
DOCUMENT RESUME

ED 093 377 IR 000 884

AUTHOR Kheriaty, Larry
\\

TITLE Report on a Mini-Computer Based Interactive Computing
System.

INSTITUTION Western Washington State Coll., Bellingham.
PUB DATE 74
NOTE bp.

EDRS PRICE MF-$0.75 HC-$1.50 FLUS POSTAGE
DESCRIPTORS *Computer Assisted Instruction; *Computer Programs;

*Computers; Programing Languages
IDENTIFIERS *Minicpmputers; PILOT; Western Washington State

College

ABSTRACT
In spite of the limitations of minicomputers, Western

Washington State College (WWSC) has developed a useful interactive
computing system based on a Model 7/32 Interdata minicomputer and the
computer program, PILOT. The major disadvantages of minicomputers are
the difficulty of securing maintenance and the reliance often QD the
single language, BASIC. Software systems are crucial and languages
such as BASIC or APL are ill-suited for course - authoring :or
computer-assisted instruction (m).. Cost, of course, is the
principle advantage. The system at WWSC relies on a multilingual
interpreter to execute programs in a constant pattern for all
languages, once translated into an internal code of single byte
operands and operators. PILOT has great structural simplicity but yet
great versatility, and perhaps its best feature is its ability to
call an already compiled BASIC subroutine. A program was written
which can translate COURSEWRITER III to PILOT. The experience of WWSC
indicates that a CAI system can be satisfactorily run pn a
minicomputer if there is access to good software. (WH)



L. K,het..11,..,

BEST COPY AVAILABLE

Ih1E11V COMPuTING SYSTEM

pryqtri, Lenter, Western Washington State College

IlITRODUCTIoN

There art.. to main thrt.p.,t., to this paper. The primary intent is to intro-
duce' you to the mini computer based terminal system at WWSC, as the title
suggests. before I do that, however,

I feel this is a good opportunity to

comment on the role of the mini in interactive computing. Since our terminal
system has been in the process of conversion from a 360/40 base to an Inter-
data mini base over the past six months, we have some immediate experience

rrN to draw on for this discussion.

141 THE ROLE OF THE MINICOMPUTER IN INTERACTIVE COMPUTING

C=0, First I mould like to state categorically that minicomputers are not the answerC:1
to all of our computing problems. It is a mistake to think that a five-U./
thousand dollar processor can do the job of a largescaie computer. Some
of the problems associated with minicomputers are not unique to the mini.
They can pertain to any computer equipment when a switch is made from estab-
lished vendors, such as IBM, to a relative newcomer in the field of manufacturing
computer hardware.

The response time when maintenance is needed has been a probIem, partly due
to Western's 'remote' location and partly due to the relatively small size of
the manufacturer's back-up organization. For instance, we have had to sh,p
parts of an Ann Arbor terminal to Michigan for repairs and replacement. AlsO
the interface between one manufacturer's equipment and another's may not
function too well, particularly if your installation is a 'pioneer'. We spent
four months working out hardware bugs in tha interface between our Interdata
and the 360/40. On the other hand, the Ann Arbor and the Texas Instruments
terminals were installed with nothing more drastic than a minor plug change.

Far and away the most serious drawback to minis, however, is the lack of

available software of any kind, but particularly software for CAI systems.
There are few CAI systems available at all, and those that are available off
the shelf are primarily one-language systems, usually BASIC. Many educational
installations do not want to limit their terminal systems to one language,
as that imposes restrictions on the types of applications that can be mixed
on the same system, i.e., CAI, interactive programming, remote file mainten-
ance, to name a few. In addition, BASIC has never really established itself
as an adequate CAI course authoring language,



-2-
BEST COPY AVAILABLE

.iLuepted LAI systems for minis, it is very dif-

ficult, it mot impossible, fo7 >rle installtiot, to exchange courses with

another. this is a serious drawback is you probably know, because of the

time and effort required to develop really good courseware.

It is obvious that what is need,A is a software system that is compatible

with many types of hardware and is capable of handling at least two lan-

guages, one of which is a CAI author language, and the other an acceptable

problem-solving language. We cannot stress enough our conviction that no

one-language system is sufficient to meet the needs of course authors, even

wnen no use other than CAI is made of an interactive system. Existing

systems based on a computational language such as APL or BASIC, in addition

to being ill-suited to course authoring, are too expensive of core for most

users. The languages suited especially to course authoring are too re-

strictive for the development of certain types of courseware.

