, those with embedded declaratives), but they

have also been excluded in the firsc stage.

Iv.28 NP-~Rules

(83,1) NP <- L/CNP1 313
(83,2) NP <~ EXP 313
(83,3) NP <- /EITHER/ NP /OR/ NP (CHL 323 ;43)
(83,4) NP <- /NEITHER/ NP /NOR/ NP (NOR ;23 ;43)
(107,1) L/CNP1 <- NP1CHOICE (CHL ;13)
(107,2) L/CNP1 <- LISTOFNP1 (CHL ;13)
(107,3) L/CNP1 <~ NP1 313
(102,1) LISTOFNP! <- NP1 /AND/ NP1 113 133
(102,2) LISTOFNPi1 <- LISTOFNPi , NP1 315 333
(102,3) LISTOFNP1 <- NP1 , NP1 HYHCH
(102,4) LISTOFNP1 <- LISTOFNP1 , /AND/ NP1 s 15 34
(102,5) LISTOFNP1 <- LISTOFNP1 /AND/ NP1 315 13
(39,1) NP1CHOICE <- NP1 , NP U H
(39,2) NP1CHOICE <- NP1 /OR/ NP1 s15 333
(39,3) NP1CHOICE <- NPiCHOICE , NP1 H EECH
(39,4) NP1CHOICE <- NP1CHOICE , /OR/ NP1 315 54
(39,5) NPi1CHOICE <- NP1CHOICE /OR/ NP1 H

NP is the highest level category for noun phrases. The two

basic types of noun phrases which can be derived from NP are EXP and
NP1. The EXP's are standard arithmetic expressions and the NP1's are
more flexible natural language noun phrases., At this time, EXP's and
NP1's cannot be mixed in iists or choicelists. This needs to be
changed since every EXP can in fact be written as an equivalent NP1.
For example the EXP '1+2' evaluates to the same number as 'the sum of 1

and 2', 'the largest odd factor of 12', 'the positive square root of

110

9', etc. However, to allow mixed lists is also to allow ambiguities.

Consider:

EX1: Give the factors of 2, the factors of 3, and
the factors of 4!

There will be two syntactic parses of EX1 if EXP's and NP1's can be
mixed on lists. These parses reflect the following two interpretations
of the sentence.

EX1a: Give (1) the factors of 2, (2) the factors

of the factors of 3, and (3) the factors of the factors
of 4!

EX1b: Give (1) the factors of 2, (2) the factors
of 3 and (3) the factors of 4!

Clearly EX1b is the more plausible interpretation, but the ambiguity is
genuine. Consider another example:

EX2: Are the factors of 12, the largest factor of
12, and the smallest multiple of 12 equal?

EX2a: Are the factors of 12 equal to the factors
of the largest factor of 12 and also equal to the
factors of the smallest multiple of 127
EX2b: Are the factors of 12 equal to the largest
factor of 12 and also equal to the smallest multiple of
127
Admittedly, this question is very unlikely to occur, but I chose it as
an example because of its close parallel to EX1. It would be very
difficult to distinguish 'the factors of 2, the factors of 3, and the
factors of 4' from 'the factors of 12, the largest factor of 12, and
the smallest multiple of 12' grammatically, but EX1b 1s the most

plausible interpretation of EX1 while EX2a {s the wmost plausible

interpretation of EX2. The problem is not solved by prohibiting mixed

111

lists because they are needed in many contexts and in this case if
mixed lists were not allowed EX2 would be parsed only in the incorrect
way. There does not appear to be any feasible way to rewrite the
grammar to avoid the ambiguity. If two syntactic parses have the same
semantic construction, there is no problem, but that is not the case
here. Also, if only one semantic construction can be evaluated there
is noc problem, but both interpretacions of EX1 as well as both

interpretations of EX2 can be evaluated.

IvV.29 NP1-Rules

(84,1) NP1 <- L/CNP2 /EXCEPT/ NP (SD 313 333)
(84,2) NP1 <- L/CNP2 RELPOSPRONS (I 313 323)
(84,3) NP1 <- NP SPECPREPHRASE UNDEFINED
(84,4) NP1 <- /THE/ EXP1 /IN/ EXPI UNDEFINED
{84,5) NP1 <~ DET N VAR /SUCHTHAT/ VAR ARITHKELS UNDEF INED
(84,6) NP1 <- DET N VAR /SUCHTHAT/ VAR ARITHRELS /AND/ VAR ARITHRELS
UNDEFINED
(84,7) ™MP1 <~ DET N VAR /SUCHTHAT/ VAR ARITHRELS /OR/ VAR ARITHRELS
UNDEFINED
(84,8) NP1 <- DET N VAR /SUCHTHAT/ EXP2 ARITHREL VAR ARITHREL EXP2
UNDEFINED
{84,9) NP1 <- /THE/ COMPAD ,OF/ NP (MAXF (FCN ;2;) 343)
{84,10) NP1 <- NP2 3713
(108,1) L/CNP2 <- NP2CHOICE {CHL ;13)
(108,2) L/CNP2 <- LISTOFNP2 (CHL 313)

Rules (84,1) and (84,2) parse expressions of exception and
relative zlauses which appear at the end of a list and are applied to
each member of the list, for example

EX1: Give the factors of 12 and the factors of 15
that are prime! .

Every time these rules are used in a derivation, there will be another

112

derivation of the NP in which the modifier is atrached only to the last
element of the list. These rules should actually be more sophisticated
because the presence of a similar modifier on another element of the
list rules out the interpretation in which the scope of the final
modifier is extended. For example,

EX2: the factors of 4 that are even and the factors of 5
that are odd.

should not be parsed by Rule (84,2). The semaniic function for rule
(84,1) which parses explicit exceptions is SD (set difference). An
example is:

EX3: All the factors of 12 except 3 are even.

The rest of the NP1 rules are for noun phrases which have a
fairly rigid format and cannot be used in the formation of more complex
noun phrases other than lists. They cannot for instance be modified by
relative clauses. I will give one example of each.

(84,3) 5/10 in lowest terms

(84,4) the 9 in 893

(84,5) a number N such that N < 5

(84,6) a number N such that N < 5 and N > 3

(84,7) the numbers N such that N < 5 or N > 10

(84,8) a number N such that 2 < N < 4

(84,9) the largest of 2 cm., 3 m., and 5 mm.

Rule (84,10) allows derivation of the more common noun phrases
by the NP2-rules. The recursive rules for lists of the various levels

of NP's have not been included here since they are the same as the LIST

rules given in many of the preceding sections.

113

Iv.30 NP2-Rules

(85,1) NP2 <- /A/ L/CNP3 123

(85,2) NP2 <- /THE/ L/CNP3 323

(85,3) NP2 <~ /THE/ /NUMBER/ L/CNP3 (ENMF ;2; ;3;)
(85,4) NP2 <- /ALL/ QU/I/WMNP 123

(85,5) NP2 <- /ALL/ /NUMBER/ QU/I/HMNP (ENMF ;2; ;3;)
(85,6) NP2 <~ /ALL/ /THE/ L/CNP3 :3;

(85,7) NP2 <~ /ANY/ QU/I/HMNP 123

(85,8) NP2 <~ /ANY/ /NUMBER/ QU/I/HMNP (NUMF 3;2; ;33)
(85,9) NP2 <- /SOME/ QU/I/HMNP 123

(85,10) NP2 <~ /THE/ COMPADJ L/CNP3 (MAXF (FCN ;2;) ;33)

(85,11) NP2 <- /A/ COMPADS L/CNP3 /THAN/ NP
(I (APP (FCN 3;23) ;5;3) ;333)
(85,12) NP2 <- /A/ COMPADJ L/CNP3 /THAN/ NP RELPOSPRONS

(I (APP (FCN ;2;) ;53)

(I ;335 363))
(85,13) NP2 <- /THE/ ORDADJ L/CNP3 (ORDFCN 1 3;2; ;33)
(85,14) NP2 <~ /THE/ ORDADJ /NUMBER/ L/CNP3 (ORDFCN ;3; ;2; ;43)

(85,15) NP2 <~ /THE/ ORDADJ COMPADJ L/CNP3 (ORDFCN 1 ;2;
(APP (FCN ;3;) ;43))
(85,16) NP2 <- /THE/ /NUMBER/ COMPADJ L/CNP3
(ENMF ;2; (APP (FCN ;3;) ;43))

(109,1) L/CNP3 <- LISTOFNP3 (CHL ;13)
(109,2) L/CNP3 <- NP3CHOICE (CHL 31;)
(109,3) L/CNP3 <- NP3 313

The determiners have been worked out for the HAVENP's but not
for the regular NP's so I will not discuss them here. Because of the
difficulties involved, it is reasonable to not tackle the problem of
determiners at the start of the project but to wait until other aspects
of the noun phrases are worked out and some experience has been gained.

Rules (85, 10)-(85,16) deal wicth two of the special categories
of adjectives, ORDADJ and COMPADJ, which are the ordinals and the
comparatives. Note that L/CNP3 will derive a list, a choicelist, or a
single NP3,

(85,10) the largest factor of 5

(85,11) a larger number than 2
(85,12) a larger factor of 4 than 2 that is even

114

(85,13)
(85,14)
(85, 15)
(85, 16)

the
the
the
the

first multiple of 10

first 2 multiples of 10
second largest factor of 12
2 largest factors of 12

The category QU/I/HMNP

interrogative and

is used with quantifiers and in

'how many' questions. I will give each of the

QU/I/HMNP rules followed by examples.

(48, 1)

(48,2)

[Note:

(48, 3)

[Note:

QU/1/HMNP <~ L/CNP3 HEH

Which factors of 12 are even?
Are any factors of 30 even?

QU/I/HMNP <- /OF/ /THE/ L/CNP3 ;3:

Which of the factors of 12 are even?
Are all of the factors of 12 even?

'of the' adds no meaning.]

QU/I/HMNP <- /OF/ /THE/ L/CNP3 EXP
(L 335 :43)

Which of the fractions 1/2, 3/12, and 2/9 are in
lowest terms?

This rule allows an explicit list to be given.

In fact

ambiguous with
APPOSN EXP,

APPOSN.]

(48,4)

[Note:

the rule 1is

probably unneeded since it is

the rule for appositive nouns, NP6 <-
Most N's also have the lexical category

QU/I/MMNP <- /OF/ /THE/ /NUMBER; L/CNP3

(ENMF ;3;

343)

Are any of the 3 factors of 6 odd?

The

semantic function ENMF checks to be sure

that the NP3 does in fact have the cardinality given by

/NUMBER/.

In this case, it must match exactly or there
is an error, for example 'the 5 factors of 6' and 'the
2 factors of 6' both contain an error.]

b
(48,5) QU/I/HMNP <~ /OF/ /THE/ EXP1 L/CNP3 EXP

- (ENMF ;3;

(T 345 3535))

115

Are any of the 3 fractioms 1/2, 3/12, and
2/9 in lowest terms?

[Note: Again, this rule is unneeded because the case
is already adequately handled by the appositive noun
rule. Interseciion is probably not the best semantic
function for appositive nouns. Any elements on the
list which were not fractions would simply be
eliminated when in fact an error should be noted. The
ENMF checks that the correct cardinality was given for
the list.]

