DOCUMENT RESUNME

"BD 092 157 IR 000 718

AUTHOR ¥ilner, Stuart ,

TITLE Learner~Controlled Computing: A Description and
Rationale.

INSTITUTION Catholic Univ. of America, Washington, D.C. School of
Education.

PUB DATE Apr T4

NOTE 16p.; Paper presented at the American Educational

Research Assoclation Annual Meeting (Chicago,
Illinois, April 15-19, 1974)

EDRS PRICE MF-$0,.75 HC~$1.50 PLUS POSTAGE
DESCRIPTORS *Affective Objectives; *Case Studies; *Cognitive
. Processes; *Computer Assisted Instruction; *Problenm
Solving; Programing; Student Centered Curriculum
IDENTIFIERS Learner Controlled Computing

ABSTRACT

Learner controlled instruction in which the student
controls the conputer (e.qg.,, computer programing) instead of it
controlling the student (e.g., drill-and-drill-and-practice) is
described. The nature of this mode of computer use is explored, and
some examples based on case studies conducted by the author are
given. A rationale for learner control is discussed in teras of
cognitive and affective outcomes of computing. The cognitive outcomes
include relatively specific learning and thinking skills and more
general systematic methods of problem solving. Affective outconmes
include self-confidence, curiosity and exploratory behaviors, and
motivation. {(Author/WCH)

us DEPARTMENT OF HEALTH
EDUCATION & WELFARE
NATIONALINSTIYUYEOF
THIS Doc MioyUCAYION
UMENT HAS B
DUCED ExACTLY As ?ECEIEVNEORE:Z%
THE PERSON OR CRGANIZIATION ORIGIN
ATING 1Y POINTS OF VIEA DR OPIN ONg
STATED 0O NGt NECESYARILY REFNE
SENTO# FiCral NATIONAL INSTITUTE O
EDUCATION POYITIQN AR POLICY

LEARNER-CONTROLLED COMPUTING:
A DESCRIPTION AND RATIONALE!

Stuart Milner

School of Education
The Catholic University of America
Washington, 0. C. 20017

This paper discusses a use of technology in which the
student controls the computer (e.g., computer programring)
instead of it controlling the student (e.g., drill-and-
practice). A description of the nature of this mode of
computer use is provided, and some examples based on case
studies conducted by the author are given.

A rationale for learrer control is discussed in terms
of cognitive and affective outcomes of computing. The cog-

_nitive outcomes include relatiyely specific.learning.and
thinking skills and more general systematic methods of
problem solving., Affective outcomes inciude self-confid-
ence, curiosity and exploratory behaviors, and motivation.

INTRODUCT TON

Instructional uses of computers may be classified on a continuum
with the amount of student control as the underlying variable. At one end,
lie the classical computer-assisted instruction methods (e.g., drill-and-
practice) in which the student has no real control except for his responses
to pre-programmed instruction. At the other extreme are the methods used
by the student {e.g., computer programming) to control the hardware and/or
software of the computer. The purpose of this paper is to describe the

nature of, and provide a rationale for, learner-controlled computing.

! a paper présented at the Annual Meeting of the American
Educational Pesearch Association, Chicage, I1lincis, April 1974.

One of the reasons it is important to describe the nature of
lezrncr-controlled covzuting is that there exists, at least for sore, a
mis;onception or lack of understanding about it. For instance, it is
often considered as the so-called problem-solving mode, wherein the computer
is used merely as a calculating aid. Actually, 1earner-contro]led computing
transcends this, and facilitates the acquisftibn of thinking and learning
skills, among other things. The computer is to be used by the student in
his problem-solving endeavors in much the same way as professionals use it
to gain»insight into complex areas such as sending man to the moon.

Learner-controlled computing in this context refers to the learner's
power to control the course of learning by implementing his own problem-
solving sfrategies and executing these at his will. Involved in computing
is the development of algorithms by the student for problem solution.. In. -
the process there are a number of tasks which include, analyzing the problem,
devising and implementing a program for its solution, testing the validity of
the program, and, if necessary, finding errors in, or debugging, that program.
In effect, the student is the teacher and the computer is the student--supp-
orting the general agreement that in teaching a subject one learns it better.
As an example, if a student is to learn the laws governing a brocess, he
writes the program to simulate the process and studies its operation.

