ED 092 093

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS
IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

IR 000 651

Barr, Avron; And Others

A Rationale and Description of the BASIC
Instructional Program. Technical Report No. 228.
Stanford Univ., Calif. Inst. for Mathematical Studies
in Social Science.

Advanced Research Projects Agency (DOD), Washington,
D.C.; Office of Naval Research, Washington, D.C.
Personnel and Training Research Programs Office.
TR~-228 ' :

22 Apr 74

6lUp.

MF-$0.75 HC-$3.15 PLUS POGSTAGE

*Computer assisted Instruction; *Computer Programs;
Computer Science Education; Problem Solving; Program
Descriptions; Programing; *Tutorial Programs

BASIC; *BASIC Instructional Progran

A course in computer programing is being developed as

a vehicle for research in tutorial modes of computer-assisted
instruction. Methods for monitoring and aiding the student as he
works on interesting programing problems are employed. The problems
are individually selected via an optimization scheme based on a model
of the student'!s ability and difficulties. At BIP's (BASIC
Instructional Program) core is an information network which embodies
the interrelations of the concepts, skills, problees, remedial
lessons, hints, BASIC commands, and manual references. With the data
stored in the student history, the network enables BIP to model the
student's state of knowledge and to make problem selections with some
relevance. After ‘a brief overview of work done at Stanford in
tutorial CAI and the teaching of procedural skills, the functional
elements of BIP, its BASIC interpreter, curriculum solution analysis,
and interactive assistance during programing are described.

(Author)

A RATIONALE AND DESCRIPTION OF THE BASIC INSTRUCTIONAL PROGRAM

BY

AVRON BARR, MARIAN BEARD, AND RICHARD C. ATKINSON

TECHNICAL REPORT NO. 228

APRIL 22, 1974
PSYCHOLOGY AND EDUCATION SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

&

Q

ERIC

Aruitoxt provided by Eic:

126
127
128
129
130

131
132

133
134
135
136
137
138

139
140

141
142
143
144
145
146
147
148
149
150

151
152

153
154
155
156
157
158

159

160

161
162

163
164

TECHNICAL REFORTS
‘ PSYCHOLOGY SERIES
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(P?acc of putlication shewn In parentheses; if published title Is different from title of Technical Report,
this Is also shown In parentheses.)

W. K. Estes, Reinforcement in human tearning. December 20, 1967. nJ. Tapp (Ed.), Reinforcement and behavior. New York: Academic
Press, 1969, Pp. 63-94.)

G. L. Wolford, D. L, Wessel, and W. K, Estes. Further evidence concerning scanning and sampling assumptions of visual detection models.
January 31, 1968, (Perception and Psychophysics, 1968, 3, 439-444)

R. C. Atkinson and R, M, Shiffrin, Some speculations on storage and retrieval processes in long-term memary. Fedbrary 2, 1968,
(Psychological Review, 1969, 76, 179-193.)

J. Holmgren. Visual detection with imperfect recognition, March 29, 1968, (Perception and Psychophysics , 1968, &4), 3

L. B. Mlodnosky. The Frostig and the Bander Gestalt as predictors of reading achievement. April 12, 1968.

P. Suppes. Some theoretical modets for mathematics leataing. April 15, 1968, (Jownal of Research and Development in Education, 1967,
1, 5-22.) o

G. M. Otson. Learning and relention in a canlinvous recognition task, May 15, 1968. (Jownal of Experimental Psychology, 1969, 81, 381-384.)

R. N. Hartley. An iavestigation of list types and cves to facilitate inilial reading vocabulary acquisition, May 29, 196B. (Psychonomic Science,
1968, 12(b), 251-252; Effects of list types and cues on the learning of word lists. Reading Research Quarterly, 1970, 6113, 97-121.)

P. Suppes. Stimulus-response theory of finite automata. June 19, 1968. (Journal of Mathematical Psychology, 1969, 6, 327-355 1o,

N. Moler and P, Suppes. Quantifier-free axioms for constructive plane geometry, June 20, 1968, (Composilio Mathematuca 1968, 20, 143-152.}

W. K. Estes and D, P, Hoest. Lalency as a function of number of response allernatives in paired-associate leatning, July 1, 1948,

M. Schiag-Rey and P, Suppes. High-order dimensions in concept identification. July 2, 1968. (Psychomelric Science, 1968, 11, 141-142.)

R. M. Shiffrin, Search and retrieval processes in tong-letm memory. August 15, 1968, T

R. D. Freund, G. R, Loflus, and R. C. Atkinson. Applications of multiprocess models for memory Lo continuous recognition tasks., December 18,
1968, Uoumai of Mathematical Psychdlogy. 1969, 6, 5716-594.)

R. C. Atkinson. Information delay in human learning. December 18, 1968. ownal of Verbal Learning and Verbal Behavior, 1969, 8, 507-511.)

R. C. Atkinson, J. E, Holmgren, and J, F, Juola, Processing time as influenced by the number of elements in *oe visual display. March 14, 1969,
(Perception and Psychophysics, 1969, 6, 321-326.)

P. Suppes, £, F Loftus, and M, Jerman. Problem solving on a computer-based teletype. March 25, 1969, (Educational Sludnes in Mathematics,
1969, 2, 1-15.)

£. Suppes and M. Momingstar. Evaluation of three computer-assisted instruclion programs. May 2, 1969. (Computer-assisled instruction. Stcience,
1969, 166, 343-350,)

P. Suppes. Onthe problems of using mathematics in the development of the social suwnces. May 12, 1969. (in Mathematics in the social sciences
in Australia, Canberra: Australian Government Publishing Service, 1972, Pp. 3-15))

Z. Domotor. Probabilistic relational structures and their applications. May 14, 1969, |

R. €. Atkinson and T. D, Wickens. Human memory 20d the concept of reinforcement. May 20, 1969. (In R, Glazet (Ed.), The nature of reinforcement ,
New York; Academic Press, 1971, Pp. $6-120.}

R, J. Titiev. Some model-theoretic resalts in measuement theory . May 22, 1969, (Measu o "t structutes in classes that are not universally
axlomatizable. Jowrnal of Mathematical Psychotogy, 1972, 9, 200-205.)

P. Suppes. Measwenent: Problems of Lheory and application, June 12, 1969. {in Mathematics in the social sciences in Austratia, Canberra:
Australian Government Publishing Service, 1972, Pp, $13-622.)

P. Suppes and G. Iheke. Accelerated program in elementary-school mathematics--The Fourth year, August 7, 1969, (Psychotogy in the Schools,
1970, 7, 111-126.)

D. Rundus and R. C. Atkinson. Rehearsal processes in free recall: A procedure for diect observation. August 12, 1969, (Jowrnal of Verbal
Learning and Yerbal Behavior, 1970, 9, 99-105.)

P. Suppes and S. Feldman, Young children's conprehension of lugical connectives. October 15, 1969, (Journal of Experimentat Child
Psychology, 1971, 12, 304-317.))

J. H. Laubsch. Anadaptive teaching system for optimal item allocation, November 14, 1969, .

R. L. Klatzky and R, €. Atkinson. Memory scans based on allemative test stimulus representations. November 25, 1969, (Perception ang
Psychophysics, 1970, 8, 113-1170)

3. E. Holmyren, Response latency as an indicant of information processing in visual search tasks, March 16, 1970,

P. Suppes. Prodabilistic grammars for natural languages. May 15, 1970, (Synthese, 1970, 11, 111-222))

€. M. Gammon. A syntaclical analysis of some first-orade readers, June 22, 1970,

K. N. Wexler., An automaton analysis of the learning of a miniature system of Japanese. July 24, 1970.

R. €. Atkinson and J, A, Paulson. An approach to the psychology of instruction. August 14, 1970, (Psychological Bulletin, 1972, 18, 49-510

R, C. Atkinson, J. D. Fletcher, H. C. Chetin, and €. M, Stauffer. Instruction it Initial reading under camputer control: The Stanford project.
August 13, 1970, (tn A, Romano and S. Ressi {Eds.), Computers in education. Bari, ltaly: Adriatica Editrice, 1971, Pp. 69-99,
Repubtished: Educational Technology Publications, Number 20 in a series, Enqlvwood Chiffs, N, J.b

D. J. Rundus. An analysis of rehearsal processes in free recall, August 21, 1970, (Analyses of rehearsal prucesses in free recail, J_our_n.a‘_!
of Experimental Psychalogy, 1971, 89, 63-71.)

R. L. Klatzky, J. F. Juola, and R. C. Atkinson. Test stimulus representation dnd experimental conteal effects in memory scanning, (Journa)
of Experimental Psychology, 1971, 87, 281-288.}

W. A, Rolimayer. A formal theoty of perception. November 13, 1970,

€. J. F. Loftus. An analysis of the structural variables that determine problem-solving difficully on a computer-based tetetype, December 18,
1970.

3. A, Van Campen. Towards the automatic generation of programmed foreign-language instruclional materials. January 11,1971,

J. Friend and R, C, Atkinson. Computer-assisted instruction in programming: AID, January 25, 1971,

'ED 092093

.

A Rationale and Description of the BASIC Instructional Program

by

Avron Barr, Marian Beard, and Richard C. Atkinson

This research was supported jointiy by:

Office of Naval Research

Psychol>gical Sciences Division

Personnel and Training Research Programs (Code 458)
Contract Authority Number: NR 154-326 .

Scientific Officers: Dr. Marshall Farr and Dr. Joseph Young

and

Advanced Research Projects Agency
ARPA Order Number: 2284 dated 30 August 1972
Program Code Number: 3D20

Contract number:

US DEPARTMENTOF HEALTH. -
EDUCATION 8 WELFARE

NO0O14=-67-A-0012~-0054 NAYION;IGI(N‘S‘KIOY:YEOF
1 August 1972 - 31 July 1974 THIS DOCUMEEM HAS BEEN REPRO

DUCED EXACTLY AS RECEIVED ¥ ROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPKE
SENTOFFICIAL NATIONAL INSTITUTE (e

Principal Investigators: E£DUCATION POSIFION OR £OLICY

Richard €. Atkinscon

Professor of Psychology

Institute for Mathematical Studies in the Soclal Sciences
Stanford University

Stanferd, California 94305

(415) 497-4117

The views and conclusions ccntained in this document are those of the
authors and shculd not be interpreted as necessarily representing the
official policles, either expressed or implied, of the Advanced
Research Projects Agency cr the Office of Naval Research or the U. S,
Government .

Approved fer public release; distributicn unlimited.