(48,6) QU/I/HMNP <- /OF/ /THE/ L/CNP3 /AND/ /THE/ /LCNP3
(CHL ;3; ;63)
Which of the factors of 2 and the factors of
6 are prime?
Are all of the factors of 9 and the factors of
10 odd?

(48,7) QU/I/HMNP <- /OF/ /THE/ L/CNP3 /OR/ /THE L/CNP3
(CHL ;3; ;63)

Are any of the factors of 9 or the
factors of 3 even?

(48,8) QU/I/HMNP <- QU/I/HMNP /EXCEPT/ NP
(8D ;15 333)

Atre all the factors of 12 except 1 and 3
even?

1v.31 NP3-Rules
(86,1) NP3 <- NP4 $13
(86,2) NP3 <- L/CNP3 RELPOSPRONS (X ;15 323)

The adjectives and relative clauses both have the I semantic
function so the order of derivation is unimportant. However, 1f the
rules for both adjective and relative clause wodifiers were at the same

level of the grammar there would be ambiguous derivations since either

116

could be parsed first. Therefore they are derived at different levels
to avoid unnecessary ambiguity. The NP3-level derives the relative
clauses, Note that rule (86,2) when applied recursively parses strings
of relative clauses, for example, 'numbers that are less than 10 that

are greater than 5',

IV.32 NP4~Rules for Set Nouns

(87,1) NP4 <- ADP L/CNP5 (T 313 323)
(87,2) NP4 <- NP5 13

(101,1) NP5 <- N (STS ;1;)

(101,2) NP5 <- N ARITHRELS (I (STS ;13;) 323)
(101,3) NP5 <- N PREPHRASE (I (STS ;13) ;23)
(101,4) NP5 <- NP6 313

(106,1) NP6 <- PN (STS ;13)

(106,2) NP6 <- /DAY/ (STS ;13)

(106,3) NP6 <- /WEEK/ (STS ;13)

(106,4) NP6 <- /DIMENSION/ (STS ;13)

(106,5) NP6 <- /3D/ (STS ;13)

(106,6) NP6 <- MONTH (STS ;13)

(106,7) NP6 <~ GEOFIGURE (STS ;13)

(106.8) NP6 <~ UNITLISTS GEOFIGURE (I 315 323)
(106,9) NP6 <- APPOSN EXP3 (I (STS ;13) ;23)
(106,10) NP6 <- APPOSN , EXP3 , (I (STS ;13;) ;33)
(106,11) NP6 <- GEOFIGURE UNITLISTS (L ;1; 323)
(106,12) NP6 <- GEOFIGURE , UNITLISTS , (I ;15 333)
(106,13) NP6 <- GEOFIGURE RELPOSPRONS (I ;13 323)
(106,14) NP6 <- /EQUATION/ F :2;

(106,15) NP6 <- /EQUATION/ , F , 133

At the NP4-level the rules dealing with noun phrases containing
FCN's can be separated from the rules dealing with noun phrases
containing N's, I will discuss the rules for nouns representing sets
(N's) in this section and the rules for function nouns (FCN's) in the

next section.

117

As the relative clauses have a separate level (NP3), there is a
separate level here for adjectives (NP4). The NP5 level will derive
either an N alone or with an arithmetic relation or a PREPHRASE

('between', 'before', 'after'. '

in'). Usvelly an arithmetic relation as
a modifier is contained in a relative clause but not always.

EX1: The set of natural numbers less than 3 is {0,1,2} .

The NP6-rules are for the less common lexical categories of

nouns. There are currently nine such categories. These categories

need reworking and will not be discussed here.

Iv.33 NP4~Rules for Function Nouns

(87,3) NP4 <~ ADJ/FCNL/C /OF/ NP (APP ;1; ;3;)
(87,4) NP4 <- FCNL/C /OF/ NP (APP ;1; ;33)
(87,5) NP4 <~ ADP AND/OR DET ADP FCN/REL /OF/ NP
(CHL (I ;1; (APP ;535 3;73))
(T ;4; (APP ;53 373)))
(87,6) NP4 <- ADP FCNL/C /OF/ NP (T ;1; (APP ;2; :43))

(96,1) FCNL/C <- FCNLIST H
(96,2) FCNL/C <- FCNCHNICE ;
(96,3) FCNL/C <~ FCN/REL H

-t

.
b
.
b
b

.
—_

(100,1) FCN/REL <~ FCN (FCN ;13)

(100,2) FCN/REL <- FCN RELPOSPRONS (FCNMK (FCN 3;13) 323)

(97,1) FCNLIST <~ FCN/REL /AND/ FCN1 (CHL 3;1; ;33)
(97,2) FCNLIST <- FCN/REL , FCN1 , /AND/ FCN1 (CHL ;1; ;3; ;63)
(97,3) FCNLIST <~ FCN/REL , FCN1 /AND/ FCN1 (CHL ;1; ;3; 3;53)
(98,1) FCNCHOICE <- FCN/REL /OR/ FCN1 (CHL 3;1; ;33)
(98,2) FCNCHOICE <- FCN/REL , FCN1 , /OR/ FCN1 (CHL ;1; ;3; ;63)
(98,3) TFCNCHOICE <- FCN/REL , FCN1 /OR/ FCN1 (CHL ;1; ;33 353)
(99,1) FCN1 <~ FCN/REL 313

(99,2) FCN1 <~ DET FCN/REL 123

(118,1) DET <~ /A/ 113

(119 2) DET <~ /THE/ 113

118

(95,1) ADJ/FCNL/C <~ ADJ/FCNLIST 13
(95,2) ADJ/FCNL/C <- ADJ/FCNCHOICE 113

(92,1) ADJ/FCNCHOICE <~ ADEF FCN/REL /OR/ ADJFCN1

(CHL (FCNMK ;2; ;1;) ;43)
(92,2) ADJ/FCNCHOICE <~ ADP FCN/REL , ADJFCN1 , /OR/ ADJFCN1

(CHL (FCNMK ;2; ;135) 3545 373)
(92,3) ADJ/FCNCHOICE <- ADP FCN/REL , ADJFCN1 /OR/ ADJFCN1

(CHL (FCNMK ;2; ;13) ;45 363)
(93,1) ADJ/FCNLIST <- ADP FCN/REL /AND/ ADJFCN1

(CHL (FCNMK ;23 ;13) 343)
(93,2) ADJ/FCNLIST <~ ADP FCN/REL , ADJFCN1 , /AND/ ADJFCN1

(CHL (FCNMK ;2; ;13) 3435 373)
(93,3) ADJ/FCNLIST <- ADP FCN/REL , ADJFCN1 /AND/ ADJFCN1

(CHL (FCNMK 323 ;13) 343 373)
(94,1) ADJFCN1 <- ADP FCN/REL (FCNMK ;2; ;1
(94,2) ADJFCN!1 <~ DET ADP FCN/REIL (FONMK ;35 ;23

There is a problem with determining the scope of determiners

and modifiers in noun phrases. Until this problem has been solved, I
have assumed in the above rules that 1lists of function names will
either have a single adjective at the head of the 1ist which is
intended tc cover each element of the list or an adjective attached to
each function name on the list (or, of course, no adjectives at all).
Rule (87,4) is 1ior the case with no adjectives, Rule (87,6) for a
siugie adjective with a single function name or a list of function
names, and Rule (827,3) for lists or choices (not singleton lists) where
ezch element has an adjective, Another problem is that lists will at
this level already have had the initial determiner (if any) parsed by
an NP2 rule. There may or may not be determiners attached to the other
elements of the list. Note that 1t is very unlikely that these

determiners will differ from the initial determiner so they can be

ignored.

119

EX1: the sum and the product of 3 and 4
EX2: the even factors and prime factors of 12

Lists whose elements have different determiners will usually have each
element fully specified, for example

EX3: all the factors of 2 and 3 factors of 12
and are therefore parsed as LISTOFNP1's rather than by these rules.
The category FCN?! has been added to parse the optional determiner
preceding elements other than the first of the list of functioms.

Rule (87,5) parses noun phrases like

EX4: the even or the odd factors of 12 .
The semantic function needs to make two calls on the FACTOR function
with one of the adjectives associated with each call and to designate
12 as the argument to each call on the FACTOR function.

The category FCN/REL allows for an optional relative clause
following the function name, for example,

EX5: the factors that are even of 12 .
The semantic function FCNMK has been used in rule (100,2). This
semantic function was discussed in Section II.3 on the HAVENP's. It
creates new functions. In the above example, it will create an
EVENFACTOR function. In order to use the intersection function for
this example, the functicn, the relative clause, and the argument to
the function would all need to be parsed at the same level. If this
were done the semantics could apply the function to the argument and
then dintersect the result with the relative clause. In fact, the

function and the argument are parsed by rule (87,4) where the semantic

120

function is APP (apply). However, to also parse the relative clause at

this level, would mean that recursive rules for lists could not be

used. Each case would need a separate rule at the NP4 level.

Rules (87,3) and rules (95,1)-(95,2), (92,1)-(92,3), (93,1)-

(93,3), and (94,1)-(94,2) are used for lists of functions each of which

has an associated adjective. Here again FCNMK is used because the

adjective, function name, and argument cannot all be parsed at the NP4-

level unless the use of recursive rules for lists is sacrificed.

IV.34 2FCN-Rules
(87,7) NP4 <- ADP 2FLNL/C /OF/ LSTNP/EXP (I ;71; (APP ;2; ;43))
(87,8) NP4 <— ADP AND/OR DET ADP 2FCN /OF/ LSTNP/EXP
(CHL (I ;1; (APP ;5; ;7:))
(I ;4; (APP ;5; ;73)))
(87,9) NP4 <- 2FCNL/C /OF/ LSTNP/EXP (APP ;1; ;3;)
(88,1) LSTNP/EXP <- LISTOFNP1 (LST ;13)
(88,2) LSTNP/EXP <- LISTOFEXP (LST ;13)
(89,1) 2FCNL/C <- 2FCN AND/OR 2FCN1 (CHL (FCN ;13) 333)
(89,2) 2FCNL/C <- 2FCN , 2FCN1 , AND/OR 2FCN1 (CHL (FCN ;1;) ;3; ;63)
(89,3) 2FCNL/C <- 2FCN , 2FCN} AND/OR 2FCN1 (CHL (FCN ;13;) 33; 3;53)
(89,4) 2FCNL/C <- 2FCN (FCN ;1;)
(90,1) 2FCN1 <- 2FCN (FCN ;13)
(90,2) 2FCNi <- DET 2FCN (FCN 323)
(91,1) AND/OR <- /AND/
(91,2) AND/OR <- /OR/
The category 2FCN is for function nouns which always have two

or more arguments, for example, intersection, sum, and

The category LSTNP/EXP i{s used for the argument to

semantic function for these

121

argument lists in Rules (88,1)

common factors.

the 2FCN. The

and (88,2)

is LST. Currently, the rules for parsing lists and choicelists of
2FCN's (Rules (89,1)-(89,4)) have been combined using the category
AND/OR. No examples of relative clauses embedded in 2FCN noun phrases
have been found so the FCN/REL option has not been included for them.
Because adjectives are so infrequently used in this context I have in
these rules allowed only a single adjective preceding a list of 2FCN's.,
A better approach might be to divide the category 2FCN into two
separate categories for the 2FCN's like 'intersection' which never have
adjective modifiers and the 2FCN's like 'common factor' which can be

modified by adjectives.