Contrasted with "closed-loop" learning objectives (e.q., programmed
instruction, many CAI tutorials), computing involves "open-loop" or less
restrictive objectives. Accordingly, subject-matter experiénces are student-
determined and are often serendipitous in occurrence.

Nonetheless, there is a seeming paradox between the students' freedom

[y

o davelop covslex rregra~s such as advanced pletting and game-playing
routires, ac:arding to their cwn interests, and the forced clarity and
rigorous thinking involved in computer programming. Perhaps this is what
makes computing so facinating to so many.

The rationale for learner-controlled computing includes the pot-
ential for: 1) individualization, 2) the use of "real world" applications,
and 3) the acquisition of generalized learning skills (i.e., "learning
how to learn”). f

If one accepts the broad definition of individualized learning
as that which proceeds according to the unique needs énd interests of the
student, one can see that by allowing students to implement their own
problem-solving strategies through computer programsibased on unique
needs and interests, individualization is served. Horeover, in the highly =~
resconsive environrient of cemputing, it is conce1vab1e that students will
learn to find out things by themselves based, in part, on their own spon-
taneous activities, and, in part, on the support s}stem (e.q., teacher,

software, courséware) ve provide for them.

In addition to individualization, computing can include meaning-
ful, "real world" projects such as, the design of lunar simdlation or
instructional programs written by a student for his peers {e.g., drill-
and-practice programs}. A special advantage of such learning situations
fs that creativity is fostered when real problems of the sort profession4
als must solve are used. Another is that students are mot1vated by seeing

'swtbe meanmng and relevance of what they are doing.

A th1rd Just1ficatton stems from the need to make more pervasive

4.

brzad educational ncals that are now somewhat excluded. As Toffler (1970)

R

Given further acceleration, we can conclude that knowledge
will grow increasingly oerishable. Today's 'fact' becomes
tomorrow's 'misinformation.' This is no argument against learn-

. - ing facts or data--far from it. But a society . . . places an

L enormous premium on learning efficiency. Tomorrow's schools
must therefore teach not merely data, but ways to manipulate it.
Students ~ust learn how to discard o1d ideas, how and when to
replace ther. They must, in short, learn how to learn.

P ~“'

- NP

The major focus of this paper is the explication of generalized
k;learning skills which can be acquired through computing. Discussion will
be in terms of cognitive and affective learning outcomes based on both

erojrical evidence and conjecture. ,
Before describing them, though, it should be mentioned that the
 ferrulation was partially the result of case studies in conputing by this
investigator. A study involving fifth grade students is described else-
where (Hilner. 1973). In a more recent study, sixth grade students of a
wide range of ability in a suburban élementary school participated.
The environment was open-ended in that students wefe free to define their
own projects or to pursue suggested ones according to their own interests
ard motivation. It might be useful to note some examples of projects
the students were involved in, all of which were their own choice.
Several chose to work on gaming routines, based on a profotype
game, whose object’was to guess a predetermined number within a fixed
rarge. Thekintroductory‘program consisting of several sub;procedures

_ proved usefquas,a'Starter;:the students added the1r~own’exténsiqns;‘ 8

 generalizations, and refinements.

~Ore student caveloced a tic-tac-tor aave which consisted of
§2.6ral Sud-procozaras drctudint orinting and interaction routines, and
recresented a first approximation to a complex project.

Another student, who was learning a programming language (LOGOQ)
frem an availabie manual, became interested in an example of a drill-and-
practice arithretic program. She extended and modified the example pro-
gram into a fairly sophisticated dril]-and-pracfice multiplication pro-
gram.

In general, the students' projects were interesting and non-tri-
vial. O0f significance was the fact that they were involved in these pro-
jects over extended periods of time--almost two months in some cases.

