DOCUMENT RESUME

ED 093 377 \ IR 000 884

AUTHOR Kheriaty, Larry \\

TITLE Report on a Mini-Computer Based Interactive Couputing
Systen.

INSTITUTION Western Washington State Coll., Bellinghanm,

FUB DATE 74

NOTE 6p.

EDRS PRICE MF-$0.75 HC~$1.50 PLUS POSTAGE

DESCRIPTORS *Conputer Assisted Instruction; ¥Computer Programs;
*Computers; Programing Languages

IDENTIFIERS *Minicomputers; PILOT; Western Washington State
College)

ABSTRACT

In spite of the linmitations of minicomputers, Restern
Washington State College (WWSC) has developed a useful interactive
computing system based on a Kodel 7/32 Interdata minicemputer and the
computer program, PILOT. The major disadvantages of minicomputers are
the difficulty of securing maintenance and the reliance often g¢n the
single language, BASIC. Software systems are crucial and languages
such as BASIC or APL are ill-suited for course-authoring ior
computer-assisted instruction (CAI).. Cost, of course, is the
principle advantage. The system at WWSC relies on a multilingual
interpreter to execute programns in a constant pattern for all
languages, once traanslated into an internal code of single hyte
operands and operators. PILOT has great structural simplicity but yet
great versatility, and perhaps its best feature is its ability to
call an already compiled BASIC subroutine. A program was written
vhich can translate COURSEWRITER III to PILOT. The experience Qf WWSC
indicates that a CAI system can be satisfactorily run on a
ninicomputer if there is access to good software. (WH)

ATION A WELFARE

U DEFARTMENT O HEALTH
DY

3377

W
v

-
(-
(W W

£ OE

NALINLTITLY
£DULATION

g te]

B

BEST copy AVAILABLE

FESUET b NS LOMPGT L BASED IRTERALTIVE COMPUTING SYSTEM

Khercaly | by s tems Progeasser, Computer Lenter, Western Wnsh|nglon State Cnilegc

THTRODUCT IuN

There are Lo pain thrusts to this peper. The primary intent is to intro-
duce you to the mini-computer based terminal system at WWSC, as the title
suggests. Before | do that, however, t feel this is a gond opportunity to

25 comment on the role of the mini in interactive computing. Since our terminal
system has been in the process of conversion from a 360/40 base to an Inter-

data mini base over the past six months, we have some immediate experience

to draw on for this discussion,

1€ ROLE OF THE MINICOMPUTER 1N INTERACTIVE COMPUTING

First | would like to state categorically that minicomputers are not the answer
to all of our computing problems. 1t is a mistake to think that a five-
thousand dollar processor can do the job of a large-scale computer. Some

of the problems associated with minicomputers are not unique to the mini.

They can pertain to any computer equipment when a switch is made from estab-

lished vendors, such as IBM, to a relative newcomer in the field of manufacturing

computer hardware.
.

The response Lime when maintenance is needed has been a problem, partly due

to Western's ‘remote' location and partly due to the relatively small size of
the manufacturer's back-up organization. For instance, we have had to ship
parts of an Ann Arbor terminal to Michigan for repairs and replacement. Also
the interface between one manufacturer's equipment and another's may not
function too well, particularly if your installation is a 'pioneer'. We spent
four months working out hardware bugs in the interface between our Interdats
and the 360/40. On the other Pand, the Ann Arbor and the Texas Instruments

teeminals were installed with nothing more drastic than a minor plug change.

Far and away the most serious drawback to minis, however, is the lack of
available software of any kind, but particularly software for CAl systems. *
There are few CAl systems available at all, and those that are available off -
the shelf are primarily one-language systems, usually BASIC. Many educat|ona!
installations do not want to 1imit their terninal systems to one language,

as that imposes restr|ct|ons ‘on the types of appllcations that can be mixed
onthe: same syslem ice., CAI interacllve programmlng, remote file matnten-
;ance,'to name. a few. in addttlon. BASIC has never really estabtnshed itself

‘ : as dH adequate LAI coursa authorang language. -

unmc A

Ric

GA 1 Toxt Provided by ERIC

'7' BEST COPY AVAILABLE

Sitee there are no wisely aecepted CAL systems far minis, it iy very dif-
ticelt, i1 not dmpossiole, for one installation to exchange courses with
another. This is a serious drawbock as you probably know, because of the

time and effort required to develop really good courseware.

It is obvious that what is neecoed is a software system that is compatible
with many types of hdrdwa}e and is capable of handling at least two lan-
guages, one of which is a CAl author language, and the other an acceptable
problem-solving language. We cannot stress enough our conviction that no
one-languaqe system is sufficient to meet the needs of course authors, even
when no use cther than CAl is made of an interactive system. Existing
systems based on a computational language such as APL or BASIC, in addition
to being ill-suited to course authoring, are too expensive of core for most
users. The languages suited especially to course authoring are too re-

strictive for the development of certain types of courseware.

In spite of the potential problems of mini-based CAl systems, there is

still ore overriding reason to try to make them go. That reason is the cost
of hardware. Large mainframe systems that are widely accepted for CAl are
beiny abandoned by many users because they are too expensive to run. The
chouice is either to diminish the size and capability of the interactive
conputing system or to switch to less expensive equipment. For instance

at WWSC it became clear that CAl had to be done more cheaply or not al all.
Our main computler had become overloaded with batch work and the prospects

for upgrading it in the near future were not good. We found that a rather
modest investment in minicomputer hardware would give us enough power to

run about sixteen student terminals. |In fact, the cost of computer power

for running between sixteen and thrity-two terminals on such a system is about
three-thousand dollars per terminal. This price does not include disk
storage, which we already had. 1t can cost anywhere from 10,000 to 20,000
dollars to provide disk storage for a system fo 16 to 32 terminals, depending
on the exact amount of disk space required and the brand purchased. HNeither
does it include the cost of the terminals, which ranges anywhere from one

thousand to three thousand dollars each. ; ’

The most s;gnuflcant advantage of a minicomputer based terminal system is

that relativeiy low cost can ‘be obtalned wnthout go;ng to a huge system. on

the other hand if many more termlnals are needed one can readuly expand by

S'WPIY addtng on duplicate syctems in grouos of up to say a maximum of. 32
termlnats.u ‘ ' , B : :

.3.

There wre twa inherect advartages to such a nethod. The first is that the
pullt-in reduncancy of svsrems reduces the possibility of catastrophic
results wnen the occasional, bul inevitable, system crash occurs. Secondly,
the smaller systems can be dispersed sc that the processor and the terminals
are yrouped close together. This not only reduces costly telecommunications
Vinks, but thece is a great psychological advantage for the user. It is

our experience that the further tne computer is from the terminal the more
frustration is felt by the user when he has trouble with the system., An
on-site computer installation gives the user someone to turn to when diffi-
culties arise. The importance of having human communication between the

remote user and th: central installation cannot be emphasized too much.

THE MULTILINGUAL INTERPRETER AT WWSC

To turn now to a more specific look at the system we developed at WWSC, we
have constructad a system based on a Model 7/32 Interdata minicomputer. This
machine is capable of having a million bytes of core storage and has an
instruction execution speed approximately equivalent to that of an IBM
360/50. We will be connected through our 360/40 to our main main disk system
for storage of programs and data, but a disk could be attached directly to

the system if desired.

The system runs under the control of a time sharing monitor. This monitor,
or operating system, handles all input/output to the terminals and to the
disk storage, whether it is on-line or through the main computer. The aln-
guage processor itself is based upon a general (or multilingual) interpreter.
This interpreter is capable of executing programs that have been translated
into an internal code made up of single byte operands and operators. Oper-
ator routines are included to perform all functions that are needed to
execute any of the languages in the system. Many of the languages share
operator routines. For example, the sum of A + B is calculated by the same
routine regardless of the language fo the original statement. In sum, the

general interpreter is the workhorse of the system.

The programs that prepare work for the interpreter are called front-end

translators.‘ One front-end is provided for each high-level language in the

system., - They convert the respect ive source statements into a standard
'anterprettve code whach can then be executed by the general snterpreter.

When a program is to be runy, it is wr:tten to a disk in source form. lt is»e‘ ity

then read from the dlsk processed by the apprOprlate trantlator, and

<y

cenveried ey onterpretive codes AL this point, the program can either be

executed by the intorpreler, wur il can be written onto disk for later
exccution, This latter opltion means that programs that are to be run many
times can be saved in compiled form and used over and over. This cuts

dramatically the time required to execute programs, as they are executed

immediately after being read from storage.

Our original terminal system, which was based on the 360/40, used a similar
general interpreter capable of handling COURSEWRITER 111, BASIC and a
tocally written subset of PL/1 called WPL). We are now moving to a system
which combines, for the time being, BASIC, with which you are already

familiar, and PILOT, a course authoring languace which is relatively new.

Uur first introduction to PILOT came from a two-page article by Dr. Sylvan
Rubin of the Stanford Research Institute published in the November 1973

issue of Computer Decisions.2 The article describes the language [tself and
how it came into being. The beauty of PILOT is that it has a very simple
syntax and can be readily implemented on virtually any computer. At WWSC

we have written our ccmniler for PILOT in Interdata Assembler language.
According tc the article, PILOT compilers have been written in BASIC, FORTRAN

SNOBOL, APL, and PL/1 in addition to various machine-dependent assembler

languages. All use the same user notation for the instruction set, and a
standard type of notation for local extensions of the language. for the
benefit of those among you who may not be familiar with PILOT, | would like
to describe the language briefly. The fact that the entire language can be
described in & two-page article says a great deal about the structural

simplicity of PILOT, but that is not to say that it lacks versatility.