Iv.35 Existence Questions
(43,1) Q <- LINK /THERE/ L/CNP1 (EXIST ;3;)

(43,2) Q <- LINK /THERE/ L/CNP3 (EXIST ;3;)

Rules (43,1) and (43,2) are for questions of the form 'Are
there ...?° The need for two rules is again caused by the incompletion
of the rules for determiners. The semantic function EXIST checks

whether or not the set is empty.

'IV.36 If Questions
(43,13) Q <- /IF/ D, Q (IFTHEN (LST ;2; 3;43))
(43,14) Q <- /IF/ F , Q (IFTHEN (LST ;2; ;43))

There has not yet been any implementation of the evaluation of
'if-then' questions. The 'if' part may be either a declarative or an

arithmetic formula.

122

iv.37 Idiomatic Question Formats

(43,28) Q <~ /DOYOUKNGW/ NP 123
(43,29) Q <~ /DOYOUKNOW/ INTER NP LINK :3;
(43,31) Q <- /DOYOUKNOW; INTER EXP1 HAVENP NP /HAVE/
(NMF ;3; (APP ;4; ;5;))
(43,32) Q <- /CANYOU/ C 2;

These rules show one way that idiomatic expressions can be
handled. In this approach, the common expressions need to be
identified and either TRANSL'd to an already existing expression which
plays the same role in the grammac or, if the grammatical role of the
new expression is unique, new rules written. Thus 'are you familiar
with' could be TRANSL'd to 'do you know' and many expressions could be
TRANSL'D to 'give' as it is used in commands, There are already many
synonyms for 'give' in the TEANSL and many more possibilities. It is a
serious question as to whether this is the right approach. We need to
know first how many such expressions there will be in actual use and
also how many common grammatical constructions there are that are not
covered by the present grammar. Unless these numbers prove to be very
small which is unlikely, the method of manual addition to the TRANSL
and cthe grammar 1is not ieasible. Instead some other apzroach to the
habitability problem will be needed. Examples of the above rules are:

(43,28) Do you know the largest common factor of 6 and 157

(43,29) Do you know what the sum of 5 and 12 is?

(43,30) Do you know what even factors 1Z has?

(43,31) Do you know which 6 factors 12 has?
(43,32) Can you give the factors of 127

1v.38 Questicns With Introducrory Clauses

(43,36) Q <- /EXCEPT/ NP , Q (8D ;43 :23)

123

There are undoubtedly many other introductory clauses which can
precede questions, but we have at this stage included only the rule for
a clause stating an exception, for example,

EX1: Except for the number 2, are there any even prime numbers?
Prepositional phrases using 'in' are common introductory gpnurases, for
example,

EX2: In the fraction 2/3, which number is the denominator?

Most of these other introductory clauses require intra-sentence

referencing and more sophisticated use of the data base than is

currently implemented.

V.39 Questions Beginning with a Linking Verb

(43,10) Q <- LINK NP SUBST/EXP (S 323 ;3;)
(43,11) Q <- LINK /NUMBER/ L/CNP3 SUBST/EXP
(S (LST (CARDINALITY (I ;3; ;43)))
(APP (FCN @EQL) (LST ;2:)))
(43,12) Q <~ LINK CHOICELIST COMPADJ (MAXF (FCN ;3;) 323)
(41,1) CHOICELIST <- EXPCHOICE (CHL ;13)
(47,2) CHOICELIST <- NPICHOICE (CHL ;13)

Questions parsed by rule (43,10) were the most commonly found
questions in [23]. Examples are:

Is 2 even?

Is 10 a multiple of 57

Is 4 < 57

Is 6 between 1 and 107

Is 5 a multiple of 10 or a factor of 107

Is 2 or 3 odd?
The semantic function for this rule is subset. More rules are needed

for this question form which are sensitive to the determiner used. For

example,

124

EX1: Are any factors of 9 even?

which has an existential aquantifier should use intersection rather than

[
[©2]

subset. An example of rule (43,71)
EX2: Are 2 factors of 12 odd?
I have not included the rule
RULET: NP2 <- /NUMBER/ NP3
in the NP rules, but have instead included trules such as this one at
the top level. 1In line with the objective of shifting a large part of
the workload from the grammar to the semantic functions, RULE1 should
be implemented with a suitable semantic funetion. The rule
RULE2: NP2 <~ /THE/ /NUMBER/ NP3 (ENMF ;2; ;3;)
is currently included in the NP-rules. The semantic function ENMF
checks that the cardinalicy of NP3 matches the /NUMBER/ exactly.
EX3: Are the 3 factors of 9 odd?
An example of rule (43,12) 1is
EX4: Is 2 or 4 larger?

The only type of NP used with a COMPADJS is a CHOICELIST,.

Iv.40 Questions Beginning with an Auxiliary Verb

(43,4) Q <- AUXIL NP /COME/ /BEFORE/ NP (3 3;2; (BEFORE ;5;))
(43,5) Q <~ AUXIL NP /COME/ /AFTER/ NP (8 ;2; (AFTER ;5;))
(43,9) Q <~ AUX NP ARITHCHOICE NP (PICKFCN (CHL ;3;) (LST ;2; :43))
(43,3) Q <- AUXIL1 NP VEQUAL NP (S ;2; (APP (FCN EQL) ;4;))
(43,33) Q <- MOD NP /BE/ SUBST/EXP (S ;2; ;4;)
(43,34) Q <- MOD /NUMBER/ L/CNP3 /BE/ SUBST/EXP

(S (LST (CARDINALITY (I :3; ;53)))

(aPP (FCN @EQL) (LST ;23)))

(43,35) Q <- MOD /NUMBEK/ ;/BE/ ARITHCHOICE EXPi

(PICKFCN (CHL ;4;) (LST ;25 ;53))
(51,1) AUXIL <- AUX
(51,2) AUXIL <- MOD

125

(42,1) AUXIL1 <~ /DOES/
(42,2) AUXIL1 <~ MOD

(79,1 VEQUAL <~ =
(79,2) VEQUAL <~ /NAME/

(117,1) ARITHCHOICE <- ARITHREL /OR/ ARITHREL (FCN ;1;) (FCN ;3;3)
(117,2) ARITHCHOICE <- ARITHCHOICE /OR/ ARITHREL ;1; (FCN ;3;)
(117,3) ARITHCHOICE <~ ARITHREL , ARITHREL (FCN ;13;) (FCN ;3;)

(117,4) ARITHCHOICE <- ARITHCHOICE , /OR/ ARITHREL ;1; (FCN ;4;)

Examples of rules (43,4) and (43,5) are:

Does 6 come before 77

Will the product of 2 and 4 come before the sum of 2 and 4?
AUXIL can be either an auxiliary or a modal verb. ARITHCHOICE .is a
choicelist of arithmetic relations. Questions parsed by rule (43,9)
are common in elementary textbooks. Examples are:

Does 2 = or not = 4/27
Is .6 =, <, or > 60%?

Questions like 'Is 2 equal to 4/2?' are parsed as LINK NP
ARITHREL NP because 'equal to' is TRANSL'd to '='. Rule (43,3) will
parse 'Does 2 equal 4/27' To avoid ambiguity, this rule uses the
category AUXIL1 which includes 'does' and the modal verbs 1like 'can'
and 'will' but excludes the verb 'to be' which is a linking as well as
an auxiliary verb. The category VEQUAL in this rule includes the verbs
'equal' and 'name' and may easily be extended if any other verbs are
found to have the semantics of equal in this context. As we extend the
vocabulary, rules will be needed to parse verbs with different meanings
in this position, for example, 'Does 7 factor 147’

Rules (43,33), (43,34) and (43,35) use modal verbs with the

verb 'to be'. One example of each follows:

126

(43,15)
(43,16)
(43,17)
(43,18)
(43,19)
(43,20)

(43,21)

(43,25)
(43,26)
(43,27)
(47,7)
(47,2)
(47,3)
(49,1)
(49,2)
(49,3)
(49,4)

(50, 1)
(50,2)

format.

(43,33)
(43,34)
(43,35)

IV.41

Will the sum of 2 and 3 be odd or even?
Will 3 common multiples of 2 and 3 be less than 207
Will the product of 2 and 5 be <, >, or

to the
sum of 2 and 5!

CHOICELIST Questions

Q <- INT

Q INT
INT
INT
INT
INT

INT

INT
INT
INT
INTER2 <~
INTERZ <-
INTERZ <-
PUNCHOICE
PUNCHOICE
PUNCHOICE
PUNCHOICE
DASHES <~
DASHES <=~

Many ques

In this

LINK ADJ PUNCHOICE CHOICELIST
(S ;535 (STS ;33))
LINK COMPADJ PUNCHOICE CHOICELIST
(PICK (FCN ;33) 35;)
LINK /THE/ COMPADJ PUNCHOICE CHOICELIST
(PICK (FCN :43) 3;63)
LINK /THE/ ORDADJ COMPADJ PUNCHOICE CHOICELIST
' (ORDFCN ;4; 1 (APP (FCN ;53) ;73)
LINK DET COMPADJ N PUNCHOICE CHOICELIST
(PICK (FCN 34:) (I (STS 353) 373))
LINK DET COMPADJ ADP N PUNCHOICE CHOICELIST
(PICK (FCN ;4;) (I ;5; (I (STS ;63)
MOD /BE/ SUBST/EXP PUNCHOICE CHOICELIST
(T :45 ;630

ER2
ER2
ER2
ER2
ER2

ER2
383)))
ER2

ER2 LINK ARITHRELS PUNCHOICE CHOICELIST
(PICK 335 ;53)

LINK PREPHRASE PUNCHOICE CHOICELIST
(PICK ;35 ;53)

LiINK SPECPREPHRASE PUNCHOICE CHOICELIST
(PICK ;35 ;53) ‘

ER2

ER2

INTER

INTER
INTER

/CG¥/ [THESE/

/OF/ /THESE/ L/CNP3

DASHES

DASHES -

use a multiple choice

tions in elemencary textbooks

section I w1ll discuss the questions which contain the

127

answver choicelist as an integral part of the question. The category
INTER2 can have three forms as shown in the following examples:
(47,1) Which is less than 5 -- 4 or 67
(47,2) Which of these is even: 2,3, or 4?7
(47,3) Which of these numbers is even; 2,3, or 4?
I am treating all these forms as semantically equivalent. In order to
typecheck the NP in the third form with each of the answers, twice as
many rules would be needed in this portion of the grammar. Since an
error here seems to be unlikely, I have written the rules so that the
NP when present is simply ignored. The category PUNCHOICE allows for
a variety of punctuation.
(43,15) Which of these is even -~ 2, 3, or 4?
(43,16) Which is larger, 2 or 5/2?
(43,17) Which is the largest: 5/2, 5/3, or 5/47
(43,18) Which is the second largest: 5/2, 5/3, or 5/4?
(43,19) Which is the largest number: 2, 5, or 77
(43,20) Which is the largest even number: 2, 5, or 7?
(43,21) Which of these will be even: the sum of 5 and 2,
the difference of 5 and 2, or the product of 5 and 2?
(43,25) Which of these is divisible bv 3: 2, 4, 6, or 87
(43,26) Which of these numbers is hetween 5/2 and 5 --
2, 4, or 67
(43,27) Which of these is in lowest terms: 10/17, 10/15,
or 10/12? :
The choicelists in the O-rules at the heginning of this section are an
integral part of the question; without the choicelist, the question
makes no sense, For example, one would not ask 'Which is even?'’
without giving a choice of possible answers. Similarly, 'Which is the
largest number?’ and '""hich dis the larrest even number?' do not make

sense without a choicelist of answers. !'ote that these rules use the

category N, An FCN would never be used 1in this position (unless an

128

argument to the function were added to the rule). For example, 'Which
is the largest factor, 2 or 8?' and 'Which 1is the smallest denominator,
1/2 or 2/3?' are not legitimate guestions. (The same questions with
'have' dinstead of 'to be' are legitimate and will be discussed in
Section II.3.) Questions parsed by the Qi-rules rather than the Q-
rules can be asked alone or followed by a choicelist. When there 1is a
choicelist, the question 1s evaluated independently of the choicelist
and then the answer is compared with the choices. An example parsed by

a Ql-rule is 'How many even numbers are prime -- 1, 2, or 3?'