This project-oriented approach has been advocated by Papert (1971a)

~ard Dwyer (1974), who are using computer-controlled mechanical dévices and = 7

other complex systems at both the elementary and secondary school levels.
Rejarding projects that extend in time, Papert (1971a) states:
. . . the process is long enough for the child to become
involved, to try several ideas, to have the experience of

putting something of oneself in the final result, to compare

one's work with that of other chiidren to dlSCUSS, to criti-

cize on some other basis than 'right or wrong'.

In another case study conducted by this investigator, eigth grade
students in an urban secondary school learned, among other things, comp-
uter prograrming. What was interesting here was the fact that the students
were previously identified as "low achievers," yet they were able to engage

in the kind of a]gorithmic thinking requ1red in computing Affective out-_

. cones such as. increased motivation to do "academic“'work, which was pre- S

“ff’Viously escheved. \ere aiso observed

AUTUISITION CF SENTRALIZED LEANING SHILLS

The cognitive erc affective cuteoes of learner-controlled coip-
sving involve the acquisition of generalized learning skills (i.e., "“learn-
iry how to learn"). This discussion is prirarily in the context of problen
solving, although it need not be limited to that domain. Moreover, the
skills dealt with are not exhaustive and constitute an attempt, based on
observation and éonjecture, to explain ihe outcomés.

The skills described may be acquired with or without direct inst-
rustion. In other words, the skills may be taught by another person or
acquired naturally by the student without human intervention through comp-
uting. The case for using computers is based partially on the dynamic, chall-

| er3ing, and responsive environrent they produce.

Cc canitive CQutceres

For purposes heore, cognitive outcomes have been divided into two
broad categories. One includes 1earnihg and thinking skills and is reta-
-tively specific. The other, a more general category, concerns systematic
methods of problem solving. As the relatively more spe;ific skills are
developed andlincorpOrated with the more general ones, powerful problem
sclving processes emefge. Following is a discussion of them.

The algorithmic nature of compuling can serve as an excellent cont-
ext‘for 1earn1ng how to organize'infbrmation. In developing an algorithm

for prob}em solutaon the student needs to structure mater:a] in an unamb-

‘.f; icous sequence and,:1n the orocess thmnk ahead. antic1pate outcomes 1n g:_f

: a“};*;advance, and occasionally alter previously formed steps More specafically,xf f;

tre student noeds te d2 such activities as determining when and how to
irzJt and Out:ut‘inrcrfdticn. assiyn values, altlocate storaae, perform
iterations, make decisions, implement procedures, etc. In doing so,
students gain insight into the nature of algorithns--how they are formed,
debugged, and executed.

The fostering of independent thinking, a broad outcome of any
individualized learning environment, can be partially‘achieved by giving
s;udents the opportunity to choose their.own projects and provide unique
solutions to them. It becomes important in this case to get students to
take the initiative to develop, modify, solve, and extend problems in
ways that make sense to thgm, just as scientists do in their endeavors.

Of course, for students who "don't know what to do," projects could be

§uZyosted and a certain aniount of structuie or diréction provided. =
Okservations have led me to believe that-once students are given freedom
to explore, autononous thinking follows.

As students learn to learn, they need experience in viewing prob-

lems in alternate ways. In one sense, this involves improvisation. Any-

~one who used varijous types of programming languages has experienced this.

In another :ense, it is the using of different paths toward the same end.
Different algorithms can produce the same result. In any event, viewing

problems in different ways can be made trahsparent in computing.

Logical thinkirg is facilitated by the very nature of computing. f

r

' Conﬁider,‘for exanple, the sequehdihg Of;099f6t10h5= although other dimen-

_ sions of logic are involved, too. Writing computer programs requires a

:ifg‘icregram 1s about and uhtther it us a Completed project or an approximatfonl.ft‘

cracise setuerce of operaticns. Students learn very cuickly that even one
ciaration cut of setusnce or missing from a sequence will rot vield the
desired results. [have observed cases where students know that a function
is necessary and how to use it, but are unsure as to where to place or
reassign the function in an existing algorithm.