Reproduction in whcle c¢r in part is permitted
for any purpose of the U. S. Government.

o

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

REPORT DOCUMENTATION PAGE : sap'gg‘g%‘gg;,‘fgggg"ﬁom
\. REPORT NUMBER : 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
Technical Report No. §
& TITLE rand Sudtitle) 3. TYPE OF REPORT A& PERIOD COVERED
A Rationale and Description of the BRASIC Technical Report

Inscructional Program

§. PERFORMING ORG. REPORY NUMBER

Technical Report No. 228
7. AUTHOR(S)) 0. CONTRACY OR GRART NUMBER(s)

Avron Barr, Marian Beard, and Richamrd C. Atkinsen| NOOOI4-67-A-0012-0054

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. ’:giﬂ‘Al:oERLKEU::d!T.NPuRHOBJEEgsT. TASK
Institute for Mathematical Studies in the Social 1153N
Seiences - Stanford University RR 042-0; RR 042-0-0
Stanford, California 94309 NR 15k-326
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORTY OATE
Fersonnel and Training Research Programs April 22, 1974
Office of Naval Research (Code 458) 13, NUMBER OF PAGES
Arlington, VA 22217 50

Y4 MONITORING AGENCY NAME & ADORESSI dilfersnt trom Controlling Ottice) 15. SECURITY CLASS. (of thle teport)

P Unclassified

1Se. DECL ASSIFICATION' DOWKGRADIKG
SCHEDULE

16, DISTRIGUTION STATEMENT (of this Report)

Approved for public release; distribution urnlimited,

17. DISTRIBUTION STATEMENT (of the ebeirect entered in Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

19. XEY WOROS (Contlnue on reverse aide if necenrary and identily by block number)

BASIC, Computer-Assisted Instruction (CAI), computer programming, computer
sclence education, instruction control strategy, tutorial CAT

20. ABSTRACT (Continus on reverss slde if necensary and identity by dlock number)

A course in computer programming is being developed as a vehicle for
research in tutorial modes of computer-assisted instruction. Methods tfor
monitoring and aiding the student as he works on interesting programming
problems are employed. The problems are individually selected via an opti-
mization scheme based on a model of the student's ability and difficulties.

S/N 0102-014- 5601
SECUMITY CLASSIFICATION OF THIS PAGE (When Dets Entered)

E i?zg,ﬁgsﬁ, 1473 EoiTion OF 1 KOV 6318 OBSOLETE UNCLASSIFIED

e NETY CLASSIFICATION OF THIS PAGE(When Data Entered)

L.

After a brief overview of work done at Stanford in tutorial CAI and the
teaching of procedural skills, the functional elements of the BASIC Instruc-
| tional Program, its BASIC interpreter, curriculum, solution analysis, and
interactive assistance during programming, are described.

at

At BIP's core is an infdmation network which embodies the interrelations
of the concrpts, skills, problems, remedial lessons, hints, BASIC commands,
and manual references. With the data stored in the student history, the net-
work enables HIP to model the student’s state of knowledge, and to make problem
selections with some relevance. The sophistication of these modelling
techniques are the main thrust of our research.

EMC SECURITY CLASSIFICATION OF THIS PAGE(When Data Enfered)

Summary

A BASIC Instructional Progran 1s being developed as & vehicle for
research in tutorial modes of computer-assisted instruction (CAI).
Several design features will be appropriate to training {in other
technical areas and applicable 1in other instructional settings where
the development of analytic and problem-solving skills 1s a goal.

Methods are incorporated t1or monitdring and aiding the situdent as
he works on 'programmxng problems :n —the BASIC language. The
instructional program developed can be used to investigate schemes for
optimizing problem presentation and giving assistance during problem
solving based on a model of the student's abilities and difficulties,
Previous experience in the 1instructional and technical aspects of
teaching a programming language indicates that a course 1in computer
programmning can be designed ts help the student acquire programﬁing
concepts in a personalized and efficient manner as he develops skills

at increasingly advanced levels.

This research is funded by Personnel T[Iraining and Research
Programs, Office of Naval Research. - During these developmental
months, we have received considerable coopecation from the starfs ot
the pilot institutions, notably Professor Carl Grame of DeAnza “ollege
and Dr. Paul Lorton, Jr. of the University of San Franctscc.

A majcr goal of the research project 1is to increase the
sophistication with which the instructional program monitors the
student's work and responds to it with appropriate hints and prompts.
One aspect of such work is the utilization of algorithms for checking
the correctness of a student procedure. Limited but sufficient
program verification 1s possible through simulated execution of the
program on test daﬁa stored with each problem. kitﬂin the
controllable context of 1nstruction,. ithere the problems to be solved
are predetermined and their solutions known, simulated execution of
the student's program can effectively determine 1its closeness to a
stored model solution, .

The BASIC Instructional Program (BIP) 1is written 1in SAIL
(VanLehn, 1973), a versatile, ALGOL-like language, implemented
exclusively at present on the DEC PDP-10, SAIL includes a flexible
associative sublanguage called LEAP (Feldman, Low, Swinehart, &
Taylor, 1972), which was wused extensively to build BIP's information
network. The course 1s now running on the PDP-10 TENEX timesharing
system at IMSSS and is presently being offeredlas'xan introductory
programming course at DeAnza College in Cupertino and the University
of San Francisco. The collected data are being wused to modify the
problems and the. "help" sequences in preparation for a more controlled

experimental situation planned for the next academic year.

Overview of IMSSS Research in Tutorial CAI

The Institute has been involved in CAI projects in computer
programming and in tutorial CAI in other technical areas since 1968.
Work in teaching computer programming began with the development of a
high-school-level CAI course in machine language programming (Lorton &
Slimick, 1969). The project, called SIMPER, taught programming via a
simulated three-register mgchine with a variable instruction set.
Later, lessons in the syntax of the BASIC language were added to the
curriculum. Programming problems using BASIC were presented, but the
student solved them by linking to a commercial BASIC interpreter,
without vreceiving assistance or analysis of his efforts from the
instructional program.

In 1970 the Institute deyeloped a much larger CAI curriculum for
a new course to teach the AID programming language ;t the 1ntfoductory
undergraduate level. This course has been used in colleges and junior,
colleges as a successful Introduction to computer programming (Friend,
1973; Beard, Lorton, Searle, & Atkinson, 1973). However, it {s a
li{near, 'frame-oriented' CAI program and cannot provide individualized
instruction during the problem-solving activity itself. After working
through lesson segments on such topics as syntax and expre;sions, the
student is assigned a problem to solve in AID., He must then leave the
instructional program, call up a separate AID interpreter, perform the

required programming task, and return to the instructional program

with an answer. As he develops his program directly with AID, his
only source of assistgnce is the minimally informative error messages
provided by the interpreter.

In recent years, developments in' interactive CAI and in
artificial intelligence have enabled'teaching programs to deal more
effectively with the subject matter they purport to teach, in effect,
to "know" their subject better. The generative CAI programs developed
by Carbonell and others (Carbonell, 1970; Collins, Carbonell, &
Warnock, 1973) employ a semantic network interrelating a large factual
data base. Instruction then takes the form of a dialogue in which the
program can both a) constrhct, present, and evaluate the answers to a

multitude of questions, and b) answer questions posed by the student.

An {fiteresting generative CAI program in digital logic and machine- .

language programming has been developed by Elliot XKoffman at the
University of Connecticut (Koffman & Blount, 1973). Another course in
programming 1is being written by Jurg Nievergelt for the PLATO IV
system at the University of Illinois (Nievergelt, Reingold, & Wilcox,
1973).

Two CAI courses developed at 1IMSSS are capable of dealing in a
sophisticated way, both with their subject matter and with the
student. These courses provide instructive interaction throughout the
problem-solving activity by pertorming operations specitfied by the
student, evaluating the effect of the operations, and, on request,

suggesting a next step in che solution.

The first of these, a CAI program for teaching elementary
mathematical logic, 1is described in a report by Adele Goldberg (1973),
An experimental version of the program employed a heuristic theorem-
prover as a proof-analyze; to generate appropriate dialogue with
students who needed help with a proof. "The proof-analyzer mocks the
adaptive behavior of a human tutor; it can determine relevant hints
when a student requires hglp in completipg a solution, and it can
encourage the student to discover diverse solution paths." While the
prover was limited, the heuristics it supplied were more natural than
those that might be supplied by more powerful, resolution-based
theorem-provers. A version of this program without a theorem-prover
has been used successfuily as a primary source of instruction in an
introductory symbolic logic course at Stanford for the past three
years,

A CAI course described in Kimball (1973) uses symbolic
integration routines and an algebraic expression simplifier to assist
students in learning introductory integration techniques. The program
stresses development of student heuristics by performing most of the
tedious computations (substitutions, integration by parts, etc.) for
the student after he has completely specified the parameters. An
attempt 1s made to estimate each student's knowledge of integration

methods individually, in order to select problems dynamically.

The BIP Course

The goal of a tutorial CAT program is to provide assiscance as
the student attempts to solve a problem. The program must czontain a
representation of the subject matter that is complex enough to allow
the program to generate appropriate assistance at any stage of the
student's solutfon attempt, Both the logic and the calculus courses
app#oach this goal. However, <computer programming 1s an activity
fraught with human variability, and how an 1individual calls on'his
programming skills to write a program is not so clear as, for example,
how he uses logic in achieving a proof. Fﬁrthermore, the difficulty
of describing and verifying program segments preciudes the kinds of
solution analysis performed by the logic and calculus courses. BIP
contains a representation of information appropriate to the teaching
of coﬁputer pregramming that allows the program to provide help to the
student and to perform a limited, but adequate analysis of the
cotrectness of his program as a solution to the given problem. As a
vehic¢le for vresearch in instructional stratepies, BIP will serve as
buthh o teaching and a learning tool.

To the student seated at his terminal, BIP looks very -much like a
typical timesharing BASIC operating system. The BASIC interprete:r,
writrten especialiy fovr BIP, analyzes each ptogram line after the
studert :ypes it and n>tifies the student ol syntax errors. When the

stvdent runs his program, 1t is checked fcr structural fllegalities,

and then, during runtime, execution errors aré indicated, A file
storage system, a calculator, and utility commands, like TIME, are
available,

Regiding above the simulated operating system Is the "tutor," or
instructional program., It overlooks the entire student/BIP Bialogue
and motivates the instructional interaction. In addition to selecting
and presenting programming tasks to the student, the instructional
program identifies the student's problem areas, suggests simpler
subtasks, gives hints ox model solutions when necessary, offers
debugging aids and a facility for communicating with the Stanford
staff, and supplies Iincidental instruction 1in the. form of messages,
interactive lessons, or, most often, manual references. Each student
receives a BIP manual that introduces him to programming, the BIP
system, and the syntax of BIP's version of BASIC. The manual serves
as the student's primary source of information throughout the course.

At BIP's core 1t an {oformatiocn network that embodies the
interrelations of the concepts, skills, problems, subproblems, pre-
requisites, BASIC ccmmands, remedial lessons, hints, and manual
references. We belileve that with a sufficient student history, the
network can be successfully applied to a student learning model to
bresent an individualized problem sequence, to control the frequency
and typc of assistance given during programming, and to identify
problem areas. OQOur experimental work will compare different student

models and decision algorithms, including a "free' or "student-choice"

mode where the student is given enough information for him to select
his own problems,
Figure 1 illustrates schematically the interactions of the parts

of the BIP program. Each of these is discussed in detail below.