Iv.42 Q1-Rules
(43,37) Q <~ Qi 13
(43,38) Q <- Q1 PUNCHOICE CHOICELIST (PICK ;15 ;33)

These rules allow the optional choicelist of answers for
certain questions. I have not inciuded rules for the ordinary
multiple-choice question format where the answers are enumerated on
separate lines following the quastion using a letter or number to
identify each choice, but the same semantic functions can handle the

ordinary multiple-choice format.

IV.43 HOWMANY Questions Involving UNITs and NUNITs

(44,26) Q1 <~ /HOWMANY/ LISTNAMESU AUXIL UNITS ALLV1
(CONVERT (UNT ;23) 343)
(44,27) Q1 <~ /THERE/ LINK /HOWMANY/ LISTNAMESU /IN/ UNITS
(CONVERT (UNT ;4;) ;63)
(44,28) Q1 <~ /HOWMANY/ LISTNAMESU INSIDE UNITS
(CONVERT (UNT ;23) 343)
(44,29) Q1 <- /THERE/ LINK /HOWMANY/ LISTNaMESNU /IN/ EXP2
(CONVERTNUM (UNT ;43) 363)

129

(44,30)

(44,31)

(45,1)
(45,2)
(45,3)
(45,4)
(45,5)
(45,6)
(45,7)

(77,1)
(77,2)
(77,3)
(77,4)

(78,1)
(78,2)
(78,3)

Q1 <- /HOWMANY/ LISTNAMESNU INSIDE EXP2
(CONVERTNUM (UNT ;23;) :4;)

Q1 <- /HOWMANY/ LISTNAMESNU AUXIL EXP2 ALLV1
(CONVERTNUM (UNT ;2;) ;43)

INSIDE <- LINK /THERE/ /IN/
INSIDE <~ /IN/

INSIDE <- LINK /IN/

INSIDE <~ LINK

INSIDE <- AUX =

INSIDE <- =

INSIDE <~ /SHOWNBY/

ALLV <- =
ALLV <- /NAME/
ALLV <- /SHOW/
ALLV <- /BE/

ALLV1 <~ ALLV

ALLV1 <- /HAVE/
ALLV1 <~ /GIVE/

LISTNAMESU and LISTNAMESNU are lists (including the singleton

list) of the names of UNIT's and NUNIT's. For example,

several

used.

several

There are how many yards, feet and inches in 125 inches?
There are how many ones, tens, and hundreds in 5947

The category ALLV1 used in rules (44,26) and (44,31) includes

verbs, but the quastion has the same meaning whichever verb is

How many feet does 24 inches have (equal)?
How many tens does 236 have (show, give, name)?

The category INSIDE in rules (44,28) and (44,30) also parses
constructions which have the same meaning in these contexts.

How many tens are there in 877

How many inches in a foot?

How many tens are in 1007

How many feet i1s 36 inches?

How many pounds are equal to 2 tons?
How many teaspoons equal 1 tablespoon?
How many fens are shown by 8507

130

The semantic functions CONVERTNUM and CONVERT used for this
type of HOWMANY question convert the UNIT or NUNIT to the form or forms

specified by the LISTNAMESU or LISTNAMESNU.

IV.44 Other HOWMANY Questions

(44,32) Q1 <- /THERE/ LINK /HOWMANY/ L/CNP3

(LST (CARDINALITY ;43))
(44,33) Q1 <- /HOWMANY/ L/CNP3 LINK /THERE/

(LST (CARDINALITY ;23))
(44,34) Q1 <- /HOWMANY/ QU/I/HMNP LINK /THERE/ RELPOSPRONS

(LST (CARDINALITY (I ;2; ;53)))
(44,35) Q1 <- /HOWMANY/ L/CNP3 LINK /THEKRE/ /OF/ NP

(LST (CARDINALITY (I ;2; ;63)))
(44,36) Q1 <~ /HOWMANY/ QU/I/HMNP LINK /THERE/ PREPHRASE

(LST (CARDINALITY (I ;2; ;53)))
(44,37) Q1 <- /HOWMANY/ QU/I/HMNP LINK /THERE/ SPECPREPHRASE

UNDEFINED
(44,38) Q1 <- /HOWMANY/ L/CNP3 (LST (CARDINALITY ;2;))
(44,39) Q1 <- /HOWMANY/ QU/I/HMNP AUXIL NP =

UNDEFINED
(44,44) Q1 <- /HOWMANY/ QU/I/HMNP = NP

(LST (CARDINALITY (I ;2; (APP (FCN EQL) 343))))

(44,45) Q1 <~ /HOWMANY/ QU/I/HMNP LINK SUBST/EXP

(LST (CARDINALITY (I ;2; ;43)))

The category QU/I/HMNP was discussed in Section 1IV.30. The
semantic function for these HOWMANY questions d1s CARDINALITY. The
following are examples:

(44,32) There are how many even factors of 127
(44,33) How many even primes are there?
(44,34) How many factors of 12 are there that are
divisible by 37
(44,35) How many factors are there of 37
{44,36) How many prime numbers are there between 10 and 207
(44,37) How many members of the set {1/2, 2/4, 3/8, 4/8}
are there in lowest terms?

(44,38) How many factors of 127
(44,39) How many members of the set {2/4, 3/6, 5/8}

does 1/2 equal?
(44,44) How many members of the set {2/4, 3/6, 5/8} equal 1/2?
(44,45) How many numbers between 5 and 10 are prime?

131

IV.45 Interrogative Questions

The follewing dntevvogative quastions as well as all the
HOWMANY questions in the preceding sections wse Ql-rules and therefore
can be followed bty a choicelist of answers using rule (43,38).

I will list and give an example of each of the interrogative
question rules.,

(44,1) Q1 <- INTER2 AUXIL NP ALLVY HEH
What does 3+5 ejual?

(44,2) Q1 <- INTER QU/:/HMNP AUXIL NP ALLY (T ;25 ;43)
Which whole number does 9/3 equaiy

(44,3) Q1 <- INTER2 AUXIL' NP SPECPREPHRASE (T 335 343)
What does 607 equal as a fraction?

(44,4) Q1 <- INTER QU/I,/HMNP AUXIL7 NP SPECPREPHRASE UNDEFINED
What time deoes 1300 egual dn 1Z2-hour time?

(44,8) Q1 <- INTERZ? LINK NP :3;
What is the sum of 5 and &7

(44,10) Q1 <~ INTER QU/I/HMNP MOD /BE/ SUBST/EXP (I ;2; ;53)
Which factors of 12 wiil be prime?

(44,11) Q1 <~ INTER QU/LI/UMNP LINK SUBST/EXP (1 325 343)
Which of the fracziwas 1/2, 5/4, and 6/8 are proper

fractioas?

(44,12) Q1 <~ INTER QU/I/HMNP LINK /THE/ COMPADJ KMAXF (FCN 353) 323)
Which member of the set {2/3, 5/6, 7/10} is the largest?

(44,13) Qi <- INTER QU/I/HMNP LINK /THE/ OKDADS COMPADJ UNDEFINED
Which member of the set {2/3, 5/6, 7/10}
%23 the second largest?

(44,14) Q1 <- INTER QU/I/IMNP LINK COMPADJ (MAXF (FCN 343) ;23)
Which prime number is smallest:

(44,18) Q1 <- INTER EXP1 QU/i/HMNP AUXIL NP ALLV UNDEFINED
Which 2 members of the set {2/4, 3/5, 4/8, 5/9}

does 1/2 equal?

{44,21) Q1 <- INTER EXF1 QU,/I/HMNP = NP UNDEFINED

Which 2 members of the set {2/4, 3/5, 4/8, 5/9}
~equal 1/27?

(44,22) Q1 <- INTER EXP1 QU/I/HMNP MOD /BE/ SUBST/EXP
(NMF 525 (T ;35 363))
Which 2 factors of 12 will be prime?

(44,23) Q1 <~ INTER EXP1 QU/I/HMNP LINK SUBST/EXP

(NMF 525 (T ;35 353))
Which 4 numbers between 10 and 20 are prime?

IV.46 FCNHNP-Rules

(44,5) Q1 <- INTER FCNHNP AUXIL NP /HAVE/
(APP ;23 ;43)
(44,6) Q1 <- INTER EXP1 FCNHNP AUXIL NP /HAVE/
. (NMF ;2; (APP ;3; 353))
(44,41) Q1 <- /HOWMANY/ FCNHNP AUXIL NP /HAVE/
(LST (CARDINALITY (APP ;2; ;43)))

(123,1) FCNHNP <~ FCN (FCN ;1;3)
(123,2) FCNHNP <- ADP FCN (FCNMK (FCN ;23) ;13)
(123,3) FCNHNP <- FCN RESTRICT (FCNMK (FCN :1:) ;23)

(123,4) FCNHNP <- ADP FCN RESTRICT.
(FCNMK (FCN ;2;) (I ;15 333))

(119,1) RESTRICT <- RESTRICT RESTRICT1 (T 313 ;23)
(119,2) RESTRICT <- RESTRICTT i1
(120,1) RESTRICT1 <- PREPHRASE ;13
(120,2) RESTRICT1 <- RELPOSPRONS 313
(120,3) RESTRICT1 <~ ARITHRELS 13

The noun phrase categories created for use with the wverb 'to
have' were discussed in detail in Section II.3, This section and the
following sections give the rules for the various HNP categories and

the Q-rules which use the categories.