If one hasinternalized a process, ond should be able to explicate
that process. This involves something more complex than just recognizing
an a}ternatiue on a muitiple choice test item, or produzing a single-valued
sclution to g prodlem, Part of the complexity is due tdtvirtua1ly an un-
limited number of possible paths leading to the problem solution, a solu-
tion which may involve the algorithm itself, or even afpatkage including
the algorithm, and other components.

In traditional modes of instruction, students rarely have the
ox2ortunity to give 2 detailed explanation of their own understanding of
a subject. Iloreover, they ofteh cannot déscribe how they arrived at a
solution nor how a process works. There may be at least two reasons for
this: First, students ar. teachers may lack a sufficiently precise language
"~ in which to communicate (Feurzeig, et al, 1969). I have observed cases . .
where students obviously understood a process but were unable to use the
right language to express it. Through programming, which involves a
precise language, students not only can present their thoughts via the
cemputer, but can discus§ their programs in terms of structure contént;

_étd. Second]y, students do not usually get enough practlce 1n actually

"“'v¢Stating thewr thoughts I always encourage students to explain what theiruftfi{ffff?

k;;of one«-“exprcssive 90h61 to the students?f"'""“""

Critical to sroblem solving is the ability to debug or search
Forand eliiinate errors. In comzuting this invelves determining at
verious points if the program executes correctly. Hot only can students
be taught scecific techniques, but they also quite naturally develop their
own. In the former case, if programs do not execute properly, students
' cculd be instructed to build checks in the Togic or priﬁt out values at
various stages in the program--tasks whicﬁ are relatively easy to do on
a computer. In the latter case, students in the process of debugging
develop useful heuristics through guessing ang trial and error methods.
Heuristics, defined here, are plausible stratgéies that serve to guide,
discover, or reveal. [Polya (1957) provides an excellent discussion of
heuaristic reasoning]. What is 1nvol§ed, then, is a concrete problem-
- solving situation,” in which the student has the power to change and
exseriment, and hopefdl]y get immediate knowledge of results.

Often, when students work on problems, they do not work on them
long enough to develop generélizations. However, if students are given
the opportunity to develop problems that extend beyond tradi;ioné\ time
allocations, generaliza'.ions can be facilitated. For example, a sixth
grade student was writing a drill-and-practice program in mathematics,.
and her initial program simply dealt with adding two one-digit random
nunbers, She generalized it to present two-digit addition problemsand
tWo-digit multiplication problems with record keeping and other feed-

"nDSCk functions. All of this‘tookfplace”dver a period of‘approximageiy 0 ,_1U s

| g o six. !V.-‘:e}eksf.' o = _ ’: -

-10-

The atove scecific learning and think;ng skilis should be used in
cimilzticn cith the vddatively rore goneral syster2tic metheds of sroblen
siiving. Trese systoratic methods include prob]&ﬁ coprehension, hypoth-
esis generation, experiitentation, and reflectionﬁ and can be learned
through conputing. Polya (1957) describes some éf these methads for teach-
ing mathematics.. Computer programming, by its very nature, requires the
caraful ana]ys1s and precise explication of thought that these methods imply.
Klso, it 1s relatively easy to hypothesize and exper1ment in programming
by changing steps in an algorithm or by varying 1nput/ou§put parameters.
Once a program is executed, the validity of an algorithm can be tested and

reflection can occur.

Initially, the student needs to gain a general understanding of

. the problem in terms of expected type of outcome or node of solution, cond- =~

itions involved, etc. Understanding a problem, at least in the early
stiges of'comprehension, involves knowinéawhat to 1ook at in a problem.
Students might consider questions such as the following: (1) What are
the parameters to be used? (2) What is important and what is "noise?"