! 3sve viva m
m HHOMLIN NOILVWHOINI m
' TYONYW SHHOLSIH , snowLnos | |
. 2Isvg 1INIANLS SW31304d 300N “
S3NILNOY
d13H Y * Y N
NOI1D3130 ¥OYY3
V21907 ﬁ * ¥0L12313S HIZATYNY
YIZATUYNY WyHO0ud W31804d NOLLA0S
v WYH904d
» * YNOILONHLSNI / \

NOILD3130 HOHY3 N
NOILND3X3 OGNV XVINAS d3A14da

— ANINIHEND
¥43138dYILNI I/5VE

wpaboig mol4 uoyDWIOU] 1 41E

The BASIC Interpreter, Error Detection, Assistance, Debugging Aids

BIP's interpreter was specially designed to allow the
instructional program full access to the student's programs and his
errors. It handles a complete subset of BASIC. During a student's
work on a task, each of the BASIC operators can be temporarily
deactivated as required for pedagogical purposes. For example, during
a simple task whose instructions require the use of a FOR...NEXT loop‘
and in which no other branching 1is necessary, IF scatemeﬁts will not
be accepted. The student 1s reminded that he is to use FOR...NEXT to
form his loop.

Immediately after the student enters a line, syntax analysis is
performed. (Any student entry beginning with a number is assumed to
be a line of BASIC code.) If a syntax error is discovered, an error
message (''illegal print list,'" "missing argument for INT") 1is sent to
the student, the error number isvfetained by the instructional program
for reference If the student requests more help, and the line is
rejected,

If he does not wunderstand the syntax misteke immediately, the
student can request one of three types of assistance by beginning his

next line with a question mark:

? An explanatory message stored for this syntax error is
printed. Repeated requests summon different messages

until they are exhausted.

10

?REF A manual reference covering the particular syntax

involved in the error is printed for the student,

?LES . An interactive lesson, relevant to the syntax error,
is presented: The lesson provides drill-and-practice

instruction on the student's syntactic difficulty,

Once the student has entered a syntactically legal program, he
can have it executed in one of three formats, Two of which involve
debugging aids. Aft;r his request, and before the actual execution,
the student's program 1s checked for illegal program structure (e.g.,
a missing END statement, or illegally nested 1loops) by a routine we
call ERR DOKTOR. If all is well, one of the three modes of program

execution is initiated:

RUN The student's program is executed, as in standard
BASIC {mplementations, in the order of 1its 1line

numbers.

TRACE (A debugging option) The student controls execution of
the program using the standard intecactive debugging
technique of stepping through it one line at a time.
As a line is executed, its number is printed., This
allows direct observation of the execution sequence of

such structures as loops and conditional branches.

1

When an assignment statement, which initializes or
changes the value of a variable, 1{s executed, the
variable and its new value are printed with the line
number. The student can easily see the "internal"
activity of the program, which would otherwise be
visible to him only by means of extra statements

printing interim results,

By specifying d4inclusive 1line numbers, _the
student can TRACE a selected section of his program.
This 1is useful when he is satisfied with other parts
of the program and wishes to avoid the time-consuming

‘process of tracing those parts.

When CRT display un;ts are used as the student
terminals in placé of teletypes, the format {is
slightly different. The program listing appears on
one half of the screen, with the currently executed
line blinking. The variables and their values will
appear on the other half of the screen as assignment

statements are executed.

FLOW (The second debugging aid) This option is available on
CRT display terminals. FLOW differs from TRACE in
that a flowchart representation of the program appears

in place of the program listing. As the student steps

12

through the execution, the element of the flowchart
representing the current line blinks. Variables and
their values appear in the other half—screen; The
FLOW option involves the interface of a flowchart
generating routing (under development) with the

tracing procedure.

There are four ways in which any mode of execution can terminate,
Normal termination follcws execution of a BASIC END or STOP statement,
The student 1s told that '"execution terminated at 1line =xxx."
Alternatively, the student can abort execution by typing a control
key; BIP responds with the message 'execution aborted at 1line xxx."
The third cause of termination is excessively long running, which 1is
at present deterﬁined on the basis of che count of tiie number of lines
executed. A message indicating BIP's suspicion of an infinite loop is
printed.

Finally, runtime errors terminaze executioa. If an unassigned
variable, fllegal GOIO, or other error Is discovered, an appropriate
error message is printed, the error number 1is stored by the IP, and
execution terminates, The student may then request the same three
types of assistance for execution ervrors discussed under syntax errors

above.

13

Goals of the Curriculum

Prior experience with CAI in programming at the college level has
convinced us that many students who wish to learn the fundamental
principles and techniques of programming have limited mathematical
backgrounds. More important, their confidence in their own abilities
to confront problems involving numeric manipulation is low. The scope
of the BIP curriculum, therefore, 1s restricted to teaching the most
fundamental of programming skills and does not extend to material
requiring mathematical sophistication.

The curriculum 1s designed to glve the student practice and
instruction in developing interactive programs in order to expose him
to uses of the computer with which he may well be unfamiliar. BIP
guides the student in construction of programs that he can ''show off."
The emphasis is on programs that are engaging and entertaining, and
that can be used by other people. As the student writes his programs,
he keeps in mind a hypothetical user, a person who will use the
student's program for his own purposes and to whom the performance of
the program must be intelligible. The additional demands for clarity
and organization forced by interactive programming, as well as the
increased noticeability of bugs are wvaluable, as are the added
motivational effects.

Numercus texts were examined as possible sources for the

necessary programming principles to be developed in an introductory

14

course and for the problems that illustrate those principles. We
incorporated ideas from géneral computer science textbooks (Forsythe,
Keenan, Organick, & sternberg, 1969), rfrom the excelleat notes for an
introductory programming course that were oriented toward the ALGOL
lanuguage but whose examples were easily generalized (Floyd, 1971), and
from books and notes dealing specifically with BASIC (Albrecht,
Finkel, & Brown, 1973; Coan, 1970; Kemeny & Kurtz, 1971; Nolan, 1969;
Uiener, 1972 various publications of the People's Computer Company).
In addition, problem sets from Stanford Universicty's introductory
computer science courses were collected and examined,

In general, the curriculum provides wuseful, entertaining, and
practical computer experience tor students who are not necessarily
mathematically oriented. 1t gives them the opportunity to develop
programming skills while working on problems that are challenging but
not intimidating, in which the difficulties stem from the demands of
logical program organization rather than froem the complexities of the
precrequisite rmathematics, The <curriculum text is listed 1in Appendix

A,

The Curriculum Driver

The curriculum is organized as a set of discrete programming
problems called tasks, whose text includes only the description of the

problem, not Jlengthy descripticns of programming structures or

15

explanations of syntax. ‘There is no default ordering of the tasks;
they are not numbered. The decisions involving a move from one task
to another can be made only on the basis of the information about the
tasks (skills involved, prerequisites required, subtasks available)
stored in BIP's information network. ’

A student progresses through the curriculum by writing and
running a program that solves the problem presented on his terminal.
Virtually no limitations are imposed on the amount of time he spends,
the number of lines he writes in his program, the number of errors he
is allowed to make, the number of times he chooses to execute the
program, or the changes he makes within it. The task he is perforﬁing
is stored on a stacklike structure, so that he may work on another
task and return to the previous task automatically. All BIP commands

(listed in Appendix B) are avallable to the student at all times. The

following commands deal specifically with the curriculum driver:

HINT When a student experiences difficulty with a task,
sevecal levels of help are available. HINT retrieves
problem-specific hints from a set stored 1in the

network.

SUB If, after pondering the available hints, a method of
attack has still not occurred to the student, he can

have the task broken into conceptually simpler

16

ENOUGH

MODEL

RESET

MORE

subtasks. These are presented one at a time as tasks,
while the main task 1s pushed onto the stack
structure. When the student completes a subtask, BIP

returns him automatically and explicitly to the larger

problem,

If he understands the demands of the larger program
during his work on the subtask, he can type ENOUGH and
return to the larger task from which he started.
Outside of a subtask, typing ENOUGH terminates work on
the current task without giving the student credit for

having completed {it.

After exhausting all hints and subtasks available for
a given task, the student can request that BIP suggest
a model solution, The model stéred for each task is
intended to be easily understood, and correct, but it
is not necessarily the shortest or most elegant

solution.

Typing RESET clears the task stack of all the tasks on
which he has been working, so the student can start

fresh if he wants.

When he feels that he has solved the problem, the
student types MORE and BIP takes over, as described in

the "Solution Analysis' Section.

17

The curriculum structure allows for a wide variety of student
aptitudes and skills, Most of the curriculum-related options are
designed with the less competent, less confident student in mind. A
more independent%student may simply 1ignore the options. Thus BIP
gives all students the opportunity tb'determine their an individuél
- challenge levels isimply by making assistance available, but not
inevitable. | |
%EIP offers the »student considerable flexibility in making task-
relaiéd decisions. As explained above, he may ask for hints and
subtasks to get started in solving the given problem, or he may ponder
the problem on his own, using only the manual for additional
infermation. He may request a different task by name, In the event
that he wishes to work on it immediately, either completing the new
task or not, as he chooses. On his return, BIP tells him the name of
the again current task and allows him to have 1its text printed to
remind him of the problem he is to solve. The student may request the
model solution for any task at any time, but BIP will not print the
model fcr the current task, unless he has exhausted the available
hints and subtasks. Taken together, the curriculum options allow for
a tange of student preferences and behaviors; this flexibility will be
put to use in the experiments referred to earlier, comparing student-

selected and BIP-determined curriculum decisions.

18

Solution Analysis

At present a student 1is not considered to have compieted'a
problem 1if he has not executed his current program successfully. BIP
"knows" at all times (a) whether an executable, s}htactically legal
program exists, (b) whether the student has executed that program, (c)
whether eiecution errors have occurred, and (d) whether the student
has made changes or additions since the last execution., The student's
history will be wupdated to indicate successful completion of a task
only if he has succeeded in an error-free execution of the most recent
version of his program,

Error-free execution of a program 1is no guarantee that the
program correctly solves the problem presented. Program analysis is
an embryonic art, and BIP {s not capable of '"understanding" a
student's programs in the fullest sense implied by current research in
artificial intelligence. We are, hcowever, investipating two promising
potential additions to BIP that are expected to provide sufficient
solution analysis for pedagogicél purposes, without involving a full-
scale application of program verification techniques. The results 6f
the two analysis efforts should allow BIP to give the student an
indication of (a) the kinds of test values that his program fails to
handle properlv, and (b) the kinds of programming structures that his
program should have but doesen't.

The first analysis scheme we will apply is simulated execution of

19

the student's program on test data, comparing its outnnut with that of
one or more model solutions, A prelininary dialosue i1l establish
the variable names that the student has used for critical input/output
variables. Clearly this method will often fail to indicate all of the
student's logical erroré, but we are hopeful that in cases where known
problems call for fairly simple solutions, an analysis will succeed in
discovering particular kinds of problem-specific errors. The second
method involves comparison of program flow diagrams, again matching
the student's effort against a model solution. BIP generates thié‘
internal representation of the student's program to both check for
legal program structure and draw flowcharts as a pedagogical/debugging
tool, and we are 1investigating methods by which the schemas of

different programs can be compared.

BIP's Information Network

Task selection, remedial assistance, and problem area
determination, BIP's "tutorial" activities, require that the program
have a flexible information store interrelating the tasks, hints,
manual references, etc. This store has been built using the
assoclative language LEAP (Feldman, 1972). The network is constructed
using an ordered-triple data structure and is best described in terms

of the various types of nodes:

20

TASKS

SKILLS

All curriculum elements exist as task nodes in the

network, They can be 1linked to each other as

subtasks, prerequisite tasks, or ''must follow': tasks.
q [t

The skil; nodes are intermediaries between the concept
nodes and the task nodes (see Fig. 2). Skills are
very specific, e.g. "concatenating string variables"
or '"incrementing a counter variabie," By evaluating
success on the individual skills, the program
estimates competence levels in the concept areas. In
the network, skills are related to the tasks that

require them and to the concepts that embody them,

CONCEPTS

The concept areas covered by BIP are, for the time
being, the following:

Interactive programs

Variables and literals (numeric and string)
Expressions (algebraic, string, and Boolean)
Input and output

Program control - branching

Repetition - loops

Debugging

Subroutines

Arrays (one dimensional)

The specific implementation of concept nodes in the
network is not completely determined, but the links
will be to the skills and only through them to the

tasks.

21

BASIC OPERATORS

HINTS

ERRORS

Each BASIC operation (PRINT, LET, ...) is a node in
the network. The operations are linked to the tasks
in two ways: first as elements that must be used in
the solution of the problem, and second as those that
must not be used in the solution, (Thesg are

temporarily disabled in the interpreter.)

The hint nodes are 1linked to the tasks they may be.
helpful in, Each time a new skill, concept, or BASIC
operator is introduced, there is an exfra hint that

gives a suiltable manual reference.

All discoverable syntax, structural, and execution
errors exist as nodes in the network, and are linked
to the relevant help messages, manual references and

4
remedial lessons,

22

|

2 »Irdtg

3T8VI¥VA

SLIIIONOD

-

STIVvH3ILIT ONINOISSY

S3T8VIdVA ONILNIlHd —,»mJ<mm._._J ONILN¥d

STINS

3N8VIYVA

340 3INMIVA 3H1 SLNIYd
LLVHL NVEO0dd Vv 3lidMm

v LLvD, QHOM 3HL SLNINd

“1VHL ATHO0dHd ¥ 3LIkIM

SWIT808d

\

ANTVA S11 OGNV 318VIYVA
Vv 30 3WVN 3H1l SiINN¥d
c LVHL WYHO0Hd Vv 3Lidm

¥Jom}aN uonowlOjul S dig j0 juawbag vy

Upon completion of a task, the student is given a posttask
interview in which BIP presents the model solution atored for that
problem. (The student is encouraged to regard the model as only one
of many possible solutions.) BIP asks the student whether he has
solved the problemn, then asks, for each of rhe skills associated with
the task, whether he needs more practice involving that skill. The
responses are stored and used in future BIP-generated curriculum
decisions. BIP then informs the student that he has completed the
task, and efther allows him to sclect hie next tack by name (from an
off-line printed list of names and problem texts), or selects it for
him. i

An example of the role of the Information Network 1n BIP's
tutorial capabilities 1is the BIP-generated curriculum decisions
mentioned above. By storing the student's evaluation of his own
skills, and by comparing his solution atfempts to the stored models,
'BIP can be said to "learn" about each student as a individual who has
attained a certain levei of competence in the s3kills associated with
each task. BIP can then search the network to locate the skills that
are appropriate to each student's different abilities and to present
task that incorporate those skills., The network provides the base
from which BIP can generate decisions that take into account both the
subject ratter and the student, behaving somewhat like a human tutor
in presenting material that either corrects specific weaknesses or

challeriges and extends particular strengths, proceeding into as yet

unencountered areas.

24

O

ERIC

Aruitoxt provided by Eic:

The BIP HManual

It is tedious and probably ineffective to present voluminous
description, explanation, and exampleg.fron the computer directly on
the terminal. Ue have chosen instead to present tﬁls material to the
student in a printed manual of approximately 50 pages. The manual
includes complete instructions on the operation of the course (signing
on, dealing with the terminal, dealing with BIP), a general
introduction to computers (their capabilities and the concepts
involveé in prograorming languages), and the syntax of 3TP's RASIC,
complete with examples and suggestiors for the appropriate uses of
each of the BASIC statements.

All crograrmine terms used in the manual and in the tasks are
defined briefly in the glossary at the end of the manual, References
to the rclevant sections of the manual arce included {n each glossary
entry. All words that have precise programming meanings different
from their rormal English neanings are listed.

We belizve that when the student encounters another programming
lenyuage with which he is not familiar his primary rescurce will be
the nanual for that language, Fe is not likely to have an instru:tor
or a CA)} ceurse at hand, and the principal cenns by which he will
learn the new language vill ke tarourh nis own experimentation, nuided
o

by the cxelanations and exarmples in the manval., Exverience with Sli

{(with its freouent cross-references to the manusl) will, we hope. give

v
(g

the student a degree of confidence and ease in finding his way in

other situations, when the manual may be his only guide.

Miscellaneous Options Available to the Student

Several additional features are available to BIP students:

CALC All BASIC expressions (numeric, string, and Boolean)
can be evaluated by this BIP command. This 1is not
only a convenience, freeing the student from having to
write and run a complete program to make a simple

calculation, but it 1is also useful as a debugging aid.
FILE SYSTEM: FILES, SAVE, GET, MERGE, KILL

BIP allows each student to save permanently as many as
four programs, with names he designates. This give;
him the opportunity to work on an extended programming
project and simultaneously to_aqcumulate his work from
each session at the terminal.‘ ;; can obtain a listing
of his file names, with their most recent write dates,

and his saved programs are always 1immediately

retrievable for modifications or additions.

26

FIX This feature allows the student to send a message to
the programmers at Stanford. It gives him a chance to
communicate difficulties and confusions and helps both
to improve BIP's interaction abilities and to identify
and locate errors in the program. The convenience of
typing a message or complaint while seated at the
terminal encourages students to provide us with

immediate and valuable feedback.

LOG-IN MESSAGE

Although not strictly a student option, this feature
prints a stored message to each student as he signs on
to the course. The message is updated frequently and
gives 1information about revisions to the course,
responses to messages left by students, énd notices of
meetings with Stanford personnel at which students may
discuss questions too complex to handle in short

written messages.

We are in continuous communication with students who are using
the course and whose suggestions regarding more flexible, intelligible
interaction {ﬁith BIP have generaged several 1mprovements, Past
experience has shown that superficial problems in dealing with an

instructional program can become significant barriers to acquiring the

27

concepts and skills presented by the program, and we continue to make
additions to BIP to eliminate frustrating confrontations between the

student and the uncomprehending machine.

28

APPENDL A

THE BIP CURRICULUX

The following is the text for all tasks, hints, and subtasks in
the pilot-year curriculum. Some explanatory remarks are in order.

(1) The tasks appear in the order in which BIP would present them
if it had no access to the student histury., This order is modified in
two ways: either by the student's choice of a particular task, or by
BIP's decision based on the student's previous work.

(2) A MORT is a continuation of the original problem, calling for
a modification or extension of the program just completed. Within
this listing, the text of each task is followed by the hints and sub-
tasks associated with it; the MOR?ﬁ of the task'are printéd next,
follerd by their own hints and subtasks,

(3) Because some tasks require similar skills and strategies,
some hints and subtasks are associated with more than one main task,
and thus they appear more than once in this listing.

(4) References to Section X refer to the BIP manual supplied to
each student,

(5) Terms enclosed in asterisks (e.g., *print*) call attention
to the special use of that term. All such terms are listed and

explained in the glossary of the manual.

29

TASK PR1:

Before you start the first problem, be sure to read
about the BIP course in the BIP manual.

Then read about the structure of BASIC programs.

Type 'MORE' when you're ready.-

MORT:
Now write =z %

program®* to *print* the *number* 6 on your
teletype. Then #*r

un* the *program*,

TASK OP1:

SCRATCH your old program. Then write and *runk a
program that *prints* the #*sum* of 6 and 4.

MORT:
Now modify the program to do each of the following:
print the *difference*
print the *product#
print the *quotient*

HINT:
‘Sum’ means addition
'Difference’ means subtraction
'Product’ means multiplication
'Quotient' means division

TASK VN1:

s hretnnant

SCRATCH your old program. then write a program that:
1. *Assigns* the *value* 6 to a *numeric variable* N,
2, *Prints* the value of this variable,

TASK VX1:
Wrife a program that:

1. Assigns the value 6 to N.
2. Prints the sum of N and 4,

30

TASK VX2:

Write a program that:
1. Assigns the value 6 to M.
2. Assigns the value 4 to M,

3. Prints the sum, difference, product and quotient of M
and N.

HINT:
'Sum' means addition
'Difference’ means subtraction
'Product' means multiplication
'Quotient' means division

TASK IN1:

Write a program that:

1. Allows the user to *input* a value to M and a value to N,
2. Prints their sum, difference, product and quotient,

TASK IN2:

Write a program that:

1. Allows the user to choose the arithmetic operation he
wants the program to perform. He should type 1 to add,
2 to subtract, 3 té multiply, or 4 to divide. Use the
variable X for this code number.

2. Allows him then to input the values for M and N.

3. Prints out the result of the operation he asked for
when he gave a value to X. For example, if he typed

4, you should print the quotient of the numbers he gave
for M and N.

SAVE this program when you get it to work. It will
help you later.

HINT:
Read about **IF , ., THEN** gstatements in Section-III.1t.

HINT: -

Depending on the value of X, the program should do one
of four things. Get X first, then get M and M. then use
X to decide which **PRINT** statement to *branch* to.

31

SUB:

You need a program that can make decisions, then you can
{ncorporate the arithmetic operations 1into it.
Tranclate the following into BASIC (it is definitely not
BAS1C now), and run ir:

1. let the user type a number between 1 and 4.

2, 1f the number is 1, jump to 7

3. 1if the number 1s 2, jump to 9

4, 1f the number is 3, jump to 11

5. the number must be 4, so print "YOU TYPED A 41"

6, jump to the end of the program

7. the number is 1, so print "YOU TYPED A 1!"

8, jump to the end

9, print "YOU TYPED A 2{"

10, jump to the end

1. print "YOU TYPED A 3!"

12, the end
Once this program works, type 'MORE" and return to the
main task.

MORT:
Now fix up the program go that it prints out questions
and little messages that tell the user:
a) What to do (e.g. "TYPE 1 FOR ADDITION",...).
b) What the result represents (e.g. "THE SUM IS ...").

HINT: ‘
Type MODEL 1IN2 and copy what you need, then make the
necessary additions to it,

MORT: ’
Modify the program once again so that it keeps *looping#*
back to the beginning until the user inputs a 0 for the
operation code.

HINT:
Type MODEL 1IN2 and copy what you need, then make the
necessary additions to it,

HINT:
You need two uure statements:
an **[F . . THEN** afrer the "INPUT X" that jumps to the
end 1f X {s zero,
a **GOTO** back to the line with the instructions.

32

TASK ST1:

Please read about *strings* before you get confused.
Write (and run) a program that prints the string
"'scHooL",

TASK VS1:

Assign the value "HORSE" to the *string variable* I§ and
print the value of X$.

TASK SX1:

Allow the user to **INPUT#* the value of the string
variable X$, then print that value. {(Your program will
just '"echo" what the user types, whether he types a
number or a word.)

MORT:
Read about *concatenation* of strings,
Concatenate the word "OKAY" (or any word you 1like) to
the user's input, Print the result,

TASK §X2:

Assign the string 'DOG" to X$ and the string “HOUSE" to
Y$. Print the *concatenation* of X$ and Y$.

HINT:
Concatenation is in Section 111.6. Type the & character
with The shift key and the 6 key.

MORT:
(Keep the same string values of X$ and Y$.)
Assign the *concatenation* of Y$ and X$ to the variable
Z§. Print the value of 2$.

MORT:
(Still with the same values of X$ and Y$.)
"HOUSEDOG" should have a space between the words.
Concatenate a space between Y$§ and X$ and print the
result,

33

HINT:
The literal "A" prints the letter A
What character between quotes will print as a space?

TASK SX3:
Allow the user to 1nput the values of X$ and Y$.
Concatenate the strings with a space between them and
print the result.

TASK SX4:
Let the user make up a sentence.
1. Ask him how many words he wants to have in the
sentence.
2. Let him input those words, one at a time.
3. After each input, concatenate a space and his latest
word into a string variable. Use X$ for the input word,
and use S$ to hold all the concatenations,
4, After you have looped around the specified number of
times, print his sentence.

HINT:
make S§ equal to the string version of nothing, like
this: S§ = "' outside the loop.
Inside the loop, use S$ to accumulate the sentence: §$ =
Ss & " on & xs

SUB:

A very important sub task:

Write a program with a little loop. The "work" of the
loop is just to print the value of the loop's index.
When you run the program, it should 1look like it is
counting from 1 to the top value, Use whatever top
value you like.

SUB:
Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value. You
can add teo this program, making the loop do some real
work, and the work will then be done as many times as
the user likes.

34

TASK INT1:

Rewrite your calculator so that the user can type

"+'" for addition

"-'" for subtraction

""" for multiplication

"/" for division

to tell the calculator which operation to perform. You
may have *SAVED* your calculator program; if so, use

GET

to retrieve 1{t.

HINT:

Type MODEL IN2 and copy what you need, then make the
necessary additions to it.

SUB:
You need a program that can make decisions about
strings, then you can incorporate the arithmetic
operations Into it. Write a program that asks the user
to type any character., If he typed a ! mark, the
program should say "YOU TYPED A !" ., If he typed
something else, it should say '"YOU DID NOT TYPE A !"

TASK XMAS:

On the first day of Christmas, someone's true love sent
him/her a partridge in a pear tree (one gift). On the
second day, the true love sent two turtle doves in
addition to another partridge (three gifts on the second
day;. This continued through the 12th day, when the
true love sent 12 lords, 11 ladies, 10 drummers,
all the way to yet another partridge. Write a program
that computes and prints the total number of gifts sent
on that 12th day.

HINT:

This program requires a loop. Each execution of the
loop involves accumulating the value of the index into a
total.

HINT:
Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another value.

35

A very important sub task:

Weite a program with a little loop. The "work'" of the
lcop 1s& just to print the value of the 1loop's index.
When you run the program, it should 1look like it is
ceunting from 1 to the top value, Use whatever top
value you like.

MORT:
Modify g¢our program so that it prints the total gifts
for esth day. (Day 1 = 1 gift, Day 2 = 3 gifts, Day 3 =
6 gifts, etc.)

HINT:
You need odne statement that prints the value of the
ind2x (the number of divs) and the accumulated total of
gifts.

MORT:
The user of your program has a true love who will send
presents in the same way for as many days as the user
wants, Let your user say how many days, and calculate
the number of gifts sent on that day. (The generous
true love may send presents for more than 12 days, if
the user likes.)

SUB:
Very impoitant:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value., You
can e¢dd to this program, making the loup do some real
work, and the work will then be done as many times as
the user iikes.

TASK PAY:
A man is paid 1 cent the first day he works, 2 cents the
second day, 4 cents the third, 8 cents the fourth, etc,
(doubling his wage each new dayr. Calculate his wage
for the 30tn day.
HINT:

Say w 1s the variable for the wage. On the first day, W
equals 1. For every day after that, W equals W * 2,

36

MORT:
Modify the program to calculate the total wages for the
the month: sum of the first day plus the second day
+esss plus the 30th day.

HINT:

You have a variable for each dayfs wage. You need
another variable to accumulate the total.

HINT:
Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2, Accunmulating into that variable within the loop.
In words, total equals total plus another value.

MORT:
Your program's user has a contract with this man, for
the same schedule of wages. Tell the user how much he
will owe the man for any number of days he (the user)
specifies.

SUB:
Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value. You
can add to this program, making the loop do some real
work, and the work will then be done as many times as
the user likes.

TASK IT1:

e

Write a program that counts {and prints) the number of
odd numbers between 5 and 187 inclusive. For example,
there are 3 odd numbers between 5 and 9 1inclusive: they
are 5, 7, and 9., And a program that counted those
numbers would print something like this:

THERE ARE 3 ODD NUMBERS BETWEEN 5 AND 9
Do not print each odd number as you count it.

HINT:
Any odd number plus 2 equals the next odd number.

(%]
~d

HINT: .
You know the bottom and top values of the loop, but the
point of the program i1s to see how many times the loop
must be executed before it gets to the top. Use a
counter inside the 1loop and add to it with each
execution.

MORT:

Now find the sum of all those odd numbers you just
counted,

HINT: .
Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2, Accunulating into that variable within the loop.
In words, total equals total plus another value.

MORT: -

Let the user specify a range, and tell him 1) how many
odd numbers are in that range, and 2) the sum of those
numbers. For example, you ask him for the lower limit
(suppose he glves 9). Then you ask him for the upper
limit (suppose he gives 17), The number of odd numbers
in that range is 5 (9, 11, 13, 15, 17), and the sum is
65.

HINT:
The top and bottom values for the 1loop come from the
user. The work of the loop 1s just to count how many
times it 1s executad.

TASK 1IT2:
Find the number of integers greater than 99 and less
than 278 that are divisible by 11. You don't need any
division to do this.

HINT:
You know the bottom and top values of the loop, but the
point of the program is to see how many times the loop
must be executed before it gets to the top. Use a
counter inside the loop and add to it with each
execution,

38

MORT:

Now find the sum of the numbers greater than 99 and less
than 278 that are divisible by 11,

HINT:
Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another value.

TASK AV:

Find the average of 10 numbers. Ask the user to give
the numbers, one at a time. ;

HINT:
Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another value.

HINT:
The average of 10 numbers is their sum divided by 10,

SUB: .
A very important sub task:
Write a program with a little loop. The '"work'" of the
loop is just ro print the value of the loop's index.
When you run the program, it should 1look like 1t is
counting from 1 to the top value. Use whatever top
value you like.

MORT:
Modify the program to let the user specify how many
numbers he wants to average. Let him type that many
numbers one at a time, then tell him the a.eruge.

HINT:
The average of N numbers is their sum divided by N.

SUB:

Very important:
Write a loop that prints the value of its 1index. Start
the loop at 1, but let the user give the top value. You
can add to this program, making the loop do some real
work, and the work will then be done as many times as
the user 1likes.

39

TASK GAS:

Write a program to calculate the user's gas mileage. He
recorded his car’s mileage at the beginning of the trip,
and again at the end of the trip, when he bought some
amount of gas. Ask him for the starting and ending
mileages (and calculate the miles driven), then ask for
the number of gallons of gas he bought. Then tell him
his gas mileage (miles per gallon),

Example: starting mileage = 5325
ending mileage = 5550
(niles driven = 5550 - 5325 = 225)
gallons of gas = 9
gas mileage = 225 miles / 9 gallons = 25 mpg,

MORT:

Each time the user buys gas, he records the mileage and
the gallons bought. Modify your program to ask him how
many times he bought gas; then ask for the mileage and
gallons he recorded each time. Accumulate the total
miles traveled and the total gallons, then print those
totals and the gas mileage. Test the program with some
very simple numbers to be sure that i1t calculates
correctly.

HINT:
You only need the starting mileage once. Total miles
equals the last mileage recorded minus starting mileage.
Keep a running total of gallons bought,

TASK GUESS:

Write a program that plays a guessing game. Generate a

. random Integer between 1 and 25 (read the manual first),
then 1let the user guess what the number 1is. Print
appropriate messages 1if his guess is too high or too
low, and give him another chance to guess. Congratulate
him for guessing correctly,

HINT:
Break this problem into parts. You need a loop whose
"work' 1is to get and compare the user’'s guess. Generate
the random number before the 1loop, and print the
correct-guess message after the loop.

40

SUB:
Forget about random numbers for now. Write a program
that gets a number from the user and compares his number
to 100, Print "HIGHER THAN 100! or "LOWER THAN 100!"
or "100 EXACTLY!" appropriately. Then you can put this
part together with the other parts you need in the main

task,
SUB:
Your program must get a number from the user again and
again, until the input number equals some set value (the
random number). For now, write a program that asks for
) a number and checks to see 1if that number equals 100,
If it is 100, the program should stop; if not, it should
ask for another input. Then you can fit this part into
the main task.
MORT :
Add a feature to your program that tells the user how
many guesses he needed. Three lines will do it: one to
assign the value 0 to a counter variable, one to add to
- the counter each time he guesses, and one to print the
value of the counter with some approprilate message.
MORT:
Add another feature that lets the user start the game
again with a new random integer. Print an instruction
like "TYPE 'YES' IF YOU WANT TO PLAY AGAIN.'" If he types
'YES' then start the game over; Otherwise, let the
program stop.
TASK TWOS:
Write a program using a **FOR ., ., NEXT** loop to count
by twos, up to a number typed by the user, If he types
8, your program should print
2
4
6
8
TASK BACK:
Use a #*FOR . . NEXT*# ioop to count backwards from 20
to 0, by twos. You will need a STEP -2 in your

'FOR' statement.

41

TASK NGREAT:

Ask the user to type two numbers, then compare them. If

the user types 4 and 12.5, for example, your program
should print

12.5 1S GREATER THAN 4

TASK ALPH:

Compare two strings typed by the user. A string is
"less than" another string if it comes before the other
string alphabetically: "APPLE" < "FISH" is
true. Your program should print something like

APPLE COMES BEFORE FISH

TASK LLOOP:

Use a loop to get three numbers from the user, and print
the largest of those numbers. Do not use three
variables for the numbers. Hint: set a variable L (for
largest) equal to 0. Then compare each user number with
L. Change the value of L to a larger number if one is
typed.

HINT:
Set a variable L {(for 1largest) equal to zero. Then
‘compare each user number with L, Change the value of L
tc a larger number if one 1is typed.

TASK SLiST:

Let the user input a *1list* of 4 strings (a *subscripted
variable* with 4 "slots" in 1it) -- for example, the
names of the courses he is taking. Print out the list
after it is all typed in. uSe a #*FOR , , NEXT** loop
in this program,

HINT:
There are two parts to this:

Looping to input a string list, and looping to print it
out.

42

SUB:

Think about a number list for now. The key is to use
the index of the loop as the index of the list. Write a
loop whose index starts at 1 and goes to 4. The work of
the loop 1is to assign the value of the index to the
corresponding element of the list:

L(I) = 1
The only way to test your program {s to use another
loop, indexed from 1 to 4, whose work is to print the
list, one element at a time:

PRINT L(I) ,
The first execution of the loop should print the first
element of the 1list, ete. When you finish this sub
task, return to the main task., Change the list variable
to a string 1list variable, and change the work of the

first loop so that each execution asks the user to input
a string.

TASK BACKLST:

Take a 1list of strings from the user, then print the
list 4n the opposite order. The 1ist may be of any
length up to 25 (ask how long the user wants it to be,
then set up a loop whose top value is that number.) You
will need a **FOR . . NEXT** 1loop with a STEP -1 to
print the list backwards.

SUB:
Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value. You
can add to this program, making the loop do some real
work, and the work will then be done as many times as
the user likes.

TASK OTHER:

Take a list of numbers from the user, of any length he
likes up to 15, After he types the numbers, print out
every other number in his list. (1f he types these 6

numbers: 2 8 12 5 3 9 your program should print the 2,
12, and 3.)

HINT:
Use a **FOR . , NEXT** loop with STEP 2, Then use the
index of the loop as the index of the list to get every
other element in the 1list.

43

APPENDIX B

THE BIP COMMANDS

This 1s an alphabetic 1listing of the BIP commands and their
functions. Many (e.g., RUN, LIST, SAVE) are identical in function to
their standard BASIC counterparts. The others serve specifically
Instructional purposes, in that they deal with BIP's curriculum

structure, file system, or student history.

CALC Evaluates an expression, This feature
allows the student to see the result of
quick calculations without writing and
running a ccmplete program,

CURRIC Writes the text of the curriculum to a disk
file. This {is available to Stanford
- programmers and designated course

instructors only. CURRIC provides a
readable version of the curriculum-related
parts of the network, with the text of the
tasks listed alcng with the associated hints
and subtasks. This listing appears as
Appendix B.

ENOUGH Terminates the current task without giving
the student cvredit for having compleced {t.

FILES Lists the names of the files 1(n permanent
storage with their last write dates.

~3
-~
vr

Allows the student t¢ leave a message for
Stanford,

44

FLOW

GET <name>

HINT

KILL <name>

LIST

MERGE <name>

Generates and displays a flowchart
representation of the student's current
program. As the student steps through the
execution, the element of the flowchart
representing the current line blinks. This
option 1s under development, and will-be
available only on CRT display terminals.

Retrieves the named program from permanent
storage. The retrieved program replaces the

current program (if any) in the student's
core space,

Prints a hint, if any remain. Some tasks
have more than one associated with them in
the network; a few have no hints., When a
student asks for a hint, BIP internally
flags the hint that it supplies. Another
request for a hint, ducing work on the same
task, initiates a search for an associated
hint not yet flagged.

Erases the named program from permanent
storage. Students cannot affect each
other's file storage, so indiscriminate use
of this command can inconvenience only the
KILLer himself.

Prints the current program in the order of
its line numbers. Students are encouraged
to LIST often, 1in order to avoild confusion
between what was intended and what actually
exists in the program.

Retrieves the named program from permanent
storage and adds it to the current program,
Unlike GET, MERGE does not erase the current
program before retrieval., MERGE allows the
student to develop larger programs, a
section at a time, testing and saving
separate pileces the program as he goes. BIP
informs him of instances in which a line
from permanent storage replaces or
duplicates the current line (i.e., where the
two programs have one or more identically-
numbered lines).

45

MODEL

MORE

REPORT

RUN

SAVE <name>

Prints a typical solution to the current
task, only after all available hints and
subtasks have been presented. The student
may also request the model solution to a
task other than the current task by typing
its name as part of the MODEL command.

Continues the presentation of a task. If
all parts of the task have been completed,
the posttask interview is presented. Some
tasks require that the student complete two
or three closely related problems, calling
for a modification or expansion of the
original program., These "must-follow' tasks
are referred to as MORIs, both internally in
BIP and in the curriculum listing given in
Appendix B. The MORE rcutine will not allow
a student to advance, either to a MORT or to
a new task, unless he has successfully run
his current program,

Provides Stanford programmers and designated
course - instructors a summary of student

- .. activity, either by school (currently DeAnza
*or the University of San Francisco) or for

all students using BIP, The report shows
student number, name, number of sessions and
total hours accumulated on the course, and
number of tasks completed.

Terminates all «currently entered tasks,
without giving the student credit for
completing them. This option allows him to
extricate himgelf ftrom a nest of tasks,
should the need arise.

Executes the current program,
Stores the current program for future use.

Saving the program in permanent storage does
not affect the current version in any way.

46

SCR

SIMPER

SUB

TASK <name>

TRACE

WHAT

WHEN

WHO

Erases the current program.

Allows the BIP student to use a simulated
three-register machine described in Lorton &
Slimick (1969). The SIMPER option allows
instructors to demonstrate the differences
between BASIC and a machine language by
assigning problems to be solved with both,

Presents a subtask -- a smaller part needed
to complete the current task at the
student's request., Upon completion of a
subtask, BIP returns the student

automatically and explicitly to the larger
task.

Presents the student's next programming
task., He may request a task of his choice
by supplying = 1its name; otherwise, BIP
selects the next task on the basis of the
student's history on previous tasks.

Executes a program, but prints out line
numbers and variables as execution
progresses,

Gives the name of the current task and
(optionally) prints the problem text again.
The student may request the text of a
different task by supplying its name.

Prints the current date and time.

Prints the name of the student signed on to
the terminal. This option was included
because of past experience with groups of
gtudents sharing a small number of
terminals, and is intended to prevent the
inadvertent termination of unfinished
session.

REFERENCES

Albrecht, R.L,, Finkel, L., & Brown, J. R. BASIC, New York:
Wiley, 1973, i

Beard, M.H., Lorton, p., Jr., Searle, B. W., & Atkinson, R. C.
Comparison of student performance and attitude under
three lesson selection strategies in computer-assisted
instruction, (Technical Report No. 222) Stanford,
Calif.: Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1973,

Carbonell, J. R. Al in CAI: An artificial intelligence
approach - to computer-assisted instruction, IEEE
Trangsactions on Man-Machine Systems, 1970, MMS-11,
190-202,

Collins, A.M., Carbonell, J. R., & Warnock, E. H. Analysis
and synthesis of tutorial dialogues. (Technical
Report No. 2631) Cambridge, Mass,: Bolt, Beranek and
Newman, 1973,

Coan, J.S. BASIC. New York: Hayden Book, 1970,

Feldman, J. A., Low, J. E., Swinehart, D. C., & Taylor, R. H,
Recent developments in SAIL, AFIPS Fall Joint
Conference, 1972, 1193~ 1202, .

Floyd, R.W., Notes on programming and the ALGOL W language.
Stanford, Calif.: Computer Science Department,
Stanford University, 1971,

Forsythe, A.1., Keenan, T. A., Organick, E. 1., & Sternberg,
W. Computer science: A first course. New York: Wiley,
1969,

48

Friend, J., Computer-assisted instruction in pgpgramming A
curriculum description. (Technical Report No, 211).
Stanford, Calif.: Institute for Mathetical Studies 1in
the Social Sciences, Stanford University, 1973,

Goldberg, A. Computer-assisted instruction: The application
of theorem-proving to adaptive response analysis.
‘(Technical Report No. 203} Stanford, Caiif.: Institute
for Mathematical Studies 1in. the Social Scilences,
Stanford University, 1973.

Kemeny, J. G. & Kurtz, T. E. BASIC programming. {(2nd ed} New
York: Wiley, 1971,

Kimball, R. B, Self-optimizing computer-assisted tutoring:
Theory and practice. (Technical Report No, 206)
Stanford, Calif.: Institute for Mathematical Studies
in the Social Sciences, Stanford University, 1973,

‘Koffman, E. B, & Bluunt, S. A modular system for generative
CAI in machine language programming, Storrs, Conn.:
University of Connecticut, School of Engineering,
1973,

Lorton, P,, Jr, & Slimick, j. Computer based instruction in
computer pcogramming -- a symbol manipulation~list
processing approach, Proceedings of the Fall Joint
Computer tonference, 1565, 535-544,

Manna, Z. Program schemas. In A.V, Aho (Ed.), Currents in the
theory of computing, Englewood Cliffs, N.J.: Prentice-
Hall, 1973.

' Nievergelt, J., Reingoid, E, M., & Wilcox, T, R. The
automation of introductory computer science courses,
Proceedings of the International Computing Symposium,
1973,

People’s Computer Company Newsletter, Box 310, Menlo Park,
Calif, ;

Nolan, R.L. Introduction to computing chrough the BASIC
language. New York: Holt, Rinehart and Winston, 1969,

49

Smith, R. TENEX SAIL. Technical Report in preparation.
Stanford, Calif.: Institute for Mathematical Studies
in the Social Sciences, Stanford University, 1974.

Swinehart, D. C., & Sproull, R. F. SAIL, Stanford, Calif:
Stanford Artificial Intelligence Laboratory Operating
Note 57.2, Stanford University, 1971.

VanLehn, K., SAIL User Manual, Stanford, Calif: Stanford
Artificial Intelligence Laboratory, Stanford
University, 1973,

Wiener, H., & Ross, B. BASIC workbook, Berkeley, Calif.:
Lawrence Hall of Science, University of California,
1972,

50

DESTRIBUT LN LIST

Navy

4 Dr. Marshall J. Farr, Director 1 Chief of Naval Technical Training
Personnel & Training Research Programs Naval Air Staticn Memphis (75)
Office of Naval Kesearen Millington, TN 38054
Arlington, VA 22217 Attn: Dr. N. J. Kerr

1 Director 1 Chiet of Naval Training
ONR Branch Office Naval Air Station
495 Summer Street Pensacola, FL 32508
Boston, MA (2210 Attn: Capt. Bruce Stoune, USN

Attn: Psychologing
1 LCDR Charles J. Theisen, Jr., MSC

1 Director Lo2k
ONR Branch Office Naval Air Develcpment Center
1030 East Grecn Street ‘ Warminster, PA 1897k
Pasadena, CA 91101
Attn: E. E. Glcy= 1 Commander
Naval Air Reserve
1 Director Naval Air Staticn
ONR Branch Cffice Glenview, IL 60026
536 South Clark Street,
Chicago, IL 60£0% 1 Coummander
Attn: M. A, Eertin Naval Air Systems Command
Department, of the Navy
1 Office of Maval Resgesarch AIR-413C
Area Oftice Washington, DC 20360
207 West 2htn Ltireet :
New York, NY 10011 1 Mr., lee Miller (AIR 413E)
Naval Air Systems Command
6 Director 5600 Columbia Pike
laval Research Labcratcry Falls Church, VA 22042
Code 2627
Washington, I'C 20%%0 1 Dr. Harold Bcoher
NAVALR 415C
12 Defense Docume:tatisn Center Naval Air Systems Command
Camercn Station, Building 5 5600 Columbia Pike
5010 Duke Street Falls Church, VA z20h2

Alexandria, VA 22314
1 Capt. John F. Riley, USN

1 Chaiman . — Commanding Officer
Behavioral Science Depariment U.S. Navai Amphibicus School
Naval Ccommand and Managemen' Division (oronado, CA 92155
U.S. Naval Acacdemy
Luce Hall : 1 Special Assistant for Manpowe”

Annapolis, MD 21402 . DASN (M&RA)
Lt : SR : ‘ The Pentagon, Room h“70h
Washington, DC - 20350

10

Dr. Richard J. Hiehaus

Office of Civilian Manpower
Managenment

Code 06A

Department ctf the Navy

Washington, DC 20390

CDR Richard L. Martin, USN
COMFAIRMIRAMAR F-1k
NAS Miramar, CA 92145

Research Director, Code 06
Research and Evaluation Department
U.,S., Naval Examining Center

Great Lakes, IL 60088

Attn: C. 8. Winiewicz

Chief

Bureau of Medicine and Surgery
Code 413

Washington, DC 20372

Program Ccurdinator

Bureau of Medicine and Surgery
{Code 71G)

Department of the Navy
Wasnhington, DC 20372

Commanding Officer

Naval Medical Neuropsychiatric
Research Unit

Ean Diego, CA 92152

Pr. John J. Collins

Chief of Naval Operatidénz (OP-987F)
Department of the Navy

Washington, DC 20350

’
Technical Library (Pers-11B)
Turcau ¢f Navel Poroconnel
Departrent of the Navy
Wagi:ington, DC 20360

Dr. Jame: .. Regan, Technical Director

Navy Perscgnnel Research and Develop-
ment Center

San Diego, CA 92152

Commanding Officer .

Navy Perschuel Research and,
Develcopment Center

San Diego, CA 92152

Superintendent

Naval Postgraduate School
fonterey, CA 92940

Attn: Library (Code 2124)

Mr. George N. Graine

Naval Ship Systems Command
(SHIPS 0h7Cl2)

Department of the Navy
Washington, DC 20362

Technical Library

Naval Ship Systems Command
National Center, Building 3
Room 3508 '
Washington, DC 20360

Commanding Officer

Service School Command
U.S. Naval Training Center
San Diego, CA4 92133

Attn: Code 303

Chief of Naval Training Support
Ccde N-21

Building 45

Naval Air Station

Pensacola, FL 32508

Dr, William I. Maloy

Principal Civilian Advisor for
Educaticn and Training

Naval Training Command, Code OlA

Pensaccla, F{, 32508

Dr. Hanss H. Wolft }
Technical Director {Code N-2)
Naval Training Bquipment Center
Orlando, FL 32813

Mr. Arnold Rubinstein

Naval Material Command
(NMAT-03424)

Room 820, Crystal Plaza No. 6

Washington, DC 20360

Dr. H. Wallace Sinailko

c/o Cffice of Naval Research {Code 450)
Psycholegical Sciences Division
Arlington, VA 22217

Dr. Martin F. Wiskoff

Navy Personnel Research and
DPevelopment Center

San Diego, CA 92152

Dr. John Ford, Jr.

Navy Perscnnel Research and
Develcpment Center

San Diegc, CA 02152

Technical Library

Navy Personnel Research and
Development Center

San Diego, CA 92152

Annx
1

Cemmandant

U.5. Amy Institute of Administration
Attn: EA

Fort Benjamin Harrison, IN L6216

Armed Forces Staff College
Norfolk VA 23511
Attn: Library

Director of Recearch

U.S. Army Armor Human Research Unit
Attn: Library

Building 2k22 Morade Street

Fort Knox, KY L0121

U.S.: Army Resecarch Institute for the
Behavioral and Sccial Sciences

1300 Wilson Boulevard

Arlington, VA 22209

Commanding Orticer

Attn: LTC Montgomery

USACDC - PASA

Ft. Benjamin Harrison, IN L6249

Dr. John L. Kobrick

Military Stress Laboratory

U.S. Army BResearch Institute of
Enviromnmental Medicine

Natick, MA 01760

Commandant

U.S. Army Intfantry School
Attn: ATSIN-H

Fort Benniné, GA 31905

U.S. Army Research Institute
Commonwealth Building, Room 239
1300 Wilson Boulevard
Arlington, VA 22209

Attn: Dr. R. Dusek

Mr. Edmund F. Fuchs
U.S. Army Research Institute
1300 Wilson Boulevard
Arlington, VA 22209

Chief, Unit Training and Educational
Technology Systems
U.S. Army Research Institute for
the Behavioral and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

Commander

U.S. Theater Ammy Support Command,
Europe ~

Attn: Asst. DCSPER (Education)

APO Kew York 09058

Dr. Stanley L. Cohen

Work Unit Area Leader

Organizational Development Work Unit

Army Research Institute for Behavioral
and Social Sciences

1300 Wilson Boulévard

Arlingtorn; VA 22209

Dr. leon H. Nawrocki

U.S. Army Research Institute
Rosslyn Commonwealth -Building
1300 Wilson Boulevard

Arlington, VA 22209 .

PR ERR A i Toxt rovided by Exic [N

1

Al Poree

Dr. Martin Keckway
Techinical Training Division
Iowry Alr Force Bace
Denver, CO 80230

Maj. P. J. Ixleo

Instruetional Technology Branch
AF Human Resources Laboratery
Lowry Air Force Base, CO 80230
Headquarters, U.S. Air Force
Chief, Personnel Researc

Division (AF/DPSY)

Washingten, DC 20330

Research and Analysis Division
AF/DPXYR - Room LC200
Washingten, DC 20330

AFHEL/AS (Dr. G. A. Eckstrand)
Wright-Patterson AFB

Ohio 45433

AFHRL {AST/Dr. Koss L. Morgan)
Wright-Patterson Air Eorce Base
Ohic 45433

AFHRL/MD

701 Prince Stmet

Room 200

Alexandria, V& 2231k
AFGSR(NL) -

1400 Wilsen Boulevard
Arlington, VA 22209

Cenrmandant

USA¥ School of Aercspace HMedicine
Aercmedical Library (SUL-L)
Brocks AFR, TX 78235

(<

Capt., Jack Thorpe, USAF
Department of Psychcleogy
Bowling Green State University
Bewling Green, OH 43403

i and Analysis

CMr. E. A

Coagct

1 Mr,

Otler

1 Headguarters, Electronic Systems
Division
Attn: Dr, Sylvia R, Mayer/MCIT
LG Hauscom Field
Pedrond, MA 01730
St Col. lenry L. Taylor, USAF

Military Assistant for Human
Resources

OAD{E&LS) CDDRRE

Pentagon, Room 3D129

Washington, DC 20301

Marine Corps
1 Cel. George

Caridakis

Director, Office of Manpower
Urilizatiocn

Headquarters, Murine Corps (AO1H)

MCR

Quantico, VA 22134

Slafkosky
Advicor {Ousde Ax)
of the Marine Corps

0340

Dr, A, L.

Seieptific
Commanaant.
Washington, DC

Dover
Manpower Measurenmont
Arlington Annex, Koom 2413
Arlingten, VA 20370

Unit {Code MPT)

Guard

Joseph J. Cowan, Chief

Poyetclogical Feseareh Rranch (P-1)

U.S. Coust Cuard Headyuurters
400 Ceventh Street, oW

Washington, DC

#0590

poD

1 Lt. Cold, -adustin W. Kibler, Director

Huwrar Resources Research Office

Advanced Research Projects Agency

1400 Wilsou Boulevard

Arlington, VA 22209

Mr. Helga Heich, Director _

Program Mangenent, De fense Advanced~
Research Projects Agency

1400 Wilsen Boulevard

4

Arlingten, VA 22209

Mr., William J. Stcormer
DOD Computer Institute
Wachington Navy Yard
Building 175
Washington, DC 2037k

Mr. Thomas €., C'Sullivan

Human EResources Research Office
Advanced Research Prcjects Agency
1400 Wilson Boulevard

Arlington, VA 22209

Other Government

1

Office ¢t Computer Informaticn

. Institute for Cemputer Sciences

and Technology
National Bureau of Standards
Washington, DC 20234

Dr. Eric McWilliams, Program Manager
Technology and Systems, TIE

National Science Foundation
Washingten, DC 20550

Miscellanecus

1

Dr. Scarvia B. Anderscn
Educational Testing Service
17 Executive Park Drive, N.E.
Atlanta, GA 30329

Dr. Bernard M. Bass
University of Tochester
Management Research Center
Rochester, NY 14627

Mr. Edmund C. Berkeley
Berkeley Enterprises, Inc.
815 Wasnington Street
Newtonville, MA 02160

Dr. David G. Bowers
University of Michigan
Institute for Sccial Research
P.0. Box 1248

Ann Arbor, MI 48106

Mr. H. bean Brown

Stauford Research Institute
333 Ravenswcod Avenue
Menlo Park, CA 94025

Mr. Michael W. Brown
Operaticns Research, Inec.
1400 Spring Street
Silver Spring, MD 20910

Dr. Ronald P. Carver

American Institutes for Research
8555 Sixteenth Street

Silver Spring, MD 20910

Century Research Corporation
4113 Lee Highway
Arlington, VA 22207

Dr, Kenneth E. Clark
University of Rochester
College of Arts and Sciences
River Campus Station
Rochester, NY 14627

Dr., Allan M, Collins
Bolt PBeranek and Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Renc V. Dawis
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

ERIC

Processing and Reference Facility
4833 Rugby Avenue

Bethesda, MD 2001k

Dr. Viector Fields
Department of Psychology
Mcntgomery College.
Reckville, MD 20850

Dr. Edwin A, Fleishman ;
American Institutes for Research
8555 Sixteenth Street

Silver Spring, MD 20910

Dr. Duncan N, Hansen

Menphis State University

Bureau of Educational Research and
Services

Memphis, TN 38152

Dr. Robert Glaser, Director

University of Pittsburgh

learning Research and Development
Center

Pittsburgh, PA 15213

Dr. Albert S, Glickman

American Institutes for Research
8555 Sixteenth Street

Silver Spring, MD 20910

Dr. Henry J. Hamburger
University of California
School of Soecial Sciences
Irvine, CA 92664 '

Dr, Richard S. Hatch
Decision Systems Associates, Inc.
11428 Rockville Pike
Rockville, MD 2052

Dr. M. D. Havron

Human Sciencec Research, Inc.
Westgate Industrial Park
7710 0ld Springhouse Road
McLean, VA 22101