IV.47 HNPAS-Rules
(44,7) Q1 <- INTER QU/I/HMNP AUXIL HNPAS

(I 525 34;)
(44,20) Q1 <- INTFR EXP1 QU/I/HMNP AUXIL HNPAS

133

(44,40)
(128,1)
(128,2)

(128,3)

(130,1)
(130,2)

(131,
(131,2)
(131,3)
(131,4)

(43,8)

(43,24)
(44,17)
(44,25)
(44,43)
(132, 1)
(132,2)
(132, 3)
(132,4)
(132,5)

(132,6)
(132,7)
(132,8)
(132,9)
(132, 10)

(132,11)
134, lt../

(132,13)
(132,14)

(133,1)
(133,2)
(133,3)

22

(NMF 3235 (2 335 3535))

Q1 <- /HOWMANY/ QU/I/MMN? AUXIL HNPAS
(LST {CARDINALITY (I ;2; :;4:)))
HNEAS <- NP /HAVE/ /AS/ ANSGVHNP
(AP% ;45 35713)
HNPAS <- NP /HAVE/ /7AS/ ANSGVHNP ,OR/ /AS/ ANSGVHNP
(CHL (APP 3435 ;15) (APP ;7; 313))
HNPAS <- NP /HAVE/ /AS/ ANSGVHNP /AND/ /AS/ ANSGVHNP
(I (&PP ;45 ;13) (APP ;7; ;13))
ANSGVHNP <- ANSGV1HNP 113
ANSGVHNP <- DET ANSGV1HNP 123
ANSGVIHNP <- PCNHNP 313
ANSGVIHNP <- /EITHER/ ANSGVHNP /OR/ ANSGVHNP (FCNU ;2; :43)
ANSGV1HNP <~ /NEITHER/ ANSGVHNP /NOXK/ ANSGVHNP (FCNNOR 123 343)
ANSGViHNP <- ANSGVHNP /AND/ ANSGVHNP (FCNI ;1; :33)
1V.48 COMP1HNP and COMP2HNP-Rules
Q <- AUXIL Nf /HAVE/ COMP2HNP
Q <- INTER2 /HAVE/ COMP {HNP PUNCHOICE CHOICELIST
Q1 <- INTER QU/I/HMNP /HAVE/ COMP {HNP
Q1 <- INTER EXPi QU/I/HMNP /HAVE/ COMPiHNP
Q1 <- /HOWMANY/ QU/I/HMNP /HAVE/ COMP1HNP
COMP2HNP <- COMPADJ /OR/ COMPADJ FCNHNP /THAN/ NP
COMP2HNP <- COMPADJ /OR/. COMPADJ FCNHNP /THAN/ NP /HAVE/
COMP2HNP <- ARITHREL /OR/ ARITHKEL EXP FCNHNP
COMP2HN? <- COMPADJ FUNHNP /OR/ COMPADJ FCNHNP /THAN/ NP
COMP2HNP <- COMPAD. FCNHNP /OK/ COMPaDJ FCNHNP /THAN/ NP
JHAVE/
COMP2HNP <- DEY CCMPADJS /Ok, COMPADJ FCNHNP /THAN/ NP
COMP2HNP <~ DET COMPADJ /OR/ COMPADJ FCNHNP /THAN/ NP /HAVE/
COMPZHNP <- DET COMPAD; /OK, DET COMPADJ FCNHNP /THAN/ NP
COMP2HNP <- DET COMPAD. /OR/ DAL COMPADJ FCNHNP /THAN/ NP
COMP2HNP <- DET COMPAL.S FCNHNP ;,OX/ DET COMPADJ FCNHNP /THAN/
NP
COMP2HN? <- DET COMPaDJ FCNHNZ /OR/ DET COMPADJ FCNHNP /THAN/
NP /HAVE/
COMP2HNP <- DET COMPADJ] FINHNP /OR; COMPADJ FCNHNP /THAN/ NP
COMP2HNP <- DET COMPADS FCNHNFP /OR/ COMPADJ FCNHNP /THAN/ NP
COMP2HNP <- CGMP 1HNP
COMP1HNP <- COMPADJ FCNHNP /THaN/ NP
COMP1HNP <- COMPADJ FCNHUNP /THAN/ NP /HAVE/
COMP 1HNP <- AKRITHREL EXP? FCNENP

4>

W

The semantic functions for these rules are currently UNDEFINED.
The rules have been written with all the elements fully specified.
When the semantics for them is carefully studied, I am sure that the
rules can be compressed. The difference between COMP1HNP's and
COMP2HNP's is that the former contains only one COMPADJ and the latter
has a choice of two. All the contexts where COMP2HNP appears can have
a COMPTHNP instead. (This is accomplished by rule (132,14).) Using the
question format in rule (43,8), I will give one example of each of the
COMPHNP's. Note that in many cases the final /HAVE/ is optional.

(132,1) & (132,2) Does 6 have more or less factors than
12 (has)?

(132,3) Does 6 have more or less than 3 factors?

(132,4) & (132,5) Does 6 have more factors or less factors
than 12 (has)?

(132,6) & (132,7) Does 1/2 have a larger or smaller
denominator than 1/3 (has)?

(132,8) & 132,9) Does 1/2 have a larger or a smaller
denominator than 1/3 (has)?

(132,10) & (132,11) Does 1/2 have a larger denominator or a
smaller denominator than i/3 (has)?

(132,12) & (132,13) Does 2/3 have a larger denominator or
larger numerator than 1/4 (has)?

(133,1) & (133,2) Does 6 have more even factors than 12 (has)?

{133,3) Does any prime number have more than 2 factors?

1vV.49 HAVENPF-Rules

(43,7) Q <- AUXIL CHOICELIST /HAVE/ HAVENPF

(PICK ;435 ;23)
(44,15) Q1 <- INTER QU/I/HMNP /HAVE/ HAVENPF

(APP ;4; ;23)
(121,1) HAVENPF <- /THE/ ORDADJ COMPADJ FCNHNP

(HORDFCN 32; ;33 343)
(121,2) HAVENPF <- /THE/ COMPADJ FCNHNP

(HORDFCN 1 ;23 ;33)

135

(43,6)

(43,23)
(44,16)
(44,24)

(44,42)

(122, 1)
(122,2)
(122,3)
(122,4)
(122,5)
(122,6)
(122,7)
(122,8)

(129,1)
(129,2)

(129,3)

(129,4)
(129,5)
(129,6)
(129,7)

(125,1)
(125,2)
{125,3)
(125,4)
{(124,1)
(124,2)
(124,3)

(127,71,
{127,2;

(127,3)
(127,4)

(127,5)

Iv.50 HAVENP-Rules

Q <~ AUXIL NP /HAVE/ BAVENP
(3 325 3435
Q <~ INTER2 /HAVE/ HAVENP PUNCHOICE CHOICELIST
(PICK ;33 :53)
Q1 <- INTER QU/I/HMNP /HAVE/ HAVENP
(I 325 ;43)
Q1 <- INTER EXP1 QU/I/HMNP /HAVE/ HAVENP
(NMF ;25 (T 3335 :53))
Q1 <- /HOWMANY/ QU/I/HMNP /HAVE/ HAVENP
(LST (CARDINALITY (I ;2; ;43)))

HAVENP <- EXTHNP 113

HAVENP <~ UNVHNP 13

HAVENP <- EXP1 FCNHNP (EXPHNP ;1; ;23)
HAVENP <- ANSHNP i1

HAVENP <- HAVENPCHOICE 1

HAVENP <- LISTOFHAVENP $1;

HAVENP <~ /NEITHER/ HAVENP /NOR// HAVENP (NOR ;23 343)
HAVENP <- /EITHER/ HAVENP /OR/ HAVENP (U 525 ;43)
ANSHNP <- NP /AS/ ANSGVHNP (EXTHNP ;3; ;13)

ANSHNP <~ NP /AS/ ANSGVHNP? /OR/ /AS/ ANSGVHNP
{CHL (EXTHNP ;3; ;7;) (EXTHNP ;6; ;1))
ANSHNP <- NP /AS/ ANSGVHNP /AND/ /AS/ ANSGVHNP

(CHL (EXTHNP ;3; ;7;) (EXTHNP ;65 ;13))
ANSHNP <- ANSGVHNP EXP {EXTHNP ;1; ;2;)
ANSHNP <- ANSGVHNP /OF/ EXP (EXTHNP ;1; ;33)
ANSHNP <- /THE/ EXP1 FCNHNP EXP UNDEFINED
ANSHNP <- EXP! FCNHNP EXP UNDEFINED
EXTHNP <- FCNHNP (EXTHNP ;1; (STS UNIV))
EXTHNP <~ FCNHNP /EXCEPT/; NP (EXTHNP ;i3 (C ;33))
EXTHNP <~ EXTHNFQU FCNHNF (EXTHNP ;2; (STS UNIV))
EXTHNP <- EXTHNPQU FCNHNFP /EXCEPT/ NP (EXTHNP ;2; (C ;43))

EXTHNPQU <~ /ANY;
EXTHNPQU <- /3CME/
EXTHNPQU <~ /A/

UNVHN? <- UNVHNPGQU FCN (UNVHNE (FCN ;2;) (S5T3 UNIV))
UNVHNF <~ UNVHNPQU FCN RESTRICT
(UNVHNP (FCN ;2;) ;3;)
UNVHNP <- UNVHNPQU ADF FCN
(UNVHNP (FCN ;3;) 3:23)
UNVHNP <~ UNVHNPQU ADP FCN RESTKICT
{UNVENP (PN 333) (I 323 343))
UNVHNPQU FCN /EXCEFT, NP
{UNVHNFXCT {PCN ;2;) (STS UNIV) ;4;)

A
!

UNVHNP

136

(127,6)
(127,7)
(127,8)

(126,1)
(126,2)

UNVHNP <- UNVHNPQU FCN RESTRICT /EXCEPT/ NP
(UNVHNPXCT (FCN ;2;) :3; 3;53)
UNVHNP <~- UNVHNPQU ADP FCN /EXCEPT/ NP
(UNVHNPXCT (FCN 33;) ;2; ;53)
UNVHNP <- UNVHNPQU ADP FCN RESTRICT /EXCEPT/ NP

UNVHNPQU <- /ALL/
UNVHNPQU <- /ONLY/

(UNVHNPXCT (FCN ;33) (I ;2;

137

343)

363)

Appendix I

Examples of Questions and their Answers

The following are examples of questions accepted by the
CONSTRUCT program. The format includes (a) the original sentence, (b)
the dictionary classification of the sentence, (c) the semantic
construction that, when evaluated, gives the meaning of the sentence,
aﬂd (d) the evaluation of the sentence. '"QUS" means that the sentence
was a question, ''TV" means '"truth-value'', "NIL" means 'false'", "T"
means ''true', "LST" means an explicit list of eiements in a set, and
"CHL" means that the question was & compound question with several
answers.

(1a) 1Is 2 a factor of 47

(b) 1link integer /a/ fcn /of/ integer ?

(¢) (QUS (S (LST 2) (APP (FCN @FACTOR) (LST 4))))
(d) (Qus (TV T))

(2a) Does 4 have a factor of 27

(b) aux integer /have/ /a/ fcn /of/ integer ?