(3) What might a solution look 1ike and what kind of information does one
need to know in order to reach it? Some other questfons that students
need to ask at the problem comprehension stage are: (1) What kind of
information/data am [dealing with? (2) What additional information or
~clarif1cat10n is needed? (3) What resources are available, and what res-

- ources are’ needed7 (4) Are there any transformations in the data to be

‘, (nade7 (5) Hhat does successive approx:mation to a solution look 1ike°

k’fﬂﬁj(s) Nhere shou!d specific procedures be placed in a solutxon a1gor1thm? ;f;ﬂf;nf?f

 When and ”hm’”should they be mple ented? etc .

e hextistep Th1s execution phase 1s the basis for accepeance or rejection
T:h"«;f;of 1deas Once it is completed the student can determine 1f the project

o jehss been finished In the‘case of computer prograrmnng. this 1s

-11-

Follewing an urderstanding of the problem--a solution may not be
av 3l clexr, Lut the stucent shouid have an idea of what reeds to be done
ard a direction to pursue--it is important to generate hypotheses or ideas
vhich would lead to a ptan for project execution. A.questioh that students
ask at this stage is, "How could I do that?" For example, if a student
vere prograrming a computef to play the game of tic-tac-toe, he might
be taught to divide the project into three parts: (1) é computer progran
to simply record events between two players; (2) a program to keep score
and evaluate play; and ultimately, (3) a strategy playing program. What
was achieved in earlier steps (parts) would be used in corbination with
later extensions leading to successful project completion. In short, the
student would learn how to build extentions and solutions from smaller,
“more-manageable parts. Papert (1971b) advocates this approach and pro-" “"Qf“““‘”“*“
vides some interesting examples from his research.

By dividing a project into parts, then, the student makes it more
manageable and learns an important aspect of thinking. In turn, each sub-
project (part) might involve even smaller parts so the process here is
iterative. For instance, in the case of the first part of the tic-tac-toe
game described in the preceding paragraph,‘the student might initially need
to generate printout and mode of entry routines, each of which is a separ-
ate-problem in itself. It is relatively easy to use sub-programs on a
, computer, 1nc1denta11y. once a computer language 1s learned.

, Nhen hypotheses or 1deas have been formed. exper1mentat1on IS the =

an i ter.

-12-

ative phase in which various experirents and considerabie hypdthesis
testing tares olace, Eventually, eitrer a progran works or it does rot.
»In the interim, debugging plays a major role. Also, the student can be
taught to reformuiate‘hypotheses or refnitialize processas. .

Based on the experiments, the student could nefiect G:Zk on
the solution and refire, extend, of even generate newkprojects. As such,
~ problem solving approx1mates "real 1ife" situations whére one works through
~solutions possibly many times ‘ovér, vis-a-vis traditional "one-shot"
-soiutions that are graded and returned by the teacher. If the extended
or new projects have similarities with previous ones, the student exer-

cises inductive reasoning.

Affective Qutccres

Expected affective outcomes in iearner-controlied conputing environ-
rents generaiiy deal with values, attitudes, and interests. Some of the
outcomes, as discussed below, deai with self- confidence curiosity and
expioratory behaviors, and motivation.

A certain degree of early inteilectual mastery in a learning sitan
tion is important in building self-confidence. In computing, students can
vrite simple programs that execute at their first sitting at a terminal.

They are in control That students perceive and, possibly, prefer this
control is observable; or as one sixth grade student stated: "I like

ﬁ,jkriting proqrams because its different than using programs [CAI] and aiso

- ;z;‘rore fun. o -

‘Enhancement of self confidence leads to increased experimentation ff;jl,]“ -

13-

weild serve to enhance self-confidence in rmuch the same manner as the
Mrathoiene EVfech dncroases orcdictivity. Xp cther vords, by pTacing a
¢ritd in d re?atively'differeﬁt environiient where he can experience
centrol and mastery, we could expect to foster the development of his
self-confidence.
Curiosity and exploratory behaviors such as frequént querying » +

(of humans and computers), initiation of»new ideas and rethinking old ﬁ
ores are natural outgrowths of increased self-confidence and favorable'
attitudes, They are also a function of the inherently interesting nature
of computing. Although these behaviors can be encouraged, they,are'
largely due to the challenging nature of instructional materials.

| The self-produced changes inherent in learner-controlled compu-
tirg are motivating. It follows thaf the studznts appear involved in their
work, But then, students who are doing work of 1ittle interest to them
also appear involved. I am referring to active involvement here, as
opposed to passive resounding, whereby students perservere and do so volun~"
tarily, enthusiastical1y, and oh a self-directed basis in the course of
learning. For example, redesign and improvement‘Of algorithms is not
characteristic of typical "workbook problems." |

| Finally, creative behaviors such as independent study, and the
>potentia1 for‘using varieties of insights or reactions, are fostered

when stud‘nts are g1ven the opportunity to develop the1r own proaects

1n 1earner controlled env1ronments

~14-

is tee vosuisivion of self-ranage ant benaviors, Tnese include tne wnat,
noefly ABG N0 OF Garning. snat nignt be learned includes the general-
Peud dearning snills Cescriced avovde, specific suuject matter insignts,

gnd, less cbviously, assesoment of competencies end setting of objectives,
sien learning takes place depends on stuagent initiative, degree of in-
volverent, as well as serendipitous experiences; impliea is a direct
ratationsnip oetueen innerent interest of material and student respon-
sibility for learning it how learning takes place is a function of

many tnings including self-cnecking, subject-determined experiences, and
teacher/studont anu student/peer interactions. As students learn to
assess tne valiagity of their programs, for example, they will internalize

self-checking strategies and learn to know wnen they are rignt.

CoWCLUDTHG KRomnkisS
A great ceal of "lip service" is paid to fhe incorporation of
“learning to learn" ovjectives. Yet very few, if any, exist in practice.
Tne claim of genaviorists tnat these objectives can be devised in their "

"¢losed loop" systems remains unproven. One prescription is offered in
tnis paper. .

ﬁﬁét are tie implications, then, of all of tnis? For one, it
snoula oe clear that learner-oontrolled coniputing is a powerful resource
in learning, and as such should be further exploited. In addition, it is

hoped that tne broad outcones discuésed. as well as others that certainly

- must exzst, will ve aSSImllated by educators along w\th tne more 11m1t1ngo

k o_}1nstructtona1 0bgect1ves, but to a greater extent than presently.‘ FrOm

*tgpragnatlc and 1rned1ate standpotnt. these outcomes and others m]ght be 77t 1"

whatever tre I‘p]i»utiCﬂS: raocaren énd developient of learner-
ceatrolled corouting will not be ecasily anenable to classical research
¢z3igns nor cven cest-renefit aralyses, Part of the difficulty lies in
tne complexity and non-standard natdre of the objectives. It certainly
will nbt be easy to ﬁeasure these outcomes according to present criteria
(e.g., standardized tests). The actual programs written will clearly
denonstrate knowledge. Observation and anecdotal record should also
provide sowe initial data for us. For anyone who has observed students
engaged in computing over any period of time, it it at least intuitive1y

obvious that learning in this manner is promising. The challenge to

actualize the promise is now.

«1G~

& .
RebEreniCLs
besery T "idrisuic Strateics fur Lsin: Cuoputers to Enrice Education.”
dntertctiorad Joee s ireTindre Studies 6, 1974 (o eppear).

Feurzeig, W., Papert, S., 8loog, 1., Grant, R., Solomon, §S. Programning
Latiyuiges as a Conceptual Framework for Teaching Mathematics.
Project Keport o, iood. 0OIt, ceranek and iiewian, Canbridge,
Fass., 1949,

“iirer, S, The Effects of Coiputer Prograrming on Perforiance in Mathe-
matics. Paper presented at the annual meeting of the American
tducational Researcn Association, Hew Orleans, La., February 1973.

-

Papert, S. Teaching Ciildren Thinking. Massachusetts Institute of Tech-
nology artiticial Intelligence Laboratory, LOGO tlemo No. 2, 1971a.

. Teaching Children to Be Mathematicians vs. Teaching About Matn-
ematics. Massachusetts Institute of Technology Artificial Intel-
Tigence Laboratory, LOGO Memo No. 4, 1971b.

Polya, G. How to Selve It. (Second Edition}. Princaton, H.J.: Princeton
University vress, 1957.

Toffler, A. Future Shock. wew York: Random House, 1970.

