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LEARNER-CONTROLLED COMPUTING:
A DESCRIPTION AND RATIONALE1

Stuart Milner

School of Education
The Catholic University of America

Washington, O. C. 20017

This paper discusses a use of technology in which the
student controls the computer (e.g., computer programming)
instead of it controlling the student (e.g., drill-and-
practice). A description of the nature of this mode of
computer use is provided, and some examples based on case
studies conducted by the author are given.

A rationale for learner control is discussed in terms
of cognitive and affective outcomes of computing. The cog-
nitive outcomes include relatively specific.learning_and
thinking skills and more general systematic methods of
problem solving. AffeCtiVe outcomes include self-confid-
ence, curiosity and exploratory behaviors, and motivation.

INTRODUCTION

Instructional uses of computers may be classified on a continuum

with the amount of student control as the underlying variable. At one end,

lie the classical computer-assisted instruction methods (e.g., drill-and-

practice) in which the student has no real control except for his responses

to pre-programmed instruction. At the other extreme are the methods used

by the student (e.g., computer programming) to control the hardware and/or

software of the computer. The purpose of this paper is to describe the

nature of, and provide a rationale for, learner-controlled computing.

a caper presented at the Annual Meeting of the American
Educational Pesearch Association, Chicago, Illinois, April 1974.



One of the reasons it is important to describe the nature of

1,1arhcr-cortrol1 t:i cc-:utilg is that there exists, at least for sore, a

tisconception or lack of understanding about it. for instance, it is

often considered as the so-called problem-solving mode, wherein the computer

is used merely as a calculating aid. Actually, learner-controlled computing

transcends this, and facilitates the acquisition of thinking and learning

skills, among other things. The computer is to be used by the student in

his problem - solving endeavors in much the same way as professionals use it

to gain insight into complex areas such as sending man to the moon.

Learner-controlled computing in this context refers to the learner's

power to control the course of learning by implementing his own problem-

solving strategies and executing these at his will. Involved in computing

is the development of algorithms by the student for problem solution. In

the process there are a number of tasks which include, analyzing the problem,

devising and implementing a program for its solution, testing the validity of

the program, and, if necessary, finding errors in, or debugging, that program.

In effect, the student is the teacher and the computer is the student--supp-

orting the general agreement that in teaching a subject one learnt it better.

As an example, if a student is to learn the laws governing a process, he

writes the program to simulate the process and studies its operation.

Contrasted with "closed-loop" learning objectives (e.g., programmed

instruction, many CAI tutorials), computing involves "open-loop" or less

restrictive objectives. Accordingly, subject-matter experiences are student-

determined and are often serendipitous in occurrence.

Nonetheless, there is a seeming paradox between the students' freedom
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t: ,!erelop co-.11e:( such as advanced plotting and gae-playing

ac:.3din3 to their own interests, and the forced clarity and

rigorous thinking involved in computer programming. Perhaps this is what

rakes computing so facinating to so many.

The rationale for learner - controlled computing includes the pot-

ential for: 1) individualization, 2) the use of "real world" applications,

and 3) the acquisition of generalized learning skills (i.e., "learning

how to learn").

If one accepts the broad definition of individualized learning

as that which proceeds according to the unique needs and interests of the

student, one can see that by allowing students to implement their own

problem-solving strategies through computer programs based on unique

needs and interests, individualization is served. Moreover, in the highly

responsive environment of computing, it is conceivable that students will

learn to find out things by themselves based, in part, on their own spon-

taneous activities, and, in part, on the support system (e.g., teacher,

software, courseware) we provide for them.

In addition to individualization, computing can include meaning-

ful, "real world" projects such as, the design of lunar simulation or

instructional programs written by a student for his peers (e.g., drill-

and-practice programs). A special advantage of such learning situations

is that creativity is fostered when real problems of the sort profession-

als must solve are used. Another is that students are motivated by seeing

the meaning and relevance of what they are doing.