Hunan Resources Research Organization
Division #3

P.O. Box 5787

Presidio of Monterey, CA 93940

Human Resources Research Organization
Division #L4, Infantry

P.O, Box 2086

Fort Benning, GA 31905

Huran Resources Research Organizatiocn
Division #5, Air Defense

P.C. Box 6057 :

Fort Bliss, TX 79916

Malibu, CA 90265

Human Rescurces Research Organization
Division #6, Library

P,0. Box 42

Fort Rucker, AL 36360

Dr., Lawrence B. Johnson

Lawrence Johnson and Associates, Inc.
200 S. Street, N.W., Suite 502
Washington, DC 20009

Dr. Norman J. Johnson
Carnegie-Mellon University

Schicol ¢f Urban and Public Affairs
Pittsburgh, PA 15213

Dr. David Klahr
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Robert R, Mackie

Human Facters Research, Inc,
6780 Cortona Drive

Santa Barbara Research Park
Goleta, CA 93017

Dr. Andrew R. Molnar

Technological Innovations in
Education

National Science Foundation

Washington, DC 20550

Dr. Leo Munday, Vice President
Amerlican College Testing Program
P.O. Box 168

Iowa City, TA 52250

Dr. Donald A, Norman

University of California, San Diego

Center for Human Information
Processing

la Jella, CA 92037

Mr. Luigl Petrullo
2h31 Horth Edgewood Street
Arlington, VA 22207

Dr. Diane M. Ramsey-Klee
R-K ‘Research & System Design:
3947 Ridgemont Drive -

Dr., Jesepnhr W. Rigney

Behavioral Technology lLaboratories
University of Southern California
3717 South Grand

Los Angeles, CA 90007

Dr. Lecnard L. Rosenbawn, Chairman

Department ¢f Psychology
Montgomery College
Rockville, MD 20850

Dr. George E. Rowlaid
Rowland and Company, Inc,
.0, Bex €1

Haddonrield, NJ 03033

Mr. A, J. Pesch, President
Eclectech Assceiates, Tne,
P,0, box 178

North Stenington, 8 QO350
Dr. Arthur I. Siegel

Applied Psychological tervices
Science Center

404 East Lancaster Avenue
Wayne, PA 19087

Mr. Dennis J, Sullivan
725 Benson Way
Thousand Oaks, CA 91360

Dr. Bentcn J. Underwood
Northwestern University
Department of Psycholcgy
Evanston, IL 60201

Dr. David J. Welss
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

Dr. Anita West

Denver Reseaicii Institute
University of Denver
Denver, €O 80210

Dr, Kenneth Wexler
University of Califoriiia
School of Social Sciences
Irvine, CA Q2664

1 Dr. John Annett

The Upen University
Milten Keynes
Buckinghamshire, ENGLAND

Dr. Milton S. Katz
MITRE Corporation
Westgute PResearch Center
McLean, VA 22101

Dr. Charles A. Ullmann

Director, Behavioral Sciences
Studies

Intfemation Ceneepts, luc,

1701 N. Ft. Myer Drive

Avlington, VA 0209

br. lexter Fletcher

Tepartnent of Poychology

P.C, Pox W3H8

University of Tilincis, Chicapgo
Cirele

Chiengo, IL GUOSC

Dr. Altred i'. fnede, Staf't
Consultant

Training Analysis and Evaluatien
Group

Baval Trajning Equipment Center

Code =00y

Orlado, ¥ r0813:

165
166
167
168
169

170

172
173

174
175
176
177

178
179
180

181
182
183

184
185
186

187
188
189

190
191
192
193
194
195
196

197
198

199
200

Aruitoxt provided by Eic:

»R c. Atkinson; D, J. Herrmann, and K, T Wescout, Seatch processes in recognition memory . June 8; 1973,

: ;R 8. Kvmball. Seif-optimizing computel-asslsted tuloring: Theory 2nd practice. June 25, 1973, :
_'R C. Atkinson, J. D, Fletcher, €., Lindsay, 3. 0. Campbell, and A, Barr, Computer-asnsted msuuchon in nmhat mqu. July 9. 1973
VIR Chamm aMJ 0. Ftetche'. Emlish as the _sécond lanquage of deat studenu. oty 20, 197} :
: ‘,,J A, Paulsom Ah evaluation of inwucumal suateqks ina simple Iearning ‘situalion, July 30, 1913

Ri1YE

(Continued from inside front cover)

L, J. Hutert, A formal model for the perceptual pitcessing & geometric configurations. February 19, 1971, (A statistical method for
investigating the perceptual confusions among geomelric configurations. Journal of Mathematical Psychology, 1972, 9, 3§9-403.)

J. F. Juola, b, S, Fischler, C. T, Wood, and R, C. Atkinson. Recognitinn time for nformation stored in long-term memory, (Perception and
Psychophysics, 1971, 10, 8-14.)

R. L. Klatzky and R. C. Atkinson, Speciafization of the cerebral bemispheres in scanning for information in short-term memory. (Perception
and Psychophysics, 1971, 10, 335-338.) N

J. D Fletcher and R, C. Atkinson. An evaluation of lhe Stanford CAl program in initial reading {grades K through 3), March 12, 1971,
(Evaiuation of the Stanford CAl program in initial reading, Journal of Educationa] Psycholegy, 1972, 63, 597-602.}

J. F. Juola and R, C, Atkinson. Memory scanning for words versus categories, {Journal of Verbal Learning and Verbal Behavior, 1971,

10, 522-527.)

1. S, Fischler and J, F. Juota. Effects of repeated tests on recognition time for information in long-terin memory. {Journal of Experimentat
Psychology, 1971, 91, 54-58,)

P, Suppes. Semantics of context-free fragments of natural languages. March 30, 1971, (InK. J. J. Hintikka, J. M, E. Motavcsik, and
P. Suppes (Eds.), Approaches to natural language, Dordrecht: Reidel, 1973, Pp. 221-242,)

J. Friend. INSTRUCT coders’ manuat. May 1, 1971.

R. C. Atkinson and R. M. Shiflrin, The control processes of short-term memory. April 19,1971, (The control of short-lerm memory.
Scientific American, 1971, 224, 82-90.)

P. Suppes, Computer-assisted instruction at Stanford. May 19, 1971, (In Man and computer. Proceedings of international conference,
Bordeaux, 1970, Basel: Karger, 1972, Pp, 298-330.)

D. Jamison, J. D, Fletcher, P, Suppes, and R. C, Atkinson, Cost and performance of computer-assisted instruction for education of disadvantaged
children, July, 1971.

J. Oftir. Some mathematical models of individual differences in {earning and performance. June 28, 1971. (Stochastic fearning models with
distribution of parameters. Journal of Mathematical Psychology, 1972, 9143,)

R. C. Atkinson and J. F. Juola. Factors inftuencing speed and accuracy of word recognition, August 12, 1971, {In S. Korndlum (€d.},
Attention and performance iV, New York: Academic Press, 1973.)

P. Suppes, A, Goldberg, G. Kanz, B, Searle, and C. Staulfer. Teacher's handbook for CAl courses, September 1, 1971,

A, Gotdberg. A generalized instructional system for elementary mathematical lagic. October 11, 1971,

M, Jerman. Instruction in problem solving and an analysis of structural variables that contribute to problem=solving difficulty, November 12,
1971. Undividualized instruction in problem solving in elementary mathematics. Jouraal for Research in Mathematics Education, 1973,
4, 6-190)

P. Suppes. On the grammar and model-thearelic semantics of children's noun phrases, Navember 29, 1971,

G. Kreisel, Five notes on the application of proof theory to computer science. December 10, 1971.

J. M. Moloney. An investigation of college student performance on a logic curriculum in a computer-assisted instruction selting, January 28,
1972,]

J.E. Friend, J, D, Fletcher, and R. C. Atkinson. Studenl performance in computer-assisted insteuction in programming. May 10, 1972,

R. L. Smith, Jr. The syntax and semantics of ERICA, June 14, 1972, : -

A, Goldbergand P, Suppes. A computer-assisted instruction program for exercises on finding axioms. June 23, 1972, (Educational Studies
in Mathematics , 1972, i, 429-449.)

R. C, Atkinson. lngredients for a theory of instruction. June 26, 1972, (Amerizan Psychologist, 1972, 27, 921-931.)

J, D. Bonvillian and V, R. Charrow . Psychotinguistic implications of deafness: A review. July 14,1972,

P, Arabie and S. A, Boorman. Multidimensionat scaling of measures of distance between partitions, July 26, 1972, (Journal of Mathematical

Psychology, 1973, 10,)

J. Ball and D. Jamison, Computer-assisted instruction for dispersed populations: System cost models. . Septemder 15, 1972. {nstructionat
Sclence, 1973, 1, 469-501.)

W. R. Sanders and J. R, Balt, Logic documentation standard for the Institute for Mathematical Studies in the Social Sciences,” Oclober 4, 1972,

M. T, Kane, Variability in the proof behavior of college students in a CAl course in logic as a function of problem characteristics, October &,
1972,

P. Suppes, Facts ard fantasies of education. October 18, 1972, (In M. C, Wittrock (E4.), Changing education: Alteriatives from educational
research., Englewood Cliffs, N. J.: Prentice-Hall, 1973, Pp. 6-45.)

R. C. Atkinson and J, F, Jucia, Search and decision processes in recognition memory, October 27, 1972,

P. Suppes, R. Smith, and M, Léveill€, The French syntax and semantics of PHILIPPE, part 1: Noun phrases, November 3, 1972,

D. Jamison, P. Suppes, and S, Wells, The effectiveness of alternative insteuctional methods: A survey. November, 1972,

P. Suppes. A survey of cognition in handicasped children, Detember 29, 1972.

8. Searle, P, Lorton, Jr., A, Goldberg, P, Suppes, N. Ledet, and C. Jones, Computer-assisted instruction program: Tennessee State
University, February 14, 1973,

‘D. R, Levine. Computer-based analytic grading for German grammar instruction, March 16, 1973,

P.Suppes, J, D, Fletcher, M, Zanolti, P, V. Lorton, Jr,,/and B, W. Searle. Eva?uatmn olcompuler assisted instruction in efementary
mathematics for hearing-impaired students. March 17, 1973,) . : o ‘.
6, AL Huff. Geometry and formal linguistics. Apnf 27, 1973 i

: c Jensema. Useful lechniques for applying latent trait mnw! test theory, May 9, 1973

A Goldberg. Computer-ass.s'“. instruction:. The applization of theorem-provmg to adaptive response analysis, May 25,1973,

J, Van Campen. A cmpu(er—based introduction to the morphology of Ofd Church Slavonic, * June 18, 1973

N ‘Manin. Convergence pfopedies’ ic adagt efscherres called sequenhal repto‘#ucﬂvé plans. Ju|y 31 1973‘{' :

(Continued from inside back cover}

211 J. Friend. Computer-assisted instruction in programming: A cuericulum description. July 31, 1973,

212 S. A. Weyer. Fingerspelling by computer, August 17, 1973,

213 B. W. Searle, P. Lorton,Jr., and P, Suppes, Structural variables affecting CAt performance on anithmetic word prodtems of disadvantaged
and deaf students. September 4, 1973,