In spite of the potential problems of mini-based CAI systems, there is

still ore overriding reason to try to make them go. That reason is the cost

of hardware. Large mainframe systems that are widely accepted for CAI are

being abandoned by many users because they are too expensive to run. The

choice is either to diminish the size and capability of the interactive

coputing system or to switch to less expensive equipment. For instance,

at WWSC it became clear that CAI had to be done more cheaply or not al all.

Our main computer had become overloaded with batch work and the prospects

for upgrading it in the near future were not good. We found that a rather

modest investment in minicomputer hardware would give us enough power to

run about sixteen student terminals. In fact, the cost of computer power

for running between sixteen and thrity-two terminals on such a system is about

three-thousand dollars per terminal. This price does not include disk

storage, which we already had. It can cost anywhere from 10,000 to 20,000

dollars to provide disk storage for a system fo 16 to 32 terminals, depending

on the exact amount of disk space required and the brand purchased. Neither

does it include the cost of the terminals, which ranges anywhere from one

thousand to three thousand dollars each.

The most significant advantage of a minicomputer based terminal system is

that relatively low cost can be obtained without going to a huge system. On

the other hand, if many more terminals are needed one can readily expand by

simply adding on duplicate systems in grouns of up to say a maximum of 32

terminals.



-3-

Thcrc t%, ilheret advartaqes to such a method, The first is that the

built-in -k_Jt.concy ot ,,;-,rer reduces the possibility of catastrophic

results rc? r, the occasional, but inevitable, system crash occurs. Secondly,

the smaller systems can be dispersed sc that the processor and the terminals

are grouped close together. This not only reduces costly telecommunications

links, but the .-e is a great psychological advantagc for the user. It is

our experience that the further tie computer is from the terminal the more

frustration is felt by the user when he has trouble with the system. An

on-site computer installation gives the user someone to turn to when diffi-

culties arise. The importance of having human communication between the

remote user and the central installation cannot be emphasized too much.

THE MULTILINGUAL INTERPRETER AT WWSC

To turn now to a more specific look at the system we developed at WWSC, we

have constructed a system based on a Model 7/32 Interdata minicomputer. This

machine is capable of having a million bytes of core storage and has an

instruction execution speed approximately equivalent to that of an IBM

360/50. We will be connected through our 360/40 to our main main disk system

for storage of programs and data, but a disk could be attached directly to

the system if desired.

The system runs under the control of a time sharing monitor. This monitor,

or operating system, handles all input/output to the terminals and to the

disk storage, whether it is on-line or through the main computer. The aln-

guage processor itself is based upon a general (or multilingual) interpreter.

This interpreter is capable of executing programs that have been translated

into an internal code made up of single byte operands and operators. Oper-

ator routines are included to perform all functions that are needed to

execute any of the languages in the system. Many of the languages share

operator routines. For example, the sum of A + B is calculated by the same

routine regardless of the language fo the original statement. In sum, the

general interpreter is the workhorse of the system.

The programs that prepare work for the interpreter are called front-end

translators. One front-end is provided for each high-level language in the

system. They convert the respective source statements into a standard

interpretive code which can then be executed by the general interpreter.

When a program is to be run, it is written to a disk in source form. It is

then read from the disk, processed by the appropriate translator, and



T,) OlvrpretIV, At thH point, the program can either he

eXui;Utcd by the: irit-rprClcr, r it (.an be oritttrn onto disk for later

execution. Ihi latter option means that programs that are to he run many

times can be saved in compiled form and used over and over This cuts

dramatically the time required to execute programs, as they are executed

immediately after being read from storage.

Our original terminal system, which was based on the 360/40, used a similar

general interpreter capable of handling COURSEWRITER III, BASIC and a

locally written subset of PL/1 called WPL 1

. We are now moving to a system

which combines, for the time being, BASIC, with which you are already

familiar, and PILOT, a course authoring languac,e which is relatively new.

Our first introduction to PILOT came from a two-page article by Dr. Sylvan

Rubio of the Stanford Research Institute published In the November 1973

issue of Computer Decisions. 2
The article describes the language itself and

how it came into being. The beauty of PILOT is that it has a very simple

syntax and can be readily implemented on virtually any computer. At WWSC

we have written our ccmoiler for PILOT in Interdata Assembler language.

According to the article, PILOT compilers have been written in BASIC, FORTRAN,

SNOBOL, APL, and PL/1 in addition to various machine-dependent assembler

languages. All use the same user notation for the instruction set, and a

standard type of notation for local extensions of the language. For the

benefit of those among you who may not be familiar with PILOT, I would like

to describe the language briefly. The fact that the entire language can be

described in a two-page article says a great deal about the structural

simplicity of PILOT, but that is not to say that it lacks versatility.