(c) (QUS (S (LST 4) (EXTHNP (FCN @FACTOR) (LST 2))))
(d) (QUs (TV T))

(3a) Are there any common factors of 4 and 12 that are greater than 47
(b) 1link /there/ /any/ 2fen /of/ integer /and/
integer relpron link arithrel integer ?
(e¢) (QUS (EXIST (I (APP (FCN @COMMONFACTOR)
(LST (LST 4) (LST 12))) (APP (FCN @GT) (LST 4)))))
(d) (QUS (TV NIL))

(4a) Are there any even prime numbers that are greater than 27
(b) 1link /there/ /any/ adj adj n rcelpron link arithrel integer ?
(¢) (QUS (EXIST (I (I (L (STS @EVEN) (STS @PRIME))

(STS @NUMBER)) (APP (FCN @GT) (LST 2)))))
(d) (QUS (TV NIL))

138

(5a) Does the least common multiple of 4 and 5 come before
the least common multiple of 4 and 127

(b) aux /the/ 2fcn /of/ integer /and/ integer /come/
/before/ /the/ 2fen /of/ integer /and/ integer ?

(e) (QUS (S (APP (FCN @LCM) (LST (LST 4) (LST 5)))
(BEFORE (APP (FCN @QLCM) (LST (LST 4) (LST 12))))))

(d) (QUS (TV NIL))

(6a) Does 12 have any factors that are greater than 127
(b) aux integer /have/ /any/ fcn relpron link arithrel integer ?
(c¢) (QUS (S (LST 12) (EXTHNP (FCNMK (FCN @FACTOR)
(APP (FCN @GT) (LST 12))) (STS UNIV))))
(d) (QUS (TV NIL))

(7a) Are all the factors of 12 divisible by 2?
(b) 1ink /all/ /the/ fcn /of/ integer arithrel integer ?
(c) (QUS (S (APP (FCN @FACTOR) (LST 12))
(APP (FCN @DIVISIBLE) (LST 2})))
(d) (QUS (TV NIL))

(8a) 1Is the largest factor of 12 divisible by all
the odd factors of 12?

(b) 1link /the/ compadj fcn /of/ integer arithrel /all/
/the/ adj fcn /of/ integer ?

(¢) (QUS (S (MAXF (FCN @GTT) (APP (FCN @FACTOR) (LST 12)))
(APP (FCN @DIVISIBLE) (I (STS @ODD)
(APP (FCN @FACTOR) (LST 12))))))

(d) (Qus (Tv T))

(9a) Are 2 factors of 12 prime numbers that are odd?
(b) 1link integer fcn /of/ integer adj n relpron link adj ?
(e) (QUS (S (LST (CARDINALITY (I (APP (FCN @FACTOR) (LST 12))
(I (I (STS @PRIME) (STS @NUMBER)) (STS @ODD)))))
(APP (FCN @EQL) (LST 2))))
(d) (Qus (TV NIL))

[Note: 1 is not the factor of any number according to
the definition that we have implemented.]

(10a) Except for 4, what are the common factors of 4 and 12?
(b) /except/ integer , inter link /the/ 2fcn /of/
integer /and/ integer ?
(¢) (QUS (SD (APP (FCN @COMMONFACTOR)
(LST (LST 4) (LST 12))) (LST 4)))
(d) (Qus (LST 2))

139

(11a) Which of the numbers 5, 16, 23, and 54 are even and
divisible by 47

(b) dnter /of/ /the/ apposn integer , integer , integer , /and/
integer link adj /and/ arithrel inceger ?

(e¢) (QUS (I (I (STS @NUMBER)
{(CHL (LST 5) (LST 16) (LST 23) (LST 54)))
(I (STS GEVEN) (APP (FCN G@DIVISIBLE) (LST 4)))))

(d) (QUS (CHL (LST) (LST 16) (LST) (LST)))

(12a) Which of the factors of 12 have only even factors that are
greater than 47

(b) inter /of/ /jthe/ fen /of/ integer /have/ /only/ adj fcn relpron
link arithrel integer 7

(¢} (QUS (1 (APP (FCN @FACTOR) (LST 12))
(UNVIINP (FCN @FACTOR) (I (STS Q@EVEN)
(APP (FCN G@GT) (LST 4))))))

(d) (QUS (LST))

(13a) 1Is 3+2 less than, greater than, or equal to 2+3?

(b) aux integer + integer arithrel , arithrel , /or/ arithrel
integer + integexr ?

(c) (QUS (PICKFCN (CHL (FCN @LT) (FCN @GT) (FCN @EQL))
{(LST (ADDER 3 2) (ADDER 2 3))))

(d) (QUS (LST (FCN EOL)))

(14a) Which of these will be even: 2+2, 2+3, 3+2, 3+3 or 3+17
(b) dinter /of/ /these/ mod /be/ adj : integer + integer ,
integer + integer, integer + integer for; integer + integer ?
(¢) (QUS (I {STS @EVEN)
(CHL (LST (ADDER 2 2)) (LST (ADDER 2 3))
(LST (ADDER 3 2)) (LST (ADDER 3 3)) <(LST (ADDER 3 1)))))
(d) (QUS (CHL (LST 4) (LST) (LST) {(LST 6) (LST 4)))

(15a) Which even number is a prime number -- 2 or 47
(b) dinter adj n link /a; adj n - - integer /or/ integer ?
(e¢) (QUS (PICK (I (I (STS @EVEN) (STS @GNUMBER})
(I (ST3 @PRIME) (STS @NUMBER))) (CHL (LST 2} (LST 4))))
(d) (Qus (LST 2))

(16a) What is the least common mulciple of the
product of 2 and 5 and the product of 2 and 67
(b) dinter link /the/ 2fcn jof/ /the/ 2fcn jof/ integer
/and/ integer /and/ /thes 2fcn /jof/ integer /and/ integer ?

140

(c) (QUS (S (APP (FCN @SuM) (LST (I.ST 5) (LST 2)))
(I (APP (FCN @LT) (APP (FCN @PRODUCT) (LST (LST 5)
(LST 2)))) (APP (FCN @GT) (APP (FCN @DIFFER)
(LST (LST 5) (LST 2)))})))

(d) (QUSs (LST 60))

(17a) 1Is the sum of 5 and 2 less than the product of 5 and 2
but greater than the difference of 5 and 2?
(b) 1ink /the/ 2fen /of/ integer /and/ integer arithrel
/the/ 2fcn /of/ integer /and/ integer /and/ arithrel /the/
2fcn /of/ integer /and/ integer ?
(e) (QUS (S (APP (FCN @SUM) (LST (LST 5) (LST 2) })
(I (APP (FCN @LT) (APP (FCN @PRODUCT)
(LST (LST 5) (LST 2)))) (APP (FCN @GT)
(APP (FCN @DLIFFER) (LST (LST 5) (LST 2))»)))))
(d) (Qus (TV T))

(18a) Which of the numbers that are between 37 and 48 and are odd
does 86 have as factors?
(b) dinter /of/ /the/ n relpron link /between/
integer /and/ integer /and/ link adj
aux integer /have/ /as/ fecn ?
{(e¢) (QUS (I (I (STS @NUMBER)
(I (BETWEEN (LST 37) (LST 48)) (STS @ODD)))
(APP (FCN @FACTOR) (LST 86))))
(d) (QUS (LST 43))

(19a) Which of the factors of 36 are even and not between 1 and 367
(b) dinter /of/ /the/ fcn /of/ integer link adj /and/
/not/ /between/ integer /and/ integer ?
(¢) (QUS (I (APP {FCN @FACTOR) (LST 36)) (I (STS @EVEN)
(C (BETWEEN (LST 1) (LST 36))))))
(d) (QUS (LST 36))

(20a) Which even number is a factor of 12 and a multiple of 37
(b) inter adj n link /a/ fcn /of/ inceger /and/ /a/ fcn /of/ integer ?
(e) (QUS (I (I (STS @EVEN) (STS @NUMBER))
(I (APP (FCN @FACTOR) {LSi 12))
(APP (FCN @MULTIPLE) (LST 3)))))
(d) (QuS (LST 12 6))

(21a) How many factors of 4 are there that are also multiples of 4?
(b) /howmany/ fcn /of/ integer link /there/
relpron link fcn /of/ integer ?

141

(¢) (QUS (LST (CARDINALITY (I (APP (FCN @FACTOR) (LST 4))
(APP (FCN @MULTIPLE) {(LST 4))))))
(d) (QUS (LST 1))

(22a) Which number does 4 have both as a factor and as a multiple?
(b) inter n aux integer /have/ /as/ /a/ fen /and/ /as/ /a/ fcn ?
(¢) (QUS (I (STS @NUMBER) (I (aPP (FCN @FACTOR) (LST 4))

(APP (FCN @MULTIPLE) (LST 4)))))
(d) (QUS (LST 4))

(23a) How many even numbers between 3 and 50 have 7 as a factor?
(o) /howmany, adj n /between/ inceger sand/ integer /have/
incteger /fas/ /a/ fen 7
(¢) (QUS (LST (CARDINALITY (I (I (STS @EVEN)
{I (STS5 @NUMBEK; (BETWEEN (LST 3) (L3T 50))))
(EXTHNP (FCN &FACTOR) (LST 7))))))
(d) (QUS (LST 3)3

(24a) What are the even facrots of 12 that are multiples of 4?
(b) dinter lLink /the/ adj fen /of/ integer
relpron link fzn /of/ integer 7
(¢) (QUS (I (I (STS @EVEN) (APP (FCN @FACTOR) (LST 12)))
(APP (FCN @MULTIPLE) (LST 4))))
(d) (QUS (LST 12 4))

{(25a) What is 7 divided into 567

(b) dinter link in:eger /di:idedinto/ integer
(c) {QUS (LST (DLV 56 7;};

{(d) (QUS (LST (MXD 8 0j;)

(26a) What 1s 56 divided by 77

(b) inter link integer /dividedby/ integec ¢
(¢) (QUS (ST (DIV 56 ©)j;

(d) (QUS (LST (MXD 8 0)))

(27a) How many =ven numbers ara prime?

(b) /howmany/ adj n iiank adj ?

(c¢) (QUS (LST (CARDINALITY (I (I (STS @EVEN) (STS @NUMBER))
(STS @PKRIME)))))

(d) (QUS (LST 13

[Nore: There is another semantically equivalent
derivarion in which 'prime' is parsed as a noun,]

142

(28a) Give the factors of 2, the factors of 3, and the factors of 4!
(b) /give/ /the/ fcn /of/ integer , /the/ fcn /of/ integer ,
/and/ /the/ fcn /of/ integer !
(c) (CMD (CHL (APP (FCN @FACTOR) (LST 2)) (APP (FCN @FACTOR) (LST 3))
(APP (FCN @FACTOR) (LST 4))})
(d) (cMD (CHL (LST 2) (LST 3) (LST 4 2)))

(29a) Give the numbers that are between 2 and 6 that are less than 4!
(b) /give/ /the/ n relpron link /between/ integer /and/ integer
relpron link arithrel integer !
(¢) (CMD (I (I (STS G@GNUMBER) (BETWEEN (LST 2) (LST 6)))
(APP (FCN @LT) (LST 4))))
(d) (CMD (LST 3))

(30a) Give the factors of 12 and the factors of 15 that are prime
numbers!

(b) /give/ /the/ fcn /of/ integer /and/ /the/ fcn /of/ integer relpron
link adj n !

