
DOCUMENT RESUME

ED 092 093 IR 000 651

AUTHOR Barr, Avron; And Others
TITLE A Rationale and Description of the BASIC

Instructional Program. Technical Report No. 228.
INSTITUTION Stanford Univ., Calif. Inst. for Mathematical Studies

in Social Science.
SPONS AGENCY Advanced Research Projects Agency (DOD), Washington,

D.C.; Office of Naval Research, Washington, D.C.
Personnel and Training Research Programs Office.

REPORT NO IR-228
PUB DATE 22 Apr 74
NOTE 64p.

EDRS PRICE MF -$0.75 HC -$3.15 PLUS POSTAGE
DESCRIPTORS *Computer Assisted Instruction; *Computer Programs;

Computer Science Education; Problem Solving; Program
Descriptions; Programing; *Tutorial Programs

IDENTIFIERS BASIC; *BASIC Instructional Program

ABSTRACT
A course in computer programing is being developed as

a vehicle for research in tutorial modes of computer-assisted
instruction. Methods for monitoring and aiding the student as he
works on interesting programing problems are employed. The problems
are individually selected via an optimization scheme based on a model
of the student's ability and difficulties. At BIP's (BASIC
Instructional Program) core is an information network which embodies
the interrelations of the concepts, skills, problems, remedial
lessons, hints, BASIC commands, and manual references. With the data
stored in the student history, the network enables BIP to model the
student's state of knowledge and to make problem selections with some
relevance. After a brief overview of work done at Stanford in
tutorial CAI and the teaching of procedural skills, the functional
elements of BIP, its BASIC interpreter, curriculum solution analysis,
and interactive assistance during programing are described.
(Author)

k

A RATIONALE AND DESCRIPTION OF THE BASIC INSTRUCTIONAL PROGRAM

:)

BY

AVRON BARR, MARIAN BEARD, AND RICHARD C. ATKINSON

TECHNICAL REPORT NO. 228

APRIL 22, 1974

PSYCHOLOGY AND EDUCATION SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

a

TECHNICAL REPORTS

PSYCHOLOGY SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(Place of publication shown In parentheses, if published title Is different from title of Technical Report,
this Is also shown in parentheses,)

125 W, K. Estes. Reinforcement in human teaming. December 20, 1967. lin J. Tapp (Ed.), Reinforcement and behavior. New York: Academic

Press, 1969. Pp. 63-94.)
126 G. L. Wolfoed, 0. L. Wessel, and W, K. Estes. Further evidence concerning scanning and sampling assumptions of visual detection models.

January 31, 1968. (perception and Psychophysics, 1968, 3, 439-444,)
127 R. C. Atkinson and R. M. Shahan. Some speculations on storage and retrieval processes in long-term memory . February 2, 1968.

(Psychololical Review, 1969, 76, 179-193.)
128 J. Holmgren. Visual detection with imperfect recognition. March 29, 1968. (Perception and Psychophysics , 1968, 4(4),

129 L. B. Mlocinosky. The Frostig and the Bender Gestalt as predictors of reading achievement. April 12, 1968.

130 P. Suppes. Some theoretical models for mathematics learning. April 15, 1968. (Journal of Research and Development In Education, 1967,

1, 5-22.)
131 G. M. Olson. Learning and retention in a continuous recognition task. May 15, 1968. (Journal of Experimental Psychology, 1969, 81, 381-384.)
132 R. N. Hartley. An investigation of list types and cues to facilitate initial reading vocabulary acquisition. May 29, 1968. (Psychonomic Science,

1968, 12(b), 251-252; Effects of list types and cues on the learning of wad lists. Reading Research Quarterii, 1.970, 6(1), 97-121.)
133 P. Suppes. Stimulus-response theory of finite automata. June 19, 1968. (Journal of Mathematical Psychology, 1469, 6, 327-355.)
134 N. Moles and P. Suppes. Quantifier-free axioms for constructive plane geometry. June 20, 1968. (Compositio Mathematica, 1968, 20, 143-152.)
135 W. K. Estes and D. P. Horst. Latency as a function of number of response alternatives in paired-associate learning, July 1, 1968.

136 M. Schfag-Rey and P. Suppes. High-order dimensions in concept identification. July 2, 1968. (Psychometric Science, 1968, 11 , 141-142,1
137 R. M. Shiffrin. Search and retrieval processes in tong-tem memory. August 15, 1968.

138 R. D. Freund, G. R. Loftus, and R. C. Atkinson. Applications of multiprocess models For memory to continuous recognition tasks. December 18,
1968. (Journal of Mathematical Ps clymlogy, 1969, 6, 576-594.)

139 R. C. Atkinson. Information delay in human learning. December 18, 1968. (Journal of Verbal Learning and Verbal Behavior, 1969, 8, 507-511.)
140 R. C. Atkinson, J. E. Holmgren, and.). F. Juola. Processing time as influenced by the number of elements in 'ne visual display. March 14, 1969.

(Perception and Psychophysics, 1969, 6, 321-326.)
141 P. Suppes, E. F. Loftus, and M. Jerrnan. Problem-solving on a computer-based teletype. March 25, 1969. (Educational Studies in Mathematics,

1969, 2, 1-15.)
142 P. Suppes and M. Morningstar. Evaluation of three computer-assisted instruction programs. May 2, 1969. (Computer- assisted instruction. Science,

1969, 166, 343-350.)
143 P. Suppes. On the problems of using mathematics in the development of the social St ' nces. May 12, 1969. (In Mathematics in the social sciences

In Australia. Canberra: Australian Government Publishing Service, 1972. Pp. 3-15.)
144 Z. ()motor. Probabilistic relational structures and their applications. May 14, 1969.
145 R. C. Atkinson and T.D. Wickens. Human memory and the concept of reinfnrcement. May 20, 1969. On R. Glazer (Ed,), The nature of reinforcement.

New York: Academic Press, 1971. Pp. 66-120.)
146 R. J. Titiev. Some model-theoretic results in measurement theory. May 22, 1969. (Measu nt structures in classes that ace not universally

axIontatizable. Journal of Mathematical Psychology, 1972, 9, 200-205.)
147 P. Suppes. Measurement: Problems of theory and application. June 12, 1969. On Mathematics in the social sciences in Australia. Canberra;

Australian Government Publishing Service, 1972. Pp. 613-622.1
148 P. Suppes and C. Dyke, Accelerated program in elementary-school mathematics- -The fourth year. August 7, 1969. (Psychology in the Schools,

1970, 7, 111-126.)
149 D. Rundus and R. C. Atkinson. Rehearsal processes in free recall: A procedure for direct observation. August 12, 1969. (Journal of Verbal

Learning and Verbal Behavior, 1970, 9, 99-105.)

150 P. Suppes and S. Feldman. Young children's comprehension of logical connectives. October 15, 1969. (Journal of Experimental Child

Psychology, 1971, 12, 304-317.1
151 J. H. Laubsch. An adaptive teaching system For optimal item allocation. November 14, 1969,

152 R. L. Klateky and R. C. Atkinson. Memory scans based on alternative test stimulus representations. November 25, 1969. (Perception ano

Psychophysics, 1970, 8, 113-117,1
153 J. E. Holmgren. Response latency as an indicant of information processing in visual search tasks. March 16, 1970.

154 P. Suppes. Probabilistic grammars for natural languages. May 15, 1970. (Synthese, 1970, 11, 111-222.1

155 E. M. Gammon. A syntactical analysis of some first-grade readers. June 22, 1970.

156 K. N. Wexler. An automaton analysis of the learning of a miniature system of Japanese. July 24, 1970.

157 R. C. Atkinson and.). A. Paulson. An approach to the psychology of instruction. August 14, 1970. {Psychological Bulletin, 1972, 78, 49 -61,)

158 R. C. Atkinson, J.0. Fletcher, H. C. Chetin, and C. M. Stauffer. Instruction ja initial reading under computer control: The Stanford project.
August 13, 1970. On A. Romano and S. Rossi (Eds.), Computers in education . Bari, Italy: Adriatica Editrice, 1971. Pp. 69-99,
Republished: Educational Technology Publications, Number 20 in a series, Englewood Cliffs, N. J.)

159 D. J. Rundus. An analysis of rehearsal processes in free recall. August 21, 1970. (Analyses of rehearsal processes in free recall. 'Journal

of Experimental Psychology, 1971, 89, 63 -77,)
160 R. L. Kfataky, J. F. Juola, and R. C. Atkinson. Test stimulus representation and experimental context effects in memory scanning. (Journal

of Experimental Psycho/ego, 1971, 87, 281-288.)

161 W. A. Rottmayer. A formal theory of perception. November 13, 1970.

162 E. J, F. Loftus. An analysis of the structural variables that determine problem solving difficulty on a computer-based teletype. December 18,

1970.
163 J. A. Van Campen. Towards the automatic generation of programmed foreign-language instructional materials. January 11, 1971.

164 J. Friend and R, C, Atkinson. Computer-assisted instruction in programming: AID. January 25, 1971.

A Rationale and Description of the BASIC Instructional Program

by

Avron Barr, Marian Beard, and Richard C. Atkinson

This research was supported jointly by:

Office of Naval Research
Psychol)gical Sciences Division
Personnel and Training Research Programs (Code 458)
Contract Authority Number: NR 154-326
Scientific Officers: Dr. Marshall Farr and Dr. Joseph Young

and

Advanced Research Projects Agency
ARPA Order Number: 2284 dated 30 August 1972
Program Code Number: 3D20

Contract number:

N00014-67-A-0012-0054
1 August 1972 - 31 July 1974

Principal Investigator:

US DEPARTMENT OF HEALTH.
EDUCATION I WELFARE
NATIONAL INSTITUTE OF

EDUCATION
TH1 5 DOCUMENT HAS BEEN REPRO
DuCED EXACTLY AS RECEIVED ,F ROM
THE PERSON OR ORuANI/A11()N OR tGIN
A W I N G 1 1 POINTS 0,- viE Ok OPINIONS
STATED DO NOT NECESSARILY REpRi
SENT Of IC,AL NATIONAL tNSTIT T4 CI
EDUCATION PCs{ r,ON OR POt ICS

Richard C. Atkinson
Professor of Psychology
Institute for Mathematical Studies in the Social Sciences
Stanford University
Stanford, California 94305
(415) 497-4117

The views and conclusions contained in this document are those of the
authors and ahculd not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agen:,9 or the Office of Naval Research or the U. S.
Government.

App ove.d for public release; distribution unlimited.

Reproduction in whole cr in part is permitted
for any purpose of the U. S. Government.

SECURITY CLASSIFICATION OF THIS PAGE (Whom Deli Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

Technical Report No. 5

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4 TITLE an Subtitle)

A Rationale and Description of the BASIC
Instructional Program

S TYPE OF REPORT A PERIOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER

Technical Report No. 228
7. Auip.toR(

Avron Barr, Marian beard, and Richard C. Atkinson

I. CONTRACT OR GRANT NU1.18ERON

N00014-67-A-0012-0054

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Institute for Mathematical Studies in the Social
Sciences - Stanford University

Stanford, California 94305

10. PROGRAM ELEMENT, PROJECT. TASK
REA

1V3aNWORK
UNIT NUMBERS

6A

RR 042-0; RR 042-0-0
NR 154-326

II. CONTROLLING OFFICE NAME AND ADDRESS
Fersonnel and Training Research Programs
Office of Naval Research (Code 458)
Arlington VA 22217

12, REPORT OATE

April 22, 1974
13 NUMBER OF PAGES

50
16 MONITORING AGENCY NAME & ADORESSi'll collision? from Contralti.", Office)

,

IS. SECURITY CLASS. (of ihle report)

Unclassified

Is.. DECLASSIFICATION' DOWNGRADING
SCHEDULE

16 CHSTRiuuT ON STATEMENT fof int, Report)

Approved for public release; distribution unlimited.

12. DISTRIBUTION STATEMENT (of the abttrct entered In Block 20, if di(feront from Report)

le SUPPLEMENTARY NOTES

19 XEY WOROS (Continue on (*vers aid* if neceetary and Identify by block number)

BASIC, Computer-Assisted Instruction (CAI), computer programming, computer
science education, instruction control strategy, tutorial CAI

20. ABSTRACT (Continua on to 00000 aide If nsceesary and

A course in computer programming
research in tutorial modes of computer-assisted
monitoring and aiding the student
problems are employed. The problems
mization scheme based on a model of

Identify by block number)

is_being_developed as a vehicle for
instruction. Methods for

as he works on interesting programming

are individually selected via an opti-
the student's ability and difficulties.

DD IFJC9).:73 1473 EDITION OF I NOV ISS IS OUSOLETE
S.,?i 0102.014.6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Omit &meted)

_1440 Y CIASSIFICA TtON OF THIS PAGE(ithin Daia Entorod)

After a brief overview of work done at Stanford in tutorial CAI and the
teaching of procedural skills, the functional elements of the BASIC Instruc-
tional Program, its BASIC interpreter, curriculum, solution analysis, and
interactive assistance during programming, are described.

At BIP's core is an infdrmation network which embodies the interrelations
of the concepts, skills, problems, remedial lessons, hints, BASIC commands,
and manual references. With the data stored in the student history, the net-
work enables RIP to model the studentts state of knowledge, and to make problem
selections with some relevance. The sophistication of these modelling
techniques are the main thrust of our research.

SECURITY CLASSIFICATION OF TWIS FAGEORion Data innitid)

Summary

A BASIC Instructional Program is being developed as a vehicle for

research in tutorial modes of computer-assisted instruction (CAI).

Several design features will be appropriate to training in other

technical areas and applicable in other instructional settings where

the development of analytic and problem-solving skills is a goal.

Methods are incorporated tor monitoring and aiding the student as

he works on programming problems In the BASIC language. The

instructional program developed can be used to investigate schemes for

optimizing problem presentation and giving assistance during problem

solving based on a model of the student's abilities and difficulties.

Previous experience in the instructional and technical aspects of

teaching a programming language indicates that a course in computer

programming can be designed to help the student acquire programming

concepts in a personalized and efficient manner as he develops skills

at increasingly advanced levels.

This research is funded by Personnel Training and .Research

Programs, Office of Naval Research. During these developmental
months, we have received considerable cooperation from the staffs of
the pilot institutions, notably Professor Carl Grame of DeAnza ^college
and Dr. Paul Lorton, Jr. of the University of San Franciscc.

1

A majcr goal of the research project is to increase the

sophistication with which the instructional program monitors the

student's work and responds to it with appropriate hints and prompts.

One aspect of such work is the utilization of algorithms for checking

the correctness of a student procedure. Limited but sufficient

program verification is possible through simulated execution of the

program on test data stored with each problem. Within the

controllable context of instruction, where the problems to be solved

are predetermined and their solutions known, simulated execution of

the student's program can effectively determine its closeness to a

stored model solution.

The BASIC Instructional Program (BIP) is written in SAIL

(VanLehn, 1973), a versatile, ALGOL-like language, implemented

exclusively at present on the DEC PDP-10. SAIL includes a flexible

associative sublanguage called LEAP (Feldman, Low, Swinehart, &

Taylor, 1972), which was used extensively to build BIP's information

network. The course is now running on the PDP-10 TENET timesharing

system at IMSSS and is presently being offered as.,lan introductory

programming course at DeAnza College in Cupertino and the University

of San Francisco. The collected data are being used to modify the

problems and the. "help" sequences in preparation for a more controlled

experimental situation planned for the next academic year.

2

Overview of IMSSS Research in Tutorial CAI

The Institute has been involved in CAI projects in computer

programming and in tutorial CAI in other technical areas since 1968.

Work in teaching computer programming began with the development of a

high-school-level CAI course in machine language programming (Lorton &

Slimick, 1959). The project, called SIMPER, taught programming via a

simulated three-register machine with a variable instruction set.

Later, lessons in the syntax of the BASIC language were added to the

curriculum. Programming problems using BASIC were presented, but the

student solved them by linking to a commercial BASIC interpreter,

without receiving assistance or analysis of his efforts from the

instructional program.

In 1970 the Institute developed a much larger CAI curriculum for

a new course to teach the AID programming language at the introductory

undergraduate level. This course has been used in colleges and junior,

colleges as a successful introduction to computer programming (Friend,

1973; Beard, Lorton, Searle, & Atkinson, 1973). However, it is a

linear, "frame-oriented" CAI program and cannot provide individualized

instruction during the problem-solving activity itself. After working

through lesson segments on such topics as syntax and expressions, the

student is assigned a problem to solve in AID. He must then leave the

instructional program, call up a separate AID interpreter, perform the

required programming task, and return to the instructional program

3

with an answer. As he develops his program directly with AID, his

only source of assistance is the minimally informative error messages

provided by the interpreter.

In recent years, developments in interactive CAI and in

artificial intelligence have enabled teaching programs to deal more

effectively with the subject matter they purport to teach, in effect,

to "know" their subject better. The generative CAI programs developed

by Carbonell and others (Carbonell, 1970; Collins, Carbonell, &

Warnock, 1973) employ a semantic network interrelating a large factual

data base. Instruction then takes the form of a dialogue in which the

program can both a) construct, present, and evaluate the answers to a

multitude of questions, and b) answer questions posed by the student.

An interesting generative CAI program in digital logic and machine-

language programming has been developed by Elliot Koffman at the

University of Connecticut (Koffman & Blount, 1973). Another course in

programming is being written by Jurg Nievergelt for the PLATO IV

system at the University of Illinois (Nievergelt, Reingold, & Wilcox,

1973),

Two CAI courses developed at IMSSS are capable of dealing in a

sophisticated way, both with their subject matter and with the

student. These courses provide instructive interaction throughout the

problem-solving activity by performing operations specified by the

student, evaluating the effect of the operations, and, on request,

suggesting a next step in the solution.

4

The first of these, a CAI program for teaching elementary

mathematical logic, is described in a report by Adele Goldberg (1973).

An experimental version of the program employed a heuristic theorem-

prover as a proof-analyzer to generate appropriate dialogue with

students who needed help with a proof. "The proof-analyzer mocks the

adaptive behavior of a human tutor; it can determine relevant hints

when a student requires help in completing a solution, and it can

encourage the student to discover diverse solution paths." While the

prover was limited, the heuristics it supplied were more natural than

those that might be supplied by more powerful, resolution-based

theorem-provers. A version of this program without a theorem-prover

has been used successfully as a primary source of instruction in an

introductory symbolic logic course at Stanford for the past three

years.

A CAI course described in Kimball (1973) uses symbolic

integration routines and an algebraic expression simplifier to assist

students in learning introductory integration techniques. The program

stresses development of student heuristics by performing most of the

tedious computations (substitutions, integration by parts, etc.) for

the student after he has completely specified the parameters. An

attempt is made to estimate each student's knowledge of integration

methods individually, in order to select problems dynamically.

5

The BIP Course

The goal of a tutorial CAI program is to provide assistance as

the student attempts to solve a problem. The program must contain a

representation of the subject matter that is complex enough to allow

the program to generate appropriate assistance at any stage of the

student's solution attempt. Both the logic and the calculus courses

approach this goal. However, computer programming is an activity

fraught with human variability, and how an individual calls on his

programming skills to write a program is not so clear as, for example,

how he uses logic in achieving a proof, Furthermore, the difficulty

of describing and verifying program segments precludes the kinds of

solution analysis performed by the logic and calculus courses. BIP

contains a representation of information appropriate to the teaching

of computer programming that allows the program to provide help to the

student and to perform a limited, but adequate analysis of the

correctness of his program as a solution to the given problem. As a

vehicle for research in instructional strategies, B1P will serve as

both teaching and a learning tool-

To the student seared at his terminal, BIP looks very much like a

typical timesharing BASIC operating system. The BASIC interpreter,

written especially for BIP, analyzes each program line after the

student :ypes it and notifies the student or syntax errors. When the

sty.lent runs his program, it is checked icy structural illegalities,

6

and then, during runtime, execution errors are indicated. A file

storage system, a calculator, and utility commands, like TIME, are

available.

Residing above the simulated operating system is the "tutor," or

instructional program. It overlooks the entire student/BIP dialogue

and motivates the instructional interaction. In addition to selecting

and presenting programming tasks to the student, the instructional

program identifies the student's problem areas, suggests simpler

subtasks, gives hints or model solutions when necessary, offers

debugging aids and a facility for communicating with the Stanford

staff, and supplies incidental instruction in the form of messages,

interactive lessons, or, most often, manual references. Each student

receives a BIP manual that introduces him to programming, the BIP

system, and the syntax of BIP's version of BASIC. The manual serves

as the student's primary source of information throughout the course.

At BIP's core is an information network that embodies the

interrelations of the concepts, skills, problems, subproblems, pre-

requisites, BASIC commands, remedial lessons, hints, and manual

references. We believe that with a sufficient student history, the

network can be successfully applied to a student learning model to

present an individualized problem sequence, to control the frequency

and type of assistance given during programming, and to identify

problem areas. Our experimental work will compare different student

models and decision algorithms, including a "free" or "student choice"

7

mode where the student is given enough information for him to select

his own problems.

Figure 1 illustrates schematically the interactions of the parts

of the BIP program. Each of these is discussed in detail below.

8

t.

-

C
U

R
R

IC
U

LU
M

D
R

IV
E

R

S
O

LU
T

I O
N

A
N

A
LY

Z
E

R

41
1I

T
sa

M
m

w
~

S
IP

: I
nf

or
m

at
io

n
F

lo
w

 D
ia

gr
am

P
R

O
B

LE
M

S
E

LE
C

T
O

R

V

IN
S

T
R

U
C

T
IO

N
A

L
P

R
O

G
R

A
M

H
E

LP
R

O
U

T
' N

 E
S

1
B

A
S

/C
 IN

T
E

R
P

R
E

T
E

R

SY
N

T
A

X
A

N
D

 E
X

E
C

U
T

IO
N

E
R

R
O

R
 D

E
T

E
C

T
IO

N

P
R

O
G

R
A

M
 A

N
A

LY
Z

E
R

LO
G

IC
A

L
E

R
R

O
R

 D
E

T
E

C
T

IO
N

IM
O

D
E

L
I P

R
O

B
LE

M
S

S
O

LU
T

IO
N

S
S

T
U

D
E

N
T

H
 !S

T
O

R
IE

S

N
F

O
R

 M
A

T
IO

N
 N

E
T

W
O

R
K

 1

B
A

S
/C

M
A

N
U

A
L

F
i
g
u
r
e

1

D
A

T
A

 B
A

S
E

The BASIC Interpreter, Error Detection, Assistance, Debugging Aids

BIP's interpreter was specially designed to allow the

instructional program full access to the student's programs and his

errors. It handles a complete subset of BASIC. During a student's

work on a task, each of the BASIC operators can be temporarily

deactivated as required for pedagogical purposes. For example, during

a simple task whose instructions require the use of a FOR...NEXT loop

and in which no other branching is necessary, IF statements will not

be accepted. The student is reminded that he is to use FOR...NEXT to

form his loop.

Immediately after the student enters a line, syntax analysis is

performed. (Any student entry beginning with a number is assumed to

be a line of BASIC code.) If a syntax error is discovered, an error

message ("illegal print list," "missing argument for INT") is sent to

the student, the error number is retained by the instructional program

for reference if the student requests more help, and the line is

rejected.

If he does not understand the syntax mistake immediately, the

student can request one of three types of assistance by beginning his

next line with a question mark:

An explanatory message stored for this syntax error is

printed. Repeated requests summon different messages

until they are exhausted.

10

?REF A manual reference covering the particular syntax

involved in the error is printed for the student.

?LES An interactive lesson, relevant to the syntax error,

is presented. The lesson provides drill-and-practice

instruction on the student's syntactic difficulty.

Once the student has entered a syntactically legal program, he

can have it executed in one of three formats, Two of which involve

debugging aids. After his request, and before the actual execution,

the student's program is checked for illegal program structure (e.g.,

a missing END statement, or illegally nested loops) by a routine we

call ERR DOKTOR. If all is well, one of the three modes of program

execution is initiated:

RUN The student's program is executed, as in standard

BASIC implementations, in the order of its line

numbers.

TRACE (A debugging option) The student controls execution of

the program using the standard interactive debugging

technique of stepping through it one line at a time,

As a line is executed, its number is printed. This

allows direct observation of the execution sequence of

such structures as loops and conditional branches.

11

When an assignment statement, which initializes or

changes the value of a variable, is executed, the

variable and its new value are printed with the line

number. The student can easily see the "internal"

activity of the program, which would otherwise be

visible to him only by means of extra statements

printing interim results.

By specifying inclusive line numbers, the

student can TRACE a selected section of his program.

This is useful when he is satisfied with other parts

of the program and wishes to avoid the time-consuming

\process of tracing those parts.

When CRT display units are used as the student

terminals in place of teletypes, the format is

slightly different. The program listing appears on

one half of the screen, with the currently executed

line blinking. The variables and their values will

appear on the other half of the screen as assignment

statements are executed.

FLOW (The second debugging aid) This option is available on

CRT display terminals. FLOW differs from TRACE in

that a flowchart representation of the program appears

in place of the program listing. As the student steps

12

through the execution, the element of the flowchart

representing the current line blinks. Variables and

their values appear in the other half-screen. The

FLOW option involves the interface of a flowchart

generating routing (under development) with the

tracing procedure.

There are four ways in which any mode of execution can terminate.

Normal termination follows execution of a BASIC END or STOP statement.

The student is told that "execution terminated at line xxx."

Alternatively, the student can abort execution by typing a control

key; BIP responds with the message "execution aborted at line xxx."

The third cause of termination is excessively long running, which is

at present determined on the basis of the count of the number of lines

executed. A message indicating BIP's suspicion of an infinite loop is

printed.

Finally, runtime errors terminate execution, If an unassigned

variable, illegal GOIO, or other error is discovered, an appropriate

error message is printed, the error number is stored by the IP, and

execution terminates. The student may then request the same three

types of assistance for execution errors discussed under syntax errors

above.

13

Coals of the Curriculum

Prior experience with CAI in programming at the college level has

convinced us that many students who wish to learn the fundamental

principles and techniques of programming have limited mathematical

backgrounds. More important, their confidence in their own abilities

to confront problems involving numeric manipulation is low. The scope

of the BIP curriculum, therefore, is restricted to teaching the most

fundamental of programming skills and does not extend to material

requiring mathematical sophistication.

The curriculum is designed to give the student practice and

instruction in developing interactive programs in order to expose him

to uses of the computer with which he may well be unfamiliar. BIP

guides the student in construction of programs that he can "show off."

The emphasis is on programs that are engaging and entertaining, and

that can be used by other people. As the student writes his programs,

he keeps in mind a hypothetical user, a person who will use the

student's program for his own purposes and to whom the performance of

the program must be intelligible. The additional demands for clarity

and organization forced by interactive programming, as well as the

increased noticeability of bugs are valuable, as are the added

motivational effects.

Numerous texts were examined as possible sources for the

necessary programming principles to be developed in an introductory

14

course and for the problems that illustrate those principles. We

incorporated ideas from general computer science textbooks (Forsythe,

Keenan, Organick, & sternberg, 1969), from the excellent notes for an

introductory programming course that were oriented toward the ALGOL

language but whose examples were easily generalized (Floyd, 1971), and

from books and notes dealing specifically with BASIC (Albrecht,

Finkel, & Brown, 1973; Coan, 1970; Kemeny & Kurtz, 1971; Nolan, 1969;

Wiener, 1972; various publications of the People's Computer Company).

In addition, problem sets from Stanford University's introductory

computer science courses were colleted and examined.

In general, the curriculum provides useful, entertaining, and

practical computer experience for students who are not necessarily

mathematically oriented. It gives them the opportunity to develop

programming skills while working on problems that are challenging but

not intimidating, in which the difficulties stem from the demands of

logiCal program organization rather than from the complexities of the

prere(r.isite matheratics. The curriculum text is listed in Appendix

A.

The Curriculum Driver

The curriculum is organized as a set of discrete programming

problems called tasks, whose text includes only the description of the

problem, not lengthy descriptions of programming structures or

15

explanations of syntax. There is no default ordering of the tasks;

they are not numbered. The decisions involving a move from one task

to another can be made only on the basis of the information about the

tasks (skills involved, prerequisites required, subtasks available)

stored in BIP's information network.

A student progresses through the curriculum by writing and

running a program that solves the problem presented on his terminal.

Virtually no limitations are imposed on the amount of time he spends,

the number of lines he writes in his program, the number of errors he

is allowed to make, the number of times he chooses to execute the

program, or the changes he makes within it. The task he is performing

is stored on a stacklike structure, so that he may work on another

task and return to the previous task automatically. All BIP commands

(listed in Appendix B) are available to the student at all times. The

following commands deal specifically with the curriculum driver:

HINT When a student experiences difficulty with a task,

several levels of help are available. HINT retrieves

problem-specific hints from a set stored in the

network.

SUB If, after pondering the available hints, a method of

attack has still not occurred to the student, he can

have the task broken into conceptually simpler

16

subtasks. These are presented one at a time as tasks,

while the main task is pushed onto the stack

structure. When the student completes a subtask, RIP

returns him automatically and explicitly to the larger

problem.

ENOUGH If he understands the demands of the larger program

during his work on the subtask, he can type ENOUGH and

return to the larger task from which he started.

Outside of a subtask, typing ENOUGH terminates work on

the current task without giving the student credit for

having completed it.

MODEL After exhausting all hints and subtasks available for

a given task, the student can request that BIP suggest

a model solution. The model stored for each task is

intended to be easily understood, and correct, but it

is not necessarily the shortest or most elegant

solution.

RESET Typing RESET clears the task stack of all the tasks on

which he has been working, so the student can start

fresh if he wants.

MORE When he feels that he has solved the problem, the

student types MORE and BIP takes over, as described in

the "Solution Analysis" Section.

17

The curriculum structure allows for a wide variety of student

aptitudes and skills. Most of the curriculum-related options are

designed with the less competent, less confident student in mind. A

more independene-student may simply ignore the options. Thus HP

gives all students the opportunity to determine their own individual

challenge levels simply by making assistance available, but not

inevitable.

BIT offers the student considerable flexibility in making' task-

related decisions. As explained above, he may ask for hints and

subtasks to get started in solving the given problem, or he may ponder

the problem on his own, using only the manual for additional

information. He may request a different task by name, in the event

that he wishes to work on it immediately, either completing the new

task or not, as he chooses. On his return, BIP tells him the name of

the again current task and allows him to have its text printed to

remind him of the problem he is to solve. The student may request the

model solution for any task at any time, but BIP will not print the

model icr the current task, unless he has exhausted the available

hints and subtasks. Taken together, the curriculum options allow for

a range of student preferences and behaviors; this flexibility will be

put to use in the experiments referred to earlier, comparing student-

selected and BIP-determined curriculum decisions.

18

Solution Analysis

At present a student is not considered to have completeda

problem if he has not executed his current program successfully. BIP

"knows" at all times (a) whether an executable, syntactically legal

program exists, (b) whether the student has executed that program, (c)

whether execution errors have occurred, and (d) whether the student

has made changes or additions since the last execution. The student's

history will be updated to indicate successful completion of a task

only if he has succeeded in an error-free execution of the most recent

version of his program.

Error-free execution of a program is no guarantee that the

program correctly solves the problem presented. Program analysis is

an embryonic art, and BIP is not capable of "understanding" a

student's programs in the fullest sense implied by current research in

artificial intelligence, We are, however, investigating two promising

potential additions to RIP that are expected to provide sufficient

solution analysis for pedagogical purposes, without involving a full-

scale application of program verification techniques. The results of

the two analysis efforts should allow BIP to give the student an

indication of (a) the kinds of test values that his program fails to

handle properly, and (b) the kinds of programming structures that his

program should have but doesen't.

The first analysis scheme we will apply is simulated execution of

19

the student's program on test data, comparin J.ts outnia with that of

one or more model solutions. A preliminary dialosuo mill establish

the variable names that the student has used for critical input/output

variables. Clearly this method will often fail to indicate all of the

student's logical errors, but we are hopeful that in cases where known

problems call for fairly simple solutions, an analysis will succeed in

discovering particular kinds of problem-specific errors. The second

method involves comparison of program flow diagrams, again matching

the student's effort against a model solution. BIP generates this

internal representation of the student's program to both check for

legal program structure and draw flowcharts as a pedagogical/debugging

tool, and we are investigating methods by which the schemas of

different programs can be compared.

BIP's Information Network

Task selection, remedial assistance, and problem area

determination, BIP's "tutorial" activities, require that the program

have a flexible information store interrelating the tasks, hints,

manual references, etc. This store has been built using the

associative language LEAP (Feldman, 1972). The network is constructed

using an ordered-triple data structure and is best described in terms

of the various types of nodes:

20

TASKS All curriculum elements exist as task nodes in the

network. They can be linked to each other as

subtasks, prerequisite tasks, or "must follow tasks.

SKILLS The skill nodes are intermediaries between the concept

nodes and the task nodes (see Fig. 2). Skills are

very specific, e.g. "concatenating string variables"

or "incrementing a counter variable," By evaluating

success on the individual skills, the program

estimates competence levels in the concept areas. In

the network, skills are related to the tasks that

require them and to the concepts that embody them.

CONCEPTS

The concept areas covered by BIP are, for the time

being, the following:

Interactive programs
Variables and literals (numeric and string)
Expressions (algebraic, string, and Boolean)
Input and output
Program control - branching
Repetition - loops
Debugging
Subroutines
Arrays (one dimensional)

The specific implementation of concept nodes in the

network is not completely determined, but the links

will be to the skills and only through them to the

tasks.

21

BASIC OPERATORS

Bach BASIC operation (PRINT, LET, ...) is a node in

the network. The operations are linked to the taRkn

in two ways: first as elements that must be used in

the solution of the problem, and second as those that

must not be used in the solution. (These are

temporarily disabled in the interpreter.)

HINTS The hint nodes are linked to the tasks they may be

helpful in. Each time a new skill, concept, or BASIC

operator is introduced, there is an extra hint that

gives a suitable manual reference.

ERRORS All discoverable syntax, structural, and execution

errors exist as nodes in the network, and are linked

to the relevant help messages, manual references and

remedial lessons.

22

A
 S

eg
m

en
t o

f B
IP

's
 In

fo
rm

at
io

n
N

et
w

or
k

W
F

t1
T

E
 A

 P
R

O
G

R
A

M
 T

H
A

T
 :

P
R

IN
T

S
 T

H
E

 N
A

M
E

 O
F

 A
V

A
R

IA
B

LE
 A

N
D

 IT
S

 V
A

LU
E

P
R

O
B

LE
M

S

W
R

IT
E

 A
 P

R
O

G
R

A
M

 T
H

A
T

 :
P

R
IN

T
S

 T
H

E
 W

O
R

D
it

C
A

T
n

S
K

 /L
L

S

[P
R

IN
T

IN
G

 L
IT

E
R

A
LS

 I

C
O

N
C

E
P

T
S

W
R

IT
E

 A
 P

R
O

G
R

A
M

 T
H

A
7

:
P

R
IN

T
S

 T
H

E
 V

A
LU

E
 O

F
A

 V
A

R
IA

B
LE

P
R

IN
T

IN
G

 V
A

R
IA

B
LE

S
 I

I A
S

S
IG

N
IN

G
 L

IT
E

R
A

LS

F
i
g
u
r
t
,

2

Upon completion of a task, the student is given a posttask

interview in which BIP presents the model solution stored for that

problem. (The student is encouraged to regard the model as only one

of many possible solutions.) BIP asks the student whether he has

solved the problem, then asks, for each of the skills associated with

the task, whether he needs more practice involving that skill. The

responses are stored and used in future BIP-generated curriculum

decisions. BIP then informs the student that he has completed the

task, and either allows him to select his next task by name (from an

off-line printed list of names and problem texts), or selects it for

An example of the role of the Information Network in BIP's

tutorial capabilities is the BIP-generated curriculum decisions

mentioned above. By storing the student's evaluation of his own

skills, and by comparing his solution attempts to the stored models,

BIP can be said to "learn" about each student as a individual who has

attained a certain level of compecence lit the skills associated with

each task. BIP can then search the network to locate the skills that

are appropriate to each student's different abilities and to present

task that incorporate those skills. The network provides the base

from which BIP can generate decisions that take into account both the

subject matter and the student, behaving somewhat like a human tutor

in presenting material that either corrects specific weaknesses or

challenges and extends particular strengths, proceeding into as yet

unencountered areas.

24

The LIP Manual

T is tedious and probably ineffective to present voluminous

description, explanation, and examples from the computer directly on

the terminal. We have chosen instead to present this material to the

student in a printed manual of approximately 50 pages. The manual

includes complete instructions on the operation of the course (signing

on dealing with the terminal, dealing with BIP), a general

introduction to computers (their capabilities and the concepts

involved in programming languages), and the syntax of 3IP's PASIC,

complete with examples and suggestions for the appropriate uses of

each of the BASIC statements.

All programthe terms used in the manual and in the tasks are

defined briefly in the glossary at the end of the manual. References

to the relevant sections of the manual are included in each glossary

entry. All words that have precise programming meanings different

from their normal English meanings are Listed.

We believe that when the student encounters another programming

lanejlate with wW,ch be is not familiar his primary resource will be

the manual for that lon!;tiaeo. die j_s not likely to !lave An instrutor

or a CAI course at heed. and the principal ;,eans by which he will

learn tt,c, new language 7)111 h,c throteh ^is own exporimentatjon, guided

by the ex,,lanations and examples in the native). Experience with .AP

(with its frpouent cross-references to the manneU will we hope. give

the student a degree of confidence and ease in finding his way in

other situations, when the manual may be his only guide.

Miscellaneous Options Available to the Student

Several additional features are available to BIP students:

CALC All BASIC expressions (numeric, string, and Boolean)

can be evaluated by this BIP command. This is not

only a convenience, freeing the student from having to

write and run a complete program to make a simple

calculation, but it is also useful as a debugging aid.

FILE SYSTEM: FILES, SAVE, GET, MERGE, KILL

BIP allows each student to save permanently as many as

four programs, with names he designates. This gives

him the opportunity to work on an extended programming

project and simultaneously to accumulate his work from

each session at the terminal. He can obtain a listing

of his file names, with their most recent write dates,

and his saved programs are always immediately

retrievable for modifications or additions.

26

FIX This feature allows the student to send a message to

the programmers at Stanford. It gives him a chance to

communicate difficulties and confusions and helps both

to improve BIP's interaction abilities and to identify

and locate errors in the program. The convenience of

typing a message or complaint while seated at the

terminal encourages students to provide us with

immediate and valuable feedback,

LOG-IN MESSAGE

Although not strictly a student option, this feature

prints a stored message to each student as he signs on

to the course. The message is updated frequently and

gives information about revisions to the course,

responses to messages left by students, and notices of

meetings with Stanford personnel at which students may

discuss questions too complex to handle in short

written messages.

We are in continuous communication with students who are using

the course and whose suggestions regarding more flexible, intelligible

interaction (With RIP have generaged several improvements. Past

experience has shown that superficial problems in dealing with an

instructional program can become significant barriers to acquiring the

27

concepts and skills presented by the program, and we continue to make

additions to BIP to eliminate frustrating confrontations between the

student and the uncomprehending machine.

28

APPENOI A

THE BIP CURRICULUM

The following is the text for all tasks, hints, and subtasks in

the pilot-year curriculum. Some explanatory remarks are in order.

(1) The tasks appear in the order in which BIP would present them

if it had no access to the student hist,,ry. This order is modified in

two ways: either by the student's choice of a particular task, or by

BIP's decision based on the student's previous work.

(2) A MORT is a continuation of the original problem, calling for

a modification or extension of the program just completed. Within

this listing, the text of each task is followed by the hints and sub-

tasks associated with it; the MORTs of the task are printed next,

followed by their own hints and subtasks.

(3) Because some tasks require similar skills and strategies,

some hints and subtasks are associated with more than one main task,

and thus they appear more than once in this listing.

(4) References to Section XX.N. refer to the BIP manual supplied to

each student.

(5) Terms enclosed in asterisks (e.g., *print*) call attention

to the special use of that term. All such terms are listed and

explained in the glossary of the manual.

29

TASK PR1:

Before you start the first problem, be sure to read
about the BIP course in the BIP manual.

Then read about the structure of BASIC programs.

Type "MORE" when you're ready.,

MORT:

Now write a *program* to *print* the *number* 6 on your
teletype. Then *run* the *program*.

TASK OP1:

SCRATCH your old program. Then write and *run* a
program that *prints* the *sum* of 6 and 4.

MORT:
Now modify the program to do each of the following:
print the *difference*
print the *product*
print the *quotient*

HINT:
'Sum' means addition
'Difference' means subtraction
'Product' means multiplication
'Quotient' means division

TASK VN1:

TASK VX1:

SCRATCH your old program. then write a program that:
1, *Assigns* the *value* 6 to a *numeric variable* N.
2. *Prints* the value of this variable.

Write a program that:
1. Assigns the value 6 to N.
2, Prints the sum of N and 4.

30

TASK VX2:

Write a program that:
1. Assigns the value 6 to M.
2. Assigns the value 4 to N.
3. Prints the sum, difference, product and quotient of M
and N.

HINT:

'Sum' means addition
'Difference' means subtraction
'Product' means multiplication
'Quotient' means division

TASK IN1:

Write a program that:
1. Allows the user to *input* a value to M and a value to N.
2. Prints their sum, difference, product and quotient.

TASK IN2:

Write a program that:
1. Allows the user to choose the arithmetic operation he
wants the program to perform. He should type 1 to add,
2 to subtract, 3 to multiply, or 4 to divide. Use the
variable X for this code number.
2. Allows him then to input the values, for M and N.
3. Prints out the result of the operation he asked for
when he gave a value to X. For example, if he typed
4, you should print the quotient of the numbers he gave
for M and N.

SAVE this program when you get it to work. It will
help you later.

HINT:
Read about **IF . . THEN** statements in Section-III.11.

HINT:
Depending on the value of X, the program should do one
of four things. Get X first, then get M and N. then use
X to decide which **PRINT** statement to *branch* to.

31

SUB.,

You need a program that can make decisions, then you can
incorporate the arithmetic operations into it.

Tranolate the following into BASIC (it is definitely not
BASIC now), and run it:
1. let the user
2. if the number
3. if the number
4. if the number

type a number between 1 and 4.
is 1, jump to 7

is 2, jump to 9
is 3, jump to 11

5, the number must be 4, so print "YOU TYPED A 4!"
6. jump to the end of the program
7, the number is 1, so print "YOU TYPED A 1!"
8. jump to the end
9. print "YOU TYPED A 2!"
10. jump to the end
11. print "YOU TYPED A 3!"
12. the end
Once this program works, type "MORE" and return to the
main task.

MORT:

Now fix up the program so that it prints out questions
and little messages that tell the user:
a) What to do (e.g. "TYPE 1 FOR ADDITION",...).
b) What the result represents (e.g. "THE SUM IS ...").

HINT:
Type MODEL IN2 and copy what you need, then make the
necessary additions to it.

MORT:

Modify the program once again so that it keeps *looping*
back to the beginning until the user inputs a 0 for the
operation code.

HINT:
Type MODEL IN2 and copy what you need, then make the
necessary additions to it.

HINT:

You need two more statements:
an **IF . THEN** after the "INPUT X" that jumps to the
end if X is zero,
a **GOTO** back to the line with the instructions.

32

TASK ST1:

TASK VS1:

TASK SX1:

Please read about *strings* before you get confused.
Write (and run) a program that prints the string
"SCHOOL".

Assign the value "HORSE" to the *string variable* :;.$ and
print the value of X$.

Allow the user to **INPUT** the value of the string
variable X$. then print that value. (Your program will
just "echo" what the user types, whether he types a
number or a word.)

MORT:

Read about *concatenation* of strings.
Concatenate the word "OKAY" (or any word you like) to
the user's input. Print the result.

TASK SX2:

Assign the string "DOG" to X$ and the string "HOUSE" to
Y$. Print the *concatenation* of X$ and Y$.

HINT:

Concatenation is in Section 111.6. Type the & character
with The shift key and the 6 key.

MORT:

(Keep the same string values of X$ and Y$.)
Assign the *concatenation* of Y$ and X$ to the variable
Z$. Print the value of Z$.

MORT:
(Still with the same values of X$ and Y$.)
"HOUSEDOG" should have a space between the words.
Concatenate a space between Y$ and X$ and print the
result.

33

HINT:

The literal "A" prints the letter A
What character between quotes will print as a space?

TASK SX3:

TASK SX4:

Allow the user to input the values of X$ and Y$.
Concatenate the strings with a space between them and
print the result.

Let the user make up a sentence.
1. Ask him how many words he wants to have in the
sentence.

2. Let him input those words, one at a time.
3. After each input, concatenate a space and his latest
word into a string variable. Use X$ for the input word,
and use SS to hold all the concatenations.
4. After you have looped around the specified number of
times, print his sentence.

HINT:
make S$ equal to the string version of nothing, like
this: S$ = "" outside the loop.
Inside the loop, use S$ to accumulate the sentence: S$
S$ & " " & X$

SUB:

SUB:

A very important sub task:
Write a program with a little loop. The "work" of the
loop is just to print the value of the loop's index.
When you run the program, it should look like it is
counting from 1 to the top value. Use whatever top
value you like.

Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value. You
can add to this program, making the loop do some real
work, and the work will then be done as many times as
the user likes.

34

TASK INT1:

Rewrite your calculator so that the user can type
"+" for addition
"-" for subtraction
"*" for multiplication
"/" for division
to tell the calculator which operation to perform. You
may have *SAVED* your calculator program; if so, use
GET
to retrieve it.

HINT:

Type MODEL IN2 and copy what you need, then make the
necessary additions to it.

SUB:

You need a program that can make decisions about
strings, then you can incorporate the arithmetic
operations into it. Write a program that asks the user
to type any character. If he typed a I mark, the
program should say "YOU TYPED A !" . If he typed
something else, it should say "YOU DID NOT TYPE A 1"

TASK XMAS:

On the first day of Christmas, someone's true love sent
him/her a partridge in a pear tree (one gift). On the
second day, the true love sent two turtle doves in
addition to another partridge (three gifts on the second
day). This continued through the 12th day, when the
true love sent 12 lords, 11 ladies, 10 drummers,
all the way to yet another partridge. Write a program
that computes and prints the total number of gifts sent
on that 12th day.

HINT:
This program requires a loop. Each execution of the
loop involves accumulating the value of the index into a
total.

HINT:

Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another value.

35

SUB:

A very important sub task:
Write a program with a little loop. The "work" of the
loop is just to print the value of the loop's index.
When you run the program, it should look like it is
counting from 1 to the top value. Use whatever top
value yoiu like.

MORT:
Modify your program so that it prints the total gifts
for eaA day, (Day 1 = 1 gift, DAY 2 = 3 gifts, Day 3 =
6 gifts, etc,)

HINT:
You need one statement that prints the value of the
index (the number of days) and the accumulated total of
gifts.

MORT:

SUB:

TASK PAY:

The user of your program has a true love who will send
presents in the same way for as many days as the user
wants. Let your user say how many days, and calculate
the number of gifts sent on that day. (The generous
true love may send presents for more than 12 days, if
the user likes.)

Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value. You
can add to this program, making the loop do some real
work, and the work will then be done as many times as
the u'ser likes,

A man is paid 1 cent the first day he works, 2 cents the
second day, 4 .7ents the third, 8 cents the fourth, etc,
(doubling his wage each new days. Calculate his wage
for the 30tH day.

HINT:
Say w is the variable for the wage, On the first day, W
equals 1. For every day after that, W equals W * 2.

MORT:

Modify the program to calculate the total wages for the
the month: sum of the first day plus the second day

plus the 30th day.

HINT:
You have a variable for each day's wage. You need
another variable to accumulate the total.

HINT:

Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another value.

MORT:
Your program's user has a contract with this man, for
the same schedule of wages. Tell the user how much he
will owe the man for any number of days he (the user)
specifies.

SUB:

TASK IT1:

Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value. You
can add to this program, making the loop do some real
work, and the work will then be done as many times as
the user likes.

Write a program that counts (and prints) the number of
odd numbers between 5 and 187 inclusive. For example,
there are 3 odd numbers between 5 and 9 inclusive: they
are 5, 7, and 9. And a program that counted those
numbers would print something like this:

THERE ARE 3 ODD NUMBERS BETWEEN 5 AND 9

Do not print each odd number as you count it.

HINT:

Any odd number plus 2 equals the next odd number.

HINT:

You know the bottom and top values of the loop, but the
point of the program is to see how many times the loop
must be executed before it gets to the top. Use a
counter inside the loop and add to it with each
execution.

MORT:
Now find the sum of all those odd numbers you just
counted.

HINT:

Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another value.

MORT:

Let the user specify a range, and tell him 1) how many
odd numbers are in that range, and 2) the sum of those
numbers. For example, you ask him for the lower limit
(suppose he gives 9). Then you ask him for the upper
limit (suppose he gives 17). The number of odd numbers
in that range is 5 (9, 11, 13, 15, 17), and the sum is
65.

HINT:
The top and bottom values for the loop come from the
user. The work of the loop is just to count how many
times it is executed.

TASK IT2:

Find the number of integers greater than 99 and less
than 278 that are divisible by 11. You don't need any
division to do this.

HINT:

You know the bottom and top values of the loop, but the
point of the program is to see how many times the loop
must be executed before it gets to the top. Use a
counter inside the loop and add to it with each

execution.

38

MORT:

Now find the sum of the numbers greater than 99 and less
than 278 that are divisible by 11.

HINT:

Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another value.

TASK AV:

Find the average of 10 numbers. Ask the user to give
the numbers, one at a time.

HINT:

Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another value.

HINT:

The average of 10 numbers is their sum divided by 10.

SUB:

A very important sub task:
Write a program with a little loop. The "work" of the
loop is just :o print the value of the loop's index.
When you run the program, it should look like it is
counting from 1 to the top value. Use whatever top
value you like.

MORT:
Modify the program to let the user specify how many
numbers he wants to average. Let him type that many
numbers one at a time, then tell him the a.yrcge.

HINT:

The average of N numbers is their sum divided by N.

SUB:

Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value. You
can add to this program, making the loop do some real
work, and the work will then be done as many times as
the user likes.

39

TASK GAS:

Write a program to calculate the user's gas mileage. He
recorded his car's mileage at the beginning of the trip,
and again at the end of the trip, when he bought some
amount of gas. Ask him for the starting and ending
mileages (and calculate the miles driven), then ask for
the number of gallons of gas he bought. Then tell him
his gas mileage (miles per gallon).

Example: starting mileage = 5325
ending mileage = 5550
(miles driven = 5550 - 5325 = 225)
gallons of gas = 9
gas mileage = 225 miles / 9 gallons = 25 mpg.

MORT:

Each time the user buys gas, he records the mileage and
the gallons bought. Modify your program to ask him how
many times he bought gas; then ask for the mileage and
gallons he recorded each time. Accumulate the total
miles traveled and the total gallons, then print those
totals and the gas mileage. Test the program with some
very simple numbers to be sure that it calculates
correctly.

HINT:
You only need the starting mileage once. Total miles
equals the last mileage recorded minus starting mileage.
Keep a running total of gallons bought.

TASK GUESS:

Write a program that plays a guessing game. Generate a
random integer between 1 and 25 (read the manual first),
then let the user guess what the number is. Print
appropriate messages if his guess is too high or too
low, and give him another chance to guess. Congratulate
him for guessing correctly.

HINT:
Break this problem into parts. You need a loop whose
"work" is to get and compare the user's guess. Generate
the random number before the loop, and print the
correct-guess message after the loop.

40

SUB:

SUB:

Forget about random numbers for now. Write a program
that gets a number from the user and compares his number
to 100. Print "HIGHER THAN 100!" or "LOWER THAN 1001"
or "100 EXACTLY!" appropriately. Then you can put this
part together with the other parts you need in the main
task.

Your program must get a number from the user again and
again, until the input number equals some set value (the
random number). For now, write a program that asks for
a number and checks to see if that number equals 100.
If it is 100, the program should stop; if not, it should
ask for another input. Then you can fit this part into
the main task.

MORT:
Add a feature to your program that tells the user how
many guesses he needed. Three lines will do it: one to
assign the value 0 to a counter variable, one to add to
the counter each time he guesses, and one to print the
value of the counter with some appropriate message.

MORT:
Add another feature that lets the user start the game
again with a new random integer. Print an instruction
like "TYPE 'YES' IF YOU WANT TO PLAY AGAIN." If he types
'YES' then start the game over; Otherwise, let the
program stop.

TASK TWOS:

Write a program using a **FOR . . NEXT** loop to count
by twos, up to a number typed by the user. If he types
8, your program should print
2

4

6

8

TASK BACK:

Use a **FOR . . NEXT** loop to count backwards from 20
to 0, by twos. You will need a STEP -2 in your

'FOR' statement.

41

TASK NGREAT:

Ask the user to type two numbers, then compare them. If
the user types 4 and 12.5, for example, your program
should print

12.5 IS GREATER THAN 4

TASK ALPH:

Compare two strings typed by the user. A string is
"less than" another string if it comes before the other
string alphabetically: "APPLE" < "FISH" is
true. Your program should print something like

APPLE COMES BEFORE FISH

TASK LLOOP:

Use a loop to get three numbers from the user, and print
the largest of those numbers. Do not use three
variables for the numbers. Hint: set a variable L (for
largest) equal to 0. Then compare each user number with
L. Change the value of L to a larger number if one is
typed.

HINT:

Set a variable L (for largest) equal to zero. Then
compare each user number with L. Change the value of L
to a larger number if one is typed.

TASK SUSI:

Let the user input a *list* of 4 strings (a *subscripted
variable* with 4 "slots" in it) -- for example, the
names of the courses he is taking. Print out the list
after it is all typed in. uSe a **FOR . . NEXT** loop
in this program.

HINT:

There are two parts to this:
Looping to input a string list, and looping to print it
out.

42

SUB:

Think about a number list for now. The key is to use
the index of the loop as the index of the list. Write a
loop whose index starts at 1 and goes to 4. The work of
the loop is to assign the value of the index to the
corresponding element of the list:

L(I) = I
The only way to test your program is to use another
loop, indexed from 1 to 4, whose work is to print the
list, one element at a time:

PRINT L(I)
The first execution of the loop should print the first
element of the list, etc. When you finish this sub
task, return to the main task. Change the list variable
to a string list variable, and change the work of the
first loop so that each execution asks the user to input
a string.

TASK BACKLST:

SUB:

Take a list of strings from the user, then print the
HQ* in the Appnsite order. The list may be of any
length up to 25 (ask how long the user wants it to be,
then set up a loop whose top value is that number.) You
will need a **FOR . . NEXT** loop with a STEP -1 to
print the list backwards.

Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value. You
can add to this program, making the loop do some real
work, and the work will then be done as many times as
the user likes.

TASK OTHER:

Take a list of numbers from the user, of any length he
likes up to 15, After he types the numbers, print out
every other number in his list. (If he types these 6
numbers: 2 8 12 5 3 9 your program should print the 2,
12, and 3.)

HINT:

Use a **FOR . . NEXT** loop with STEP 2. 'Then use the
index of the loop as the index of the list to get every
other element in the list.

43

APPENDIX B

THE BIPCOIDLANDS

This is an alphabetic listing of the RIP commands and their

functions. Many (e.g., RUN, LIST, SAVE) are identical in function to

their standard BASIC counterparts The others serve specifically

instructional purposes, in that they deal with BIP's curriculum

structure, file system, or student history.

CALC

CURRIC

ENOUGH

FILES

V1,1

Evaluates an expression. This feature
allows the student to see the result of
quick cal:ulations without writing and
running a complete program.

Writes the text of the curriculum to a disk
file. This is available to Stanford
programmers and designated course
instructors only. CURRIC provides a
readable version of the curriculum-related
parts of the network, with the text of the
tasks listed along with the associated hints
and subtasks. This listing appears as
Appendix B.

Terminates the current task without giving
the student credit for having completed it,

Lists the names of the files in permanent
storage with their last write dates.

Allows the student re leave a message for
Stanford,

44

FLOW Generates and displays a flowchart
representation of the student's current
program. As the student steps through the
execution, the element of the flowchart
representing the current line blinks. This
option is under development, and willbe
available only on CRT display terminals.

GET <name>

HINT

Retrieves the named program from permanent
storage. The retrieved program replaces the
current program (if any) in the student's
core space.

Prints a hint, if any remain. Some tasks
have more than one associated with them in
the network; a few have no hints. When a
student asks for a hint, BIP internally
flags the hint that it supplies. Another
request for a hint, clueing work on the same
task, initiates a search for an associated
hint not yet flagged.

KILL <name> Erases the named program from permanent
storage. Students cannot affect each
other's file storage, so indiscriminate use
of this command can inconvenience only the
KILLer himself.

LIST Prints the current program in the order of
its line numbers. Students are encouraged
to LIST often, in order to avoid confusion
between what was intended and what actually
exists in the program.

MERGE <name> Retrieves the named program from permanent
storage and adds it to the current program.
Unlike GET, MERGE does not erase the current
program before retrieval. MERGE allows the
student to develop larger programs, a
section at a time, testing and saving
separate pieces the program as he goes. BIP
informs him of instances in which a line
from permanent storage replaces or
duplicates the current line (i.e., where the
two programs have one or more identically-
numbered lines).

45

MODEL

MORE

REPORT

RES

Prints a typical solution to the current
task, only after all available hints and
subtasks have been presented, The student
may also request the model solution to a
task other than the current task by typing
its name as part of the MODEL command.

Continues the presentation of a task. If
all parts of the task have been completed,
the posttask interview is presented. Some
tasks require that the student complete two
or three closely related problems, calling
for a modification or expansion of the
original program. These "must-follow" tasks
are referred to as MORrs, both internally in
BIP and in the curriculum listing given in
Appendix B. The MORE routine will not allow
a student to advance, either to a MORT or to
a new task, unless he has successfully run
his current program.,

Provides Stanford programmers and designated
course instructors a summary of student
activity, either by school (currently DeAnza
or the University of San Francisco) or for
all students using BIP. The report shows
student number, name, number of sessions and
total hours accumulated on the course, and
number of tasks completed.

Terminates all currently entered tasks,
without giving the student credit for
completing them. This option allows him to
extricate himself from a nest of tasks,
should the need arise.

RUN Executes the current program,

SAVE <name> Stores the current program for future use.
Saving the program in pemanent storage does
not affect the current version in any way,

46

SCR Erases the current program.

SIMPER

SUB

Allows the BIP student to use a simulated
three-register machine described in Lorton &
Slimick (1969). The SIMPER option allows
instructors to demonstrate the differences
between BASIC and a machine language by
assigning problems to be solved with both.

Presents a subtask -- a smaller part needed
to complete the current task at the
student's request. Upon completion of a
subtask, BIP returns the student
automatically and explicitly to the larger
task.

TASK <name> Presents the student's next programming
task. He may request a task of his choice
by supplying its name; otherwise, BIP
selects the next task on the basis of the
student's history on previous tasks.

TRACE

WHAT

Executes a program, but prints out line
numbers and variables as execution
progresses.

Gives the name of the current task and
(optionally) prints the problem text again.
The student may request the text of a

different task by supplying its name.

WHEN Prints the current date and time.

WHO Prints the name of the student signed on to
the terminal. This option was included
because of past experience with groups of
students sharing a small number of
terminals, and is intended to prevent the
inadvertent termination of unfinished
session.

47

REFERENCES

Albrecht, R.L., Finkel, L., & Brown, J. R. BASIC, New York:
Wiley, 1973.

Beard, M.H., Lorton, p., Jr., Searle, B. W., & Atkinson, R. C.
Comparison of student performance and attitude under
three lesson selection strategies in computer- assisted
instruction, (Technical Report No. 222) Stanford,
Calif.: Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1973.

Carbonell, J. R. AI in CAI: An artificial intelligence
approach to computer-assisted instruction. IEEE
Transactions on Man-Machine Systems, 1970, MMS-11,
190-202.

Collins, A.M., Carbonell, J. R., & Warnock, E. H. Analysis_
and synthesis of tutorial dialogues. (Technical
Report No. 2631) Cambridge, Mass.: Bolt, Beranek and
Newman, 1973.

Coan, J.S. BASIC. New York: Hayden Book, 1970.

Feldman, J. A,, Low, J. R., Swinehart, D. C., & Taylor, R. H.
Recent developments in SAIL, AFIPS Fall Joint
Conference, 1972, 1193-1202.

Floyd, R.W. Notes on programming and the ALGOL W language.
Stanford, Calif.: Computer Science Department,
Stanford University, 1971.

Forsythe, A.1., KPAnan, T. A., Organick, E. I., & Sternberg,
W. Computer science: A first course. New York: Wiley,
1969.

48

Friend, J. Computer-assisted instruction in programming: A
curriculum description. (Technical Report No. 211).
Stanford, Calif.: Institute for Mathetical Studies in
the Social Sciences, Stanford University, 1973.

Goldberg, A. Computer-assisted instruction: The application
of theorem-proving to adaptive response analysis.
(Technical Report No. 203) Stanford, Calif.: Institute
for Mathematical Studies in. the Social Sciences,
Stanford University, 1973.

Kemeny, J. G. & Kurtz, T. E. BASIC programming. (2nd ed) New
York: Wiley, 1971.

Kimball, R. B. Self-optimizing computer-assisted tutoring:
Theory and practice. (Technical Report No. 206)

Stanford, Calif.: Institute for Mathematical Studies
in the Social Sciences, Stanford University, 1973.

Koffman, E. B. & Bluuat, S. A modular stem for generative
CAI in machine language programming, Storrs, Conn.:
University of Connecticut, School of Engineering,
1973.

Lorton, P., Jr. & Slimick, j. Computer based instruction in
computer programming -- a symbol manipulation-list
processing approach. Proceedings of the Fall Joint
Computer Conference, 1969, 535-544.

Manna, Z. Program schemas. In A.V. Aho (Ed.), Currents in the
theory of computing, Englewood Cliffs, N.J.: Prentirek-
Hall, 1973.

Nievergelt, J., Reingold, E. M., & Wilcox, T. R. The
automation of introductory computer science courses.
Proceedings of the International Computing Symposium,
1973.

People's Computer Company Newsletter, Box 310, Menlo Park,
Calif.

.

Nolan, R.L. Introduction to computing through the BASIC
language. New York: Holt, Rinehart and Winoton, 1969.

49

Smith, R. TENET{ SAIL. Technical Report in preparation.

Stanford, Calif.: Institute for Mathematical Studies

in the Social Sciences, Stanford University, 1974.

Swinehart, D. C., & Sproul', R. F. SAIL, Stanford, Calif:

Stanford Artificial Intelligence Laboratory Operating

Note 57.2, Stanford University, 1971.

VanLehn, K., SAIL User Manual, Stanford, Calif: Stanford

Artificial Intelligence Laboratory, Stanford

University, 1973.

Wiener, H., & Ross, B. BASIC workbook. Berkeley, Calif.:

Lawrence Hall of Science, University of California,

1972.

50

DISTRIBUTION LIST

Navy

4 Dr. Marshall J. Farr, Director
Personnel & Training Research Program.
Office of Naval Researen
Arlington, VA 22217

1 Director
ONR Branch Office
495 Summer Street.

Boston, MA 02210
Attn: Psyclo:,1,,gii,

1 Director
ONR Branch Office
1030 East Greco Street
Pasadena, CA 91101
Attn: E. E. GI:ye

1 Director
ONR Branch Office
536 South Clark Street
Chicago, IL 60605
Attn: M. A. B?rtin

1 Office of Naval Research
Area Office
207 West 24th Street
New York, NY .10011

6 Director
Naval Research Labsratcr,
Code 2627
Washington, rc 20390

12 Defense Locumeotatih Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, VA 22314

1 Chairman
Behavioral Science Department
Naval Command and Managemen!, Division
U.S. Naval Acarlemy
Luce Hall
Annapolis, MD 21402

1

1 Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054
At Dr. N. J. Kerr

1 Chief of Naval Training
Naval Air Station
Pensacola, FL 32508
Attn: Capt. Bruce Stone, USN

1 LCDR Charles J. Theisen, Jr.., MSC
4024
Naval Air Development Center
Warminster, PA 18974

1 Commander
Naval Air Reserve
Naval Air Station
.Glenview, IL 60026

1 Commander
Naval Air Systems Command
Department of the Navy
AIR-413C
Washington, DC 20360

1 Mr. Lee Miller (AIR 413E)
Naval Air Systems Command
5600 Columbia Pike
Falls Church, VA 22042

i Dr. Harold Booker
NAVAIR 4150
Naval Air Systems Command
5600 Columbia Pike
Falls Church, VA 22042

1 Capt. John F. Riley, USN
Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155

1 Special Assistant for Manpower
OASN (M&RA)
The Pentagon, Room 4E794
Washington, DC 20350

1 Dr. Richard J. Niehatn;

Office of Civilian Manpower
Management

Code 06A
Department of the Navy
Washington, DC 20390

1 CDR Richard L. Martin, USN
COMFAIRMIRAMAR F-14

NAS Miramar, CA 92145

1 Research Director, Code 06
Research and Evaluation Department
U.S. Naval Examining Center
Great Lakes, IL 60088
Attn: C. S. Winiewicz

1 Chief
Bureau of Medicine and Surgery
Code 413
Washington, DC 20372

1 Program Coordinator
Bureau of Medicine and Surgery
(Code 71G)
Department of the Navy
Washington, DC 20372

1 Commanding Officer
Naval Medical Neuropsychiatric

Research Unit
San Diego, CA 92152

1 Dr. John J. Collins
Chief of Naval Operations (0P-987F)
Department of the Navy
Washington, DC 20350

1 Technical Library (Pers-11B)
Durcau i,c Naval Porsonnel
Department of the Navy
Washington, DC 20360

10 Dr. Jame:: ,. Regan, Technical Director
Navy Personnel Research and Develop-
ment Center

San Diego, CA 92152

1 Commanding Officer
Navy Personnel Research and

Development Center
San Diego, CA 92152

1 Superintendent
Naval Postgraduate School
Monterey, CA 92940
Attn: Library (Code 2124)

1 Mr. George N. Graine
Naval Ship Systems Command
(SHIPS 047C12)
Department of the Navy
Washington, DC 20362

1 Technical Library
Naval Ship Systems Command
National Center, Building 3
Room 3508
Washington, DC 20360

1 Commanding Officer
Service School Command
U.S. Naval Training Center
San Diego, CA 92133
Attn: Code 303

1 Chief of Naval Training Support
Code N-21
Building 45
Naval Air Station
Pensacola, FL 32508

1 Dr. William L. Malay
Principal Civilian Advisor for

Education and Training
Naval Training Command, Code 01A
Pensacola, FL 32508

1 Dr. Hanss H. Wolff
Technical Director (Code N-2)
Naval Training Equipment Center
Orlando, FL 32813

1 Mr. Arnold Rubinstein
Naval Material Command

(NMAT-03424)
Room 820, Crystal Plaza No. 6
Washington, DC 20360

1 Dr. H. Wallace Sinaiko
c/o Office of Naval Research (Code 450)
Psychological Sciences Division
Arlington, VA 22217

1 Dr. Martin F. Wiskoff
Navy Personnel Research and

Development Center
San Diego, CA 92152

1 Dr. John Ford, Jr.
Navy Personnel Research and

Development Center
San Diego, CA 92152

1 Technical Library
Navy Personnel Research and

Development Center
San Diego, CA 92152

Army

1 Commandant
U. S. Army Institute of Administration
Attn: EA
Fort Benjamin Harrison, IN 46216

1 Armed Forces Staff College
Norfolk VA 23511
Attn: Library

1 Director of Research
U.S. Army Armor Human Research Unit
Attn: Library
Building 2422 Morade Street
Fort Knox, KY 40121

1 U.S. Army Research Institute for the
Behavioral and Social Sciences

1300 Wilson Boulevard
Arlington, VA 22209

1 Commanding Officer
Attn: LTC Montgomery
USACDC
Ft. Benjamin Harrison, IN 46249

1 Dr. John L. Kobrick
Military Stress Laboratory
U.S. Army Research Institute of
Environmental Medicine

Natick, MA 01760

1 Commandant
U.S. Army Infantry School
Attn: ATSIN -H

Fort BenninL GA 31905

1 U.S. Army Research Institute
Commonwealth Building, Room 239
1300 Wilson Boulevard
Arlington, VA 22209
Attn: Dr. R. Dusek

1 Mr. Edmund F. Fuchs
,U.S. Army Research Institute
1300 Wilson Boulevard
Arlington, VA 22209

1 Chief, Unit Training and Educational
Technology Systems

U.S. Army Research Institute for
the Behavioral and Social Sciences

1300 Wilson Boulevard
Arlington, VA 22209

1 Commander
U.S. Theater Army Support Command,

Europe
Attn: Asst. DCSPER (Education)
APO New York 09058

1 Dr. Stanley L. Cohen
Work Unit Area Leader
Organizational Development Work Unit
Army Research Institute for Behavioral

and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

1 Dr. Leon H. Nawrocki
U.S. Army Research Institute
Rosalyn Commonwealth Building
1300 Wilson Boulevard
Arlington, VA 22209

Air Force

1 Dr. Martin hocksay
Technical Training Division
Lowry Air Force Base
Denver, CC 80230

1 Maj. P. J. DeLeo
Instructional Technology Branch
AF Human Resources Laboratory
Lowry Air Force Base, CO 80230

1 Headquarters, U.S. Air Force
Chief, Personnel Research and Analysis

Division (AF/DPSY)
Washington; DC 20330

1 Research and Analysis Division
AF/DPXYR - Room 4C200
Washington, DC 20330

1 AFHRL/AS (Dr. G. A. Eckstrand)
Wright-Patterson AFB
Ohio 45433

1 AFHBL (AST/Dr. Ross L. Morgan)
Wright-Patterson Air Force Base
Ohio 45433

1 AFEEL/MD
701 Prince Street
Room 200
Alexandria,

1 AFOSR(NL)
1400 Wilson Boulevard
Arlington, VA 22209

VA 22314

1 Commandant
USAF School of Aerospace Medicine
Aeromedicol Library (SUL-4)
Brooks AFB, TX 78235

1 Capt. Jack Thorpe, USAF
Department of Psychology
Dowling Green State University
Bowling Green, OH 43403

1 Houdquartor, Electronic Systems
Division

Attn: Dr. Sylvia R. Mayer/MCIT
LG Hanscom Field
Bedford, MA 01730

1 Lt. Col. Henry L. Taylor, USAF
Military Assistant for Human

Resources
OAD(E&ES) (:)DDRFE

Pentagon, Room 3D129
Washington, DC 20301

Marine Corps
1 Ccl, George Caridakis
Director, Office of Manpower

Utilization
Headquarters, Marine Corps (A01H)
MCD
Quantieo, VA 22134

I Dr, A. L. Slailionky
Advisor Ax)

Commandant of the Marine Corps
Washington, DC .=03M

1 Mr. E. A. Dover
Manpower Measurement Unit. (Code MPI)

Arlington Annex, Room 2413
Arlington, VA 20370

Coast. Guard

1 Mr. Joseph J. Cowan, Chief
Psychological Research Branch (P-1)
U,L;. Coast Guard Headquarters
400 Seventh Street, SW
Washington, DC 20590

Other DOD

1 Lt. Col. Austin W. Kibler, Director
Human Resources Research Office
Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

1 Mr. Helga Reich, Director
Program Management) Defense Advanced

Research Projects Agency
1400 Wilson Boulevard
Arltngtt n, VA 22209

1 Mr. William J. Stcrner
DOD Computer Institute
Washington Navy Yard
Building 175
Washington, DC 20374

1 Mr. Thomas C. O'Sullivan
Human Resources Research Office
Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Other Government

1 Office c,f Computer Information
. Institute for Computer Sciences

and Technology
National Bureau of Standards
Washington, DC 20234

1 Dr. Eric McWilliams, Program Manager
Technology and Systems, TIE
National Science Foundation
Washington, DC 20550

Miscellaneous

1-Dr. Scarvia B. Anderson
Educational Testing Service
17 Executive Park Drive, N.E.
Atlanta, GA 30329

1 Dr. Bernard M. Bass
University of Tochester
Management Research Center
Rochester, NY 14627

1 Mr. Edmund C. Berkeley
Berkeley Enterprises, Inc.
815 Washington Street
Newtonville, MA 02160

1 Dr. David G. Bowers
University of Michigan
Institute for Social Research
P.O. Box 1248
Ann Arbor, MI 48106

1 Mr. H. Dean Brown
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025

1 Mr. Michael W. Brown
Operations Research, Inc.
1400 Spring Street
Silver Spring, MD 20910

1 Dr. Ronald P. Carver
American Institutes for Research
8555 Sixteenth Street
Silver Spring, MD 20910

1 Century Research Corporation
4113 Lee Highway
Arlington, VA 22207

1 Dr. Kenneth E. Clark
University of Rochester
College of Arts and Sciences
River Campus Station
Rochester, NY 14627

1 Dr. Allan M. Collins
Bolt Beranek and Newman
50 Moulton Street
Cambridge, MA 02138

1 Dr. Rene V. Dawis
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

2 ERIC
Processing and Reference Facility
4833 Rugby Avenue
Bethesda, MD 20014

1 Dr. Victor Fields
Department of Psychology
Montgomery College.
Rockville, MD 20850

1 Dr. Edwin A. Fleishman
American Institutes for Research
8555 Sixteenth Street
Silver Spring, MD 20910

1 Dr. Duncan N. Hansen
Memphis State University
Bureau of Educational Research and

Services
Memphis, TN 38152

1 Dr. Robert Glaser, Director
University of Pittsburgh
Learning Research and Development

Center
Pittsburgh, PA 15213

1 Dr. Albert S. Glickman
American Institutes for Research
8555 Sixteenth Street
Silver Spring, MD 20910

1 Dr. Henry J. Hamburger
University of California
School of Social Sciences
Irvine, CA 92664

1 Dr. Richard S. Hatch
Decision Systems Associates, Inc.
11428 Rockville Pike
Rockville, MD 20P52

1 Dr. M. D. Havron
Human Sciences Research, Inc.
Westgate Industrial Park
7710 Old Springhouse Road
McLean, VA 22101

1 Human Resources Research Organization
Division #3

P.O. Box 57 87
Presidio of Monterey, CA 93940

1 Human Resources Research Organization
Division #4, Infantry
P.O. Box 2086
Fort Benning, GA 31905

1 Humqn Resources Research Organization
Division #5, Air Defense
P.O. Box 6057
Fort Bliss, TX 79916

6

1 Human Resources Research Organization
Division #6, Library
P.O. Box 428
Fort Rucker, AL 36360

1 Dr. Lawrence B. Johnson
Lawrence Johnson and Associates, Inc.
200 S. Street, N.W., Suite 502
Washington, DC 20009

1 Dr. Norman J. Johnson
Carnegie-Mellon University
School of Urban and Public Affairs
Pittsburgh, PA 15213

1 Dr. David Klahr
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Park
Goleta, CA 93017

1 Dr. Andrew R. Molnar
Technological Innovations in
Education

National Science Foundation
Washington, DC 20550

1 Dr. Leo Munday, Vice President
American College Testing Program
P.O. Box 168
Iowa City, IA 52250

1 Dr. Donald A. Norman
University of California, San Diego
Center for Human Information
Processing

La Jolla, CA 92037

1 Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, VA 22207

1 Dr. Diane M. Ramsey-Klee
R-K Research & System Design
3947 Ridgemont Drive
Malibu, CA 90265

1 Dr. Jeceph W. Digney
Behavioral Technology Laboratories
University of Southern California
3717 South Grand
Los Angeles,. CA 90007

. 1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. George E. Rowland
Rowland and Company, Inc.
r,o. Box 61
liadthhLfield, NJ 08033

1 Mr. A. J. Pesch, President
Eclectech Associates, Inc.
P.O. Pox 178
North StoninF;t:n, CT 0(359

1 Dr. Arthur I. Siegel
Applied Psychological services
Science Center
404 East Lancaster Avenue
Wayne, PA 19087

1 Mr. Dennis J. Sullivan
725 Benson Way
Thousand Oaks, CA 91360

1 Dr. Benton J. Underwood
Northwestern University
Department of Psychology
Evanston) IL 60201

1 Dr. David J. Weiss
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

1 Dr. Anita West
Denver Researcn Institute
University of Denver
Denver, CO 80210

1 Dr. Kenneth Wexler
University of California
School of Sobial Science
Irvine, CA 92664

1 Dr. John Aonett
The Upeit University

Milton Keynes
Buckinghamshire, ENGLAND

1 Dr. Milton S. Katz
MITRE Corporation
Westgate Research Center
McLean, VA 22101

1 Dr. Charles A. Ullmann
Director, Behavioral Sciences

Studies
Information Concepts, Inc.
1701 N. Et. Myer Drive
Arlington. VA :'2::09

1 Dr. Dexter Fletcher
Tepartn2nt of Psychology
P.O. Fux ' ,

Universit of Illinois, Chicago
Circle

Chicago, IL C.:680

1 Dr. Alfred Staff
Consultant

Training Analysis and Evaluation
1%,up

Nava T2;ajeiinr; Equipment Center
C sic 11-0oT

(Jrl:dido,

(Continued from inside front cover)

165 L. J. Hubert, A formal model for the perceptual p,' cessirig o1 geometric configurations. February 19, 1971, (A statistical method for
investigating the perceptual confusions among geometric configurations. Journal of Mathematical Psychology, 1972, 9, 389-403.)

166 J. F. Juola, I. S. Fisch ler, C. T. Wood, and R. C. Atkinson. Recognition time for information stored in long -terra memory. (Perception and

Psychophysics, 1971, 10, 8-14.)
167 R. L. Klatrky and R. C. Atkinson. Specialization of the cerebral hemispheres in scanning for information in short-term memory. (Perception

and Psychophysics, 1971, 10, 335-338.)
168 J. D. Fletcher and R. C. Atkinson. An evaluation of the Stanford CAI program in initial reading (grades K through 3). March 12, 1971.

(Evaluation of the Stanford CAI program in initial reading. Journal of Educational Psychology, 1972, 63, 597-602.)
169 J. F. Juola and R. C, Atkinson, Memory scanning for words versus categories, (Journal of Verbal Learning and Verbal Behavior, 1971,

10, 522-527.)
170 I. S. Fischler and J. F. Juola. Effects of repeated tests on recognition time for information in long-term memory. (Journal of Experimental

Psychology, 1971, 91, 54-58,)
171 P. Suppes. Semantics of context-free fragments of natural languages. March 30, 1971. (In K. J: J. Hintikka, J. M. E. Moravcsik, and

P. Suppes (Eds.), Approaches to natural language. Dordrecht: Reidel, 1973. Pp. 221-242.)
172 J. Friend. INSTRUCT coders' manual. May 1, 1971.
173 R. C. Atkinson and R. M. Shiffrin. The control processes of short-term memory. April 19,1971. (The control of short-term memory.

Scientific American, 1971, 224, 82-90.)
174 P. Suppes. Computer-assisted instruction at Stanford. May 19, 1971. (In Man and computer. Proceedings of international conference,

Bordeaux, 1970. Basel: Karger, 1972. Pp. 298-330.)
175 D. Jamison, J. 0. Fletcher, P. Suppes, and R. C. Atkinson. Cost and performance of computer-assisted instruction for education of disadvantaged

children. July, 1971.
176 J. Offie. Some mathematical models of individual differences in learning and performance. June 28, 1971. (Stochastic learning models with

distribution of parameters. Journal of Mathematical Psychology, 1972, 9(4),
177 R. C. Atkinson and J. F. Juola, Factors Influencing speed and accuracy of word recognition. August 12, 1971, (in S. Kornblum (Ed.),

Attention and performance IV. New York: Academic Press, 1973.)

178 P. Suppes, A. Goldberg, G. Kano, B. Searle, and C. Stauffer. Teacher's handbook for CAI courses. September 1, 1971.
179 A. Goldberg. A generalized instructional system for elementary mathematical logic. October 11, 1971.
180 M. Jerman. Instruction in problem solving and an analysis of structural variables that contribute to problem- solving difficulty. November 12,

1971. (Individualized instruction in problem solving in elementary mathematics. Journal for Research in Mathematics Education, 1973,
4, 6-19.)

181 P. Suppes. On the grammar and model-theoretic semantics of children's noun phrases. November 29, 1971.

182 C. Kreisel, Five notes on the application of proof theory to computer science. December 10, 1971.
183 J. M. Moloney. An investigation of college student performance on a logic curriculum in a computer-assisted instruction setting, January 28,

1972.
184 J. E. Friend, J. 0, Fletcher, and R. C. Atkinson, Student performance in computer-assisted instruction in programming. May 10, 1972,
185 R. L. Smith, Jr. The syntax and semantics of ERICA. June 14, 1972.
186 A. Goldberg and P. Suppes. A computer-assisted instruction program for exercises on finding axioms. June 23, 1972, (Educational Studies

In Mathematics, 1972, 4, 4297449.1
187 R. C. Atkinson. Ingredients for a theory of instruction. June 26, 1972. (American Psychologist, 1972, 27, 921-931.)
188 J. D. Bonvillian and V. R. Charrcw. Psycholinguistic implications of deafness: A review. July 14, 1972.
189 P. Arabic and S. A. Boorman. Multidimensional scaling of measures of distance between partitions, July 26, 1972. (Journal of Mathematical

Psychology, 1973, 10,
190 J. Ball and D. Jamison. Computer-assisted instruction for dispersed populations: System cost models. September 15, 1972. (Instructional

Science, 1973, 1, 469-501.)
191 W. R. Sanders and J. R. Bali, Logic documentation standard for the Institute for Mathematical Studies in the Social Sciences. October 4, 1972.
192 M, T, Kane, Variability in the proof behavior of college students in a CAI course in logic as a function of problem characteristics, October 6,

1972.
193 P. Suppes. Facts and fantasies of education. October 18, 1972, (In M. C. Wittrock (Ed.), Changing education: Alternatives from educational

research. Englewood Cliffs, N. J.: Prentice-Han, 1973. Pp. 6-45.)
194 R. C. Atkinson and J. F. Juola. Search and decision processes in recognition memory. October 27, 1972.
195 P. Suppes, R. Smith, and M. Liveille% The French syntax and semantics of PHILIPPE, part 1: Noun phrases. November 3, 1972,
196 D. Jamison, P. Suppes, and S. Wells. The effectiveness of alternative instructional methods: A survey. November, 1972.

197 P. Suppes. A survey of cognition in handica sped children, December 29, 1972.
198 B. Searle, P. Lorton, Jr., A. Goldberg, P. Suopes, N. Ledet, and C. Jones. Computer-assisted instruction program: Tennessee State

University, February 14, 1973.
199 D. R. Levine. Computer-based analytic grading for German grammar instruction. March 16, 1973.

200 P. Suppes, J. 0. Fletcher, M. Zanotti, P. V. Lorton, Jr., and B. W. Searle. Evaluation of computer-assisted instruction in elementary
mathematics for hearing-impaired students. March 17, 1973.

201 6. A. Huff. Geometry a rld formal linguistics. April 27, 1973.
202 C. Jensema. Useful techniques Foe applying latent trait mental-test theory. May 9, 1973.

203 A. Goldberg. Computer-assisk.d instruction: The application of theorem-proving to adaptive response analysis. May 25, 1973.

204 R. C. Atkinson, 0. 3. Herrmann, and K. T. Wescourt. Search processes In recognition memory. June 8, 1973.

205 J. Van Campers. A computer-based introduction to the morphology of Old Church Slavonic, June 18, 1973.

206 R. 8. Kimball. Self - optimizing computer-assisted tutoring. Theory end practice. June 25, 1973.

207 R, C. Atkinson, J. 0. Fletcher, C. J. Lindsay, 3. 0. Campbell, and A. Barr. Computer-assisted instruction in initial reading. July 9, 1973.
208 V. R. Charlton and J. 0. Fletcher. English as the second language of deaf students. July 20, 1973.

209 J. A. Paulson, Ah evaluation of instructional strategics in a simple learning situation, July 30, 1973.

210 N. Martin. Convergence properties of a class of probabilistic adaptive schemes called sequential reproductive plans. July 31, 1973.

(Continued from inside back cover)

211 J. Friend. Computer- assisted instruction in programming: A curriculum description. July 31, 1973.

212 S. A. Weyer. Fingerspelling by computer. August 17, 1973.

213 8. W. Searle, P. Lorton,Jr., and P. Suppes. Structural variables affecting CAl performance on arithmetic word problems of disadvantaged
and deaf students. September 4, 1973,