Only four op codes are required to begin coding a course in PILOT: T: for

type text; A: for accept answer; M: for match answer; J: for jump or branch.

Each of these op codes is followed by a text field. In addition, any of

these four op codes can be made conditional in one of two ways. Coding the

letter 'Y' after an op code (for example, TY:) causes a statement to be

executed only if the last answer to a match was successful. Conversely,

appending the letter 'N' to an op code causes a statement to be executed

only if the previous match failed. A statement can also be made conditional

on the value of an expression coded within parentheses after the op code

(for example, A(max=min):). Such expressions should be coded in BASIC no-

tation.



64

-5-

Four .,tan,:arJ oL cA)d,.!.s for PILOT greatly enhance the language. The

first three are. R: for remark or coment; U: fur use subroutine; E: for

end subroutine, The fourth and most poerful i5 C: for compute. This op

code is followed by either an expression or by a CALL to a subroutine. (At

WWSC, BASIC notation and subroutines are used.) This feature allows all the

computational capabilities of BASIC to be embedded within a CAI course.

Some other features of the language include the availability of statement

labels, identified by an initial asterisk (0 and placed immediately before

an op code (e.g., *STEP T:). The label can then be used in the text field

of a J statement. Variable names preceded by a dollar sign (e.g. SHAME)

can be coded in the text field of an accept answer statement. This will cause

the student's answer to be stored in that variable. Such answers can be

either numeric or alphabetic or mixed. The variable name can then be placed

within the text of a T statement. When that variable name is reached by

the program, the stored answer will print in its place, adding a personal

touch to student-terminal interaction.

There are other features of PILOT that greatly enhance programming ability.

Without going into detail, there are statements for course segmentation and

linkage; extended pattern matching with tolerance for common spelling errors;

statements which allow line graphics within a CAI unit; the ability to con-

trol a random access slide projector.

Perhaps the greatest advantage to the link between BASIC and PILOT at WWSC

is the ability to CALL already compiled BASIC subroutines from a PILOT

course. By eliminating the need for compiling a subprogram each time it is

called, many CAI courses can be made available that are too costly in

response time (.,1 systems which lack the compile feature.

We believe that our system meets the following needs. 1) It is implemented

on a relatively inexpensive processor with no built-in necessity for costly

telecommunications charges. 2) It is versatile in that the user is not un-

necessarily limited in his choice of high-level languages. A new language

can be added to the system without modification of existing software and even

without significant service interruptions. 3) The general interpreter gives

the system the advantages of a single language system. 4) It provides CAI

authors with a language which is easy to learn. But authors who wish to do

more sophisticated CAI programming are not bound by its simplicity, since

they have easy access to both the advanced features of the author language

and to a problem-solving language.



-6-

It i, iol.w-,..,;h10 to Iqhoro ';f051e3r1, of tran,,latiny existing courseware

Ahen a sI,ift to a new Chi Ionudge is made. In our situation we solved the

problem by writing a prwiraTli which translates COURSEWRITER 111 to PILOT.

This took approximately 80 100 man hours of work. We estimate at the

present time that we obtain about 90% complete conversion. That means,

that 90'.6 of the statements in a COURSEWRITER III course will be successfully

converted without further human intervention. Some courses convert with no

change whatsoever. The worst case so far was only 60% successful. We are

also aware of the existence of other translators to and from PILOT.

CONCLUSIONS

In summary, we feel that it is possible to run a CAI system on a minicomputer

which is both cost effective and meets most of the needs of potential authors.

On the other hand we feel that the probability of success is directly re-

lated to access to good software. Since many installations lack the human

resources to develop their own software we recommend extreme caution before

making a move to a mini-based system until it is certain that software can

be obtained which is adequate to meet the needs of the system users.

We considered making some suggestions in the direction of establishing

standards for CAI software, but are discouraged by previous experience. The

climate does not yet seem ripe for such a move. We are not attempting to

push our own system as a standard, but are convinced that it is a step in

the right direction and are willing to share it with anyone who is interested.

BIBLIOGRAPHY

l) Since there are many similarities between the new and old systems,
users who are particularly interested are referred to a paper presented
at the ACM Annual Conference in 1973. L. Kheriaty, "A Multilingual
Interpreter for Interactive Computing in an Academic Environment",
ACM Proceedings,1973, pp. 290-294.

I. Rubin, "A Simple Instructional Language", Computer Decisions,
Nov. 1973, pp. 17-18.