(¢) (CMD (CHL (APP (FCN @FACTOR) (LST 12)) (I (APP (FCN @FACTOR)
(LST 15)) (I (STS @PRIME) (STS @NUMBER)))))

(d) (cMD (CHL (LST 12 6 4 3 2) (LST 5 3)))

[Note: sentence (30) is genuinely ambiguous...]

(c'") (CMD (I (CHL (APP (FCN @FACTOR) (LST 12)) (APP (FCN @FACTOR)
(LST 15))) (I (STS @PRIME) (STS @NUMBER))))
(d'") (CMD (CHL (LST 3 2) (LST 5 3)))

(31a) 1Is the largest factor of 5 even?

(b) 1link /the/ compadj fcn /of/ integer adj ?

(c) (QUS (S (MAXF (FCN @GTT) (APP (FCN @FACTOR) (LST 5)))
(STS @EVEN)))

(d) (QUS (TV NIL))

(32a) Does 12 have a factor that is both even and prime?

(b) aux integer /have/ /a/ fcn relpron link adj /and/ adj ?

(¢) (QUS (S (LST 12) (EXTHNP (FCNMK (FCN @FACTOR) (I (STS @EVEN)
(STS @FRIME))) (STS UNIV))))

(d) (QUs (TV T))

(33a) 1Is the largest common factor of 20 and 24 odd or even?

(b) 1link /the/ compadj 2fcn /of/ integer /and/ integer adj /or/ adj ?

(e¢) (QUS (S (MAXF (FCN @GTT) (APP (FCN @COMMONFACTOR) (LST (LST 20)
(LST 24)))) (CHL (STS @0DD) (STS @EVEN))))

(d) (QUS (CHL (TV NIL) (TV T)))

143

(34a) Will the product of 2 and 4 come before the sum of 2 and 4?
(b) mod /the/ 2fcn /of/ integer /and/ integer /come/ /before/
/the/ 2fcn /of/ integer /and/ integer ?
(e) (QUS (S (APP (FCN @PRODUCT) (LST <{LST 2) (LST 4j))
{BEFOKE (AFE (FCN @SUM; {(L3T (L3T 2) (LST 4))))))
(d) (QUS (TV NIL))

(35a) Is 4 a common mulciple of 2 and 4?

(b) link integer /a/ 2fcn /of/ integer /and/ integer ?

(e) QU3 (5 (LST 4) (APF (FCN @COMMONMULTIPLE) (LST (LST 2)
(LST 4)))y)

{(d) (QUS (IV T):

(36a) Which of these will be even: the sum of 5 and 2,
the difference oi 5 and 2 , or che product of 5 and 27

(b) incer /of/ /these; mod /be/ adj : jthe/ 2fcn /of/ integer /and/
integer , ,;the/ 2fcn /of/ integer /and; integer , /or/
/the/ 2ifcn /of/ integer /and/ integer 7

{c) (QUS (L (STS QEVEN) (CHL (APP (FCN @SUM) (LST (LST 5) (LST 2)))
(APP (FCN @IFFER) (LST (LST 5) (LST 2))) (APP (FCN @PRODUCT)
(LST (L3T 5) (L3T 23)))))

(d) (QUS (CHL (LST; (LST) (LST i0)))

(37a) How many prime numbers are there bezween 10 and 207

(b) /howmany/ adj n link /chere/ /between/ integer /and/ integer ?

(e) (QUSs (LST (CARDINALITY (I (I (3T5 €rikiME) (STS @NUMBER))
(BETWEEN (LST 153 {L3T 20))}})}

(d) (nue (187 &)

(38a) How many numbexs becwesn 5 and 10 are odd numbers?

(b) /howmany/ n /between/ integer /and/ integer link ady n 7

(c¢) {QUS iL3T (CakDINALITY (I (I (STS @NUMBER) (BETWEEN {LST 5)
{LST 10))) (I (STS @UDD) (SIS @NUMBER))J))}

{d)y (QUS (LST 2))

(39a) What does 3 + 5 equal?

(b) inter aux integer + 1ntegsr = 7
(c) (QUS (LST {ADRER 3 5)))

(d) (QUS (LST 8))

(40a) Which 4 numbers between 10 and 20 are prime numbers?
(b) inter integer n /between/ integer /and/ integer link adj n ?

(c) (QUS (NMF &4 (I (I (STS @NUMBER) (BETWEEN (LST 10) (LST 20)))
(I (STS @PRIME) (STS @NUMBER)))))
(d) (QUS (LST 19 17 13 11))

(41a) How many even factors that are between 10 and 50 does 100 have?

(b) /howmany/ adj fcn relpron link /between/ integer /and/ integer
aux integer /have/ ?

(c¢) (QUS (LST (CARDINALITY (APP (FCNMK (FCN @FACTOR) (I (STS @EVEN)
(BETWEEN (LST 10) (LST 50)))) (LST 100)))))

(d) (Qus (LST 1))

(42a) Does 12 have 6 as a factor or as a multiple?

(b) aux integer /have/ integer /as/ /a/ fen /or/ /as/ /a/ fen ?

(¢) (QUS (S (LST 12) (CHL (EXTHNP (FCN @FACTOR) (LST 6)) (EXTHNP
(FCN @MULTIPLE) (LST 6)))))

(d) (QUS (CHL (TV T) (TV NIL)}))

(43a) Does 12 have 12 as a factor and also as a multiple?

(b) aux integer /have/ integer /as/ /a/ fcn /and/ /as/ /a/ fcn ?

(¢} (QUS (S (LST 12) (CHL (EXTHNP (FCN @FACTOR) (LST 12))
(EXTHNP (FCN @MULTIPLE) (LST 12)))))

(d) (QUS (CHL (TV T) (TV T)))

(44a) Does 6 have any factors that are also factors of 3?

{(b) aux integer /have/ /any/ fcn relpron link fcn /of/ integer ?

(c) (QUS (S (LST 6) (EXTHNP (FCNMK (FCN @FACTOR) (APP (FCN @FACTOR)
(LST 3))) (STS UNIV))))

(d) (QUs (TV T))

(45a) Which factor of 6 is also a factor of 3?

(b) dinter fcn /of/ integer link /a/ fcn /of/ integer ?

(c¢) (QUS (I (APP (FCN @FACTOR) (LST 6)) (aPP (FCN @FACTOR) (LST 3))))
(d) (Qus (LST 3))

(46a) Does 6 have any factors that are also multiples of 67

(b) aux integer /have/ /any/ fcn relpron link fcn /of/ integer ?

(¢) (QUS (S (LST 6) (EXTHNP (FCNMK (FCN @FACTOR) (APP (FCN @MULTIPLE)
(LST 6))) (STS UNIV))))

(d) (QUs (TV T))

(47a) Are there any factors of 6 thar are also multiples of 6?
(b) 1link /there/ /any/ fcn /of/ integer relpron link
fcn /of/ integer ?

145

(e¢) (QUS (ENIST (I (APP (FCN @FACTOR) (LST 6)) (APP (FCN @MULTIPLE)
(LST 6)))))
(d) (nUS (TV T))

(48a) Does 10 have any even factors that are between 2 and 107

(b) aux integer /have/ /any/ adj fcn relpron link /between/
integer /and/ integer

{e} (QUS (S (LST 10) (EXTHNP (FCNMK (FCN @FACTOR) (I (STS @EVEN)
(BETWEEN (LST 2) (LST 10))); 5715 UNIV))))

(d) (0US (Tv WNIL))

(49a) Is the factor of 10 that is between 2 and 10 odd or even?
(b) link /the,/ fcn /oi/ inteper relpron link /between/

incegec /and/ integer adjy sor; adj ¢
(e) (NUS (38 (I (APP (FCN @FACTOR) (LST 10))

{BETWEEH (LST 2) (LST 10j); (CHL (STS @0oDD) (SIS @EVEN))))
(d) (QUS (CHL (TV T) (TV NIL)))

(50a) Does 12 have any factors that are greater than 6 that are odd?

(b) aux intepger /have/ /any/ fcn relpron link arithrel integer relpron
link adj ?

(c) (QUS (S (LST 12) (EXTHNP (FCNMK (FCN @FACTOR) (I (APP (FCN @GT)
(LST 6)) (STS @DD))) (STS UNIV)}))

(d) (Qus (TV NIL))

146

adjectives 29, 43
agreement 17

ambiguity 22, 64, 111
arithmetic expressions
arithmetic relations 30

82, 85

clarity 14
commands 107

CONSTRUCT 2, 51

constructive sets 5
control structure 13, 45

data structures 35
declaratives 109

DICTIONARY 2

Flementary mathematics 5

evaluation techniques 35
evaluator 2

existential quantifier 47
extendability 32

flexibildity 32

grammar 2, 22, 59
grammar writing 61

interaction 14

lexical categories 53

Index

147

lists 78, 98

measurements 88
models of semantics 27
multiple categories 53

multiple choice format 127
ncun phrases 80

ncans 29

pattern recognition 28, 58

prepositionsl phrases 16
prepcsicions 91

primitive semantic functions 11
prebabilistic grammars 66
progranming languages 34
questicn—-answering system 2
tecuraive evaluation 13
restructuring 44

scanner 2, 53

semancis categories 17

semantic construction 2, 12, 72
zemantic function 2

samantizs 10, 14, 17, 22, 60
subject matter 4
syntax 10, 14, 17, 22, 28

theorem prover 37

transformational semantic
functions 6, 13

tcansformations 38

TRANSL 2, 57

unbounded branching 43, 75

UNITs 87

universal quantifier 49

vocabulary 8

-2

o

References

Black, Fischer, A deductive question-answering system, Semantic
Information Processing, Marvin Minsky (rd.), MIT
Press, Cambridge, Massachusetts, 1968, pp. 354-401.

Bobrow, Daniel G., Natural language input for a computer problem
solving system, Semantic Information Processing, Marvin
Minsky (Ed.), MIT Press, Cambridge, Massachusetts, 1968, pp.
146-226.

Chomsky, N., A transformational approach to syntax, The
Structure of Language, J.A. Fodor and J.J. Katz (Eds.),
Prentice-Hall, Englewood Cliffs, New Jersey, 1964,

Colby, Kenneth Mark, and Enea, Horace, Idiolectic language anal-
ysis for understanding doctor-patient dialogues, Proceedings
of the Third International Joint Conference on Artificial
Intelligence, Stanford, Calif., (i973), pp. 278-284.

Craig, J.A., Berezner, S.C., Carney, H.C., and Longyear,
C.R., DEACON: Direct English Access and Control, AFiPS
Conference Proceedings, 29, (1966, pp. 365-380.

Fillmore, Charles J,, The case for case, Universals in
Linguistic Theory, E. Bach and A. Harms (Eds.), Holt, Rinehart,
and Winston, New York, 1968, p. 1-88,

Gries, David, Compiler Construction for Digital Computers,
John Wiley and Sons, New York, 1971.

Katz, Jerrold J., Recent issues in semantic theory, Foundations of
Language 3, (1968), pp. 124-194,

Lindsay, Robert K., Inferential memory as the basis of machines
which understand natural language, Computers and
Thought, Edward A. Feigenbaum and Julian Feldman (Eds.),
McGraw-Hill, New York, 1963, pp. 217-233.