Only four op codes are required to begin coding a course in PILOT: T: for
type text; A: for accept answer; M: for match answer; J: for jump or branch.
tach of these op codes is followed by a text field. In addition, any of
these four op codes can be made conditional in one of two ways. Coding the
letter 'Y' after an op code (for example, TY:) causes a statement to be
executed only if the last answer to a match was successful. Conversely,
appending the letter 'N' to an op code causes a statement to be executed
onty if the previous match failed. A statement can also be made conditional
on the value of an expression roded withih‘parentheses;after the op code

{for example, Almax=min):). Such expressions should be coded in BASICEno-k"‘

~tation,.

-S-

Four wore standart op coday for £1LOT greatly enhance the lanqguage. The
first three are R: for remark or comment; U: for use subroutine; E: for

end subroutine. The fourth and most powerful is C: for compute. This op
code is followed by either an expression or by a CALL to a subroutine. (At
WWSC, BASIC notation and subroutines are used.) This feature allows all the

computational capabilities of BASIC to be embedded within a CA] course.

Some other features of the language include the availability of statement
labels, identified by an initial asterisk (*) and placed irmediately before
an op code (e.g., *STEP T:). The label can then be used in the text field

of a J statement. Variable names preceded by a Jollar sign {e.g. $HAME)

can be coded in the text field of an accept answer statement. This will cause .~

the student's answer to be stored in that variable. Such answers can be
either numeric or alphabetic or mixed. The variable name can then be placed
within the text of a T statement. When that variable name is reached by
the program, the stored answer will print in its place, adding a personal

touch to student-terminal {nteraction.

There are other features of PILOT that greatly enhance programming ability.
Without going into detail, there are statements for course segmentation and
linkage; extended pattern matching with tolerance for common spelling errors;
statements which allow line graphics within a CAl unit; the ability to con-

trol a random access slide projector.

Perhaps the greatest advantage to the link between BASIC and PILOT at WWSC
is the ability to CALL already compiled BASIC subroutines from a PILOT
course. By eliminating the need for compiling a subprogram each time it is
called, many CAl courses can be made available that are too costly in

response time ¢a systems which lack the compile feature.

We believe that our system meets the following needs. 1) It is implemented
on a relatively inexpensive processor with no built-in necessity for costly
telecommunications charges. 2) It is versatile in that the user is not un-
necessarily limited in kis choice of high-level languages. A new language
can be added to the system without modification of existing software and even

witnout significant service interruptions. 3) The general |nterpreter gives

“the system the advantages of a stng\e language system. 4) 1t provides CAI

authors with a]anguage which is easy to learn. But authors who wnsh to do

more sophist:cated CAi programmlng are not bound by nts sump11Ctty,,51nce

o they. haVe easy- aCCess to both the advanced features of the author language-
and to a problem solving language.: : :

-6-

Fe is dmposainde o Tgnore the droblén of translating existing courseware
when a shift to g new CAl longuage is made. In our situation we solved the
protlem by writing a program which translates COURSEWRITER 11t to PILOT.
This took approximately 80 - 100 mon hours of work. We estimate at the

present time that we obtain about 90% complete conversion. That means,

that 90% of the statements in a COURSEWRITER ||| course will be successfully
converted without further human intervention. Some courses convert with no
change whatsoever. The worst case so far was only 60% successful. We are

also aware of the existence of other translators to and from PILOT.

CONCLUS1ONS

tn summary, we feel that it is possible to run a CAl system on a minicomputer
which is both cost effective and meets most of the needs of potential authors.
On the other hand we feel that the probability of success is directly re-
lated to access to good software. Since many installations lack the human
resources to develop their own software we recommend extreme caution before
making a move to a mini-based system until it is certain that software can

be obtained which is adequate to meet the needs of the system users.

We considered making some suggestions in the direction of establishing
standards for CAl scftware, but are discouraged by previous experience. The
climate does not yet seem ripe for such a move. We are not attempting to
push our own system as a standard, but are convinced that it is a step in

the right direction and are willing to share it with anyone who is interested.

B1BLIOGRAPHY

1} Since there are many similarities between the new and old systems,
users who are particularly interested are referred to a paper presented
at the ACM Annual Conference in 1973. L. Kheriaty, "A Multilingual
Interpreter for Interactive Computing in an Academic Envaronment”

ACM Proceedings,1973, pp. 290-294.

2} 3. Rubin, "A Simple Instructional Language” Computer Decisions,
Nov. 1973, pp. 17- 18 , T R