A third justification stems from the need to make more pervasive
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broad educational goals that are now somewhat excluded. As Toffler (1970)

Given further acceleration, we can conclude that knowledge
will grog increasingly perishable. Today's 'fact' becomes
tomorrow's 'misinformation.' This i.s no argument against learn-
ing facts or data--far from it. But a society . . . places an
enormous premium on learning efficiency. Tomorrow's schools
must therefore teach not merely data, but ways to manipulate it.
Students learn how to discard old ideas, how and when to
replace them. They must, in short, learn how to learn.

The major focus of this paper is the explication of generalized

learning skills which can be acquired through computing. Discussion will

be in terms of cognitive and affective learning outcomes based on both

voirical evidence and conjecture.

Before describing them, though, it should be mentioned that the

formulation was partially the result of case studies in computing by this

investigator. A study involving fifth grade students is described else -

w1ere (Milner, 1973). In a more recent study, sixth grade students of a

wide range of ability in a suburban elementary school participated.

The environment was open-ended in that students were free to define their

own projects or to pursue suggested ones according to their own interests

and motivation. It might be useful to note some examples of projects

the students were involved in, all of which were their own choice.

Several chose to work on gaming routines, based on a prototype

game, whose object was to guess a predetermined number within a fixed

range. The introductory program consisting of several sub-procedures

proved useful as a starter; the students added their own extensions,

generalizations, and refinements.
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One student d,!velot',ed a tic-Lac -toL (73re which consisted of

several suo-pros ..,rintinq and interaction routines, and

rv.resented a first approximation to a complex project.

Another student, who was learning a programming language (LOGO)

from an available manual, became interested in an example of a drill-and-

practice arithmetic program. She extended and modified the example pro-

gram into a fairly sophisticated drill-and-practice multiplication pro-

gram.

In general, the students' projects were interesting and non-tri-

vial. Of significance was the fact that they were involved in these pro-

jects over extended periods of time--almost two months in some cases.

This project-oriented approach has been advocated by Papert (1971a)

aft Dwyer (1574), who are using computer-controlled mechanical devices and

other complex systems at both the elementary and secondary school levels.

Regarding projects that extend in time, Papert (1971a) states:

. . . the process is long enough for the child to become
involved, to try several ideas, to have the experience of
putting something of oneself in the final result, to compare
one's work with that of other children, to discuss, to criti-
cize on some other basis than 'right or wrong'.

In another case study conducted by this investigator, eigth grade

students in an urban secondary school learned, among other things, comp-

What was interesting here was the fact that the

were previously identified as "low achievers,' yet they were able to engage

in the kind of algorithmic thinking required in computing. Affective out-

comes such as increased motivation to do "academic" work, which was pre-

viously eschewed, were also observed.
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AO'ASITI'.7!; CF 7JE!;:'.7.LIZED LEAr),NM SILLS

The cc;nitive affe,:tive outs -..es of learner-controlled cvp-

:,:ing involve the acquisition of generalized learning skills (i.e., "learn.-

in) how to learn"). This discussion is prirarily in the context of problem

solving, although it need not be limited to that domain. Moreover, the

skills dealt with are not exhaustive and constitute an attempt, based on

observation and conjecture, to explain the outcomes.

The skills described may be acquired with or without direct inst-

ru:tion. In other words, the skills may be taught by another person or

acquired naturally by the student without human intervention through comp-

uting. The case for using computers is based partially on the dynamic, chall-

enging, and responsive environment they produce.

Cognitive Outcc'es

For purposes 1.e re, cognitive outcomes have been divided into two

broad categories. One includes learning and thinking skills and is rela-

tively specific. The other, a more general category, concerns systematic

methods of problem solving. As the relatively more specific skills are

developed and incorporated with the more general ones, powerful problem

solving processes emerge. Following is a discussion of them.

The algorithmic nature of computing can serve as an excellent cont-

ext for learning how to organize information. In developing an algorithm

for problem solution, the student needs to structure material in an unamb-

igous sequence and, in the process, think ahead, anticipate outcomes in

advance, and occasionally alter previously formed steps. More specifically,
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student netAs to dD such activities as determining when and how to

ir:Jt and out:ut in!cratien, assign valu,ls, allocate storage, perform

iterations, make decisions, implement procedures, etc. In doing so,

students gain insight into the nature of algorithms--how they are formed,

debugged, and executed.

The fostering of independent thinking, a broad outcome of any

individualized learning environment, can be partialliachieved by giving

students the opportunity to choose their, own projects and provide unique

solutions to them. It becomes important in this case to get students to

take the initiative to develop, modify, solve, and extend problems in

ways that make sense to them, just as scientists do in their endeavors.

Of course, for students who "don't know what to do," projects could be

sug?estdd and a certain amount Of'StrUttUre 614 directiOn-ProVided:

Observations have led me to believe that once students are given freedom

to explore, autonomous thinking follows.

As students learn to learn, they need experience in viewing prob-

lems in alternate ways. In one sense, this involves improvisation. Any-

one who used various types of programming languages has experienced this.

In another sense, it is the using of different paths toward the same end.

Different algorithms can produce the same result. In any event, viewing

problems in different ways can be made transparent in computing.

Logical thinking is facilitated by the very, nature of computing.

Consider, for example, the sequencing of operations; although other dimen-

sions of logic are involved, too. Writing computer programs requires a
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se7.4er.ce of o;erations. Students learn very quickly ti.,at even one

c:iration c...t of secze or missing frorl a sequence will not yield the

desired results. I have observed cases where students know that a function

is necessary and how to use it, but are unsure as to where to place or

reassign the function in an existing algorithm.

If one hasi.iternalized a process, one' ,should be able to explicate

that process. This involves something more complex than just recognizing

an alternative on a multiple choice test item, or producing a single-valued

solution to a problem. Part of the complexity is due to virtually an un-

limited number of possible paths leading to the problem solution, a solu-

tion which may involve the algorithm itself, or even a package including

the algorithm, and other components.

In traditional modes' Of instruction, students rarely have the

onortunity to give a detailed explanation of their own understanding of

a subject. floreover, they often cannot describe how they arrived at a

solution nor how a process works. There may be at least two reasons for

this: First, students an, teachers may lack a sufficiently precise language

in which to communicate (Feurzeig, et al., 1969). I have observed cases..

where students obviously understood a process but were unable to use the

right language to express it. Through programming, which involves a

precise language, students not only can present their thoughts via the

computer, but can discuss their programs in terms of structure, content

etc. Secondly, students do not usually get enough practice in actually

stating their thoughts. I always encourage students to explain what their

program is about and whether it is a completed project or an approximation

of one--"expressive power to the students."
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Critical to problen solving is the ability to debug or search

ar.:1 err,:xs. In coputing,this invcives determining at

various points if the program executes correctly. Not only can students

be taught specific techniques, but they also quite naturally develop their

own. In the former case, if programs do not execute properly, students

cCuld be instructed to build checks in the logic or print Out values at

various stages in the program--tasks which are relatively easy to do on

a computer. In the latter case, students in the process of debugging

develop useful heuristics through guessing and trial and error methods.

Heuristics, defined here, are plausible strategies that serve to guide,

discover, or reveal. [Polya (1957) provides an excellent discussion of

hesiristic reasoning]. What is involved, then, is a concrete problem-

solving situation, in which-the student has the power to change and

experiment, and hopefully get immediate knowledge of results.

Often, when students work on problems, they do not work on them

long enough to develop generalizations. However, if students are given

the opportunity to develop problems that extend beyond traditional time

allocations, generalizations can be facilitated. For example, a sixth

grade student was writing a drill-and-practice program in mathematics,

and her initial program simply dealt with adding two one-digit random

nuibers. She generalized it to present two-digit addition problemsand

two-digit multiplication problems with record keeping and other feed-

back functions. All of this took place over a period of approximately

six weeks.
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The above specific learning and thinking skills should be used in

tho rcrc systc-2tic retftds of roblem

s:lvinl. Troso syst::-.atic methods include problc$:i comprehension, hypoth-

esis generation, experimentation, and reflectionl and can be learned

through computing. Polya (1957) describes some of these methods for teach-

ing mathematics.. Computer programming, by its very nature, requires the

crr;ful analysis and precise explication of thought' that these methods imply.

Also, it is relatively easy to hypothesize and experiment in prOgramming

by changing steps in an algorithm or by varying input/output parameters.

Once a program is executed, the validity of an algorithm can be tested and

reflection can occur.

Initially, the student needs to gain a general understanding of

the problem in terms of expected type of outcome or mode of solWon, cond-

itions involved, etc. Understanding a problem, at least in the early

stages of comprehension, involves knowing what to look at in a problem.

Students might consider questions such as the following: (1) What are

the parameters to be used? (2) What is important and what is "noise?"

(3) What might a solution look like and what kind of information does one

need to know in order to reach it? Some other questions that students

need to ask at the problem comprehension stage are: (1) What kind of

information/data am I dealing with? (2) What additional inforMation or

clarification is needed? (3) What resources are available, and what res-

ources are needed? (4) Are there any transformations in the data to be

made? (5) What does successive approximation to a solution look like?

(6) Where should specific procedures be placed in a solution algorithm?

When and how should they be implemented? etc.



Follcing an understanding of the problem--a solution may not be

a: all cle.:r, te student have an idea of what needs to be done

and a direction to pursue--it is important to generate hypotheses or ideas

v.hich would lead to a plan for project execution. A question that students

ask at this stage is, "How could I do that?" For example, if a student

were programming a computer to play the game of tic-tac-toe, he might

be taught to divide the project into three parts: (1) a computer program

to simply record events between two players; (2) a program to keep score

avid evaluate play; and ultimately, (3) a strategy playing program. What

was achieved in earlier steps (parts) would be used in combination with

later extensions leading to successful project completion. In short, the

student would learn how to build exteitions and solutions from smaller,

more.manageable-parts. Papert-(1971b) "advocates-this-approach'and pro-

vides some interesting examples from his research.

By dividing a project into parts, then, the student makes it more

manageable and learns an important aspect of thinking. In turn, each sub-

project (part) might involve even smaller parts so the process here is

iterative. For instance, in the case of the first part of the tic-tac-toe

game described in the preceding paragraph, the student might initially need

to generate printout and mode of entry routines, each of which is a separ-

ate-problem in itself. It is relatively easy to use sub-programs on a

computer, incidentally, once a computer language is learned.

When hypotheses or ideas have been formed, experimentation is the

next step. This execution phase is the basis for acceptance or rejection

of ideas. Once it is completed, the student can determine if the project

has been finished. In the case of computer programming, this is an iter-
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ative phase In which various experfrents and considerable hypothesis

ttinj place. Eventually, either a progra:1 works or.it does not.

In the interim, debugging plays a major role. Also, the student can be

taught to reformulate hypotheses or reinitialize processes.
,ie

Based on the experiments, the student could reflect back on

the solution and refine, extend, or even generate new projects. As such,

problem solving approximates "real life" situations where one works through

solutions possibly many tires 'over, vis-a-vis traditional "one-shot"

solutions that are graded and returned by the teacher. If the extended

or new projects have similarities with previous ones, the student exer-

cises inductive reasoning.

Affective Outcc:-c:s

Expected affective outcomes in learner-controlled computing environ-

rents generally deal with values, attitudes, and interests. Some of the

outcomes, as discussed below, deal with self-confidence, curiosity and

exploratory behaviors, and motivation.

A certain degree of early intellectual mastery in a learning situa-

tion is important in building self-confidence. In computing, students can

write simple programs that execute at their first sitting at a terminal.

They are in control. That students perceive and, possibly, prefer this

control is observable; or as one sixth grade student stated: "I like

1,riting programs because its different than using programs [CAI] and also

more fun."

Enhancement of self-confidence leads to increased experimentation

in general. The Co-louter certainly does not harass one for doing so. I

would speculate that a non - threatening, learner-controlled environment
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m;.41d serve to enhance self-confidence in much the same manner as the

cr.::.;;;:ivity. In other girds, by placing a

crld in a relatively different environent where he can experience

control and mastery, we could expect to foster the development of his

self-confidence.

Curiosity and exploratory behaviors such as frequent querying

(of humans and computers), initiation of new ideas and rethinking old

ores are natural outgrowths of increased self-confidence and favorable

attitudes. They are also a function of the inherently interesting nature

of computing. Although these behaviors can be encouraged, they are

largely due to the challenging nature of instructional materials.

The self-produced changes inherent in learner-controlled compu-

tiel are motivating. It follows that the stud:ints appear involved in their

work. But then, students who are doing work of little interest to thew

also appear involved. I am referring to active involvement here, as

opposed to passive resolmding, whereby students perservere and do so volun-

tarily, enthusiastically, and on a self-directed basis in the course of

learning. For example, redesign and improvement of algorithms is not

characteristic of typical "workbook problems."

Finally, creative behaviors such as independent study, and the

potential for using varieties of insights or reactions, are fostered

when students are given the opportunity to develop their own projects

in learner-controlled environments.

Perhaps a 'meta-outcome" of the learner control in this context
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is tfA? , (,f viers. Tnese includL' what,

dhU n(J4 of ]...ning. niylt be learned includes the general-__
oescri,u auoie, spucific subject r.atur insights,

aria, less obviously, assessrent of competencies and setting of objectives.

hnen learniny takes place depends on stuoent initiative, degree of in-

volverent, as well as serendipitous experiences; implied is a direct

relationsnip oet;een innerent interest of material and student respon-

sibility for learning it. how learning takes place is a function of

many tnings including self-cnecking, subject-determined experiences, and

teacher/student ano student/peer interactions. As students learn to

assess tne validity of their programs, for example, they will- internalize

self-checking strategies and learn to know wnen they are rignt.

C,CLUDI;;,3

H great deal of "lip service" is paid to the incorporation of

"learning to learn" objectives. Yet very few, if any, exist in practice.

Tne claim of behaviorists tnat these objectives can be devised in their"'

"Closed loop" systems remains unproven. One prescription is offered in

tnis paper.

lihat are the implications, then, of all of tnis? For one, it

snoula ce clear that learner-controlled computing is a powerful resource

in learning, and as such should be further exploited. In addition, it is

hoped that the broad outcomes discussed, as well as others that certainly

must exist, will ue assimilated by educators along with tne more limiting

instructional objectives, but to a greater extent than presently. From a

pragmatic and ircediate standpoint, these outcomes and others might be

used fur evaluation, such as in the fora of a "checklist" of learning

otitcomes.
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tediateer tre r,2.,,Jrcn and develop;.ent of learner-
.

cr.:ntrolled coputirg .6111 not he easily awerable to classical research

!%:-i,.;ns nor even cust-t:enefit analyses. Part of the difficulty lies in

tne complexity and non-standard nature of the objectives. It certainly

will not be easy to measure these outcomes according to present criteria

(e.g., standardized tests). The actual programs written will clearly

demonstrate knowledge. Observation and anecdotal record should also

provide some initial data for us. For anyone who has observed students

engaged in computing over any period of time, it it at least intuitively

obvious that learning in this manner is promising. The challenge to

actualize the promise is now.
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