149

10.

11.

13.

14.

15,

16.

17.

18.

Minsky, Marvin, Introduction to Semantic Information Processing,
MIT Press, Cambridge, Massachusetts, 1968,

Montague, Richard, English as a formal language, Linguaggl nella
Societa e nella Tecnica (Language in Society and the Technical
World), Milan, 1970,

Palme, J., Making computers understand natural language, Artifi-
cial Intelligence and Heuristic Programming, N. }indler and B.
eltzer (Eds.), Edinburgh University Press, 1971, pp. 199~244.

Postal, Paul M., Limitations of phrase structure grammars, The
Structure of Language, J. A, Fodor and J. J. Katz (Eds.),
Prentice-Hall, Englewood Cliffs, New Jersey, 1964, pp. 137-151,

Quillian, M. Ross, Semantic memory, Semantic Information Pro-
cessing, Marvin Minsky (Ed.), MIT Press, Cambridge, Cambridge,
Massachusetts, 1968, pp. 227-270.

Quillian, M. Ross, The teachable language comprehender:
A simulation program and theory of language, Communications of
the Association for Computing Machinery, Vol. 12 (1969), No. 8,
pp. 459-475,

Raphael, Bertram, SIR: A computer program for semantic inform-
ation retrieval, Semantic Information Processing, Marvin Minsky
(Ed.), MIT Press, Cambridge, Massachusetrts, 1968, pp. 33-145.

Rawson, Freeman L. III, Set-theoretical semantics for elementary
mathematical language, Doctoral Dissertation, Stanford Univer-
sity, 1973, Also Technical Report 220, Institute for
Mathematical Studies in the Social Sciences, Stanford Univ-
ersity, 1973,

Sager, Naomi, Syntactic formatting of science information,
AFIPS Conference Proceedings, 41, (1972), pp. 791-800.

150

19.

20.

21,

22.

23,

24,

25,

26.

27.

28.

Sandewall, FEric, TFormal methods in the design of question-
answering systems, Artificial Intelligence 2, (1971), pp. 129-
145,

Schank, Roger C. and Tesler, Lawrence G., A conceptual parser for
natural language, Proceedings of the International Joint
Conference on Artificial Intelligence, Washington, D.C.,.
(1969), pp. 569-578,

Smith, Robert L. Jr., The syntax and semantics of ERICA.
Doctoral dissertation, Stanford University, 1972, Also
Technical Report 185, Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1972.

Smith, Robert L. Jr., forthcoming.

Suppes, Patrick, Sets and Numbers, L. W. Singer Company, New
York, 1969.

Thompson, Frederick B., English for the Computer, AFIPS
Conference Proceedings, 29, (1966), pp. 349-356.

Welzenbaum, Joseph, ELIZA -- A computer program for the study of
natural language ' communication between man and machine,
Communications of the Association for Computing Machinery, Vol.
9(1966), No. 1, pp. 36-45.

Winograd, Terry, Procedures as a vrepresentation for data in
a computer program for understanding natural language, Doctoral
dissertation, Massachusetts Institute of Technology, 1971.

Woods, W, A,, Procedural semantics for a question-
answering machine, AFIPS Conference Proceedings, (1968), pp.
4£57-471,

Woods, W.A., Transition network grammars for natural language
analysis, Communicatiouns of the Association for
Computing Machinery, Vol. 13 (1970), No. 10, pp. 591-606.

151

165
166
167
168
169
170

171

172
173

174
175

176

178
179
180

181
182
183

184
185
186

187
188
189

190

191
192

193

194
195
196
197
198

199
200

201

202

203

204

205

206

207

208

O 9
ERIC's

Aruitoxt provided by Eic:

(Continued frein inside front cover)

L. J. Hubert, A formai mode! for the perceptual processing of geometric configurations. February 19, 1971, (A statistical method for
investigating the perceptual confusions among geometric canfigurations, Journal of Matheniatical Psychology, 1972, 9, 389-403.)

J. F, Juola, I. §. Fischler, C. T, Wood, and R. C. Atkinson. Recognition time for information stored in long~term memory. (Perception and
Psychophysics, 1971, 10, 8-14.)

R. L. Klatzky and R. C. Atkinson. Specialization of the cerebral hemispheres in scanning for information in short-term memory. (Perception
and Psychophysics, 1971, 10, 335-338.)

J. D, Fletcher and R. C. Atkinson. An evaluation of the Stanford CAl program in initial reading {grades K through 3). March 12, 1971,
(Evaluation of the Stanford CAl program in initial reading. Journal of Educational Psychology, 1972, 63, 597-602.)

J. F. Juolaand R, C, Atkinson. Memory scanning for words versus categories. (Journal of Verbal Learning and Verba} Behavior, 1971,
10, 522-527.)

. S. Fischlerand J. F. Juola, Effects of repeated tests on recognition time for information in long-ternt memory. (J_gu___mal o_f Experimental
Psychology, 1971, 91, 54-58.))

P. Suppes. Semantics of context~free fragments of natural languages. March 30, 1971, (n K. J.'J. Hintikka, J. M. E. Moravcsik, and

P. Suppes (Eds.), Approaches to natural language. Dordrecht: Reidel, 1973. Pp. 221-242.}

J. Friend. INSTRUCT coders' manual, May 1,1971,

R. C. Atkinson and R. M. Shiffrin. The control processes of short-term memory. Aprit 19,1971, (The control of short-term memory.
Scientific American, 1971, 224, 82-90.)

P. Suppes. Computer-assisted instruction at Stanford. May 19, 1971. (In Man and computer. Proceedings of international conference,
Bordeaux, 1970. Basel: Karger, 1972. Pp. 298-330.) T

D. Jamison, J. D. Fletcher, P. Suppes, and R, C. Atkinsen, Cost and performance of computer-assisted instruction for education of disadvantaged
children. July, 1971.

J. Offir, Some mathematical mode!s of individual differences in learning and performance. June 28, 1971, (Stochastic Jearning models with
distribution of parameters. Journal tl(MathematicalP_syc_lM, 197 2,2(4), }

R. C. Atkinsonand J. F. Juola. Factors influencing speed and accuracy of word recognition. August 12, 1971. (In S. Karnblum (Ed.),
Attention and performance IV. New York: Academic Press, 1973.)

P. Suppes, A, Goldberg, G. Kanz, B, Searle, and C. Stauffer. Teacher's handbook for CAl courses. September 1, 1971.

A. Goldberg. A generalized instructional system for elementary mathematical logic. Octcber 11, 1971,

M. Jerman. Instruction in problem solving and an analysis of structural variables that contribute to problem-solving difficulty. November 12,
1971. (Individualized instruction in problem solving in elementary mathematics. Journal fi’ Research iﬂMathematics Education, 1973,
4,6-19.)

P. Suppes. Onthe grammar and model-thecretic semantics of children's noun phrases. November 29, 1971.

G. Kreisel. Five notes on the application of proof theory to computer science. December 10, 1971.

J. M. Moloney. An investigation of college student perrormancé on a logic curriculum in 3 computer-assisted instruction setting, January 28,
1972.

J. E. Friend, J. D. Fletcher, and R, C. Atkinson. Student performance in computer-assisted instruction in programming. May 10, 1972.

R. L. Smith, Jr. The syntax and semantics of ERICA. June 14, 1972.

A. Goldberg and P, Suppes. A computer-assisted instruction program for exercises on finding axioms. June 23, 1972, (Educationat Studies
in Mathematics , 1972, 4, 429-449.)

R. C. Atkinson, Ingredients for a theory of instruction. June 26, 1972. (American Psychologist, 1972, 27, 921-931.)

J. B. Benvillian and V, R. Charrow. Psycholinguistic implications of deafness: A review. July 14, 1972,

P. Arabie and S. A, Boorman. Multidimensional scaling of measures of distance between partitions. July 26, 1972. (Journal o_f_ Mathematical
Psychology, 1973, 10,)

J. Ball and D. Jamison. Computer-assisted instruction for dispersed populations: System cost models. September 15, 1972. (Instructional
Science, 1973, 1,469-501.} ‘

W. R. Sanders and J. R. Ball. Logic documentation standard for the Institule for Mathematical Studies in the Social Sciences. Oclober 4, 1972,

M. T. Kane. Variability in the proof behavior of cotlege sturents in a CA!l course in logic as a funclion of problem characteristics. Octaber 6,
1972.

P. Suppes. Facts and fantasies of education. October 18, 1972. (In M. C. Wittrock (Ed.}, Changing education: Altersatives from educational
research . Englewood Cliffs, N, J,: Prentice-Halt, 1973, Pp. &-45.)

R. C. Atkinson and J, F. Juola. Search and decision processes in recognition memory. October 27, 1972,

P. Suppes, R. Smith, and M, Léveillé. The French syntax and semantics of PHILIPPE, part 1: Noun phrases. November 3, 1972,

D. Jamison, P. Suppes, and S. Wells. The effectiveness of alternative instructional methods: A survey. November, 1972,

P. Suppss. A survey of cognition in handicapped children. December 29, 1972.

B. Searfe, P. Lorton, Jr., A, Goldberg, P. Suppes, N, Ledet, and C. Jones. Computer-assisted instruction program: Tennessee State
University, February 14, 1973,

D. R. Levine. Computer-based analytic grading for German grammar instruction. March 16, 1973.

P. Suppes, J. D, Fletcher, M. Zanotti, P. V. Lorton, Jr., and B. W. Searle. Evaluation of computer-assisted instruction in elementary
mathematics for hearing~impaired students. March 17, 1973,

G. A. Hufi. Geometry and formal linguistics. April 27, 1973,

C. Jensema. Useful techniques for applying latent trait mental-test theory., May 9, 1973.

A'. Goldberg. Computer~assis'cd instruction: The applization of theorem-proving to adantive response analysis. May 25, 1973.

R. C. Atkinson, D, J, Herrmann, and K, T, Wescourt. Search processes in recognition memory. June 8, 1973.

J, Van Campen. A computer-based introduction to the morphofogy of Oid Church Slavonic. June 18, 1973,

R. 8. Kimbail. Self-optimizing computer-assisted tutoring: Theory and practice. June 25, 1973.

R. C. Atkinson, J, D, Fletcher, £, J, Lindsay, J. O, Campbell, and A, Barr. Computer-assisted instruction in initial reading. July 9, 1973,

V. R, Charrow and J. D, Fletcher. English as the secord language of deaf students. July 20, 1973,

J. A. Paulson. Ah evaluation of instructional strategies in a simple learning sitwation. July 30, 1973,

N. Martin, Convergence progerties of a class of probabilistic adaptive schenies calied sequential reproductive plans, July 31, 1973,

(Continued from inside back cover)

211 J. Friend. Computer-assisted instruction in programming: A curriculum description. July 31, 1973,

212 S. A. Weyer. Fingerspelling by computer. August 17, 1973, ‘

213 8. W. Searle, P, Lorton,Jr., and P, Suppes. Structural variables affecting CAl performance on arithimetic word problems of disadvantaged
and deaf students. September 4, 1973,

o

ERIC

Aruitoxt provided by Eic:

