| AUTHOR | Havelock, Ronald G.; And Others |
| :---: | :---: |
| TITLE | Educational Innovation in the United States, Volume |
|  | 1: The National Survey: The Substance and the |
|  | Process. |
| INSTITUTION | Michigan Uniy. Ann Arbor, Center for Research on |
|  | Utilization of Scientific Knowledge. |
| SPONS AGENCY | National Inst. of Education (DHBH), Washingtan, |
| - | D.C. |
| PUB DATE | Jun 73 |
| GRANT | OEG-0-70-4296(508) |
| NOTE | 284p.; A related document is EA 006231 |
| EDRS PRICE | MP-\$0.75 HC-\$13.80 PLUS POSTAGE |
| DESCRIPTORS | *Educational Change; *Educational Innovation; |
|  | Educational Research; Elementary Schools; Information |
|  | Dissemination; *Inf wation Networks; Iniormation |
|  | Utilization; *Natiunal Surveys; Secondary Schools |

ABSTRACT
This document reports on a project undertaken to determine the feasibility of a periodic national survey of a sample of U.S. school districtis to obtain information on the performance of the existing dissemination and utilization netvork for educational innovations. The first section of volume 1 describes the content and consequences of innovation, and the second section examines the innovation process. of the 353 responses received, 346 ( 98 percent) reported at least one fajor innovation during the 1970-71 school year. The survey results indicate that the arount of innovative effort per pupil is dramatically and inversely related to size of district. Individualized instruction and team teaching were the innovation types cites most frequently as the most significant in 1970-71. There is a strong tendency for showcase innovations to be directed to the elementary level, uith considerably less emphasis on senior high schools and very little attention paid to midde or junior high school years. Teachers are by far the highest participants in innovations, aud internal resources generally received more usage than did external resources. The appendixes contain the survey questionnaire, letters to respondents, and background information on the characteristics of the sample.
(Author/DN)

Volume 1:
The National Survey: The Substance and the Pracess
by
Ronald G. Havelock
and
Mary C. Havelock
with the assistance of Elizabeth A. Markowltz

Prepared for:
National Institute of Education to Coriginally authorized by the National Center for Educational Communication, U.S. Office of Education before the establishment of NIE)

Project Title: Monitoring Innovation Processes in Education Contract No. OEG-0-70-4296(508)

Principal Investigator: Ronald G. Havelock, Ph.D.

> US DEPA TMENT OF HEALTM.
> EOUCATIDN B WELFAQE
> NATIONALINSTSTUFE OF
> $\begin{gathered}\text { NATIONALINSFBFUT } \\ \text { EOVCAFION }\end{gathered}$
> TMIS OOCUHENT MAS OEEN REPRO
> $\begin{aligned} & \text { OUCEO EXACTLY AS EECEIVEO GRON } \\ & \text { THE PE ASOUGRORGEAI2HIONORIGIN }\end{aligned}$
> $\begin{aligned} & \text { THE PE ASOYGR ORGAYIZATIONORIGN } \\ & \text { AT,NGIT PGINTS OF VIEW OR OPINIONS }\end{aligned}$
> $\begin{aligned} & \text { SIATEO DONOT NECESSARILY RESAE } \\ & \text { SEVTCFICIALNATIONALINSTITVEOF }\end{aligned}$ EOUCATION POSITION OR PORICY

Center for Research on Utilization of Scientific Knowledge Institute for Social Research The University of Michigan<br>Ann Arbor, Michigan June 1973

## ACKNOWLEDAEMENTS

Special thanks are due to several persons who contributed at various tines to this project. The nembers of our advisory committee, Dr. Richard Carison, Dr. Robert Chin, Dr. Neal Gross, Dr. Ronald Llppltt, Dr. Matthew Mles, Dr. Willlam Paisley and Dr. Everett Rogers provided helpful suggestions on both design and substance durling the early months and made a thorough critique of our instrument. Mr. R. Bruce Shaw devoted considerable energy during the early months in coordinating both the commlttee work and the survey and was responsible for field relations and NCEC liaison during the piłot test perlod. Mr. Sripada Raju designed and drew the sample in collaboration with Ms. Irene Hess, Head of the Sampling Section of the Institute for Social Research's Survey Research Center. Mrs. Ellzabeth Markowitz was responsible for data management, woding, and tabulating, ably assisted by Mr. Gary Huggens. Data processing was coordinated by Mr. Mauriclo Font assisted by Ms. Leslie Kraus. Mrs. Rita Wiegers supervlsed typlng, proofing, and formatting of tables, figures, and questionnaires through many many drafts as well as assisting the principal Investigator in innumerable ways throughout the project. During the flnal report writing, Mrs. Mary Ann Rodgers also provided invaluable assistance in the flnal typing of many chapters including the entlre second volume (case studies).

The research reported herein was performed pursuant to a Contract No. OEG-0-70-4296(508) with the Office of Education, U.S. Department of Health, Education, and Welfare. Contractors undertaking such projects under government sponsorship are encouraged to express freely their professlonal judgment In the conduct of the project. Polnts of view or oplnlons stated do not, therefore, necessarlly represent officiai Office of Education position or pollcy.

# VOLUME ONE <br> TABLE OF CONTENTS 

Page
ACKNOWLEDGEMENT ..... i
Chapter One:
INTRODUCTION, METHOD, SUMMARY, AND IHPLICATIONS
A. Introduction. ..... 1
B. Metinod ..... 4
C. Synopsis of Findings ..... 10
D. Implications ..... 21
SECTION I: INNOVATION CONTENT AND CONSEQUENCES
Chapter Two:
THE 1971 SHOWCASE INNOVATION
A. Showcase Innovation Categories ..... 26
B. Analysis Categories ..... 43
C. Relationship of linovation Type to District Size, Region and Per Pupil Expenditure ..... 45
D. Grade Level of the Showcase Innovation ..... 47
E. Curriculun Areas of the Showcase Innovation ..... 50
F. Target Groups of the Showcase Innovation. ..... 55
G. Descriptive Elements of the Showcase Innovation ..... 61
H. Summary ..... 69
Chapter Three:
THE TOTAL 1970-71 INNOVATIVE EFFORT
A. Categories of the 1970-71 Innovative Effort ..... 71
B. The Top Ten 1970-71 Innovations ..... 79
C. Grade Level of the Inventory Innovations ..... 81
D. Summary ..... 83
Chapter Four:
INNOVATIONS PLANNED FOR 1972 ANO AFTER
A. Categories of future Innovations ..... 85
B. The Top Ten Future Innovations ..... 93
C. Grade Level of the Future Innovations ..... 94
0. Summary ..... 96
Chapter Five:
CONSEQUENCES OF THE SHOWCASE INNOVATION
A. Current Status of the Showcase Innovation ..... 97
B. General Consequences of the Showcase Innovation ..... 98
C. Specific Consequences of the Showcase Innovation ..... 100
D. Recommendations to Other Districts on Adoption of Showcase innovation ..... 109
E. Summary ..... 111
Paçe
SECTION 11: THE INNOVATION PROCESS
Chapter Six:
PARTICIPANTS AND RESUURCES USED $\operatorname{IN}$ THE SHOWCASE INNOVATION
A. Extent of Participation by 21 Groups. ..... 115
B. Use of Resources in the Showcase Innovation ..... 123
C. Participant Attitudes and Characteristics ..... 131
D. Use of Procedures to Gain Participation and Cooperation ..... 133
E. Advice on Particlpation Offered to Other Districts. ..... 136
F. Summary ..... 137
Chapter Seven:
PROCEOURES AND BARRIERS
A. Procedures Used in the Showcase Innovation. ..... 139
B. Use of Media to Explain Irinovations to Parents and the Community ..... 147
C. Barriers Encountered in the Showcase Innovation Process ..... 151
D. Factors Influencing the Showcase Innovation Process ..... 158
E. Description of the Showcase Innovation Process ..... 168
F. Advice to Other Districts ..... 175
G. Summary ..... 177
Chapter Elght:
mODELS AND DIMENSIONS OF CHANGE IN THEORY AND PRACTICE
A. Theoretical Perspectives on Innovation Process ..... 181
B. Barriers to Innovation in Six Conceptual Clusters ..... 190
C. A Factor Analysis of Barrlers and Procedures: Empirical vs. Theoretical Clustering ..... 197
Chapter Nine:SCHOOL DISTRICT RESOURCES - UTILIZATION AND POLICY209
Chapter Ten:
THE CORRELATES OF INNOVATIVENESS
A. How the Measure of Innovativeness was Derived ..... 216
B. How Statistics Should Be Interpreted. ..... 216
C. Correlat as with Basic School District Characteristics ..... 218
D. Correlations with Resources and Policies ..... 219
E. Correlations with Media Use ..... 221
F. Correlations with Measures of Discontent. ..... 222
G. The Showcase Innovation Process as a Predictor of General Innovativeness ..... 223
H. Summary ..... 226

TABLE OF CONTENTS, continuedPage
REFERENCES ..... 232
APPENDICES:
Appendix A: Questionnaire (including Instruction Sheet) . . . . A-1 to A-6
Appendix B: Background Characteristics of the Sample. . . . . . B-1 to B-22
Appendix C: Supporting Statement ..... C-1 to C-19
Appendix D: Letters to Respondents 01 to 0-7
VOLUME TWO: 5 Case Studies of Educational Innovation at the School District Level
(To be bound separately)

## CHAPTER ONE: INTRODUCTION, METHOD, SUMAARY, AND IMPLICATIONS

## A. INTROOUCTION

1. THE PROBLEM

A physician needs to know the general state of health of the patient and his symptoms before he can prescribe a plan of treatment. In very much the same way a sound national policy for apflied research and development should be based on an accurate understanding of the existing state of affairs in the system being served. The "system" in this case is the existing network for the dissemination and utilization of new knowledge in the field of education. We know that as of today this "network" hardly deserves the name: it is incomplete and inadequate in a number of respects; it is unable to identify or disseminate a great deal of what is known, and it rarely insures the adequate utilization of what is disseminated. Although reasons for such defects are often put forward, we have up to now had very littie reliable information on the way the system is actually working at present so that we can pinpoint those areas where improvements are most needed and would have maximum pay-off.

The 1960's sow the emergence of 3 new awarences that research by itself does not provide direct answers to the problems faced in the practical world, und this awareness has been articulated in the formation of a new discipline focused on the problem of knowledge dissemination and utilization (DEV). Research studles of the D\&U process were virtually non-existent prior to World War Il and were restricted largely to the area of agricultural innovations until a decade ago. In recent years, however, we have seen a dramatic growth of interest in this topic in many fields of practice including education.

Together with this growing interest in DEU as a research concern have come increasing efforts to establish dissemination networks, new roles, and instituttons designed specifically to speed the flow of knowledge from re-. search to practice. U.S. education has been in the forefront of this innovative trend. Starting with major federal legislation on education in the early $1960^{\prime}$ s, there has been a very rapid growth of research and development centers, information clearinghouses, regional laboratories and locally and regionally based dissemination projects, conferences, and training programs. All these developments have had one primary objective: educational selfrenewal and progress through the infusion of new ideas and innovations based on research knowledge.

Clearly the time has come to begin a serious and empirically accurate accounting of these developments by monitoring their impact on educational practice at the level of operating school districts. From such a knowledge base it should eventually be possible to assign priority weights to new project and program proposals so that this knowledge delivery system can be improved and expanded in ways conducive to its optimal performance.

This project was undertaken to determine the feasibillty of a periodic national survey of a statistically representative sample of U.S. school districts to obtain from them detailed information on the performance of the existing D\&U network.

## 2. BACKGROUND AND RELATED RESEARCH AND DEVELOPMENT

The study of diffusion and adopt fon of innovations has a long tradition in educational research beginning with the studies of Paul R. Mort and his colleagues at Columbia Teachers College. Mort (1964) cites 200 studles beginning in the late $1930^{\prime}$ s and continuing through the late 1950's, covering a very large range of innovatlons and focusing on various aspects of school system structure and finance which affect what he called "adaptability." With Mort's retirement that tradition of research at Columbia came to an end although some major studies of educational innovation diffusion have been done since (e.g., Carison, 1965, Lin et al. 1966). Furthermore, the work of Everett Rogers (1962, 1971), in sumarizing over 1000 emplrical studies of innovation diffusion, has demonstrated the compatibility of findings from education with findings from such diverse fields as agriculture, medicine, and community and national development.

A seminal event in the history of educational innovation research was publication of Mat thew MIles' compendium Innovation in Education (1964). This book brought together the empirical work of Hort, Carlson, and othars with case studies of Innovation at all levels of education. Mlies also provided an integrative summary which suggested that there was conslderable substance to the field.
it is somewhat remarkabie that all of this work was done before passage of the Elementary and Secondary Education Act of 1965 in which "innovation" on a large scale was endorsed and funded in a major way by the national government. Unfortunately, however, the major implementation efforts of ESEA did not exploit the insights of Mort, Miles, or Rogers to any great extent. Under Titie 1 and Title lli of the act thousands of "innovations" were initiated at the local level all across the country without very much planning or comparative evaluation. Hence, the opportunity to apply and to extend our understanding of innovation processes was largeiy lost.

Beginning in 1966, with the support of the Division of Research Training and Dissemination of the United States Office of Education,* the Center for Research on Utilization of Sclentific Knowledge (CRUSK) at the University of Michigan began to study innovation processes from the spectal focus of knowledge utilization. As a first project a review was conducted of all relevant sources in the literature on "dissemination," "planned change," "communication," "technology and information transfer" and "innovation." Of over 4000 potential sources Identified (Havelock, 1968), about 1000 key items were summarized and integrated in the final report to the U.S. Office of Education (Havelock, 1969).

[^0]In brlef, the report suggested that thare were three major orlentations toward Innovation in education which were identifled as: 1) Research, Development and Diffusion (most closely identlfied with the nat lonal "system" planners of the 1960 's) ; 2) Soclal Interaction (the dlffusion researchers); and 3) Problen-Solving (the human relations and client-centered consultation school). We argued In concluding the report that although the above three models of DEU are espoused by dlfferent authors and represent dlfferent schools of thought, they can be seen as elucidating different but equally important aspects of total process. In attempting to bulld a synthesis from these varlous schools, we have derlved the concept of "llnkage." According to this princlple, the internal problem-solving process of the user is seen as the essentlal starting polnt, but the process of searching for and retrleving new outside knowledge relevant to the problem-solving cycle is also vital. To coordinate helping activities with internal user problem-solving activities, the outside resource person (or system) must be able to recapltulate or simulate that internal process. The resource person needs to develop a good "model" of the user system in order to "llnk" to hlm effectively. Cllnlcally speaklng, we would say that he needs to have empathy and understanding.

At the same time, the user must have an adequate appreclat lon of how the resource system operites. In other words, he must be able to understand and partially simulate such resource system actilvities as research, development, and evaluation.

In order to bulld accurate models of each other, resource and user must provide reciprocal feedback and must provlde signals to each other whlch are mutually reinforcing. it was proposed that this type of collaboration would not only make particular solutlons more relevant and more effectlve, but would also serive to bulld a lasting relationshlp of mutual trust and a perception by the user that the resource person is a truly concerned and competent helper. In the long run initial collaborative relations bulld effective channels through which innovations can pass efficlently and effectively from researchers to developers, from developers to practitioners, and from practitioners to consumers. As the RDED school holds, there must be an extensive and rational division of labor to accompllsh the complex tasks of innovation bullding. However, each separate role-holder must have some idea of how other roles are performed and some idea of what the linkage system as a whole is trying to do.

Two recent survey studies have attempted to explore innovation and RED utilization from the perspective of nationally representative samples of school administrators using mailed questlonnalres. Lindeman, et al. (1969) recelved 342 returns from a probability sample representing 9000 school districts of enrollment size 600 to 100,000 . They found that few school district superintendents could make reference to specific use of RED and that the importance of RED in local innovations was only dimly perceived. On the other hand, attitudes toward RED and interest in receiving such information was found to be very high. Rittenhouse (1970) explored tise possibility of comparing school districts on a dimension of "innovativeness" through the use of a checklist of educational inncvation categories. Unfortunately, both studies leave in doubt the question of what constitutes an "innovation" and they draw rather different inferences on the amount of innovation going on in education; Lindeman, et al. seemed to feel that there was very little on a per pupil basis when all grades and all classes were considered. On the other hand, the Rittenhouse checklist suggested an enormous yolume and variety of innovations
on a district-by-district calculation. It also appeared to us that neither of these studles shed much light on the process of innovation, l.e., the persons involved, the procedures used, the range of resources utilized, and the barrlers encountered.

These, then, were the considerations which led us to propose a national survey of Innovation processes. Primarlly, we wanted to extend and support the propositions emerging from the literature review and synthesis so that statements could be made about existing rational realltles and trends in these terms. We also wanted to continue and enrich the empirical research tradition in this fleld and to provide pollcy makers with a sounder basis for declsion making on such matters as support of extansion agents, dissemination networks, demonstration projects and R\&D and D6J operations generally.

## B. METHOD

## 1. Narrative overview

The survey project was Initlated In June of 1970 as one segment of a project commlssioned by the National Center for Educational Communication, U.S. Office of Education. The NCEC at that tlme was, contemplating a program of research studies on dissemination and utllization phenomena to supplement and provide guldance to their existing DEU efforts (e,g., ERIC, targetted communlcations, state dissemination centers and agents, etc.).

To begin this program, NCEC called upon princlpal investlgator Havelock to set up an advisory committee of leading scholars in the fleld of D\&U research to provide guidellnes and judgments on priorltles for such a program.

Committee members included the following:

```
Dr. Richard O. Carlson
Center for Advanced Study of
            Educatlonal Adminlstration
University of Oregon
Dr. Robert Chin
Department of Psychology
Boston University
Or. Neal Gross
Graduate School of Education
University of Pennsyivania
Dr. Ronald O. Lippitt
Center for Research on Utilization
        of Scientific Knowledge
Institute for Soclal Research
University of Mlchigan
Dr. Matthew B. Mlles
Program in Humanistic Education
State University of New York at Albany
```

Dr. William Paisley Institute for Communication Research Stanford University<br>Dr. Everett Rogers Department of Communication Michigan State University

The work of the committee spanned approxlmately one and one haif years from the fall of 1970 to the spring of 1972 and the demise of the NCEC. During that time, three committee meetings were held in addition to conslderable reporting and feedback by mall and teiephone, and two reports were issued outlining priority topics for research and development projects in the areas of dissemlnation, utilization, and innovation.

One major function of this committee was to provide input and critique to the innovation-monitoring survey. Therefore, prior to its first meeting a tentative questionnaire form was developed and design specifications laid out for their reaction. As a result of these inputs the original design calling for a sample of 200 districts was expanded to 500 in anticipation of response rate problems, and several areas of questioning were adued.

Initial pilot testing of the form with a few superintendents in Michigan supplemented with extended interviews with these respondents indicated the feasibllity and approprlateness of the questions, but a subsequent pllot test using the mail under approximately the same conditions, anticipated for the national study suggested the need for drastic revislof's; particularly in the direction of simplification. Most distressing was lbe reluctance of respondents to cite innovations deemed to be "unsuccessful."

Concurrent with these problems with the form, the project staff became embrolled in a very long and difficult negotiation with the U.S. Office of Education prior to submitting to the Office of Management and Budget for forms clearance. A special unit set up in OE to screen forms prlor to formal OMB submission called on the project staff to submit many revisions of their supporting statement over a six month perlod. This process, while it may have contributed in some measure to the soundness of the methodology (the form, itself, recelved very little comment), caused an unanticipated delay of 4 to 6 months in getting the survey into the field and resulted in an unanticipated (and unrecoverable) cost to the project of at least $\$ 10,000$ whlle staff hired for the purpose waited for the go-ahead signal.

The delay also had the effect of precluding feedback on innovation process either to the advisory committee or to NCEC and to its new NIE counterpart during crucial transition and policy redirection periods.

The final survey form was put in the field in the fall of 1971 and, after considerable and complex efforts, $71 \%$ had responded by May of 1972. Data processing and table construction took place over the following six months with final inalysis and report writing taking place in the spring of 1972.

The long turn-around was very disappointing and discouraging for prospects for an efficient national monitoring and feedback. Nevertheless, there ire some reasons to believe that a resurvey would not have the same fate. To begin with, the forms clearance difficulties had a chain reaction effect on the cost and staffing of the project such that by the time returns were coming in there was little money and a skeleton resldual staff who at this point had competing commitments. Presumably a regular monitoring project could (a) maintain a semi-permanent staff, (b) develop forms and procedures which were, in the main, routine and redundant from year to year, obvlating the complicated dialogue on forms clearance, (c) bulld a respondent panel which would be identical or largely overlapping from year to year, obvlating the need for new sample construction and increasing the llkellhood of responding through habituation.

A more detailed summary of the method with particular emphasis on the effort to build a satisfactory response rate follows in the next few pages. For additional details on methodology the reader should consult the Appendices which include the form as it was finally approved, detailed tables on response rates for different groups, and the supporting statement used to facilitate forms clearance.

## 2. SAmtite COHSTRUETIOH

The study population was comprised of superintendents in ail operating publlc school systems in the contiguous United States as of September 1970. These were stratified into 8 geographical regions and 7 categorles of pupil enrollment size. A sample of 500 systems was selected randomly within strata such that one system would be selected for every 80,000 puplls with the exception that all systems with more than 80,000 pupils were included, with certalnty, lather than sampled. A detailed explanation of the samplling procedures used may be found in the Supporting Statement in Appendix C.

## 3. PILOT TESTING

Prior to conducting the national survey, an extensive series of pilot tests were conducted to refine the instrument and procedures. In January, 1971 the first questionnaire was pilot tested and reviewed by three selected superintendents in the state of Michigan. Thelr comments were used to revise the form which was further tested in April. The results of this second pretest, combined with the comments of several educational researchers including the research advisory committee described earlier, were used to modify the questionnaire further. After another pilot test conducted in June yielded an unacceptably low response rate (under 20\%), two new abbreviated versions of the questionnaire were developed. These were administered to small randomly selected samples of superintendents during the month of August. One form asked for detailed comment on two innovations, one s, uccessful and one "problematic" in some significant respect. The other form asked only for an innovation (successful or unsuccessful) which stood out as noteworthy from the respondent's point of view, but added a page for listing an inventory of other innovations. Because respondents generally failed to identify the "problematlc' innovation, and because NCEC expressed a strong desire to receive the "inventory" data, the second form was selected for final administration.

## 4. hOW the final form was administered

## a. Commitment form

In attempting te increase the response rate several strategies were explored. The most promising was to write to each potentlal respondent explaining the objectives of the survey and inviting him to partlcipate in the study. Enclosed with the lefter was a reply form on which the superintendent was asked to check if he would be willing to complete a questionnaire, and, if not, to describe the reasons for his unwillingness. A subsample of 44 superintendents was selected out of our larger sample of 500 to receive this letter; the response was over 90\%, with all but one of the respondents indicating a wlllingness to participate.

This letter and reply form were malled to the remaining school systems in the sample during the late fall. Within three weeks, those superintendents who had not returned a form were sent another. After another three weeks an attempt was made to reach non-replying superintendents by telephone.

As indicated in Table 1.1, by December 10, 1971 a total of 346 superintendents (69\%) had agreed to participate in the survey. Thirty-eight superintendents (8\%) wanted more information on the study before they would agree to participate. Several attempts were made to contact all of these persons by telephone to answer their questions and to provide additional information in a personal way.

TABLE 1.1
state of cooperation from the superintendents FOR PARTICIPATION IN THE PROJECT AS OF

DECEMBER 10, 1971

|  | Number of <br> Superintendents | Percent |
| :--- | :---: | :---: |
| Wlling to partlcipate | 346 | $69 \%$ |
| Wanted more information before |  |  |
| agreeing to participate |  |  |
| Declined to participate | 38 | $8 \%$ |
| Did not respond | 60 | $12 \%$ |
| Total | 56 | $11 \%$ |

Sixty replles were received from superintendents who declined to participate in the study. These accounted for $12 \%$ of the sample. Despite follow up efforts, 56 superintendents ( $11 \%$ of the sample) did not respond to the letter.
b. Mall Out and Follow-Up

Subsequently questionnalres were mailed to these 56 non-responders as well as to the 346 who had agreed to participate and to the 38 who had requested additional information. Therefore by December 18, 1971, a total of 440 superIntendents ( $88 \%$ of the original sample) had been mailed the form.

On January 18, 1972 a second letter and questionnaire were malled, on February 22, 1972 and again on March 15, 1972, non-respondents were sent telegrams. These telegrams produced very positive results. Withln 2 days we had received phone calls from 26 superintendents requesting additional forms or indicating that they were returning a questionnalre; a total of 52 questionnalres were recelved after the first telegram was sent.

As a final effort several person-to-person telephone calls were made in late March and early April to the remaining superintendents. In addition to yielding more responses, these phone calls were useful in studying non-respondents. As a result of the follow-up efforts, by May 19, 1972, we had recelved completed questionnalres from 353 school systems for a final response rate of $71 \%$.

The responses from these 353 school systems came in five waves spread over a perlod of five months, as illustrated in Table 1.2.

TABLE 1.2
RESPONSE RATE GROWTH


## 5. NON-RESPONSE STUDY

In addition to the 60 superintendents who declined to participate in the study, a total of 72 school adminlstrators chose, not to fill out the questionnaịre, Their reasons are listed In Table 1.3. By far the greatest reason mentioned was time pressure. Among those giving reasons, $60 \%$ of the superintendents who dectined to participate in the study and $43 \%$ of those who

TABLE 1,3
reasons for not completing the questionnalre

| Reas on | Decilned to Particlpate | Refused to Complete Ques tlonnaire | Total Refusals |
| :---: | :---: | :---: | :---: |
|  | Percent freq. of 48 | freq.Percent <br> of 42 | Percent freq. of 90 |
| Time $\left\{\begin{array}{l}\text { Can't afford time } \\ \text { Overwhelmed wi th surveys } \\ \text { Lack of staff }\end{array}\right.$ | $\begin{array}{rr}29 & 60 \% \\ 7 & 15 \% \\ 1 & 2 \%\end{array}$ | $\begin{array}{rr}18 & 43 \% \\ 3 & 7 \% \\ 2 & 5 \%\end{array}$ | $\begin{array}{crr}47 & 52 \% \\ 10 & & 11 \% \\ 3 & \ldots & 3 \%\end{array}$ |
| Not interested | $5 \quad 10 \%$ | -- -- | 5 6\% |
| No innovations to report | -- -- | 12 29\% | 12 i3\% |
| Political problems take priority | 3 6\% | 1 2\% | 4 - $4 \%$ |
| Superintendent is new at job | 2 4\% | 2 5\% | 4 4\% |
| Questionnaire unworkable | -- -- | 2 5\% | 2 2\% |
| Other (e.g., illness) | $12 \%$ | 2 5\% | 3 3\% |
| Total | $48100 \%$ | $42 \quad 100 \%$ | $90 \quad 100 \%$ |
| No reason given | 12 | 30 | 42 |

refused to complete the questionnaire said that they couldn't afford the time. Related reasons such as bcing overwhelmed with surveys and lacking enough staff accounted for an additional $17 \%$ of the former group and $12 \%$ of the latter. Among those who refused to coniplete the questlonnaire 12 superintendents (29\% of those giving reasons) sald they had no memory of any Innovations in their school systems and therefore chose not to partlcipate in the study. A tetal of 42 superintendents ( 12 in the first group, 30 in the second) did not give any reason for not particlpating.

There were 15 superintendents who nelther refused, nor returned the questionnaire, althounh when contacted by phone several sald they would try. Eight of the 15 sald that, although they would try, they couldn't guarantee a return because of their lack of time.

Appendix $B$ includes tables which shed further light on characteristics of responding vs. non-responding districts. Table 8.2 shows no systematic differences in response rate by distrlct enrollment size, and Table B. 3 shows no substantlal difference by region, except of course, for the very large districts where small numbers of cases produce large but non-signlficant fluctuations.

## C. SYNOPSIS OF FINDINGS

The findings of this survey are divided into two maln sections, the first dealing with the innovations of the 1970-71 school year and the second dealing with the process by which those innovations came about, the bariers encountered, the procedures followed, and the various characteristics of the school districts which appeared to be relevant to itnovative effort.

## 1. THE INNOVATIONS

Respondents were asked to list and describe briefly in writing all the major Innovations occurring in their school districts in the 1970-71 school year. For one of these innovations they were also asked to provide more detailed information as to participants, key factors in success or failure, and consequences. From the 353 responses out of an original probability sample of 500 districts, we received an overwhelming response, suggesting to us that typical U.S. school districts are embroiled in change at all levels and in all spheres of activity, and that from such changes they see themselves deriving great benefit at reasonable cost. These are, of course, self-appralsing and perhaps self-serving responses and for these reasons they may be partly discounted. It would appear, however, that massive distortion is improbable concerning the bare facts, i.e., that innovations bearing such labels were indeed attempted. Sceptics and persistent critics of U.S. education will justiflably point out the absence of hard objective criterla, especially on outcomes, for which far more exhaustive and intensive on-site investigations are needed.

## a. How Much Innovation is Going On?

Of 353 reporting districts, 346 (98\%) reported at least one innovation which they considered "major" during the 1970-71 school year. The definition of "major" which we asked respondents to use was as follows:
"A major change introduced in the last year for the purpone of improing the quality of education within youre districot. This change may have involved any of the followirg:
12. "t substantial reorientation on the prot if atajf, b. a reallocation of resources, c. adoption of new practices, programs, or technoloph."

In our judgment most of the responses received would indeed fit these criteria from the polnt of view of an objective observer. For example, the largest single category of innovation was "Individualized instruction and team teaching" (the two generally belng reported together as integral aspects of one innovation). Most educators will agree that changes of this sort are Indeed fundamental, minimally requiring reorganization of role relationships, space utilizatlon, grading practlces, and currlculum elements. While it is true that innovations of a more trivial nature were numerous (e.g., adding a course here and there, and purchasing new equipment and materials) nearly every district could point to something significant they had done in the year. Minor innovations were also frequently clted as contributing to or components of a larger, more comprehensive, or more fundamental effort,

A grand total of 3,185 innovations were spontaneously cited in all categories, all purportedly meeting the criteria of "major" cited above. This represents an average of over nine innovations per district per year for schools representative of all reglons and enrollment sizes throughout the United States. Even assuming zero Innovativeness in the 147 non-responding districts out of the stratified probability sample of 500 , this represents an absolute minimum rate of well over six innovations per district.

Number of innovations reported is directly related to district size in ascending order. Hence, we might conclude that larger districts are more innovative, However, as illustrated in Table l.4, there are lies, damn lies and statistics, because on a per pupil basis exactly the reverse is true; the

TABLE 1.4
FREQUENCY OF U.S. SCHOOL DISTRICT INNOVATION IN THE $1970-71$ SCHOOL YEAR
(Estimated)

| Size of <br> Enrol Iment | Mean Frequency <br> of Innovat Ions <br> Per DlstrIct | Mean Frequency <br> of Innovations <br> Per 80,000 PupIIs |
| :---: | :---: | :---: |
| Under 300 | 5.67 | 3024.0 |
| $300-2,499$ |  |  |
| $2,500-4,999$ | 7.67 | 438.3 |
| $5,000-9,999$ | 8.54 | 182.2 |
| $10,000-24,999$ | 9.53 | 11.09 |
| $25,000-79,999$ | 12.80 | 13.22 |
| 80,000 and over | 19.5 |  |

amount of innovative effort per pupil is dramatically and inversely related to size. Of course, both figures are misleading because a single district-wide innovation where there are 100,000 pupils can hardly be equated with one where there are only 100 pupils. Nor is it reasonable to suppose that respondents in the very largest distrlcts were as easily able to enumerate all innovations going on throughout the distric as those $\ln$ small districts.

Among regions of the U.S., New England rated as most innovative with an average of 12 innovations per district while the Rocky Mountain States ranked lowest with an average of 7.5 innovations.

## b. What Types of Innovat Ion Were Most Popular?

"Individuallzed instruction and team teaching" was the innovation type cited most frequently as the "most signlficant" district innovation of 197071. A summary of all innovation types for all reporting distrlcts is presented In Table 1.5.

TABLE 1.5*
TYPES OF U.S. SCHOOL DISTRICT INNOVATION IN THE 1970-7I SCHOOL YEAR

| Innovation Category | Percent Chosen as "Showcase" Innovation (\% of 346 ) | ```Percent of Total Innovation Effort (% of 3185)``` | Mean Number Per District |
| :---: | :---: | :---: | :---: |
| Individualized Instruction and Team Teáching | 29\% | 16\% | 1.5 |
| Administratlve Innovations (includes RED, Budget, School-Communlty Relations, Staffing and Staff Trainling | 21\% | 28\% | 2.6 |
| Programmatle Approaches to Instruction (includes special programs for special groups, disadvantaged, tutoring, aides, paraprofessionals) | 19\% | 12\% | 1.1 |
| Curriculum Change | 16\% | $21 \%$ | 2.0 |
| Organizatlonal Innovations (includes grade levels, scheduling, attendance units, alternative schools) | 12\% | 8\% | 0.7 |
| Instructional Technology and Facilities | 5\% | 15\% | 1.4 |

:Throughout this summary data will be reported in combined totals for all responding districts unless otherwise indicated. In subsequent chapters analysis wlll be subdivided into "representative districts" each representing 80,000 pupils in the probability sample and "very large distrlcts," l.e., those over 80,000 and hence above the size of the sampling unit.

The first column of Table 1.5 represents responses only to the first question in the survey, l.e., "the most signlficant Innovation that has been tried out in your district in the last year." We will generally refer to this as the "Showcase Innovation." The second column represents all innovations reported both on the first question and on the subsequent open-ended "inventory" question. It is evident that these flgures for total innovation effort follow a somewhat different pattern. Instructional technology, curriculum change and administrative innovation are considerably more common in the over-all tabulations than they are in the "showcase" category whlle individualization and organlzational innovation are less common. Nevertheless, it is also clear from the last column that all these innovation types occur with high frequency throughout our sample. On the average at least one innovation in each category was cited for each school district in the country with the sole exception of "organizational innovation."

We feel that the focus on complex and multi-facetted changes such as individualization is a highly significant fact and suggests the need for a multitutde of outside expert and technical resources, community support, financial investment, lnternal communication and willingness to take rlsks to bring about desired Improvements.

In view of these findings it may be interesting to look at the frequencles of mention of a few very specific types of Innovation which represent some of these supports and resources, including all categories of new technology with more than 20 mentions.

TABLE 1.6
TECHNICAL AND SOCIAL SUPPORT INNOVATIOAS

| Innovation | Total Mentions | \% of Sample (N=353) |
| :--- | :---: | :---: |
| Human relations programs | 153 | $43 \%$ |
| In-service training | 145 | $41 \%$ |
| Planning, research, and evaluation | 141 | $40 \%$ |
| Media centers | 107 | $32 \%$ |
| Aides and paraprofessionals | 107 | $32 \%$ |
| Video tape, T.V. | 102 | $29 \%$ |
| Computer and data processing | 76 | $22 \%$ |
| Audio tape, tape recorders | 27 | $8 \%$ |
| Teaching machines | 22 | $6 \%$ |

Among curriculum content areas, where mentloned, there was a heavy emphasis on basic reading and math, Indlcating perhaps that the 3 r's are still allve and well in U.S. education.

Types of innovatlon did not differ signiflcantly from region to reglon, nor did they differ by enrollment slze of the district nor according to average per pupil expenditure.

## c. For Whom Are Innovations Intended?

There is a strong tendency for "showcase" Innovations to be directed to the elementary level, with considerably less emphasis on senlor high school and very little attention pald to middle or funior high school years. When all innovations included in the inventory are taken into account this pattern is somewhat less pronounced but still evident. Individualized Instruction and team teaching are almost always directed at elementary grades, whereas curriculum changes and instructional facilitles were clted usually in connection with senior high school. Very few innovations, usually administrative, covered all grades.

For only $24 \%$ of the 346 showcase innovations were specific target groups other than grades identlfled. Almost all of these were disadvantaged, handicapped or low performing students. Speclal programs for the gifted were cited in only two cases.

## d. What Were the Consequences of the Innovat Ion?

To an overwhelming degree, positive consequences were cited for the showcase innovation although directions on the questionnaire specifically invlted mention of unsuccessful or rejected innovatlons. Over all, 83\% of consequences were reported as positive, $3 \%$ negative and $14 \%$ mixed! Consequences were reported most often for students ( $76 \%$ of cases), less of ten for teachers (52\%), and much less often for administrators (16\%), community (16\%) and parents (13\%).

Consequences for students, when cited, were particularly positive ( $94 \%+$ ), somewhat less so for teachers ( $82 \%+$ ), and even less so for arministrators $(72 \%+)$. Consequences were also rated as somewhat less favorable by the very largest districts $(68 \%+$ for those with 80,000 enrollment or greater contrasted to $85 \%$ + for all other size categories combined).

Among specific consequences for students, attitudes toward self and school were cited most ( 54 times) followed by scholastlc performance ( 51 times).
"Individuallzed instruction and team teaching," while being the most popular 2070-71 innovation type, was also the type with more mixed consequences than others. Superintendents were also most guarded in recommending innovations of thls type for adoption by other districts.

Since our question on consequences was entirely open-ended, it does not yield either quantitative or adequately comparative data to show either which innovatlons or which districts derived the most benefits or suffered the severest costs.

## 2. THE PROCESS

The principal objective of this survey was to obtain an emplrlcal understanding of typlcal prooesses of Innovation at the local level in U.S. public educaton. To this end, both closed- and open-ended quest lons were esked concerning partlcipation, resources utllized, procedures followed, and barrlers encountered. We also sought to determine the Influence of varlous contextual and sltuatlonal varlables on over-all innovativeness. All these findings are presented in detall In Section 11 of this volume, including Chapters Six through ten.

## a. Particlpation in the Innovation.

Data on persons who partlclpated or played key roles in the innovation process idere derlved from the open-ended questlons on page 1 of the instrument. They are thus spontaneous mentlons and probably underestimate those actually participating or Involved in some way. Nevertheless a strong pattern emerges. Teachers are by far the highest participants, being mentioned in $66 \%$ of all showcase Innovations. Assistant superintendents were reported as next most Involved, with mentlons in $56 \%$ of cases. Following in descending order were princlpals (47\%), staff unspeclfied (46\%), superintendents (39\%), supervisors and specialists (29\%), administrators unspecifled (27\%), communlty (26\%), school boards (23\%), students (22\%), parents (19\%), counselors and psychologists (12\%), and teacher aldes (11\%). All other categories were mentloned in less than $10 \%$ of cases.

We felt that it was particularly noteworthy that outside resource persons representing varlous types of expertise were rarely mentloned spontaneously. University personnel were mentioned $1 \mathrm{n} 8 \%$ of cases, state education agencles in $7 \%$. Private companles and regional laboratorles had $2 \%$ and $1 \%$ mentlons respectively.

This over-all pattern of participation was consistent across enrollment size categorles with a few exceptions. In the 31 largest districts, the teachers' role was somewhat less salient (55\%) while the participation of the assistant superin:tendent was most evident ( $9 \%$ ). Communlty participation was also much more evident In the largest districts ( $48 \% \mathrm{vs} .24 \%$ ) and was very often seeh as a key factor in innovation success ( $39 \% \mathrm{vs}$. 16\%).

In response to the speciflc question 'What seemed to te the key factor (s) in maklng the adoption and acceptance of this innovation successful or unsuccessfulf" most respondents named the participation of varlous persons and groups. While these "key factor" responses correspond to flgures for over-all particlpation, there are some interestling differences. Teachers are agaln top ilsted with $38 \%$ ( 131 mentlons over the 346 showcase Innovatlons) followed by staff unspecified ( $28 \%$ ). Next in line, however, are communlty and students with 18\% and $14 \%$ mentlons respectively. Princlpals and other administrators are far less likely to be mentioned as "key factors" than merely as participants.

Once again, outside resource groups get very little mentlon as key factors. University participation recelves only six mentions as "key factors" (under 28) whlle state agencies get only five (a little over $i \%$ ). Regional labs get only one mention as a key factor (less than $1 / 2$ of $1 \%$ ) and private companies get none. We feel that these findings are among the most significant to emerge from our survey, for whlle they probably underestimate actual utllization of outside resources, they suggest something about the very low visibility of the external resource universe as far as the overwhelming majority of U.S. school districts are concerned.
b. Resource Utillzation in the Innovation

The last page of the form contalned a llst of resources which might be used in promoting, adopting, or implementing innovations; the list was divided Into two halves, one representing "Internal resources" and one representing "external," and were labelled as such. Respondents were asked first to Indlcate over-all extent of use in the school district and then to indicate whether or not the resource was used in the showcase innovation specifically. Responses generally confirm the pattern emerging from the particlpation data summarized above. Teacher discusslons and teacher in-service training were rated as used "frequently" or "very frequently" by almost all respondents and were mentioned as used in the showcase innovation $48 \%$ and $44 \%$ of cases respective$1 y$.

Once again internal resources generally recelved more usage than external resources, although olfferences were less pronounced than in the spontaneousiy reported data, conflrming the "sallence" hypothesls proposed above.

Because of the nature of this project, several of the "external resource" items referred to specific programs of the federal government. We found that $36 \%$ of districts in the representative sample used at least one federal resource, usually, we Inferred, as a source of financial support (e.g., Title $\mid$ and Title lli of ESEA cited for $18 \%$ and $13 \%$ of showcase innovatlons respectively). Federal information resources represented by ERIC and the Reglonal Laboratories were far less utillzed. ERIC was used by $9 \%$ of the 315 representative districts while the REL's were used by $5 \%$. Among the very large districts, however, reported use was higher ( $23 \%$ for ERIC, $19 \%$ for REL's).
c. Procedures Emphasized and Philosophy of Change

Respondents were asked to rate the showcase innovation process in terms of 2) innovation "procedures," in response to the question "How much emphas is was given?" Each item was to be checked on a five polnt scale from "extreme" (=5) to "none" ( $\quad 1$ ). The highest rated items in order of mean ratings were "persistence by those who advocate the innovation " (4.17), "systematic planning" (4.12), "providing a climate conduclve to sharing ideas (4.11), "selecting a competent staff to Inplement change" (4.04), "creating awareness of the need for change" (4.03), "adequate definltion of objectlves" (4.00), and "adequate diagnosis of the real educationai need ${ }^{\prime \prime}$ (3.98). Among the 31 very largest districts the pattern was generally very similar but "planning" (4.30), "competent staff" (4.30), "definltion of objectives" (4.27) and "dlagnosis of needs" (4.23) were all rated higher.

At the low end of the ratings, distinctly below the 19 other items, were "taking advantage of crisis situatlons" (2.59), and "partlcipation by key community 'eaders' (2.84). Very large districts again believed that community leader particlpation was more important, however (3.13).

Each of these 21 items had been selected intentionally by the principal investlgator to represent major tenets of differing change strategias advocated in the literature (as summarized in Havelock, 1969, Chapter 11). It was predicted that various superintendents would show patterns of response corresponding to three major "perspectives" on change Identifled by Havelock as "problem solving," "social interaction," and "R, DED."

Through a principle component factor analysis subjected to a varimax rotation, emplrical clusters of items emerged corresponding reasonably closely to predictions. The strongest such factor, labelled as "participative problem solving" was clearly represented by four Items:

Maximizing chances of participation by many groups.
Finding shared values as a basis for working. Providing a climate conducive to sharing ideas. stressing self-help by the users of the innovation.

A second factor was clearly related to the RD\&D philosophy. Key items In this cluster were:

Systematic evaluation.
Solid research base.
Systematic planning. Adequate definition of objectives.

A third factor, somewhat related to the predicted "social interaction" perspective, we preferred to label "strategic manipulation." it centered on the item "participation by key community leaders" but also included "takir.g advantage of crisis situations" and "involvement of informal leaders of opinion inside the schools." This factor was also somewhat related to the susplcion that outside resource groups were unwilling to hel'p revise or adapt innovations.

A fourth procedure factor, not predicted, appeared to represent a kind of new polltics or "greening of America" view of change which we labelled "open advocacy and human revolution." Items in this cluster were as follows:

Confrontation of differences.
Resolution of interpersonal conflicts.
Creating awareness of the need for change.
Creating an awareness of aiternative solutions.
Providing a climate conducive to risk-taking.
On the whole the findings confirmed predictions and at the same time added something to our understanding of different change philosophies.

We also analyzed spontaneous responses to the open-ended "key factor" question discussed earlier to see if different types of procedures than those in our llst revealed themselves. The coded responses showed up heavily in four categories as indicated in Table 1.7.

$$
\text { (Insert Table } 1.7 \text { here) }
$$

Our analysis of other procedures mentioned indicated that the 21 item list was, indeed, reasonably comprehensive. The list was also rated as "prtentially useful" as a procedural checklist for managers of innovation by $9^{2}$ : fi all respondents.

TABLE 1.7
KEY PROCEDURAL fACTORS IN SUCCESS OF YHE SHOWCASE INNOVATION

|  | Percent of <br> Representative <br> Distrlcts $(N=315)$ | Percent of Very <br> Large $(580,000)$ <br> Districts $(N=3 i)$ |
| :--- | :---: | :---: |
| Procedure Codes | $25 \%$ | $31 \%$ |
| Plarticipation. | $16 \%$ | $39 \%$ |
| Staff Training |  |  |
| Cooperation | $13 \%$ | $16 \%$ |

- 


## d. Perceived Barriers to Innovation

Another ilst of 18 items illustrating typical "barriers" to innovation was included in the questionnaire; respondents were asked to rate the importance of each for the showcase innovation ( $5 \times{ }^{\prime \prime}$ extreme importance'; $1={ }^{\prime \prime}$ none'1). Most of these items were selected to represent major empirical research findings from past studies of the diffusion of innovations. in the main, however, the items failed to yield dramatic results; perhaps because the showcase innovation was almost always rated a success, respondents generally checked "slight" or "none" for each of the barriers llsted and the range of response was narrow. The highest rated barrier item was "confusion among staff about the purpose of the innovation" with a mean rating of 2.59 (i.e., aboul midway between "slight" and "moderate"). Almost as strong were the items "unwillingness of teachers and other school personnel to change or listen to new ideas" (2.57), "shortage of funds allocated for the innovation" (2.57), and "staff's lack of precise information about the innovation' (2.53).

As with the procedures, we attempted to understand the pattern of response through factor analysis, but with the barrier items the results were less satisfying and more difficult to interpret, perhaps because of the lower item variances. One very strong general factor emerged which we labelled 'general confusion" because the above mentioned "confusion" and "lack of precise information' items were most strongly associated with it. In addition, however, most other "barrier" items also had substantlal association with this factor.

One other easily interpretable "barrier" factor which didemerge independent of the "general confusion factor" was labelled "capacity." The highest as sociated items to this cluster were "shortage of funds allocated for the innovation," "starting out with adequate financial resources to do the job," and "shortage of qualified personnel." Funding aspects were rarely mentioned spontaneously as. key factors in innovation success ( $6 \%$ of cases).

It was also of interest that the lowest rated barrlers were "unwilingness of resource groups to help us revise or adapt" (1.73), and "lack of contact with other school systems who had considered the same innovation' (1.94), both related to external resource linkage. Thus, it appears that while external resources find little use and very low saliency among school district $\ln$ novators, there is also no evidence of strong barilers to receiving such help.

Although respondents' ratings of all barriers were lower than expected, we discovered that this set of items, llke the procedure item set, reasonably well covered the barrier topics suggested in responses to open-ended questions. The list was likewise very strongly endorsed as a useful checkllst.

## e. The Correlates of Innovativeness

From the responses to the open-ended innovation "inventory" question (Question \#5 on the form), we were able to construct an "innovativeness" index to compare highly innovative and less highly innovative districts on a number of dlmensions. Using Pearson product moment correlations, relationshlps were computed between innovativeness score and 82 other variables lncluding resource utilization, use of media, school district pollcles of varlous sorts, unrest, financing, and all the procedure and barier items mentloned above. While flndings are to be interpreted with extreme caution, several are quite interesting, at least as hypothesis generators.

Kighest correlation was with distrlct enrollment size (r = .27), but, as we noted at the beginning of thls summary, such a statistlc is difficult to credit with much meaning since, in fact, smaller districts may provide more - innovative effort on a per-pupll basis than larger ones.
in addition to size we found that 37 other variabies had low but statistically significant ( $p<.05$ ) relationships to the innovativeness score. Suspecting that many of these were primarliy a function of district size, we also controlled on the size varlable. The resulting set of partial correlations did markedly reduce the number of slgnificant relationships but many remained.

Second in importance to district size and quite independent of it is estimated per pupil expenditure of the district. Other correlations which retain significance after size is controlled are use of media specialists and centers, use of in-service training, use of lay advisory groups, and the frequency of teachers' strikes.

Student and community protests are also related to high innovativeness but only when size is not controlled. Other correlations apparently dependent on size are use of television and newspapers to explain innovations.

No relationship was found, in spite of expectations, between innovativeness and percent of graduates going on to four year colleges, pupil-teacher ratio and rated difficulty in obtaining finconcing for new or existing programs.

Several items from our "procedures" llst were also significantly correlated with innovativeness. Strongest among these were "resolution of interpersonal conflicts" (r a . 21, o <.001), "creatlnB awareness of the need for change" (r = .21, p (.001) and "maxinizing chances of parflclpatlon by many groups" ( $r=.17$, p (.005). None of these items was greatly affected by controlling on size. Generally the items whlch were positively correlated with innovativeness belonged to the two factor clusters "partlcipative problem solving" and "open advocacy-human revolution."

There was essentially a zero relationship between the RDED items and innovativeness. In fact, emphasls on evaluation seemed to have a sllght negative relationship, suggesting, perhaps, that too much emphasis on evaluation dampens the innovative spirlt. It may, of course, also Dortend a greater concern for innovation quality than quantlity.

We are very concerned not to exaggerate the Importance of these correlations. The measure of "innovativeness" in particular is flawed as a criterion measure because it rewards shcer numbers and verbosity withour regard to either quality or genuine numerical equivalence of measurement untts. Nevertheless, it does seem desirable to continue searching for and trylng out various sorts of outcome or criterlon measures to help us evaluate the relative importance nf procedures, barriers, resources, and all other purportedly "important" variables $\mathrm{in}^{\prime}$ the innovation process.

## D. IMPLICATIONS

It is not easy and perhaps not even appropriate for a researcher by himself to derive implications from his work for either policy makers or practitioners. Probably the easiest and most obvious comment might be "more research is needed" and indeed it is. However, such a statement is likely to be viewed in today's educatlonal environment as both evasive and self-serving. The researcher and the sponsor have an obligation to seek out implications for policy and practice as well as for further research. Such implications are preferably to be derived as a joint endeavor and not as a solo exercise by the researcher, but perhaps what follows may provide some dialogue about what these many survey results "really" mean.

1. innovativeness, per se, is not the problem

Our fladings suggest a continuous ferment of change in almast all U.S. school districts. On the face of it, many of these changes are profound, not trivial. They are complicated, involve many participants, require many types of skills, and presumably all sorts of expert resources. The ubiquitousness of innovation was a finding we did not expect but one which seems compelling from our data. It seems to run counter to the idea that many have of the U.S. educational "establishment" as frozen in its ways, indifferent to change and unresponsive to the needs of students. If such Imagery is as pervasive as 1 feel it is, then somebody should be doing something to con-tradict it because (a) it isn't so, and (b) it does injury to professional educators by demoralizing and lowering public esteem and confidence.
2. We NEED TO FOCUS ON QUAL.ity WITHOUT REOUCING QUANTITY.

There appear to be enough forces at work on U.S. education to act as a stimulus for change, but a will to act is not enough if one knows not how to act wisely. The lack of attention to external expert resources and to the experience of other school districts suggests that each district is out to reinvent many wheels. The consequences of a go-it-alone strategy of innovation are sometimes good in terms of enthusiasm and intensity of local. involvement, but the costs are overwhelming. Mistakes are made over and over again; large sums are spent in creating essentially parallel and duplicate materials, and certain cost-saving and benefit-increasing optlons are not considered because no one is aware that they exist.

Careful evaluation, by itself, will not do much to improve quality and may discourage innovativeness. It is more important that districts bring in and adapt innovations which have been carefully evaluated in other settings than that they expend limited internal resources on exhaustive evaluations.
3. THERE is a tremendoous fund of experience with innovation going to waste.:

Every year there are at least 20,000 and probably more like 100,000 innovation efforts begun in U.S. school districts. Many will be successful; many will also fail and be terminated; but the experience gained in one place in 1972 should be made available to someone contemplating a similar activity in another place in 1974. True, every district is unique in some respects but in most respects most districts are not unique; they have direct counterparts in other states and regions and even in their immediate vicinity, and these counterparts wlll be trying out similar or identical innovations. Up to now we have had no satisfactory way of codifying and banking such experiences so that they can be drawn upon by others, and no retrieval system exists to make such banks highly utilized.

Yet the experience of local innovation effort in the U.S. is so vast that it dwarfs even the largest federal programs (e.g., ESEA, Title (ll).
4. There is a crying neeo for improved extension services to inform ano ASSIST LOCAL INNOVATORS.

The existing information networks external to schools seem to have very low saliency for innovation managers within school systems, yet there is no apparent reluctance to bend an ear to outsiders or to receive their help. The prime barriers percelved by innovators center around informational issues, e.g. "confusion about the purpose of the innovation" and "lack of precise information ahout the innovation." The implication is that schools are ready and waiting for effective extension services (perhaps analagous to the Cooperative Extension Service in Agriculture but probably with a good deal less resistance to cope with).
5. LOCAL INNOVATORS CAN MAKE VERY GOOD USE OF SKILLS IN PROBLEM-SOLVING ANO COMMUNICATING
"Participation" is the nost important key to success in innovation, according to our respondents; thls means participation by teachers, communtty, and students. Yet providing effectively for such participation in a genuine collaborative sense requires great skill in human relations and group management. We found human relations training programs of one sort or another mentioned in a little less than half the districts, but the need for quallty programs in this area is apparent. Respondents also indlcated that they would find guidance on innovation process helpful in thelr own future planning and action.
6. EXPERT ADVICE ON INDIVIOUALIZEO INSTRUCTION ANO TEAM TEACHING WAS SORELY NEEOED IN 1970-71 ANO PROBABLY STILL IS.

Individualizing instruction is probably one of the most complex and difficult innovation assignments educators have ever put to themselves. Nevertheless, this was the most pnoular innovation area in 1970-71. Because it is a difficult and complex innovation area and because various federally supported RED projects have been undertaken in this area, It would appear to be an espectally promising target topic for mass dissemination efforts land an appropriate vehicle for introducing outside information resources to locals).

## 7. NATIONAL INNOVATION MONITORING IS FEASIBLE ANO OESIRABLE.

The federal government must be able to louk at the forest as well as the trees, and indeed there is a forest here where some have thought there might be a desert. With a fair degree of persistence we were eventually able to get $71 \%$ of a very busy population of educators to respond at length to a malled questionnaire survey. The cost of a first year effort was well under $\$ 100,000$ and could be expected to decrease over time as sampling procedures, forms, data processing, and reporting became routinized.

However, some major deficiencies of the first year study can and should be remedied. Most important of the problems still facing us is the lack of a solid dependent variable which makes sense to researchers, practitioners, and policy makers as a manifest "benefit". An improved measure of "innovativeness" is one aspect of this.

Future monitoring efforts should also make more satisfactory probes for negative cases. There was an apparent reluctance on the part of our respondents to own up to negative consequences and innovations that ran awry, We tried to get reports specifically on "unsuccessful"or "problematic" innovations in our pllot work but drew a blank. A creative way should be found to surmount this problem.

Future studies should also begin to probe the infrastructure of the educational change network between the local distrlct and the national government, including activities by unlversities, state agencies, and sundiry private sector groups. Thelr near-lnvislbllity in this study remains a mystery to us.

Finally, studles should begln to probe in more depth organizationally and temporally within the district. Principals, teachers and other key figures withln the district should be sampled using equivalent or identical items for comparison. A start in this direction has been made via the exploratory case studies which constitute the second volume of this report.

## SECTION I:

innovation content and consequences

## QHAPTER TWO: THE 1971 SHOUTASE INNOVATIOH

In a survey which attempts to compare the relative innovativeness of school districts around the country and to analyze the types of changes introduced, innovations of any form and content must be considered. However, since innovations may vary greatly in their comprehensiveness, it was necessary to limit our compartson and analysis to those which could be considered significant in terms of some pre-defined standard. We thus asked our sample of superintendents to include in their responses on iy those innovations which met at least one of the following three crlteria;
a. a substantial reorientation on the part of staff,
b. a real location of resources,
c. adoption of new practices, programs or technology.

In order to further assure a valid comparison among school districts it was necessary to limit our survey to a particular span of time. Since the survey began in the fall of 1971, the 1970-71 school year seemed the most appropriate time period to sample. We reasoned that innovations' int roduced within this time frame would still be fresh in the minds of respondents and, in addition, that at least some preliminary assessments of the impact of the change efforts would already have been made.

## A. SHOWCASE INNOVATION CATEGORIES

While we were interested in determining the total innovative effort of each school district within the time frame, we were also interested in making a detailed analysis of one partigular innovation which the superintendent saw as most significant:-We-hgle ermed this the "showcase innovation." Respondents were asked to describe the lingloation briefly in two or three sentences, indicating what it was, what $h$ involved in staff and resources, and who it was to benefit.* It was not necessary for the reported innovation to have been auccessfut provided that the specified "importance" criteria were met.

Since the question was open-ended, the coding schema for responses was developed after the fact in such a manner as to be both inclusive and descriptive. The innovations reported fell into five broad categories which we have termed (1) "individualized instruction and team teaching", "administrative innovations", (3) "curriculum revision and instructional facilities", (4) "programmatic approaches to instruction", and (S) "organizational innovations". The innovations in each of these categories are described in detail below.

[^1]Of our sample of 322 school districts with less than 80,000 students, 315 superintendents described a showcase Innovation, while seven speciffed that no innovation meeting our criteria had been introduced in the 1970-71 school year. All of the 31 superintendents of school districts with 80,000 or more students reported a showcase innovation.

Districts serving 80,000 students or less will subsequently be identified as "representative" districts because they comprise a national sample carefully constructed to represent all regions and size categories. Each data case in the sample represents 80,000 pupils, regardless of the actual size of the district. Hence, there is approximately one case for every eight districts of 10,000 pupil enrollment, one case for every two districts of 40,000 enrollment, and so forth. if we had achieved a $100 \%$ response rate, we could have said with some assurance that these 322 districts are truly "representative" of all United States school districrs up to 80,000; we can say, however, that they are truly representative of the $70 \%$ of school districts who respond to surveys! Districts serving 80,000 or moie students wlll be referred to as the "very large" districts. They are treated separately because all such districts were sent questionnaires and each is therefore self-representing.

Table 2.1 summarizes the numbers of showcase innovations which have been classified into the five broad categories, with totals reported separately for representative and for very large school districts. Percentages given are based on the numbers of showcase innovations actually reported in each of the two size categories.

## (Insert Table 2.1 here)

The largest number of innovations (29\%) reported by school districts of less than 80,000 students involved Individualized instruction and/or team teaching. These two types of innovations were frequently coupled and were often part of a broader innovative effort involving, an open-space classroom or school and the introduction of a multi-age, ungraded or continuous progress concept as well. A relatively smaller number of innovations of this type (16\%) were adopted by school districts of 80,000 or more students.

In very large school districts the major innovative effort was in the administrative area $(35 \%)$. Included in this category were those innovations which concerned administrative structure and policy, system-wide planning and budgeting procedures, staff and plant-related issues, and student issues which were not directly related to instruction. In representative school districts, $21 \%$ of showcase innovations were of this general type.

Representative school districts reported much more innovative activity than very large districts in the area of curriculdm revision and the introduction of new technology and facillties related to instruction ( $20 \%$ for representative districts as opposed to only $3 \%$ for very large districts).

TABLE 2.1
SHOWCASE INNOVATION DESCRIPTION CATEGORIES

| Innovation Category | $\begin{aligned} & \text { Districts } \\ & <80,000 \text { * } \\ & \text { Freq. \% } \end{aligned}$ | $\begin{aligned} & \text { OIst } \\ & \sum_{\text {Freq }}^{2} \end{aligned}$ | $\begin{aligned} & \mathrm{icts} \\ & , 000^{*} \end{aligned}$ $\%$ |
| :---: | :---: | :---: | :---: |
| 1. Individuallzed instruction and Team Teaching | (90) 29 | ( 5) |  |
| 2. Administrative Innovations | (67) 21 | (11) | 35 |
| 3. Programatic Approaches to Instruction | (59) 19 | ( 6) |  |
| 4. Curriculum Change and instructional Facilltes | (62) 20 | ( 1) | 3 |
| 5. Organizational Innovations | (37) 12 | (8) |  |
| Total | (315) 100 \% | (31) | 100 \% |
| No Innovation or No information | ( 7) |  |  |
| Grand Total | (322) | (31) |  |
| * Throughout most of this report data are presented for two different system size groups because of the separate sampling procedures used. Data for districts of less than 80,000 pupils are derlved from a statistically representative sample, whereas findings for the 80,000 and over category represent unweighted averages of all large districts in the population. <br> ** Throughout this report the percentages in each column may not equal the total for that column due to rounding. |  |  |  |
|  |  |  |  |

Representative and very large school districts placed an equal emphasis on new programmat c approaches to instruction, with 19\% for both groups. Innovations in this category included new programs for special groups of students, work-study programs, the introduction of teacher aides, tutors and paraprofessionals as assistants to classroom teachers, and a few specialized programs introduced by students or teachers.

Finally, $12 \%$ of innovations in representative districts and $26 \%$ of innovations in very large districts were what we have termed "organizational." Innovations in this category are concerned with such issues as how the school is structured in terms of grade and attendance units, how the school year and school day are organized, and the operation of alternative schools or model schools or grades in the district.

We will look at each of the five categorles of innovation types in more detail below.

## I. INOIVIDUALIZED INSTRUCTION AND TEAM TEACHING

The scope of innovations In the category of individualized instruction and team teaching varied conslderably from one district to another. Sometimes the innovation was described simply as individuallzed instruction in the content of one course In one grade, but more often a more comprehensive innovat lon was reported whlch applied to all course materlal in several or all grades; this pattern tended to coincide wlth the introduction of a multi-age, ungraded or contlnuous progress concept, and, in turn, often implied the introduction of the open-space school. This comprehensive approach to Individualized instruction was frequently coupled with the initiation of team teaching or differentlated staffing. Since this broad array of Innovations were so often interrelated, we were unable to separate them into discrete cetegories, even though any one of them might be considered a significant change in itself.

Although there were proportionally fewer Innovations in thls category for very large districts than for representative school systems, the innovations were described in simflar terms. However, when we consider the implications of introducing open education into the elementary or middle schools of a district of over 80,000 students, we must recognize the massiveness of this effort.

Table 2.2 shows that, of the 90 innovations which representative school systems adopted in this category, 69 were general in nature, while 21 were limited to specific curriculum areas. Of the five cases of individualized instruction and team teaching reported by superintendents of very large school districts three were broad innovations which involved the total school curriculum while the other two were curriculum-specific.

TABLE 2.2
SHOWCASE INNOVATION DESCRIPTIONS
individual ized instruction ano team teaching

| Innovation | $\begin{aligned} & \text { Districts } \\ & <80,000 \\ & \text { Freq. } \end{aligned}$ | $\begin{aligned} & \text { Districts } \\ & \geq 80,000 \\ & \text { Freq. } \% * * \end{aligned}$ |
| :---: | :---: | :---: |
| Applles to all Curriculum Areas <br> Applies to Specific Curriculum Areas | (69) 22 <br> (21) 7 | $\begin{array}{ll} (3) & 10 \\ (2) & 6 \end{array}$ |
| Total <br> *Percentages are based on the 315 showcase in this size category. <br> **Percentages are based on the 31 showcase in this size category. | (90) 29 <br> ovations re <br> ovations re | (5) 16 by districts by districts |

In the 21 cases reported by representative schools in which the innovation applied to specific curriculum areas, reading and math were most commonly mentioned; in elght cases reading was the Innovative area, in four cases it was math, and $\ln$ an addltional three cases Individualized instruction and team teachlng were inltlated in both reading and math. The remaining six cases applied to language arts, spelling, sclence, government, homemakIng and chemistry. The curriculum areas mentloned, by superintendents of the two very large school systems in whlch curriculum-specific innovations were introduced were reading and math in the elementary schools of one district and social studies and Engllsh in the senior high schools of the other district.

It was frequently mentioned that the demands on the classroom teacher were increased both in terms of the time requlred for lesson preparat lon and in terms of the utllization of classroom time. In-service tralning programs were sometimes provided to introduce teachers to these new approaches, and frequentiy teacher aides were hired to reduce the workioads of the classroom teachers.

In a number of cases it was necessary to redesign existing plant faclifles or to plan new school buildings to accomodate the cpen school program. Thus for many districts a considerable flnanclal commitment was requlred for additional facillties as well as for staff and materlals.

The beneflts sought by the school distrlcts adopting Innovations in this category were summed up in a description provided by one superintendent: "Children will benefit from a better learning environment which revolves around the pooling of professlonal skllis, more instructional alternatives and greater individual attention'.

## 2. ADMINISTRATIVE INNOVATIONS

Innovations which school systems adopted In the administrative area have been grouped for descriptive purposes Into seven subgroups: a) research, development and budget, b) relations with community, parents and students, c) $s t a f f-r e l a t e d i s s u e s, ~ d) ~ a d m i n i s t r a t i v e ~ s t r u c t u r e, ~ e) ~ s t u d e n t-r e l a t e d ~$ issues, f) plant issues, and g) administrative philosophy change.

Table 2.3 lists the specific types of innovatlons placed in each of these subgroups, giving the percentages they represent of the total number of showcase innovations reported by shool systems in each of the two size categories.
(Insert Table 2.3 here)

## a. Research, Development and Budget

The most frequently cited types of innovations in the administrative area, both for representative school districts and for very large systems, were those which have been grouped together under "research, development and

TABLE 2.3
SHOWCASE INNOVATION DESCRIPTIONS
ADMINISTRATIVE INNOVATIONS

*Less than 0.5\%
budget" (8\% of Innovations In representative districts and $16 \%$ for very large systems). The largest number of innovations in this subgroup were those which had to do spectfically with planning, research and evaluation ( 14 cases, or $4 \%$ for representative districts; four cases, or $13 \%$ for very large districts). In these innovations a broad look was taken at the operation of the school system to establish objectlves and to develop new methods of achleving these objectives. In some cases the emphasis was on improving the learning opportunlties for children, while in other casas the innovation represented an attempt to institute a more business-like method of running the school. Needs and performance assessment studies were undertaken, divisions were set up to plan and evaluate federal and other instructional programs, and research into improving the instructlonal and learning environments were established. Three superintendents of representative schools specified their primary innovation to be the adoptlon of a planning, programming and budgeting system (PPBS). This was described by one superintendent as a system whlch would "benefit puplis by providing the schools and public with better evaluation information, improved decisionmaking, long range planning and a better sense of direction'. In very large schools two of the four innovations in this area were directed towards improvement of the educational program for students, while the other two were concerned with Increasing the effectiveness of staff, elther through leadership training or through training in new instructional approaches.

Also included ' $n$ the "research, development and budget" subgroup were those innovations which were concerned with curriculum development às an on-going process rather than as a reorganization of material within a spectfic course or curriculum area $; 2 \%$ for representative districts and $3 \%$ for very large districts). In the seven cases reported by superlntendents of representative schools we found that sometimes one or more individuals acted as curriculum coordinators to improve instruction through daily contacts with teachers, while in other cases a system-wide study of curriculum was undertaken

- involving the total school staff. The one curriculum development program reported by a very large district involved students as well as all members of the staff.

Three innovations in representative districts were directed at new approaches to funds dispersement. Two of these increased the flexibility with which financial resources might be allocated, by allowing teachers or principals increased discretion in the spending of specified funds. The third was a case in which a new superintendent allocaced a larger percentage of resources for new staff salaries in order to increase the teacher/student rat los in all classes. No innovations reported by very large school systems were concerned specifically with finance allocation.

Finally, performance contracting, which some educators and laymen have halled as the ultimate solution to the problém of assuring a dollar value for a dollar spent, has not yet materialized as a significant approach. Only one superintendent of a representative district reported this to be his system's showcase innovation, while no cases were reported by very large systems'.

## b. Relations with Community, Parents and Students

Table 2.3 shows that 7 of all showcase innovations adopted by representative districts affected relations with community, parents and students. The students received more attention than did the parents ot community in these districts: $3 \%$ of innovations were concerned with guldance, counseiing and diagnosis of students needs and problems. The tradtional functions of career counselling and guidance in selection ot courses represent only one aspect of these new programs. Some school systems employed, in addition, educational psychologists who were avallable to consult with students on any problem, and some districts were conce rned with early diagnosis of learning disabilities in order to provide treatment before any educational impairment might result. No very large districts reported showcase innovations in the area of guidance, counseling and diagnosis.
ïhree superlntendents (1\%) of representative districts and two superintendents of very large idstricts (6\%) reported that desegregation was the most significant innovation in their systems. We recognize that desegregation often involves administrative restructuring, a subgroup. which will be discussed beiow, but it was evident that, in terms of the issues to be solved in instituting such a change, those concerned with student, parent and community relations tended to be by far the most salient. Two of the three representative districts whlch implemented a desegregation plan instituted human relations programs, involving staff, community and students, to study the implicatlons of desegregation and to assist in its implementation. Both cases reported by very larse districts called for desegregation of several schools at the same time, and one of the superintendents stressed the importance of a bi-racial human relations team which was created to assist in the process.

Other human relations programs which aimed at achieving better understanding and communication among all groups, both inside and outside the school, accounted for another $1 \%$ of showcase innovations in representative schools. In addition, the communlty was the direct target of three public relations programs (1\%) which attempted to describe educational programs to the taxpayer. An effort was made to involve parents in their children's progress in another $1 \%$ of cases, by means of parent-teacher conferences. Very large districts reported no showcase innovations directed at parents or the community.

## c. St.aff-Related issues

Table 2.3 shows that new in-service training programs and workshops for teachers and other staff acco'.,1ted for $3 \%$ of showcase innovations both in representative and in very large school districts. The one case reported by a very large system was an ambitious program which called for intensive training of teachers from inner city schools. Groups of teachers were trained at a "professional development center", located in an inner city school, for a period of eight weeks during the school term. Previously trained substitute O eachers took over the classes during the training period.

Sone of the staff training programs reported in representative districts were instituted as afirst step In the initiation of a broader change program; one superintendent specified that the staff $\ln$ his distrlct were being trained in preparation for "a venture in continuous progress education" which was to begin in the fall of 1972. Some training programs were for the purpose of acquainting teachers with new media and methods, while others had the objective of helping teachers to deve lop new understanding and skills in their handling of students.

One superintendent of a representative district described the formation of a "teacher corps" which involved the training of 35 interns in three schools under the supervision of elght team leaders.

## d. Administrative Structure

Three innovations (1\%) were reported by representative districts in the subgroup of changes in administrative structure; these involved alterations of staff positions in terms of function, salary and reporting relationships. One innovation (3\%) which was concerned with changes in staff structure was reported by a very iarge system; this was a renovation of the function and structure of supervisory services in order to increase teacher-supervisor contact, and it involved the hiring of additional supervisory staff.

Two cases of decentralization were reported as showcase innovations in eacin of the slze categories of school systems ( $1 \%$ for representative districts and $6 \%$ for very large systems). The purpose of this innovation, which involved a shift from a central administration to locally based administrative districts, was to increase local autonomy and to enable the schools to be more responsive to local needs. In both of the representative districts and in one very large district community advisory committees representing the affected communities were involved in the planning and implementation of the innovation.
e. Student-Reiated Issues

Only one innovation was ciassified as being related to student issues outside the area of instructional concerns. This innovation in a representative district was described as a "get-tough policy" in enforcing student rules and in appiying disciplinary action.

## f. Plant issues

Again, only one innovation fell in the subgroup of plant-related issues. This innovation, also in a representative district, was described as an attempt to provide imedlaté school service to all buildings.

## 9. Administrative Philosophy Change

The final innovation in the administrative category was a total systen effort in a iepresentative district to develop a more humanistlc approach to education. This innovation called for a "massive turnabout" both in philosophy and in practices.

## 3. PROGRAMMATIC APPROACHES TO INSTRUCTION

As illustrated in Table 2.4, new programmatic approaches to instruction constituted $19 \%$ of reported showcase innovations both in representative districts and $1 n$ very large districts. A few of these prograns were intended to benefit all children, but a large majority were directed at special groups of students.

TABLE 2.4
SHOWCASE INNOVATION DESCRIPTIONS PROGRAMMATIC APPROACHES TO INSTRUCTION

| Innovation | $\begin{aligned} & \text { Districts } \\ & <80,000 \\ & \text { Freq. } \end{aligned}$ |  | $\begin{aligned} & \text { Districts } \\ & \geq 80,000 \\ & \text { Freq. } \% \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| a. Special Instructional Programs |  |  |  |  |
| Remedial | (14) | 4 | ( 2) | 6. |
| Learning Disabilities | ( 7) | 2 | - | - |
| Pre-School | (6) | 2 | ( 2) | 6 |
| Compensatory | ( 6) | 2 | - | - |
| Gifted | ( 2) | 1 | - | - |
| b. Teacher Aides, Tutors \& Paraprofessionals |  |  |  |  |
| Cross-Age Helping | (6) | 2 | - | - |
| Paraprofessionals | ( 2) | 1 | $\}$ (1) |  |
| Trained Aides | ( 2) | 1 |  |  |
| c. Work-Study \& Occupational Preparation | ( 8) | 3 | ( 1) | 3 |
| d. Other (e.g. Student and Teacher Initiated Approaches) | ( 6) | 2 | - | - |
| Total | (59) | 19 | ( 6) | 19 |

## a. Special Instructional Programs

Students in 35 special instructional programs (11\%) In representative districts ranged from the gifted to the emotionally disturbed, but the largest number of programs ( 14 cases) were concerned with remedial education, principally in reading, in the primary grades. The second largest group of programs ( 7 cases) were provided for chlldren with a variety of learning disabilities which could not be solved through regular classroom instruction. six more programs were compensatory in nature and were intended to provide additional learning experiences for underachlevers, potential dropouts and "educationally disadvantaged" chlldren. There were also six new programs initiated for pre-school children. These programs, sometimes directed at the disadvantaged child, were generally intended to prepare the child for primary education and to help him or her to overcome any existing soclal or mental handicap. Parents were sometimes urged to participate in these carly childhood educational experiences. A number of the programs in this group, particularly those aimed at benefittlng the disadvantaged child, were federally funded. Finally, two representative school districts initlated programs for gifted students, both providing an opportunity for independent study in a field of the student's choosing.

Two of the four special instructional programs adopted by very large school systems were remedial reading programs, while the other two were directed at pre-school children. One pre-school program was established to benefit emotionally disturbed children and children with potential learning disabilities, while the other program was designed to "provlde systematic cognitive development for the pre-school child."

## b. Teacher Aides, Tutors and Paraprofessionals

Table 2.4 also shows some utilization of teacher aides, tutors and paraprofessionals ( $3 \%$ for both representative and very large districts) to alleviate the workload of the classroom teacher and to provide some individual attention to those students who required additional instruction. Out of the ten innovations in this area reported by representative districts, six were cases of cross-age helping in which older children acted as aides in lower grades or tutored children with special needs under the supervision of the classroom teacher. Two school systems added non-professional personnel to their staff to enrich the learning environment, and in the final two representative school districts in this group aides with specialized training were employed to assist the teacher by handing students with special learning problems.

None of the very large school districts in our sample reported the use of cross-age helpers, but one school system developed a "Carecrs Opportunities Program' in which paraprofessionals worked as teacher aides while at the same time earning college credit.

## c. Work-Study and Occupational Preparation

Programs providing occupational preparation for students in grades 8-12 represented $3 \%$ of showcase innovations for both representative and very large school systems. Innovations in this group included more than a simple orientation to possible career choices. Some of these involved in-school instruction by practitioners of trades and professions in the community; others took the students out into the community during school hours for on-the-job training in business or trades. Still other programs combined these two approaches. The students who participated in these programs included potential dropouts, students who were unable to benefit from a more formal high school program, and educable mentally retarded students. The importance of a high degree of cooperation from employers in the community was frequently stressed. In the work-study program adopted by the very large school in this area the resources of a large corporation were used to assist the district in developing a comprehensive career education program for students in grades 10-12.

## d. Other Programmatic Approaches

Six additional diverse programmatic approaches compised $2 \%$ of showc.ase innovations for representative school districts. In one program the total community was used as a "learning resource" for high school students, while in another, high school students volunteered their time, during or after school, to the school or to non-profit institutions in the community. One superintendent reported a new program in which courses selected, planned and run by students were offered as electives in the high schooi curriculum. One high school initiated a program in which candidates for public office appeared at school assemblies for presentations and student questions, and in another high school a teacher-initiated change was reported in which students were dismissed from class when the teacher was absent, rather than having a substitute teacher brought in. Finally, one school system reported a change in its kindergarten class rooms, moving from unstructured classroom procedures to semi-structured methods.

## 4. CURRICULUM CHANGES AND INSTRUCTIONAL FACILITIES

In the fourth category of innovations, changes in curriculum and an increase in instructional facilities and technology, representative school systems adopted 62 innovations (20\%), while only one innovation (3\%) was redorted by very large districts. There is thus a sharp contrast between very large and representative school systems in the emphasis which they olaced on innovations in this category. Table 2.5 presents the specific types of innovations adopted in this area.

TABLE 2.5
SHOWCASE INNOVATION DESCRIPTIONS CURRICULUM CHANGE AND INSTRUCTIONAL FACILITIES


## a, Curriculum Changes

There were 49 cases (16\%) of changes reported in the cuaricula of representative school systems. Twenty-five superintendents ( $8 \%$ ) reported as their showcase innovation a change in specific curriculum areas, and in different districts these changes covered a broad range of subjects and all grades. Six school districts either int roduced occupational orientation meterials within the regular course structure (in one case as early as grade two), or expanded or added to their industrial arts programs in high schools. Five systems introduced bi-lingual or multi-ethnic programs, and there were three cases each of curriculum revision or expansion in English, social studies and humanitles courses. Reading, health education and human relations were mentioned as areas of curriculum revision in other districts.

The one innovation in the area of currlculum revision reported by a very large school system was described as the introduction of an occupational orientation program in grades 7-9. It was designed "to help pupils make realistic program choices in senior high school."

A second type of change reported by representative districts in the curriculum area was elective "mini-courses" in high schools. of the 16 cases (5\%) In which this innovation was reported, ten applied strictly to English courses, while three more covered both English and social studies. One district adopted mini-courses in language arts, and one introduced electives in a varlety of non-basic curriculum areas. Only two school districts instituted a unit course or mini-course program for all subjects. In this type of program, rather than offering a full year course required of all students, a large number of diverse units were developed which generally covered a quarter term of about nine weeks in length. The students were allowed to choose any four of these each year, and thus a number of these mini-courses became ungraded since students from all high school grades could eiect to register for the same course.

Only eight superintendents (3\%) of representative school systems cited packaged materials as the most significant innovation in their districts. of these, three were completely packaged science programs for elementary students, two were supplementary reading materials for the primary grades, and two more were packaged materials for instruction in computer programming. One school system introduced packaged materials in a variety of courses. We did find that packagec materials were further utilized in some broader innovations, particularly in individualized instruction (see earlier discussion).

## b. Instructional Technology and Facilities

It is somewhat surprising in this day of advanced technology that no very large districts reported showcase innovations in the area of instructional innovations dependent upon new technology and facilities; in addition, this area represents only $4 \%$ of the total of showcase innovations in representative schoo; systems. The most frequently cited innovation in this subgroup was the installation of new learning centers, reported by six school districts (2\%). The emphasis of these was on individualized diagnosis, guidance and instruction for students in elementary grades through adult education classes. Instructional materials in a variety of media were often acquired to ald in these programs.

Related to the learning centers, but more limited in pursose, were media centers which were reported in two representative school systems. These districts expanded their library facilities to include materials in a variety of new media, including slides, cassettes and audio-visual equipment.

Only two superintendents ( $1 \%$ of representative districts) reported as their showcase innovations the addition of computers for use by teachers and students, including adult education classes. The computer was, however, a factor in some additional innovations, even though the addition of a computer was not in itself considered to be the showcase innovation. In particular, some individualized instruction was implemented through the use of computers (computer assisted instruction, or (AI).

Three representative school systems expanded thelr technology and facilities in other areas. One system added a driving range for multiple... car use in its driver educat $10 n$ program, and another distrlct adopted an information disseminatlon program which utilized a wide varlety of resources and was available to both students and staff. The final innovation in this category was the development of a "Math Instructional Objectives Catalog" for use in grades K-12.

## 5. ORGANIZATIONAL INNOVATIONS

Proportionally, very large school systems adopted more than twice as many innovations $\ln$ the organlzational category as did representatlve districts ( $26 \%$ as opposed to $12 \%$ ). Table 2.6 lists the types of innovations reported in this category.

TABLE 2.6
SHOWCASE INNOVATION DESCRIPTIONS
ORGANIZATIONAL INNOVATIONS

| Innovation | $\begin{aligned} & \text { Districts } \\ & <80,000 \\ & \text { Freq. } \quad \% \end{aligned}$ |  | $\begin{aligned} & \text { Districts } \\ & \geq 80,000 \\ & \text { Freq. } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| a. Operational Aspects |  |  |  |  |
| Grade and Attendance Unit | (18) | 6 | ( 1) | 3 |
| Semester Structure; Extended Day or Year | ( 4) | 1 | ( 2) | 6 |
| Open Campus | (3) | 1 | - | - |
| b. Flexible Modular Scheduling | ( 7) | 2 | (1) | 3 |
| c. Model Schools or Grades | ( 3) | 1 | ( 2) | 6 |
| d. Alternative Schools | ( 2) | 1 | ( 2) | 6 |
| Total | (37) | 12 | (8) | 26 |

## a. Operational Aspects

From Table 2.6 we can see that the largest number of organizational Innovations reported by representative school systems were changes in the grade and attendance units in the districts' schools. Elghteen such changes were reported, representing $6 \%$ of all showcase innovations for representative school districts. The most common change (11 cases) was described as a regrouping of the grades to form a middle school; generally the schools moved from a $\mathrm{K}-6,7-9,10-12$ system to a $\mathrm{K}-5,6-8$, $9-12$ arrangement. The rationale for this shift was based on a supposition that students in the middle age range have specla! needs which in the past have not been recognized, six representative schools with innovations in the "grade and attenciance unlt" area added a transitional grade between Kindergarten and grade one, Generally between 12 and 15 children, judged "not quite ready" for first grade work after the completion of kindergarten, were placed in this transitional grade which provlded a high teacher/student ratio and speciallzed instructional materlals. The hope was that the majority of these children would be ready for second grade at the end of the school year.

One very large school district reported having made a commitment to large comprehensive high schools which would enroll all students in grades 9-12. The opening of the first of these schools was the showcase innovation.

There were four innovations (1\%) in representative districts which involved a change in the structure of the school calendar or alterations in the length of the school day or year. One school district changed its semester structure for grades $10-12$ by setting aside three weeks at each end of the school year for student-designed mini-courses in which no grades were given. Another school system extended its elementary school year by 40 days by offering an individualized curriculum to a selected group of students during July and August. Two changes were reported by representative school systems in the length of the school day; these were both due to building space constraints. One district put its hlgh schools on dual sessions because of overcrowding, and the other added an extra hour to each end of the school day "to allow students to take courses in proper areas by increasing effective building space by $25 \%{ }^{14}$

The school calendar was altered in two very large school distrlct, (6\%). In one of these systems the regular 180 day school year was divided into three terms, or trimesters; in the other the entire year was divided lnto five periods of 45 days each, with students required to at tend any four "quinmesters."

Three representative school systems (1\%) instituted an "open campus" pollicy which allowed students in senior high school to be released from school when they were not in class.

## b. Flexlble-Modular Schedullng

Innovations whlch were reported in flexlble-modular scheduling (2\% for representative districts and $3 \%$ for very large systems) were instructionally linked, but their primary intent was described as a scheduling of classes in such a way as to make the most advantageous use of time on a day-to-day basis. Generally the school day was broken into $20-m l n u t e$ modules, using independent study or small group and large group instruction where approprlate. One aim of this new system was to allow for individual differences of both students and teachers and to allow students to pursue their individual needs and interests. The one very large district which reported the introduction of flexible-modular scheduling in its high schools designed its program to include both on-campus and offncampus options. Maximum use was made of community resources in both phases of the program. Included in the off-campus program were opportunitles for senlor students to audit university courses or gain experience In business, government, social services or cultural areas.
C. Model Schools or Grades

The operation of model schools was reported in two districts in the representative sample. These were designed as demonstration centers for instructional, curricular and staff development innovations. A third representative district operated six model first grades which were a modifled version of the British Infant Schools.

Among very large districts there was one reported case of a model grade and one of a model school. The model grade was a pilot Kindergarten program, destigned to 'provide information and recommendations for implementation of a county-wide program." The model school was intended to be a magnet school which was described as "a unique approach to achieving improved racial integration through development of superior and, therefore, at tractive ('magnet') programs for students. ${ }^{14}$

## d. Aiternative Schools

Alternative schools were reported to be the nost significant innovation in two representative school districts (1\%) and in two very large districts (6\%). These schools were set up to accomodate those students who were alienated frop, or who did not function well in, the traditional high school environment. They might attract both the potential dropout and the student highly motivated to learn in a more challenging and individualized setting.

## 8. ANALYSIS CATEGORIES

In much of the remainder of this report we will analyze the showcase Innovatlons described in Question la of our questionnaire as they relate to other variables. Three levels of analysis wlll be provided. First we will discuss how showcase Innovations as a whole, for representative and for very large school districts, relate to other variables. Secondly we will make an analysis of each of the five categories into which we have placed the showcase innovations, again describing separately those innovations reported by the representative sample and by very large districts. Finally, we will select for analysis those innovations of which there were ten or more cases reported by all school districts combined.

## 1. THE TOP TEN inNovations

Out of the 35 specific types of innovations ${ }^{*}$ which w=re listed in response to Question la, on the showcase innovation, ten were mentioned ten or more times; we have chosen these ten Innovations for a detailed analysis. Table 2.7 lists these ten innovations, with an indication of the major category from which each was drawn.
(Insert Table 2.7 here)

This table indicates the numbers of times each innovation was cited both by representative distrlcts and by very large districts, and totals are also given for all school districts combined.

These ten innovations represent $71 \%$ of all showcase innovations reported in the survey, accounting for $73 \%$ of innovations in the represent ative sample and 55\% of showcase innovations of the very large school districts reporting.

Two of these most frequently mentloned innovations ('guidance, counseling and diagnosis"; "unit courses, mini-courses and electlves") were not cited at all by superintendents of very large districts. However, we should point out that we are dealing with a very small set of large districts and thus it is hard to say with precision which innovations were truly "represetitative" among them. The highest frequency for any innovation in very large schools was four; this occurred two times (once for "planning, research and evaluation" and once for "special instructional programs") and both of these innovation types were included in the top ten. Only one innovation ("individualized instruction and team, teaching in general areas') was mentioned three times by superintendents of very large districts, and this innovation is also included in the top ten.
the 35 specific types of innovations are distributed in the five categories as follows: 2 in individualized instruction and team teaching; 16 in administrative; 7 in curriculum change and instructional facilities; 4 in programmatic approaches to instruction; and 6 in organizational (see Tables 2.2 through 2.6).

TABLE 2.7
THE TOP TEN SHOWCASE INNOVATIONS

| Innovation | Innovation Category | $\begin{aligned} & \text { Olstricts } \\ & <80,000 \\ & \text { Freq. } \% \end{aligned}$ |  | $\begin{aligned} & \text { pistricts } \\ & 280,000 \\ & \text { Freq. } \% \end{aligned}$ |  | Comblned Freq. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Individual Instruction and Team Teaching -- All Curriculum Areas | Ind. Instr. $\delta$ Team Teachlng | (69) | 22 | (3) |  | (72) | 21 |
| 2. Special Instructional Programs | Prog rammatic Approaches | (35) | 11 | (4) |  | (39) | 11 |
| 3. Curriculum Revision In Speclflc Areas | Curr. Change \& Inst, Tech. | (25) | 8 | (1) | 3 | (26) | 8 |
| 4. Indlvidual Instruction and Team Teaching -- Speclfic Currlculum Areas |  <br> Team Teaching | (21) | 7 | ( 2) | 6 | (23) | 7 |
| 5. Grade and Attendance Unit | Organizational | (18) | 6 | (1) | 3 | (19) | 5 |
| 6. Planning, Research and Evaluation | Administrative | (14) | 4 | (4) | 13 | (18) | 5 |
| 7. Unit Courses, MInt-Courses and Electives | Curr. Change \& Instr. Tech. | (16) | 5 | -- | -- | (16) | 5 |
| 8. In-Service Training and Workshops | Administrative | (11) | 3 | ( 1) | 3 | (12) | 3 |
| 9. Guldance, Counseling and Dlagnosis | Administrative | (11) | 3 | -- | -- | (11) | 3 |
| 10. Teacher Aldes, Tutors and Paraprofessionals | Programatic Approaches | (10) | 3 | ( 1) | 3 | (11) | 3 |
| Total |  | (230) | 73 | (17) | 55 | (247) | 71 |

The top ten innovations include at least one innovation in each of the five major categories which was mentioned both by very large and by representative districts. Thus, on the whole, this analysis will be quite representative for all districts.
C. RELATIONSHIP OF INNOVATION TYPE TO DISTRICT SIZE, REGION AND PER PUPIL

## 1. DISTRICT SIZE AND REGION

Earlier in this chapter we discussed the fact that our sample was carefully drawn to represent school systems of all pupil sizes and all regions of the country. One area we were interested in investigating was whether systems of different sizes or from different regions of the country tended to adopt different types of innovations. Our data showed that there was no significant relationship in either case. Within each size category and within each region of the country school sys tems adopted roughly equivatent numbers of innovations in each of our innovation description categories, and, similarly, no differences emerged in distrlet size or region and adoption of innovations anxong the top ten.

## 2. PER PUPIL EXPENDITURE

We found considerable variation among our sample distrlets in the amount of money expended per pupil. This information was provided by superintendents of 278 representative districts and 24 very large districts; Table 2.8 presents this data.

TABLE 2.8
PER PUPIL EXPENDITURE

| . Per Pupil Expenditure | $\begin{aligned} & \text { Distr } \\ & <80 \\ & \text { Freq. } \end{aligned}$ | $\begin{array}{r} \text { ets } \\ 000 \\ \% \end{array}$ | $\begin{aligned} & \text { Distr } \\ & \geqslant 80 \\ & \text { Freq. } \end{aligned}$ | cts 000 $\%$ |
| :---: | :---: | :---: | :---: | :---: |
| Less than \$500 | (22) | 8 | -- | "- |
| \$500-599 | (34) |  | ( 3) |  |
| \$600-699 | (48) |  | (2) |  |
| \$700-799 | (60) |  | ( 7) |  |
| \$800-899 | (53) | 19 | ( 6) |  |
| \$900-999 | (30) | 11 | ( 5) |  |
| \$1,000 and over | (31) |  | ( 1) |  |
| Total | (278) | 100 | (24) | 100 |
| Mean | \$785.39 |  | \$789.50 |  |
| Median | \$750.39 |  | \$796.50 |  |

* 278 districts reporting out of 315 with showcase innovations

In representative districts the mean per pupil exmenditure was $\$ 785.39$. with a median of $\$ 750.39$. For very large districts the mean was very similar, with $\$ 789.50$, and the median, at $\$ 796.50$ was slightly higher.

We were interested in finding out whether the amount of money available in a district influenced the type of innovation adopted. Our data showed that there was no significant relationship in either size sample between per pupil expenditure and innovation category. However, we did find some small differences in adoption of innovations among the top ten. Table 2.9 gives the precent distribution of top ten showcase innovation across seven categories of per pupil expenditure.

TABLE 2.9
per pupil expenditure ano the top ten innovations PERCENT DISTRIBUTION

| Per Pupil Expenditure |  |  | $\left\|\begin{array}{cc} \frac{5}{3} & 6 \\ \vdots & 5 \\ \frac{0}{2} & 2 \\ 3 & 2 \\ 3 & 2 \\ N=23 \end{array}\right\|$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Less than \$500 | 7 | 12 | - | 14 | 6 | - | - | 17 | 30 | - | 8 |
| \$500-599 | 5 | 15 | 39 | 9 | - | 7 | 14 | 8 | 20 | 33 | 13 |
| \$600-699 | 18 | 21 | - | 27 | 6 | 20 | 29 | 17 | - | 17 | 16 |
| \$700-799 | 25 | 24 | 22 | 18 | 24 | 13 | 7 | 25 | 40 | 17 | 22 |
| \$800-899 | 20 | 12 | 17 | 14 | 41 | 40 | 14 | 8 | - | 17 | 19 |
| \$900-999 | 5 | 6 | 13 | 9 | 12 | 20 | 29 | 17 | 10 | - | 10 |
| \$1,000 and over | 20 | 9 | 9 | 9 | 12 | - | 7 | 8 | - | 17 | 11 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| No Information | $N=12$ | $N=6$ | $N=3$ | $\mathrm{N}=1$ | $N=2$ | $N=3$ | $\mathrm{N}=2$ | $\mathrm{N}=0$ | $N=1$ | $N=5$ | $N=35$ |

This table shows a sllght tendency for systems with lower expenditures to adopt special instructional programs. More outstanding is the trend in districts with moderately high expenditures to adopt changes in the grade and attendance unit structure; $41 \%$ of innovations of this type were adopted by districts spending between $\$ 800$ arid $\$ 899$ per pupil. Districts in this category also adopted $40 \%$ of the innovations in the area of planning, research and evaluation, but the data do not show any clear trend for thls type of innovation. Finally, the adoption of $39 \%$ of innovations concerning curriculum revision in specific areas by districts expending betwen $\$ 500$ and $\$ 599$ per pupil stands out as signlflcant, but again this does not reflect any general tendency of districts with lower eqenditures to adopt innovations in this area.

## D. GRADE LEVEL OF THE SHOWCASE INNOVATION

In 212 out of the 315 showcase innovations reported in representative districts it was possible to determine the grade level to which the innovation applied. While the grade level could be established for only $37 \%$ of admidistrative innovat lons, this information was avallable for over $70 \%$ of innovations in each of the other four innovation description categories.

In very large school systems grade level Information was provided for i) out of the 31 showcase innovations. Again administrative innovations most frequently lacked this data; it was reported in only $18 \%$ of cases. This does not imply that grade level information was not relevant in these cases, however, and we regret that we do not have this data.

Table 2.10 shows, for districts of both size samples, the grade level of the showcase innovations. Immediately apparent is the fact that in represen-

TABLE 2.10
grade level of the showcase innovation

| Grade Level | $\begin{aligned} & \text { Districts } \\ & <80,000 \\ & \text { Freq. } \end{aligned}$ | $\begin{aligned} & \text { Districts } \\ & \geq 80,000 \\ & \text { Freq. } \% \end{aligned}$ |
| :---: | :---: | :---: |
| Elementary | (102) 48 | ( 3) 18 |
| Junior/Middle | ( 8) 4 | ( 1) 6 |
| Senior High | (52) 25 | - (4) 24 |
| Elementary-Senior | ( 40) 19 | (6) 35 |
| Other | $(10) 5$ | (3) 18 |
| Total | (212) 100 | (17) 100 |

tative districts the largest number of showcase innovations (48\%) were designed for elementary students. Another $25 \%$ were intended for students In sentor high school, while only $4 \%$ we re introduced for the student at the junlor high or midde school level. Nineteen percent of showcase innovations in representative school systems had relevance to all students from Kindergarten through sentor high school, whlle the remaining $5 \%$ applled to other groups of students, including pre-schoolers and adults. For very large districts a larger proportion of showcase innovatlons applled to all grade levels ( $35 \%$ ), while agaln the fewest number of innovations ( $6 \%$ ) were designed for the Junior or middle school student.

For very large systems, with grade levels reported for only 17 Innovations, It is not meaningful to compare grade levels across the five innovation categories; for representative school systems, however, this comparison is quite interesting. The data for representative systems, presented in Table 2.11, is highly significant statistically ( $P<00$ ) and it can be seen that within innovation categories the distributlon across grades differs sharply from the distribution for all innovations combined.
table 2.1]
graoe level of the showcase innovation categories PERCENT DISTRIEUTION DISTRICTS $<80,000$

| Grade Level | Ind. Instr. Team Teach. $\mathrm{N}=69$ | Administration $\mathrm{N}=25$ | Programmatic Na 42 | Curr. Ch. Instr. Fac. $N=44$ | $\begin{gathered} \text { Organiza- } \\ \text { tlonal } \\ N=32 \end{gathered}$ | $\begin{aligned} & \text { Combined } \\ & \mathrm{N}=212 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Elementary | 80 | 32 | 36 | 32 | 31 | 48 |
| Junior/Middle | 3 | 4 | 7 | 5 | - | 4 |
| Senior High | 9 | 12 | 29 | 48 | 31 | 25 |
| Elem.-Senior | 9 | 52 | 10 | 14 | 34 | 19 |
| Other | - | - | 19 | 2 | 3 | 5 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 |
| No Information | $N=21$ | $\mathrm{N}=42$ | $N=17$ | $N=18$ | $N=5$ | $N=103$ |

The largest percentage of innovations at the elementary level were concerned with individualized instruction and team teaching (80\%), whlle about $a$ third of innovations in the other four categories were designed for this grade level. The largest percentage of innovations at the senior high level were in the category of curriculum change and instructional facilities and technology ( $48 \%$ ). Administrative innovatlons stand out as being most relevant to students within all academic grades, whlle the largest percentage of innovations adopted for students outside the regular grade structure were in the area of programmatic approaches; $19 \%$ of programmatic approaches were designed for students in this group, finally, no one innovation type was prevalent at the junior or middle level.
is we examine the grade distribution for the top ten showcase innovations we can see sone specific innovations which are contributors to the figures in Table 2,1]. Table 2.12 shows that individualized instruction and team

TABLE 2.12
GRADE LEVEL OF THE TOP TEN SHOWCASE INNOVATIONS PERCENT OISTRIBUTION

| Grade Level |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Elemertary | 80 | 46 | 37 | 79 | 37 | - | - | 67 | 33 | 50 | 55 |
| Junior/middle | - | 4 | 10 | 10 | - | - | - | - | 17 | 17 | 4 |
| Senior High | 9 | 4 | 21 | 10 | 5 | 50 | 100 | - | 33 | 33 | 18 |
| Elem.-Senior | 11 | 12 | 26 | - | 53 | 50 | - | 33 | 17 | - | 17 |
| Other | - | 35 | 5 | - | 5 | - | - | - | - | - | 6 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| No Information | $N=18$ | $N=13$ | $\mathrm{N}=7$ | $N=4$ | $N=0$ | $N=16$ | $\mathrm{N}=4$ | $N=6$ | $N=5$ | $N=5$ | $N=78$ |


#### Abstract

teaching, both as it applles to specific curriculum areas and the general curricula, is the outstanding innovation type at the elementary level. Special instructional programs are the most common innovation (35\%) for students outside the regular grade structure, while at the senior high level the percentage of innovations in unit courses, mini-courses and electives is outstanding. In fact, all innovations of this type were designed for the senior high student.


## E. CURRICULUM AREAS OF THE SHOWCASE INNOVATION

The questionnaire did not inquire directly as to which curriculum areas, if any, the showcase innovation applied, but this information was supplied spontaneously by 109 superintendents of representative districts and 6 superintendents of very large districts. Table 2.13 lists the frequencies of mention of specific curriculum areas for the two sizes of dlstricts separately and for all districts combined. The fourth column shows the percentages which these combined frequencies represent of all curriculum areas mentioned. The final column on the right lists the percentages they represent of all showcase innovations for all districts combined.

## (Insert Table 2.13 here)

Curriculum areas are reported for one third of all showcase innovations; there are undoubtedly a few aditional curriculum-specific innovations for which this information was not supplied. However, when we later examine the curriculum areas of the top ten innovations we will see that curriculum areas are generally supplied for those innovations which are directly related to curriculum. Thus the figure of $33 \%$ is probably not far off the true mark.

The areas of reading and English were by far the most frequently mentioned curriculum Areas. If we combine all areas in which reading and English are mentioned, either alone or with other curriculum areas, we find that they comprise a total of $49 \%$ of all curriculum areas mentioned for the two size samples combined. Math rariks as a distant second; when the areas of "math" and ''reading and math' are combined, they represent $17 \%$ of curriculum areas mentioned. Career-oriented curriculum areas are also well represented; combining the areas of "occupations and career preparation" with "yocationa, industrial arts and business education', we find 16 多 of curriculum-specific showcase innovations fall in this general area.

TABLE 2.13
CURRICULUM AREAS OF THE SHOWCASE INNOVATION

|  | $\begin{aligned} & \text { bistricts } \\ & <\text { Eo,000 } \\ & \text { Freq. } \end{aligned}$ | $\begin{gathered} \text { Oistricts } \\ \geq 80,000 \\ \text { Freq. } \end{gathered}$ | Combined Freq. | Combined \% $\%$ of Curr. Innov. | Comblined \% $k *$ of All Innov. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| geading | 23 | 2 | 25 | 22 | 7 |
| Reading \& Nath | 12 | 1 | 13 | 11 | 4 |
| English | 12 | - | 12 | 10 | 3 |
| Occupational, Career Prep. | 10 | 2 | 12 | 10 | 3 |
| Math | 7 | - | 7 | 6 | 2 |
| Voc. . Ind. Arts, gusiness Ed. | 7 | - | 7 | 6 | 2 |
| English \& Other | 6 | 1 | 7 | 6 | 2 |
| Science | 5 | - | 5 | 4 | 1 |
| Social Studies \& History | 4 | - | 4 | 3 | 1 |
| Language Arts | 4 | - | 4 | 3 | 1 |
| Humanities \& Arts | 54 | - | 4 | 3 | 1 |
| Computer Programai | 3 | - - | 3 | 3 | 1 |
| Other mets | 12 | - | 12 | 10 | 3 |
| Total | 109 | 6 | 115 | 100\% | 33\% |
| No Information | 206 | 25 | 231 |  |  |
| Grand Total | 315 | 31 | 346 |  |  |

:* Percentages in this column are based on the 115 reported curriculum-specific showcase innovations.
at Percentages in this column are tased on the total number of showcase innovations in all districts combined (346).
N:\%: Curriculum Areas with a frequency of 1 are combined; included are such areas as spelling, bi-lingual, múti-ethnic and human relations curricular content.

## 1. CURRICULUM AREAS OF THE FIVE INNOVATION DESCRIPTION CATEGORIES

As would be expected, curriculum-specific innovations were not distributed evenly through the flve categories of showcase innovations. Only $9 \%$ of administrative innovations and $2 \%$ of organizational innovations were identified as being specific to curriculum areas. Of the 115 innovations which were curriculuin-specific, 107 or $93 \%$ feil into the three innovation categories which are concerned with instruction. Three fourths of all innovations in the category of curriculum changes and instructional facilities were curriculumspecific, while nearly half of the innovations in the category of programmatic approaches and nearly one third of innovations in the area of individualized instruction and team teaching were speciflc to curriculum areas.

Table 2.14 iists the frequency and percent distribution of curriculum areas in the three instructional categories of innovations. In the category of individualized instruction and team teaching the emphasis is on reading
(Insert Table 2.14 here)
and math, with $65 \%$ of all curriculum-specific innovations being in these two areas. No innovations in this category were specifled as being concerned with occupational or vocational curricula.

Innovations in the category of programmatic approaches were devoted primarily to reading ( $59 \%$ when the area of "reading and math" is combined with "reading") and vocational and occupational preparation (33\% for these two areas combined).

1 The emphasis in the category of curriculum changes was on Engllsh, with 340 of curriculum-specific innovations being in this area (when "English and other' ${ }^{\prime \prime}$ is combined with English). The remalinder of curriculum-specific innovations in this category are spread through other curriculum areas to a greater extent than is the case with the other two instructional categories.
2. CURRICULUM AREAS OF THE TOP TEN SHOWCASE INNOVATIONS

Again, curriculum-specific innovations were not distributed evenly throughout the top ten innovations but were concentrated in those innovation areas which were related to curriculum and instruction. five innovation types stand out as having a considerable portion of curriculum-specific innovations; the distribution of curriculum areas for these five types are given in Table 2.15.

TABLE 2.14
CURRICULUM AREAS OF THE INSTRUCTIONAL INNOVATION CATEGORIES ALL OISTRICTS COMBINED

| Curriculum Area |  |  |  |
| :---: | :---: | :---: | :---: |
| Reading | （ 4） 9 | （12） 39 | （9） 31 |
| English | （11） 23 | －－ | （ 1） 3 |
| Reading \＆Math | －－ | （6） 20 | （5） 17 |
| Occupational Preparation，Careers | （4） 9 | （ 7） 23 | －－ |
| Math | （1） 2 | （ 1） 3 | （5） 17 |
| English \＆Other | （5） 11 | －－ | （ 2） 7 |
| Vocational，Ind．Arts，Business Ed． | （ 3） 6 | （3） 10 | －－ |
| Science | （ 3） 6 | （ 1） 3 | （ 1） 3 |
| Social Studies，History | （3） 6 | －－ | （1） 3 |
| Language Arts | （ 1） 2 | －－ | （2） 7 |
| Computer Programming | （ 3） 6 | －－ | －－ |
| Humanities \＆Arts | （ 3） 6 | －－ | －－ |
| Other | （6） 13 | （1） 3 | （3） 10 |
| Total | （47） 100 | （31） 100 | （29） 100 |

TABLE 2.15
Curriculum areas of the TOP TEN INHOVATIONS

| Curriculum Area | $\omega$ 옫 <br> 守先 <br>  <br>  <br> Freq. | $\begin{aligned} & \frac{5}{3} \\ & \frac{5}{3} \\ & \hdashline .5 \\ & 3 \\ & 3 \\ & \text { Freq. } \end{aligned}$ |  | $n=0$ 0 0 0 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reading | 8 | 2 | - | 2 | 10 |
| Reading \& Math | 4 | * | - | 2 | 4 |
| English | 1 | 2 | 9 | - | - |
| English \& Other | 1 | 2 | 3 | - | - |
| Math | 4 | - | - | - | 1 |
| Voc., Ind. Arts. Business | - | 3 | - | - | 1 |
| Occupational, Careers | - | 4 | - | - | - |
| Social Studies | 1 | 3 | - | - | - |
| Humanities $\varepsilon$ Arts | - | 3 | - | - | - |
| Language Arts | 1 | - | 1 | - | - |
| Science | 1 | - | - | 1 | - |
| Other | 2 | 4 | 1 | - | 1 |
| Total | 23 | 23 | 14 | 5 | 17 |

In three cases (individualized instruction, teacher aides and special progrens) reading and math are the most heavily represented curriculum areas. In contrast, there are no innovations in these areas in "unit courses, minicourses and electives;" here the emphasis is heavily on English. Innovations in "curriculum revision" were more evenly spread through the curriculum areas, with the highest concentration being in the occupational and vocational areas.

## F. TARGET GROUPS OF THE SHOWCASE INNOVATION

Specific groups of students were mentioned as the primary target of the showcase Innovation in 73 representitive districts and 9 very large districts. The frequency of mention of each target group is ilsted in Table 2:16. The fourth column shows the percentages which the combined frequencies for all districts represent of Innovations directed at special groups, and the final column lists the percentages they represent of all showcase innovations.
(Insert Table 2.16 here)

Since the innovations which were directed at special groups of studentr, comprise $24 \%$ of the total, presumably the remaining $76 \%$ of innovations were intended to benefit students in general, either directly or indirectly. Understandably, those innovations which were directed at selected sub-groups of students were intended, for the most part, to tackle particular problem areas. Regrouping the target groups in Table 2.16 we can see the pattern more clearly. Underachievers, dropouts and potential dropouts together are the target of $33 \%$ of these innovations. Those students who are disadvantaged, from a low socio-e conomic group or who belong to an ethnic minority are singled out in $27 \%$ of cases. Students with disabllities or handicaps, either physical, mental or emotional, are the target groups in 15\% of cases. These "problem groups" together represent $74 \%$ of the total of target ted innovations and $18 \%$ of all innovations.

Taken together, the programs for pre-first grade, first grade and other elementary students comprise another $19 \%$ of the total of targetted innovations and $4 \%$ of all showcase innovations. Many of these programs are intended to prevent problems from developing in later years.

The preadolescent and the gifted student are each the target of $2 \%$ of innovations in this special group and $1 \%$ of showcase innovations in general.

## 1. TARGET GROUPS OF THE FIVE INNOVATION DESCRIPTION CATEGORIES

Table 2.17 lists the number of innovations in each innovation category which were directed at specific target groups; the fourth column shows the total number of innovations in each category for ail districts combined, and the final column gives the percentage of innovations in each category which are targetted to specific groups of students.
(insert Table 2.17 here)

TABLE 2.16
target groups of the showcase innovation

| Target Group | $\begin{gathered} \text { Districts } \\ <80,000 \\ \text { Freq. } \end{gathered}$ | $\begin{gathered} \text { Districts } \\ \geq 80,000 \\ \text { Freq. } \end{gathered}$ | Combined Freq. | Combined \% ith of Target Innovations | Combined \% Atht of All Innov. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Underachlevers, Slow Progress | 17 | 2 | 19 | 23 | 6 |
| Low Soclo-Economic, Disadvantaged | 13 | - | 13 | 16 | 4 |
| Pre-first Grade, First Grade | 10 | 1 | 11 | 13 | 3 |
| Ethnic Minority | 6 | 3 | 9 | 11 | 3 |
| Dropout, Potential Dropout | 6 | 2 | 8 | 10 | 2 |
| Learning Dlsablllty | 6 | - | 6 | 7 | 2 |
| Emotionally Disturbed | 2 | 1 | 3 | 4 | 1 |
| First Grade Cross-Age Tutoring | 2 | - | 2 | 2 | 1 |
| Elementary Cross-Age Tutoring | 2 | * | 2 | 2 | 1 |
| Preadolescent | 2 | - | 2 | 2 | 1 |
| Glfted | 2 | - | 2 | 2 | 1 |
| Retarded | 1 | - | 1 | 1 | * |
| Aurally Handicapped | 1 | - | 1 | 1 | * |
| Speech Handicapped | 1 | - | 1 | 1 | * |
| Other | 2 | - | 2 | 2 | 1 |
| Total | 73 | 9 | 82 | 100 | 24 |
| No Information | 242 | 22 | 264 |  |  |
| Grand Total | 315 | 31 | 346 |  |  |

* Less than $0.5 \%$
** Percentages in this column are based on the 82 cases for which a target group was reported.
*** Percentages in this column are based on the total of 346 showcase innovat lons.

TABLE 2.17
FREQUENCY OF TARGET GROUPS IN THE INNOVATION DESCRIPTION CATEGORIES

| Innovat ion Category | Innov. With Target Groups |  |  | All Innov. Total Combined Freq. | Percent of all 346 Innov. Combined |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Dlstrícts } \\ <80,000 \\ \text { Freq. } \end{gathered}$ | $\begin{gathered} \text { Districts } \\ \geqslant 80,000 \\ \text { Freq. } \end{gathered}$ | Combined Freq. |  |  |
| Programmat ic Approaches | 44 | 5 | 49 | 65 | 75 |
| Organlzational | 11 | 2 | 13 | 45 | 29 |
| Curriculum Change $\varepsilon$ Inst. Facilitles | 9 | - | 9 | 63 | 14 |
| Adminis trative | 6 | 2 | 8 | 78 | 10 |
| Ind. Inst. \& Team Teaching | 3 | - | 3 | 95 | 3 |
| Total | 73 | 9 | 82 | 346 | 24 |

As would be anticlpated from earlier discussions, the category with the largest number of targetted innovations is that of programmatic approaches; $75 \%$ of innovations in this category are of this type. Other categorles show considerably smaller percentages, with the category of individualized instruction and team teaching contalning the least number of targerted innovations, with only $3 \%$.

In Table 2.18 the detailed frequency and percent distribut ton of target groups for the five innovation categories are glven. of particular interest is the category of programmatic approaches since by far the largest number

$$
\text { (Insert Table } 2.18 \text { here) }
$$

of targetted innovations fall in this category. It should be noted that none of the innovations in this category are directed at students of ethnic minority background; rather, innovations for this subgroup are concentrated in the categories of currlculum change and administration where innovations for this group comprise nearly half of the totals. When we examine the target groups of the top ten showcase innovations, we will be able to identify in many cases the particular innovation types wish account for the distribution in Table 2.18.

TABLE 2.18
target groups of the innovation description categories ALL OISTRICTS COMBINED

| Target Group | Freq. | !evos zez!uex.o <br> freq. |  |  <br> Freq. * | frea. \% | Total Freq. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Underachievers, Slow Progress | (17) 35 | - - | (1) 11 | ( 1) 13 | - | (19) 23 |
| Dlsadvantaged, Low Socio-Ec. | (7) 14 | ( 2) 15 | (1) 11 | ( 1) 13 | ( 2) 67 | (13) 16 |
| Pre-First Grade, First Grade | (5) 10 | (5) 38 | - | - - | (1) 33 | (11) 13 |
| Ethnic Mlnorlty | - - | (1) 8 | (4) 44 | (4) 50 | - | (9) 11 |
| Dropout, Potential Dropout | (5) 10 | (3) 23 | - | - - | - | (8) 10 |
| Learning Disabillty | (4) 8 | - - | ( 1) 11 | ( 1) 13 | - | (6) 7 |
| Emot lonally Disturbed | (2) 4 | - - | (1) 11 | - - | - | ( 3) 4 |
| First Grade Cross-Age | (2) 4 | - | - - | - | - - | ( 2) 2 |
| Elementary Cross-Age | (2) 4 | - - | - - | - | - - | ( 2) 2 |
| Gifted | (2) 4 | - - | - - |  | - - | (2) 2 |
| Preadolescent | - - | (2) 15 | - - | - - | - - | ( 2) 2 |
| Other | ( 3) 6 | - - | ( 1) 11 | ( 1) 13 | - - | ( 5) 6 |
| Total | (49) 100 | (13) 100 | ( 9) 100 | ( 8) 100 | ( 3) 100 | (82) 100 |

## 2. TARGET GROUPS OF THE TOP TEN INNOVATIONS

Table 2.19 shows what percentage of each of the ten top innovations was mentioned as being directed at specific target groups. There were 64 such innovations in all in the top ten, with over half of these being "special instructional programs'. All of the innovations of this type were targetted

TABLE 2.19
PERCENTAGES OF THE TOP TEN INNOVATIONS WHICH ARE DIRECTED AT SPECIFIC TARGET GROUPS

| Innovation Type | Total Number of Innovations In Each Type | Number Reporting Target Group | Percent Of Total |
| :---: | :---: | :---: | :---: |
| Special Instructional Programs | 39 | 39 | 100 |
| Teacher Aides, Tutors $\varepsilon$ Para-professionals | 11 | 6 | 55 |
| Grade and Atténdance Unit | 19 | 8 | 42 |
| Curriculum Revision | 26 | 6 | 23 |
| Guidance, Counseling $\varepsilon$ Diagnosis | 11 | 2 | 18 |
| Individualized Instr. \& Team Teaching - Specific Aŕeas | 23 | 2 | 9 |
| Individualized Instr. \& Team Teaching - All Areas | 72 | 1 | 1 |
| Planning, Research \& Evaluation | 18 | - | - |
| Unit Courses, Mini-Courses $E$ Electives | 16 | - | - |
| In-Service Training | 12 | - | - |
| Total | 247 | 64 | 26 |

to special groups of students. Teacher aides, tutors and paraprofessionals were employed to benefit special groups of students in $55 \%$ of cases, and in $42 \%$ of cases grade and attendance unit alterations were intended to benefit specific target groups. Four other innovation types were directed at smaller proportions of special groups, while the final three innovation types were never designed for specific target groups.

Table 2.20 presents the frequency distribution of target groups for the top ten innovation types. The two categories of individualized instruction and team teaching (for specific curriculum areas and for general curriculum) are combined in this table and the three innovation types which included no targetted innovations are not included in the Table.

TABLE 2.20
TARGET GROUPS OF THE TOP TEN INNOVATIONS*

| Target Group |  |  |  |  | $\begin{gathered} \omega \\ \text { o } \\ \text { 关 } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Underachievers, slow Progress | - 14 | 2 | - | 1 | - | - |
| Low Socio-E conomic, Disadvantaged | 7 | - | 1 | - | 1 | 2 |
| Pre-flrst Grade, Flrst Grade | 5 | - | 5 | - | - | 1 |
| Learning Disability | 4 | - | - | - | 1 | - |
| Ethnic Minority | - | - | - | 4 | - | - |
| Emotionally Disturbed | 2 | - | - | 1 | - | - |
| Oropout, Potential Oropouts | 3 | - | - | - | - | - |
| Gifted | 2 | - | - | - | - | - |
| Preadolescent | - | - | 2 | - | - | - |
| Cross-Age Tutoring, First Grade | - | 2 | - | - | - | - |
| Cross-Age Tutoring, Elementary | - | 2 | - | - | - | - |
| Aural ly Handl capped | 1 | - | - | - | - | - |
| Speech Handi capped | 1 | - | - | - | - | - |
| Total | 39 | 6 | ${ }^{\prime} 8$ | 6 | 2 | 3 |

* The two categories of "individualized instruction and team teaching" (general, and specific curriculum areas) are combined; three innovation types with no targetted innovations (see table 2.19) are not included in this table.

Over one third of special instructional programs were directed at the "underachievers" in the student population; this reflects the large number of remedial programs which we found in this innovation type, Disadvantaged students were the objest of 7 special instructional programs, and these would be related to the compensatory programs discussed above. Five programs were provided for children in the pre-flrst grade and first grade group, and four programs were designed for students with learning disabilities.

Five cases of grade and attendance unit shifts to benefit pre-first grade and first grade students are related to the transitional grade between kindergarten and first grade which was discussed earlier.

The only innovations in the top ten which were reported to benefit ethnic minorities were in the area of curriculum revision.

## G. DESCRIPTIVE ELEMENTS OF THE SHOWCASE INNOVATION

As we coded the answers to the question which asked superintendents to describe their most significant innovation, ive felt that in some cases the innovations mentioned were not adequately characterized by the type and category into which we placed them. We the refore drew up a list of 25 elements which could be used to further describe the showcase innovations; the presence or absence of each of these elements was coded for each innovation. An innovation which was administrative in nature, for instance the initiation of an In-service training program, may also have been related to instruction; it may have been In preparation for the introduction of individualized instruction. In such a case the innovation would have been coded as having "instructional eiements" as well as "administrative elements." Conversely, when an innovation was described as "individualized instruction," the respondent might have added that in-service training was provided. In this case both "instructional" and "administrative" elements would again have been coded as present. In both the above examples the elements "individualized instruction" and "in-service training" would also have been coded as present. Similarly, any innovation which included the addition of teacher aides would be coded as having this element present, whether or not the introduction of teacher aides constituted the showease innovation. Table 2.21 lists these descriptive elements and gives the frequency of mention of each for innovations in each of the two size sample categories. Percentages lisced are based on the total number of showcase innovations reported in each of the two slze samples and then for all showcase innovations combined.
(Insert Table 2.21 here)

TABLE 2.21
descriptive elements of the showcase innovation

| Descriptive Element ${ }^{*}$ | $\begin{aligned} & \hline \text { Olstricts } \\ & <80,000 \\ & \text { Freq. } \end{aligned}$ | $\begin{aligned} & \text { Oistricts } \\ & \geq 80,000 \\ & \text { Freq. } \% \end{aligned}$ | $\begin{aligned} & \text { Combined } \\ & \text { Freg. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Instructional Elements | (264) 84 | (21) 68 | (285) 82 |
| Adminlstrative Elements | (147) 47 | (20) 64 | (167) 48 |
| Organizatlonal Elements | (104) 33 | (14) 45 | (118) 34 |
| Individualized Instruction | $(89) 28$ | (7) 23 | (96) 28 |
| Oistrict-wide Coverage | ( 43) 14 | (13) 42 | (56) 16 |
| Teacher Aldes, Paraprofesslonals | ( 35) 11 | ( 7) 23 | (42) 12 |
| In-Service Teacher Tralning | ( 35) 11 | (3) 10 | ( 38) 11 |
| Team/Cooperative Teaching | (34) 11 | ( 3) 10 | ( 37) 11 |
| Open Space, Open School | (28) 9 | (4) 13 | ( 32) 9 |
| Ungraded | (25) 8 | (1) 3 | ( 26) 8 |
| Minl-Courses, Electives | (17) 5 | ( 3) 10 | ( 20) 6 |
| Building, Physical Plant | ( 18) 6 | (2) 6 | ( 20) 5 |
| Continuous Progress | ( 19) 6 | - - | ( 19) 5 |
| Computer, TV | ( 17) 5 | (1) 3 | ( 18) 5 |
| Community Resources | ( 14) 4 | ( 4) 13 | ( 18) 5 |
| Learning/Resource Ceriters | ( 17) 5 | - - | $(17) 5$ |
| Federal Funds* | ( 16) 5 | ( 1) 3 | ( 17) 5 |
| Flexible-Modular Scheduling | $(15) 5$ | (2) 6 | $(17) 5$ |
| Learning Packages | ( 14) 4 | (1) 3 | (15) 4 |
| Oifferent lated Staffing | ( 13) 4 | (1) 3 | ( 14) 4 |
| Small Groups | ( 11) 3 | - - | ( 11) 3 |
| Cross-Age Tutoring | $(8) 3$ | ( 1) 3 | ( 9) 3 |
| Multi-Age | ( 7) 2 | (1) 3 | $(8) 2$ |
| Bi-Lingual | (, 5) 2 | - - | (5) 1 |
| Multi-Linit | ( 4) 1 | - - | ( 4) 1 |

* Based on spontaneous mentlons in open-ended questions. In some cases we
expect that thesp are underestimates of actual utilization of these elements,
e.g., Federal funds were probably available and utilized $1 n$ many more innovations but this fact was not salient to the respondent.

For all districts conbined, $82 \%$ of innovations contained instructional elements; for very large districts this figure was somewhat lower than for represensative districts- $\left\{68 \%\right.$ as podosed to $84 \%^{*}$.. . nn the other hand, fnenvations in very large districts were characterized by a higher percentage of administrative elements than was the case for representative districts. In the very large districts $64 \%$ of innovations had administrative elements, nearly the same as the number of innovations with instrucational elements. In contrast, in representative districts oniy $47 \%$ of innovations had adminlstrative elements. Innovations with organizationai elements were less frequent in all districts, but here again the very large districts implemented a higher proportion of innovations which were to some degree organizational in nature. Representative districts, with less complex administrative and organizational structurest, have apparently been able to place more emphasis on instructional matters than have the very large districts.

In very large districts $42 \%$ of showcase innovations are implemented on a district-wide basis, while for representative districts this is true in only 14 \% of cases. Teacher aides are also employed more frequently in very large districts $(23 \%$ of innovations as opposed to $11 \%$ for representative districts). It should also be noted that community resources are utilized more frequently in the very large districts ( $13 \%$ for very large districts and $4 \%$ for representative districts). Finally, of partizular interest is the fact that the use of federal funds was mentioned spontaneously in only $5 \%$ of representative systems and $3 \%$ of very large districts, a very low figure in both cases and probably a gross underestimate (see footnote to Table 2.21).

## 1. dESCRIPTIVE ELEMENTS OF THE INNOVATION DESCRIPTION CATEGORIES

Because of the nature of the coding systen it would be expected that many of the descriptive elements would be present predominantly in certain innovation categories. For example, we would expect that the greatest number of "mini-courses and electives" would be present in the category of "curriculum revision," and "team teaching" should occur predominantly in the category of "individualized instruction and team teaching." In almost all cases this turned out to be true, and we have not analyzed the presence of these descrip+ive elements any further. There remain eight descriptive elements which are interesting to compare across the five innovation description categorizs. Tables 2.22 and 2.23 make this comparison for representative districts and very large districts respectively.
(Insert Tables 2.22 and 2.23 here)

TABLE 2.22 ceccriftlve zlemiofs of $\}$
the innovation description categories
PERCENT DISTRIBUTION
OISTRICTS $<80,000$

|  |  |  $N=67$ |  |  |  | Combined $N=315$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instructional Elements | 100 | 45 | 100 | 100 | 62 | 84 |
| Administrative Elements | 27 | 100 | 34 | 43 | 24 | 47 |
| Organizational Elements | 46 | 4 | 8 | 29 | 100 | 33 |
| Individualized Instruction | 57 | 3 | 34 | 11 | 24 | 28 |
| District-wide Coverage | 4 | 43 | 5 | 6 | 8 | 14 |
| Building/Physical Plant | 8 | 4 | 2 | 2 | 16 | 6 |
| Community Resources | 2 | 3 | 15 | 2 | - | 4 |
| Federal funds | 4 | 3 | 15 | - 2 | - | 5 |

TABLE 2.23
NESCPIDTIVE ELEMENTSMOR.
THE INNOVATION DESCRTPTION CATEGORIES
percent distribution DISTRICTS $\geq 80,000$

|  |  |  |  |  | $\begin{gathered} \stackrel{\rightharpoonup}{m} \\ \stackrel{0}{0} \\ \underset{H}{0} \\ \stackrel{0}{0} \\ \underset{\sim}{c} \\ 0 \\ 0 \\ 0 \\ 0 \\ N \end{gathered}$ | Combined $\mathrm{N}=31$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instructional Elements | 100 | 36 | 100 | 100 | - 63 | 68 |
| Administrative Elements | 40 | 100 | 33 | 100 | 50 | 65 |
| Organizational Elements | 60 | 18 | 17 | - | 190 | 45 |
| Individualized Instruction | 80 | - | 33 | $\cdots$ | 13 | 23 |
| District-wide Coverage | - | 55 | 67 | - | 38 | 42 |
| 8uilding/Physical Plant | 20 | 9 | - | - | $\cdots 3$ | 6 |
| Community Resources | 20 | - | 17 | - | 25 | 13 |
| Federal Funds | - | - | 17 | - | - | 3 |

The last four descriptive elements in these tables provide the most interesting comparison. In representative districts innovations in the
 district-wide coverage ( $43 \%$ ). In very large districts the highest proportion of innovations with this characteristic are in the category of "programmatic approaches" (67\%) although here also a high proportion of administrative innovatlons have district-wide coverage (55\%).

In representative districts innovations which affect the buildings or physical plants of the school system occur most frequentiy in the organizational area, whereas in very large districts such innovations occur most often in the category of individualized instruction and team teaching.

Innovations in the fategory of "programmatic approaches" make use of community resources in $15 \%$ of cases in representative school districts; this figure is nearly the same for very large districts (17\%), but these large districts also make use of community resources in $20 \%$ of innuvations in "individualized instruction and team teaching" and in 25\% of "organizational" innovations.

In all districts federal funds are used most frequently in 'programmatic approaches" ( $15 \%$ in representative districts and $17 \%$ in very large districts).

## 2. OESCRIPTIVE ELEMENTS OF THE TOP TEN INNOVATIONS

The same elght descriptive elements selected above are relevant to a comparison across the top ten innovations; the percent distribution of this analysis is given in Table 2.24. Individualized instruction, though most common in the Innovation types "individualized instruction and team teaching", also occurs quite often in "special instructional programs"." The only

$$
\text { (Insert Table } 2.24 \text { here) }
$$

innovation in the top ten which is district-wide in a significant number of cases is "planning, research and evaluation" (67\%). Innovations which affect the bullding and physical plant occur most frequently in alterations of the grade and at tendance unit. Federal funds were utilized most frequently in "special instructional programs", with $23 \%$ of innovations of this type making use of this resource. Community resources were also taken advantage of most frequently in special instructional programs although to a lesser extent ( $10 \%$ ).

TABLE 2.24
DESCRIPTIVE ELEMENTS OF THE TOP TEN INNOVATIONS PERCENT DISTRIBUTION

| , |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nstructional | 100 | 100 | 100 | 100 | 53 | 50 | 100 | 75 | 18 | 100 | 88 |
| dministrative | 31 | 41 | 62 | 17 | 32 | 100 | 25 | 100 | 100 | 18 | 45 |
| rganizational | 44 | 10 | 15 | 52 | 100 | 6 | 81 | 8 | 9 | - | 35 |
| nd. Instr. | 58 | 46 | - | 56 | 16 | - | - | - | - | 36 | 32 |
| istrict-wide | 6 | 13 | 8 | - | 16 | 67 | 6 | 8 | 18 | 9 | 13 |
| uilding | 11 | 3 | - | - | 26 | 6 | - | 8 | - | - | 6 |
| ommunity Resources | 4 | 10 | - | - | - | - | 6 | - | - | - | 3 |
| ederal funds | 3 | 23 | 4 | 9 | - | 6 | - | - | 9 | 9 | 7 |

## 3. PROFILE OF INDIVIOUALIZED INSTRUCTION AND TEAM TEACHING

We stated earlier that innovations which often contained many significant elements were grouped together in the category of "indlvidualized instruction and team teaching's since these elements very frequently occurred together in the same innovation. Using the descriptive elements it is possible to construct a profile of the innovations in this category; Table 2.25 presents a separate profile for innovations which apply to all curriculum areas and for innovations applying to specific areas. The combined profile is also provided, and in the final column on the right the percentage of each element which is contained in all showcase innovations together are given for comparative purposes.
(1 nsert Table 2.25 here)
table 2.25
INDIVIDUALIZED INSTRUCTION AND TEAH TEACHING PROFILE OF DESCRIPTIVE ELEMENTS

|  |  |  |  |  |  |  | All 24 Top Ter Innov.$\qquad$$\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Descriptive Elements |  | lum $\%$ | Spe Curr A Freq |  | $\begin{aligned} & \text { Comb } \\ & \text { Freq. } \end{aligned}$ | \% |  |
| Indlvidualized Instruction | (42) | 58 | (13) | 56 | (55) | 58 | 28 |
| Team Teaching | (28) | 39 | ( 3) | 13 | (31) | 33 | 11 |
| Open Space | (25) | 35 | ( 1) | 4 | (26) | 27 | 9 |
| Ungraded | (15) | 21 | ( 7) | 30 | (22) | 23 | 8 |
| Continuous Progress | (11) | 15 | ( 4) | 17 | (15) | 16 | 5 |
| Teacher Aldes, Tutors, Paraprofessionals | ( 8) | 11 | ( 5) | 22 | (13) | 14 | 12 |
| Differentiated Staffing | (10) | 14 | ( 1) | 4 | (11) | 12 | 4 |
| Building Changes | ( 8) | 11 | - | * | ( 8) | 8 | 6 |
| Multi-Age | ( 7) | 10 | - | - | ( 7) | 7 | 2 |
| Learning Packages | ( 3) | 4 | ( 4) | 17 | ( 7) | 7 | 4 |
| District-wide Coverage | (4) | 6 | - | - | ( 4) | 4 | 16 |

Included in this table are all those descriptive elements for which there is an appreciable difference between either of the innovation types under consideration and all innovations combined; this is the cose for half of the descrlptive elements presented above. Both innovation types contain similarly large proportions of innovations which include indlvidualized instruction ( $58 \%$ and $56 \%$ ); also in both types innovations involving continuous progress occur more frequently than is the case for innovations in general.

Most of the remaining elements in Table 2.25, however, are more characteristic of one innovation type than of the other. Innovations as they apply to all curriculum areas tend to involve team teaching (39\%), open space (35\%), differentiated staffing (14\%), building changes (11\% - presumably required by the open space design), multi-age groupings ( $10 \%$ ), and, finally, the courses tend to be ungraded (21\%), although to a lesser extent than is the case for the innovation as it applies to specific currlculum areas.

When the innovation is applied to specific curriculuntareas it is nore likely to involve an ungraded approach ( 30 ), employment of teacher aides and tutors (22\%) and the use of learning packages (172).

Finally, it appears that innovations in this category are less likely to be district-wide in their toverage than are innovations in general. In particular, none of the innovacions in our sample which applied to spectfic curriculum areas hod beell institutes on a district-wide basis.

## H. SUMMARY

Responses to the quest ionnaire indicated that school systems all across the country are heavily involved in experimenting with new innovations. Out of the 322 school districts with iess than 80,000 students which responded to the questionnaire, 315 were able to report that they had instituted an innovation of significant proportions during the $1970-71$ school year. All of the 31 districts with 80,000 or more students which returned questionnaires had significant innovations to report. These "showcase" innovations were divided into five categoriss; "individualized instruction and team teaching," "administrative innovations," "programmatic approaches to instruction," "curriculum changes and instructional facilities and technology," and "organizational innovations."

In representative districts of enrollment under 80,000 the most common area of innovation was "individuaiized instruction and team teaching;" $29 \%$ of innovations in these districts were of this type. The most common innovations in very large districts (enrollment of 80,000 or more) were admifistrative in nature; $35 \%$ of innovaions in these districts fell into this category. On the whole, however, there were no significant differences in the types of innovations which were introduced by districts of different sizes. Nor were there any differences in the types of innovations introduced in school districts in different regions of the country.

Nearly half of the showcase innovations were designed for elementary grade students and a quarter were for senior high students. A large part of the remaining innovations affected all students in elementary through senior grades, while only a handful were designed specifically for students in the junior high or middle sthol grades.

When the showcase innovation was specific to particular curriculum areas, these areas were most frequently reading, math, Engiish or occupational and vocational preparation. Innovations in the category of individualized instruction and team teaching were most likely to concentrate on reading and math; innovations in the area of progranmatic approaches tended to be connected with either reading or vocational preparation, and curriculum changes were most frequently in English.

When showcase innovations were targetted to specific groups of students t eere was very strona emphasis on students with iow performance records;


Many of the showcase innovations we re complex and contained many elements whi:h defied simple classification (Table 2.21). The most complex as well as the most popular innovation was "individualized instruction and team teaching." Innovations of this type fiequently included such features as an open space concept, ungraded or continuous progress approaches, multi-age classes and differentiated staffing. A "orofile" giving further Insight into the nature of Individualization was drawn up on the basis of the descriptive elements (Table 2.25): Sometimes the innovation was designed for specific curriculum areas, but more commonly it was general in nature and applied to all curriculum areas. In $80 \%$ of cases it was designed for elementary grade students.

The scarcity of certain innovations is also worthy of note. Only one district reported that performance contracting was the major innovation, and only three districts initiated human relations programs. There were very few cases of packaged materials or courses among the showcase innovations ( 8 cases, or $3 \%$ ), and in addition only 13 districts (4\%) reported new instructional technology or facilities, including computers in two districts. Alternative schools were operated by four districts and model schools by five districts; one of these model schools was designed as a "magnet" school.

The broad picture which emerges shows that while the school systems are being innovative they are not being radicai or daring. Although very large districts find it more necessary to improve thelr complex admintstrative operations, all districts place emphasis in the instructional areas on improving the basic skills of the students. When the regular curriculum fails to give an adequate level of basic skills to the young child or to hold the interest of the high school student, special Instructional programs are inftiated to fill the gap. In the elementary years the thrust is towards improving reading and math skills through individualized or remedial instruction. At the senior high level the English curriculum is made more appealing through the introduction of unit courses, mini-course's and electives, and there is also provision made for occupational preparation and vocationai training for those students not headed for college. With this emphasis on basic skills of the youngest and oldest students, prograris for the gifted students and students in the middle school years are ravely given much attention.

## QHAPTER THRE: THE TOTA 1970-71 INOVATIVE EFPORT

In addition to exploring the most significant ("showcase") innovation of each school district in our sample, the questlonnal re also sought to determine the extent and nature of the total innovatlve effort of each system during the time period under study. Superintendents were asked to make a brief listing of addltional innovations introduced or attempted during the 1970-71 school year, using the same criterla which were outlined for the showcase innovation. *

Five superintendents of representative districts indicated that no further innovations had been attempted. Other superintendents listed between one and 43 innovations each; a total of 2531 innovations were reported in this "Inventory" by representative districts and 348 by very large systems. When these flgures are added to the number of showcase innovations reported, the mean number of innovations in the 1970-71 school year is 8.84 for representative districts and $\mathbf{1 2 . 2 2}$ for very large districts.

This finding that the very large districts were more "innovative" than the representative districts was indicative of a further finding. Breaking the representative districts into six size categories, and adding the very large districts as a seventh category, it was found that "innovativeness" had a . 27 correlation with size of district. Regional differences were also found to exist; the New England states were the most innovative, with a mean number of 10.70 inventory innovations per district. Districts in the Rocky Mountain region were the least innovative, with a mean of 6.58 innovations. Means for other regions of the country ranged from 7.25 to 9.55 innovations per district. These relationships as well as other correlates of innovatlveness will be explored further in a later chapter.

## A. CATEGORIES OF THE 1970-71 INNOVATIVE EFFORT

The distribution of inventory responses in the five innovation categories are given in Table 3.1. The figures already reported for the showcase innovation are aiso given for comparative purposes, and the inventory and showcase figures are then combined to represent the total 1970-71 innovative effort.

## (Insert Table 3.1 here)

Table 3.1. indicates that the greatest innovative effort for all districts was in the category of "curriculum change and instructional facilities and technology," with $39 \%$ of inventory innovations for representative schoois and

[^2]table 3.1
total 1970-71 innovat IVE effort

|  | INNOVATION OESCRIPTION CATEGORIES |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Innovation Category | こistijets < gs, 00才 |  |  | 0!str:ets $\geq 20,000$ |  |  |
|  |  | Tnven- tory Freq. $\%$ | $\begin{gathered} \text { Show } \\ \text { case } \\ \text { Freq. \% } \end{gathered}$ | $\begin{aligned} & \text { Total } \\ & 70-71 \\ & \text { Freq. } \% \\ & \hline \end{aligned}$ | ```Inven- tory freg.``` | $\begin{gathered} \text { Show } \\ \text { case } \\ \text { freq. \% } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Total } \\ 70-71 \\ \text { Freq. } 2 \\ \hline \end{array}$ |
| (4) | 1. Curriculum Change and Instructional facilities and Technology | (990) 39 | (62) 20 | (1052) 37 | $(127) 37$ | ( 1) 3 | (128) 34 |
| (2) | 2. Administrative Innovations | (716) 28 | (67) 21 | (783) 27 | (115) 33 | (11) 35 | (126) 33 |
| (1) | 3. Individualized Instruction and Team Teaching | (380) 15 | (90) 29 | (470) 16 | ( 41) 12 | ( 5) 16 | ( 46) 12 |
| (3) | 4. Programmat lc App roaches to Instruction | (278) 11 | (59) 19 | (337) 12 | ( 32) 9 | (6) 19 | $(38) 10$ |
| (5) | 5. Organizational Innovations | (167) 7 | (37) 12 | (204) 7 | ( 33) 9 | ( 8) 26 | (41) 11 |
|  | Total | (2531) 100 | (315) 100 | (2846) 100 | ( 348 ) 100 | (31) 100 | (379) 100 |
|  | No Innovation or No information | ( 5) | $(7)$ |  | $\left(\begin{array}{l}\text { ( }\end{array}\right.$ | ( -) |  |
|  | Grand Total | ( 2139 ) | (322) |  | (281) | (31) |  |

37\% for very large schoois falling in this category. These percentages are far greater than those reported for the showcase innovation, suggesting that al though the greatest number of innovations which were introduced were in this area, they were often not considered to be among the most significant innovations attempted.

The proportion of innovations in the administrative area listed in the inventory were roughly the same as reported for the showcase innovation, while inventory innovations in the other three innovation categories represent only about half the proportion reported for these same categories for showcase innovations. It would thus appear that altnough proportionally fewer innovations were introduced in the areas of "individualized instruction and teaf teaching," "programmatic approaches to instruction," and "organizational innovations," these tended to be considered as the rore significant innovations.

The percentages of inventory innovations in each of the flve categories ars very similar for representative and very large districts. Each of the fiv: categorles will be examined in more detall below.

1. CURRICULUM CKANGE AND instructional facilities

The largest number of inventory innovations were in the category of "currlculum changes and instructional facilities and technology," with $39 \%$ for representative school systems and $37 \%$ for very large systems. This is In sharp contrast with the showcase innovations reported in this category, which included $20 \%$ of showcase innovations in representative schools and only 36 in very large schools. Table 3.2 shows the frequency and percent distributions. of inventory and showcase Innovations and the total 1970-71 innovative effort for the speciflc types of innovatlons within this category.

TABLE 3.2
TOTAL 1970-71 INNOVATIVE EFFORT CURRICULUM CHANGE AND INSTRUCTIONAL FACILITIES


* Less than 0.5\%


## a. Curriculum Changes

Reviaion.in specifis curriculumareas accounted for $19 \%$ of all inventory innovations in representative. districts and $17 \%$ in very large systems; in the area of curriculum changes this accounts for the major difference between inventory and showcase innovations. There were oniy 9 additional innovations in the area of packaged courses and materials reported in the inventory for representative districts, and one in very large districts.

## b. Instructional Technology \& Facilities

There were significantly more innovations reported in the area of instructional technology and facilities in the inventory than was the case for the showcase innovation; both representative and very large districts reported $17 \%$ of inventory Innovations in this area. Media centers were reported more frequently than for the showcase innovation, and new laboratories and other facilities represented $3 \%$ of inventory innovations for all districts. These included scientific laboratories, reading laboratories, study çarrels, and other special facllities.
of particular interest is the fact that school distficts of both size categories acquired new technological devices which accounted for $10 \%$ of inventory innovations, though these seldom rated as showcase innovations. It is of interest to examine this type of innovation in more detall; Table 3.3 presents the frequency of mention of various new technological equipment and devices.

TABLE 3.3
TECHNOLOGICAL EQUIPMENT AND DEVICES
mentioned in the inventory

| Equipment and Devices | Districts <br> $<$ <br> 80,000 | Districts <br> $\geq 80,000$ <br> Freq. |
| :--- | :---: | :---: |
| Videotape, TV VV |  |  |
| Computer | 92 | 10 |
| Audio Tape, Tape Recorders | 54 | 13 |
| reaching Machines | 24 | 3 |
| Audiovisual, film | 18 | 4 |
| Electronic Data Processing Equipment | 19 | - |
| Electric Typewriter, Calculator | 8 | 1 |
| Other | 8 | 1 |
| Total | 23 | 2 |

Whereas representative school districts acquired a greater proportion of videotape equipment, very large systems acquired a larger proportion of computers. Included in the "other" category were a wide variety of devices fanging from microfilm readers and xerox machises to picturephones and an aero-space module.

## 2. ADMINISTRATIVE INNOVATIONS

The second most frequently mentioned category of innovations in the Inventory were those in the administrative area. Table 3.4 gives the frequency and percent distributions for Innovation types in this area for both representative and very large districts. The pattern of frequenc $\overline{\text { p }}$ for both sizes of school systems is very similar.
(Insert Table 3.4 here)

Human relations programs were mentioned frequently in the inventory by superintendents of both representative districts (5\%) and very large districts (7\%). In districts of all sizes "planning, research and evalution" itnovations represent $4 \%$ of the total of inventory innovations. This is in contrast with the $13 \%$ of showcase innovations of this type in very large schools, which suggests that when these innovations were adopted they were often considered to be the most significant innovation in the district.
included in "other student=related issues" are such innovations as the revision of a suspension policy, a new discipline pollcy and the institution of a policy of student rights and responsibilities. "other staff"related issues" include innovations in the area of staff promotion practices, teacher negotiations, and inter-school visitation programs. New health services, food services and the renovation or acquisition of buildings are included in "plant issues".

## 3. INDIVIDUALIZEO INSTRUCTION AND TEAM TEACHING

Table 3.5 shows the proportion of innovations in individualized instruction and team teaching which applied to all curriculum areas and those which applied only to specific areas. For both types of unnovation and for both sizes of school districts the percentages of inventory innovations were less than for showcase innovations. Whereas this innovation category ranked first

$$
\text { (Insert Table } 3.5 \text { here) }
$$

for showcase innovations, it ranks third for inventory innovations.

TABLE 3.4
TOTAL 19\%-7I INNOVITIVE EFFORT
ADMINISTRATIVE :NNOVATIONS

| Innovation | - Distriets. $<80,000$ |  |  | Districts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inventory Freq. \& | $\begin{array}{r} \text { Show- } \\ \text { case } \\ \text { Freq. } \% \end{array}$ | $\begin{array}{r} \text { Total } \\ 70-71 \\ \text { freq. } \quad \% \end{array}$ | Inventory freq. | $\begin{gathered} \text { Show- } \\ \text { case } \\ \text { Freq. } \% \end{gathered}$ | $\begin{array}{r} \text { Total } \\ 70-71 \\ \text { Freq. } \end{array}$ |
| a. Relatlons With Community, Parents $\bar{E}$ Students |  |  |  |  |  |  |
| Human Relations Programs | (125) 5 | ( 3) 1 | (128) 5 | (25) 7 | ( -) | (25) 6 |
| Guidance \& Counseling | (51) 2 | (11) 3 | (62) 2 | ( 6 ) 2 | (r) | (6) 2 |
| Public Relations Prog. | (38) 2 | (3) 1 | (41) 1 | (7) 2 | ( - ) | ( 7) 2 |
| Desegregation | (22) 1 | (3) 1 | (25) 1 | (7) 2 | (2) 6 | (9) 2 |
| Parent-Teacher Conf. | ( 11) * | ( 2) 1 | (13) * | ( - - - | ( -) | ( - ) - |
| b. Staff-Related Issues |  |  |  |  |  |  |
| In-Service Training | (120) 5 | (11) 3 | (131) 5 | (13) 4 | (1) 3 | (14) 4 |
| Internship | ( 7) * | ( - ) $=$ | ( 7) * | (1) * | ( - ) | (1) $n$ |
| Release Time | ( 8) | (-) - | ( 6) * | ( - ) | ( -) | (-) - |
| Teacher Corps | ( 4) * | ( 1) * | ( 5) * | ( -) - | (-) | ( -1$)=$ |
| Other | $(12)$ | ( -) | ( 12) | ( 1) * | ( - ) | ( 1) * |
| c. Research, Deve lopment $\varepsilon$ |  |  |  |  |  |  |
| Planning, Res., \& Eval. | (108) 4 | (14) 4 | (122) 4 | (15) 4 | (4) 13 | (19) 5 |
| Curriculum Development | $(19)$ | (7) 2 | (26) 1 | (8) 2 | (1) 3 | (9) 2 |
| Finance Allocation | $(17) \quad 1$ | ( 3) 1 | ( 20) 1 | (2) 1 | ( -) - | (2) 1 |
| Performance Contracting | $(5)$ | (1) * | ( 6) * | (2) 1 | (-) - | (2) 1 |
| d. Administrative Structure |  |  |  |  |  |  |
| Decentrailzation | ( 36) | (2) 1 | ( 38) 1 | ( 8) 2 | (2) 6 | (10) 3 |
| Staff Structure Changes | (35) 1 | (3) 1 | ( 38) 1 | (7) 2 | (1) 3 | ( 8) 2 |
| e. Student-Related Issues |  |  |  |  |  |  |
| Progress Reports | (44) 2 | ( - ) | ( 14, 2 | ( 5) 1 | ( - ) | ( 5) 1 |
| Other | ( 25) 1 | ( 1) * | ( 26) 1 | (5) 1 | ( - ) | ( 5) 1 |
| f. Plant issues | ( 30) 1 | ( 1) * | ( 31) 1 | $\left(\begin{array}{ll}(3) \\ \hline\end{array}\right.$ | (-) | ( 3) 1 |
| g. Administrative Philosophy | ( 1) * | ( 1) * | ( 2) * | ( - ) | (-) | ( - ) - |
| Total | (716) 28 | (67) 21 | (783) 27 | (115) 33 | (11) 35 | (126) 33 |

TABLE 3.5
TOTAL 1970-71 InNOVATIVE EFFORT
INDIVIDEALIZED INSYRUCTION ANO TEAM TEACHING

| Innovation | Districts $<80,000$ |  |  | Districts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Tnven- tory Freq. $\&$ | Show- case Freq. $\%$ | $\begin{aligned} & \text { Total } \\ & 70-71 \\ & \text { freq. } \% \end{aligned}$ | Cnven- tory Freq. $\%$ | $\begin{gathered} \text { show } \\ \text { case } \\ \text { Fra. } \% \end{gathered}$ | $\begin{gathered} \text { Total } \\ 70-71 \\ \text { freq. } \% \end{gathered}$ |
| a. Applies to all Curriculum Areas | (338) 13 | (69) 22 | (407) 14 | (38) 11 | (3) 10 | (4) 11 |
| b. Applies to Specific Curriculum fireas | (42) 2 | (21) 7 | ( 63) 2 | (3) 1 | (2) 6 | (5) 1 |
| rotal | (380) 15 | (90) 29 | (470) 16 | (41) 12 | (5) 16 | (46) 12 |

## $4, \cdots$ PROGRAMMATIC APPROACHES TO INSTRUCTION

Table 3.6 presents in detall the distribution of inventory innovations in the catcigory of "programmatic approaches to instruction". "special instructional programs" amounted to only $3 z$ of inventory innovations in both size samples

$$
\text { (Insert Table } 3.6 \text { here) }
$$

whereas they totalled $11 \%$ and $12 \%$ of showcase innovations for rep.esentative and very large districts respectlvely. Particularly notable are the low proportion of remedial programs and the absence of pre-school programs in the inventory.

The employment of trained teacher aides represented $3 \%$ of inventory innovatiuns in representative schools, whereas this figure was $1 \%$ for showcase innovations. Only three cases of cross-age tutoring were reported on the inventory.

Included in the category of "other programmatic approaches" vere several cultural programs, an agriculture program, a program fo" teen age mothers, and a variety of other approaches designed to improve the effectiveness and relevance of the school experience.
5. ORGANIZATIONAL INNOVATIONS

Very fed "organiz,tional" innovations were mentioned in the inventory: only 7 f of innovations for representative school systems and 9 for ve.y

TABLE 3.6
TOTAL $\$ 970-71$ INNOVATIVE EFFORT
PROGRAMMATIC APPROACHES TO INSTRUCTION

|  | Districts $<80,000$ |  |  |  |  |  | Districts $\geq 80,000$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Innovation | Inventory |  | $\begin{aligned} & \text { Show- } \\ & \text { case } \\ & \text { Freq. } \% \end{aligned}$ |  | $\begin{aligned} & \text { Total } \\ & 70-71 \end{aligned}$ <br> Freg. * |  | Inventory freq. | $\begin{gathered} \text { Show- } \\ \text { case } \\ \text { Freq. } \% \\ \hline \end{gathered}$ |  | $\begin{array}{r} \text { Total } \\ 70-71 \\ \text { Freg. } \end{array}$ |
| a. Special Instructional Program |  |  |  |  |  |  |  |  |  |  |
| - Learning Disabilities . | ( 20) | 1 | ( 7) | 2 | ( 27) |  | ( 2) |  | ( -) - | ( 2) 1 |
| Compensatory | ( 17) | 1 | ( 6) | 2. | ( 23) |  | ( 3) |  | ( - ) - | ( 3)/ |
| Special Education | ( 14) | 1 | ( -1 | - | ( 14) |  | ( 2) |  | ( -) - | ( 2) 1 |
| 81-Lingual, Non-English | ( 10) | * | ( - ) | - | ( 10 ) |  | ( -1 |  | ( - ) - | ( - ) |
| Remedial | $(7)$ | * | (14) | 4 | ( 21) | 1 | ( 1) |  | (2) 6 | ( 3) |
| Pre-School | ( -) | - | ( 6) | 2 | $(6)$ | * | ( -) |  | (2) 6 | (2)1 |
| Gifted | $(2)$ |  | ( 2) |  | $(4)$ |  | ( - ) |  | ( - ) - | ( - ) |
| Other | ( 4) | * | ( - ) | - | ( 4) |  | ( 2) |  | ( -) - | (2) |
| b. Teacher Aides, Tutors $\delta$ paraprofessionals |  |  |  |  |  |  |  |  | - |  |
| Trained Aides | ( 75) | 3 | ( 2) | 1 | ( 77 ) | 3 | ( 4) |  | ( 1) 3 | ( 5) |
| Paraprofessionals | ( 21) |  | ( 2) |  | ( 23) | 1 | ( 2) |  | ( - ) - | ( 2) |
| Cross-Age Tutoring | ( 3) |  | (6) |  | $\left(\begin{array}{l}\text { ( } 9)\end{array}\right.$ | * | ( - ) |  | ( - ) - | ( - ) |
| Tutors (Unspecified) | ( 5) |  | (-) | - | ( 5) |  | ( 1) |  | (-) - | ( 1) |
| c. Work-Study, Occupational | ( 48) | 2 | ( 8) | 1 | ( 56) | 2 | ( 5) |  | ( 1) 3 | (6) |
| d. Other Programmatic Approaches | ( 52) | 2 | ( 6) | 2 | ( 58) | 2 | (10) |  | ( - ) - | $\begin{gathered} (10) \\ 3 \\ \hline \end{gathered}$ |
| Total | ( 278 ) | 11 | (59) | 19 | ( 337 ) | 12 | ( 32) |  | ( 6) 19 | $\begin{aligned} & (38) \\ & 10 \end{aligned}$ |

$\therefore$ Less than 0.5\%
large districts are in this category; these figures are considerably smaller than the $12 \%$ and $26 \%$ respectively for showcase innovations, although this was also the least frequently mentioned category for showcase innovations. Table 3.7 presents the distribution of innovations within this category.
tabl

"Less than 0.5\%

Only $2 \%$ of inventory innovations in representative districts were concerned with alterations in the grade and at tendance unit, whereas $6 \%$ of showcase innovations for these districts were of this type. For very large schools $3^{\prime \prime}$ of inventory innovations were of this type. The next most frequently mentioned organizational innovation was flexible-modular scheduling which was listed by $2 \%$ of the districts in both size groups. No other innovation type in the organizational category was mentioned in more than $1 \%$ of cases in tither size sample.

## 8. THE TOP TEN 1970-71 INNOVATIONS

Combining the figures for the showcase innovation and the inventory, d list may be drawn up which represents the top ten 1970-71 innovations in both sizes
of school districts combined. This list 15 prepared for purposes of comparison with the top ten showcase innovations, although the latter will continue to be used for detailed analysis in the remainder of this report. Table 3.8 lists the top ten 1970-71 innovations in decreasing order of frequency of mention. Included in this list are all innovations which were mentioned 97 times or more by all districts combined ( $3 \%$ of total 1970-71 Innovations).

TABLE 3.8
THE TOP TEN 1970-71 INNOVATIONS

| Rank in Top Ten Showcase | Innovation | Innovation Category | $\begin{aligned} & \text { Districts } \\ & <80,000 \\ & \text { Freq. \& } \end{aligned}$ | $\begin{aligned} & \text { Districts } \\ & \geq 80,000 \\ & \text { Freq. } \end{aligned}$ | $\begin{aligned} & \hline \text { Total } \\ & 70-71 \end{aligned}$ Freq. | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1. Curriculum Revision in Specific Areas | Curr. Change. $\varepsilon$ Instr. Tech. | (504) - 18 | (60) 16 | (564) | 18 |
| 1 | 2. Ind. Instr. \& Team Teaching - All Areas | Ind. Instr. \& Team Teach. | (407) 14 | (41) 11 | (448) | 14 |
| - | 3. Technological Devices E Equipment | Curr. Change $\varepsilon$ Instr. Tech. | (248) 9 | (34) 9 | (282) | 9 |
| - | 4. Human Relations Program | Adminlstrat 1 ve | (128) 5 | (25) 7 | (153) | 5 |
| 8 | 5. In-Service Training \& Workshops | Administrative | (131) 5 | (14) 4 | (145) | 4 |
| 6 | 6. Planning, Research $\varepsilon$ Evaluation | Administrative | (122) 4 | (19) 5 | (141) | 4 |
| 2 | 7. Special Instructional Programs | Programmatic Approaches | (109) 4 | (14) 4 | (123) | 4 |
| 10 | 8. Teacher Aides, Tutors \& Paraprofessionals | Programmatic Approaches | (114) 4 | (8) 2 | (122) | 4 |
| - | 9. Medía Centers | Curr. Change $\varepsilon$ Instr. Tech. | ( 97) 3 | (10) 3 | (107) | 3 |
| 7 | 10. Unit Courses, MiniCourses \& Electives | Curr. Change $\varepsilon$ Instr. Tech. | $(95){ }^{1} 3$ | (12) 3 | (107) | 3 |
|  | Total |  | (1955) 69 | (237) 63 | (2192) | 68 |

In the: left hand colunin is given the rank order of each innovation which was listed in the lop ten showcase imnovations. Seven imovalions
 showcase top ten are "technological equipment and devices," Haman relations progrars," and "padia centers". Top ten showease innovations with do not rank in the $1970-71$ top ten list are "individualized instruction and tean teaching in specific curriculum areas," "grade and attendance unit," and 'guidance, counseling and diagnosis."

The top ten 1970-71 innovations are drain from only four of the five innovation description categories: no organizational innovations were mentioned frequently enough to be included in this list.
C. GRAOE LEVEL OF THE INVENTORY INNOVATIONS

## I. DISTRICTS WITH LESS THAN 80,000 STUDENTS

Out of the 2531 innovations reported by representative districts in the inventory, 1185 , or $47 \%$ could be identified as applying to specific yrade level categories. Table 3.9 presents the percent distribution of innovations in each of the five innovation categories across five grade levels.

TABLE 3.9
GRAOE LEVEL OF THE INVENTORY INNOVATION CATEGORIES PERCENT OISTRIBUTION

$$
\text { OISTRICTS }<80,000
$$



As was the case for showcase innovations, more inventory Innovatlons were Introduced at the elementary level (40\%) or senior high school level (36\%) than were introduced for junlor or middle school grades (18\%). However, the figure for the middle grade level is higher than that found for the middle level showcase Innovation (4\%). Very few innovations (4\%) applied to all grade levels, elementary through sentor high, whereas this figure was $19 \%$ for the showcase innovation. The remaining $3 \%$ of innovatlons were intended for other groups of students, including pre-schoolers and adults.

Some variations may be noted among the innovation categories. The greatest percentage of organizational innovations (34\%) were intended for the junior or middle school student, whereas no organizational showcase innovations applied to this grade level. About tise same number of innovations in the category of "Individualized instruction and team teaching" were deslgned for midde school students (21\%) as for senior high students (20\%), but by far the greatest percentage of innovations in this category were developed for the elementary student (56\%).

## 2. DISTRICTS WITH 80,000 OR MORE STUDENTS

Of the 348 inventory innovations reported by superintendents of very large schools, 155 , or $44 \%$ were speclfled as applying to a particular grade level. Table 3.10 glyesthe percent distribution of innovations in the five categories for these schy
(Insert Table 3.10 here)

As in the representative sample, very few Inventory innovations in the very large districts could be identified as applying to all grade levels from elementary through senior high (5\%), and agaln $3 \%$ of Innovations were intended for other groups of students. Almost the same percentage of innovations in very large schools were designed for the junior or middle school level (19\%) as in representative districts, but in very large schools somewhet more innovations were intended for the senior high student (41\%) than for the elementary student (32\%).

The Innovation category of "individualized instruction and team teaching" is the only inet which deviates significantly from the overall pattern; for - this inndivation type $75 \%$ of innovations were intended fete the elementary student, with only $10 \%$ being designed for the senior high level/? There were slightly more innovations in the administrative category which applied to all grade levels from elementary through senior high (12\%) than was the case for the other innovation categories. Finally, the largest percentage of innovations for students outside the regular $\mathrm{K}-12$ system was the category of "programmatic approaches", with $16 \%$.

TABLE 3.10
grade level of the inventory innovation category
PERCENT DISTRIBUTION
DISTRICTS $\geq 80,000$

| Innovation Grade Level | Innovation |  |  |  |  | Conbined$N=155 .$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ```Curr. Rev. & instr. Facil. N=76``` | Administrative $N=16$ | Ind. Instr. $\varepsilon$ Team Teaching $N=20$ | Prog. Approaches $N=19$ | $\left\{\begin{array}{c} \text { organiza- } \\ \text { tional } \\ N=24^{\prime \prime} \end{array}\right.$ |  |
| Elementary | 24 | 38 | 75 | 32 | 21 | 32 |
| Junior/Middie | 21 | 12 | 10 | 21 | 21 | 19 |
| Scoior High | 50 | 38 | 10 | 32 | 50 | 41 |
| Elem. -Sr. High | 5 | 12 | 5 | - | 4 | 5 |
| Other | - | $\sim$ | - | 16 | 4 | 3 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 |
| No Information | $N=51$ | N=99 | $\mathrm{N}=21$ | $N=13$ | $N=9$ | $N=193$ |

## D. SUMPMRY

In this chapter ar "inventory" of all innovations reported in the 1970-71 school year was examined and compared with the findings on the showcase innovation, described in Chapter Two. Superintendents listed between zero and 43 innovations on the inventory; a total of 2531 innovations were reported by representative districts and 348 by very large districts. Combining these figures with the number of showcase innovations reported, it was found that the mean number of innovations in the $1970-71$ school year was 8.84 for representative districts and $\mathbf{1 2 . 2 2}$ for very large districts. When all districts were divided into seven size categories a very definite correlation (.27) was fornd between "innovativeness" and size of djstrict. Regional diffefrences were also found, with the New England states being the mott ipndfative farmean of 10.70 inventory innovations per district) and'the Rocky Mouncaln state feing the least innovative (a mean of 6.58 innovations per district) districts in other regions of the country reported means of between 7.25 and 9.55 inventory innovations.

The pattern of the total innovacive effort differed somewhet from that of the showcase innovation. The iargest percentage of inventory innovations was in the category "currlcuium change and instructional faciilties"; since this ranked fourth out of the five showcase innovation categories, It may be concluded that when innovations were introduced in this area they were less likely to be considered as "most significant". On the other hand, smaller percentages of inventory innovations appeared in the categories of "individualized instruct ${ }^{\text {a }}$ and team teaching," "programmatic approaches," and "organ" izational innovatlons," Indicating that when such Innovations were adopted they were more likely to be considered as "most significant."

Table 3.8, which lists the ten most common Innovations reported in the inventory, shows that a significant number of districts adopted new technological equipment and devices, even though these rarely appeared as showcase innovations. Similarly, human relations programs were adopted in many districts although here again few were reported as showcase innovatlons. Popular showcase innovations which appeared less frequently on the Inventory included individualizẹd instruction and team teaching in specific curriculum areas, and changes in the grade and attendance unic structure.

As was the case for the showcase lnnovations, the largest numbers of inventory innovatlons were designed for students at the elementary and senlor high levels, although a larger percentage of Inventory innovations than showcase innovatlons were intended for students at the junlor or middle level. Fewer inventory lnnovations applied to all students from elementary grades through sentor high school.

## GUATER FOUR: INOOUATIONS PAMFD FOR 1972 WD AETIR

After superintendents had responded to a series of questions concerning the show ase innovation, they were asked if there was another major area or problem on which they were planning to make changes in the next school year (Question 4 a ). Out of the 322 representatiye districts 249 , or $77 \%$, already had plans in mind; for the very large districts $: 8$, or $90 \%$, had specific innovations planned for the 1971-72 school year. Some superintendents listed two or three major innovations which wefe planned; for representative districts a total of 366 innovations were reported, while in very large systens 47 innovations were mentioned.

## A. CATEGORIES OF FUTURE inNOVATIONS

Tatle 4.1 gives the distribution of projected innovations across the five innovation description categories, and it also shows the total 19\%-71 innova" tive effort for comparative purposes.

TABLE 4.1.
COMPARISON OF FUTURE INNOVATIONS WITH TOTAL 1970-7I EFFORT INNOVATION OESCRIPTION CATEGORIES

| Rank Order of Total 1970-71 Effort | Innovation Category | Districts $<80,000$ |  |  | Oistricts $\geq 80,000$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Fouture | 1970-71 |  | Future |  | 1970-71 |  |
|  |  | Freq... $\quad$ \% | Freq. | \% | Freq. | \% | Freq. | $\%$ |
| 2. | 1. Administrative | (110) 30 | ( 783) |  | (23) |  | (126) |  |
| 1. | 2. Curr. Change $\varepsilon$ Instr. Facilities | ( 98) 27 | (1052) |  | ( 8) |  | (128) |  |
| 3. | 3. Individualized Jnstr. $\varepsilon$ Team Teaching | $(74) \% 0$ | ( 470) |  | ( 3) | 6 | ( 46) |  |
| 5. | 4. Organizational | (47) 13 | ( 204) | 7 | (10) | 21 | (41) |  |
| 4. | 5. Programmatic Approaches | ( 37) 10 | ( 337) | 12 | ( 3) | 6 | ( 38) | 10 |
| , . | Total | (366) 100 | (2846) |  | (47) | $100^{1}$ | $(379)^{f}$ |  |
|  | No Information | ( 73) | 1 |  | ( 3) |  | $!$ |  |

In representative districts of less than 80,000 students only minor differences appear between the thrust of 1970-71 innovat lons and those planned for the future, with the biggest difference belng a somewhat smaller emphasis planned for innovatlons in the area of currlculum change and instructlonal technology and facilities (27\% in the future as opposed to $37 \%$ In 1970-71). In very large school districts the trend is the same but with somewhat larger differences; whereas 34\% of Innovaticins in 1970-71 were in the area of curriculum change and instructional faclitites, only $17 \%$ are expected to be in this area in the future. On the other hand, more emphasis is planned for administrative innovations, with $49 \%$ of all planned innovations being in this category as opposed to $33 \%$ in the $1970-71$ year. Somewhat more emphasis is also likely to be placed on organlzational innovations in very large school systems (21\% as opposed to $11 \%$ in the prevlous year).

Some superintendents indicated that the major innovation planned for the 1971-72 school year would be a continuation, revision or expansion of the 1970-71 showcase innovation. Tables 4.2 and 4.3 show the percentage of showcase innovations which will be continued in this way in the future in representative systems and very large systems respectively.

TABLE 4.2
FUTURE INNOVATIONS WHICH ARE A CONTINUATION OF THE SHOWCASE INNOVATION

DISTRICTS < 80,000


TABLE 4.3
FUTURE innovations which are a continuation of the showlase innovation

DISTRICTS $\geq 80,000$

| Innovation Cotegory | Future Continuation !nnovations Freq. | Showcase Innovations Frea. | Percent of Showcase Continuing In future \% |
| :---: | :---: | :---: | :---: |
| Adntinistrative | 6 | 11 | 55 |
| Curr. Change \& Instr. Facilities | 1 | 1 | 100 |
| Ind. Instr. \& Tean Teaching | 1 | 5 | 20 |
| organisutional | 4 | 8 | 50 |
| Progranmatic Approaches | - | 6 | - |
| Total | 12 | $3 i$ | 39\% |

For all innovation categories combined $20 \%$ of showease innovations int representative districts will concinue to constitute the major innovative effort in the future: among the innovation categories there is little variation, with slightly less continuing innovations in "curriculum change and instructional facilities" ( $16 \%$ ) and slightly more continuing innovations in individualized instruction and team teaching (25\%).

- The frequencies in Table 4.3 are too small to provide a valid comparison of very large districts with representative districts across the innovation categories, but it is perhaps notable that $55 \%$ of showcase innovations in the administrative category will continue to be major innovations in the future. Half of the organizational showcase innovations will be continued in a major way in the future, and, overall, $39 \%$ of showcase innovations in the very large schools will continue to be the innovation for the future, a figure nearly double that for representative districts.


## 1. ADMINISTRATIVE INNOVATIONS

Table 4.4 presents the distribution of administrative innovations planned for the future across the Innovation types withln this category, again showing the total 1970-7l effort for comparative purposes. In all districts it is
(Insert Table 4.4 here)
expectot $4 .=$ i: ite future an increased emphasis wlll be piaced on innovations in the area of research, development and budget issues, and an increase in innovations is also planned in the area of building and physical plant issues.

Whereas in representative school systems there is a planned decrease in the amount of innovatlve effort in the areas of "reiations with community, parents and students" and "staff-related issues", future plans in these areas as well as others in the very large school systems will remain roughly the same as in the 1970-71 school year. Thus we see that overall there will be a sizable increase in the number of administrative innovations at tempted by very large schools ( $49 \%$ in 1971-72 as opposed to $33 \%$ in 1970-71), wille innovations in this category ln representative districts will remain fairly constant (30\% in 1971-72; 27\% in 1970-71).
2. CURRICULUM CHANGES AND INSTRUCTIONAL FACILITIES

Future innovations which the school districts had planned for the year 1971-72 in the area of curriculum reviston and instructional technology and facilities are listed in table 4.5 . In representative schools the proportion

$$
\text { (Insert Table } 4.5 \text { here) }
$$

of changes planned in curriculum areas was expected to remain the same as in the previous year, but a drop was expected in the number of innovations planned in instructional technology and facilitles, from $15 \%$ to $6 \%$. The biggest single drop anticipated was in the amount of new technological devices and equipment which would be acquired.

In very large schools a decrease in the proportion of innovations both in corr!culum and technology was expected, agaln with the largest decrease beint expected in the area of technology and devices, a drop from $9 \%$ of all innovations to $2 \%$.

```
TABLE 4.4
COMPARISON OF FUTURE INNOVATIONS WITH TOTAL 1970-71 EfFORT ADMINISTRATIVE :NNOVATIONS
```


table 4.5
COMPARISON OF FUTURE INNOVATIONS WITH TOTAL 1970-71 EFFORT CURRICULUM CHANGE AND INSTRUCTIONAL FACILITIES


## 3. INDIVIDUALIZED INSTRUCTION AND TËAM TEACHING

The third ranking innovation category both in the total 1970-71 school year and in plans for the 1971-72 perlod was "Individualizedyinstruction and team teaching." Table 4.6 lists the frequency of mention of this innovation
(Insert Table 4.6 here)
both as it applies to all curriculum areas and as it applies to specific curriculum areas. Innovations in this area wlll increase very slightly in the future in representative school systems and will decrease very sllghtly in very large districts, but these differences are not large enough to be significant.
table 4.6
COMPARISON OF FUTURE INNOVATIONS WITM TOTAL 1970-71 EFFORT individunlized instruction e team teaching

| Innovation | Districts < 80,000 |  | Oistricts $\sum 80,000$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Future | 1970-71 | Future | 1970-71 |
|  | Freq. \% | Fredit \% | freq. \% | Freq. \% |
| a. Applies to All Curriculum Areas | (70) 19 | (407) 14 | (3) 6 | (41) 11 |
| b. Applies to Specific Curriculum Areas | (4) 1 | ( 63) 2 | (-) - | ( 5) 1 |
| Total | (74) 20 | (470) 16 | (3) 6 | (46) 12 |

4. ORGANIZATIONAL INNOVATIONS

The emphasis placed on innovations in the organizational category is expected to increase slightly in school districts in both size samples. Table 4.7 shows that in representative schools the overall increase from $7 \%$ to $13 \%$ is spread evenly through all innovation types within this category, with no significant increase in any one innovation type.

TABLE 4.7
COMPARISON OF FUTURE INNOVATIONS WITH TOTAL 1970-71 EFFORT ORGANIZATIONAL INNOVATIONS

| Innovation | Districts < 80,000 |  | Districts $\geqslant 80,000$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Future } \\ & \text { Freq. } \% \end{aligned}$ | $\begin{aligned} & 1970-71 \\ & \text { Freq. } \quad \% \end{aligned}$ | Future Freg. $\qquad$ | $\begin{aligned} & 1970-71 \\ & \text { Freq. } \end{aligned}$ |
| a. Operational Aspects <br> Grade \& Attendance Unit Semester Structure <br> Open Campus <br> Summer Program, Camp \& Out door Education <br> b. Instruction-Linked Aspects <br> Flexible-modular Scheduling Departmentalization <br> c. Model Schools <br> d. Alternative Schools <br> e. School-Within-A-School | $(12)$ 3 <br> $(10)$ 3 <br> $(3)$ 1 <br> $(1)$ 2 <br> $(8)$ 2 <br> $(3)$ 1 <br> $(7)$ 2 <br> $(2)$ 1 <br> $(1)$ $:$ |  | $\left(\begin{array}{cc}5\end{array}\right)$ 11 <br> $(2)$ 4 <br> $(-)$ - <br> $(-)$ - <br> $(1)$ 2 <br> $(-)$ - <br> $(1)$ 2 <br> $(-)$ - <br> $(1)$ 2 | $\left.\begin{array}{ll} (13) & 3 \\ (5) & 1 \\ (1) & 4 \\ (2) & 1 \end{array}\right] \begin{array}{ll} (8) & 2 \\ (1) & : \\ (7) & 2 \\ (4) & 1 \\ (-1) & - \end{array}$ |
| Total | (47) 13 | (204) 7 | (10) 21 | (41) 11 |

* Less than 0.5\%

In very large schools there will be an expected increase overall from $11 \%$ to 21\%; for single innovation types, the largest increase is expected in the area of changes in the grade and attendance unit structure (an increase from 38 to $11 \%$ ).

## 5. PROGRAMMATIC APPROACHES

Table 4.8 shows that in both representative school systems and very large districts a slight decrease is expected in the proportion of innovations in the category of programmatic approaches. Most notable is the fact that in

TABLE 4.8
COMPARISON OF FUTURE INNOVATIONS WITH TOTAL 1970-71 EFFORT PROGRAMMATIC APPROACHES

1

| Innovation | Districts $<80,000$ |  | Districts $\geqslant 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | -Future Freq. | $\begin{array}{ll} \text { T970-71 } \\ \text { Freq. } & \\ \hline \end{array}$ | Frequre \% | $\begin{aligned} & \text { F970-71 } \\ & \text { Freq. } \end{aligned}$ | $\%$ |
| a. Special Instructional Programs |  |  |  |  |  |
| Special Education | (5) 1 | ( 14$) 1$ | ( -) - | ( 2) | 1 |
| Learning Disability | (4) 1 | (27) 1 | ( -) - | ( 2) | 1 |
| Compensatory | (4) 1 | (23) i | (-) - | (3) | 1 |
| Gifted | ( 2) 1 | ( 4) * | ( - - | ( -1 | - |
| Remedial | ( 1) * | ( 21) 1 | (-) - | ( 3) | 1 |
| Bi-Lingual | ( 1) * | ( 10) * | ( - - | ( -1 | - |
| Pre-School | ( 1) $\quad$ * | ( 6) * | ( -) - | ( 2 ) | 1 |
| Other | (2) 1 | ( 4) * | ( - - | ( 2) | 1 |
| b. Teacher Aldes, Tutors $\varepsilon$ |  |  |  |  |  |
| Trained Aides | (1) * | ( 77) 3 | ( - ) | (5) | 1 |
| Paraprofessionals | ( - - | (23) 1 | ( -1 | ( 2) | 1 |
| Cross-Age Tutoring | (-) - | ( 9) * | (-) | (-) | - |
| Tutors (Unspecified) | ( - ) | ( 5) * | ( -) | ( 1) | * |
| c. Work-Study, Occupational Preparation | ( 4) 1 | ( 56) 2 | ( 1) 2 | (6) | 2 |
| d. Other Programmatic Approaches | (12) 3 | ( 58) 2 | (2) 4 | (10) | 3 |
| Total | (37) 10 | (337) 12 | ( 3) 6 | (38) 10 | 10 |

* Less than 0.5\%
very large districts no new special instructional progrants were plamed. wat no new imovotions were anticipated which would involve teacher aides, tutors or paraprofessionals. Only one representative district (less than $0.5 \%$ of future innovations) anticlpated introducing the use of teacher aides in the next year.


## B. THE TOP TEN FUTURE INNOVATIONS

The top ten future innovations include all those which received a total of 12 mentions from all school districts combined, or which represent $3 \%$ of all future innovations. Table 4,9 lists these top ten innovations in decreasing order of frequency of mention. In the left hand columns the rankings of these innovations in the top ten showcase list and the top ten innovations of the cotal 1970-71 effort are given.

TABLE 4.9
the top ten future innovations


The innovations ranking first and second in the list of future innovations (individualized instruction and team teaching; curriculum revision) were also the top two in the 1970-7l list, although in reverse order. Somewhat surprising is the fact that only a total of five lnnovations are on both lists, with the third, fourth and fifth ranking innovations from the total 1970-71 effort not placing in the top ten of the future. These three Innovations were "technological devices and equipment;" "human retations programs" and "in-service training and workshops."

The future top ten list resembles the top ten shawcase innovation list more closely than it does the list for the total 1970-7l effort. While only six showcase innovations are also on the future list, these include all of the top seven showcase innovations with the exception of the fourth-ranking innovation, "individualized instruction and team teaching in specific curriculum areas."

The fact that the top ten future innovations list is more simllar to the top ten showcase list than to the list for the total 1970-71 effort may be explained by the fact that the innovations planned a year in advance would tend to be the most significant of the innovations to be introduced in the future.

## C. GRADE LEVEL OF THE FUTURE INNOVATIONS

Of the 366 future innovations predicted by representative districts, 176 or $48 \%$ were identified as applying to specific grade level categorles. Table 4.10 gives the percent distribution of these innovations across five
(insert Table 4. 10 here)
grade levels. As was the case for the 1970-71 innovations, a higher proportion of future innovations were planned for the elementary grades and senior high students than for junior or middle school grades. Again, still fewer were planned for all grades elementary through senior high school (12\%), al though this figure is slightly higher than for the 1970-71 effort. The biggest contributor to innovatlons for all grade levels was the administrative innovation (23\%).

As was true for the 1970-71 effort, the innovation most commonly planned for the elementary grades in the future was in the area of individualized instruction and team teaching, with 67\%. The greatest percentage of innovatlons planned for students outside the regular grade levels ("other") were again in the area of programatic approaches (25\%); this represents an

TABLE 4.10
grade level of future innovation DESCRIPTION CATEGORIES
$<80,000$

| Innovation Grade Level | Innovation |  |  |  |  | $\left\|\begin{array}{c} \text { Combined } \\ N=176 \end{array}\right\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Adminis. trative $\mathrm{N}=39$ | $\begin{aligned} & \text { Curr. } \varepsilon \\ & \text { Tecrnology } \\ & N=46 \end{aligned}$ | Ind. Instr.e Team Teaching $N=43$ | $\begin{gathered} \text { Organiza- } \\ \text { tional } \\ N=28 \end{gathered}$ | Prograninatic. Approaches $\mathrm{N}=20$ |  |
| Elementary | 26 | 37 | 67 | 17 | 30 | 38 |
| Junior/Middle | 18 | 13 | 16 | 24 | 25 | 18 |
| Senior High | 31 | 35 | 12 | 42 | 20 | 28 |
| Elem-Sr. High | 23 | 11 | 5 | 17 | - | 12 |
| other | 3 | 4 | - | - | 25 | 5 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 |
| No Information | $N=71$ | $N=52$ | $N=31$ | $N=19$ | $N=17$ | $N=190$ |

increase fron $12 \%$ for 1970-71. We can also note an increase for the future in the percentage of programmatic approaches planned for students in the junior and middle grades. Whereas in 1970-71 $9 \%$ of programmatic approaches were designed for stidents at this grade level, $25 \%$ are planned for the future.

Table 4.11 shows that for all innovation categories combined the very large districts will be very similar to representative districts in the future in the percentages of innovations planned for each grade level. Within the innovation categories the frequencies are too small to allow a valid comparison.

$$
\text { (Insert Table } 4.11 \text { here) }
$$

TABLE 4.11
grade level of the future innovation categories $\geq 80,000$

| Innovation Grade Level | Innovation |  |  |  |  | Combined $\mathrm{N}=21$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Adminis- } \\ \text { trative } \\ N=6 \end{gathered}$ | $\begin{aligned} & \text { Curr. } \delta \\ & \text { Technology } \\ & \mathrm{Nan} 4 \end{aligned}$ | $\begin{array}{\|cc\|} \hline \text { Ind. } & \text { Instris } \\ \text { Team } & \text { Teaching } \\ N=3 \end{array}$ | $\left\{\begin{array}{c} \text { Organiza- } \\ \text { tional } \\ N=7 \end{array}\right.$ | $\begin{aligned} & \text { Program- } \\ & \text { matic } \\ & \text { Approaches } \\ & N=1 \end{aligned}$ |  |
| Elementary | 17 | 25 | 33 | 57 | - | 33 |
| Junior/Midd le | 33 | - | 33 | 14 | - | 19 |
| Senior High | 50 | - | 33 | 29 | - | 29 |
| Elem-Sr. High | - | 75 | - | - | 100 | 19 |
| Other | - | - | - | - | - | - |
| Total | 100 | 100 | 100 | 100 | 100 | 100 |
| No Information | $N=17$ | $N=4$ | $\mathrm{N}=0$ | $N=3$ | $\mathrm{N}=2$ | $\mathrm{N}=26$ |

## D. SUMMARY

In this chapter innovations planned for future implementation have been discussed and compared with the 1970-7! total Innovative effort and the showcase innovation. For the future fewer Innovations in the area of "curriculum change and instructional facilities" are planned, and in very large districts more emphasis is expected to be placed on administrative and organizational innovations. In many cases the future innovations were expected to be revisions or expansions of the showcase innovations. In representative districts $20 \%$ of showcase innovations were expected to be continind in this way, while in very large dlstricts the figure was $39 \%$.

The listing of the top ten innovations projected for the future resembles the top ten showcase innovation listing more closely than it does the listing of the top ten inventory innovations (Table 4.9). This may be explained by the fact that innovations planned well in advance are likely to be the more significant innovations.

In the future the largest percentage of innovations will again be designed for elementary students, and more will be designed for senior high students than for students in the junlor or middle grades.

## CHAPIER FIVE: COUSEOUNCES OF THE SHOUCASE IMHOVATION

Respondents to our questionnaire were asked to describe the consequences, both positive and negative, of the showcase innovation (Ouastion ld). A few superintendents simply indicated that the results were "positive," "mixed," or "negative" without specifying the exact nature of the results, other $\because$ superintendents cautioned that the innovation was still being assessed or refined and that the results were thus still somewhat tentative. Therefore, we will first lonk at a summary of the current status of the innovation as reported.

## A. CURRENT STATUS OF THE SHOWCASE INNOVATION

In Table 5.1 a listing is given of the status of the showcase innovatinn at the time the questionnaire was filled out. A majority of superintendent; did not specify the status and we have assumed that in those cases the innovation was being retained in the form described previously.
table 5.1
CURRENT status of the showcase innovation

| Innovation Status | $\begin{gathered} \text { Districts } \\ <80,000 \\ \text { Freq. } \quad \% \text { of } 315 \end{gathered}$ |  | $\begin{gathered} \text { Districts } \\ \geq 80,000 \\ \text { Freq. } \quad \% \text { of } 31 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Still assessing | ( 41) | 13 | ( 5) | 16 |
| Expanding to other grades or buildings | ( 23) |  | ( 4) | 13 |
| Development is continuing | ( 21) | 7 | ( 2) | 6 |
| Minor changes will be made | ( 4) | 1 | - | - |
| Innovation has been dropped | ( 7) | 2 | - | - |
| Retaining as is, or No Information | (219) | 70 | (20) | 64 |
| Total | (315) | 100 | (31) | 100 |

Failures were reported by only 7 superintendents (28) of representative districts, while no fallures were reported in very large districts. In both size samples some ifnovations were still being assessed (13\% in representative districts and $16 \%$ in very large districts), but the overwhelming majority of innovations were either being retalned, expanded to include other grades or buildings, or were being retained with minor changes or further development.

Among the five innovation categories there were no significant differences in the status of reported innovations, and similarly there were no differences among the top ten innovations on this dimension.

## B. GENERAL CONSEQUENCES OF THE SHOWCASE INNOVATION

In 300 out of the 315 questlonaires from representative districts which reported a showcase innovation it was possible to ascertain the general overall consequence (positlve, mixed or negative) of the showcase Innovation. This information was available on all 31 questionnaires returned by very large districts. In Tables 5.2 and 5.3 this data is presented for the two size samples for each of the innovation description categorles.

TABLE 5.2
general consequences of the showcase innovation
BY INNOVATION DESCRIPTION CATEGORY
PERCENT DISTRIBUTION*
OISTRICTS < 80,000

| Consequence | Ind. Instr. 8 Team Teaching N .87 | Adminis- <br> trative $\mathrm{N}=62$ | Curr. Ch. Instr. Fac. $\mathrm{N}=60$ | Prog. App. $\mathrm{N}=56$ | $\begin{gathered} \text { Organiza- } \\ \text { tional } \\ \mathrm{N}=35 \end{gathered}$ | $\begin{gathered} \text { Comb ine d } \\ \mathrm{N}=300 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positive | 81 | 77 | 87 | 98 | 86 | 85 |
| Mixed | 18 | 23 | 8 | - | 6 | 12 |
| Negative | 1 | - | 5 | 2 | 9 | 3 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 |
| No Information | $N=3$ | $\mathrm{N}=5$ | $N=5$ | $N=2$ | Na 9 | $N=15$ |

*Percents are based on the number of respondents in each category who answered this question ('N' given at top of each column).

TABLE 5.3
general consequences of the showcase innovation BY INNOVATION DESCRIPTION CATEGORY

PERCENT DISTRIBUTION*
DISTRICTS $\geq 80,000$

| Consequence | Ind. Instr. 5 Team Teaching $\mathrm{N}=5$ | Adminis trative $\mathrm{N}=11$ | Curr. Ch. Instr. Fac. $\mathrm{N}=1$ | Prog. App. $N=6$ | $\begin{gathered} \text { Organiza- } \\ \text { tional } \\ N=8 \end{gathered}$ | Combined $N=31$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positive | 80 | 73 | - | 83 | 50 | 68 |
| Mixed | 20 | 27 | 100 | 17 | 50 | 32 |
| Negative | - | - | - | - | - | - |
| Total | 100 | 100 | 100 | 100 | 100 | 100 |

*percents are based on the number of innovations in each category. ('N" at top of each column).

In representative districts $85 \%$ of innovations were reported to have positive overall results; $12 \%$ had mixed results, and only $3 \%$ were considered to be negative on the whole. Among the innovation description categories there is little variation. Administrative innovations had the fewest positive consequences (77\%) and the most mixed results (23\%), while organizational innovations had the most negative consequences (9\%). These differences, however, are not large enough to be signiflcant.

Very large districts, while reporting no innovations which were Judged to be generally negative, rated fewer of their innovations positive (68\%) than did representative districts. While the frequencies in Table 5.3 are too small to provide adequate comparison among innovation categories, it may be noted that only four of the eight organizational innovations had generally positive results, and the only innovation in the area of curriculum change met with mixed results.

Among the top ten innovations no significant differences in overall success were found. For all of these innovations positive results were reported in between $75 \%$ and $100 \%$ of cases, with a combined positive rating of $85 \%$.

## C. SPECIFIC CONSEQUENCES OF THE SHOWCASE INNOVATION

The speclfic nature of the consequences of the showcase Innovation was reported by superintendents of 262 representative districts and 30 very large districts. An enormous array of different consequences were reported, and these have been summarized in Table 5.4.

## TABLE 5.4 <br> SPECIFIC CONSEQUENCES OF THE SHOWCASE INNOVATION



* Less than 0.5\%
** Percents are based on the 262 districts reporting. *** Percents are based on the 30 districts reporting.

In this table the percent distributions have been computed in such a way that the sum of all consequences for each size sample totals $100 \%$. The total frequency for each sample, which is given at the foot of the table, is larger than the number of districts reporting since in many cases two or more consequences were reported for the same innovation. While the total percentages of positive, mixed and negative results for representative districts closely resemble the totals for general consequences shown in Table 5.2, this is not the case for very large districts. It would appear that in many cases the innovations in very larqe districts which had overall mixed results had a larger portion of positive components than negative.

As might be expected, the largest number of consequences of showcase innovations in all districts affected the students, while teachers were the next group most often affected. Although oarents and community members were affected roughly the same number of $\mathfrak{i}$ imes as were administrators, it should be pointed out that these outside groups were most often only indirectly associated with the show case innovation while administrators were more closely associated with it. All types of consequences listed in Table 5.4 will be examined in detail below.

It can be seen from Table 5.4 that $38 \%$ of all consequences in representative districts and 23\% in very large systems affected students. The frequency distribution of specific consequences for students is presented in Table 5.5. An improvement in the student's attitude toward self and
(Insert Table 5.5 here)
school was reported to be the most common positive result of the showcase innovation for students; in only one case was a negative attitude reported. In representative districts an improvement in scholastic performance was almost as common, but this was also the area in which the most mixed and negative results we re noted. In very large systems there were two cases each of positive and mixed results in this area. Other consequences listed in Table 5.5 cover a wide range of student-related issues and reflect a sensitivity on the part of the reporting superintendents to the concerns of students.

Table 5.4 shoved that $25 \%$ of consequences in representative districts and $22 \%$ in very large districts affected the teacher. In Table 5.6 these specific consequences are listed in detail. The most common consequence for
(Insert Table 5.6 here)

TABLE 5.5
CONSEQUENCES FOR STUDENTS
FREQUENCY DISTRIBUTION

| Consequence | Districts $<80,000$ |  |  | D1stricts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Positive | Mixed | Negative | Positive | Mixed | Negat ive |
| Attitude to self \& school | 54 | - | 1 | 4 | - | - |
| Scholastic Performance | 51 | 5 | 2 | 2 | 2 | - |
| Reaction to Innovation | 36 | - | 1 | 4 | - | - |
| Behavior/Attendance | 29 | 2 | - | - | - | - |
| Individual Needs Met | 23 | 1 | $\because$ | 1 | - | - |
| Involvement in Learning | 13 | - | - | 1 | - | - |
| General Benefit | 11 | - | 1 | - | - | - |
| Preparation for Next Grade | 5 | - | - | 2 | $\cdots$ | - |
| New Experlences | 5 | - | - | 1 | - | - |
| Courses More Relevant | 3 | - | - | - | - | - |
| Other | 2 | - | - | 1 | - | - |
| Total | 232 | 8 | 5 | 16 | 2 | - |

TABLE 5.6
CONSEQUENCES FOR TEACHERS frequency ol stribution

| Consequence | Districts $<80,000$ |  |  | Districts $\geq 80.000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Positive | Mixed | Negative | Positive | Mixed | Negative |
| Reaction to Innovation | 54 | 3 | 5 | 7 | - | 1 |
| Attitude towards teaching | 27 | 2 | 2 | 3 | - | - |
| Performance | 18 | 1 | - | 1 | - | - |
| Cooperation | 7 | - | 2 | - | - | - |
| Relations with students | 5 | - | - | - | - | - |
| Satisfaction | 5 | - | - | - | - | - |
| Work Load | 4 | 1 | 9 | - | 1 | - |
| Assistance/Support | 4 | - | - | 1 | 1 | - |
| 1 nvolvement | 4 | - | - | - | - | - |
| Awareness | 2 | - | - | - | - | - |
| General benefit | 2 | 1 | - | 1 | - | - |
| Teacher Association reaction | - | - | 3 | - | - | - |
| Other | 2 | - | - | I | - | - |
| Total | 134 | 8 | 21 | 14 | 2 | 1 |

teachers was expressed in terms of their reaction to the innovation, and for the most part this was positlve. Improvements in attitude towards teaching was also commonly noted, and in a slzable number of cases the teacher's performance improved. The biggest problem for teachers was an increased work load; the negative and mixed consequences in this area iar outweighed the positive consequences. Flnally, it shouid be noted that in the only cases in which teachers' associations were mentioned ( 3 cases in representative distrlcts) they were noted as having a negative reaction to the showcase innovation.

Proportionately, administrators as a group were reported as belng affected most negat ively by the showcase Innovation. Civer one quarter of the consequences for administrators were mixed or negative. Table 5.7 lists the frequencies of all specific consequences for this group.

TABLE 5.7
CONSEQUENCES FOR ADMINISTRATORS FREQUENCY DISTRIBUTION

| Consequence | Districts < 80,000 |  |  | Dlstricts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Positive | Mixed | Negative | Posltíve | Míxed | Negative |
| Reaction to Innovation | 20 | 1 | 2 | 5 | - | 1 |
| Cooperation | 3 | - | 1 | - | - | - |
| Attitude to Responsibilities | 2 | - | 2 | - | - | - |
| Scheduling issues | 2 | - | 2 | - | - | 1 |
| Performance | 1 | 1 | - | - | - | - |
| Work Load | 1 | - | 2 | - | - | 1 |
| General Beneflt | - | - | - | 1 | 1 . | - |
| Assistance/Support | - | - | - | 2 | - | - |
| Relationshlp with Teachers | - | - | - | 1 | - | - |
| Other. | I | - | - | - | - | - |
| Total | 30 | 2 | 9 | 9 | 1 | 3 |

The problems for adninistrators were in the areas of increased work load, scheduling issues and attitude towards responsibilities. It is possible thatysuperintendents, in filling out the questionnaire, would be most sensitive to problems encountered by the administrators in the system. However, the predominant consequence even for this group was a positive attltude towards the innovation.

The predominant consequence among community members was also generally expressed in terms of their general positive reaction to the showcase inno* vation (see rable 5.8). In a large number of cases it was also reported

TABLE 5.8
CONSEQUENCES FOR THE COMMUNITY
frequency olstribution

| Cons equence | Districts $<80,000$ |  |  | Districts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Positive | Mixed | Negat ${ }^{\text {ve }}$ | Positive | Mixed | Negat ive |
| Reaction to Innovation | 18 | 6 | 2 | 4 | - | 1 |
| Cooperation with Scheol | 16 | - | - | 1 | - | - |
| Involvement with School | 2 | - | - | 1 | - | - |
| Problem Awareness | 2 | - | - | 1 | - | - |
| General Benefit | 1 | - | - | - | - | - |
| Total | 39 | 6 | 2 | 7 | - | 1 |

that there was an increase in the cooneration of community members with the school system. A few more innovations resulted in increased awareness of school problems in the community or a general positive benefit to the community.

The reaction of parents was also overwhelmingly positive, and it is for this group that the smallest proportion of mixed or negative consequences was reported. In fact, there was only one mention of a mixes reaction on the part of parents, and no negative consequences were reported at all (see Table 5.9).

TABLE 5.9
CONSEQUENCES FOR PARENTS
FREQUENCY DISTRIBUTION

| Consequence | Districts $<80,000$ |  |  | Districts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Positive | Mixed | Negat Tve | Positive | Mlxed | Negative |
| Reaction to Innovation | 25 | 1 | - | 2 | - | - |
| Involvement with School | 8 | - | - | - | - | $\bigcirc$ |
| Coóperation with School | 3 | - | - | 1 | - | - |
| Attitude Towards School | 2 | - | - | - | - | - |
| Assistance/Support | 1 | - | - | 1 | - | - |
| Total | 39 | 1 | - | 4 | - | - |

In eight cases in representative school systems parents became more involved with school activities and programs and in a few other cases parents increased their cooperation with or their attitude towards the schools.

The most common consequence for the school system as a whole was the improvement of the suclal climate. Almost as common was a positive effect on

TABLE 5.10
CONSEQUENCES FOR THE SCHOOL SYSTEM AS A WHOLE FREQUENCY DISTRIBUTION

| Consequence | Districts $\overline{2.80,000}$ |  |  | Districts $\sum 800000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Postive | Mixed | Negat Ive | positive | Mixed | Negative |
| Social Climate | 13 | - | $\bullet$ | 3 | - | - |
| Planning e Evaluation | 12 | - | - | 1. | 1 | - |
| Cost/Expense | 5 | 1 | 5 | 1 | - | - |
| Objectives Met | 3 | 1 | - | - | - | - |
| Raclal Integration | 2 | - | - | - | 1 | - |
| Services | - | - | - | 1 | - | - |
| Total | 35 | 2 | 5 | 6 | 2 | - |

planning and evaluation activities in representative districts; one positive and one mixed result were reported in very large systens in this arca. In representative districts the most probiematic area of the showcase innovation was in terms of its cost. While five of these districts reported positive cost benefits from the innovation, five others noted increased costs as a negative factor and one district viewed the cost issue with mixed feelings. Two representative districts reported positive consequences in the area of racial integration, but the one very large district mentioning this area reported mixed consequences.

Finally, Table 5.11 lists a variety of other consequences not directly affecting large groups of people or the school system as a whole. Among

TABLE 5.11
OTHER CONSEQUENCES
FREQUENCY DISTRIBUTION

| Consequence | Districts $<80,000$ |  |  | Districts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Positive | Mixed | Negative | Positive | Mixed | Negative |
| Instructional <br> Techniques | 17 | 1 | - | 3 | 1 | - |
| Programs/Materials Developed | 7 | - | - | 3 | - | $\sim$ |
| Use of Facilities | 6 | - | 1 | - | - | - |
| Facilities Improved | 4 | - | - | - | - | - |
| Requests Received for Demonstrations | 2 | - | - | - | - | - |
| Budget/Accounting | - | 1 | - | - | - | - |
| Other | 6 | - | - | 2 | - | - |
| Total | 42 | 2 | 1 | 8 | 1 | - |

these consequences the improvement of instructional techniques was the mast commonly mentioned result of the showcase innovation. Table 5.11 shows very few mixed or negative consequences among this group.

On the whole the showcase innovatlons reported appear to have been hlghly successfu! with positive consequences in all spheres. To find out if this held true for all innovation types, the specific consequences were compared across the innovation description categories. This analysis showed that there were no significant differences in representative school systems. Positive consequences varied only between $84 \%$ and $95 \%$, with $88 \%$ positive specific consequences for all categories comblned. Mixed consequences ranged between $1 \%$ and $7 \%$ and negative consequences between $4 \%$ and $9 \%$. No one speclfic consequence stood out as being more common for one innovation category than for another. Thus when all consequences are taken into account the picture is more even than when only the overall general consequences are considered (see again Table 5.2).

There was slightly more variation among innovation description categories for very large districts. In Table 5.12 all specific consequences have been summed into "positive," "mixed" and "negative" categories.

TABLE 5.12
SPECIFIC CONSEQUENCES OF THE SHOWCASE InNOVATION BY INNOVATION DESCRIPTION CATEGORY

PERCENT DISTRIBUTION *
DISTRICTS $\geq 80,000$ **

| Consequence | Ind. Instr. \& Team Teaching $\mathrm{N}=18$ | Adminis- <br> trat ive $N=29$ | Curr. Ch. Instr. Fac. $\mathrm{N}=3$ | Program Approaches $\mathrm{N}=9$ | $\begin{gathered} \text { Organiza- } \\ \text { tional } \\ \mathrm{N}=20 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combined } \\ \text { Na } 79 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positive | 94 | 69 | 100 | 89 | 80 | 81 |
| Mi xed |  | 17 | $\checkmark$ | 11 | 20 | 13 |
| Negative | 6 | 14 | 0 | 0 | 0 | 6 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 |

* Percents are based on the number of consequences given in each category ("N' given at top of each column).
** 30 districts reporting.

In this table positlve consequences comprise $81 \%$ of all specific consequences. In contrast with the $68 \%$ of general consequences as reported in Table 5.3. In Table 5.12 all Innovation categories except that of adminIstrative innovations report a higher percentage of specific consequences
than general consequences. The administrative category, however, reports a sllghtly lower percentage of positive consequences ( $69 \%$ as opposed to 73\%), and here $14 \%$ of the consequences in this category are neqative (no general negative consequences were reported in very large districts).

When the specific consequences were compared across the top ten showcase innovations two interesting findings emerged. It may be recalled tinat it was in the area of scholastic performance of students that the most negative and mixed specific consequences were reported. For the top ten innovations combined, $79 \%$ of the consequences for this item were positive, $11 \%$ were mixed and $4 \%$ were negativer. For the innovation "individualized instruction and teson teaching in all curriculum areas" only $57 \%$ of consequences were positive, while $.21 \%$ wero mixed and $7 \%$ vere negative ( 14 consequences were renorted for this innovation type). For the innovation type "unit courses, mini-onurses autirlorther" only $60 \%$ of onnequences were positive, $20 \%$ were mired and no\% he:mitu ( 5 consequences reported for this innovation). Using a chi square test, these findings were shown to be significant at the .05 level.

The innovation whith caused the greatest work mrelolal for teachers was "individualized instruction and team teaching in specific curriculum areas." Six of the nine reports of negative teacher workload occurred for this innovation, and one of the two reports of mixed reactions to workload also were reported for this innovation. To balance the plcture, however, it should be added that two of the four cases of positive teacher reaction to workload also were for this innovation.

## D. RECOMMENDATIONS TO OTHER DISTRICTS ON ADOPTION OF SHOWCASE INNOVATION

We were interested in finding out whether superintendents would recommend that other districts similar to their own should adopt the same innovation (Question If). Superintendents of 285 representative districts and 26 very large districts responded to this question, and these responses are given in Table 5.13.

## (Insert Table 5.13 here)

Recommendations in representative districts follow very closely that group's assessment of the general posit:ve or negative consequences of the innovation in their own experience (see again Table 5.2). In contrast, very large districts recommend adoption by other districts in $81 \%$ of cases, while only $68 \%$ of innovations were reported as having a general positive result. However, Table 5.13 may be misleading in this regard, since nercentages are computed on the basis of the number of superintendents responding to the question.

TABLE 5.13
RECOMMENDATIONS TO OTHER DISTRICTS

| Re commendation <br> On Adoption by Others | $\begin{gathered} \text { Districts } \\ <80,000 \\ \text { Frea. } \quad \% \text { of } 285 \end{gathered}$ |  | $\begin{gathered} \text { Districts } \\ \geq 80,000 \\ \text { Freq. } \quad \% \text { of } 26 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Yes | (239) | 84 | (21) | 81 |
| Maybe | ( 30) | 10 | ( 2) | 8 |
| No | ( 5) | 2 | ( 2) | 8 |
| Too Early to Tell Yet | ( 11) | 4 | ( 1) | 4 |
| Total | (285) | 100 | (26) | 100 |
| No Information | ( 30) |  | ( 5) |  |

In fact, the 21 who recommend adoption to others represent $68 \%$ of all 31 cases in very large districts - a flgure identical with the percentage reporting general positive results. It may be that there was a reporting bias in this question; that is, many of those superintendents who experienced mixed results in their own systemi simply did not answer the question.

When the recommendations to other districts were compared across the flve innovation description categories no signlficant differences emerged. When the comparison was made across the top ten innovations it was found that superintendents whose districts had innovated in the area of individualized instruction and team teaching were the most reserved. A "maybe" response was given in $24 \%$ of cases in which this innovation applied to specific curriculum areas and in $16 \%$ of cases in which it applied to the curriculum in general; for all top ten innovations combined the "maybe" response was given in $11 \%$ of cases. In $20 \%$ of the districts which had experimented wlth "guldance, counseling"and diagnosis" the superintendents indicated that it was too early to tell yet whether or not they would recommen this innovation to other districts (for all top ten innovations this response was given in 48 of cases). Negative responses on recomendation were given in connection with only two innovations; $11 \%$ of those involving teacher aides, tutors or paraprofessionals, and $7 \%$ of innovations in the area of unlt courses, mini-courses and electives. None of these differences are statistically significant, however.

Many superintendents, as well as simply stating whether or not they would recommend thelr innovations to other districts, also offered specific forms of advice for other districts considering adoption. This adylce touched on many dlfferent issues and will be discussed in later chapters as we examine the procedures employed and the problems encountered in the innovation process as described by our sample districts.
$\cdots$

## E. SUMMARY

Out of all the showcase innovations described on the questionnaire, only seven were reported as having been dropped. These seven cases all occurred in representative districts, representing just $2 \%$ of all showcase innovations in these districts. While a few innovations were still being assessed, the bulk of showcase innovations were elther being retained in their initial form or were being expanded or changed in minor ways.

In representative districts $85 \%$ of showcase innovations were reported to have generally positive results; in very large districts this figure was 682. Students as a group were most commonly affected; an improvement in their attitudes toward themselves and school was most frequently noted, with an improvement in scholastic performance noted almost as often. Teachers were the next group most often affected; their overall reaction to the showcase innovation was generally noted as positive. An increase in teacher workload was noted as a problem in several cases, but in general this negative factor was outweighed by positive consequences in other areas. As a group, administrators suffered the most negative consequences; over a third of. consequences reported for administrators we re reported to be negative. Negative factors included increased workload, scheduling problems and resistance to increased responsibilities.

For the top ten innovations combined, $79 \%$ of consequences reported were posltive in nature. However, for the innovation "individualized instruction and team teaching in all curriculum areas" only $57 \%$ of consequences were positive, and only 603 were positive for the innovation "unit courses, minicourses and electives."

Superintendents recommended that other districts adopt showcase innovations similar to their own in about the same proportions as they experienced success or failure themselves. Innovations in the area of individualized instruction and team teaching, which resulted in the most teacher work overload, were given the most reserved recommendations.

## SECTION II:

```
THE INNOVATION PROCESS
```


## QHAPTER SIX: PARTICIPANTS AND RESOURCES USED IN THE SHOHCASE IMNOVNIION

Several items on the questionnalre were intended to draw out information as to which individuals and groups inside and outside the school system had been involved in some way in the planning and implementation of the showcase innovation. In some cases these persons were considered to have played key roles in the success (or failure) of the innovation, while in other cases they were described as cooperating in the process or were merely informed of It. In most cases participants were cited spontaneously, but in one additional question (Question 7) it was asked whether or not certain groups representing internal and external resources to the system had been used in choosing or implementing the showcase innovation.

In this chapter we will first present data on participation as spontaneously mentioned in response to the first set of questions; this will be followed by a discussion of the internal and external resources which were cited in response to Question 7. Next an examination will be made of descrlptions which superintendents offered of a variety of attitudes and, characteristics of participants which seemed to be of particular importance. Procedures employed in planning and implementation which were designed to galn the participation and cooperation of varlous groups will then be discussed, and finally a look will be taken at advice on these issues which superintendents thought would be useful to other school districts considering the adoption of a similar innovation.

## A. EXTENT OF PARTICIPATION BY 21 GROUPS

In the course of describing how the showcase innovation was adopted and implemented, respondents named various persons and groups as being involved at one level or another. Table 6.1 summarizes these responses in terms of 21 position codes. The columns on the left hand slde of the table represent the number of citations of each group as playing a key role.* The columns on the right hand half of the table show the total extent of involvement of persons in each group, including those who played key roles, those who participated in other ways and those who were oniy informed about the innovation process.** Percentages for representative districts are based on the 315 reported show case Innovations, and percentages for very large schools are based on the 31 districts in this sample, all of which reported a showcase innovation.

* Included in thls category are persons cited in response to Question le, . which asked: "What seemed to be the key factor(s) in making the adoption and acceptance of this Innovation successful or unsuccessful?"'
** All participants named in response to Question le are again included here along with participants named in response to Question le ('What persons were primarily responsible for the innovation's introduction?') and Question ib ("By what process was the innovatlon introduced and implemented?")
table 6.1
PARTICIPANTS IN THE SHOWCASE INNOVATION

| Participant | Particlpation Cited as Key Factor ${ }^{\text {K }}$ Total Participating or Informed |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Districts } \\ <80,000 \\ \text { freq. } \% \text { of } 315^{* *} \end{gathered}$ |  | $\begin{gathered} \text { Districts } \\ \geq 80,000 \end{gathered}$ <br> Freq. 6 of $31^{* *}$ |  | $\stackrel{\text { Dis }}{<}$ | $\begin{aligned} & \text { ts } \\ & 100 \\ & 1 f 315^{*} \end{aligned}$ | $\begin{aligned} & \text { Distr } \\ & \geq 80 \\ & \text { Freq. } \end{aligned}$ | $\begin{aligned} & \text { ts } \\ & 100 \\ & \text { of } 3 \end{aligned}$ |
| Teachers | (120) | 38 | (11) | 36 | (211) | 67 | (17) | 55 |
| Staff (Unspecified) | ( 85) | 27 | (13) | 42 | (143) | 46 | (15) | 48 |
| Community | ( 51) | 16 | (12) | 39 | ( 76) | 24 | (15) | 48 |
| Students | ( 46) | 14 | ( 2) | 6 | ( 73) | 23 | ( 4) | 13 |
| Administrators (Unspec.) | ( 34) | 11 | ( 7) | 23 | ( 82) | 26 | (10) | 31 |
| Principals | ( 32) | 10. | ( 3) | 10 | (154) | 49 | ( 8) | 26 |
| Parents | ( 32) | 10 | ( 3) | 10 | ( 62) | 19 | ( 5) | 16 |
| School Board | ( 20) | 6 | ( 5) | 16 | ( 70 ) | 22 | (10) | 31 |
| Asst, Superintendent | ( 13) | 4 | ( 8) | 26 | (167) | 53 | (28) | 91 |
| Supervisors/Speciallists | $(9)$ | 3 | ( 2) | 6 | ( 89) | 28 | (13) | 42 |
| Superintendents | ( 6) | 2 | - | - | (121) | 38 | (14) | 45 |
| Counselors, Psychologists | ( 6) | 2 | ( 1) | 3 | ( 40) | 12 | ( 1) | 3 |
| Teacher Aldes | ( 6) | 2 | ( 3) | 10 | ( 30) | 9 | ( 7) | 23 |
| Outsiders (Unspec.) | $(6)$ | 2 | ( 1) | 3 | ( 30) | 9 | ( 3) | 10 |
| Universities | ( 5) | 2 | ( 1) | 3 | ( 28) | 9 | (1) | 3 |
| State Educ. Agencles | ( 5) | 2 | - | - | ( 23) | 7 | ( 1) | 3 |
| Parent-Teacher Assoc. | $(2)$ | 1 | - | - | ( 10) | 3 | ( 1) | 3 |
| Teachers Association | $(2)$ | 1 | - | - | $(8)$ | 2 | ( 1) | 3 |
| Total School (Unspec.) | ( 2) | 1 | - | - | ( 4) | 1 | ( 1) | 3 |
| Regional Educ. Labs | ( 1) | *** | - | - | $(2)$ | 1 | ( 1) | 3 |
| Private Companles | - |  | - | - | $(6)$ | 2 | ( 2) | 6 |

* In all but 14 cases participation was cited as key factor in success. Cases of particlpation or lack of participation clted as a key factor in fallure are discussed in the text.
** Respondents could name more than one participant; therefore, total percents are greater than 100.
***Less than 0.5\%.

Looking first at the right hand side of the table, we see that in representative districts teachers were most frequently involved in some way in the innovation process (67\%), assistant superintendents (53\%), principals (49\%) and staff (exact positions unspecified on the questionnaire 46\%) were all involved $\ln$ about half the showcase innovations. Superintendents, at 38\%, are the group which ranks next, and further down the list are the supervisors and specialists (28\%) and administrators in general (exact positions not specified - 26\%). For these districts then it is clear that the school staff as a whole was deeply involved in the innovation process. Participating less often, though still to a healthy extent, we re the community (24\%), students (23\%), the school board (22\%) and parents (19\%). Counselors ( $12 \%$ ) and teachers'aides (9\%) had a low degree of participation; and finally, parent-teacher associations and professional associations were listed, along with all outside groups, as participating in less than $10 \%$ of the showcase innovations.

In very large districts the pattern of total participation differs somewhat. Most outstanding is the fact that assistant superintendents lead the list, with participation in $91 \%$ of cases. Teachers (55\%) and principals (26\%) participate somewhat less than in the representative districts, while superintendents ( $45 \%$ ) and supervisors ( $42 \%$ ) participate to a somewhat greater degree. Community members also play a more extenslve role in the very large districts, participating in $48 \%$ of all showcase innovations. Students, on the other hand, are involved slightly less often (132). Again we find that outside groups play a role in $10 \%$ or less of cases.

Data on the left hand side of the table summarizes responses, retevant to participants, to the question: "What seened to be the key factor in making the adoption and acceptance of this innovation successful or unsuccessful?' In almost all cases participation was cited as a key factor in surcess, In 14 cases, however, lack of involvement or negat ive involvement of specific groups was noted as being a key factor interfering with effective adoption. In six of these cases (one in a very large district) the community was named as a key negative factor; students and teachers were named in two cases each, and administrators, parents, the school board and the Teachers' Association were each named in one case.

Looking now at the first column of Table 6.1, we see that in representative districts teachers and staff head the list of key participants, but community members, students and parents seem to have special importance, especially in proportion to their total citations. The role of administrators, on the other hand, is considerably less salient. All outside sources are again abysmally low.

Participation as a key factor forms a similar pattern in the very large districts, but with assistant superintendents more important and community involvement of very great importance. Students, however, are rarely cited as a key factor in innovation.

What is especially noteworthy in Table 6.1 is the almost total absence of mentions of outside resource groups. Universities are spontaneously mentioned in only 29 out of the 346 cases in which showcase innovations were reported, and they are seen as a key factor in only six cases. State agencies fare even worse, while Regional Educational laboratories and private companies are out of sight.

## (Insert Table 6.2 here)

Table 6.2 shows the degree of involvement of participants who did not play a key role in the show case innovation process. In this table frequencles of participants playing key roles are repeated from Table 6.l*, and participation of those playing less slgniflcant roles** is broken down into three categorles: decision maker, active participant, and informed only. It can be seen that even when prlncipals, superintendents and assistant superintendents are not vlewed as being key factors, they are most likely to be in declsion-making roles. Teachers, when not playing key roles, are nearly as likely to be decision makers as to be simply participants. Parents, students and community members, however, are unlikely to be in the decision-making roles and, in fact, are the groups which mast frequently are simply informed of the innovation. The school board, though cast in the decision-making role more often than are the latter groups, is nevertheless more likely to be cited as a simple participant than as a declsion maker.

## 1. EXTENT OF PARTICIPATION: BY 21 GROUPS FOR EACH OF THE INNOVATION description categories

In Table 6.3 the percent distribution for representative districts is given for total participation and key participation of each of the 21 groups with respect to each of the five innovation description categorles. Percents are based on the number of innovations in each of the categories. in most cases these percentages do not differ markedly from those for all categories combined (given in Table 6.1 and repeated at the right on Table 6.3).
(Insert Table 6.3 here)

Total participation of teachers, however, is considerably less in administrative innovations than in other innovation categories ( $48 \%$ as opposed to $65 \%$ - $74 \%$ in other categories). In administrative innovations the assistant superintendent is the most frequent particlpant (63\%), and students, parents

[^3]TABLE 6.2
PARTICIPANTS PLAYING KEY ROLES AND LESS SIGNIFICANT ROLES IN SHOWCASE INNOVATION.

FREQUENCY DISTRIBUTION

|  |  | istricts | 80,000 |  |  | istricts | 80.000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Key | Less Sign | ficant Ro | les | Key | Less Sig | ificant | - les |
|  | Role Freq. | Decision Maker Freq. | Participant Freq. | $\begin{gathered} \text { Informed } \\ \text { Only } \\ \text { Freq. } \end{gathered}$ | Role | Decision Make $r$ freq. | Partici- <br> pant <br> Freq. | $\begin{aligned} & \text { In formed } \\ & 0_{n} l y \\ & \text { Freq. } \end{aligned}$ |
| Teachers | 120 | 42 | 49 | - | 11 | 3 | 3 | - |
| Stalf (Uaspecified) | 85 | 8 | 48 | 2. | 13 | - | 2 | $\stackrel{7}{7}$ |
| Community | 51 | 6 | 10 | 9 | 12 | - | 3 | - |
| Students | 46 | 2 | 15 | 10 | 2 | 1 | 1 | - |
| Administ rators <br> (Unspecificd) | 34 | 8 | 39 | 1 | 7 | 2 | 1 | - |
| Principals | 32 | 109 | 13 | - | 3 | 4 | 1 | - |
| Parents | 32 | 3 | 17 | 10 | 3 | 1 | 1 | - |
| School 8oard | 20 | 14 | 31 | 5 | 5 | 1 | 4 | - |
| nsst. Superintendent | 13 | 150 | 4 | - | 8 | 20 | - | - |
| Supervisors/ Specialists | 9 | 69 | 11 | - | 2 | 9 | 2 | - |
| Superintendent | 6 | 109 | 5 | 1 | - | 14 | - | - |
| Counse lors. Psychologists | 6 | 25 | 9 | - | 1 | $\checkmark$ | - | - |
| Teacher Aides | 6 | - | 22 | - | 3 | - | 4 | - |
| Outsiders (Unspecified) | 6 | 7 | ' 17 | - | 1 | 1 | 1 | - |
| Universities | 5 | 6 | 17 | - | 1 | - | - | - |
| State Educ. Agencies | 5 | 11 | 7 | - | - | - | 2 | - |
| Parent-Teacher Assoc. | 2 | 5 | 1 | 2 | - | - | 1 | - |
| Teachers Associations | 2 | 4 | 1 | - | - | - | 1 | - |
| Total School (Unspecified) | 2 | - | 2 | - | - | - | 1 | - |
| Regional Educ. Labs | 1 | - | 1 | - | - | - | 1 | - |
| Private Companies | - | 3 | 3 | - | - | 1 | 1 | - |
|  |  |  |  |  |  |  |  | 1 |

table 6.3
PARTICIPANTS IN EACH INNOVATION CATEGORY DISTRICTS < 80,000
PERCENT DISTRIBUIIION+

| Participant | $11 \underset{N \dot{N} 90}{\varepsilon} T T$ |  | Admin.$N=67^{\circ}$ |  | Curr. \& Tech $\mathrm{N}=62$ |  | $\underset{N=59}{\operatorname{Prog.}} \mathrm{App} .$ |  | $\begin{aligned} & \text { Organ: } \\ & \mathrm{N}=37 \end{aligned}$ |  | Comblned $\mathrm{N}=315$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Key | Total |
| Teachers * | 51 | 72 | 22 | 48 |  | 74 | $37^{*}$ | 70 |  | 65 | 38 | 67 |
| Staff (Unspecified) | 24 | 48 | 30 | 51 |  | 39 | 27 | 41 |  | 49 | 27 | 46 |
| Community | 19 | 24 | 10 | 22 | $10^{* *}$ | 13 | $22^{* *}$ |  | 2*** | * 30 | 16 | 24 |
| Students | 13 | 19 | 3 | 13 | $19^{* * *}$ |  |  |  |  | 32 | 14 | 23 |
| Administrators (Unspecified) | 14 | 28 | 12 | 30 | 5 | 21 | 5 | 22 | 13 | 30 | 11 | 26 |
| Principals | 11 | 63 | 15 | 34 | 8 | 40 | 8 | 41 | 5 |  | 10 | 49 |
| Parents | 16 | 29 | 4 | 10 | 3 | 8 | $15^{*}$ | 30 | 13 | 16 | 10 | 19 |
| School Board | 6 | 19 | 10 | 31 | 3 | 8 | $\stackrel{*}{3}$ | 17 |  |  | 6 | 22 |
| Asst. Superintendent | 1 | 49 | 12 | 63 | 2 | 53 | 5 | 58 | - |  | 4 | 53 |
| Supervisors/ Specialists | 2 | 29 | 3 | 18 | 3 | 32 | 3 | 34 | 3 | 30 | 3 | 28 |
| Superintendent | - | 39 | 6 |  |  | 26 | 2 | 36 | 3 |  | 2 | 38 |
| Counselors, Psychologists | - | 4 | 4 | 15 | 3 | 13 | 2 | 19 | - | 19 | 2 | 12 |
| Teacher Aides | 4 | 13 | - | 4 | 2 | 5 | 5 | 16 | - | 3 | 2 | 9 |
| Outsiders' , (Unspecified) | 3 | 16 | 3 | 10 | 2 | 10 | - | - | - | 8 | 2 | 9 |
| Universities : | 4 | 14 | 1 | 10 | - | 5 | - | 7 | - | 3 | 2 | 9 |
| State Educ. Agencies | 1 | 4 | 1 |  | 5 | 11 | - | 5 | - | 5 | 2 | 7 |
| Parent-Teacher As soc. | 2 | 3 | - |  | - | $3:$ | - | 2 | - | 3 | 1 | 3 |
| Teachers Associations | ${ }^{*}{ }^{*}$ | 3 | - | 6 | - | - | - | - | 3 | 3 | 1 | 2 |
| Total School <br> (Unspecified) | 2 | 3 | - | - | - | - | - | 2 | - | - | 1 | 1 |
| Regional Educ. Labs | - | - | 1 | 1 | - | 2 | - | - | - | - | ++ | 1 |
| Private Companies | - | 2 | - | 1 | - | 5 | - | - | - | - | - | 2 |

* Includes one case in which lack of partlcipatlon was a negative key factor.
** includes one case $\ln$ which participation was a negative key factor.
*** includes one case in which lack of participation was a negative key factor and one case in which participation was a negative key factor.
+ Percentages are based on the number of innovations in each category ('N'" given at top of each column). Respondents could name more than one participant; therefore total percents are greater than 100.
++ Less than 0.5\%.
and supervisors participate less frequently in these intovations than in others. Sonewhat surprisingly, we find that the lovest participation of principals is also in administrative innovations. Principals are, however, more likely to be key factors in administrative innovations than in others.

In organizational innovations the principal is the most frequent participant ( $68 \%$ ), though followed closely by teachers ( $65 \%$ ). The school board also is more highly involved in organizational innovations (46\%) than in others.

A table has not been prepared showing participant involvenent in the five innovation categories for very large districts; the pattern for the fiv: categories closely resembles the combined totals for these districts as shown in table 6.1. We pointed out the high involvement of assistant superintendents in these districts earlier, and we found that their involvement was consistently high, ranging between $80 \%$ and $100 \%$ in the five categories. Community involvement was particularly great in organizational innovations; community members participated in $75 \%$ of innovations in this category and were key factors in 63\% of these innovations.

## 2. EXTENT OF PARTICIPATION BY 21 GROUPS FOR EACH OF THE TOP TEN SHOWCASE INNOVATIONS

In Table 6.4 the percent distribution is given for the total participation of each of the 21 groups in each of the top ten showcase innovations.
(Insert Table 6.4 here)

Teachers rank first in total participation in six of the top ten innovations. The most outstanding deviation from this pattern is for the innovation type "planning, research and evaluation;" here teachers participate only $28 \%$ of the time, while assistant superintendents participate $72 \%$ of the time and staff, administration and the superintendent all participate in $50 \%$ of the innovations. In innovations in the area of guidance and counseling the most frequent participants are the counselors and the assistant superintendents (each 73\%). For innovations involving a change in the grade and attendance unit structure of the school system the superintendent, the principals and the staff in general each participate 63\% of the time, with the school board showing its greatest strength (583). The assistant superintendent is the dominent figure in innovations in the area of special instructional programs and participates equally with teachers in the revision of curriculum. The assistant superintendent's total participation is, overall, second only to that of teachers, but in innovations involving unit courses, mini-courses and electives he participates in only $19 \%$ of cases. For these innovations, on the other hand,

TABLE 6.4
TOTAL PARTICIPATION IN THE TOP TEN SHOWCASE INNOVATICNS

PERCENT DISTRIBUTION**

| Participant |  |  |  |  |  |  |  |  |  |  | Combine $\begin{gathered} N=247 \\ 6 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Teachers | 73 | 64 | 65 | 87 | 47 | 28 | 81 | 83 | 45 | 82 | 67 |
| Staff (Unspecifled) | 51 | 41 | 39 | 43 | 63 | 50 | 56 | 50 | 36 | 36 | 47 |
| Community | 32 | 23 | 19 | 4 | 32 | 22 | 6 | - | 9 | 28 | 21 |
| Students | 21 | 18 | 12 | 9 | 10 | 17 | 50 | - | - | 45 | 18 |
| Administrators (Unspeclfied) | 29 | 15 | *23 | 17 | 32 | 50 | 12 | 25 | 18 | 28 | 25 |
| Princlpals | 60 | 31 | 46 | 78 | 63 | 28 | 37 | 41 | 36 | 36 | 49 |
| Parents | 32 | 36 | 12 | 17 | 10 | 6 | - | - | 9 | 18 | 20 |
| Sehool Boaró | 18 | 15 | 8 | 17 | 58 | 44 | 6 | - | 9 | 9 | 19 |
| Asst. Superintendent | 50 | 72 | 65 | 52 | 47 | 72 | 19 | 58 | 73 | 36 | 56 |
| Supervisors/ Speciallets | 29 | 38 | 39 | 39 | 47 | 17 | 12 | 25 | 27 | 45 | 32 |
| Superintendents | 39 | 31 | 27 | 35 | 63 | 50 | 19 | 17 | 45 | 36 | 36 |
| Counse lors, Psychologists | 4 | 23 | 12 | 4 | 10 | - | 19 | 8 | 73 | 9 | 13 |
| Teacher Aldes | 13 | 23 | 4 | 22 | 5 | - | - | 8 | 9 | 45 | 13 |
| Outsiders <br> (Unspecified) | 18 | - | 15 | 13 | 5 | - | 6 | 17 | 18 | - | 11 |
| Universities | 15 | is | 8 | 9 | - | 6 | - | 25 | 9 | - | 10 |
| State Educ. Agencles | 6 | 5 | 15 | - | 5 | 17 | 6 | 17 | 9 | - | 7 |
| Parent-Teacher Assoc. | 4 | 3 | 4 | - | - | 6 | - | - | - | - | 2 |
| Teachers Assoclatlon | 4 | - | - | - | 5 | 6 | - | 17 | - | - | 3 |
| $\begin{aligned} \text { Total } & \text { School } \\ & \text { (Unspcelfled) } \end{aligned}$ | 4 | 5 | - | - | - | - | - | . | - | - | 2 |
| Reglonal Educ. Labs | - | - | - | - | - | 6 | - | - | - | - | * |
| Private Companies | 1 | - | 4 | 4 | - | 6 | - | - | - |  | 1 |

* Less than 0.5\%
** Percents are based on the number of innovations of each type ("N" given at top of each column). Respondents could name more than one participant and thus percentages total over $100 \%$ for each column.
student participation is higher ( $50 \%$ ) than for other innavations, although students are also frequent ly involved in innovations in which teacher aides are added to the staff (45\%). Teacher aides, as might be expected, particlpate nost freouently in the latter innovations (45\%). Principals most frequently participate in innovations involving individualized instruction and team teaching in specific curriculu: areas (78\%); this is also the innovation in which teachers are most heavily involved (87\%). Finally, the most significant participation of outsiders is for in-service tralning programs; here universities participate in $25 \%$ of cases.

For all the top ten innovations the key participants are the teachers or the staff, although assistant superintendents share this distinction with the staff in guidance and counseling innovations. Although teachers were the key factor most often in innovations in the area of unit courses, mini-courses and electives ( $50 \%$ ), students were key participants in $44 \%$ of those innovations (in other innovations they were key factors in no more than $18 \%$ of cases). In two of these innovations the students were a key factor on the negative side: in one case their participation was cited as a problem and in another case their lack of participation was the problem. Lack of participation was also a problem in three cases involving the addition of tcachers' aides; cited as key factors were lack of participation by teachers, parents and the school board in one case each.

## B. USE OF RESOURCES IN THE SHOWCASE INNOVATION

Question \# 6 of the back page of the questionnaire listed a number of resources both internal and external to the school system which we felt would be most relevant to innovation processes. In Question \# 7, respondents were asked which of these resources, if any, had been utilized in the showcase innovation. In Table 6.5 the responses to Question $\# 7$ are given for each of the five innovation categories. Frequencies or response are given, followed by the percentage each represents of the total number of showcase innovations in that category. Percentages in each colum total more than 100 since respondents could name any number of these resources.
(Insert Table 6.5 here)

Internal resources were used more frequently than external resources, although this difference is not as outstanding as it was when participants were mentioned spontaneously. It may be, then, that although state education agencies and universities were utilized in over one fourth of showcase innovations in these schools, their contributions were not as memorable as were those of other participants. Private foundations and Regional Educational Laboratories are again at the bottom of the list of all participants and resources.

TABLE 6.5
USE OF RESOURCES IN SHOWCASE INNOVATION IN THE INNOVATION DESCRIPTION CATEGORIES

DISTRICTS $<80,000$

|  | $\begin{gathered} \\| \varepsilon T T \\ N=90 \\ \text { Freq. } 夕^{2} * \end{gathered}$ | $\begin{aligned} & \text { Adminis. } \\ & N=67 \\ & \text { Freq. } q^{*} \end{aligned}$ | $\begin{array}{\|c\|} \text { Curr. } \varepsilon \text { Tech } \\ \text { N }=62 . \\ \text { Freq. }{ }^{2} \text {. } \end{array}$ | $\begin{aligned} & \text { Prog. App. } \\ & \text { N=59. } \\ & \text { Freq. of } \end{aligned}$ | $\begin{gathered} \text { Organ. } \\ N=37 \\ \text { Freq. } 8 * \end{gathered}$ | $\begin{aligned} & \text { Combl ned } \\ & N=315 \\ & \text { Freq. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INTERNAL RE SOURCES |  |  | * |  |  |  |
| Teacher Discussions. | (47) 52 | (29) 43 | (27) 43 | (21) 36 | (25) 67 | (149) 47 |
| In-Service Training | (45) 50 | (25) 37 | (28) 45 | (18) 30 | (19) 51 | (135) 43 |
| Curriculum Supervisor | ( 31) 35 | (14) 21 | ( 21) 34 | $(16) 27$ | (18) 48 | (100) 32 |
| REE Office $\varepsilon$ Staff | ( 29) 32 | (17) 25 | $(16) 26$ | (15) 25 | ( 19) 51 | (96) 32 |
| Library | ( 20) 22 | ( 11 ) 16 | $(12) 19$ | $(10) 17$ | ( 13) 35 | (66) 21 |
| Student Discussions | $(17) 19$ | ( 8) 12 | (15) 24 | (11) 19 | ( 12) • 32 | (63) 20 |
| Media Centers \& Staff | (18) 20 | ( 8) 12 | ( 15) 24 | $(10) 17$ | ( 9) 24 | $(60) 19$ |
| Other | $(2) 2$ | ( 3) 4 | ( 3) 5 | ( 2) 3 | $(3) 8$ | ( 13) |
| SUBTOTAL | (209) 232 | (115) 172 | (137) 221 | (103) 175 | (118) 320 | (682) 218 |
| EXTERMAL RESOURCES |  |  |  |  |  |  |
| State Educ. Agency | ( 30 ) 33 | (15) 22 | (19) 31 | ( 18) 30 | (12) 32 | (94) 30 |
| University | $(21) 23$ | $(18) 27$ | ( 19) 31 | ( 12) 20 | ( 12) 32 | (82) 26 |
| Titie 1 Programs | (19) 21 | $(6) 9$ | ( 9) 15 | ( 16), 27 | $\left(\begin{array}{ll}1 \\ \hline\end{array}\right.$ | ( 54 ) 17 |
| Title 111 Programs | (14) 16 | ( 8) 12 | ( 7) 11 | $(8) 14$ | $(4) 11$ | (41) 1 |
| Other Federal Programs | $(\mathrm{g}) 10$ | ( 5) 8 | ( 8) 13 | ( 5) 8 | ( 4) 11 | ( 31 ) |
| Prof. Associations | (11) 12 | $(6) 9$ | $(7) 11$ | ( 3) 5 | $(6) 16$ | ( 33 ) 10 |
| Eric | $(\mathrm{g}) 10$ | $(8) 12$ | ( 4) 6 | ( 1) 2 | $(6) 11$ | ( 28) |
| Private Foundations | $(7) 8$ | $(3) 4$ | $(2) 3$ | ( 3) 5 | $(4) 11$ | ( 19) |
| Regional Educ. Labs | ( 5) 6 | $(5) 8$ | ( 2) | $(2) 3$ | $\left(\begin{array}{ll}1) \\ \\ \\ \end{array}\right.$ | ( 15) |
| Other | (7) 8 | $(5) 8$ | ( 3) 5 | (4) 7 | $(1) 3$ | ( 20 ) |
| subtotal | (132) 147 | ( 79 ) 118 | $(80) 129$ | ( 72 ) 122 | (54) 146 | (417) 13 |
| grand total | (341) 379 | (194) 290 | (217) 350 | (175) 297 | (172) 466 | (1099) 35 |

* Percents are based on the number of innovations in each category ("N" given at top of each column). Percents total over 100 since respondent could ilst more than one resource.

Among internal resources teachers were most frequent ly mentioned, although not to the extent that they were when participants were mentioned spontaneously. The phrasing of Questions number 6 and 7 may have limited the response, since it referred to "teacher discussions and idea presentations;" no dousi teachers also participated in other ways. On the other hand, the use of "student discussions and idea presentations" as reported in Table 6.5 is almost identical with spontaneous mentions of student total participation as reported in Table 6.3. The only deviation is in the category of programmatic approaches; for this category students were reported as participating in $36 \%$ of innovations (Table 6.3), whereas the resource "student discussions" tras utilized in only $19 \%$ of cases. The use of curriculum supervisors as reported in Table 6.5 is also very close to the spontaneous mentions of the participation of supervisors and specialists, again with deviation in only one category. Utilization of curriculum supervisors was reported to be $48 \%$ (Table 6.5), whereas supervisors were mentioned spontaneously as pärticipants in only $30 \%$ of innovations in this category (Table 6.3).

Table 6.5 shows some consistent differences among the five categories in the utilization of interna! resources. All internal resources are used considerably more frequently in organizational innovations than in innovations in other categories. They are used slightly less frequently in administrative innovations and programmatic approaches than in all categories combined. There are no consistent or significant differences among categories in the utilization of external resources.

In Table 6.6 responses of superintendents of very large districts on the utilization of resources in the showcase innovation are given. Use of all
(Insert Table 6.6 here)
resources, both internal and external, is greater overall in the very large districts than in representative districts for all categories except individualized instruction and team teaching. Ir general the use of resources in the different finovation categories does not follow the same pattern as in representative schools. Resources are used more often in administrative innovations in very large school systems than for innovations in general, and resources are used slightly less often in organizational innovations.

Table 6.7 reports the use of internal and external resources in cach of the top ten showcase innovations. Internal resources are used more extensively in innovations in the areas of "individualized instruction and team teaching" and "grade and attendance unit changes" than they are for innovations in general. internal resources are used least extensively in "in-service training programs," with "teacher discussions" and "in-service training" being the only internal resources utilized to any great degree in this innovation type.

TAble 6.6
USE OF RESOURCES IN SHOWCASE INNOVATION IN THE INNOVATION DESCRIPTION CATEGORIES

|  | $\begin{aligned} & 11 \varepsilon T T \\ & N=5 \\ & \text { Freg. } \% * \end{aligned}$ | $\begin{aligned} & \text { Adminis. } \\ & \text { N=il } \\ & \text { Freq. } \% * \end{aligned}$ | Curr. $\varepsilon$ Tech $\mathrm{N}=1$ <br> Freq. \%* | $\begin{aligned} & \text { Prog. App. } \\ & N=6 \\ & \text { Freq. } 8 * \end{aligned}$ | Organ. $N=8$ <br> Freq.名* | $\begin{aligned} & \text { Combined } \\ & N=31 \\ & \text { Freq. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INTERNAL RESOURCES |  |  |  |  |  |  |
| Teacher Discussions | ( 2) 40 | (9) 82 | ( 1) 100 | ( 2) 33 | ( 3) 37 | ( 17) 59 |
| In-Service Training | (1) 20 | ( 9) 82 | ( 1) 100 | (4) 67 | (4) 50 | (19) 61 |
| Curriculum Supervisor | ( 2) 40 | (9) 82 | ( I) 100 | ( 3) 50 | (4) 50 | $(19) 61$ |
| ReE Office \& Staff | (1) 20 | (8) 73 | ( I) 100 | (4) 67 | ( 5) 63 | ( 19) 61 |
| Library | ( 1) 20 | ( 5) 45 | (i) 100 | (2) 33 | ( 3) 37 | $(12) 39$ |
| Student Discussions | ( 1) 20 | (6) 55 | - | ( 1) 17 | (2) 25 | ( 10) 32 |
| Media Centers \& Staff | ( 2) 40 | (4) 36 | ( 1) 100 | (2) 33 | ( 4) 50 | $(13) 42$ |
| Other | - - | ( 3) 27 | - - | - - | ( 1) 13 | $(4) 13$ |
| SUBTOTAL | (10) 200 | (53) 482 | ( 6) 600 | (18) 300 | (26) 325 | (113) 365 |
| EXTERNAL RESOURCES |  |  |  |  |  |  |
| Siate tduc. Agency | - - | (6) 54 | ( 1) 100 | (2) 33 | ( 2) 25 | ( 11) 35 |
| University | (2) 40 | (7) 64 | (i) 100 | (2) 33 | (2) 25 | ( 14) 45 |
| Title 1 Programs |  | ( 4) 36 | - . | (3) 50 | (1) 13 | $(8) 26$ |
| Title lll Programs | - | ( 3) 27 | - | (1) 17 | - - | $(4) 13$ |
| * Other Federal Programs | - | ( 3) 27 | ( 1) 100 | ( 2) 33 | ( 1) 13 | $(7) 23$ |
| Prof. Associations | ( 1) 20 | (4) 36 | - - | ( 1) 17 | ( 2) 25 | ( 8) 26 |
| Eric | - | ( 3) 27 | ( 1) 100 | (1) 17 | ( 2) 25 | ( 7) 23 |
| Private Foundations | - | ( 2) 18 | - | ( 1) 17 | ( 1) 13 | ( 4) 13 |
| Regional Educ. Labs | - - | ( 3) 27 | - | ( 1) 17 | (2) 25 | $(6) 19$ |
| Other | ( 1) 20 | (3) 27 |  | - - | - - | ( 4) 13 |
| - subtotal | (4) 80 | (38) 345 | (4) 400 | (14) 233 | (13) 162 | ( 73) 235 |
| GRAND TOTAL | (14) 280 | (91) 827 | (10) 1000 | (32) 533 | (39) 487 | (186) 600 |

* Percents are based on the number of Innovations in each category ('N" given at top of each column). Percents total over 100 since respondents could list nore than one resource.

TABLE 6.7
USE OF RESOURCES IN THE TOP TEN SHOWCASE INNOVATIONS PERCENT DISTRIBUTION*

| ' |  |  | $\begin{gathered} \frac{E}{3} \\ \frac{3}{3} \\ \hdashline \frac{0}{n} \\ \frac{3}{3} \\ N \\ N=26 \\ q \end{gathered}$ |  |  |  |  |  |  |  | Combined $N=247$ <br> $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INTERNAL RESOURCES |  |  |  |  |  |  |  |  |  |  |  |
| Teacher Discussions | 45 | 31 | 58 | 74 | 69 | 44 | 44 | 42 | 55 | 27 | 48 |
| In-Service Training | 45 | 33 | 58 | 61 | 69 | 44 | 31 | 42 | 55 | 36 | 42 |
| Curriculum Supervisor | 33 | 26 | 50 | 39 | '58 | 50 | 25 | 8 | 18 | 36 | 35 |
| ReE Office \& Staff | 31 | 28 | 31 | 35 | 63 | 50 | 25 | 8 | 45 | 36 | 34 |
| Library | 7 | 26 | 19 | 39 | 42 | 28 | 31 | - | - | 18 | 23 |
| Student Discussions | 17 | 13 | 27 | 26 | 21 | 22 | 31 | 8 | 18 | 18 | 19 |
| Media Center \& Staff | 19 | 28 | 27 | 26 | 21. | 22 | 25 | - | 9 | 9 | 21 |
| Other | 3 | 3 | 4 | 83 | 16 | 6 | - | - | - | 9 | 4 |
| SUBTOTAL | 208 | 186 | 273 | 382 | 358 | 263 | 212 | 108 | 200 | 191 | 230 |
| EXTERNAL RESOURCES |  |  |  |  |  |  |  |  |  |  |  |
| State Educ. Agency | 26 | 33 | 38 | 48 | 32 | 28 | 31 | 25 | 27 | 27 | 32 |
| University | 28 | 26 | 42 | 13 | 42 | 28 | 25 | 42 | 27 | 9 | 28 |
| Title I Programs | 17 | 39 | 19 | 30 | 16 | 6 | - | 17 | 18 | 27 | 20 |
| Title Ill Programs | 14 | 13 | 15 | 17 | 16 | 11 | 6 | 8 | 27 | 36 | 15 |
| Other Federal Programs | 10 | 8 | 19 | 9 | 16 | - | 6 | 8 | 27 | 9 | 11 |
| Prof. Associations | 11 | 5 | 12 | 17 | 21 | 22 | 19 | - | 9 | 9 | 12 |
| ERIC | 11 | 5 | 8 | 4 | 32 | 22 | 6 | - | 18 | - | 11 |
| Private Foundations | 8 | 8 | 1 | 4 | 16 | 11 | 6 | 8 | 9 | , - | 8 |
| Regional Educ, Labs | 6 | 5 | 8 | 4 | 5 | 22 | - | - | 9 | 9 | 6 |
| Other | 8 | 8 | 4 | 9 | - | 6 | - | 8 | - | - | 6 |
| subtotal | 139 | 147 | 168 | 156 | 200 | 156 | 100 | 117 | 175 | 127 | 153 |
| GRAND TOTAL | 347 | 337 | 444 | 540 | 558 | 421 | 312 | 224 | 373 | 318 | 383 |

* Percents are based on the number of innovations of each type (' K ' $\mathrm{g}^{\mathrm{g}} \mathrm{ven}$ at top of each colum). Percents total over 100 since respondents could ; list more than one resource.

Teacher discussions are used to the greatest degree (74\%) in the area of individualized instruction and team teaching in specific curriculum areas. Somowhat surprisingly they were used least frequently (27\%) in the addition of teacher aldes, tutors and paraprofessionals to the staff. The difference among innovations in the use of teacher discussions is significant at the .05 level. Use of the research and evaluation office and staff is mentioned most frequently in connection with changes in the grade and attendance unit (63\%).

Finally, Title 1 programs and services are utilized most extensively in the innovation type "special instructional programs" (39\%) and were not used at all in the introduction of unit courses, mini-courses and electives. The pattern of use of Title $l$ among the ten top showcase innovations is significantly different from the pattern of use of other external resources ( $p<.05$ ).

We felt it would be of particular interest to examine more closely the extent of use of federal resources, including ERIC, Title I, Title lll, the Regional Educational Laboratorles and other unspecifled federal programs. Results of this examination are shown in Table 6.8. The total figures are

TABLE 6.8
USE OF FEDERAL RESOURCES**
IN THE SHOWCASE INNUVATION*

| Number of Resources Used | $\begin{aligned} & \text { Districts } \\ & <80,000 \end{aligned}$ |  | $\begin{aligned} & \text { Districts } \\ & \geq 80,000 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Freq. | $\%$ of 315 | , Freq. | of 31 |
| 1 | (71) | 23 | ( 3) | 10 |
| 2 | (26) | 8 | ( 5) | 16 |
| 3 | ( 9) | 3 | ( 3) | 10 |
| 4 | ( 1) | * | - | - |
| 5 | ( 3) | 1 | ( 2) | 6 |
| TOTAL | (110) | 35 | (13) | 42 |

[^4]quite impressive, with $35 \%$ of representative districts and $42 \%$ of very large districts using one or more federal resources in their showcase innovations. It is evident that use of these resources is greater in very large districts than in representative districts, both in terms of the total percentage of districts using at least one federal resource and in terms of the percentage of districts using more than one resource.

An examination was also made of the nature of the showcase innovations in which ERIC and the Regional Laboratories were utilized. Tables 6.5, 6.6 and 6.7 give some indication of the types of innovations which made use of these resources; the listings below show exactly what these innovations were. innovations adopted by very large districts are followed by the designation "(L)".

INNOVATIONS IN WHICH "ERIC" WAS USED
A. Individualized Instruction and Team Teaching

1. Individualized instruction and team teaching
2. Individualized instruction and team teaching; non-graded, continuous progress
3. Team teaching, open space, multi-age, non-graded
*4. Team teaching, open space - elementary
4. Open space - elementary
5. Individuallzed instruction
*7. Differentiated staffing
6. Non-graded, continuous progress
:9. Elementary reading; continuous progress, differentiated staffing
B. Administrative Innovations
7. Planning committee
*2. Needs assessment, evaluation
*3. Learning improvement fund
*4. Needs assessment (L)
8. Curriculum development in communications
9. Curriculum development in science and careers.
10. Diagnosis of learning disabilities
11. Counseling accountability
*g. Desegregation (L)
12. Public relations
*11. Detentralization ( $L$ )
C. Programmatic Approaches to Instruction
13. Pre-school program
*2. Reading problems program (L)

[^5]D. Curriculum Changes and Instructional Technology

1. Curriculum revision in humanities
2. Curriculum revision in occupational orientation, grades 7-9
3. Electives in Englihh
4. Computer programming materials
5. Math instructional objectives catalog
E. Organizational Innovations
6.     - 3. Transitional grade
*4. - 6. Middle school
*7. Quinmester plan
(L)
*8. Model Kindergarten (L)

INNOVATIONS IN WHICH REGIONAL LABORATORIES WERE USED
A. Individualized Instruction and Team Teaching
I. Team learning
*2. Team teaching, open space - elementary
3. Open elementary school
*4. Differentiated staffing
*5. Elementary reading; continuous progress, differentiated staffing
B. Administrative Innovations
*1. Needs assessment, evaluation
*2. Learning improvement fund
3. Systems approach to coordination and planning in Research and Evaluation Division
*4. Needs ašsessment (L)
5. Career orientation planning
*6. Desegregation (L)
7. Teacher corps
*8. Decentralization (L)
C. Programmatic Approaches to Instruction

1. Early childhood program
*2. Reading problems program (L)
D. Curriculum Changes and Instructional Technology
I. Cross-age tucoring
2. Curriculum revision in bilingual and bicultural
3. Curriculum revision in bilingual Kindergarten
E. Organizat lonal Innovations
*1. Middle school
*2. Quinmester plan
*3. Model Kindergarten (L)

These listings indicate that ERIC and the Regional Laboratories were found to be relevant to a wide variety of imovations. Proportionally. districts adopting administrative innovations made the greatest use of both resources, whereas districts adopting programatic approaches niade the least use of them. Out of the 35 districts making use of ERIC and the 21 districts using the Regional Laboratories, ll districts utilized both resources.

## C. PARTICIPANT ATIITUDES AND CHARACYERISTICS

As superintendents were naming the participants to the showcase innovation in response to Questions $\mathrm{lb}, \mathrm{Ic}$ and le , they frequently mentioned participant characteristics or attitudes which were salient. In Table 6.9 a summary of these traits and attitudes is given; for each size sample of schoul districts the total mentions are preceded by the mentions of these characteristics as key factors in the innovation process. Percentages are based on the total number of show case innovations in each size sample.
table 6.9
PARTICIPANT ATTITUDES AND CHARACTERISTICS AS FACTORS IN SHOWCASE INNOVATION SUCCESS

| Attitude or Characteristic | Distriets $<80,000$ |  |  |  | Districts $\geq 80,000$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Key <br> Factor |  | TotalFactorFreq. $\%$ of 315 |  | Key Factor Freq. \% of 31 |  | Total <br> Factor <br> eq. \% of 31 |  |
| Acceptance * of Innovation | (96) | 30 | (111) | 35 | (11) | 35 | (11) | 35 |
| Need/Benefit | (51) | 16 | ( 64) | 20 | ( 6) | 19 | ( 9) | 29 |
| Enthusiasm | (48) | 15 | ( 50) | 16 | ( 9) | 29 | (10) | 32 |
| Leadership | (27) | 9 | ( 34) | 11 | ( 5) | 16 | ( 6) | 19 |
| Innovativeness | (15) $* *$ | 5 | ( 17) | 5 | - | - | ( 1) | 3 |
| Interest in Innov. | ( 8) | 3 * | ( 12) | 4 | ( 1) | 3 | ( 2) | 6 |
| Belief in Innov. | ( 8) | 3 | ( 8) | 3 | - | - | - | - |

* In representative districts acceptance was a key factor in failure in four cases; absence of acceptance was a key factor in failure in seven cases, and in one case acceptance was a factor in failure but not a key factor.
rat Absence of innovativenesss was a key factor in failure in one case.

For both size samples acceptance of the innovation was most frequentiy mentioned both as a general factor and as a key factor in innovation suscess. A perceived need for the innovation or the benefits anticipated from it was the second ranking factor in representative school systems; in very large districts enthuslasm on the part of the participants was mentioned slightly more often and was considerahly more important as a key factor. Enthusiasm and leadership by participants were both more frequently mentioned as general factors and key factors in very large districts than in representative districts. Innovativeness as a general characteristic of participants was rarely mentioned.

Table 6.10 shows which participants in representative districts possessed each of the above attitudes or characterlstics. In this table percentages are based on the total number of mentions of each attitude or characteristic so that each column totals $100 \%$.

TABLE 6.10
ATTITUDES AND CHARACTERISTICS OF PARTICIPANTS
DISTRICTS $<80,000$
PERCENT DISTRIBUTION*

| Participant | $\left\{\begin{array}{c} \text { Accept- } \\ \text { ance } \\ N=111 \\ \% \end{array}\right.$ | $\begin{aligned} & \text { Need/ } \\ & \text { Bene fit } \\ & N=64 \\ & \% \end{aligned}$ | Enthuslasm $\mathrm{N}=50$ $\%$ | $\begin{gathered} \text { Leader- } \\ \text { ship } \\ N=34 \\ \% \end{gathered}$ | Innovativeness $N=17$ \% | Interest in innov. $\mathrm{N}=12$ $\%$ | Belief in Innov. Na 8 $\%$ | $\left\lvert\, \begin{gathered} \text { Combined } \\ N=296 \\ 6 \end{gathered}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Administrators | 25 | 17 | 20 | 62 | 12 | 17 | - | 25 |
| Teachers | 23 | 5 | 38 | 21 | 41 | 25 | 50 | 23 |
| Community ( $\varepsilon$ Staff) | 8 | 69 | 2 | 3 | 6 | 34 | - | 21 |
| Students ( $\varepsilon$ Staff) | 19 | 2 | 30 | 15 | 35 | 17 | 25 | 18 |
| Staff | 13 | 3 | - | - | - | 8 | 12 | 6 |
| Parents | 4 | 5 | 4 | - | - | - | 12 | 4 |
| Other, or not Specified | 7 | - | 6 | - | 6 | - | - | 4 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

* Percents are based on the number of responses in each attitude or characteristic group ('N" given at top of each column).

Adninistrators, teachers, the community, and students were the participants most often named in connection with specific attitudes and characteristics, with parents and others rarely being named. In a few cases the staff was mentioned along with the community, and in almost every case in which students were named the staff was also named. Thus the staff as a group was actually mentioned in more cases than any other group. Among groups there is considerable variation as to which factor was most prevalent. Leadership was most frequently mentioned as a salient trait of administrators ( $62 \%$ ), while their belief in the innovation was never mentioned as a factor. In contrast, belief of teachers in the innovation was most conimon?y mentioned as an important factor (50\%). Needs of teachers or benefits for teachers was rarely a factor (5\%), and, surprisingly, it was even less often a factor for students (2\%). Need and benefit were must often mentioned as being a factor for the community ( $69 \%$ ).

There were no significant differences among the five innovation categories in terms of the frequency of mention of the various attitudes and characteristics. Only a few differences were noted when these factors were compared across the top ten innovations. Acceptance, which was the most commonly mentioned at titude for all top ten innovations combined (a factor in $34 \%$ of innovations) was never mentioned in connection with in-service training programs. The second most commonly named factor, need or benefit (23\%), was mentioned for only $6 \%$ of innovations in the area of unit courses, mini-courses and electives and for 8\% of innovations in the area of curriculum revision; in contrast, it was mentioned in $44 \%$ of special instructional programs and $42 \%$ of innovations in the area of grade and attendance unit change.

## D. USE OF PROCEDURES TO GAIN PARTICIPATION AND COOPERATION

When superintendents were asked to describe the process by which the showcase innovation was introduced and implemented (Question \# ib), many procedures were cited. Among these were references to attempts to gain the participation and cooperation of various groups inside and outside the school system. These responses represent concerted efforts to gain participation, rather than actual participation, which was discussed previously. Table 6.1l iists the number of tines respondents indicated that specific procedures were employed to gain the participation and cooperation of various groups.

TABLE 6.11
PROCEDURES CITED TO GAIN
PARTICIPATION AND COOPERATION

| 4 | Participation |  |  |  | Cooperation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Districts } \\ <80,000 \end{gathered}$ |  | $\begin{gathered} 01 \text { stricts } \\ \geq 80,000 \\ \text { freq. } \% \text { of } 31 \end{gathered}$ |  | $\begin{array}{r} \text { Districts } \\ <80,000 \end{array}$ <br> Freq. \% of 315 |  | $\begin{array}{r} \text { DIstricts } \\ \geq 80,000 \end{array}$$\text { freq. } \% \text { of } 31$ |  |
| Staff (unspecified) | (30) | 10 | (4) | 13 | (24) | 8 | (6) | 19 |
| Teachers | (24) | 8 | - | - | (12) | 4 | - | - |
| Studenis ( $\varepsilon$ Staff) | ( 8) | 3 | - | - | ( 9) | 3 | (1) | 3 |
| Community ( $\varepsilon$ Staff) | ( 7) | 2 | (6) | 19 | ( 4) | 1 | (1) | 3 |
| Parents * | ( 2) | 1 | (1) | 3 | - | - | - | - |
| Administration | (2) | 1 | - | - | ( 3) | 1 | - | - |
| Others, or not Specified | (16) | 5 | - | - | (14) | 4 | (1) | 3 |
| $\cdots$ Total | (89) | 28 | (11) | 35 | (66) | 21 | (9) | 29 |
| Key, factor toy |  | 25 |  | 35 | (35) | 11 | (8) | 26 |

Participation was actively sought more frequently than was cooperation in both size samples. Both participation and cooperation were sought more often in very large districts than they were in representative districts, and in very iarge districts they were more likely to be key factors in the success of the innovation. In representative districts the participation and cooperation of a wider range of people was sought, however. In very large districts no mention was made of attempts to gain either the partlcipation or the cooperation of teachers. On the other hand community participation was sought in 19\% of cases in very large districts, a finding which is consistent with the high communlty involvement we noted earlier in these distrlcts.

Perhaps the most notable feature pointed up by Table 6.11 Is the fact that in representative districts the participation or cooperation of any one particular group was not sought in rare than $10 \%$ of innovation processes. In very large districts all groups except the staff and community were virtually neglected.

No differences were evident among the five innovation categories In terms of the number of times procedures were speciflcally employed to secure participation or cooperation, but there were some varlations among the top ten innovations.

Frequencies were too small to permit an analysis of the speciffigroups for whon these procedures $w$.te intended in the top ten innovations, but table 6.12 presents a sumnary of procedures for each innovation type. Percentages are based on the number of innovations in each innovation type.

TABLE 6.12
PROCEDURES CITED TO GAIN PARTICIPATION ANO COOPERATION in top ten showcase innovations

| Innovation | Participation |  |  |  | Cooperation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Key <br> Factor Frea. 名立; |  | Total Factor |  | $\begin{gathered} \text { Key } \\ \text { Factor } \end{gathered}$ |  | Total Factor |  |
| Ind. Instr. \& Team Teaching --All Areas ( $N=72$ ) | (22) * |  | (25) | 35 | ( 8) | 11 | (17) |  |
| Special Inst. Program ( $\mathrm{N}=39$ ) | ( 7) |  | ( 7) |  | ( 7) | 18 | (10) |  |
| Curriculum Rev. ( $\mathrm{N}=26$ ) | ( 8) * |  | ( 8) |  | ( 3) | 12 | (is): |  |
| Ind. Instr. \& Team Teaching --Spec. Areas $(\mathrm{N}=23$ ) | ( 7) |  | ( 9) | 39 | ( 3) | 13 | (16) |  |
| Grade \& Att. Unit ( $\mathrm{N}=19$ ) | (4) |  | ( 4) | 21 | ( 1) | 5 | ( 1) |  |
| Planning, Res, E Eval. $(\mathrm{N}=18$ ) | ( 7) | 39 | ( 7) | 39 | ( 2) | 11 | ( 59) | 28 |
| Unit, Mini-Courses ( $\mathrm{N}=16$ ) | ( 7) | 44 | ( 8) | 50 | ( 5) | 31 | ( 7) | 44 |
| In-Service Training ( $\mathrm{N}=12$ ) | ( 3) | 25 | ( 3) | 25 | ( 1) | 8 | ( 2) | 17 |
| Guidance \& Counseling ( $N=11$ ) | ( 4) | 36 | ( 4 ) | 36 | - | - | ( 1) |  |
| Teacher Aides ( $\mathrm{N}=11$ ) | ( 1) | 9 | (1) | 9 | ( 3) | 27 | ( 3) |  |
| Combined ( $\mathrm{N}=247$ ) | (70) | 28 | (76) | 31 | (33) | 13 |  |  |

* Includes onérase in which lack of participation was cited as a key factor ififlure.
** Percents are based on the number of innovations of each type after each innovation type at left).


Participation was sought most frequently in the introduction of unit courses, mini-courses and electives ( $50 \%$ ) and least frequently when teacher aides were added to the staff (9\%). Cooperation was also sought most frequently in the introduction of unit courses and electives (44\%) and least often when changes were made in the grade and at tendance unit (5\%).

Table 6.12 points up one additional fact of interest: when procedures were used to gain participation, these were almost always consldered to be key factors. On the other hand, procedures to secure cooperation were key factors in only slightly more than half the cases in which they were employed.

## E. ADVICE ON PARTICIPATION OFFERED TO OTHER DISTRICTS

As was mentioned in the previous chapter, a number of superintendents felt that on the basis of their experience with their own showcase innovation they could offer some advice to other districts which were considering adopting the same or a similar innovation. Some of this advice* consisted of suggestions that various groups or individuals' should be involved in the planning and decision-making of the adoption process or that the support of various groups should be sought. In Table 6.13 advice given in these areas is summarized for each size sample of school districts. Superintendents of representative districts

TABLE 6.13
ADVICE ON GAINING THE
INVOLVEMENT AND SUPHORT OF PARTICIPANTS

|  | Invol vement |  |  |  | Support |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} \text { Districts } \\ <80,000 \end{array}$ <br> freq. * of 315 |  | $\begin{gathered} \text { Oistricts } \\ \geq 80,000 \\ \text { freq. } \% \text { of } 31 \end{gathered}$ |  | $\begin{gathered} \text { Oistricts } \\ <80,000 \\ \text { Freq. \% of } 315 \end{gathered}$ |  | $\begin{gathered} \text { Districts } \\ \geq 80,000 \\ \text { Freq. } \% \text { of } 31 \end{gathered}$ |  |
| Teachers \& Admin. | (36) | 11 | - | - | (23) | 7 | - | - |
| Community | (16) | 5 | (1) | 3 | (12) | 4 | (1) | 3 |
| Others Outside | (15) | 5 | (1) | 3 | ( 4 ) | 1 | (1) | 3 |
| Students \& Parents | ( 5) | 2 |  | 13 | ( 9) | 3 | - | - |
| Total | (72) | 23 | (6) | 19 | (48) | 15 | (2) | 6 |

[^6]nosi frequently mentioned that teachers and administrators should be involved in planining and decision-making (11\%) and that their support should be gained ( 77, ). Community members were mentioned less frequently and parents and students - very rarely. In contrast, superintendents of very large districts never suggested that teachers and administrators should be involved or their support sought. It was suggested in four cases (13\%) that students and parents should be involved in planning and decision-making.

Since this advice was based on the superintendent's own experience, it is of interest to compare Table 6.13 with Table 6.11 , which summarized the procedures cited in which participation and cooperation were sought in adopting the showcase innovation, Overall, representative districts advise others to involve and gain support of participants slightly less often than they did themselves, and very large districts give this advice considerably less often than they themselves used such procedures. In representative districts teacher, administrator, parent and student participation is urged less and community involvement is suggested more. These districts also suggest galning community support more often than they themselves did, and staffilnvolvement less often. Very large districts reconmend staff and community involvement less and involvement of parents and students more. Staff support was recommended less often to other districts than it was actually sought by our respondents.
;

## F. SUMMARY

Teachers and staff stand out as being frequent participants in showcase innovation planning and implementation. Assistant superintendents and principals are also heavily involved but are more rarely seen as key actors. In very large districts the community is also frequently cited as being involved as a key factor. Outside experts, on the other hand, were rarelymentioned as being participnnts in the innovation process.

When various groups inside and outside the school system are considered in terms of their usefulness as resources, teachers again are most often cited. Although internal resources on the whole are reported as utilized more frequentiy than are external resources, it was found that external experts were used more extensively as sources than as participants. In particular, $35 \%$ of representative districts and $42 \%$ of very large districts utilized at least one federal resource in adopting the showcase innovation. Very large districts tended to use both internal and external resources more frequently than did representative districts.

When attitudes and characteristics of participants were mentioned as being salient to the innovation process, acceptance of the innovation was the most commonly noted attitude. Needs of participants and benefits expected for them
were also commonly mentioned, but, surprisingly, needs of the community were referred to far more often than were needs of students or teachers. Specia! instructional programs and changes in the grade and attendance unit structure were the innovations most often adopted in response to a specifically perceived need. It is interesting to note that innovativeness as a characteristic of participants was very rarely mentioned as a factor of importance.

Over one quarter of the districts reported employing specific procedures to gain either the participation or the cooperation of participants, or both. Such procedures were utilized somewhat more frequently in very large districts than in representative districts, and when they were employed they were also more likely to be viewed as key factors in success in the very large districts.

Overall the data show that very large districts solicited and achleved greater participation in and support for their innovative efforts than did representative districts, and these factors were more often noted as being of key importance in very large districts. However, when superintendents were asked what advice they might offer to other districts, those from the very large districts were in general less likely to suggest that involvement and support should be sought from groups inside and outside the school. The notable excéption to this is that very large districts recommended higher involvement of students and parents than did representative districts.


## CHAPTER SEVEI: PROCEDURES AND BAPRIEPS

The purpose of the national survey was essentially twofold: one aim was to ascertain the extent, content and consequences of innovation attempts in our nation's schools, and part of this analysis has been presented in Chapters two through Five. The second major aimwas to understand the process through which these innovations were planned and implemented. Our understanding of this process will be derived primarily from respondents' written descriptions of how the showcase innovation was introduced and implemented. The analysis of process began in Chapter Six, with an accounting of pat terns of participation. In the present chapter this analysis will be continued in broader scope; responses to both open-ended and closed-ended questions concerning procedures employed and barriers encountered in the showcase innovation will be presented.

## A. PROCEDURES USED IN THE SHOWCASE INNOVATION

Questionnaire Item \#2 elicited direct information on procedures ulilized in the showcase innovation process. These "procedure" statements were carefully chosen to represent important actions in assuring successoót an innovation at tempt, ${ }^{*} \quad$ The 21 "procedures" 1 isted in Questiqn $/ 22$ are presented in Table 7.1 in rank order according to the degree of emphasis placed upon them in the introduction and installation of the showcase innovation. Mean scores are given for each item for representative and very large districts. These scores, based on the number of superintendents responding to each item, are computed according to the following scale: 5 =ext reme emphasis, $4=m a j o r$, 3-moderate, $2=s l i g h t$, and linone.
(Insert Table 7.1 here)

It can be seen that major emphasis was placed on 11 of the 21 procedures, while moderate emphasis was placed on the remaining ten items. In districts in both size samples "taking advantage of crisis situations" was the lowest ranking item, although for this item there was the widest discrepancy between representative and very large districts. Very large districts, which placed a greater emphasis on this procedure, also experienced a greater number of dis ruptive events which might be considered as "crises," as will be pointed out later in this chapter.

[^7]TABLE 7.1
PROCEDURES USED IN SHOWCASE INNOVATION

| Procedure | Districts $<80,000$ |  | Districts $\geq 80,000$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Freq. | Mean* | Freq. | Mean ${ }^{\text {k }}$ |
| 1. Persistence by those who advocate the innovation | (307) | 4.17 | (30) | 4.10 |
| 2. Systematic planning | (309) | 4.12 | (30) | 4.30 |
| 3. Providing a climate conducive to sharing ideas | (309) | 4.11 | (30) | 4. 10 |
| 4. Selecting a competent staff to implement change | (304) | 4.04 | (30) | 4.30 |
| 5. Creating awareness of the need for change | (308) | 4.03 | (30) | 4.20 |
| 6. Adequate definition of objectives | (308) | 4.00 | (30) | 4.27 |
| 7. Adequate diagnosis of the real educational need | (308) | 3.98 | (30) | 4.23 |
| 8. Stressing self-help by the users of the innovation | (303) | 3.67 | (30) | 3.50 |
| 9. Maximizing the chances of participation by many groups | (303) | 3.65 | (30) | 3.70 |
| 10. Systematic evaluation | (308) | 3.64 | (30) | 3.73 |
| 11. Providing a climate conducive to risk-taking | (306) | 3.55 | (30) | 3.77 |
| 12. Involvement of informal leaders of opinion inside the schools | (304) | 3.50 | (30) | 3.33 |
| 13. Finding shared values as a basis for working | (297) | 3.45 | (29) | 3.28 |
| 14. Creating an awareness of alternative solutions | (306) | 3.44 | (30) | 3.60 |
| 15. Starting out with adequate financial resources to do the job | (305) | 3.42 | (30) | 3.47 |
| 16. Utilizing a number of different media to get the new ideas across | (307) | 3.36 | (30) | 3.30 |
| 17. Confrontation of differences | (305) | 3.31 | (30) | 3.23 |
| 18. Resolution of interpersonal conflicts | (300) | 3.26 | (28) | 3.11 |
| 19. Solid research, base | (302) | 3.25 | (29) | 3.34 |
| 20. Participation by key community leaders | (305) | 2.84 | (30) | 3.13 |
| 21. Taking advantage of crisis situations | (296) | 2.59 | (29) | 2.93 |

*Means are computed according to degree of emphasis:
5=extreme; 4=major; 3=moderate; 2mslight; 1=none

Also low-ranking in all districts was "participation by key community leaders." Again, very large districts placed greater emphasis on this procedure than did representative districts, a finding consonant with responses concerning community participation as reported in Chapter six.

Very large districts also placed greater emphasis on three related procedures: $\# 5$ - "creating awareness of the need for change;" $\# 6$ - "adequate definition of objectives;" and $\# 7$ - "'adequate diagnosis of the real educational need." It may be conjectured that need assessment is more complex in larger systems and therefore requires greater emphasis; but it should be pointed aut that even in the representative sample these procedures ranked high in importance.

1. RELATIONSHIP OF SHOWCASE INNOVAT ION PROCEDURES TO DISTRICT SIZE When an analysis was made of the degree of emphas is placed on eacff of the 21 procedures by districts according to seven size categories, diffegences of statistical significance were found for only three of the prócodures. \& These findings are presented in Table 7.2.

TABLE 7.2
SHOWCASE INNOVATION PROCEOURES BY OISTRICT SIZE

| Size | (9) Maximizing Participation |  | (10) Climate for Risk-Taking |  | (13) Shared Values |  | $\begin{gathered} \text { Total for } \\ \text { Items } \because, 10 \& 13 \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. | Mean'* | Freq. | Mean:" | Freq. | Mean* | Freq. | Mean:' |
| $1-299$ | (5) | 2.40 | (6) | 3.17 | (6) | 3.34 | (17) | 3.00 |
| $300-2.499$ | (66) | 3.42 | (67) | 3.47 | (64) | 3.34 | (197) | 3.40 |
| $2,500-4,999$ | (51) | 3.69 | (52) | 3.40 | (51) | 3.55 | (154) | 3.54 |
| 5,000-9,999 | (54) | 3.67 | (54) | 2.80 | (51) | 3.37 | (159) | 3.28 |
| 10,000-24,999 | (74) | 3.74 | (73) | 3.50 | (72) | 3.39 | (219) | 3.54 |
| 25,000-79,999 | (53) | 3.87 | (54) | 3.95 | (53) | 3.68 | (160) | 3.82 |
| 80,000 and over | (30) | 3.71 | (30) | 3.18 | (29) | 3.28 | (89) | 3.58 |
| Total | (333) | 3.65 | (336) | 3.57 | (326) | 3.41 | (3538) | 3.56 |
| Significance Level (chi-square test) | p<. 03 |  | $p<.04$ |  | $\rho<.05$ |  |  |  |

(1)"eans are computed according to degree of emphasis:

The greatest differences were found for the procedure "maximizing the chances of participation by many groups," with greater emphasis placed on this item by larger than by smaller districts. In particular, the smallest districts, of pupii size under 300, placed only slight emphasis on this procedure, while emphasis in other districts ranged from moderate to major.

The procedure "providing a climate conducive to risk-taking," was emphasized the least by systems with between 5,000 and 9,999 students. On both of these items, as well as on item H13, "finding shared values as a basis for working," the greatest emphasis was placed by systems of pupil size 25,000 to 79,999.

A comparison was also made between districts of more than 80,000 students and all representative districts combined for item $\# 20$, "participation by key community leaders." This analysis showed that the very large districts placed significantly more emphasis on this kind of participation ( $\mathrm{P}<.02$ ).

## 2. RELATIONSHIP OF SHOWCASE INNOVATION PROCEDURES TO REGION

When an analysis was made of regional difference in representative districts in the utilizatlon of the procedures, onlv four items emerged as being slgnificant. This data is presented in Table 7.3.
(Insert Table 7.3 here)
"Finding shared values as a basis for working" was emphaslzed in the Rocky Mountain and Mid East reglons, whlle it received the least attention in the Far East and the Plains states. "Resolution of interpersonal conflicts" was emphasized significantly more in the Rocky Mountains region than in other areas of the country. The New England states ranked a distant second, but were still far ahead of the other six reglons. In the South West and Rocky Mountain regions the procedure of involving communlty leaders was employed to the greatest extent, while it was emphasized the least in the Mid East stetes. Finally, although all regions emphasized 'providing a climate conducive to sharing ldeas" to a moderate extent, the Plalns states placed the least emphasis on this item.

Overall, on the basis of these four items, it may be said that the Rocky Mountain region stands out as placing the greatest emphasis on procedures to insure successful innovation, and the New England states rank second. The least emphasis is placed on these procedures in the Plains states and In the Far West.

TABLE 7.3
SHOWCASE INNOVATION PROCEDURES BY REGION DISTRICTS < 80,000

| Region | (3) Sharing Ideas |  | (13) Shared Values |  | (18) Conflict Resolution |  | (20) Involve Community Leaders |  | Total for Items 3,13,18 and 20 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. | Mean* | Freq. | Mean* | Freg. | Mean ${ }^{\text {* }}$ | Freq. | Mean' | Freg. | Mean* |
| Rocky Mountains | (11) | 4.09 | (10) | 3.80 | (10) | 4.20 | (11) | 3.18 | (42) | 3.81 |
| New England | (24) | 4.13 | (24) | 3.54 | (24) | 3.79 | (24) | 2.92 | (96) | 3.59 |
| South West | (23) | 4.30 | (22) | 3.55 | (23) | 3.17 | (23) | 3.30 | (91) | 3.58 |
| MId East | (51) | 4.22 | (48) | 3.79 | (49) | 3.30 | (50) | 2.80 | (198) | 3.52 |
| Great Lakes | (67) | 4.40 | (65) | 3.51 | (66) | 3.30 | (65) | 2.66 | (263) | 3.43 |
| South East | (65) | 3.95 | (61) | 3.32 | (62) | 3.26 | (64) | 3.02 | (252) | 3.39 |
| Far West | (42) | 4.02 | (41) | 3.03 | (41) | 2.95 | (42) | 2.65 | (166) | 3.16 |
| Plains | (26) | 3.92 | (26) | 3.19 | (25) | 3.08 | (26) | 2.58 | (103) | 3.12 |
| Total | (309) | 4.11 | (297) | 3.45 | (300) | 3.26 | (305) | 2.84 | (1211) | 3.41 |
| Slgniflcance Level (chl-sqare test) |  |  |  |  |  |  | $\rho$ |  |  |  |

*Means are computed according to degree of emphasis:
5extreme; 4major; 3amoderate; 2uslight; l=none

## 3. UTILIZATION OF procedures in the five innovation categories

Table 7.4 presents the mean emphasis placed on each of the 21 procedures by representative systems which Innovated in each of the five categories. The overall means for these systems, as presented in Table 7.1 , is repeated here for comparative purposes.
(Insert Table 7.4 here)

Following the table a summary is given of the number of procedures used to a greater or lesser extent in each of the flve categories, than in all categories combined. Administrative innovations stand out as making the most extensive utillzation of the procedures: 19 were used to a greater extent than for all innovation combined. Innovations in the category of Individualized instruction and team teaching were also far above average, making greater use of 16 of the procedures. On the other hand, when innova-

TABLE 7.4
procedures use in the five showcase innovation categories
MEAN SCORES*
DISTRICTS < 80,000

| Proce dure | Ind. Instr.+ <br> Team Teach | Administrative | Programmatic Approaches | Curriculum and Technology | Organizational | Combined Mean | Sig. <br> Level <br> $\left(x^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I. Persistence by those who advocate the innovation | 4.25 | 4.25 | 3.98 | 4.10 | 4.25 | 4.17 |  |
| 2. Systematic planning | 4.18 | 4.14 | 4.09 | 4.02 | 4.14 | 4.12 |  |
| 3. Providing a climate conducive to sharing ideas | 4.34 | 4.20 | $\begin{array}{r}3.79 \\ \hline\end{array}$ | 4.00 | 4.11 | 4.11 | P < 0 |
| staff to implement change |  |  |  |  | + ${ }^{+81}$ |  |  |
| 5. Creating awareness of | 3.95 | 4.08 | 4.25 | 4.07 | 3.81 | 4.04 |  |
| 6. Adequate dor change | 4.17 | 4.23 | 3.70 | 3,87 | 4.08 | 4.03 | P<.0 |
| 7. Adequate diagnosis of | 3.93 | 4.14 | 4.02 | 3.93 | 3.97 | 4.00 |  |
| the real educationat need | 4.00 | 4.00 | 4.12 | 3.80 | 3.97 | 3.98 |  |
| 8. Stressing self-help by the users of the innovation | 3.77 | 3.84 | 3.61 | 3.46 | 3.56 | 3.67 |  |
| 9. Maximizing the chances of participation by many groups | 3.72 3.72 | 3.89 | 3.45 | 3.58 | 3.56 3.58 | 3.67 3.65 |  |
| 10. Systematic evaluation | 3.64 | 3.77 | 3.70 | 3.44 | 3.68 | 3.64 |  |
| 11. Providing a climate conduclve to risktaking | 3.72 | 3.86 | 3.21 | 3.31 | 3.51 | 3.55 | <. |
| 12. Involvement of informal leaders of opin- |  |  |  |  |  | 3.5 | (, |
| Ion inside the schools | 3.69 | 3.62 | 3.23 | 3.36 | 3.43 | 3.50 |  |
| 13. Finding shared values as a basis for working | 3.62 |  | 3.35 | 3.22 | 3.45 | 3.45 |  |
| 14. Creating an awareness of alternative solu- | 3.62 |  | 3.35 | 3.22 | 3.45 | 3.45 |  |
| tions | 3.59 | 3.58 | 3.39 | 3.05 | 3.59 | 3.44 | $p<.0$ |
| 15. Starting out with adequate financlal resources to do the job |  |  |  |  |  |  |  |
| sources to do the job <br> 16. Utillzing a number of | 3.39 | 3.42 | 3.66 | 3.28 | 3.41 | 3.42 |  |
| the new ideas across | 3.70 | 3.15 | 3.21 | 3.28 | 3.31 | 3.36 |  |
| 17. Confrontation of |  |  |  |  |  |  |  |
| 18. differences | 3.32 | 3.75 | 2.93 | 3.08 | 3.44 | 3.31 | $0<.0$ |
| personal confllcts | 3.31 | 3.66 | 3.11 | 2.95 | 3.28 | 3.26 | $0<.0$ |
| 19. Solid research base | 3.39 | 3.27 | 3.16 | 3.10 | 3.26 | 3.25 |  |
| 20. Particlpation by key community leaders <br> ? 1 Taking advantage of | 2.91 | 3.98 | 2.85 | 2.56 | 2.81 | 2.84 |  |
| ERUCrisis sltuations | 2.58 | 3.00 | 2.37 | 2.25 | 2.77 | 2.59 |  |
| TRET Total | 3.67 | 3.78 | 3.48 | 3.41 | 3.59 | 3.54 |  |


| Continuation of Table 7.4 | Ind. Instr. 6 Team Teaching | Adminis: trative | Programmatlc Approaches | Curriculum and Technology | $\left\lvert\, \begin{gathered} \text { Organiza- } \\ \text { tIonal } \end{gathered}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{l} \text { Comparison with } \\ \text { Combined Mean } \end{array}\right\}$ | $\begin{aligned} 16 & \text { more } \\ 4 & \text { less } \\ 1 & \text { same }\end{aligned}$ | (19 more $\begin{aligned} 1 & \text { less } \\ 1 & \text { same }\end{aligned}$ | 4 more 17 less 0 same | 1 more 20 less 0 same | $\begin{aligned} 9 & \text { more } \\ 10 & \text { less } \\ 2 & \text { same }\end{aligned}$ |

*Means are computed according to degree of emphasis:
5*extreme: 4=major; 3mmoderate; 2milight; l=none
tions were introduced in the area of curriculum change and instructional technology and facillties, procedures were used much less than the average ( 20 out of the 21 items were used less). The procedures were also used less extensively when innovations in the category of programmatic approaches were Introduced ( 17 procedures were used less than the average).

For six of the procedures, the differences in amount of emphasis placed on them by districts innovating in the five categories we re statistically significant; the significance levels, based on chl-square tests, are noted at the rlght-hand side of the table. For each of these six items it may be noted that the procedure was either particularly emphasized In administrative innovations or was de-emphasized in curriculum changes or programmatic approaches. These outstanding mean scores are underlined in the table, One flnal outstanding ocore, which was not significant statistically, is also underlined, In this case the "utilization of a number of different media to get the new ldeas across" is a procedure emphasized particularly for innovations in the area of Indivldualized instruction and team teaching.

No signlficant differences in degree of emphasis on procedures in the flue innovation categories were found for very large districts.

## 4. utilization of procedures in the top ten innovations

Significant differences were found in the degree of emphasis placed on four procedures by districts with innovations in the top ten. This data is presented in Table 7.5. The significance level for each of the four items is noted at the foot of the table.

TABLE 7.5
PROCEDURES USED IN THE TOP TEN SHOWCASE INNOVATIONS MEAN SCORES*

| Innovation | (3) Climate for Sharing $I$ deas | (5) Awareness of Need for Change | (9) Maximlzing Participation | (13) Shared Values |
| :---: | :---: | :---: | :---: | :---: |
| Individual Instruction and Team Teaching - All curriculum areas | 4.35 | 4.17 | 3.72 | 3.63 |
| Special Instructional Programs | 3.76 | 3.65 | 3.51 | 3.08 |
| Curriculum Revision | 3.85 | 3.93 | 3.53 | 3.24 |
| Individua! Instruction and Team Teaching - Speciflc Curriculum Areas | 4.35 | 4.17 | 3.77 | 3.56 |
| Grade and Attendance Unit | 4.15 | 4.20 | 3.84 | 3.33 |
| Planning, Research and Evaluation | 4.00 | 4.05 | 4.27 | 3.55 |
| Unit Courses, Mini-Courses and Electives | 4.18 | 3.94 | 3.50 | 3.19 |
| In-Service Trainlng | 4.50 | 4.32 | 4.07 | 3.72 |
| Guidance and Counselling | 4.36 | 4.08 | 3.27 | 3.09 |
| Teȧcher Aldes, Tutors and Paraprofessionals | 3.45 | $\underline{3.18}$ | $\underline{2.82}$ | 3.00 |
| Total | 4.13 | 4.00 | 3.66 | 3.39 |
| $\begin{aligned} & \text { Significance Level (chl-square } \\ & \text { test) } \end{aligned}$ | p < 02 | p<.02 | p<.03 | p<.05 |

"Means are computed according to degree of emphasis: 5=extreme; 4=major; 3=moderate; 2=silght; 1=none

Particularly outstanding is the fact that on all four items a signlficantly lower degree of emphasis was reported in the introduction of Innovations in which teacher aldes, tutors or paraprofessionals were employed. Usage of all four procedures was also below average in the adoption of speclal Instructional programs; in two of the cases usage was significantly lower. 8oth of these innovation types are included in the category "programmatic approaches'", which was noted above as being below average in the utilization of all procedures.

Table 7.4 also pointed to the fact that procedures were used to a greater than average extent In administrative in. ivations; in Table 7.5 two innovations from thls category can be identified as contributing to this general finding. Districts adopting in-service training innovations make greater than average use of all four procedures; two of these (creating an awareness for the need for change; finding shared values'as a basis for working) are used significantly more than the average. Districts adopting innovations in the area of "planning, research and evaluation" utilized three of the four procedures to a greater than average degree. One of these, "maximizing the chances of participation by many groups," was used signlficantly more than the average. Guidance and counseling innovations, which were also included in the administrative category, showed a more mixed utilization pattern. One procedure, "finding shared values as a basis for worklng," was used significantly less than the average.

On the basls of these four significant items, it may be sald that individual innovations among the top ten reflect the utilization pattern of the innovation category fiom which they are drawn, whether the scores appear as statistically significant or simply indicative of a trend.
B. USE OF MEDIA TO EXPLAIN INNOVATIONS TO PARENTS AND THE COMMUNITY

In Question \#8, five types of media were listed which might be utilized by a school system to explạin innovations to parents and the community. Respondents were asked to indicate on a five-point scale how often each of these media were used In their systems. Responses to this question, in terms of mean scores, are presented in Table 7.6, with scores for representative and very large districts lisied separately. The scoring key is given at the foot of the table.

## (Insert Table 7.6 here)

Local newspapers are used most frequently (slightly more often than monthly) by districts in both size samples. The other four types of media are used much more extensively by very large districts than by representative districts, with the biggest difference being in usage of local television and local radio. Both of these media are used nearly on a monthly basis by very large districts, while representative districts use local radio on a quarterly basis and local television only once or twice a year.

TABLE 7.6
:. USE OF MEOIA TO EXPLAIN INNOVATIONS TO PARENTS AND COMMUNITY

| Medium |  | Districts < 80,000 |  | Districts $\geq 80,000^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Freq. | Mean* | Frea. | Mean* |
| 1. Local Newspaper |  | (307) | 4.25 | (27) | 4.22 |
| 2, Newsletters |  | (297) | 3.25 | (27) | 3.59 |
| 3. Publlc Meetings |  | (301) | 3.24 | (28) | 3.71 |
| 4. Local Radio |  | (293) | 3.00 | (27) | 3.78 |
| 5. Local Television |  | (270) | 2.07 | (26) | 3.77 |
| Total |  | (1468) | 3.19 | (135) | 3.82 |

*Means for extent of use are computed on the basis of
5weekly or more often; 4amonthly; 3aquarterly; 2monce or twice a year; lavery rarely or never

1. USE OF MEDIA BY DISTRICTS IN OIFFERENT SIZE CATEGORIES

When the use of the five types of media were compared across distrlct size, the difierences were all statistically very significant. These data are presented in Table 7.7.
(Insert Table 7.7 here)

Although Table 7.6 showed no difference in usage of local newspapers by representative and vexy large districts, an interestling pattern emerges in Table 7.7. Use of local newspapers increases with system size until the district reaches 10,000 to 24,999 pupils; after that usage drops off somewhat. On the other hand, the use of local rad:o and local television increases consistently with school system size. There is also a direct relationship between system slze and the use of newsletters and public meetings, with the notable exception that these media are used less often by districts of over 80,000 students than by distrlcts with 25,000 to 79,999 students. The only other devlation from this pattern is that public meetings are held more often In districts of under 300 pupils than in districts with 300 to 2,499 pupils.

TABLE 7.7
USE OF MEOIA BY DISTRICT SIZE

| Slze | Local Newspapers Freq. Mean ${ }^{\text {s }}$ | $\qquad$ | Public Meetings Freq. Meant | $\begin{gathered} \text { Local } \\ \text { Radio } \\ \text { Freq. Mean** } \\ \hline \end{gathered}$ | Local TV Freq. Mean* | Freq. | tal Mean* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-299 | (6) 2.00 | (6) 2.50 | (6) 3.00 | (6) 1.83 | (6) 1.00 | (30) | 2.07 |
| $300-2,499$ | (68) 4.04 | (64) 2.98 | (65) 2.55 | (62) 2.42 | ( 58 ) ${ }^{\text {\% }}$ ) 1.31 | (317) | 2.75 |
| 2,500-4,999 | (54) 4.13 | (52) 3.04 | (54) 3.00 | (50) 2.94 | (43) 1.67 | (253) | 3.00 |
| 5,000-9.999 | (53) 4.30 | (53) 3.09 | (52) 3.21 | (49) 2.71: | (45) 21.42 | (252) | 3.00 |
| 10,000-24,999 | (75) 4.55 | (70) 3.36 | (74) 3.62 | (74) 3.35 | (67) 2.45 | (36) | 3.50 |
| 25,000-79,999 | (51) 4.41 | (52) 3.87 | (50) 3.90 | (52) 3.65 . | -(51) 3.47 | (256) | 3.85 |
| 80,000 and over | (27) 4.22 | (27) 3.59 | (28) 3.71 | (27) 3.78 | (26) 3.77 | (135) | 3.80 |
| Total | (334) 4.35 | (324) 3.28 | (329) 3.29 | (320) 3.06 | (296) 2.22 | (1603) | 3.23 |
| Significance Level (chlsquare test) | P<.0005 | ? 2.00000 | p<.00005 | $p<.00001$ | p <. 00005 |  |  |

Heans for extent of use are computed on the basis of:
5 weekly or more often; 4 monthly; 3 =quarterly; 2 monce or twice a year; limery rarely or never

## 2. USE OF MEDIA IN DIFFERENT REGIONS OF THE COUNTRY

Table 7.8 shows the frequency of use of the five types of media by representative districts divided into eight regions of the country. Regional differences are significant only for the use of local radio and local television.
(Insert Table 7.8 here)

The, greatest usage of local television is in the South West region, where it is used nearly on a quarterly basis. In contrast, it is used less than once or twice a year in the Far West and the MidEast. The pattern is very simitar for the use of local radio; in the South East it is used most frequently (between quarterly and monthly) and in the South West it is used more than quarterly. The Far West and the Mid East again are the lowest users, making use of this medium between two and three times a year.

TABLE 7.8
USE OF MEDIA BY REGION
OISTRICTS < 80,000

| Region | Local <br> Newspapers <br> Freq. Mean* |  | News-lettersFreq. Mean |  | Public <br> Heetings <br> Freq. Mean* |  | Local Radio Freq. Mean* |  | $\begin{gathered} \text { Local } \\ \text { TV } \\ \text { freg. Mean** } \end{gathered}$ |  | $\begin{gathered} \text { Total } \\ \text { Freq. Mear } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| South West | (25) | 4.28 | (23) | 3.52 | (24) | 3.38 | (25) | 3.28 | (22) | 2.86 | (119) | 3.47 |
| South East | (63) | 4.33 | (60) | 3.27 | (61) | 3.18 | (64) | 3.59 | (57) | 2.53 | (305) | 3.40 |
| Rocky Mountalns | (11) | 3.45 | (11) | 3.45 | (11) | 3.82 | (10) | 3.20 | (10) | 2.50 | (53) | 3.30 |
| Great Lakes | (65) | 4.38 | (64) | 3.39 | (65) | 3.12 | (57) | 3.04 | (53) | 1.98 | (304) | 3.23 |
| New England | (24) | 4.54 | (20) | 2.65 |  | 3.52 | (23) | 2.78 | (23) | 1.70 | (113) | 3.06 |
| Plains | (27) | 4.11 | (26) | 3.31 | (26) | 2.73 | (26) | 3.00 | (25) | 2.16 | (131) | 3.03 |
| Mid East | (51) | 4.22 | (51) | 3.08 | (50) | 3.30 | (48) | 2.56 | (44) | 1.61 | (244) | 2.99 |
| Far West | (41) | 4.05 | (42) | 3.33 |  | 3.39 | (40) | 2.43 | (36) | 1.61 | (200) | 2.98 |
| Total | (307) | 4.25 | (297) | 3.25 | (301) | 3.24 | (293) | 3.00 | (270) | 2.07 | (1468) | 3.19 |
| Significance Level (chisquare test) | NS |  |  |  |  | S |  | . 04 |  | . 03 |  |  |

*Means for extent of use are computed on the basis of :
5 weekly or more of ten; 4 monthly; $3=q u a r t e r l y ; 2=$ once or twice a year; l=very rarely or never

## 3. l'SE OF media in the five innovation categories

It was not asked on the questionnaire whether or not the five types of media had been utilized in informing parents and the, communlty about the showcase innovation in particular. This fact should be kept in mind as usage is compared across the five innovation categorles. However, it is felt that this comparison is valid since districts which usually use these media in explalning new ideas would likely use them to inform the public about the innovation which was considered to be the mast signlficant one introduced durlng the school year.


Superintendents of representative districts who reported showcase Innovat lons in the administrative area also reported the highest usage of all flve types of media to inform the public. The dlfference in the use of local television was statistically significant ( $P<.04$ ), with districts reporting administrative innovations using television between two and three times a year (mean score 2.58) and other districts using lt once or twice a year (mean scores from 1.80 to 2.09).

Frequencies of innovations in very large districts are too small to afford a rellable comparison across innovation categories, but superintendents who reported showcase innovations in the adminlstrative area (the largest category, with 11 innovations) reported higher than average usage of all media except local radio. A higher than average usage of all five types of medla was reported by districts with showcase innovat lons in the organizational category ( 8 innovat lons). Districts with innovatlons in titese two categories (administrative and organizational) reported very frequent (weekly) usage of iocal newspapers to explain innovat lons to the publit. Superintendents with inndvations in the categorles of programatic approaches and indlvidualized instruct lon and team teaching reported using newspapers on a quarterly basis. These differences were significant at the . 01 level.*
4. USE OF MEDIA IN THE TOP TEN SHOWCASE INNOVATIONS.

There were no significant differences among the top ten innovation types in specific media employed by the adoptlng districts.' Some consistent patterns are apparent, however. Sunerintendents reporting "planning, research and evaluation" innovations also reported using all five types of media more often than the average (mean score for all media for this category was 3.71, or nearly monthly; mean score for all media for all top ten Innovátions combined was 3:13, or slightly more often than quarterly). Distrlcts with showcase innovations in the areas of "teacher aides, tutors and paraprofessionals" and "Individuallzed instruction and team teaching in speclfic curriculum areas" reported using all 'five types of medla less often than the average (mean scores of 2.60 and 2.78 respectively - both less than quarterly).

## C. BARRIERS ENCOUNTERED IN THE SHOWCASE INNOVATION PROCESS

Questionnaire item \#3 was almed directly at the subject of barriers encountered in the showcase innovation process: 18 "barriers" were listed which, based on past research, were inferred to have direct implications in

[^8]instances of Innovation failure.* These 18 "barriers" are presented in Table 7.9 In rank order according to the Importance respondents attached to them In their experlence with their showcase innovations. Mean scores are given separately for representative and very iarge districts. These scores, based on the number of superintendents responding to each item (given In parentheses), were computed according to the following scale: 5mextreme Importance; 4=major; 3mmoderate; 2=slight; and lanone.

## (Insert Table 7.9 here)

This table shows that six barriers were consldered in all districts to be of slight-to-moderate importance, whlle the remalning 12 were of silght importance. In very large districts "shortage of funds allocated for the Innovation'stands out as being the most Important barrier (mean of 2.86). This was also ranked third in Importanct: in representative districts; however. the mean for representative distrlcts is conslderably lower (2.54) and it is on thls item that there is the widest discrepancy between mean scores of the two size samples.

Other barrlers whlch were of the greatest importance in both samples all concerned staff issues; confusion and lack of information about the innovation, unwlllingness to change or listen to new ldeas, frustration or difflculty in trylng to adopt, and lack of communlcation among the staff all ranked among the six most important barriers.
in Chapter $\$ 1 \times$ we noted the low level of contact with outside resources as reported by respondents. Table 7.9 Indlcates that the districts did not consider thls to be a problem in adopting Innovatlons. The two ltems ranking last in importance were "unwllilingness of resource groups to help us revise or adapt," and "lack of contact with other school systoms who had consldered the same Innovatlon." Also ranked well towards the bot tom, the 14 th out of 18 In reprosentative districts and 15 th in very large districts was, "lack of adequate contacts with outside resource groups."

## 1. RELATIONSHIP OF BARRIERS TO DISTRICT SIZE

When an analysis was made of the degree of importance attached to each of the 18 barrlers by districts according to seven size categorles, differences of statistical significance were found for only two barrlers, "unwillingness of

[^9]TABLE 7.9
barriers to the showcase innovation process

| Barrler | $\begin{gathered} \text { Districts }<80,000 \\ \text { Fren. Mean** } \end{gathered}$ |  | $\text { Olstricts? } 80,000$Freq. Mean* |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. Confusion among staff about the purpose of the Innovation | (308) | 2.59 | (29) | 2.55 |
| 2. Unwillingness of teachers and school personnel to change or listen to new ideas | (306) | 2.57 | (29) | 2.45 |
| 3. Shortage of funds allocated for the innovation | (304) | 2.54 | (29) | 2.86 |
| 4. Staff's lack of precise information about the innovatlon | (307) | 2.53 | (29) | 2.52 |
| 5. Frustration and difficulty encountered by teachers and/or relevant staff in trying to adopt | (302) | 2.53 | (29) | 2.66 |
| 6. Lack of communlcatlon among the staff | (305) | 2.44 | (29) | 2.66 |
| 7. Inadequacy of school plant, facllitles, equipment or supplles | (304) | 2.43 | (29) | 2.24 |
| 8. Shortage of qualified personnel | (303) | 2.32 | (29) | 2.34 |
| 9. Feeling by teachers and staff that the innovation would have llttle benefit for them | (304) | 2.31 | (29) | 2.21 |
| 10. Rigidity of school system structure and bureaucracy | (306) | 2.25 | (29) | 2.31 |
| 11. Lack of communicatlon between staff and students | (302) | 2.22 | (29) | 2.17 |
| 12. Lack of coordinatlon and teamwork within the school system | (303) | 2.11 | (29) | 2.24 |
| 13. Disorganlzatlon of the planning and implementation efforts | (306) | 2.07 | (29) | 2.21 |
| 14. Lack of adequate contacts with outside iesourco groups (e.g., universities, consultants, labs, etc.) | (305) | 2.04 | (29) | 1.93 |
| 15. Absence of a concerted campalgn to put the new ideas across | (304) | 2.03 | (29) | 2.21 |
| 16. Frustration and difficulty encountered by the students during the adoption process | (301) | 2.00 | (28) | 1.82 |
| 17. Lack of contact with other school systems who had considered the same innovation | (302) | 1.94 | (29) | 1.90 |
| 18. Unwillingness of resource groups to help us revise or adapi | (303) | 1.73 | (29) | 1.48 |

*Nains are computed according to degree of importance:
ERICxtreme; 4=major; 3=moderate; 2aslight; I=none

teachers and school personnel to change or listen to new ideas," and "lack of cormmication among the staff." A third barrier, "feeling by teachers and staff that the innovation would have little benefit for them' showed differences which were just short of statistical significance. Responses for these three items in each of the seven size categories are shown in Table 7.10

TABLE 7.10
INNOVATION PROCESS BARRIERS BY SYSTEM SIZE

*Heans are computed according to degree of importance:
5-extreme; 4-major; 3=moderate; 2=slight; 1=none

For the barrlers "unwillingness to change" and "feeling of little benefit," a progression in importance may be noticed as systems increase in size from under 300 students to those with 10,000 to 24,999 students; after reaching a peak, these bariiers decline in importance for larger systems. For both barriers the importance reported by the smallest districts is extremely low (1.50). The relationship of district size to the Importance of "lack of communication among staff" is not so clear, but again this barrier assumes its greatest importance in districts of 10,000 to 24,999 students.

There were no significant regional differences in the importance at tached to the 18 barrier statements.

## 2. IMPORTANCE OF BARRIERS IN THE fIVE INNOVATION CATEGORIES

The first seven barriers listed in rable 7.9 were those which were rated by representative districts as being of the greatest importance. These same barrlers also had the most divergent impacts on innovations introduced by these districts in the flve innovation categorles. Differences experienced In relation to five of these barriers were statistically signlficant. This data is presented in Table 7.11.
(Insert Table 7.11 here)

The lowest rating for each of these seven barriers is given in connection with innovations in the area of programmatic approaches. Particularly since it was noted above that procedural activities were emphasized tc. a lesser degree for these Innovations than for the average, it may be concluded that innovations' in this category are the easlest to implement.

For Innovations in the category of individualized instruction and team teaching all seven of the barriers listed in Table 7.11 were rated as belng mare important than for all categories combined. In three instances out of the seven, barriers were judged to be most important for this innovation category. "inadequacy of plant, faciiities, equipment or supplles" was narticularly important for this innovation type, whlch often required extensive plant alterations as well as an extensive array of new instructional materials. "Frustration encountered by teachers or staff in trying to adopt" was also most llkely to be a problem when innovations were introduced in this area; this recalls our earlier finding in Chapter five that the consequences for this innovation type were the most mixed, and that, in particular, the workload of teachers was most likely to be noted as a problem. "Shortage of funds allocated for the innovation" was also a problem for innovations in the area of individualized instruction, but it was equally a problem for innovations in curriculum revision and instructional facilities.

Although procedural activities were most consistently emphasized when administrative innovations were introduced, three of the most important barriers were most commonly encountered in connection with the se innovations. "Confusion among the staff about the purpose of the innovation," "staff's lack of precise information about the innovation," and "lack of communication among the staff" were most important as problems for administrative innovations.

No significant differences in degree of importance of barriers in the five innovation categories were found for very large districts.

TABLE 7.11

## BARRIERS TO INNOVATION PROCESS IN THE fIVE INNOVATION CATEGORIES.

 DISTRICTS < 80,000| Barrier | Ind.Instr.+ Team Teach Freq. Mean: | Administrative freq. Mean* | Programmatic Approaches freq. Mean* | Curriculum and Technology Freq. Mean: | Organlzational freq. Mean* | Combine Freq. Mea |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Confusion among staff about purpose of innovation ( $\mathrm{p}<.01$ ) : * | (89) 2.68 | (65) 2.88 | (56) 2.16 | (61) 2.64 | (37) 2.40 | (308) 2.5 |
| 2. Unwillingness of teachers and personnel to change or ilisten to new ideas | (89) 2.64 | (64) 2.65 | (56) 2.29 | (61) 2.43 | (36) 2.92 | (306) 2.5 |
| 3. Shortage of funds allocated for innovation ( $p<.04$ ) $\# *$ | (88) 2.75 | (64) 2.35 | (56) 2.16 | (61) 2.74 | (35) 2.63 | (304) 2.5 |
| 4. Staff's lack of . information about the innovation ( $\mathrm{p}<.01$ ) $\%$ * | (88) 2.63 | (65) 2.78 | (56) 2.11 | (61) 2.59 | (37) 2.40 | (307) 2.5 |
| 5. Frustration encountered by teachers or staff in trying to adopt $(p<.01) \div *$ | (88) 2.78 | (64) 2.58 | (54) 2.02 | (60) 2.53 | (36) 2.58 | (302) 2.5 |
| 6. Lack of commun- <br> icatlon among <br> the staff <br> (D 人.04) ** | (88) 2.49 | (64) 2.61 | (56) 2.18 | (60) 2.57 | (37) 2.21 | (305) 2.4 |
| 7. Inadequacy of plant, facilities, equipment or supplies | (88) $\quad 2.72$ | (63) 2.18 | (55) 2.15 | (61) 2.44 | (37) 2.62 | (304) 2.4 : |
| Total | (618) 2.67 | (449) 2.58 | (389) 2.14 | (425) 2.56 | (255) 2.53 | (2136) 2.5 |

*Means are computed according to degree of importance:
etreme; 4zmajor; 3=moderate; 2aslight; lmone

## 3. IMPORTANCE OF BARRIERS IN THE TOP TEN INNOVATIONS

For four of the seven most important barriers, significant differences were found In their Impact on Innovations among the top ten. Table 7.12 shows that in the introduction of three of the top ten Innovation types barriers

TABLE 7.12
barriers to the innovation process in the top ten SHOWCASE INNOVATIONS

*Heans are computed according to degree of importance:
5extreme; 4=major; 3-moderate; 2=sllght; l=none
were found to be of slight importance: in general, barriers were rated as being of low importance by superintendents introducing special instructional programs, teacher aides, and planning, research and evaluation innovations.

In the introduction of three other innovation types barriers were noted as important in particular areas. Teacher frustration and plant inadequacies were noted particularly when individualized instruction and team teaching innovations were introduced for the general curriculum. "Lack of information among the staff" was found to be a problem when curriculum revision was undertaken. Finally, when grade and attendance unit changes were adopted it was noted that there was an "unwllingness among teachers and school personnel to change or listen to new ideas."

## D. FACTORS INFLUENCING THE SHOWCASE INNOVATION PROCESS

Three items on the last page of the questionnai re were also relevant to the innovation process: . Question \#ll asked whether the school system had experienced any difficulty in gaining citizen support for financing education during the 1970-71 school year; and Question $\# 12$ asked whether the school system had experlenced any disruptive events in that year. These two issues, although not directly related to the showcase innovation efrort, may be seen as having potentially profound effects on any major Innovative attempt. Finally, the issue of per pupil expenditure, which was discussed In Chapter Two in connection with innovation types, may also be seen as a factor which may either facilitate or obstruct major innovative efforts.
₹

## 1. GAINING CITIZEN SUPPORT FOR FINANCING EDUCATION

Proposals to citizens asking for financial support for local education are frequently divided into those which ask for continuing funds to malntain existing operations, and those which ask for increased funds to support new projects or programs. In Question $\# 11$, superintendents were asked to rate, on a five-point scale, the level of difficulty they had experienced in.gaining citizen support for these two types of proposals. In Table 7.13 mean responses to thls question are given for representative and very large districts.
(Insert Table 7.13 here)

Very large districts experienced more difficulty than did representative districts $\ln$ galning both types of citizen financlal support; and distrlcts in both slze samples found it more difflcult to gain support for new projects than for existing operations.

TABLE 7.13
OIfFICULTY IN GAINING CITIZEN SUPPORT
FOR FINANCING EDUCATION

*hean scores are computed on basis of degree of difficulty:
l=no difficulty; 3asome difflculty; 5mereat difficulty

This pattern held largely true when an examination was made of these issues for all districts divided into seven size categories. As can be seen from Table 7.14, difflcultes $\ln$ gaining support for existing operations

TABLE 7.14
DIfficulty in gaining financial support by olstrict size

| Oistrict Size | Existing Operations Freq. Mean* |  | New Programs |  | Combined |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-299 | (6) | 1.33 | (6) | 1.67 | (12) | 1.50 |
| 300-2,499 | (66) | 2.00 | (60) | 2.32 | (126) | 2.15 |
| 2,500-4,999 | (53) | 2.19 | (52) | 2.60 | (105) | 2.39 |
| 5,000-9,999 | (53) | 2.58 | (52) | 2.67 | (105) | 2.63 |
| $10,000-24,999$ | (76) | 2.43 | (74) | 2.69 | (150) | 2.56 |
| 25,000 - 79,999 | (52) | 2.46 | (50) | 2.64 | (102) | 2.57 |
| 80,000 and over | (28) | 2.64 | (27) | 3.19 | (55) | 2.91 |
| Total | (334) | 2.34 | (321) | 2.61 | (655) | 2.47 |

*hean scores are computed on basis of degree of difficulty:
inno difficulty; 3asome difficulty; 5agreat difficulty
increased with district size, with the exception of districts of 5,000 to 9,999 students; these districts had more dlfficulty than all but those over 80,000 students.

The notable and consistent finding of this table, however, is the fact that districts of all sizes experienced mare difficulty in gaining support for new programs than for exlsting operations. Theoretically, there should be a relat onship between ease of gaining citizen support for new programs and the extent of use of various media in explaining these programs to the public. Referring again to the data in Table 7.7, it can be recalled that there was a general increase in overall use of media as distrists increased in size; very large districts, though making the greatest use of local radio and television, made less use of local newspapers, newsletters and public meetings than did districts of 25,000 to 79,999 students. Comparing these findings with those of Table 7.14, one might infer that the greater use of media by larger districts was necessary to combat citizen resistance. The four sizes of districts between 2,500 and 79,999 students experienced equal dlfficulty in gaining support for new programs. Districts with over 80,000 students, however, encountered considerably more diff:culty; we can only conjecture that had their use of local print media and meetings been greater, their difficulties in galning support might have been held down to the level of other districts. It should also be pointed out that "shortage of funds allocated for the Innovation' was the top-ranklng (most Important) barrler for these very large districts (Table 7.9).

Table 7.15 shows financlng difficultles encountered by representative districts divided into eight reglons of the country. Three districts (Mid East, Rocky Mountains and South Hest) experienced no more difficulty in

$$
\text { (Insert Table } 7.15 \text { here) }
$$

galning support for new programs than for old programs. Two of these regions (South West and Rocky Mountains) had the least difficulty in gaining support both for existing and for new programs. This finding is very interesting when it is compared with the earlier discussion on regional differences in utilization of procedural actions and media. The South West ranked third in overall utilizatlon of procedures and second in overall usage of media to explain new programs to the public. The Rocky Mountain States ranked first in use of procedures and third in the use of media. The South tiast, which ranks third in ease of obtaining citizen support, ranked fifth in use of procedures and first in use of media. It would appear, then, that at least in these regions of the country, a concerted effort in terms of procedural actions and the use of various media was rewarded by citizen suppoit.

|  | Existing f: Operations |  | - New Programs |  | Combined |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Region |  | Mean | Freq. | Mean | Freq. | Mean |
| South West | (25) | 1.80 | (23) | 1.70 | (48) | 1.75 |
| Rocky Mountalns | (11) | 2.00 | (10) | 2.00 | (21) | 2.00 |
| Plains | (26) | 2.00 | (25) | 2.84 | (51) | 2.41 |
| South East | (66) | 2.33 | (66) | 2.52 | (132) | 2.43 |
| Great Lakes | (64) | 2.36 | (62) | 2.63 | (126) | 2.49 |
| Gar West | (40) | 2.35 | (37) | 2.81 | (77) | 2.57 |
| Mid East | (50) | 2.64 | (47) | 2.55 | (97) | 2.60 |
| New England | (24) | 2.33 | (24) | 2.96 | (48) | 2.65 |
| Total | (306) | 2.31 | (294) | 2.56 | (600) | 2.1: |
| Signiflcance Level (F-test) | N.S. | <.06) |  |  |  |  |

We can not draw final concluslon that this type of approach is always successful, however, since the New England states, which ranked second in overall use of procedures, met the most citizen resistance in financing new programs. In this region it must be concluded that there are other factors operating to harden citizen resistance.

Question \#ll did not ask whether difficulty had been experienced in gaining support for the showcase innovatiofin particular, but some degree of relationship may be assumed. Table 7.16.makes this comparison among the top ten showcase innovations.

TABLE 7.16
DIFFICULTY IN GAINING CITIZEN SUPPORT IN TOP TEN INNOVATIONS

| Innovation | Existing Operations Freq. Mean |  | New Programs |  | Combined |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Freg. | Mean | Freq. | Mean |
| Individual instruction and team teachingall curriculum areas | (67) | 2.33 | (65) | 2.71 | (132) | 2.51 |
| special instructional programs | (36) | 2.53 | (33) | 2.51 | (69) | 2.52 |
|  | (26) ${ }^{\text {a }}$ | 2.46 | (25) | 2.68 | (51) | 2.57 |
| Individual instruct ion and team teachingspecific currlculum areas | (23) | 2.74 | (22) | 2.32 | (45) | 2.54 |
| Grade and attendance unit | (19) | 2.00 | (19) | 2.63 | (38) | 2.32 |
| Planning, research and evaluation | (18) | 2.16 | (17) | 2.53 | (35) | 2.34 |
| Unit courses, mini-courses and electives | (16) | 2.25 | (14) | 3.14 | (30) | 2.67 |
| eln-service training is | (12) | 1.91 | (12) | 2.33 | (24) | 2.12 |
| Guldance and counseling | (10) | 2.30 | (10) | 2.40 | (20) | 2. 35 |
| Teacher af'des, tutors and paraprofessignals. | (9) | 2.22 | (8) | 2.50 | (17) | 2.35 |
| Total | (236) | 2.34 | (225) | 2.60 | (461) | 2.47 |
| Significance Level (chi-square test) | *p |  |  |  |  |  |

Distrlcts which adopted individualized instruction and team teaching in specific curriculwn areas encountered less difficulty in gaining financial support for new programs than for existing programs. These districts, in fact, met the most resistance for maintaining existing operations, and this could partially explain why the innovation was not adopted on a more comprehensive scale. Districts which did adopt the innovation for all curriculum areas reported meeting considerable resistance in gaining support for new prograns. Districts meeting the most resistance for new programs were those which introduced unit courses, mini-courses and electives as their showcase innovation; these districts experienced slightly less than average difficulty in gainiog support for new programs. Districts which had the least trouble in gainfig support for existing operations innovated in the areas of in-service training and grade and attendance unit citanges. If the figures for new programs
bear a direct relationship to the showcase Innovation, then it could be sald that grade and attendance unit changes met with more resistance than did in-servlce trainlng programs. Finally, it was noted above that special instructional programs were adopted without concerted efforts In taking procedural actions and without encountering undue barriers. From Table 7.16 it can be seen that districts which introduced such programs as their showcase innovations had no more difficulty in gaining support for new programs than for existling operations.

## 2. DISRUPTIVE EVENTS

Question \#12 asked whether the school system had experienced teacher strikes, community group protests or student unrest during the 1970 fll L chool year. Table 7.17 shows that commint py protests and studantugrest rembre common in very large districts than in representative districts by apargin of one event of each type during the school year. Community. foup profets occurred at least once $\ln 88 \%$ of very large distrlcts, and in 40\% of representative dlstricts; the flgures for student unrest are similar: 89\% and 39\% for the two size samples respectively. Teacher strikes and demonstrations occurred in only $10 \%$ of very large districts and $9 \%$ of representative districts.
? .. TABLE 7.17
EXPERIENCE OF DISRUPTIVE EVENTS


The relationship of community protests and student unrest with district size becomes even more striking when all districts are divided Into seven catezories by size: As Table 7.18 shows, these dls rupt lons increase steadily with system size; this relationship is significant at the .00005 level in both

TABLE 7.18
experience of disruptive events by olstrict size

| Slze | Teacher Strlkes |  | Community Protest |  | Student Unrest |  | Events Comblned |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-299 | (6) | 1.00 | (6) | 1.00 | (6) | 1.00 | (18) | 1.00 |
| 300-2,499 | (67) | 1.04 | (67) | 1.27 | (67) | 1.15 | (201) | 1.15 |
| 2,500-4,999 | (54) | 1.15 | (53) | 1.43 | (53) | 1.34 | (160) | 1.30 |
| 5,000-9,999 | (54) | 1.09 | (52) | 1.56 | (54) | 1.43 | (160) | 1.35 |
| 10,000-24,999 | (74) | 1.12 | (71) | 1.87 | (72) | 1.76 | (217) | 1.58 |
| 25,000-79,999 | (52) | 1.10 | (52) | 2.09 | (51) | 2.20 | (155) | 1.79 |
| 80,000 and over | (27) | 1.19 | (26) | 2.62 | (26) | 2.65 | (79) | 2.14 |
| Total | (334) | 1.14 | (327) | 1.71 | (329) | 1.64 | (990) | 1.48 |
| Slgnlficance Level <br> (chl-square test) |  |  | p<. | 0005 | $p<.0$ | 0005 |  |  |

*Means are computed on the basls of frequency of events during 1970-71 year:
1=never; $2=$ once; $3=$ more than once
cases. It may be recalled that very large districts reported "taking advantage of crisis situations" more often than did representative districts (Table 7.1); it appears that the larger districts were more frequently faced with this option!

There were no regional differences in the frequency of community group protests or teacher strlkes, but regional differences in the frequency of student unrest were significant at the .04 level. The New England states
experienced the greatest amount of student unrest (mean 2.24 , or, ust over one time durlng the year), while the Rocky Mountaln states expericnced the least (mean = 1.18, or almost never). This additional information may possibly contribute to an expianation of why the New England states encountered partlifiar difficulty in gainlng eltizen support for new programs.

Question \#12d asked whether any of these disruptions had influenced the innovations described earller in the questionnaire (the showcase innovation and the-innovation Inventory). Table 7.19 presents a summary of responses of those distrlcts whlch had experienced one or more disruptive events. While representative distrlcts reported an influence in $29 \%$ of cases, $57 \%$ of very large districts reported an influence. Thls difference in effects felt by the two size samples is significant at the $\boldsymbol{T}$.Ol level. Thus, disruptive events ware not only more common in very large systems, but, when they occurred, they had a greater impact on new programs introduced by the systems.

TABLE 7.19
influence of dismuptive events on innovation

|  | $\text { Oistricts }<80,000$$\text { Freq. } \quad \%$ |  | $\begin{aligned} & \text { Oistricts } \geqslant 80,000 \\ & \text { Freq. } \end{aligned}$ |  | $\text { Freq. } \quad \%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Influence | (55) |  | (13) | 57 | (68) | 32 |
| No Influence | (135) |  | (10) | 43 | (145) | 68 |
| Total | (190) |  | (23) | 100 | (213) | 100 |
| Slgniflcance Level (chlsquare test): $p<.01$ |  |  |  |  |  |  |

When disruptions experienced by a school system were compared with the category of showcase innovation for representative systems, it was found that systems innovating in the organizational category experienced the fewest of all types of dis ruptions. Table 7.20 shows that the difference across categories for community protests and student unrest are statistically significant.

TABLE 7.20
EXPERIENCE OF DISRUPTIVE EVENTS BY
SHOWCASE INNOVATION CATEGORY
DISTRICTS < 80,000

| Event | Ind. Instr.E <br> Team Teach. <br> Freq. Mean* | Administrative <br> Freq. Mean* | Program App. <br> Freq. Mean ${ }^{*}$ | Curriculum \& Tech. Freq. Mean* | $\begin{gathered} \text { Organlza- } \\ \text { tional } \\ \text { Freq. Mean* } \end{gathered}$ | Total <br> Freq. Mean* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Teacher strikes | (85) 1.12 | (65) 1.09 | (53) 1.08 | (60) 1.33 | (37) 1.95 | (307) 1.10 |
| Communlty pro- $\text { test }(p<.05) \times *$ | (84) 1.77 | (64) 1.72 | (53) 1.43 | (59) 1.68 | (35) 1.37 | (301) 1.63 |
| Student unrest $(p<.01) * *$ | (84) 1.54 | (64) 1.72 | (53) 1.53 | (60) 1.60 | (36) 1.28 | (303) 1.55 |
| Total | (253) 1.48 | (193) 1.51 | (159) 1.35 | (179) 1.54 | (108) 1.23 | (911) 1.40 |

*Means are computed on the basis of frequency of events during 1970-71 year:
l=never; 2=once; 3more than once
**Chl-square test

## 3. PER PUPIL EXPENDITURE

In Chapter Two the distrlct expenditure per pupil was examined in terms of its relatlonship to types of innovations adopted. In thls chapter it will be discussed in terms of process factors. It was polnted out in Chapter Two that the mean expenditure of representative districts $(\$ 785,39)$ was almost identical with that of very large dlstricts $(\$ 789.50$ ). When per pupll expenditure for all distrlcts divided into seven categorles according to size is examined, the most outstanding flinding is that districts in the two smallest slze categorles have a much higher rate of expenditure than do all other dlstrlcts. These figures are given in Table 7.21.
(Insert Table 7.21 here)

It would thus appear that districts of under 2,500 students are blessed with remarkable assets for innovatlon. Although they use procedures far less then the average to assure successful innovatlon, and utllize media the least In explalning new programs to the public, they have the least diffleulty in gaining citizen support for their outstandingly high per pupll expenditures. In addition they have the fewest disruptive events with whlch to cope.

TABLE 7.21
PER PUPIL EXPENDITURE BY OISTRICT SIZE


A considerable range of expenditures was found in different reglons of the country, from a high of $\$ 1011.90$ per pupll in the MId East to a low of $\$ 600.75$ in the Rocky Mountaln states. In Table 7.22 the flgures for all regions are given for representative districts, very large districts, and ali districts combined.
(Insert Table 7.22 here)

Table 7.22 also shows the rank of representative districts in each region in terms of overall use of media to explain new programs to the public (from Table 7.8) and in terms of dlfficulty encountered in gainlng citizen financial support for educational programs (from Table 7.15). Roughly speaking, these rankings indicate that reglons with higher per pupll expenditures used media less and experienced more difficulty in galning financial support. These regions include most of the large urban population centers of the nation.

In Chapter Two the per pupil expenditure was compared with the top ten innovations; it was found (Table 2.9) that districts with lower expenditures tended to adopt special instructional programs. In this chapter it was pointed out that, when innovations of this type were adopted, procedural actions were taken less often than on the average and that barriers were of small importance. In addition it was found that districts innovating in this area experienced no more difficulty in gaining support for new programs titan for existing operations.

TABLE 7.22
PER PUPIL EXPENDITURE BY REGION

| Region | $\begin{gathered} \text { DIstricts } \\ <80,000 \\ \text { freq. Mean } \end{gathered}$ | Rank | $\begin{aligned} & \text { Districts } \\ & \geq 80,000 \end{aligned}$ <br> freq. Mean | Rank | Combined Freq. Mean | Use of Medla Rank* | $\begin{gathered} \text { Dlfficul } \\ \text { of } \\ \text { Flnance } \\ \text { Rank } k=1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mid East * | (47) \$1023.66 | 1 | (5) \$ 901.40 | 2 | (52) \$1011.90 | 7 | 2 |
| Far West | (37) 849.49 | 2 | (2) 861.00 | 3 | (39) 850.08 | 8 | 3 |
| New England | (18) 828.17 | 3 | (1) 951.00 | 1 | (19) 834.63 | 5 | 1 |
| Great Lakes | (61) 783.10 | 5 | (4) 808.00 | 4 | (65) 784.63 | 4 | 4 |
| Plalns | (25) 783.60 | 4 | (1) 720.00 | 6 | (26) 781.15 | 6 | 6 |
| South West | (21) 753.05 | 6 | (2) 558.50 | 7 | (23) 736.13 | 1 | 8 |
| South East | (61) 588.77 | 8 | (9) 744.33 | 5 | (70) 608.77 | 2 | 5 |
| Rocky Mountains | (8) 600.75 | 7 | - -- | - | (8) 600.75 | 3 | 7 |
| Total | (278) \$ 785.39 |  | (24) \$ 789.50 |  | (302) \$ 785.72 |  |  |

*Ranked in order of greatest use of media; l.e., lagreatest use, 8=least use.
**Ranked in order of greatest dlfflculty In gaining financlal support; i.e., lagreatest difficulty, $8=1$ east difficulty.

## E. DESCRIPTION OF THE SHOWCASE INNOVATION PROCESS

We have discussed above the responses given by superintendents to closidended questions concerning the showcase Innovat lon process and related factors. Now a look will be taken at responses to Questlon \#lb, which asked superintendents to describe by what process the showcase innovation had beeri introduced and implemented, and Question \#le, which asked superintendents to identify the key factors making the adoption and acceptance of the showcase innovation successful or unsuccessful.

The factors llsted In response to these questlons were generally related to procedures (|ncluding gaining part|cipation and cooperation), media and funding issues. In Tabie 7.23 responses which were related to procedures and media are presented, along with several other factors which did not fall into
one of the other categorles. First the cltations of key factors are iven (Question \#le) for both representative and very large districts, ari, then the total citat lons are listed (Questions \#lb and \#le combined) for districts in each size sample. Percentages are based on the total number of showcase innovat ions reported in each size sample.
(Insert Table 7.23 here)

Procedures which were directed at gaining the particlpation and cooperat ion of individuals and groups inslde and outside the school were discussed In detall In Chapter six. Here we can see that these two types of procedares played a very significant role $1 n$ influenclng the success of the showcase innovation. In representative districts "participatlon" was mentioned most often as a key factor (25\%), and in very large districts "participation" (31\%) and "cooperation" (26\%) were outranked only by "planring" (39\%). "Planning" was the most frequently mention factor overall ln boihadistricts; however when it was used as a procedure it was only a key factor half the time in representative districts and two thirds of the time in very large districts. In contrast, when participation was mentloned it was almost always a key factor, and when cooperat lon was mentloned in very large districts it generally played a key role. Other procedures which, when used, tended to be key factors were the effect lve use of personnel (all districts) and public relat lons programs in representative districts. Both of these factors are related to particlpation and cooperation, and thus the outstanding import of thls table is that the involvement of various individuals and groups in the innovation process is viewed as the most significont procedure to employ in securing the success of an innovation. Adding to the impact of this finding is the fact that tralning of school personnel is also highly rated by all districts as a key factor.

Assessment procedures such as evaluation, pllot projects.and surveys were rarely used and even more rarely regarded as key factors. Included under "other procedures" In Table 7.22 were a varlety of factors which were almost always viewed as "key" by the distrlcts which employed them. These Include "intensity of effort," "permlssive school stance," "Integration with previous procedures," and "implementing without prior information to parents and students." Each of the procedures included here was mentloned by no more than one district.

Table 7.23 points out the fact that although a number of different media were often employed for various purposes in the innovation process, these were rarely regarded as belng key factors. Meetligs, consultatlons, task forces and site visits stand out in this regard. The use of mass media was rarely considered worth mentloning even though actual frequency of use to promote new innovations is reasonably high. Media were regarded as a key factor by only one district.

TABLE 7.23
DESCKIPTIONS OF FACTORS INFLUENCING SUCCESS OF
THE SHOWCASE INNOVATHON
$z^{2 \pi}$ i

| Factor | Cited as Key Factor |  |  |  | Total Citations |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 01 \text { stricts } \\ <80,000 \end{gathered}$ |  | $\begin{aligned} & \text { Districts } \\ & \geq 80.000 \end{aligned}$ |  | $\begin{gathered} \text { Districts } \\ <80,000 \end{gathered}$ |  | $\begin{aligned} & \text { 01stricts } \\ & \geq 80,000 \end{aligned}$ |  |
|  |  |  | Freq. | of 31** | Freq. | of 315** | Freq. | f 31\%* |
| Procedures |  |  |  |  |  |  |  |  |
| 1. Participation ${ }^{\text {t }}$ | (78) | 25 | (11) | 31 | (89) | 28 | (11) | 31 |
| 2. Planning ${ }^{+}$ | (50) | 16 | (12) | 39 | (104) | 33 | (19) | 61 |
| 3. Staff Tralning | (42) | 13 | (5) | 16 | (87) | 28 | (9) | 29 |
| 4. Cooperation | (35) | 11 | (8) | 26 | (66) | 21 | (9) | 29 |
| 5. Personnel Utilizatlon ${ }^{+}$ <br> 6. Public Relations | (22) | 7 | (3) | 10 | (26) | 8 | (3) | 10 |
| Program ${ }^{+}$ | (23) | 7 | -- | -- | (31) | 10 | (3) | 10 |
| 7. Evaluation | (15) | 5 | (1) | 3 | (29) | 9 | (3) | 10 |
| 8. Course/Program Development | (12) | 4 | (1) | 3 | (47) | 15 | (8) | 26 |
| 9. Pllot Projects | (8) | 3 | (2) | 6 | (36) | 11 | (5) | 16 |
| 10. Survey | (3) | 1 | -- | - | (10) | 3 | (1) | 3 |
| 11. Other | (16) | 5 | (2) | 6 | (18) | 6 | (2) | 6 |
| Medla |  | i |  |  |  |  |  |  |
| 1. Workshops | (9) | $3^{3}$ | (1) | 3 | (44) | 14 | (3) | 10 |
| 2. Communlcation (unspec.) ${ }^{+}$ | (8) |  | (2) | 6 | (10) | 3 | (2) | 6 |
| 3. MeetIngs | (8) | 3 | (1) | 3 | (72) | 23 | (5) | 16 |
| 4. Task Force ${ }^{\text {+T }}$ | (4) | 1 | (3) | 10 | (40) | 13 | (13) | 42 |
| 5. Consultation | (6) | 2 | -- | -- | (51) | 16 | $\cdots$ | -- |
| 6. Site Visits | (4) | , | (1) | 3 | (40) | 13 | (4) | 13 |
| 7. Written Communication | (2) | 1 | -- | -- | (22) | 7 | (1) | 3 |
| 8. Demonstrations | (2) | 1 | -- | -- | (7) | 2 | (2) | 6 |
| 9. Mass Media | (1) | * | -- | -- | (5) | 2 | (1) | 3 |
| 10. Audio/Visual Presentation | (1) | * |  | -- | (5) | 2 | -- | -- |
| Other Factors |  |  |  |  |  |  |  |  |
| 1. Early Success/fallure*危 | $(17)^{1}$ | 5 | -- | -- | (20) | 6 | -- | -- |
| 2. Space, New Facllity ${ }^{+}$ | (8) | 3 | (3) | 10 | (17) | 5 | (6) | 19 |
| 3. Intrinsic Value of Innovation | (11) | 4 | -- | -- | (12) | 4 | -- | -- |
| 4. Materials, Equlpment | (9) | 3 | (1) | 3 | (20) | 6 | (3) | 10 |
| 5. Time Ripe for innovatlon | (2) | 1 | (1) | 3 | (2) | 1 | (1) | 3 |
| 6. Other | (2) | 1 |  | - | (2) | 1 | -- | -- |

(Table continued on next page)

Continuation of Table 7.23
*Less than $0.5 \%$.
**Responcents could name more than one factor; thus the total of percents are grester than 100.
**\& Early failure was a key factor in two cases; In the remalning 15 cases early success vias a key factor.
tin some cases lack of this procedure was a key negat lve factor.
tt In one case task force was a key negative factor.

Early success or failure of the innovation at tempt, the irtrinsic value of the innovation, and the fact that the "time was ripe" were other factors which, when mentioned, were generally keys to success (or fallure). The avallability of materlals, equlpment and plant faclitiles were mentioned by some districts; finally (included In "other factors") one district credited success to the maturlty of senlors in the high school, and one district felt its innovation succeeded because "faculty in opposition left the system."

Funding factors whlch were glven in response to Questlons \#le and \#lb are given In Table 2.24. Again those factors clted as the keys to success or fallure are given first and are followed by total citations.
(Insert Table 7.24 here)

Although no one source of funds is frequently specified in districts from elther size sample, the avallabillty of funds overall was mentioned as a factor by $27 \%$ of representative districts and $45 \%$ of very large districts. Federal agencles were specifled in over half the cases as being the primary source of funds. Although funding availability was rarely mentioned as a key factor ( $6 \%$ in each size sample) total citations place this issue second for very large districts and fourth for representative dlstricts when the data in Table 7.22 and 7.23 are combined. Presumably funds'were also necessary for the implementation of many other innovations, but this fact was not regarded as outstanding in terms of the total process. Only seven representative districts (2\%) and one very large district (3\%) specified that no extra funds were required for the showcase innovation. The issue of cost/benefit ratio was rarely mentioned, but when it was, it was mentioned as a negative factor.

Table 7.25 provides a comparison of all spontaneously mentioned factors (Questions \#le and \#lb) with the emphasis placed on procedures (Question \#2; rank order from Table 7.1), the extent of use of medla (Question \#8; rank order from Table 7.6) and the Importance of the barriers (Question \#3; rank order from Table 7.9).

TABLE 7.24
FUNOING FACTORS FOR THE SHOWCASE INNOVATION

| Funding factors | Clted as Key factor |  |  |  | Total Cltations |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { 01strlcts } \\ & <80,000 \\ & \text { Freq. \% of } 315 \end{aligned}$ |  | $\begin{gathered} \text { Oistricts } \\ \geq 80,000 \\ \text { Freq. } \% \text { of } 31 . \end{gathered}$ |  | $\begin{gathered} 01 \text { stricts } \\ <80,000 \\ \text { Freq. \% of } 315 \end{gathered}$ |  | $\begin{aligned} & \text { Oistricts } \\ & \geq 80,000 \\ & \text { freq. } \% \text { of } 31 \end{aligned}$ |  |
| Federal Source |  |  |  |  |  |  |  |  |
| ESEA Title lll | (5) | 2 |  | 3 | (18) | 6 | (2) | 6 |
| ESEA Title 1 | (1) | * | -- | -- | (14) | 4 | (1) | 3 |
| ESEA - unspeclfled | -- | -- | -- | -- | (1) | * | (1) |  |
| EDDA | -- | -- | -- | -- |  | -- | (1) | 3 |
| Federal unspeclfied | (3) | 1 | -- | -- | (12) | 4 | (1) | 3 |
| Total Federal | (9) | 3 | (1) | 3 | (45) | 14 | (6) | 19 |
| Other Sources |  |  |  |  |  |  |  |  |
| Local only | (3) | 1 | -- | -- | (6) | 2 | (1) | 3 |
| Local Supplement | (1) | * | -- | - | (4) | 1 | (1) | 3 |
| State | (1) | * | -- | -- | (9) | 3 | (2) | 6 |
| Private | -- | -- | -- | -- | (1) | * | -- | -- |
| Unspeclfied | (5) | 2 | (1) | 3 | (22) | 9 | (4) | 13 |
| Total Non-Federal | (10) | 3. | (1) | 3 | (42) | 13 | (8) | 26 |
| Other Funds factors |  |  |  |  |  |  |  |  |
| Cost/Benefit ${ }^{\text {de* }}$ | (1) | * | (1) | 3 | (2) | 1 | (1) | 3 |
| Requlred no funds | (1) | * |  | -- | (7) | 2 | (1) | - 3 |
| Total Mentions of Funding Factors | (21) | 6 | (3) | 9 | (96) | 30 | (16) | 51 |

thess than 0.5\%.
*\&Cost/8enefit was mentloned only as key negative factor.

TABLE 7.25
COMPARISON OF SPONTANEOUSLY MENTIONED FACTORS WITH PROCEDURES, MEDIA AND BARRIERS

| Spont aneously Mentioned Factor |  |  | Related Procedures: Rank Order Among 21 Items (Question \#2) | Related Media: <br> Rank Order Out of 5 items (Question \#8) | Related Barmiere: Rank Order Among 18 items (Questlon \#3) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| rocedure |  |  |  |  |  |
| Participation | 26 | 29 | 9. 12,20 |  | 12 |
| Planning | 18 | 36 |  |  |  |
| Trainlng | 14 | 28 |  |  | 1, 2, 4 |
| Cooperation | 12 | 22 | 3, 8, 13, 18 |  |  |
| Personnel Utilization | 7 | 8 | 1, 4, 12 |  | 8 |
| Publlc Relations | 7 | 10 | 16, 20 | 1, 2, 3, 4, 5 | 15 |
| Evaluation | 5 | 9 |  |  |  |
| Course/Program Deve lopment | 4 | 16 |  |  |  |
| , Pllot Projects | 3 | 12 | 5, 14 |  |  |
| Surveys | 1 | 3 | 5, 6, 7 |  |  |
| te dlum |  |  |  |  |  |
| Workshops | 6 | 14 | 7 |  | 1, 2, 4 |
| Communlcation | 3 | 3 |  |  | 2, 6, 11 |
| Meetings | 3 | 22 |  | 3 |  |
| Task Force | 2 | 15 |  |  |  |
| - Consultation | 2 | 15 |  |  | $14,18$ |
| Site Visits | 1 | 13 | 16 |  | $17$ |
| Written Communication | 1 | 7 |  | 1,2 |  |
| ? Demonstrations | 1 | 3 |  |  | 9 |
| - Mass Media | * | 2 |  | 1, 4, 5 |  |
| - Audiolvisual Presentation | * | 1 | ) |  |  |
| :her Factors |  |  |  |  |  |
| , Early Success/Failure | 5 | 6 |  |  | 5,16 |
| - Space, New Facility | 3 | 7 |  |  |  |
| , dntrinslc Value of innov. | 3 | 3 | 19 |  | 9 |
| , Materlal/Equipment | 3 | 7 |  |  | 7 |
| - Time Ripe | 1 | 1 | 21 |  |  |
| :unding | 6 | 32 | 15 |  | 3 |

* Less than 0.5\%

In this table the total citations and citations as key factors of each spontaneously mentioned 1 tem are given as percentages of all districts combined; percentages are thus based on 346 , the total number of showease innovations reported by all districts. Only one factor, course or program development, is not related to a procedure or barrler statement, while many are related to more than one.

It would appear that the procedural statements Ifsted In Question \#2 were quite comprehensive, covering all but one procedural item mentioned spontaneously, as well as funding issues and media used. On the other hand, the rank order attached to these statements by respondents bears iftele resemblance to the rank order of spontaneously mentioned items. Only two of the 21 procedural statements from Question \#2 are not listed in Table 7.24 as being related to a spontaneously mentioned item. These are "providing a ellmate conducive to risk-taking" (ranked 11 th), and "confrontation of differences" (ranked 17th). The Question \#2 list can thus be judged relevant as well as comprehensive.

The barrier statement 11 st from Question \#3 was intended to speak to potential trouble spots rather than to comprehensively cover lack of procedural actions. One or more of the llsted barrier statements were relevant to each spontaneously mentioned item which was noted as a negative factor (see footnotes to Table 7.23), with the exception of "task force." The one fallure of a task force noted by respondents could be considered to be related to the barrier "disorganization of the planning and implementation efforts," but we did not take the liberty of making this judgment. Only one listed barrier ls not referred to in Table 7.25; this is "rigidlty of school system structure and bureaucracy" (ranked loth). Thus it may be said that the barriers llst, as well as the procedures list, is relevant and speaks to the issues.

Respondents made a similar judgment. Question \#4b asked whether items like those in Question $\# 2$ and \#3 would be helpful as a checklist in planning or evaluating future changes. Eighty percent of superintendents of representative districts and $74 \%$ of superlntendents of very large districts answered affirmatively (see Table 7.26). If only those superintendents who answered the question were considered, the results would be even more overwhelming ( $91 \%$ of representative districts and $85 \%$ of very large districts).
(Insert Table 7.26 here)

When the procedures llsted in Question \#l were compared across the five innovation categories, it was found that most procedures (listed in Table 7.23) were mentioned more frequently in connection with individualiaed instruotion cond team teaching than they were for other categorles. In particular, staff tralning was a more consmon factor in these innovations (mentloned in $45 \%$ of cases; key factor 1 n 26\% of cases) than on the average (mentloned in $28 \%$ of
table 7.26
IJTILITY OF PROCEDURES ANO BARRIERS LISTS AS CHECKLISTS IN FUTURE INNOVATIONS

| Utillty | Distrlcts$<80,000$Freq. $\quad$ of 322 |  | $\begin{gathered} \text { Districts } \\ \geq 80,000 \\ \text { eq. } \quad 6 \text { of } 31 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Useful | (257) | 80 | (23) | 74 |
| Not Useful | ( 25) | 8 | (4) | 13 |
| Total | (282) | 88 | (27) | 87 |
| No information | ( 40) |  | (4) |  |

cases; key, factor in $13 \%$ of cases). Procedures, overall, were used the least in administrative innovations, although differences were not statistically significant. For all categories except administrative innovations, findings were consonant with those of Question \#2 procedural uses: use was above average in individualized instruction and team teaching; average in organizational innovations, and below average for programmatic app oaches and for curriculum changes and instructional facilities.

## F. ADVICE TO OTHER DISTRICTS

Question \#lf asked superintendents what advice they would offer to districts like their own which might be adopting the same innovation. Advice relative to gaining the particlpation and commitment of individuals inside and outside the school has been discussed in detall in Chapter Six. This advice, along with all other advice, is listed in Table 7.27 in rank order according to the number of superintendents who offered each item of advice.
(Insert Table 7.27 here)

The top-ranking items . ${ }^{\prime}$ 'i,s table bear close resemblance to the spontaneously mentioned items given in response to Question \#le (key factors), as listed in Table 7.23 and 7.25. Needs assessment, however, is one item which was given scant attention in actual procedures employed but which is highly recommended to other districts.

| Advice |  | $\begin{gathered} \text { Districts } \\ \geq 80,000 \\ \hline \end{gathered}$ |  | Combined |  | $\begin{gathered} \text { Proced- } \\ \text { ure } \\ \text { Rank } \end{gathered}$ | Barrie Ranl |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | freq. $\begin{aligned} & 6 \text { of } \\ & 315 *\end{aligned}$ | Freq. | $\begin{gathered} 8 \text { of } \\ 31 * \end{gathered}$ | Frea. | $\begin{aligned} & \hline \% \text { of } \\ & 346 * \end{aligned}$ |  |  |
| 1. Gain participation in decisionmakling and planning | (172) : 23 | (6) | $19^{\circ}$ | (78) | 23 | 9,12,20 | 1,4,5 |
| 2. Adequate planning, preparation \& coordination | (51). 16 | (9) | 29 | (60) | 17 | 2 | 12, |
| 3. Gain commitment, support \& acceptance | (49) ${ }^{\text {che }}$ (15 ${ }^{\text {c }}$ | (2) | 6 | (50) | 14 | 12, 16 | 1,2,4, |
| 4. Needs assessment and diagnosis | (43) 21414 | (4) | 13 | (47) | 14 | 5, 6, 7 |  |
| 5. In-service training, workshops, staff development | $\text { (31) } 10$ | (3) | 10 | (34) | 10 | 3, 16 | 1,4 |
| 6. Utillzation of personnel; right person for the job. | (18) 6 | (6) | 19 | (24) | 7 | 4 | 8 |
| 7. Pilot projects; gradua) implementation | (19) 6 | (2) | 6 | (21) | 6 | 7 |  |
| 8. Adapt innovation to local needs | (17) 5 | (3) | 10 | (20) | 6 | 6,7,12,14 |  |
| 9. Profide enough lead time, planning $t$ isme | (17) 5 | (3) | 10 | (20) | 6 | 2 |  |
| 10. Evaluate innovation, assess implications | (16) 5 | $\bullet$ | - | (16) | 5 | 10, 19 |  |
| 11. Public relations; inform communit | (14) \& 4 | (2) | 6 | (16) | 4 | 16, 20 | 15 |
| 12. Site visits | (13) 4 |  |  | (13) | 4 |  | 17 |
| 13. Assure adequate finances | (11) $\mathrm{c}^{3}$ 4 | (2) | 6 | (13) | 4 | 15 | 3 |
| 14. Voluntary mode of int roduction | $\left({ }^{*} 9\right) \cdot$; | (i) | 3 | (9) | 3 | 8 |  |
| 15. Flexibility; alternative plans | (8) 3 | (1) | 3 | (9) | $3$ | $14$ | 10 |
| 16. Good leadership | (6) 2 | (3) | 10 | ( 9) | 3 | 1 |  |
| 17. Assess resources | (6) 2 | (1) | 3 | ( 7 ) |  | 15 |  |
| 18. Contact outside experts; use consultation services | (6) 2 | - | - | ( 6) | 2 |  | 14,18 |
| 19. Adequate facilities, equipment | (6) 2 |  | 3 |  |  |  | 7 |
| 20. Change curriculum or instruction | (5) 2 | (1) | 3 | ( 6) | 2 |  |  |
| 21. Materials \& course development | (5) $24^{\prime}$ | (1) | 3 | ( 6) | 2 |  |  |
| 22. Encourage feedback 8 communication | (4) $\quad 1{ }^{2}$ | (1) | 3 | ( 5) | , | 3,17,18 | , 11 |
| 23. Willingness to devote extra time 8.work | (4) 1 | - | - | ( 4) | 1 | 8 |  |
| 24. Continue traditional program | (3) 1 | (1) | 3 | ( 4 ) | 1 | 11 |  |
| 25. Set criteria for admisston to or dismissal from program | (2) 1 | (1) | 3 | ( 3 ) | 1 | 6, 7 |  |
| 26. Contact affected personnel | ( 2) | - | - | ( 2) | 1 | 4 |  |
| 27. Take care in use of terminology | (2) 1 | - | - | ( 2 ) | , |  |  |
| 28. Reward innovativeness | $\text { (2) } \quad i$ | - | - | ( 2 (2) | 1 | 11 | 2, 5, |
| 29. Other |  | - | - | (23) | 7 |  |  |

* Respondents could name more than one item: therefore percents total more than 100.

At the right-hand side of Table 7.27 the rank order numbeis of alevant. Question \#2 procedures and Question \#3 barilers are listed for kir item of advice. All but two 3 dvice items are related to one or more procadures or barriers; these are "change curriculum or instruction" (ranked 20th), and "materials and course development" (ranked 2lst). Two of the procedures listed in Question 2 are not related to invire items: "finding shared values as a basis for working' (ranked l3th), and "takiris advantaye of citis situations' (ranked 2lst). All the barrier statements : sted in Question ti wiere judged to be related to advice items. It thus seems that the items in Question $\neq$ ind \#3 are adequate to describe not only what the districts actually did, but alsm what they felt they should have done to assure successful innovation.

When advice was compared across the five innovation categorles (for all districts combined), it was found that staff training was particularly reconmended for individualized instruction and team teaching innovations. It has advised for these innovations in $21 \%$ coms and $i=\%$ of coses for ali categories combihed, This difference is s'gnificant at tt: . 0 i ievel. This finding is consistent with procedures actually carried out fy istricts adopting these innovations. In writion it as foum that public rilationa programs we re particularly recurnended for 0. ganizational innovations ( $16 \%$ of cases for organizational, as opposed to $5 \%$ of all cases; significant at the .001 level).

A comparison of advice across the top ten showcase innovations showed that staff training was recommended for individuaiized instruction and team teaching both in the general curriculum ( $21 /$ ) and in specific curriculum areas (22\%). Lead time was advised for incividualized instruction in spectfic curriculum areas (22\%) and for grade and attendance unit changes (21\%); public relations programs were also advised for changes in grade and attendance unit (21\%). These findings were all significant at the . 05 level. One additional finding, signlficant at the .01 level, was that good leadership was advised for innovetions in planning, research and evaluation (17\%, as opposed to $3 \%$ for all top ten innovations combined).

## G. SUMMARY

Respondents to the questionnaire were asked to rate a 1 ist of 21 procedural statements (Question $\# 2$ ) according to the degree of emphasis placed on each in planning and implementing the showcase innovation. The highest ranking items overall were those which theory and iesearch have shown to be effective in the imovation process. These included persistence, planning, providing a climate conducive to sharing ideas, a competent staff, adequate recognition of needs, diagnosis and definition of objectives.

Those districts which adopted innovations in the administrative area indicated the greatest procedural effort, while districts innovating in the areas of curriculum and technology and programatic approaches used the listed procedures the least. Districts adopting administrative innovitions put relatively much greater emphasls on confronting differences and resolvinga: conflicts.

Respondents were also asked to rate a list of 18 barriers (Question \#3) according to the degree of importance which each assumed during the showcase innovation process. The most Important barrier in very large districts was a shortage of funds allocated for the innovation: this barrier ranked third in importance in representative districts. Five other barriers, rated as being important in all districts, concerned staff issues: confusion and lack of information about the innovation, unwillingness to change or listen to new ideas, frustration or difficulty in trying to adopt, and lack of communication among the staff.

Districts innovating in individualized instruction and team teaching encountered the most barrlers, while those adopting programmatic approaches experienced the least. District size was also a factor in the degree of importance of barriers; systems under 300 students encountered the fewest problems, and districts with 10,000 to 24,999 students rated the barriers as most important.

When superintendents were asked to state the procedures used in introducing the showcase innovation and the key factors involved in success or failure of the innovation, the involvement of various individuals and groups in the innovation process emerged as the key factor. Avallabllity of funds was often a factor, but rarely a key factor. Federal agencles were mentioned as the primary source of funds in over half the cases.

- When the lists of procedural and barrler items (from Questions \#2 and \#3) were compared with the spontaneously mentioned items, it was found that these lists were comprehensive in covering all procedural items. This significant finding is supported by the fact that the overwhelming majority of respondents agreed that these lists would be useful as checklists in planning and implementing future innovations.

When respondents were asked to offer advice to other districts planning innovations similar to their own, the advlce offered differed little from the procedures they had actually employed themselves. The only notable exception was the recommendation that needs assessment procedures should be employed; this approach was seldom used to a signiflcant degree in the showcase innovations reported. The procedure and barrier lists were found to be comprehensive in covering points of advice as well as procedures actually employed.

The utilization of media to explain lnnovations to the public was generally related to district size. Local newspapers were used a great deal by all districts except those with less than 300 students, but the use of local radio increased with district size. Television was used extensively only by districts of over 10,000 students, and it was used most commonly in the South West, the South East and the Rocky Mountaln regions. Although the largest distrlcts were the heaviest users of radio and television, their overall usage of the five types of media was slightly less than in districts with 25,000 to 79,999 students.

Distrlets of all sizes reported more difficuity in obtaining $r$; , zen financlal support for new programs than for exlsting operations. تhere is some indirect evidence that difficulty in financing is inversely related to the use of medla to explain new programsl In particular, whlle the use of local print media and meetlings by very large districts feld off slightly, their difficulty with funding new programs rose sharply,

The South West and Rocky Mountain regions, whlch reported relatively high usage of media and strong emphasis on procedural effort, reported $t^{\prime}$ : least difflculty in galning support for new and exlsting programs.

The occurrence of community group protests and student unrest increased directly with district size. Student unrest occurred most frequently in the New England states and least often in the Rocky Mountaln region.

The smallest districts, with under 2,500 pupils, reported the most favorable combination of factors for Innovation; whlle they had the highest per pupil expenditure, they had the least difficulty in gaining financial support from eltizens. They also experlenced fewest disruptive events, used procedures far less than average and used fidia the least.

Regional differences in per pupil expendlture were striking: while the expenditure in the Mid East was over $\$ 1,000$, it was only $\$ 600$ in the Rocky Mountalns. Reglons with the hlghest per pupil expenditures, reported less utllization of medla and greater difflculty in gainlng financial support.

## CHAPTER EIGTT: MDELS AID DIMENSIONS OF CAAGGE IN IHEOPY NID PAA IIO:

The present national survey project grew out of an earlier project which sought to lay a foundation in theory for research on the process of innovation.* An exhaustive search uncoveled over $4,000_{4}$ items of literature relevant to the related toplcs of planned change, innovation diffusion, technology transfer and knowledge utilization. From z review and analysis of the 1,000 items of highest relevance there emerged two sets of conclusions, one thoretlcal and one empirical. Twenty five alternative theoretical statements formed; In the literature were found to fall Into three rather discrete categories which were identified as the "perspectives" of (1) "Research, Development, and Diffusion," (2) "Social Interaction," and (3) "Problem-solviny." Each "perspectlve" represented a coherent set of concepts and to a large degree an ideology of change. Recognizing the merits of each point of view, Havelock further proposed a fourth "perspective" which he labelled 'Linkage" to represent a synthesis of the others. Each of these follr perspectives will be described In more detall subsequently.

The second set of conclusions from the literature review project represented an attempt to summarlze the empirical research literature into seven major principles or "factors." They were labelled as "linkage," "structure," "operiness," "capaclty,", "reward," "proximlty," and "synergy." In surveying the views of superintendents toward innovation, a major objective was to match up their perceptions with these prevlous conclusions. It was for this reason that the "procedures" and "barriers" questions were developed. The items in these questlons represent the essentlal points in each of the "perspectives" and for each of the "factors" as the summary beiow indicates.

## A. THEORETICAL PERSPECTIVES ON INNOVATION PROCESS:ty

1. RESEARCH, DEVELOPMENT, AND DIFFUSION (RDED)

This perspective is guided by at least five assumptions. First, it assumes that there should be a rational sequence in the evolution and application of an innovation. This sequence should include research, development, and packaging before mass dissemination takes place. Second, it assumes that there had to be planning, usually on a massive scale over a lorig the span. Such planning and ordering of stages from initiation to the achievement of stated objectives allows for systematic budgeting, monitoring, and scientific evaluation at each stage. Third, it assumes that there has to be a division and coordination of labor to accord with the rational sequence and the planning. Fourth, it makes the assumption of a more-or-less passive but rational conswmer who will accept and adopt the innovation if it is offered to him in the right place at the right time and in the right form. Fifth, the proponents of this
*Havelock, R.G., et al. (1969)
4
**Sumarized from Havelock, et al., op cit, Chapter 11.
viewpoint are willing to accept the fact of high initial development cost prior to any dissemination activity because of the anticipated longeterm benefits in efficacy and quality of the innovation and its suitability for mass audience dissemination.

Prototypes of this RDED model are presumed to exist in industry and agriculture. Figure 1 provides an outline of its major components. Within

FIGURE 8.
THE RESEARCH, DEVELOPMENT, AND, DIFFUSION PERSPECTIVE

the field of education major advocates of this viewpoint have been Henry. M. Brickell (1961), Francis S. Chase (1968), and David L. Clark and Ego Guba (1965 a and b).

In the survey, four items were derived explicitly from the RDED perspective. In Table 8.1 these items are shown together with mean response by superintend* dents.

TABLE 8.1
EMPI:ASIS ON THE RD \&D PERSPECTIVE


It is evident that all these items are generally endorsed to at 1 n. . a moderate extent, and also that they receive somewhat greater empha is in the largest districts. However, items a and b, which are most une" .guously associated with this perspective, are also the least emphasized ai,ung the form in both size categories

## 2. SOCIAL INTERACTION ( $\mathrm{S}-1$ )

This perspective places emphasis on the patterns by which innovations diffuse through a social system. Five generalizations about the proces are usually emphasized and are supported by empirical research from rural sociology and from the education sources cited earlier (Mort, etc.): (1) that the individual user or adopter belongs to a network of social relations which largely influences his adoption behavior: (2) that his place in the neturark (centrality, peripherality, isolation) is a good predictor of his rate of acceptance of new ideas; (3) that informal personal contact is a vital part of the influence and adoption process; (4) that group memberstip and reference group identifications are major predictors of individual adoption; (5) that the rate of diffusion through a social system follows a predictable s-cume pattern (very slow beginning followed by a perlod of very rapid diffusion, followed in turn by a long late adoptes or "laggard" period).

FIgure 8.2
THE SOCIAL INTERACTION PERSPECTIVE


Key: * Individuals in the

- social system.
$\longrightarrow$ Flow of new knowledge.
Formal organizational
struc:ures
ilnformal structures.

Major contributors to the $S-I$ research tradition are Coleman, Katz and Menzel (1966), Ryan and Gross (1943), Lionberger (1960), and E. Rogers (1962, 1970). In education principal proponents have been Mort (1964) and Carlson (1965).
$\therefore \quad$ In the survey, four items were derived explicitly from the social Interaction perspective. In Table 8.2 these items are shown together with mean responses by super intendents.
table 8.2
EMPHASIS ON THE SOCIAL INTERACTION PERSPECTIVE

| Question \# | Item | $\begin{gathered} \text { Districts }<80,000 \\ \text { Freq. \| Mean } \end{gathered}$ |  | Districts $\geq 80,000$ Freq. Mean |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 29 | Utilizing a number of different media to get the new ideas across | (307) | 3.36 | (30) | 3.30 |
| 2h | Persistence by those who advocate the innovatlon | (307) | 4.17 | (30) | 4.10 |
| 2 r | Involvement of informal leaders of opinion inside the schools | (304) | 3.50 | (30) | 3.33 |
| 2 s | Participation by key community leaders | (305) | 2.84 | (30) | 3.13 |
|  | Mean Rating of Soclal Interaction Items |  | 3.47 |  | 3.46 |

These four items are also emphaslzed to a moderate extent by most superIntendents but there is little difference between the largest and the representative districts. Again the highest rated item, "persistence.." is the most ambiguous and could fairly be assoclated with any perspective. it is also interesting to note that the largest districts have somewhat more concern for influencing key persons outside the school system itself (item 2 s ) and somewhat less concern for influencing Insiders (item $2 r$ ) relative to representative districts.

## 3. PROBLEM SOLVING (P-S)

This model rests on the prlmary assumption that Innovation is a part of a'problem-solving process which goes on inside the user. Problem-solving is usually seen as a patterned sequence of activitles beglnnlng with a need, sensed and articulated by the cllent, which is translated into a problem statement and diagnoais. When he has thus formulated a problem statement, the clientuser is able to conduct a meaningful search and retrieval of ideas and information whlch can be used in formulating or selecting the innovation. Finally,

the user needs to concern himself with adayting the innovation, trying out. and evaluating its effectiveness in satisfying his original need. The focus of this orientation is the user, himself, his needs and what he does about satisfying his needs. The role of outsider is therefore consultative or collaborative. The outside change agent may assist the user either by providing new ideas and innovations specific to the diagnosis or by providing guidance on the process of problem-solving at any or all of the indicated stages.

At least five points are generaliy stressed by advocates of this orientation: first, that user need is the paramount consideration and the only acceptable value-stance for the change agent; second that diagrosis of need always has to be an integral part of the total process; third that the outside change agent should be nondirective, rarely, if ever, violating the integrity of the user by placing himself in a directive or expert status; fourth that the internal resources, i.e., those resources already existing and easily accessible with the client system, itself, should always be fully utilized; and fifth that self-initiated and self-applied innovation will have the strongest. user commitment and the best chances for long-term survival.

If the "user" is a group or an organization, the problem-solver consultant role also is likely to include training in group communication, the building of group or organizational self-awareness and cohesiveness, and emphasis on colleboration among the members of the user system in solving their problems with as wide a circle of participation as possible.

A few of the major advocates of this orientation are Lippitt, et al. (1958), Watson (1967), Jung (1970) and Thelen (1967). Most of those who belong to this school are social psychologists in the group dynamics-human relations tradition.

In the survey, five items were derived explicitly from the problemsolver perspective. In Table 8.3 they are Ilsted with superintendents responses to each.
table 8.3
EMPHASIS ON THE PROBLEM-SOLVER PERSPECTIVE

| Question \# | Item | Districts $<80,000$ Districts $\geq 80,000$  <br> Freq. Mean Freq. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - $2 i$ | Maxlmizing chances of participatlon by many groups | (303) | 3.65 | (30) | 3.70 |
| 2 j | Stressing self-help by the users of the innovation | (303) | 3.67 | (30) | 3.50 |
| 2k | Adequate diagnosis of the real educatlonal need | (308) | 3.98 | (30) | 4.23 |
| 21 | Providing a cllmate conducive to sharling Ideas | (304) | 4.11 | (30) | 4.10 |
| 2 n | Creating awareness of the need for change | (308) | 4.03 | (30) | 4.20 |
|  | Mean Rating of Problem-Solver It ems |  | 3.89 |  | 3.95 |

By a small margln, thls set of items appears to be emphasized by the superintendents over those related to the RDED and social interaction perspectives. There is no difference between large and representative districts.

## 4. LINKAGE: A UNIFYING CONCEPT

Although the above three models of DEV are espoused by different authors and represent different schools of thought, they can be seen as elucldating different but equally important aspects of a total process. In attempting to bulld a synthesls from these various schools, we have derlved the concept of "linkage." (See figure 8.4) According to this principle, the internal problemsolving process of the usor is seen as the essential starting polnt, but the process of searching for and retrleving new outslde knowledge relevant to the problem*solving cycle is spelled out ingreater detall. To coordinate helping
activities with internal user problem-solving activities, the outsid $k$ source person (or system) must be able to recapitualte or slmulate hat internal process. Technicaliy speaking, the resource person neco. to develop a good "model" of the user system in order to "Ilnk" to him effectively. clinically speaking, we would say that he needs to have empathy or understanding.

At the same time, the user must have an adequate appreciation of how the resource system operates. In other words he myst be able to understand and partially simulate such resource system activities as research, development, and evaiuation.

In order to build accurate models of each other, resource and user must provide reciprocal feedback and must provide signals to each other which are mutually reinforcing. It is proposed that this type of collaboration will not only make particular solutions more relevant and more effective bui will also serve to build a lasting relationship of mutual trust, and a perception by the user that the resource person is a truly concerned and coinpetent helper. In the long run initial collaborative relations build effactive channels through which innovations can pass efficiently and effectively from researchers to developers, from developers to practitioners, and from practitioners to consumers. As the RD\&D school holds, there must be an extensive and rational division of labor to accomplish the complex tasks of innovation building. However, each separate roleholder must have some idea of how other roles are performed and some idea of what the linkage system as a whole is trying to do.
figure 8.4
the linkage process


No items were explicitly selected to represent the "linkage" perspective since this was seen primarily as a synthesis of the others. However, a few items suggest additional aspects of the concept. They are listed in Table 8.4.
table 8.4
some adoitional items related to the linkage perspective

| Question \# | Iten . | $\begin{gathered} \text { Distirlcts }<80,000 \\ \text { Freq. } \mathrm{Mean} \\ \hline \end{gathered}$ |  | $\left\lvert\, \begin{array}{c\|c} \text { Districts } \geq 80,000 \\ \text { Freq. } & \text { Mean } \end{array}\right.$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Creating an awareness of alternative solutions | (306) | 3.44 | (30) | 3.60 |
| 2q | Resolution of interpersonal confiicts | (300) | 3.26 | (28) | 3.11 |
| $2 u$ | Finding shared values as a basis for working | (297) | 3.45 | (29) | 3.28 |
|  | Mean Rating of Additional Linkage items |  | 3.36 |  | 3.33 |

It is evident that these items by themselves recelve less endorsement than those presented earller with little distinction between very large and representative districts. However, Table 8.4 in no way represents the best set of items to represent the linkage concept. Items from each of Tables 8.1, 8.2, and 8.3 would need to be included to give an adequate plcture of the cluster of elements involved.

## 5. THE CONFLICT MODEL OF CHANGE

A number of change agents and change researchers in recent years have emphasized the Importance of conflict and crisis as necessary stlmulants to change. Some have even proposed that crisls situations can be exploited and even manipulated to effect major positive changes. ${ }^{*}$ Two items in Question 2 (Table 8.5) were intended to ascertain superintendents' reactions to this approach.

## (insert Table 8.5 here)

As indicated by Table 8.5, the crisis mojel was distlnctly less popular than other perspectives.

[^10]
## 6. A GENERAL CAFACITY MODEL OF CHANGE

It has also been argued in various circles that change primis ily requires financial material and staff resources in large quantity. Several items throughout the questionnaire tested this notion in difierent ways. For comparison purposes here we will only cite the two items on Question 2 that are most relevant.

TABLE 8.6
EMPHASIS ON A.GENERAL CAPACITY MODEL OF CHANGE

| Question \# | Item | $\begin{array}{ll} \text { Bistricts }<80,000 \\ \text { Freq. } 1 \text { Mean } \\ \hline \end{array}$ |  | $\begin{gathered} \text { bistricts } \sum 80,000 \\ \text { Freq. Mean } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 e | Selecting a competent staff to implement the change | (304) | 4.04 | (30) | 4.30 |
| 2 f | Starting out with adequate financial resources to do the job | (305) | 3.42 | (30) | 3.i.i |
|  | Hean Rating of Capacity Items |  | 3.73 |  | 3.88 |

It is evident, first of all, that more emphasis was placed (in competent staff than on financial resources. However, we should be cautious in interpertation of item $2 f$ since respondents were asked how much emphasis was given, not how much ought to have been given. Presumably, the financlal resources available for innovation will not be matter under the complete control of the superintendent or the prime innovator.

## COMPARISON OF SIX PERSPECTIVES

Table 8.7 has been constructed to show an over*all comparison of the different perspectives as reflected in responses to Question 2.

TABLE 8.7
A COMPARISON OF CHANGE PERSPECTIVES
(based on means for item clusters from Question 2, "Emphasis on Innovation Procedures")

| Perspective | Districts $<80,000$ | Districts 280,000 |
| :--- | :---: | :---: |
|  |  | 3.89 |
| Problem Solving |  | 3.75 |
| ROED | 3.73 | 3.91 |
| Capacity | 3.47 | 3.88 |
| Social Interaction | 3.36 | 3.46 |
| Linkage (Misc. items) | 2.95 | 3.33 |
| Conflict |  | 3.08 |

From the table it is evident that the problem-solving perspective recelves the most emphasis with RDED a close second and the conflict model the least. It Is also interesting that large and representative districts show in ldentical rank orderlng of the different models and are otherwise also similar in their ratings.

## B. BARRIERS TO INNOVATION IN SIX CONCEPTUAL CLUSTERS

A review of empirical studies of innovation diffusion and planned change pointed to seven primary concepts or "unlfylng themes" whlch explain most of the findings and seive as a useful set of predictors of innovation trans" fer success. The list of items In Question 3 under the heading "barriers" were carefully chosen to represent these concepts.

## 1. LINKAGE (AND PROXIMITY)

In barest essentlals "llinkage" slgnlfies the degree of connection between people, groups, and organlzations. The more linkages there are and the stronger these I Inkages, the more effectlve will be the day-to-doy contact and exchange of Information; hence the greater wlll be the opportunlty to transfer knowledge and Innovations.

The re are some strong theoretical reasons for assuming that Ilnkages between people are highly related to successful innovation. MOst people begin to consider new things because they have become aware of these new things through communlcatlon from or with other people inside or outside their own group. Such communicatlon cannot take place without contact of some sort, and slgnificant behavioral change probably requlres prior communication and contact which is intenslve, multi-channelled and reciprocal. From research on the diffusion of innovations, we know that such communlcation depends on soclal networks withln whlch there is some form of oplolon leadershlp. Furthermore, Innovations which are not home-grown will diffuse only If these opinion leaders travel widely and join into other cosmopolite networks. The more interconnected these various overlappling networks are, the more rapidly and frequently innovations can spread.

Psychologlcal studles of problem-solving both in groups and organlzations als. suggest that clusters of indlviduals who are highly interactlve will be more creative problem-solvers; furthermore, those who promote varlous changes will be more llkely to succeed if they can develop a sense of participation through two-way communication and collaboration with the user group.

Finally, it would appear logical that continuous linkage and two way communication between developers and advocates of Innovations on the one hand and users on the other would be necessary for correcting errors in applicat $10 n$ and for understanding what changes are relevant and approprlate for partlcular users.
a. Dimenslons of Llnkage

Innovation can be aided by at least seven types of interpersonal and . interorganizational linkage. First of all, within user systems, three kinds
of Ilnkage are important; one we might call "vertical" llnkage, l.e.. . . extent of contact and two-way communicatlon between superlors and s sordinates, leaders and followers, administrators and teachers, teachers and - Jdents. Wlthout such linkage: Innovation declsions can be made at a hlghe, level without lower levels elther understanding them, accepting them, or sometmes even belng aware of them. Sometlmes "authorlty" carrles the day but more of ten communication and participation in decislon maklng by varlous levels is important for changing attitudes and galning widespread acceptance. Another sort of Internal IInkage could be termed "horlzontal" or "peer" IInkage. Innovation dlffuslon researchers have shown that Informal connections between people of mare-or-less equal status is at least as important as hierarialcal connectlons both for sharling locally invited innovatlons and adopting them from outside. Particularly in flelds where Individual professlonals work in separate space and carry on their professlonal dutles outside each other's view (as teachers in classrooms), lack of such peer Ilnkage can be an important inhlbitor of change. A third type of Internal llakage concerns the maximum use of speciallsts and persons with defined ares of expert knowledge and talent within the system. These might include an RED person, a counsellor, librarlan, etc.

From the viewpoint of past research and theory, certaln kinds of external linkages are also important. The smaller the user system and the more limited its own resources, the more cruclal these external limits become, One lmportant external source is the speclallzed center of expertise such as a laboratory or university. Particularly with increasing investment in educational RED in the iast decade, linkage of local school districts to such sources should be important for the spread of research-based and validated Innovations.

Another Important type of external linkage pertalns to sources of financlal support, Including federal grants, state support, and prlvate foundation grants. Usually some effort and Initiative by the districts is necessary In order to reach out for this support and more of ten than not the "strlngs attached" include important consultative aid and guldance in planning and lmplementing changes.

A third type of external linkage is to what we might call the peer system network. There is some need for both schools and school districts to interact, exchange ldeas on what each is doling including visits and demonstrations. There are undoubtedly Innovator and opinlon leader districts and schools, just as there are innovator and opinlon leader individuals.

A seventh category which has both internal and external aspects is linkage to the communlty or the county social environment within which the user system exists. Such linkage would include relationships wlth established groups such as businesses, churches, government and voluntary organlzations as well as with students, partents, and the general publlc. Such Ilnkage presumably brings greater understanding and hence greater support, motivatively and financlally, for new projects in the schools.

Because of our previous work In this fleld and for the reasons stated above, we had a special interest in this survey in exploring many aspects of llnkage, If possible, we hoped to show the relative Importance of linkage as a procedural element in the change process compared to such other variables as openness of user attitudes, strength of need, and financlal resources avall-
able. We also wanted to distlngulsh among the various categorles of Internal and external linkage listed above. Evidence relevant to these assumptions comes from many questions In different parts of the survey. In Chapter Six they are discussed under the heading of "partlcipation." In Chapter Seven they are discussed under several headings including "medla," "procedures," "barriers," and "key factors," in thls section we would like to restrict ourselves only to the subset of Items on Question 3 whlch were intended to foxus on thls concept and glve a comparative vlew of the relative power of "linkage ${ }^{4 t}$ as a phenomena in Innovatlon process. Table 8.8 displays thls cluster of items.

TABLE 8.8
LINKAGE BARRIER ITEM CLUSTER

| Question ${ }^{\text {a }}$ | ! tem | $\begin{gathered} \text { Oistricts }<80,000 \\ \text { Freq. Meank } \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { Districts } \geq 80,000 \\ \text { Freg. } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3a | Lack of adequate contacts with outside resource groups (e.g., universities, labs, consultants, etc. | (305) | 2.04 | (29) | 1.93 |
| 36 | Lack of communlcation among staff | (305) | 2.44 | (29) | 2.66 |
| 3 c | Lack of comilunlcation between staff and students | (302) | 2.22 | (29) | 2.17 |
| 30 | Lack of contact with other school systems who had consldered the innovation | (302) | 1.94 | (29) | 1.90 |
|  | Mean RatIng of Linkage Barrler Items |  | 2.16 |  | 2.17 |

It is evident from comparing thls table with Table 7.9 , showlng all 18 barrler items together, that the linkage Items are not seen as Important Impediments to change In the showcase Innovation. Only "communication among staff' rates above the medlan (ranked sixth most Important by representative districts and second among the largest distrlets). Communlcat lon downward to students Is somewhet less important as a bariler, while communleation with outsiders (3a and 30) least problematic; both these ltems rank near the bottom in Importance among both representative and large districts.

In the llterature revlew we also found that "proximity" between users and resources was an Important predictor of resource transfer, utilization, and Innovation. However, we infer that the importance of thls variable stems
from the fact that It Increases the probabllity of contact and hence li uje. Therefore, a separate set of Items was not prepared to measure "proxirlty" barriers on the assumption that the word "contact" in ltems $3 a$ and , u carrled both Ideas.

## 2. STRUCTURE

The degree of systematlc and ratinnal ordering and organizing of the Innovatlon process should strongly affect success, partlcularly for complex innovations In larger systems. Three Items in Question 3 were Included to measure the absence of structure in the process of innovation as a barrler. They are Ilsted In Table 8.9.

TABLE 8.9
LACK OF STRUCTURE AS A GARRIER

| Question \# | 1 tem | $\begin{gathered} \text { Districts }<80,000 \\ \text { Freq. Meari } \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { Olstricts } 280,000 \\ \text { Freq. } \quad M \quad n \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 3 d | Confuslon among staff about the purpose of the Innovation | (308) | 2.59 | (29) |
| 3 e | Staff's lack of preclse Informatlon about the innovation | (307) | 2.53 | (29) |
| 3 f | Disorganization of the planning and implementation efforts | (306) | 2.07 | (29) |
|  | Mean Rating of Lack of Structure |  | 2.40 |  |

As a set these barriers seem to be seen as more serlous than linkage barriers to school superintendents. Item 3d was top-ranked of the 18 amang representative districts whlle Item 3 e was fourth ranked. Both these Items seem to focus more on the content of the Innovation than the process, however. Item 3f, which focuses specifically on the process (planning and implementation). is rated as only a silght barier.

## 3. OPENNESS

Closed systems and closed minds are be definltlon incapable of taking in Important new messages from outside; If they cannot take in, they cannot utllize outside knowledge for Internal change or innovation. for resource systems "openness" means a wlllingness to help and a willingness to be influenced by user needs. For the user, "openness" Implles not only receptivity but an active reaching out for new ideas, new products, and new ways of dolng things. In addition, It is a wlllingness to take rlsks and to make an effort to adapt innovatlons to one's own sltuation. Three Items in Question 3 were targetted on this concept as indicated In Table 8.10.
table 8.10
LACK OF "OPENNESS" AS A BARRIER

| Question \# | 1 tem | Districts $<80,000$ |  | Districts $\geq 80,00$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Freq. | Mean | Freq. | Mean |
| 39 | Unwllilngness of resource groups to help us revise and adopt | (303) | 1.73 | (29) | 1.48 |
| 3h | RIgidity of school system structure and bureaucracy | (306) | 2.25 | (29) | 2.31 |
| 31 | Unwllifingness of teachers and other school personnel to change or ilsten to new ldeas | (306) | 2.57 | (29) | 2.45 |
|  | Mean Rating of Lack of Openness | $\therefore$ : | 2.18 |  | 2.08 |

Obvlously these three Items measure very different types of openness and there is a very great range of response to them. As noted in Chapter Seven, lack of openness by outside experts was rated as practlcally no problem at all. On the other hand, lack of openness by teachers was seen as a moderately important barrler by a majority of superlntendents. Perhaps it is self-serving on thelr part as spokesmen for the established system to see the structure of the system as a lesser barrler. In any case, lack of structure (Table 8.9) seems more important to supeifintendents than lack of openness.

## 4. CAPACITY

The research ifterdture is particularly convincing in suggesting a pervasive capaclty factor affecting innovativeness in schoois. The term is used here to slgnify a cluster of concepts including wealth, power, competence, education, soclo-economlc well-being, and some aspects of size. Table 8.11 reviews three ltems which are quite obviously related to thls dimenslon.

TABLE 8.11
LACK OF CAPACITY AS A BARRIER

| Question \# | 1 tem | O1strlcts $<80,000$ |  | Distrlcts $\geqslant 80,000$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Freg. | Mean | Freq. | Mean |
| 3j | Shortage of funds al located for the Innovation | (304) | 2.54 | (29) | 2.86 |
| 3k | Shortage of quallfled personnel | (303) | 2.32 | (29) | 2.34 |
| 3 r | inadequacy of school plant, facilities, equlpment or supplles | (304) | 2.43 | (29) | 2.24 |
| * | Mean Rating of Lack of Capaclty |  | 2.43 |  | 2.48 |

The capaclty factor seems relat lvely lmportant to both reproser ative and large districts; for the letter, as noted earller, lack of funt was by far the most salient barrier (although, on the average, rated is only "moderate").

## 5. REWARD

Rewarded behavior tends to be repeated: this is the most well supported finding in the fleld of psychology. The sender will not continue to send nor the recelver continue to recelve unless they each recelve rewards appropriate to their needs and their efforts expended. "Approprlate" rewards might be in terms of financlal return, securlty, esteem, status, public recognition, participation in a valued group, encouragement, or rellef 'rom stress or work. In Question 3, three items were concerned with reward issues. They are listed in Table 8.12

TABLE 8.12
LACK OF REWARDS AS A BARRIER

| Question \# | 1 tem | Districts < 80,000 |  | Distrlcts 280,000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Freq. | Mean | Freq. | Mean |
| 31 | Feeling by the teachers and staff that the innovation would have llttle beneflt for them | (304) | 2.31 | (29) | 2.7** |
| 3 m | Frustration and dificulty encountered by teachers and/or relevant staff in trying to adopt | (302) | 2.53 | (29) | 2.66 |
| $3 n$ | Frustration and difficulty encountered by students during the adoption process | (301) | 2.00 | (28) | 1.82 |
|  | Mean Rating of Lack of Reward |  | 2.28 |  | 2.23 |

In contrast to the structure barrler, rewards intrinsic to the innovation itself (31) are less problematic than negative rewards encountered in the process of adoption and implementation. Least problematic, from the superintendent's polnt of view at least, are rewards for students (3n), this item being rated 16 th and 17 th in importance respectively by representative and very large districts.

## 6. SYNERGY

Dissemination and Implementation activities in a complex system rarely have thelr effects in isolation of other variables and usually several factors have
to be operative in a positlve directlon before innovation takes place. We have used the term "synergy" to identify the slmultaneous interaction of two or more effects elther planned or unplanned. The concept includes the comlng together of forces, orchestration, combining of diverse elements, synchronlzation of several medla and several diverse or repeated messages to produce jolnt or addłtive effects. Two question items attempted to measure some aspects of "synergy" as a factor In innovation process. They are shown together in Table 8.13.
table 8. 13
LACK OF SYNERGY AS A BARRIER

| Question \# | 1 tem | O1strlcts < 80,000 |  | Districts $\geq 80,000$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Freq. | Mean | Freq. | Mean |
| 3p | Lack of coordination and team work withln the school system | (303) | 2.11 | (29) | 2.24 |
| 39 | Absence of a concerted campalgn to put the new ldeas across | (304) | 2.03 | (29) | 2.21 |
|  | Mean Rating of Lack of Synergy |  | 2.07 |  | 2.23 |

It is evident that synergy was seen only as a slight problem in Implementing the showcase Innovation, as measured by these ltems. It seems likely, however, that we have not adequately measured the concept here, if Indeed it is measurable.
7. COMPARISON OF IMPORTANCE OF SIX BARRIER CLUSTERS

Table 8.14 has been constiucted to show an over-all comparlson of the six different barrier clusters discussed in the above section.

TABLE 8.14
A COMPARISON OF BARRIER CLUSTERS IN ORDER OF IMPORTANCE

| Concept Cluster | Importance as <br> the Showcase <br> Dlstricts $<80,000$ | a Barrier In <br> Innovation <br> Districts $\$ 80,000$ |
| :---: | :---: | :---: |
| (Lack of) Capaclty | 2.43 | 2.48 |
| ( " I') Structure | 2.40 | 2.43 |
| (") ") Reward | 2.28 | 2.23 |
| (") ") Openness | 2.18 | 2.08 |
| (") ") Linkage | 2.16 | 2.17 |
| (" ") Synergy | 2.07 | $2 / 23$ |

Lack of structure and lack of capacity clearly recelve toperatir; s barrlers, while openness, llnkage, and synergy (all related to comm 'icationi are viewed as less important. Reward items lie somewhere between.

The chlef deflcit of these data resides in the fact that showcase innovations reported were overwhelmingly clalmed to be successful. Hence, no barrier was ldentified as being more than moderately lmportant and most were seen as either silght or non-existent. Presumably for innovations that falled the barrler response would be much higher, it is more difficult to say whether the pattern of responses would have been different.

## C. A FACTOR ANALYSIS OF BARRIERS AND PROCEDURES: Empirical vs. Theoretical Clusterlng

There is no one "right" way to seleçt items for a questionnalre or to group items for analysis and summarization. Up to this polnt, we have used past theoretical frameworks summarized in an extensive literature review as a guide for both selection and analysis. In the conclusion ó Chapter Seven, we also showed that the set of items selected under "procedures" and 'barriers": for this questionnal re was reasonably comprehensive in representing superintendents' spontaneous statements on process factors and that they were over" whelmingly judged to be a good checkllst for future innovation adoptlon and Implementation.

In the first two sections of this chapter, we resummerized procedure and barrier data in terms of theoretical constructs derlved from theory, It is also possible to cluster these items empirlcally, using predetermined objective criterla without regard to theory. The most commonly used statistical procedures to achieve clusterling fall under the heading of "factor analysis."

Factor analysis has two princlpal purposes, both of which are germane to this survey project. The first and most common purpose is data reduction, l.e., the simplification of data presentation by reducing a large and complex set of item responses to a few key dimensions. In a sense, the previous two sections have attempted this reduction using the theory from which the items were orlginally derived, reducing 21 "procedure" items and 18 "barrier" Items to six "perspectives" and six "barrier clusters." A principle components factor analysis does the same job using a matrix of correlations of all the items together and creating new artificial variables which represent the most highly Intercorrelated sets of items. Each of these artificial varlables or "factors" has two statistical properties which are important in data reduction. First, each factor is "orthogonal" to every other factor; hence they are uncorrelated and should therefore have distinct and non-overlapping meaning; this conceptual purity of orthogonality is offset by the problem of enterpretation, if a number of items of seemingly devise content are represented in a factor it will be very hard either to label or to comº prehend as a unltary phenomenon. The other statistical property of princlole component factors is the maximization of varlance accounted for by successive factors: the first factor represents the linear conbination of variables which represents the most varlance; the second factor represents the linear combinatlon of varlables which represents the most variance after all the variance
accounted for by the first factor is extracted from the correlation matrix; the third factor represents the next most varlance and so forth. Thls fact is very Important for data reduction since it means that an Investigation can report as few or as many factors as he wishes with the assurance that the factors chosen represent the maximum explanatory power using that number of concepts.

Because of the difficulty of labelling and Interpreting factors from a princlpal components solution most investlgators rotate the factor matrix to find more easily Interpretable dimensions or to achleve what is of ten called "simple structure." For this analysis we have chosen the "varimax" method developed by Kalser.* As summarized by Nunnally, this method "maximizes the sum of varlances of squared loadings in the columns of the factor matrix. In each column of the matrlx, this tends to produce some high loadings and some loadings near zero, which is one aspect of simple structure...The varimax method has proved very successful as an analytlc approach to obtaling orthogonal rotation of factors. "***

It is also possible to use factor analysis to test previously derived theorles about the underlying structure of a set of ltems. Part of our Intention in this project Wass, to test the generallzations from our llterature review against a freshly drawn set of data. Therefore, as we consider the results of the varimax factor matrix we will be referring back, when possible, to the fit or simllarlty between these clusters and the theoretical clusters reported in Parts $A$ and $\theta$ of thls chapter.

Recognizing that our dysfunction between "procedures" and "barrlers" might be artificlal and that "overcoming barrier $X^{\prime \prime}$ might be equivalent operationally to "following procedure $X$," we decided to analyze both sets of items together in one $39 \times 39$ item correlation matrix. In fact, however, most procedures and barriers were not highly intercorrelated and, with one exception, the resulting factors generally represented elther barrier dimensions or procedure dimensions but not both. Nine factors were extracted in al:, four representing procedures and five representing barriers.

## 1. PROCEDURE FACTORS

## (Insert Table 8.1's here)

It is gratifying to find a set of items which represent such a coherent cluster both statistically and conceptually as items I, U. I, and j . Moreover, the cluster corresponds closely to the "problem solver" perspective described earlier and predicted from theory. Only two of the items (u and 1) have any substantlal relationship to any other factors. Sharling, particlpation,

[^11]*
TABLE 8.15
FACTOR I: PARTICIPATIVE PROBLEM-SOLVING

|  | Question \# | Item | Loadling | Loadings on Other Factors $>.20^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| Core It ems | 21 | Maximizing chances of participation by many groups | . 64 |  |
|  | - 2 u | Finding shared values as a basis for worklng | . 61 | (P IV -. 23) |
|  | 21 | Providing a climate conducive to sharling Ideas | . 60 | ( $\mathrm{P} \mid \mathrm{V} \cdots$. 28) |
|  | 2 j | Stressing self-help by the users of the innovation | . 58 |  |
| - | $\int 2 r$ | Involvement of informal leaders of opinion inside the schools | . 39 | $\left.\begin{array}{ccc} (P & 11 i & -.36 \\ P & 1 V & -.20 \end{array}\right)$ |
|  | $2 m$ | Provid!ng a cllmate conduclve to risk-taking | .37 | (P \|V - . 46) |
| Related 1 tems | 29 | Resolut lon of interpersonal confllcts | .32 | (P iV -. 55) |
|  | $2 e$ | Selecting a competent staff to implement change | .31 | (p 111.32 ) |

and self-help are the core ideas. Less strongly related are informal leader involvement, risk-taking and conflict resolution. We would guess that "compe" tence" on this factor (item " $e^{\prime \prime}$ ) means competence in human relatlons above afl.
(Insert Table 8.16 here)

Once again it is gratifylng to observe a very coherent cluster of varlables, highly related to each other statistically, hlghly independent of other factors, and all conforming to our predictlon of an "RDsD" perspective. It is fairly clear that there is a subgroup of superintendents who follow the RDED philosophy as distinct from the problem solver philosophy. Points of agreement between the two schools of thought center on the need for diagnosis and for generating an awareness of the need for change. We would expect, however, that the locus of need identification is seen somewhat differently by the two groups, the problem solvers emphasizing need awareness and diagnosis

TABLE 8.16
PROCEDURE FACTOR II: RDED EMPHASIS

|  | Question \# | Item | Loading | Loadings on Other Factors $>.20$ |
| :---: | :---: | :---: | :---: | :---: |
| Core Items | $\int 2 a$ | Systematic evaluation | . 64 |  |
|  | 2b | Solld research base | . 64 |  |
|  | - 2 c | Systemat lc planning | . 64 | $\left(\begin{array}{lll}\text { P } & \text {. 22) }\end{array}\right.$ |
|  | 2d | Adequate definftion of objectlves | . 60 | (P I . 22) |
| Related Items | $\int 2 k$ | Adequate dlagnosis of the real educatlonal need | . 43 | ( P \| . 28) |
|  | 2 29 | Utillzing a number of different medla to get the new ldeas across | . 34 | (P 1 . 24) |
|  | 2e | Selecting a competent staff to implement change | . 32 | $\begin{array}{c\|c} (p & 1 \\ 8 & .31 \\ & 31 \\ \hline \end{array}$ |
|  | (2n | Creating awareness of the need for change | .31 |  |

by users and RDED advocates emphasizlng need determinatlon by experts. Again for the "competence" Item we would guess that a very different type of com-- petence is stressed here, namely competence in research, evaluation, and systematic plannling.
(Insert Table 8.17 here)

Procedure factor Ill ls less clearly tled to our prior theoretlcal expectations but shows an interesting pattern. Evidently some superlntendents view partlcipatlon by key persons more as a strateglc necessity for getting things done than as an aspect of human relations philosophy. The assoclation of item 2t, "takling advantage of crisis," almost suggests a Machlavelllan orientatlon. Clearly P Ili superintendents belleve strongly in "social Inter" action" and utllizing oplnion leadershlp; it may also be that they are somewhat distrustful of outside expertise or at least the willingness of outsiders to help (note that item $3 g$ is a "barrler" item).

P Ill may also represent political awareness and concern for handing school district declsion maklng within the larger soclo-polfical arena of

TABLE 8.17
PROCEOURE FACTOR III: STRATEGIC MANIPULATION (OF SOCIAL INTERACTI'Y)

of the community as a whole. it would be interesting to see if $P$ Ill superintendents have a higher survival rate than their colleagues.
(Insert Table 8.18 here)

The fourth procedure factor appears to represent the most radlcal view of the change process among those identifled, emphasizing both confllct and openness, it is more closely aligned with the "conflict" model previously described and with the approaches to innovation which might be associated with the "new polltics" of education. There is implicit in thls cluster the not ion that fundamental change is needed and that such change is likely to involve a lot of conflict and risk. It is also implled, however, that differences can be resolved in a spirlt of openness through a common recognition of need and shared values.

Summing up Tables 8.15 through 8.18 we see four clear clusters of varlables that are closely aligned to our earller theoretical clusterlngs (Tables 8.1 through 8.5). The Problem Solver and RDED perspectlves are nearly identical empirically and theoretically and they are the two strongest and clearest procedural factors. "Soclal Interaction" emerges emplricaliy in a cluster
table 8.18
PROCEDURE FACTOR IV: CONFLICT-LINKAGE (OPEN ADVOCACY
ANO HUMAN REVOLUTION)

|  | Question \# | 1 tem | Loading | Loadings on Other Factors $>.20$ |
| :---: | :---: | :---: | :---: | :---: |
| Core Items | $2 q$ $2 q$ | Confrontation of differences <br> Resolution of interpersonal confliets | -.69 -.55 | $\begin{aligned} & \left(\begin{array}{llllll} B & 1 & .24, & P & 1 & .21 \end{array}\right) \\ & \left(\begin{array}{lll} P & 1 & .32 \end{array}\right) \end{aligned}$ |
|  | 2n <br> 20 <br> 2m | Creating awareness of the need for change <br> Creating an awareness of alternatlve solutions <br> Providing a climate conducive to risk-taking | -.50 -.47 -.46 | $\begin{aligned} & \left(\begin{array}{lllllll} P & 11 & .31, & P & 1 & .29 \\ (P & 1 & .28, & P & 1 \end{array}\right] .26 \\ & (P) \\ & (P) \end{aligned}$ |
| Related Items | $2 t$ $21$ | Taklng advantage of crlsis situat lons Providing a ellmate conduclve to sharing ideas | -.35 -.29 | $\begin{aligned} & \left(\begin{array}{llll} P & 1 & 1 & -.47 \end{array}\right) \\ & \left(\begin{array}{llll} P & 1 & .60 \end{array}\right) \end{aligned}$ |
|  | $2 u$ | Finding shared values as a basis for working | -. 23 | $(p 1.61)$ |
|  | $2 h$ $2 r$ | Persistence by those who advocate the innovation <br> Involvement of informal leaders of opininn inside the schools | -.22 -.20 | $\begin{aligned} & \left(\begin{array}{llllll} P & 1 & .26, & P & 11 & .23 \\ \left(\begin{array}{l} P \end{array}\right. & 1 & .39, \\ P & 11 & -.36) \end{array}\right. \end{aligned}$ |

including "taking advantage of crisis," suggesting that a better label might be "manlpulative of communication and social forces." The one word "Machlavelllan' could fit this cluster nicely, provided that no derogative is implied thereby. A fourth cluster, appearing to combine aspects of both linkage and conflict models, may represent the emergent radical-liberal approach to change of the late 1960's.

## 2. BARRIER FACTORS

Unfortunately barrier factors did not emerge from the analysls as dis* crete and describable clusters nearly to the extent that procedure factors did. Thls may be due to the much higher inter-item varlance for procedures. Most respondents checked elther "none" or "sllght" for all barrier items, a fact which may be related to the clalmed "success" of the showcase innovation. Nevertheless, we wlll present the findings which emerged and attempt some Interpretations.

BARRIER FACTOR 1: GENERAL CONFUSION


Table 8.19 shows the flrst rotated factor $\ln$ our analysis which is also clearly a barrler factor. All barrler ltems had appreclable loadings on thls factor while only one "procedure" item even came close (2p, "confrontation of differences"). Therefore, it is also clearly a "generel" factor, suggesting that those respondents who checked barrlers as Important had a tendency to check all of them as important. Further insight into the interpretatlon of 81 comes from the four "pure" 1 tems with the highest loadings, 3e, 3d, 3b, and 31. The common theme among these seems to be lack of infor ${ }^{-}$ matlon or confuslon about what the innovation is all about. We mlght have expected such a conceptual clustor to emerge from our data as a "lack of structure ${ }^{\prime \prime}$ factor (see agaln Table 8.9 and items 3e, 3d, and 3 f . What 1 s surprising is that lack of information is so highly related to so many other things including linkage (3b, 3c), openness (3l, 3h, 3g), reward ( $31,3 \mathrm{~m}$ ), and synergy ( $3 \mathrm{p}, 3 \mathrm{q}$ ). The only ttems weakly related to 81 concern "capaclty."

However, "capaclty" emerges very clearly as the approprlate label for Barrler Factor ll (Table 8.20). In fact, thls factor includes a strong and relatlvely pure item from the "procedure" llst which fits logically as well as statistically into thls cluster.

TABLE 8.20
BARRIER FACTOR II: CAPACITY


The other "cepaclty" Item from the procedure list (2e) evidently measures a different concept. Flnanclal shortages and thelr consequences ars clearly what is beling measured here.

TABLE 8.21
BARRIER FACTOR 11I: LINKAGE DOWN AND OUT


The remaining three bariler factors are Interesting but puzzilng and difficult both to label and to interpret. B lll seems to show a fusion of two loglcally separate ideas, contact wlth and utilization of outsiders, and concern for students. Items $3 n$ and $3 c$ suggest a student-centered concern. Apparently those who express this concern most strongly are alsolikely to be concerned with outsiders, especially other systems. The ltem does not clearly correspond to any of the slx conceptual clusters derived from the literature survey.

TABLE 8.22
BARRIER FACTOR IV: TEACHER-BLAME

## Core

## I tems

Weakly
Welated
Items

| Question \# | Item | Loading | Loadings on Other Factors). 20 |
| :---: | :---: | :---: | :---: |
| 3m | Frustration and difflculty encountered by teachers and/or relevant staff in trylng to adopt | . 38 | (8 1 .66) |
| 2 e | Selecting a competent staff to Implement change | -. 28 | (P 11 . 32, P I . 31 |
| 31 | Unwillingness of teachers and other school personnel to change thelr behavior or listen to new ideas | . 26 | (8 1 .77) |
| 31 | Feeling by teachers and staff that the Innovation would have little benefit for them to thelr work | . 19 | (8 1 .72) |
| 2k | Adequate dlagnosis of the real educatlonal need | -. 18 | (P 11 . $43, \mathrm{P}$ \| . 28 |
| 29 | Utillzing a number of different medla to get the new ideas across | . 17 | (P \|| . 34, P 1. 24 |
| 3a | Lack of adequate contacts wlth outside resource groups (e.g., unlversities, labs, consultants, etc.) | -. 16 | $\left.\begin{array}{ccccccc} (8 & 1 & .39, & 8 & 111 & .2 \\ 8 & 11 & .25 \end{array}\right)$ |
| $3 n$ | Frustration and difficulty encountered by students durling the adoptlon process | . 16 | (B111,57, B 1 . 3 |
| 2 r | Involvement of Informal leaders of oplnion inside the schools | . 15 | $\begin{array}{c\|c\|c\|c} (P & 1 & .39, P & 111 \\ P & \text { IV } & -.20) & -36 \end{array}$ |

Factor BIV (Table 8.22) is clearly focused on teacher skllls and percelved characterlstics, and seems to reflect the judgment of some superintendents that their problems with the innovation reflected teacher shortcomings of one sort or another. However, the ltem is not a strong one and contalns no pure items. (Thls was the elghth of nine factors extracted from the matrix. BV is the ninth.)
(Insert Table 8.23 here)

The last and weakest of the factors in our analysls is shown in rable 8.23. It seems to be focused primarily on the one ltem related to facilities and

TABLE 8.23
BARRIER FACTOR V: STRUCTURAL OPENNESS

|  | tlon\# | Item | Loading | Luadings on Other Factors $>.20$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { e } \\ & \text { ms } \end{aligned}$ | 3 r | Inadequacy of school plant, facllities, equipment, or supplies | . 38 | $\left.\begin{array}{c\|cccc} \left(\begin{array}{llll} B & 1 & .32, & B \end{array} 11 \quad .28,\right. \\ B & 111 & .21 \end{array}\right)$ |
|  | 3h | Rigidity of school system structure and bureaucracy | . 27 | ( $\mathrm{B} \boldsymbol{1}$, 5\%) |
|  | 3 c | Lack of communicatlon between staff and students | -. 23 | $\begin{array}{cccc} (8 & 1 & .56 \\ B & 111 & .30) \end{array}$ |
|  | 3] | Shortage of funds allocated for the innovation | . 19 | $\begin{array}{ccccccc} \left(\begin{array}{llll} B & 1 & .57, & B \end{array} 1.29,\right. \\ B & 1 & 11 & .20) \end{array}$ |
|  | 2 n | Creating awareness of the need for change | . 19 |  |
|  | $2 q$ | Resolution of interpersonal conflicts | -. 19 | (P \| - -. 55, P | .32) |
|  | 3 e | Staff's lack of precise information about the innovation | -. 19 | (B 1 1 . 81) |
|  | 39 | Unwillingness of resource groups to help us revise or adapt the innovation | . 18 | $\begin{array}{cccc} (B & 1 & .49, & P \end{array} 111-\therefore$ |

measures not the quantity or slze (a financial matter in part) but the quality and shape. We would guess that thls factor is related to the difficultes encountered by some districts which tried out innovations in flexible scheduling, Indlvidualization, and open school-open classroom, and they found their existing school plant physically too limiting. This point also emerges strongly In the case study of Troy, Michigan, reported elsewhere In this report.

In sum, we find in the factor analysis of barriers little of what we expected to find. There is one strong and pervasive factor related to information about the innovation which suggests strongly the need for improved information dissemination and utilization mechanishs. There is a second clear factor related to financlal support which is mostly independent of the first. There is a third and weaker factor reflecting a concern for better linkage to both students and their needs and to outslders. And finally, there are two rather feeble and impure factors concerned with teacher behaviors and school structured openness which might have been left uninterpreted.

## CHAPIER NINE: SCHOL DISTRICT RESOURCES - UTILIZATION AND POLICY

U.S. school districts vary widely in the amount of resources they can brlng to bear on behalf of innovatlon. Thls chapter reports on a number of such resources: monetary, human, lnformat lonal and materlal.

Table 9.1 lists responses to 16 "resource" Items rank ordered by amount of use for representative distrlcts. They are divided into the two categorles of "internal" and "external," to contrast those items whlch can be generated from withln the district from those which represent or requlre involvement of outside personnel or outside (state, federal, atid prlvate) funding sources.
(Insert Table 9.1 here)

The distinction is somewhat artificial $\ln$ that use of "internal" human resources may require "external" financial resources and vice versa; further" more multiple configuratlons of "internal" and "external" resources are of ten required to innovate successfulty.

Nevertheless the table generates some Interesting comparisons. First of all, very large districts are conslstently higher users of external resources of all kinds. Secondly, almost all internal resources with the exception of "student discussions and idea presentations" are used more frequently than external. Among the external items, those assoclated with expert personnel, information, and materlals rank well below the financlal,

Table 9.2 shows a further break-down of representative dlstricts by size. Scannling the rows of this table we can see that few of these resource Items are related in a simple linear fashion to distrlct size. Exceptions could be "currlculum supervisors," "unspecified federal programs," and "ERIC." However several other items are clearly associated with size to a slgnlficant degree,
(Insert Table 9.2 here)

Convincing as these size data are, they do not tell us about resource utillzation per pupil. It might well be that if we could correct for size, the proportional utilization of resources would be exactly reversed with smallest districts providing most and the largest least! There is no direct method for us to make such a calculation with the data in hand.

Table 9.3 shows tive resource ltems on which we found significant re* gional differences. We note that the Great Lakes states fare particularly poorly in the use of external resources, ranking lowest in ESEA Title 1 , SEA's and ERIC, and second lowest on Regional Labs. The fact that New England and the Great Lakes ranked lowest on use of Labs may be related to the absence

TABLE 9.1
USE OF INTERNAL ANO EXTERNAL RESOURCES

| Resource | O1stricts ${ }^{\text {c }} 80,000$ |  |  | O1stricts 280,000 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Not <br> Avallable Freq. | Avallable <br> Freq. | $\begin{gathered} \text { Mean* Use } \\ \text { Where } \\ \text { Avallable } \end{gathered}$ | Not Avallable Freq. | Avall- <br> able <br> Freq. | $\begin{aligned} & \text { Meant U } \\ & \text { Where } \\ & \text { Aval lab } \end{aligned}$ |
| Internal Resources |  |  |  |  |  |  |
| 1. Teacher dlscussions and ldea presentations | (2) | (305) | 4.28 | -- | (29) | 4.07 |
| 2. In-service tralning | -- | (308) | 4.17 | -- | (28) | 4.43 |
| 3. Curriculum supervisors | (32) | (269) | 4.05 | -- | (28) | 4.57 |
| 4. Llbrary factllttes | (1) | (300) | 3.82 | -- | (28) | 3.82 |
| 5. Research-evaluation offlice and stafe | (48) | (251) | 3.68 | -- | (28) | 4.11 |
| 6. Media spectalists and centers | (14) | (288) | 3.68 | -- | (28) | 3.89 |
| 7. Student discussions and idea presentations | -- | (303) | 3.25 | -- | (28) | 3.29 |
| External Resources |  |  |  |  |  |  |
| 1. ESEA Title I programs and services | (5) | (297) | 3.84 | -- | (26) | 4.15 |
| 2. State educatlon agency | (1) | (299) | 3.55 | -- | (28) | 3.64 |
| 3. ESEA TItle III programs and services | (11) | (283) | 3.42 | -* | (27) | 4.00 |
| 4. Federal programs (unspecified) | (6) | (279) | 3.31 | -- | (26) | 4.00 |
| 5. Universitles and colleges | (3) | (296) | 3.16 | -- | (27) | 3.78 |
| 6. Professional associations | (4) | (292) | 2.72 | -- | (27) | 3.15 |
| 7. ERIC | (17) | (249) | 2.39 | -- | (26) | 3.27 |
| 8. USOE reglonal educational laboratorles | (19) | (264) | 2.19 | (2) | (24) | 2.75 |
| 9. Foundations and other private programs | (19) | (271) | 1.95 | (2) | (23) | 2.57 |

*Means are computed according to the following scale: lanever; 2avery infrequently; 3 zoccasionally; $4=$ frequently; 5 =very frequently

TABLE 9.2 USE OF INTERNAL AND EXTERNAL RESOURCES BY DISTRICT SIZE MEAN SCORES*

SIZE CATEGORIES

| Resource | $\begin{aligned} & 1- \\ & 299 \\ & \mathrm{~N} m 6 \\ & \text { Mean } \end{aligned}$ | $300-$ 2,499 $\mathrm{~N}=71$ Mean | $\left\{\begin{array}{l} 2,500- \\ 4,999 \\ N=55 \\ \text { Mean } \end{array}\right.$ | $\begin{gathered} 5,000- \\ 9,999 \\ \mathrm{~N}-57 \\ \mathrm{Mean} \end{gathered}$ | $\begin{gathered} 10,0050- \\ 24,999 \\ \mathrm{Nm} 77 \\ \text { Mean } \\ \hline \end{gathered}$ | $\begin{gathered} 25,000= \\ 79,999 \\ \text { Nu56 } \\ \text { Mean } \\ \hline \end{gathered}$ | $\left\|\begin{array}{c}80,000 \\ 8 \text { over } \\ N=31 \\ \text { Mean }\end{array}\right\|$ | Sig. Level $\left(x^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Internal Resources |  |  |  |  |  |  |  |  |
| 1. Teacher discusslons and Idea presentations. | 4.33 | 4.31 | 4.31 | 4.19 | 4.24 | 4.38 | 4.07 | NS |
| 2. In-service tralning | 3.00 | 3.90 | 4.15 | 3.97 | 4.41 | 4.42 | 4.43 | . 00005 |
| 3. Curriculum supervisors | 2,25 | 3.30 | 3.98 | 4.18 | 4.30 | 4.55 | 4.57 | . 00005 |
| 4. Llbrary faclilites | 3.34 | 3.72 | 3.15 | 3.16 | 4.11 | 3.97 | 3.82 | NS |
| 5. Research-evaluation offles and staff | 2.75 | 3.43 | 3.50 | 3.31 | 4.11 | 4.04 | 4.11 | .01 |
| 6. Medla speciallsts and centers | 2.00 | 3.42 | 3.47 | 3.75 | 3.88 | 3.95 | 3.89 | NS |
| 7. Student discusslons and idea presentatlons | 2.50 | 3.27 | 3.29 | 3.15 | 3.19 | 3.50 | 3.29 | . 001 |
| External Resources |  |  |  |  |  |  |  |  |
| 1. ESEA Tltle 1 programs and services | 4.00 | 3.43 | 3.89 | 3.94 | 3.92 | 4.06 | 4.15 | . C .1 .4 |
| 2. State education agency | 2.17 | 3.43 | 3.77 | 3.54 | 3.62 | 3.54 | 3.64 | . 002 |
| 3. ESEA Title III programs and services | 3.40 | 3.07 | 3.40 | 3.33 | 3.43 | 3.90 | 4.00 | . 05 |
| 4. Federal programs (unspeclfled) | 2.25 | 2.70 | 3.37 | 3.38 | 3.47 | 3.78 | 4.00 | . 00005 |
| 5. Universities and colleges | 1.20 | 2.76 | 3.20 | 3.07 | 3.45 | 3.47 | 3.78 | . 02005 |
| 6. Professional assoclatlons | 1.83 | 2.36 | 2.75 | 2.70 | 3.02 | 2.84 | 3.15 . | . 05 |
| 7. ERIC | 1.00 | 1.82 | 2.24 | 2.28 | 2.79 | 2.85 | 3.27 | . 0001 |
| 8. USOE regional educatlonal laboratorles | 1.25 | 1.61 | 2.13 | 2.19 | 2.56 | 2. 52 | 2.75 | 1.0001 |
| 9. Foundatlons and other private programs | 1.00 | 1.63 | 1.93 | 1.84 | 2.14 | 2.25 | 2.57 | 1.001 |

*Mean scores are computed on the basis of the number of districts responding to each item; may be less than or equal to the " N ' given for each size category. Scorlng scale: lenever; 2mery Infrequently; $3=0$ cocasionally; $4=f r e q u e n t l y ;$ $5=v e r y$ frequently

TABLE 9.3
USE OF SELECTEO INTERNAL ANO EXTERNAL RESOURCES BY REGION
OISTRICTS < 80,000
(Significant Olfferences Only)
MEAN SCORES
Resource

| Reglon | $\qquad$ | ESEA TItle Mean | State Ed. Agency Mean | ERIC <br> Mean | Reglonal <br> Ed. Labs <br> Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| New England | 3.70 | 3.90 | 3.79 | 2.55 | 1.53 |
| Mld East | 4.25 | 3.94 | 3.64 | 2.43 | 2.50 |
| Great Lakes | 4.04 | 3.51 | 3.33 | 1.88 | 1.72 |
| South East | 4.30 | 4.11 | 3.95 | 2.38 | 2.26 |
| Plains | 3.59 | 3.64 | 3.43 | 2.36 | 2.04 |
| Rocky Mountalns | 3.11 | 3.91 | 3.63 | 2.67 | 2.50 |
| South West | 4.18 | 4.00 | 3.92 | 2.39 | 2.39 |
| Far West | 4.03 | 3.78 | 3.86 | 2.95 | 2.60 |
| Total | 4.05 | 3.84 | 3.55 | 2.39 | 2.19 |
| Signiflcance Level (chi-square test) | p < 02 | p<.05 | p<.002 | p<. 02 | $p<.02$ |

of Labs In both reglons. One New England Lab and two Great Lakes Labs were terminated In the late 1960's. The Far West which is currently served by three large and highly reputed labs (Northwest in Portland, far West in San Francisco, and South West In Los Angeles) also rates highest in lab utilization.

We also ellclted information on a few adminlstrative and personnel practices which we suspected might relate to school district capaclty and readiness to Innovate. Table 9.4 presents a summary of this data rank ordered by frequency of practice for representatlve districts. Staff travel is usually paid by most dlstricts; lay advlsory groups are usual policy for nearly half of all districts and used In special cases for most others. "Sabbatlcal leaves" seems to be an all or none matter.
(Insert Table 9.4 here)

Table 9.5 shows a break-down on policies by size including the very large districts. Three items show significant differences but the relatioship is

TABLE 9.4
POLICIES PRACTICEO
"To what extent does your system utilize the following policies and procedures?"
(Representative Districts)

|  | Freq. | Never (1) | Very Rarely (2) | In Spectal Cases (3) | Usual Pollicy <br> (4) | Total $\%$ | $\bar{\chi}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pay staff travel | (309) | $\stackrel{3}{1}$ | $\begin{aligned} & 4 \\ & \% \\ & 3 \end{aligned}$ | $\begin{array}{r} 6 \\ 13 \\ 13 \end{array}$ | $\begin{aligned} & \frac{1}{8} \\ & 83 \end{aligned}$ | 100 | 3.7864 |
| Lay advlsory groups (com* munlty, minorlty, parents) | (304) | 4 | 7 | 42 | 47 | 100 | 3.3224 |
| Sabbatical leaves | (301) | 38 | 10 | 12 | 40 | 110 | 2.5349 |
| Staff tultion-pald courses | (303) | 28 | 24 | 26 | 21 | 100 | 2.3993 |
| Service awards | (296) | 51 | 23 | 19 | 7 | 100 | 1.8209 |

only linear for "sabbatical leaves." Lay advisory groups are used equally frequently in the three largest size categorles; payment of staff travel is usual pollcy for all but the tinlest, perhaps for understandable reasons.

TABLE 9.5
POLICIES PRACTICED BY DISTRICT SIZE
MEAN SCORES:
District Size

| Policy | $\begin{aligned} & 1- \\ & 299 \\ & N=6 \\ & \text { Mean } \end{aligned}$ | $\begin{array}{r} 300- \\ 2,499 \\ \mathrm{~N}=71 \\ \text { Mean } \end{array}$ | $\begin{aligned} & 2,500- \\ & 4,999 \\ & N=55 \\ & \text { Mean } \end{aligned}$ | $\begin{array}{r} 5,000- \\ 9,999 \\ N=57 \\ M \text { ean } \end{array}$ | $\begin{gathered} 10,000- \\ 24,999 \\ N=77 \\ \text { Mean } \end{gathered}$ | $\begin{gathered} 25,000- \\ 79,999 \\ N=56 \\ M e a n \\ \hline \end{gathered}$ | $\begin{gathered} 80,000 \\ \varepsilon \text { over } \\ N=31 \\ \text { Mean } \\ \hline \end{gathered}$ | sig. <br> Level $\left(x^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pay staff travel | 2.33 | 3.74 | 3.81 | 3.89 | 3.83 | 3.83 | 3.75 | . 00005 |
| Lay advisory groups | 2.83 | 2.94 | 3.28 | 3.27 | 3.52 | 3.67 | 3.54 | . 0003 |
| Sabbatical leaves | 1.00 | 2.12 | 2.00 | 2.65 | 2.96 | 3.06 | 3.26 | . 00005 |
| Staff tultion-paid courses | 2.17 | 2.30 | 2.42 | 2.47 | 2.41 | 2.45 | 2.54 | NS |
| Service awards | 1.17 | 1.80 | 1.92 | 1.74 | 1.83 | 1.88 | 2.28 | NS |

*Mean scores are computed on the basis of the number of distrlcts responding to each item; these may be less than or equal to the " $N$ " given for each slize category. Scorling scale: $1=n e v e r ; 2=v e r y$ rarely; $3=$ in special cases; $4=u s u a l$ pollcy

Signiflcant regional differences are Indlcated in Table 9.6. Tuition pald courses and sabbatlcals are apparently a luxury primarlly enjoyed In the Nor theast, perhaps related to the high per pupll expenditures In these regions.

TABLE 9.6
POLICIES PRACTICED BY REGION DISTRICTS < 80,000 MEAN SCORES*

| Reglon | Pay Staff <br> Travel <br> Mean | Lay Advisory Groups Mean | Sabbat lcal Leaves Mean | TultlonPald Courses Mean | Service <br> Awards <br> Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| New England ( $\mathrm{N}=24$ ) | 3.88 | 3.30 | 3.33 | $\underline{2.79}$ | 2.09 |
| Mid East ( $\mathrm{N}=52$ ) | 3.82 | 3.30 | 3.31 | $\underline{2.88}$ | 1.81 |
| Great Lakes ( $\mathrm{N}=68$ ) | 3.86 | 3.23 | 2.37 | 2.33 | 1.68 |
| South East ( $\mathrm{N}=67$ ) | 3.80 | 3.49 | 1.93 | 2.16 | 1.66 |
| Plalns ( $\mathrm{N}=32$ ) | 3.64 | 2.93 | 2.18 | 1.93 | 1.75 |
| Rocky Mountalns $(N=12)$ | 3.45 | 2.91 | 2.36 | 2.18 | 1.91 |
| South West ( $\mathrm{N}=25$ ) | 3.80 | 3.35 | 2.08 | 2.24 | 2.56 |
| Far West ( $\mathrm{N}=42$ ) | 3.74 | 3.60 | 2.85 | 2.55 | 1.70 |
| Slgniflcance Level (chi-square test) | NS | p $<.01$ | P $(.0001$ | p<.00005 | $p<.01$ |

* l=never; 2=very rarely; 3 =in speclal cases; 4wusual pollcy

In summary, it appears that a large varlaty of resource and pollcy optlons can be more easlly exerclsed by larger dlstricts than smaller ones. However, such Inequitles might disappear if resource avallabllity and use were computed on a per pupli basis. Whlle there are also a number of reglonal differences, they do not follow any one conslstent pattern suggesting. that one reglon has more of everything than another region. We also note a greater use of Internal than external resources of all kinds, and this is a pattern we have seen repeated from earller chapters in which resource utllization was discussed in the context of the showcase innovat lon exclusively. We wlll raserve for the next chapter a conslderation of how resource utllization variables relate to a general measure of district innovativeness.

## CHAPIER TEN: THE CORRELATES OF INHOVATIVENESS

Up to this point, we have avolded pny presentation which sets up some districts as being superior to others on any qualitative dimension. In this chapter, with some trepldation, we will depart from that practlce by constructing a varlable labelled "lnnovatlveness" and using it as a klnd of outcome criterlon. However, before presenting thls analysis, several llmitations on Interpretation must be firmly understood. First, we are dealing here exclusively with voluntary self-report from one lndividual representing his distrlct. Hence, there are multiple opportunities for error from at least the following potential sources:
(1) the respondent exaggerates the true number of "Innovations" to make hls district look good.
(2) the respondent forgets some of the innovations that took place.
(3) the respondent lists separately two or more items which are really aspects of one Innovation.
(4) the respondent is not aware of or has no access to all the innovations that have taken place.
(5) the respondent includes innovations from more than one year.
(6) the questions as stated do not elicit appropriate responses.
(7) records on Innovations which reach the central office give a false picture of what really happened.

Secondly, regardless of the valldity of the self-report measure, a score of "Innovatlveness" cannot be equated with either "productivity" or "improvement" in school district well-belng or the well-being of students.

A third limitation which should be placed on interpretation of this analysis stems from the Indirectness of the measure. The questlonnaire's prime emphasis was on one innovation and the processes and outcomes surrounding 1t. No indication was given that a score of "innovativeness "would be derived from any question. The question which we ended up using for this purpose was headed, "Other areas in which the school district has been innovating in the last school year (1970-71).'" Indeed, we were very uncertain, ourselves, about the utility of this instrument to get at such a measure.

Nevertheless, it was deemed desirable to explore a number of approaches to measure outcomes and to make tentative comparisons with a number of presumably relevant school district characteristics. We have gone through this excercise partly out of curiosity, partly to gain further insight into the theoretical and empirical dimensions discussed In Chapter Elght, and partly to provide for the National Institute of Education some indlcation of the potential value of future studies using "Innovativeness" measures.
A. hOW THE MEASURE OF INNOVATIVENESS WAS DERIVED

In Chapter Three we reported at length on the findings from questions of the survey which asked respondents to identlfy thelr "most significant Innovatlons' of the 1970-71 school year in six open-ended categories. The question ylelded an overwhelming response far beyond our expectations. The mean number of Innovatlons reported was 9.0 , with a substantlal varlance. The pattern of responses is lllustrated In Flgure l. As the flgure shows, the distribution is skewed with a long tall stretching out at the upper end.

Since our intent was to develop an index based on total number of innovatlons, this distribution represents a composite of responses to Question 5 and Question lit (the "showcase" Innovation). We chose to exclude from our analysis flve cases in whlch no innovation was reported in response to elther question, reasonlng that respondents may have elther misinterpreted the question or have rejected that aspect of the questlonnalre. We did not feel justlfied In scoring this as a legltimate "none" response without further supporting evidence.

Because of the skew in the distribution, we further chose to transform the scores using a logarlthmic transformation formula. This had the effect of stretching the lower end of the distribution and contracting the higher end; the greater symmetry thus achleved did not change the relative position of any of the scores but made them more sultable for the analysls of inear relationships to other variables (via product moment correlations). This transformation also seemed appropriate on logical grounds; l.e., differences at the low end of the distribution (e.g., between one innovation reported and five) would seem to indicate more significant inter-district discrepancles on an underiylng dimension of lnovativeness than differences at the high end (e.g., between 31 Innovations reported and 35).

## B. HOW STATISTICS SHOULD BE INTERPRETED

The statistic used in all cases is the Pearson product-moment correlation which measures the strength of a linear relationshlp between two varlables on a scale from +1.00 (perfect positive relatlonship-differences on one varlable are completely accountable from differences on the other) to -1.00 (perfect inverse relationship). In all cases, slgnlficance tests using parametric methods were made only of the null hypothesis, l.e., that the true relationship in the population from which we were sampling was 0.00 . Because of the relatively large sample size this meant that a correlation of very low magnitude (e.g., . 11) could be described as "slgnificant" ot the .05 probability level. In layman's terms what this means is that there is some relationship between the two variables, and even though it appears to be very weak, there is only one chance in twenty that the true relatlonshlp in the

[^12]FIGURE 10.1
INNOVAT I VENESS
(Raw Sum of Responses to Question \#5 by Each Dlstrict plus One for Every Hon-Redundant Response to Question II)


4
population is non-existent. A correlation of this magnitude signifles that only a little more than one percent of the variance in one variable can be explalned by its relationship to the others.
C. CORRELATIONS WITH BASIC SCHOOL DISTRICT CHARACTERISTICS

It is evident from Table 10.1 that there are some signlficant relationships between nur Innovativeness score and other varlables. The strongest

TABLE 10.1
INNOVATIVENESS $X$ SCHOOL DISTRICT CHARACTERISTICS

| Characteristic | N* | Zero Order |  | size Controlled |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | r | (Slg. Leve]) | r | (S1g.Leve |
| Number of puplls (size) | 348 | . 27 | (.001) | ** | -* |
| Per pupll expenditure | 298 | . 14 | (.02) | . 18 | (.01) |
| Pupil-teacher ratio | 299 | . 00 | NS | -. 10 | (.08) |
| Pupll-admintstrator ratio | 275 | . 08 | NS | . 03 | NS |
| Percent of grads in 4 year college | 264 | . 08 | NS | .09 | (.10) |
| Percent of grads in nondegree vocational/technlcal trainlng | 233 | $-.08$ | NS | -. 02 | NS |
| Five year enrollment change | 332 | -. 07 | NS | -. 02 | NS |
| Five year change in per pupil expenditure | 327 | . 04 | NS | . 05 | NS |

*Each correlation is computed on the basis of actual responses to that item and only when a complete response is avallable for both varlables. in all cases maximum N for innovatlveness is 348.
relationship of all is to the ubiquitous "size" factor: the larger the districts, the more items they ilsted as "innovations" in response to our survey. Interestingly, of course, as noted in earller chapters, we do not know whether there are more innovations on a per pupll basis in the larger districts. In any case, thls factor is so pervasive that we chose to reckon its influence
more carefully in interpreting other relatlonshlps. Hence for all o ner variables two correlatlons were computed, one whlch Ignored the eff its of slze ("zero order") and a second In which slze effects were adjus, ed for and statlstlcally held constant (partlal correlation controlling on size).

The adjustment reveals few dramatic changes in Table 10.1, however, Per pupil expenditure becomes more sallent, suggesting that this factor affects Innovativeness relatively independently of size, and "pupil-teacher ratlo ${ }^{\prime \prime}$ emerges as a very sllght possible correlate (l.e., the more pupils per teacher, the fewer Innovations).

We had expected that the percentage of graduates golng on to four year colleges would be some index of both affluence and academic excellence, suggesting a high capaclty for innovatlveness, but the relatlonshlp, if any, is tenuous.

Finaliy, we had expected that enroliment or financial changes would affect innovativeness, either as unfreczing or stabllizing influences, Whatever the real relationship, none emerged in our analysis.;

## D. CORRELATIONS WITH RESOURCES AND POLICIES

Several interesting and important relationships emerged when the variables considered in Chapter Nine were compared with "innovativeness." Table 10.2 tells the story.

## (Insert Table 10.2 here)

Among inside resources, In-service training seems to stand out as most related to innovativeness, followed by medla centers and curriculum specialists, resources which may be functionally related to in-service training capacity. Student involvement seems to have no relationship, nor does it appear that the existence of a school research office does much to spur innovations. This latter finding confirms a report by Mosher which had noted the inadequacy of such offices as stimulators of educational reform (Mosher, 1968).

Among outside sources, those providing information (rather than financial or other types of support) seem to stand out, e.g., universities, ERIC, and the Regional Educational Laboratories. Such findings would happlly confirm theoretical assumptions about information resource linkage and lnnovating.

[^13]TABLE 10.2
innovativeness X RESOURCES AND POLICIES

| Item | N | Mean Utlllzatlon* | Correlation with Innovativeness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $r^{\text {Zer }}$ | $\begin{aligned} & \text { rder } \\ & \text { SIg.Level) } \end{aligned}$ | S | $\begin{aligned} & \text { ntrolled } \\ & \text { (Sig.Lev } \end{aligned}$ |
| INTERNAL RESOURCES |  |  |  |  |  |  |
| Teacher discusslons \& Idea presentations | 331 | 4.27 | . 06 | NS | -. 01 | $i$ NS |
| In-service tralning program | 333 | 4.19 | . 25 | (.001) | .13 | (.03) |
| Curriculum supervisors | 295 | 4.10 | . 19 | (.001) | . 13 | (.03) |
| Library facllities | 325 | 3.83 | .13 | (.03) | . 05 | NS |
| Research and evaluation office or staff | 278 | 3.73 | . 08 | NS | . 03 | NS |
| Media speclalists or centers | 315 | 3.70 | . 20 | (.001) | .17 | (.01) |
| Student discussions \& idea presentatlons | 328 | 3.26 | . 04 | NS | -. 04 | NS |
| All Inside resources | 240 | 3.31 | .19 | (.004) | .14 | (.02) |
| EXTERNAL RESOURCES |  |  |  |  |  |  |
| ESEA Title 1 projects or services | 320 | 3.86 | . 08 | NS | -. 08 | NS |
| State Education Agency services | 324 | 3.55 | . 06 | NS | . 00 | NS |
| ESEA Tltle Ill projects or services | 308 | 3.45 | .13 | (.03) | -. 02 | NS |
| Other federally funded programs and services | 303 | 3.36 | .13 | (.03) | . 04 | NS |
| Universities and colleges | 321 | 3.21 | . 19 | (.001) | . 10 | (.08) |
| Professional assoclations | 317 | 2.75 | .09 | NS | -. 03 | NS |
| ERIC | 273 | 2.47 | .19 | (.002) | . 08 | NS |
| USOE supported regional educatlonal laboratorles | 286 | 2.23 | . 19 | (.002) | .10 | (.08) |
| Foundatlons and other prlvate programs | 293 | 2.00 | . 14 | (.02) | .12 | (.03) |
| All external resources | 240 | 2.04 | . 06 | NS | 01 | NS |
| All resources comblned | 240 | -- | . 15 | (.02) | . 10 | (.08) |
| POLICIES |  |  |  |  |  |  |
| Pay staff travel | 333 | 3.79 | .10 | (.07) | . 06 | NS |
| Lay advlsory groups (community, minorlty, parents) | 328 | 3.34 | . 19 | (.001) | . 12 | (.03) |
| Sabbatlcal leaves | 324 | 2.60 | .14 | (.02) | . 05 | NS |
| Staff tultion-paid courses | 325 | 2.42 | . 01 | NS | . 02 | NS |
| Service awards | 317 | 1.85 | -. 01. | NS | -. 03 | NS |

*For resources: l=never; 5-very frequently.
for pollcies: l=never; $4=\psi$ sual policy.

However, our enthusiasm for these findings has to be tempered by a her fact emerging from the study: namely, that many of these resource utliizatiun proclivites could be assoclated with the slze of the district. Sod", all relationshlps of Innovativeness to outside resource utllization sam to be conditioned by distrlet slze. In fact, comblned score on all outside resources shows a nearly zero correlation. On the other hand: some Inside resources hold up, notably "media speclalists and centars"; the comblned Index of inside resources also appears to hove a weak but statistically signiflcant relationshlp to the innovativeness measure.

Pollcy Items suffer the same fate. Staff travel and sabbat leal leaves are presumably supported by school districts for the very purpose of selfrenewal and allowling contact with new ldeas; these are also luxuries whleh larger districts can afford more often. Controlling for slze, however, no relatlonshlp is apparent, on the other hand, the use of lay advlsory groups does seem to make a difference regardless of size, a fact supportlve of community linkage as a factor in Innovation (see again discusslon of linkage in Chapter Elght).

## E. CORRELATIDNS WITH MEDIA USE

In Chapter Seven, we proposed a number of relationshlps between medla use, distrlct size, and the difflculty of financing new programs; but we did not conslder the varlable of Innovatlveness as such. Presumably, a distrlet which innovates a great deal has an equally great need to communicate among themselves and to their community about what they are doing. The zero order correlatlons of Table 10.3 confirm this reasoning. The use of three of five medla types are slgniflcantly related to Innovativeness and the other two are at least directionally suggestive.

TABLE 10.3
InNOVATIVENESS X media USE

*levery rarely or never; $2=$ once or twice a year; $3=q u a r t e r l y ; 4=m o n t h l y ; ~ 5=w e e k l y$ or more often

However, all these items are evidently intertwined with district size. Only use of the "local newspaper" has even the suggestlon of an independent relationshlp to the criterion.

## F. CQRRELATIONS WITH MEASURES OF DISCONTENT

Varlour: change theorlsts have proposed the need for unrest, crlsis, conflict, or disequllibrlum as the necessary precondltion for change, and we have observed In Chapter Elght that a number of school distrlet superintendents are sympathetle to this view (Procedure Factor IV: "ConflictLinkage'". If they are rlght there should be a relationshlp between vartous "dlscontent" measures and Innovatlveness.

TABLE 10.4
INNOVATIVENESS X DISCONTENT

| Item | N | Mean Leval" | Correlation with Innovativeness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Zero Order } \\ \text { (Sig.Level) } \end{gathered}$ |  | $\begin{gathered} \text { Size Controlled } \\ r \quad \text { (SIg. Level } \end{gathered}$ |  |
| Citizen support for financling new pro* grams | 317 | 2.61 | . 03 | NS | . 01 | NS |
| Citizen support for tinancing exlsting operations | 329 | 2.33 | . 01 | NS | . 04 | NS |
| Community group protests | 323 | 1.70 | .17 | (.002) | . 05 | NS |
| Student unrest | 325 | 1.64 | .13 | (.03) | $-.03$ | NS |
| Teacher strikes and demonstrations | 329 | 1.10 | . 12 | (.03) | . 11 | (.05) |

*For financing items: $1=n 0$ difficulty; $5=g r e a t$ difficulty. For other events: lenever; 2=once (In last year); 3=more than once.

Table 10.4 gives only minimal support to the hypothesis. Community and student protests are significantly correlated with innovatlveness, but once agaln size of the district ls implicated. Teacher strikes and demonstrations, on the other hand, do seem to promote some amount of innovation regardiess of district size.

## 

We suspected that districts which showed a propensity for ont ur another strategy of innovation would also show differling frequencies of innovativeness. Similarly, we guessed that complaints about one type of barrier over another might predlet to differing levels of general linovativeness. We dld not, however, approach thls data with specifle directional hypotheses in mind. In fact, we might have suspected that any procedure reported would have fostered general innovatlveness while almost any barrier reported would have Inhiblted innovativeness. The results can therefore be allowed to speak for themselves.

To make comparisons with our earller presentation clearer, the correlav tions will be offered for these items clustered according to the empirical factors which emerged and were discussed in Chapter Elght.
table 10.5
INNOVATIVENESS X PARTICIPATIVE PROBLEM SOLVING (Procedure factor 1)

| I tem | N | Factor Loading on PI | Correlation with Innovativeness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Order } \\ & \text { (Sig.Level) } \end{aligned}$ | Slze Controlled |  |
| Maximizing chances of participation by many groups | 332 | . 64 | . 17 | (.005) | .16 | (.005) |
| finding shared values as a basls for working | 325 | . 61 | . 06 | NS | . 07 | NS |
| Providing a climate conduclve to sharing ideas | 338 | .60 | . 15 | (.005) | .10 | (.10) |
| Stressing self help by the users of the innovation | 332 | . 58 | . 16 | (.005) | .15 | (.005) |
| Mean r for Pl |  |  | . 14 |  | . 12 |  |

Three of the four items on Pl seem to be related to innovativeness while one is not. All these relatlonships are sifghty weakened when size is controlled but the general pattern remalns clear and consistent: a superintendent's ideology towards change as a participative problem solving process seems to be conductue to innovation.

TABLE 10.6
inNovativeness X RDED emphasis
(Procedure factor II)


Procedure Factor Il tells a quite different story. Stress on an RDSD approach seems to do nothing to foster high Innovation frequency. In fact, emphasls on evaluation appears to have a dampening effect. Hindsight allows us to speculate on why thls might be so: evaluations can ie seen as a kind of pollce function and the tougher it is the moie llkely it is to speak out on the negative side; hence, there may be a tendency to take fewer risks on now things. On the other hand, innovations undertaken may be of higher quallty under these circumstances and could have more impact and more long term benefit. Our data don't extend far enough to give any evidence on these propositions, pro or con.

TA8LE 10.7
INNOVATI VENESS X STRATEGIC MANIPULATION (Procedure Factor III)


Strategic manlpulation is apparently a pattern of superlntende, t sponse which does something to promote innovatlons but not much.

TABLE 10.8
INNOVATIVENESS X CONFLICT-LINKAGE (Procedure Factor IV)

| Item | $N$ | ```Factor PIV Loading``` | Correlation with Innovativeness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | g.Level) | $\begin{gathered} \text { Slze } \\ r \end{gathered}$ | $\begin{aligned} & \hline \text { nt rolled } \\ & (\text { Slg.Leve }) \\ & \hline \end{aligned}$ |
| Confrgitation of dlffeŕences | 334 | -. 69 | . 14 | (.01) | .11 | (.05) |
| Resolution of Interpersonal conflicts | 327 | -. 55 | .21 | (.001) | .19 | (.col) |
| Creating awareness of the need for change | 337 | -. 50 | .21 | (.001) | . 18 | (.002) |
| Creating awareness of alternatlve solutlons | 335 | -. 47 | .12 | (.03) | .10 | 1.00 |
| Providing a climate conducive to rlsktaking | 335 | -. 46 | .16 | (.005) | $.13^{*}$ | (.02) |
| Mean r for PIV |  |  | . 17 |  | .14 |  |

Factor PIV seems to have the strongest and most consistent relationship to Innovativeness of any of the factors: once agaln hindslght reasoning can serve us well here, Superintendents advocating thls cluster of strategies seem to be change catalysts; they like to stir things up, to maximize involvement and stimulation, creating some kind of blossoming buzzing confusion. Evidently as a result a host of Innovations pour out.

The pattern of correlates within and among the procedure factor items is very consistent and makes logical sense. "Conflict-Linkage" is the most strongly related, followed closely by "participative problem solving" and then by "strategic manipulation." All these perspectives seem to do something to encourage Innovation, whether or not size is controlled. Most interestingly the RDED seems to have no stimulating effect on the number of innovations and indeed a strong emphasis on evaluation may be an inhibitor.

The pattern of findings for "barrlers" is not nearly as clear cut. The correlates to innovativeness are about as difflcult to explaln as the factors themselves. Most surprising is the fact that respondents' tendencles to report barriers as important was positively related to innovatlveness in 17 out of the 18 itemsl Hence, apparently there is an honesty or soclal dasirabillty factor operating here: the high innovators are more likely to own up to the fact that barrlers were encountered. The sole exception was the Item "Lack of contact with other school systems" ( $m=.09$; $p$ (.10).

All barrier items correlates are displayed in Table 10.9 grouped according to their clustering on the factor analysis.
(Insert Table 10.9 here)

Seemingly the large general barrier factor (81) bears some relationshlp to Innovativeness. The eleven hlghest loading items all have a positlve correlation with innovativeness and six of these are significant at least at the .05 level. Controlling on slze reduces this only slightly. factor B11 - "Capacity"-also seems to have a modest bearling on Innovativeness as measured by the barrler items only. However these flndings are also the reverse of what one might loglcally expect, l.e., those who complained more about lack of flnances were silghtly more likely to report many Innovatlons. No other dramatic findings are revealed in this table elther from the other B Factors or from the residual ltems from the procedures list.

## H. <br> SUMMARY

In this chapter an "lnnovativeness" index composed of a count of all innovations spontaneously reported by each respondent was compared with 82 other varlables generated from the questionnalre, using product moment correlations.

To assist in the summary of the many findings reported in this chapter, we have constructed Table 10.10 .
(Insert Table 10.10 here)

The strongest correlate to Innovativeness was found to be "number of puplls" (our measure of district slze), for which $r=.27$. Thirty-seven other varlables also had low but statistically significant (minimum p<. 05 , two-tailed test) correlations with the innovatlveness measure. However, when size was controlled statistically and the partlal correlations computed, almost all other correletlons iere reduced in magnitude and only is remalned significant at the . 05 lovel.

TABLE 10.9
innovativeness X barriers and residual procedures


```
Contlnuation of rable 10.9
```

| 1 tem | N | Core items on Factor | Correlation wlth Innovatlveness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { Zero } 0 \text { rder } \\ & r \quad(\text { Slg. Level }) \\ & \hline \end{aligned}$ |  | $\begin{gathered} \hline \text { Slze Controlled } \\ \mathrm{r} \quad(\text { Sig.Leve } \\ \hline \end{gathered}$ |  |
| Frustration and difficulty encountered by students during the adoption process <br> Lack of contact with other school systems who had considered the same 1 nno* vatlon | $\begin{aligned} & 328 \\ & 330 \end{aligned}$ | $\begin{aligned} & 111.57 \\ & 111.51 \end{aligned}$ | $\begin{array}{r} .06 \\ -.09 \end{array}$ | $\begin{aligned} & \text { NS } \\ & (.10) \end{aligned}$ | $\begin{array}{r} .07 \\ -.07 \end{array}$ | NS <br> NS |
| Inadequacy of school plant, facilities, equipment, or supplies | 332 | V. 38 | . 05 | NS | . 03 | NS |
| selecting a competent staff to Implement change | 333 | IV-. 28 | 0.01 | NS | $\because 06$ | NS |
| Utilizing a number of different media to get the new ideas across Persistence by those who advocate the innovation Adequate diagnosis of the real educational need | $\begin{aligned} & 336 \\ & 336 \\ & 337 \end{aligned}$ | $\left\{\begin{array}{l} \left\{\begin{array}{l} P 1.34, \\ P 1.24 \\ \text { P1.26, } \\ P 11.23 \end{array}\right. \\ \left\{\begin{array}{l} P 11.43, \\ \text { PI.28 } \end{array}\right. \end{array}\right.$ | .08 <br> :12 <br> .05 | NS $(.03)$ <br> NS | $\begin{aligned} & .10 \\ & .08 \\ & .03 \end{aligned}$ | $\begin{gathered} (.07) \\ \text { NS } \\ \text { NS } \end{gathered}$ |

CORRELATIONS WITH IHNOVATIVENESS SCORES OF EACH DISTRICT


PROCEDURES EMPHASIZED IN IMPLEMENTING THE MAJOR 1970-71 INNOVATION Resolution of interpersonal conflicts (P iV).
Creating awareness of the need for change ( $P$ IV)
Maximizing chances of participation by many groups ( P 1)
stressing self-help by the users of the innovation (P 1)
Providing a climate conducive to risk-taking ( P |V)
Providing a climate conducive to sharing ideas ( $P$ I)
Systematic evaluation ( $\mathrm{P} \mid 1$ )
Systematic planning ( $p / 1$ )
Adequate definltion of objectives Solid research base ( $P$ i: ) $(P|l|$ )
QARRIERS EMPHASIZED IN IMPLEMENTING THE MAJOR 1970-7I INNOVATION Frustration and difficulty encountered by teachers and/or relevant staff in trying to adopt

Procedures generally
stressed in problem-solving and
llakage
Perspectives toward innovation

Procedures stressed
in R,D,DEE.
Perspectlve on
innovation.

Amensm them

Past studles by varlous authors have found relatlonships between Innovativeness and a number of standard descrlptive measures of school districts. Table 10.10 suggests the relative importance of a variety of factors including these traditlonal measures and a number of items related to the concepts of Innovation process summarlzed in other parts of thls report.

Starting at the top of this table, there appear to be five characteristics of school distrlcts assoclated with Innovatlveness in addition to and Independent of district rize, Per pupll expendlure is a traditional and expected correlate, suggesting not only affluence but conslstent local support for education over the years. Media centers and In-service tralning are Inside resources which also spur innovatlon. Lay advlsory groups represent another important type of linkage which innovative districts are silghtly more likely to employ. it is interesting to contrast this interactive type of commulty linkage with the use of TV and newspapers which are also correlated, al though their use seems to be a function of distrlct size.

Many authors have suggested that crlses-may gezconduclve to an unfreezing of traditional school patterns and hence $t \mathbf{b}$ fhovativeness. it appears that teacher, community, and student-provoked crlses are related to innovatlveness. Agaln, however, only teacher strlkes survive as a weak but significant correlate when size of district is controlled.

The thla set of varlables In Table 10.10 are included here because their lack of relatlonshlp to Innovativeness may be of surprise to some readers. Net ther the intellectual distlnction of graduates nor reputed troubles with school finance appear to have much to do wlth number of innovations reported.

The last twelve items of Tabie 10.10 are selected from the 11 st of procedures and barrlers discussed in Chapters Eight and Nine. The first six represent the strongest correlations with Innovativeness. The next four were selected to contrast the perspectlves on change that they are intended to represent. It should be noted that these correlations in no way represent the relative popularity of different items to our respondents as a whole; for example, "systematic planning" and "definltion of objectives" were reported as highly emphasized for most showcase Innovations even though they are shown in Table 10.10 to correlate poorly with over-all innovativeness. The last two "barrier" Items show a surprising positive relatlonshlp to innovativeness, suggesting either that such items ellclt more "honest" responses from moro innovative school districts or that those who innovate more, Indeed encounter more resistance ("future shock" factor).

In general, It appears that superintendents who say they stress stimulation, active need arousal, openness, problem-solving, and intra-system linkage procedures in introducing thelr major innovation are more likely to report, more lnnovations. of special Interest is the slight but statistlcaliy sloniflĉánt negatlve relatlonship between innovatlveness and clalms of systematic evaluat ton. Could it be that an emphasis on evaluation inhibits innovativeness?

REFERENCES

## REFERENCES:

Brickell, Henry M., ORGANIZING NEW YORK STATE FOR EDUCATIONAL CHANGE, 1961, Commissioner of Education, State Education Department, Albany, New York, 107 pages.

Carlson, Richard O., ADOPTION OF EDUCATIONAL INNOVATIONS, Eugene, Oregon: University of Oregon, 1965, 84 pp.

Chase, Francls S., "Educational Research and Development: Promise or Mirage?" JOURNAL OF RESEARCH AND DEVELOPMENT IN EDUCATION, 1968, Vol. 1, No. 4, po. 3-14.

Chesier, Mark A. and Lohman, John E., "Clianging Schools Through Student Advocacy," in Schmuck, R.A, and Mlles, M.B. (Eds.), ORGANIZATION DEVELOPMENT IN SCHOOLS, Palo Alto, Calif., Nat lonal Press Books, 1971.

Clark, David L. and Guba, Egon G., INNOVATION IN SCHOOL CURRICULA, Washington, D.C.: The Center for the Study of Instruction, National Education Assoclation, 1965, 33 pp . (a)

Clark, David L. and Guba, Egon G., "An Examination of Potential Change Roles In Educat lon," Paper presented at the Symposlum on INNOVATION IN PLANNING SCHOOL CURRICULA, Airlie House, VIrginia, October, 1965. (b)

Coleman, James S.; Katz, Elihu; Menzel, Herbert, MEDICAL INNOVATION: A DIffusion Study, New York: Bobbs-Merrill, 1966.

Havelock, Ronald G. In collaboration with Alan E. Guskin and others, PLANNING FOR INNOVATION THROUGH THE DISSEMINATION AND UTILIZATION OF KNOWLEDGE, Ann Arbor, Mlchlgan: Institute for Soclal Research, The Unlversity of Michigan. Report to the U.S. Office of Education on a Comparative Survey of the Literature, July 1969.

Havelock, Ronald G. and Havelock, Mary C., TRAINING FOR CHANGE i,GENTS: A GUIDE TO THE DESIGN OF TRAINING PROGRAMS IN EDUCATION AND OTHER FIELDS, Ann Arbor, Michigan: Instltute for Soclal Research, The University of Michigan, 1973.

Jung, Charles, RESEARCH UTILIZING PROBLEM SOLVING: An Instructional Program for School Personnel beling developed by Northwest Regional Educational Laboratory, Portiand, Oregon, 1970.

Kaiser, H.F., "The Varimax Criterion for Analytical Rotation in factor Analysis," PSYCHOMETRIXA, 1958, pp. 187-200.

Lin, Nan; Leu, D.J.; Rogers, E.; and Schwartz, D.F., THE DIFFUSION OF AN INNOVATION IN THREE MICHIGAN HIGH SCHOOLS: INSTITUTION BUILDING THROUGH CHANGE, East Lansing, Michigan: Instltute for international Studies in Education, Michlgan State University, December, 1966.

Lindeman, John; Balley, Stephen K.; Berke, Joel S.; and Naum, L.H., ' Jine ASPECTS OF EDUCATIONAL RESEARCH AND DEVELOPMENT IN THE U.S., R.port for the Organization for Economic Cooperatlon and Developmen. Review, Project \#8-0515 Contract \#OEC-9-420139-1373(010), 1969.

Lionberger, Herbert F., ADOPTION OF NEW IDEAS AND PRACTICES: A Summary of the Research Dealling with the Acceptance of Technological Change in Agriculture with Impilcations for Action In Facilitating such Change, Ames, Iowa: Iowa State Unlverslty Press, 1960, 164 pp.

Lippltt, Ronald; Watson, Jeanne; and Westley, Bruce, the dynamics of PLANNED CHANGE, New York: Harcourt, Brace, and Company, inc., 1958, 312 pp.

Miles, Mat thew B. (ed.), INNOVATION IN EDUCATION, New York: Bureau of Publlcations, Teachers College, Columbla University, 1964, 689 pp.

Mort, Paul R., "Studies in Educational Innovation from the Institute of Adminlstrative Research," In Miles, Mat thew B., (ed.), INNOVATION IN EDUCATION, New York: Bureau of Publicatlons, Teachers College, Columbla Universlty, 1964, 689 pp .

Mosher, Edlth K., WHAT ABOUT THE SCHOOL RESEARCH OFFICE?, Berkeley, Callforila: Far West Laboratory of Educat lonal Research and Development, July 1968, 64 pp.

Nunnally, Jum C., PSYCHOMETRIC THEORY, New York: McGraw-Hill, 1967.
Rogers, Everett M., DIFFUSION OF INNOVATIONS, New York: The Free Press of Glencoe, Inc., 1962, 367 pp.

Rogers, Everett $M$. with $F$. Floyd Shoemaker, COMMLNICATION OF INNOVATIONS: A CROSS-CULTURAL APPROACH, New York: Free Press of Glencoe, December, 1971.

Ryan, Bryce and Gross, Neal C., "The Dlffusion of Hybrid Seed Corn in Two lowa Communitles," RURAL SOClOLOGY, March, 1943, Vol. 8, pp. 15-24.

Thelen, Herbert A., "Concepts for Collaborative Action-Inquiry," in Watson, G. (ed.), CONCEPTS FOR SOCIAL CHANGE, Baltimore, Maryland: Moran Printing Service, Published by N.T.L. National Educatlon Association for COPED, March, 1967.

Watson, Goodwin, "Resistance to Change," in Watson, G. (ed.), CONCEPTS FOR SOCIAL CHANGE, Baltimore, Maryland: Moran Printing Service, Published by N.T.L. National Education Assoclation for COPED, March, 1967, pp. 10-25.

## APPENDIX A <br> QLESTIONNAIPE <br> (INCLUDING INSTRUCTION SHEET)

The enclosed questionalre is intended to be self-explanatary. However, the following addtlanal comments may be of sone wio in clarlfylng our objectives,

## duastion He:

2uation ilb:

Luastion Ic:
juastion 10:

Quast 1 on 10:
Quastion 126 3:

Quest 1 on $14 \mathrm{a}:$

Quastion lite:

Question 15:

Question 16


Question 16i:
question 16i:

Question An:
2ues $\operatorname{ion} 110:$
Question 11:

If you con't think of on innovition which fits the deflaltion from the last school yearp elte t recent
 tion In your romory, slmplywite "none In mamory' in thopoce provided, In onswering the ivastion, int
 you thlnk might fit the definltion, choose the one on which you feel you te the best in urmed or the ond the $t$ stands out most clearly In your mind as an axample of "lanovation." It does not need to be an axample of "goad" or "sucessful" Innovation, however.

Include brlef mention of such aspects of the process as media employed, use of outslde experts, special metings, projects, planning, decision-mbking, and management procsdures, particlpation.

Some individuals usually stand out as elther advocates. Initistots, or prlmo dectston makers. The is parsons might be lnside or outslde the system. can you findeato, io some of these people ware. not by nome, but by the kinds of Dosition thaty held and the roles they olayed?
"Consequences" might include any of the following: Improved cr worsened student performance on cests, placeinent of graduates. attitude changes, improved or worsened senooi aimosphere. bchuci-cumirinaity reiatioph, cilatyed tescher behovior or attitude, Increased or reduced costs of education, changes in staff tirnoover or student drogouts, teacher or student uncest, lmproved or worsened offlelency of instruction or administration. We are orlmerlly intarested fn your pereeption and judgment of these consequences ond thelf slgnifleanca rather than - Praclso numerlcal ccounting.

This is also judgment quastion from the point of view of the superintendent.
"Procedures" and "8arriers"; These ltems are based on past writing and researet. on the diffuslon and utillaztion of educatlonal innovation. Most of these have been identified by various authors as "importani" aspects of successful change but different authors don't always agree on what is most important. We would like to know which appeared toyou to be most imporiant for the specific Innovation described by you in Question il.

Thls question ls asked for two reasons. Fifst, we would like to be able to identify trends in innovation ecross the country for the next year and beyond. Second, wo may be able to gather information on difficulties already encountered by some distrlets which would be of specifle help in the future plannlag of stailiar pro" grams in other districts.

One potential out come of this survey may be planoing and management tools for adminlstrators and project supervisors, your vlews on the value of such tools would be of major interest,

In our Initial work on this survey we ineluded an extensive list of specifle progrims and projects as an 'inventory" of innovations. However, superincendents had difficulty responding to such a list. Many disitis have their own names for projects and choose to elassify "innovatong' in different ways. Therefore, Question \#5 is purposely openended. We would like to have a general Index of the amount of tinnovation activity In your district over the last year, usling the definition which appears on the first page of the survey form. five broad areas are suggested ("a" through ' $e^{\prime \prime}$ ) but these are probably not exhaustive. Use additlonal categories or change those suggested as you see fit, If there were mo innovations in any or all of these categories, simply write the word "mane" in the space provided. If there might have been some actlvity but relevant information is not easily aciessible to you, you may simply write "no information." in any case do not include any changes that were made prior to the $1970-71$ school year.

Internal gesources: These refer to special roles, services or procedures which might provide information relevant to innovations or the adootion of innovations. Treat these categories as general labels; if your system has something that might be classified under one of thescheadings you should so indicate, but include in your consideration only those facilitias or activities that are supported primarlly by your own system and take oiace within your own system.

The USOE-supported "Educational Resource Information Centers." Inelude access to and use of any ERIG documert collection or service.
include use of lamoratoiy products, seivices, training events, participation in pilot tests, etc.
Laboratories in operation during 1970-71 included: Appalachia Educstional Laboratory (AEL), Center for Urban Education (CUE), Gentral midwestern Regional Educational Laboratory (CEMREL), Eastern Regional Institute for Education (ERIE). far West Laboratory for Educational Research and oevelopment (FWLERD), Mid-Continent Regional Educational Laboratory (MCREL). Northwest Regional Educational Laboratory (NWREL), Regional Educational Labora. tory for the carolinas and Virginla (RELCV), Research for Better Schools, Ine. (R8S). Southeastern Edueational Laboratory (SEL), Southwest Educational Development Laboratory (5EDL), Southwestern Cooperatlve Educational Laboratory (SWCEL), Southwest Regional Laboratory for Educational Research and Development (5wRL). Upper Midwest Reglonai Educational laboratory (imREL).

Excluding federal piggrams administered through the states such as Titles l and \|ll of EsEA.
Use round figure atctimates.
Olfferent states have widely differing orocodures for financlng locsi education. "Difficulty' will usually mean voter rejection of bonding or miliage req̧ucsi. "Some difficulty" might mean a close vote or proposal passage wily after compromise. "Great difficulty" would signify complete or repeated rejertina of proposals, or severe cutting of sidgets.

#  The observations of iuperintendents hould cast somellaht on the subject. <br> Question ilye: 1) Grade spen: Indicete the renge of grader for ench cetegory, e.9., "K-6, 7-9, 10-12" or "K-8, none, g-12." 2) Use found flgure estmetes. 3) Use en estlmote of fulf=time equivelent iteff positions occupled. <br> Quastonflis: If the primary reeson was consolleation or decantralizetion. Indicete whether or not the studentege population In the communitles served was Increasing or decilining. 

The spece below may be wsed for continuetion or further explanation of item responses if necessery.
Survay form 1 tem : Comment or Continuation
No. $\qquad$
SUPEAJNTENDENT'S VIEVPOIN:

* sulver
for the
Division of Practi, amprovament
onducted by the
Natlonel fenter i Educetionel
Univarsity of michigen
institute for sichsi. Reseterch
Communlceston
v.S. oftice of esucetion
Comments on specifle items ere welcomed and will be considered In our onalysla.
ALL INFORMATION WILL QE TAEATED NITH THE STAICYEST CONFIDENEE.

1. In the soate betow wh would tike you to Identify the most ilgniftcant Innovation that has been tried out in your diatrict In the fast retr, usling the following deflaltion of "innovation":

A major ohanje intruduced in the lat year for the purpose of improving the quailty of eduration within four distrist. This chathe mary have involved any of the follaving:
a. a oubstantial roverientalion on the part of taff,
b. a Notlination of regouroses
c. akeption of hew protigen, frogmoma, or tachrology.

Note that the Innovation does not have to be successful and may or may not be retained. you might choose one which stands out In your mind is an axample of how innovations tre usually dopted and tmplemented in your distrlet. (the questions to this and the following ouge refor to this particular innovation.)

1a. Dascribe the innovation bflefly (I.e., in two or thret sentences indicate what it was, what it invoived in staff and rasources. who lt wis to benefit and how)?
$\qquad$
$\qquad$
$\qquad$
$\qquad$

1b. By what process was the inmovation introduced and implementedr
16. What persons were primarily responsibie for its introductiont (endicate by pasitions, roles. or tities.)

$\qquad$
$\qquad$
1.1 What were the actual consequences of this innovation (positive andior negativel?
$\qquad$
$\qquad$
$\qquad$
1.0. What semed to be the key factorls) in making the adoption and acceptance of this innovation succestal on wasuccessful?

1'. Hifula you reconmend that other districts like yours soog the game inmorationt what adyice would yeu offar them on implementationt

## 2. INNOVATION PROCEDURES

In the introduction and Instaliatio. of the Innovition identified in Quastion 1 , how mush amprasts mas given to esch of the following?
d. Srstematic evaluation
b. Solid resestch bave
c. bystematic glanning
d. Requata definition of
oblestives
e. Selecting a competent siaff
to implement change
f. Starting out with adequate fintinclal resources to do the job
9. Utilizing o number of difforent
media to get the new ldeas ocross
h. Porststence by thoss who adyocate the innovation
i. Naximizing chances of partelpation by many groups
3. Siressing self-helo by the
users of the innovation
k. Adequste diagnosis of the
real educationgl need

1. Providing d citmste condscive to sharing ideas
m. Provising a climate car*
$\frac{\text { ductue to risk-takling }}{\text { frest }}$
n. Gretthng awareness of
the need for change
o. Srating an owareness of
alesinalive solutions

- Confrontation of
sifarences

9. hesotution of Thter
parsona! conflicts
$r$. Involvement of informan leaders of opition inside the schools
s. Particlpation by key
communtiy lesjors.
t. Faxing advantage of
ctisls sliuations
u. Finding shared volues
as ashis for working
other procedures used
(secelfy):


Emphasis

3. Barkiers to tils ithovation

A number of circumstances are somethes raported as "barriers" to innovation. in your experience with this innovation, how Important was esch of the follow log?
a. Lack of adequats contacts with outslde casource groups (e.g., unlyersltes, labs, consulionts, itc.)
b. Lack of commulication among the staff
c. Lack of commulication betwesn staff and students
a. Confusion among staff about the purgose of the innovation
e. Stapl's lack of prectie hapormatlon bbout the Ianovation
f. Disorgmization of the pimntag and Implementation efforks
9. Jinmlilinghess of rasource groups 10 help us revlso or edept
h. kigidity of school system
structura and bureaveracy
i. Unwilitingness of teachers and othar school personnel to change or lisith to nim loses
J. Shartage of funds allocated for the innovetion
k. Shortage of ausilified
persionnal

1. Fiasing by taschers and star that the Inovetion wald have Ilitila benoflt for them
$m$. Frustiation and difiliculty encountered by teachers andor relevent ataff in trying to adopt
n. Frusträtion and dificulty encounterad by students during the adogiton prasess
0 . lack of contact with ather sehool sustems who had considared the same innoybtion
p. lack of coordination and tammork Hithln the school systam
a. Absence of a concarked campaton
to put the new ldeds actoss
r. Tnedequacy of schooi plant, fact-
lifies, equtgment, of suppiles other barriers (specify):

2. Is there another mbjor area or problam on which you are planalng to make changes in the next vear? (Spacify briafly)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
b. Ynuld tiams i:ke thour in Ruestio.., 2 and 3 above be holpfut as e chacklist in planning or evaluating such enangasires__ or Ns.


# A. 5 

ginen artas in which the semod disthict has beth innoyating in the last sthool year (1970-71)
Using the same deflattion of "Innovation" as suggested on Question I. make obelef listing of othar Innovations introduced
 progran"). If the progem is a widaly distributed aducatlonat product sueh as "psse physles," tha lattar abbraylation whtil

 stitmele as to how many thare wara.
-. Mijor changes in Administration and organlzation (a.9.. student, teschat, or clitian

b. Melor Changes in instructional procedurss (e.g., Individualization of instruction, team teaching. mork-stady, filaxible schesuling, programed learning. compuler-asslisted instevction, grouping, teachar aidas).
Most slgnificant innovation (if any):
$\qquad$
Most slgnificans innovation (if any):

C. New sarvices and special Programs (4.g., guldance and counselling, information centers, library, Fasearch or ayatuation offita, $\mathrm{T}_{\mathrm{n}}$-sarvice training for teachers, cammity relations).
Host ignificant innovation (if any):
$\qquad$
$\square$
$\qquad$
 courst prograns. or casteucturling of entle progeams. Only changes which involve sevaral classroms or nore than and buitidingl.
Hast ilgniflcant Innovation at alementapy leval (If applleable):

Host signtficant Innovation at Junior high or midde (1f appllesble):

Wost ilgalficant innovation at sanlor high fevel (if applicabia):
$\because$
e. New Educietiunal rechnoiogy Acquired le.g., audlo or video tape equipment. computer. toaching machines. specially designed facillitas; language laboratory).

Host ignlficant 1 nnowatlen (if any):

$$
+\cdots \frac{1}{1}
$$

f. Are there other artas in which you made innayations in 1970-71 not covered by the categories above7 \{specify bricfly)

6 The two I.st telim vogyevt sure of the resouces which can be wed when inplementing innovitions. Indicate the degret ta which iou' sivem bia was ireve internst and external essources tor this purpose in the past yetr. (add others whele appropriatei)

7. Were any of the above rescurces (internal or external) used In choosing or faplementing the specifle innovetlon descibed on fage it ilindicate by letter, "a' through "r"-l:
B. How frequently does yous system utllize the following media to explain innovations to parents and the community?

|  | Ueekly or More often | Monthly | $\begin{aligned} & \text { Quar- } \\ & \text { ter }+\mathrm{y} \end{aligned}$ | Once or Twict - Year | very Parely of Never |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (i) | $\text { ( } 5$ |  |  |  |
| - lacal newspaper |  |  |  |  |  |
| b. Escal television |  |  |  |  |  |
| c. Loctiradio |  |  |  |  |  |
| d. memsletters |  |  |  |  |  |
| e. Public meetings. |  |  |  |  |  |

10. What percent of the 1970 graduates of ithis system continued their formal ejuction beyond high school?
a.

| $c$ | twonear as mon+degres other (soecif |
| :---: | :---: |
|  |  |
|  |  |

c. ....... mon+degree technical/rocational tratinlag other (soecify)
12. Did your schonl suriem enperiense any of the following

d. Hes any of these events imflenced innovition abtivitles such ts those described in Questions 1.4 , or 59 If so, how?
9. To what extent does rour system utilles the following pollcess and procedures?

|  | $\begin{aligned} & \text { Usual } \\ & \text { Policy } \end{aligned}$ | $\begin{aligned} & \text { In } \\ & \text { Spacial } \\ & \text { Cests } \end{aligned}$ | very A. raly | Hovir |
| :---: | :---: | :---: | :---: | :---: |
| *. Pay staff trovel | (\%) | (J) | d, | (1) |
| b. Sobbatical leaves |  |  |  |  |
| c. Steir tuliton*paid courses |  |  |  |  |
| d. Service erueds |  |  |  |  |
| e. Loy edylsory groups (communt ty, milmority, purents) |  |  |  |  |

11. th the last year has the school systemexperienced difficulty in galning citizen supgort for finsincing education?

12. System slie ond steffing:

|  | Elamentary | Jr, High/middle | HIgh School |
| :---: | :---: | :---: | :---: |
| 1) trade span 1970-71 |  |  |  |
| 2) 5tudent Enroll. ment 1970-71 |  |  |  |
| 3) Teschers Emptoped 1970-71 |  |  |  |
| 4) Admin. Steff Employed 1970-71 |  |  |  |


14. What was the cots: Re: pught expenditure for the $1970-7$ peroot veter fround figure estimate)?
©. Hat thara bean any slgifficanl change fin oer pygll expendisures over the last 5 years? tecretst_no $\quad$ Ko hange $\qquad$ Oacesso
c. Mrimary resion for chenge

APPENDIX B
BACKGPOLND OHARACTERISTICS
OF THE SAPPE

TABLE B. 1
SAMPLE BY SIZE AND REGION FREQUENCY OISTRIBUTION

| Reglon | 1-299 | $\begin{aligned} & 300^{-} \\ & 2,499 \end{aligned}$ | $\begin{aligned} & 2,500- \\ & 4,999 \end{aligned}$ | $\begin{aligned} & 5,000- \\ & 9,999 \end{aligned}$ | $\begin{aligned} & 10,000= \\ & 24,999 \end{aligned}$ | $\begin{aligned} & 25,000- \\ & 79,999 \end{aligned}$ | 8n 0 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| New England |  |  |  |  |  |  |  |  |
| Connect l cut | - | 4 | 1 | 3 | 4 | 1 | - | 13 |
| Maine | - | - | - | - | - | - | - |  |
| Massachusetts | * | 3 | 4 | 3 | 2 | 1 | 1 | 14 |
| New Hampshlre | - | 1 | 1 | - |  | - | - | 2 |
| Rhode Island | - | - | - | - | 2 | - | - | 2 |
| Vermont | - | - | - | - | - | - | - | - |
| Total | 0 | 8 | 6 | 6 | 8 | 2 | 1 | 31 |
| M1d East |  |  |  |  |  |  |  |  |
| Delaware | - | - | - | - | 1 | - | - | 1 |
| Maryland | - | - | - | 1 | 2 | 1 | 4 | \% |
| New Jersey | 2 | 4 | 6 | 4 | 4 | 1 | - | 21 |
| New York | - | 9 | 5 | 8 | 5 | 3 | 1 | 31 |
| Pennsylvanla | " | 1 | 7 | 5 | 6 | 1 | 1 | 21 |
| Washington, D.C. | - | - | - | - | . | - | 1 | 1 |
| Total | 2 | 14 | 18 | 18 | 18 | 6 | 7 | 83 |
| Great Lakes |  |  |  |  |  |  |  |  |
| llinols | - | 8 | 4 | 5 | 4 | 2 | 1 | 24 |
| Indiana | - | 2 | 1 | 3 | 4 | 1 | 1 | 12 |
| Michlgan | - | 5 | 5 | 7 | 3 | 2 | 1 | 23 |
| Ohio | - | 7 | 8 | 3 | 4 | 2 | 3 | 27 |
| Wisconsin | - | 6 | 4 | - | 1 | 1 | 1 | 13 |
| Total | - | 28 | 22 | 18 | 16 | 8 | 7 | 99 |
| Plains |  |  |  |  |  |  |  |  |
| lowa | 1 | 5 | - | 1 | 2 | 2 | - | 11 |
| Kansas | - | 2 | 2 | 1 | - | 3 | - | 8 |
| Minnesota | - | 3 | 2 | - | 1 | 2 | - | 8 |
| Mlssouri | 1 | 5 | 1 | 2 | 2 | 1 | 1 | 13 |
| Nebraska | - | - | - | - | - | $!$ | - | 1 |
| North Dakot a | - | 2 | i | - | - | - | - | 2 |
| South Dakota | - | 1 | 1 | - | - | - | - | 2 |
| Total | 2 | 18 | 6 | 4 | 5 | 9 | 1 | 45 |

(Table continues on next page)

| Region | 1-299 | $\begin{aligned} & 300= \\ & 2,499 \end{aligned}$ | $\begin{aligned} & 2,500= \\ & 4,999 \end{aligned}$ | $\begin{aligned} & 5,000- \\ & 9,999 \end{aligned}$ | $\begin{aligned} & 10,000 \times \\ & 24,999 \end{aligned}$ | $\begin{aligned} & 25,000- \\ & 79,999 \end{aligned}$ | $\begin{gathered} 80,000 \\ \text { and } \end{gathered}$ over | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| South East |  |  |  |  |  |  |  |  |
| Alabama | - | 1 | 1 | 2 | 1 | 3 | - | 8 |
| Arkansas | - | 3 | 1 | - | 1 | 1 | - | 6 |
| Florlda | - | - | 2 | 2 | 5 | 4 | 6 | 19 |
| Georgla | - | 2 | 5 | 1 | 1 | 3 | 2 | 14 |
| Kentucky | - | 1 | 2 | 4 | 1 | 1 | 1 | 10 |
| Loulstana | - | - | - | 2 | 4 | 4 | 1 | 11 |
| Misslsslppi | - | 2 | - | 2 | - | - | - | 4 |
| North Carolina | - | - | 3 | 5 | 5 | 1 | 1 | 15 |
| South Carollna | - | - | 1 | 3 | - | 3 | - | 7 |
| Tennessee | - | - | 1 | 2 | - | 2 | 2 | 7 |
| Virglnia | - | 1 | 2 | 2 | - | 3 | 1 | 9 |
| West Virglnia | - | - | 2 | 1 | 2 | 1 | - | 6 |
| Total | - | 10 | 20 | 26 | 20 | 26 | 14 | 116 |
| Rocky Mountalns |  |  |  |  |  |  |  |  |
| Colorado | - | - | - | 2 | - | 2 | 1 | 5 |
| Idaho | - | 1 | 2 |  | 1 | - | - | 4 |
| Montana | 2 | 1 | - | - | 1 | - | - | 4 |
| Ut ah | - | - | - | - | - | 2 | - | 2 |
| Wroming | - | - | - | - | - | - | - | - |
| Total | 2 | 2 | 2 | 2 | 2 | 4 | 1 | 15 |
| South West |  |  |  |  |  |  |  |  |
| Arlzona | - | 3 | - | 2 | 3 | 2 | - | 10 |
| New Mexico | - | - | 1 | 1 | 1 | - | 1 | 4 |
| OkI ahoma | - | 2 | - | - | 1 | 1 | - | 4 |
| Texas | - | 7 | 5 | 3 | 5 | 5 | 3 | 28 |
| Total | - | 12 | 6 | 6 | 10 | 8 | 4 | 46 |
| Far West |  |  |  |  |  |  |  |  |
| Alaska | - | - | - | - - | - | * | - | - |
| Callfornia | 1 | 6 | 3 | 9 | 17 | 12 | 4 | 52 |
| Hawai | - | - | - | - | - | - | - | - |
| Nevada | - | - | I | - | - | 1 | - | 1 |
| Oregon | - | 2 | 1 | - | - | 1 | - | 4 |
| Washington | 1 | - | 2 | 3 | 1 | - | 1 | 8 |
| Total | 2 | 8 | 6 | 12 | 18 | 14 | 5 | 65 |
| Grand Total | 8 | 100 | 86 | 92 | 97 | 77 | 40 | 500 |

response rate by region

| Region | Olstricts $<80,000$ |  |  | O1strlcts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sample Freq. \% | Responding Freq. \% | $\begin{gathered} \text { Response } \\ \text { Rate } \\ \% \end{gathered}$ | Sample Freq. \% | Responding Freq. \% | $\begin{aligned} & \text { Response } \\ & \text { Rate } \\ & \% \end{aligned}$ |
| New England | ( 30) 7 | ( 24) 8 | 80 | ( 1) 2 | ( 1) 3 | 100 |
| Mid East | $(76) 17$ | (52) 16 | 68 | ( 7) 18 | (6) 19 | 86 |
| Great Lakes | ( 92) 20 | (68) 21 | 74 | ( 7) 18 | (4) 13 | 57 |
| Suuth East | (102) 22 | (67) 21 | 66 | (14) 35 | (13) 42 | 93 |
| Plains | (44) 10 | ( 32) 10 | 73 | (1) 2 | (1) 3 | 100 |
| Rocky Mountalns | ( 14) 3 | $(12) 4$ | 86 | (1) 2 | - - | 0 |
| South West | ( 42) 9 | ( 25) 8 | 60 | (4) 10 | ( 3) 10 | 75 |
| Far West | ( 60) 13 | (42) 13 | 70 | (5) 13 | ( 3) 10 | 60 |
| Total | (460) 100 | (322) 100 | 70 | (40) 100 | (3!) 100 | 76 |

```
B-5
```

TABLE B. 4
returned questionnal res BY DISTRICT SIZE AND REGION PERCENT DISTRIBUTION

| Region | O1stricts < 80,000 |  |  |  |  |  |  | $\begin{aligned} & \text { Districts } \\ & 280,000 \\ & \mathrm{~N}=31 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1-299$ $N=6$ | $300-$ 2,499 $N=71$ | $\begin{array}{r} 2,500- \\ 4,999 \\ \mathrm{~N}=55 \end{array}$ | $\begin{aligned} & 5,000- \\ & 9,999 \\ & N=57 \end{aligned}$ | $\begin{gathered} 10,000- \\ 24,999 \\ N=77 \end{gathered}$ | $\begin{aligned} & 25,000- \\ & 79,999 \\ & N=56 \end{aligned}$ | Total $\mathrm{N}=322$ |  |
| New England | - | 11 | 7 | 9 | 8 | 2. | 8 | 3 |
| MId East | 33 | 13 | 16 | 21 | 22 | 5 | 16 | 19 |
| Great Lakes | - | 27 | 33 | 19 | 16 | 14 | 21 | 13 |
| South East | - | 7 | 18 | 25 | 2.1 | 39 | 21 | 42 |
| Plalns | - | 21 | 7 | 7 | 4 | 11 | 10 | 3 |
| Rocky Mountains | 33 | 3 | 4 | 2 | 3 | 5 | 4 | - |
| South West | - | 11 | 4 | 5 | 9 | 9 | 8 | 10 |
| Far West | 33 | 7 | 11 | 12 | 18 | 14 | 13 | 10 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

TABLE B. 5
GRADE SPAN: ELEMENTARY +

$+\quad$ Question \#13a(1)

* Less than 0.5\%
** Includes 4 cases of less of pre-KIndergarten
***. Includes one representative district and one very large district with elementary schools spannlng grades 1-6 and 1-8.

TABLE B. 6
GRADE SPAN: JUNIOR/MIDDLE*

| Junlor/Middle Grade Span | Distri Freq. | $\begin{gathered} 80,000 \\ \% \end{gathered}$ | $\begin{aligned} & \text { Districts } \geq 80,000 \\ & \text { Freq. } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 3-8 | ( 1) | * | $\cdots$ | * |
| 4-8 | ( 1) | * | - | - |
| 5-7 | ( 1) | * | - | - |
| 5-8 | ( 7) | 3 | - | - |
| 5-9 | ( 1) | * | ( 1) | 5 |
| 6-8 | ( 40) | 17 | ( 1) | 5 |
| 6-9 | ( 4) | 2 | ( 1) | 5 |
| 7-8 | (61) | 26 | ( 1) | 5 |
| 7-9 | (118) | 50 | (15) | 79 |
| 7-10 | ( 2) | 1 | - | - |
| 8-9 | ( 1) | ** | - | - |
| Total | (237) | 100 | (19) | 100 |
| Junior/Middle, unspeclfled | ( 26) |  | ( 5) |  |
| Doesn't Apply | ( 45) |  | ( 3) |  |
| No Information | ( 14) |  | ( 4) |  |
| Grand Total | (322) |  | (31) |  |

* Question \#13a(1)
** Less than 0.5\%
B-8

TABLE 8.7
GRADE SPAN: SENIOR HIGH*

| Senior High Grade Span | $\begin{aligned} & \text { Olstrlcts }<80,000 \\ & \text { Freq. } \end{aligned}$ |  | $\begin{aligned} & \text { Districts } \geq 80,000 \\ & \text { freq. } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 7-12 | $(7)$ | 3 | - | - |
| 8-12 | ( 2) | 1 | ( 2) | 10 |
| 9-12** | (125) | 48 | ( 5) | 24 |
| 10-12 | (122) | 47 | (14) | 67 |
| 11-12 | ( 2) | 1 | - | - |
| Total | (258) | 100 | (21) | 100 |
| Sentor High, unspecifled | ( 29) |  | ( 5) |  |
| Ooesn't Apply | ( 21) |  | - |  |
| No information | ( 14) |  | ( 5) |  |
| Grand Total | (322) |  | (31) |  |

* Question \#3a(1)
** Includes one representative distrlct and one very large distrlct wl th high schools spanning grades 7-12 and 9-12.

TABLE B. 8
ENROL LMENT*

| $\begin{gathered} \text { Enrollment } \\ \text { Size } \end{gathered}$ | Ofstricts $<80,000$ |  |  | Districts $=30,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Elementary Freq. | Juntor/ <br> Middle <br> Frea. \% | Sentor HIgh Freq. \% | Elementary Freq. \% | Jur.or/ Middle Freq. | Sentor High Freq. \% |
| 0-499 | ( 19) 7 | ( 36) 15 | ( 28) 11 | - - | - - | - - |
| 500-999 | ( 22) 8 | ( 45) 19 | (49) 19 | - - | - - | - - |
| 1,000-1,499 | $(28) 10$ | ( 27) 12 | ( 34) 13 | - - | - - | - - |
| 1,500-1,999 | ( 21) 8 | (19) 8 | ( 22) 8 | - - | - - | - - |
| 2,000-2,999 | (25) 9 | ( 22) 9 | ( 34) 13 | - - | ( 1) 6 | - - |
| 3,000-3,999 | ( 21) 8 | (25) 11 | ( 18) 7 | - - | - - | - - |
| 4,000-4,999 | ( 19) 7 | ( 11) 5 | ( 13) 5 | - - | - - | - |
| 5,000-6,999 | ( 29) 11 | (19) 8 | ( 20) 8 | - - | - - | - - |
| 7,000-9,999 | ( 20) 7 | (12) 5 | $(10) 4$ | - -- | - - | - - |
| 10,000-14,999 | (26) 10 | $(7) 3$ | (19) 7 | - - | - | - - |
| 15,000-24,999 | (19) 7 | (11) 5 | (14) 5 | - - | ( 9) 50 | (10) 48 |
| 25,000-39,999 | (16) 6 | - - | ( 1) ** | (2) 9 | (4) 22 | (7) 33 |
| 40,000-59,999 | $(8) 3$ | - - | - - | (6) 27 | (4) 22 | (2) 10 |
| 60,000-79,999 |  | - - |  | (9) 41 | - - | (2) 11 |
| 80;000-99,999 | - | - - |  | (1) 5 | - . - | - - |
| 100,000-149,999 |  | - - |  | ( 2) 9 | - - | - - |
| 150,000-200,000 | - | - - | - - | (2) 9 | - - | - -- |
| Total | (273) 100 | (234) 100 | (262) 100 | (22) 100 | (18) 100 | (21) 100 |
| Doesn't Apply | ( 10 ) | ( 46 ) | ( 21) | - | ( 3) | ( - ) |
| No Information | ( 39) | ( 42) | ( 39) | ( 9) | (10) | (10) |
| Grand Total | (322) | (322) | (322) | (31) | (31) | (31) |
| Mean | 7,926.5 | 3,335.6 | 3,975.9 | 75,418.0 | 28,746.0 | 30,104.0 |

[^14]TABLE B. 9
NUMBER OF TEACHERS EMPLOYED*

| Number of Teachers | Districts < 80, 000 |  |  | D1stricts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Element ary <br> Freq, \% | Junlor7 <br> Middle <br> Freq. | $\begin{gathered} \text { Senfor } \\ \text { Hlgh } \\ \text { Freq. \& } \end{gathered}$ | Elementary Frea. \% | Junlor/ <br> Mldde <br> frea. |  |
| 1-49 | (47) 18 | (81) 40 | (67) 29 | - - | - - | - - |
| 50-99 | (52) 20 | (33) 16 | (49) 21 | - - | - - | - - |
| 100-199 | (46) 18 | (42) 21 | (54) 23 | - - | (1) 6 | - - |
| 200-299 | (31) 12 | (22) 11 | (20) 9 | - - | - - | - - |
| 300-499 | (34) 13 | (15) 7 | (16) 7 | - - | - | - - |
| 500-999 | (25) 10 | (11) 5 | (25) 11 | - - | (7) 44 | (6) 30 |
| 1,000-1,999 | (18) 7 | - - | (2) 1 | (6) 26 | ( 5) 31 | (11) 55 |
| 2,000-2,999 | ( 3) 1 | - - | - - | ( 7) 30 | ( 3) 19 | ( 3) 15 |
| 3,000-3,999 | - - | - - | - - | (5) 22 |  | - - |
| 4,000-4,999 | - - | - - | - - | ( 3) 13 | - - | - - |
| 5,000-6,999 |  | - - | - - | (2) 9 | - - | - - |
| Total | (256) 100 | (204) 100 | (233) 100 | (23) 100 | (16) 100 | (20) 100 |
| Doesn't Apply | ( 10) | ( 45) | ( 21) | ( -) | ( 3) | ( - ) |
| No Information | ( 56) | ( 73) | ( 68) | ( 8) | (12) | (1) |
| Grand Total | (322) | (322) | (322) | (31) | (31) | (31) |
| Mean | 319.3 | 145.3 | 184.1 | 2,912.7 | 1,214.7 | 1,405.7 |

[^15]$$
8-11
$$
table 6. 10
NUMBER OF ADMINISTRATIVE STAFF EMPLOYED***:

| Number of Admintstrative Staff | Districts $<80,000$ |  |  | Districts $\therefore 00,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Elementary } \\ & \text { Frea. } \% \end{aligned}$ | $\begin{aligned} & \text { Juntor/ } \\ & \text { Middile } \\ & \text { Freq. } \end{aligned}$ | $\begin{aligned} & \text { Sentor } \\ & \text { High } \\ & \text { Freq. } \% \end{aligned}$ | Elementary frea. \% | Juntor" <br> Middle <br> Frea. \% | $\begin{aligned} & \text { Senlor } \\ & \text { High } \\ & \text { Freq. } \end{aligned}$ |
| 1-2 | (44) 20 | (66) 38 | (71) 35 | - - | - - |  |
| 3-4 | (26) 12 | (29) 17 | (36) 18 |  | - - |  |
| 5-9 | (43) 20 | (32) 18 | (44) 22 |  | ( 1) 8 |  |
| 10-14 | (30) 14 | (25) 14 | (20) 10 |  | - - |  |
| 15-24 | (35) 16 | (10) 6 | (12) 6 | - - | ( 1) 8 | (2) 13 |
| 25-49 | (21) 10 | (11) 6 | (16) 8 | - - | (r) 38 | (5) 3 |
| 50-99 | (13) 6 | - - | (3) 2 | ( 5) 28 | ( 3) 23 | (i) 46 |
| 100-199 | (4) 2 | - - | (1) $k *$ | ( 7) 39 | (2) 15 | (1) 6 |
| 200-299 | - . - | - - | - - | (5) 28 | (1) 8 | ( 1) $\quad$ i |
| 300-499 | - - | - - | - - | $(1) 6$ | - - | ( 1) 6 |
| Total | (216) 100 | (173) 100 | (203) 100 | (18) 100 | (13) 100 | (16) 100 |
| Doesn't Apply | ( 9) | (43) | ( 20) | (0) | ( 2) | ( 0 ) |
| No Information | ( 97) | (106) | ( 99) | (13) | (16) | (15) |
| Grand Total | (322) | (322) | (322) | (31) | (31) | (31) |
| Mean | 16.7 | 7.2 | 9.2 | 172.1 | 74.6 | 80.3 |

[^16]TABLE B.ll
STUDENT/TEACHER AND STUDENT/ADMINISTRATOR RATIOS BY DISTRICT SIZE

| District Size | Student/Teacher <br> Rat/o | Student/Administrator <br> Ratio |
| :--- | :---: | :---: |
| $1-299$ | 16.2 | 103.0 |
| $300-2,499$ | 20.0 | 370.3 |
| $2,500-4,999$ | 22.9 | 400.1 |
| $5,000-9,999$ | 21.7 | 532.0 |
| $10,000-24,999$ | 22.1 | 506.4 |
| $25,000-79,999$ | 23.2 | 504.5 |
| 80,000 and over | 24.3 | 486.1 |
| Combined | 22.0 | 855.8 |
| Significance Level |  |  |
| (F-Test) | $<.0001$ | .001 |

TABLE B. 12
STUOENT/TEACHER AND STUOENT/AOMINISTRATOR RATIOS BY REGION

| Reglon | Distrlcts < 80.000 |  | Districts $\geq 80.000$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Student/ <br> Teacher Ratlo | Student/ <br> Administrator Ratio | Student/ <br> Teacher Ratio | Student/ <br> Adminlstrator Ratio |
| New England | 19.5 | 418.0 | 21.9 | 834.2 |
| Mid East | 20.6 | 470.2 | 22.8 | 403.8 |
| Great Lakes | :22.3 | 418.9 | 24.5 | 422.5 |
| South East | 22.8 | 544.4 | 25.2 | 558.3 |
| Plains | 20.4 | 383.8 | 26.3 | 365.0 |
| Rocky Mountains | 21.5 | 429.5 | - | - |
| South West | 21.9 | 395.1 | 27.1 | 527.7 |
| Far West | 23.2 | 427.8 | 21.8 | 302.7 |
| Combined | 21.8 | 453.3 | 24.3 | 486.1 |
| $\begin{gathered} \text { Signlficance Level } \\ (f-\text { Test }) \end{gathered}$ | $P<.001$ | N.S. | N.S. | N.S. |

TABLE B. 13
enrollment change in last five years*

| Change | $\begin{aligned} & \text { Districts }<80,000 \\ & \text { Freq. } \end{aligned}$ |  | $\begin{aligned} & \text { Olstricts } \geq 80,000 \\ & \text { Freq. } \\ & 8 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Increase . | (195) | 63 | (16) | 59 |
| No Change | ( 35) | 11 | (2) | 7 |
| Decrease | ( 79) | 26 | (9) | 33 |
| Total | (309) | 100 | (27) | 100 |
| No Information | ( 13 ) |  | (4) |  |

TABLE B. 14
enrollment change by district size

| Slze | Increase Freq. $\%$ |  | No Change Freq. \% |  | Decrease Freq. it |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-299 | ( 2) | 33 | (2) | 33 | ( 2) | 33 |
| 300-2,499 | (41) | 61 | (16) | 24 | (10) | 15 |
| 2,500-4,999 | (39) | 75 | ( 5) | 10 | ( 8) | 15 |
| 5,000-9,999 | (38) | 69 | ( 6) | 11 | (11) | 20 |
| 10,000-24,999 | (44) | 58 | ( 4) | 5 | (28) | 37 |
| 25,000-79,999 | (31) | 59 | (2) | 4 | (20) | 38 |
| 80,000 and over | (16) | 59 | ( 2) | 7 | ( 9) | 33 |
| Total | (211) | 63 | (37) | 11 | (88) | 26 |
| Signlficance Level: (Chi Square Test): P <.0003. |  |  |  |  |  |  |

TABLE B. 15
enrollment change by region


TABLE 8.16
REASONS FOR ENROLLMENT CHANGE *

| Reason for increase | Districts $<80,000$ |  |  |  | Districts $\geq 80,000$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | First Freq. | $\begin{aligned} & \text { Reason } \\ & \% \text { of } 176 \end{aligned}$ | $\begin{gathered} \text { All } \\ \text { Freq. } \end{gathered}$ | fieas ons \% of 176 | First Freq. | $\begin{aligned} & \text { Re ason } \\ & \% \text { of } 15 \end{aligned}$ | $\begin{array}{r} \text { All } \\ \text { Freq. } \end{array}$ | $\begin{aligned} & \text { Reas ons } \\ & \$ \text { of } 15 \end{aligned}$ |
| Community growth | ( 55) | 31 | ( 59) | 34 | $(7)$ | 47 | ( 7) | 47 |
| New home constructlon | ( 40 ) | 23 | ( 40) | 23 | ( 1) | 7 | (1) | 7 |
| In-migration | ( 34) | 19 | ( 37) | 21 | ( 1) | 7 | ( 1) | 7 |
| Population increase | ( 13) | 7 | ( 14) | 8 | ( 4) | 27 | ( 4) | 27 |
| Shift from private to public schools | ( 10) | 6 | ( 13) | 7 | - | - | - | - |
| Desegregation | ( 6) | 3 |  | 5 | - |  | ( ${ }^{-}$ | - |
| Industrial growth | ( 6) | 3 | ( 7) | 4. | - | - | (1) | 7 |
| Consolidation | ( 5) | 3 | ( 6) | 3 | - | - | ( | - |
| Annexation | ( 3) | 2 | ( 3) | 2 | - | - - | - |  |
| New highway access | ( 2) | 1 | ( 3) | 2 | - | - | - |  |
| increasing birth rate | ( 1) |  | ( 1) | 1 | ( 1) | 7 | ( 1) | 7 |
| Busing | ( 1) | 1 | ( 1) | 1 |  |  | ) | - |
| More school-age children | - | - | ( 1) | 1 | ( 1) | 7 | (2) | 13 |
| Total | (176) | 100 | (193) | 110 | (15) | 100 | (17) | 113 |
| Reason for Decrease | Freq. | \% of 66 | Freq. | $\%$ of 66 | Freq | $\%$ of 8 | Freq. | 8 of 8 |
| Out-Migration | (21) | 32 | (26) | 39 |  | 25 |  | 38 |
| Decreasing birthrate | (14) | 21 | (18) | 27 | (3) | 38 | (3) | 38 |
| Less school-age children | (10) | 15 | (1) | 17 | (1) | 13 | ( 1) | 13 |
| Economic conditions | ( 7) | 11 | (11) | 17 | - | - | ( 1) | 13 |
| Unemp loyment | ( 6) | 9 | ( 7) | 11 | - | - | - |  |
| Population stabilization | ( 4) | 6 | ( 4) | 6 | - | - | - | - |
| Shift from public to private school | ( 2) | 3 | ( 7) | 11 | - | - | - | - |
| Population decrease | ( 2) | 3 | ( 2) | 3 | - | 13 | (i) | - |
| Desegregation | ( | - | ( | - | (1) | 13 | ( 1) | 13 |
| Homes torn down for commerclal growth | - | - | - | - | (1) | 13 | ( 1) | 13 |
| Total | (66) | 100 | (86) | 130 | (8) | 100 | (10) | 125 |

Question $\# 13 c$.

TABLE B. 17
PER PUPIL EXPENOITURE*

| Expendl ture | Distrlct freq. | $80,000$ | $\begin{aligned} & \text { olstri its } \geq 80,0 \mathrm{~J} \\ & \text { frea. } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| \$300-399 | ( 4) | 1 | - | - |
| \$400-499 | ( 18) | 6 | - | - |
| \$500-599 | ( 34) | 12 | ( 3) | 13 |
| \$600-699 | ( 48) | 17 | ( 2) | 8 |
| \$700-799 | ( 60) | 22 | ( 7) | 29 |
| \$800-899 | ( 53) | 19 | ( 6) | 25 |
| \$900-999 | ( 30) | 11 | (5) | 21 |
| \$1000-1499 | ( 25) | 9 | ( 1) | 4 |
| \$1500 - 2500 | ( 6) | 2 | - | - |
| Total | (278) | 100 | (24) | 100 |
| No Information | ( 44) |  | ( 7) |  |
| Mean | \$785.39 |  | \$789. |  |

* Question \# 14a

TABLE B. 18
PER PUPIL EXPENDITURE CHANGE
IN LAST FIVE YEARS*

| Change | Districts $<80,000$ Freq. |  | $\begin{aligned} & \text { Districts } \geq 80,000 \\ & \text { Freq. } \\ & \% \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Increase | (280) | 92 | (26) | 93 |
| No Change | ( 18) | 6 | ( 2) | 7 |
| Decrease | ( 6) | 2 | - | - |
| Total | (304) | - 100 | (28) | 100 |
| No Information | ( 18) |  | ( 3) |  |

* Question \# 14 b

TABLE 6.19
CHANGE IN PER PUPIL EXPENDITURE GY DISTRICT SIZE

| Slze | Increase |  | No Change |  | Decrease |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freq. | 8 | Freq. | \% | Frea. | \% |
| 1-299 | ( 5) |  | - | - | - | - |
| 300-2,499 | ( 57) |  | ( 7) | 11 | (1) | 2 |
| 2,500-4,999 | ( 48) | 92 | ( 2) | 4 | (2) | 4 |
| 5,000 - 9,999 | ( 50) | 93 | ( 4 ) | 7 | - | - |
| 10,000-24,999 | ( 71) | 95 | (2) | 3 | (2) | 3 |
| 25,000-79,999 | ( 49) |  | ( 3) | 6 | (1) | 2 |
| 80,000 and over | ( 26 ) | 93 | ( 2) | 7 | - | - |
| Total | (306) | 92 | (20) | 6 | (6) | 2 |
| Not Significant |  |  |  |  |  |  |

TABLE 8. 20
PER PUPIL EXPENDITURE CHANGE GY REGION

| Region | Districts $<80,000$ |  |  | Districts $\geq 80,000$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thcrease freq. | No Change | Decrease Freq. \% | Increase Frea. \& | No Change | Decrease Freq. |
| New England | ( 22) 100 | - - | - - | ( 1) 100 | - - | - - |
| Mid East | (47) 94 | (2) 4 | (1) 2 | (5) 100 | - - | - * |
| Great Lakes | ( 59) 92 | (5) 8 | - - | ( 4) 100 | - - | - - |
| South East | (58) 89 | (5) 8 | (2) 3 | (11) 92 | (1) 8 | - - |
| Plains | (27) 96 | ( 1) 4 | - - | ( 1) 100 | - - | - - |
| Rocky Mountains | ( 11) 100 | - - | - - | - - | - - | - - |
| South West | ( 20) 87 | (3) 13 | - - | ( 1) 50 | (1) 50 | - - |
| Far West | ( 36) 88 | (2) 5 | (3) 7 | (3) 100 | - | $\bigcirc$ |
| Total | (280) 92 | (18) 6 | (6) 2 | (26) 93 | (2) 7 | - - |

TABLE B. 21
reasons for change in per pupil expenditure *

| Reason. <br> Increased Expenditure | Dlstricts $<80,000$ |  |  |  | Distrl., s $280, \mathrm{Ju}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | flist Reason Freq. \% of 256 |  | AT] Reasons Freq. \% of 256 |  | First Reascn Freq, \% of 25 |  | All Reasons Freq. \% of 25 |  |
| Inflation | (78) | 30 | (81) | 32 | ( 5) | 20 | ( 5) | 20 |
| Increased costs | (53) | 22 | (69) | 27 | (10) | 40 | (10) | 40 |
| Salaries, Fringe Benefits | (56) | 22 | (105) | 41 | ( 5) | 20 | (15) | 60 |
| New or improved programs or services | (20) | 8 | (62) | 24 | ( 3) | 12 | ( 6) | 24 |
| Increased state funds | (21) | 8 | (26) | 10 | ( 1) | 4 | (2) | 8 |
| Increased Local funds | (11) | 4 | (22) | 9 | - | - | (2). | 8 |
| Increased federal funds | ( 6) | 2 | (10) | 4 | - | - | ( 1) | 4 |
| Increased enrollment | ( 5) | 2 | (13) | 5 | ( 1) | 4 | ( 1) | 4 |
| 'Increased funding-unspec. | ( 3) | 1 | ( 5) | 2 | - | - | ( 1) | 4 |
| New or improved equipment or facilities | ( 1) | ** | (11) | 4 | - | - | ( 1) | 4 |
| More Staff | (1) | ** | (15) | 6 | - | - | (1) | 4 |
| Smaller class size | ( 1) | ** | ( 2) | 1 | - | - | ( 1) | 4 |
| Total | (256) | 100 | (421) | 164 | (25) | 100 | (46) | 184 |
| Decreased Expenditure | Freq. | 2 of 6 | Freq. | 2 of 6 | Freq. | \% | freq: | * |
| Decreased Local funds | ( 3) | 50 | ( 3) | 50 | - | - | - | - |
| Decreased Funding-unspec. | ( 2) | 33 | ( 2) | 33 | - | - | - | - |
| Decreased State funds | ( 1) | 17 | ( 1) | 17 | - | - | - | - |
| Total | ( 6) | 100 | ( 6) | 100 | - | - | - | - |

$*$ Question $\# 14 c$
$* *$ Less than $0.5 \%$

TABLE B. 22
PERCENT OF GRADUATES CONTINUING THEIR EOUCATION
FREQUENCY DISTRIBUTION

| Percent Contlnuing | Districts $<80,000$ |  |  |  | Districts $\geq 80,000$; |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Four-Year College Freq. | Two-Year College Freq. | Non-degree Voc. Trech. Freq. | Other Freq. | Four-Year College Freq. | Two-Year College Freq. | Non-degree Voc./Tech. Freq. | Other Freq |
| 0-10\% | 11 | 47 | 109 | 20 | - | 4 | 12 | 2 |
| 10-19 | 22 | 76 | 78 | 1 | 1 | 3 | 3 | $\cdots$ |
| 20-29 | 55 | 55 | 27 | - | 2 | 6 | - | $\cdots$ |
| 30-39 | 57 | 15 | 4 | - | 7 | - | 2 | - |
| 40-49 | 53 | 15 | - | - | 4 | - | - | - |
| 50-59 | 36 | 9 | 1 | - | 2 | 1 | - | - |
| 60-69 | 13 | 2 | - | - | - | - | * | - |
| 70-79 | 4 | - | - | - | - | 1 | - | * |
| 80\% and over | 2 | - | - | - | - . | - | - | - |
| Total | 253 | 219 | 219 | 21 | 16 * | 15 | 17 | 2 |
| Doesn't Apply | 13 | 22 | 17 | 84 | - | - | $\therefore$ | 2 |
| No Information | 56 | 81 | 86 | 217 | 15 | 16: | 14 | 27 |
| Grand Total | 322 | 322 | 322 | 322 | 31 | 31 | 31 | 31 |
| Mean | 35.5 | 19.0 | 10.2 | 3.7 | 36.1 | 20.7 | 9.4 | 4.0 |

* Question \#10

TABLE B. 23
mean percent of graduates continuing their education BY DISTRICT SIZE

| Size | Four-Year <br> College <br> Mean\% | Two-Year <br> College <br> Mean \% | Non-degree <br> Voc./Tech. <br> Mean \% | Other <br> Moan \% |
| :---: | :---: | :---: | :---: | :---: |
| $1-299$ | 49.0 | 22.0 | 15.0 | - |
| $300-2,499$ | 32.9 | 21.1 | 10.9 | 3.7 |
| $2,500-4,999$ | 36.6 | 14.5 | 10.1 | 3.5 |
| $5,000-9,999$ | 32.5 | 19.1 | 10.4 | 2.5 |
| $10,000-24,999$ | 37.8 | 20.2 | 9.4 | 5.3 |
| $25,000-79,999$ | 36.8 | 18.8 | 10.1 | 3.4 |
| 80,000 and over | 36.1 | 20.7 | 9.4 | 4.0 |
| Total | 35.6 | 19.1 | 10.1 | 3.7 |
| Signlficance Level | N.S. | N.S. | N.S. | N.S. |



TABLE B. 24
MEAN PERCENT OF GRADUATES CONTINUING THEIR EDUCATION BY REGION

|  | Districts $<80,000$ |  |  |  | Districts $\geq 80,000$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reglon | Four-Year College Mean ${ }^{6}$ | Two-Year College Mean \% | Non-degree Voc./Tech. Mean \% |  | Four-Year College Mean \% | Two-Year College Me an \% | Non-degree Voc./Tech. Mean: |  |
| New' England | 38.3 | 16.9 | 10.8 | 4.0 | 27.0 | 4.0 | 9.0 | 1.0 |
| Mld East | 37.0 | 16.4 | 7.5 | 3.0 | 37.0 | 17.3 | 3.7 | 3.0 |
| Great Lakes | 36.6 | 15.4 | 10.3 | 2.5 | 30.7 | 15.0 | 5.0 | 3.0 |
| South East | 33.7 | 15.3 | 11.0 | 2.5 | 38.4 | 19.4 | 11.8 | 2.5 |
| Plains | 32.8 | 21.2 | 11.6 | 6.3 | - | - | - | 5.0 |
| Rocky Mountalns | 48.6 | 21.3 | 11.1 | $2.0{ }^{\circ}$ | - | - | - | - |
| South Hest | 38.9 | 23.9 | 10.1 | - | 41.0 | - | 12.0 | 1.0 |
| Far hest | 30.2 | 29.3 | 10.2 | - | - | 70.0 | - | 3.0 |
| Total | 35.5 | 19.0 | 10.2 | 3.7 | 36.1 | 20.7 | 9.4 | 4.0 |
| Significance Level, f-Test | $P<.05$ | P < . 0001 | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. |

## APPENDIX C SUPPORTING STATEENT

ERIC

# Supporting Statement for the Questlonnalre <br> "Innovation from the Superintendent's Vlewpoint" <br> (A Pretest) 

Ronald G. Havelock CRUSK/ISR Universlty of Michigan

Paragraph
No. 350: A. Justification of form
The need for the questionnuire, "Innovations fron the Sur rintende. Viewpolnt" arises out of the focus of the entire project on the processes of innovation ${ }^{*}$ in education. It is essential to collect empirical data on aspects of $I n n o v a t i o n$ procedures and barricrs which operate in different types of school systems.

The questlonalre will be used with a national sample of school systems for the purpose of meetling the objectives clted below:

1. To provide an emplrical base for specific recommendations to USOE on priorlty needs in research and Jevelopment on the knowledge dissemination and utillzation process. Such recommendations will be of use to the National Center for Educational Communlcation in the determlation of priority applled research and development for the future and to those OE offlcials responslble for planning the National Institute for Education.

- 

2. To create a set of baseline data on processes in the dissemlnation and utilization of educational innovations to assist $\ln$ possible future monitoring of innovation in education.
3. To pretest the questionnaire and to determine the feasibility of the proposed method of analyzing results.
"T्ञाnnovation" is defined as a major change introduced for the purpose of improving the quallty of education within a district. This change may have involved any of the following: (a) a substantial reorientation on the part of the staff, (b) a real iocation of resources, (c) adoption of new practices, programs, or technology.

No. $351 \quad A(2)$ : This profect is part of a sequence of logically related studies by Havelock to improve the quality of educational dissemjnation and utilization. The flrst study, begun in December of 1966 and concluded with a, 500 page report. In July, 1969, revlew d over 4,000 studies and publlcatlons relevant to $D \in U$ In all fields of practice: education, medicine, Industrial technology, mental health, etc. The final report synthesized thls materlal, and from the synthesls derived specific guldeIlnes for educational research, development, practice and policy.

Opice such a synthesis is made, however, it must be tested and reworked on the basls of emplrical data. Educatlonal Innovation processes have been studled emplrically In the past (Mort, 1964; Carlson, 1965; LIn, et al., 1966). Such studies provided part of the knowledge base for the Ilterature review and synthesls. However, such studies are not adequate as baseline data for current $O E$ pollcy plannling for a number of reasons:

1. all these studles used reglonal or local samples rather than a nat lonal sample: hence generalization for national policy purposes is questionable;
2. almost all of these studies are ten or more years out of date, not reflectlng any changes which mlght have come about as a result of Federal legislation In the 1960's;
3. these studies were not generated out of a comprehensive theoretical framework for Del analysis such as Is offered by the li terature Survey report (Havelock, 1969).

In thls study some of the questions from these previous rer... 's. Investigations will be asked aqain, but, in addition, there e several sets of new questions that will be asked relating both to the developments of the 1960's and to the hypotheses and models of oEU outlined by Havelock.

From the emplrical data derived from the proposed national study, OE will be better able to formulate approprlate and needed policies and programs in applled research and development in educational dissemination and utilization.

No. 352: Justification of Method Used in Selectlng and Contacting Those to be Covered

## Pllot Test:

The questlonnalre and follow-up procedures wlll be pllot tested using a sample of 9 school systems. These systems wlll be chosen accordingly to the sampling procedures outlined below. Once chosen, these systems will be removed from the study population so that there will be no chance of thelr being included in the maln study.

During the pllot test perlod a codebook will be constructed in which each questlonnalre item will be asslgned a variable number and card/tape location. Once coded, speciflc questionnalre items will be referenced by thls varlable number.

In addition to providing information concerning expected response rates and needed questlonnalre modiflcations, the pllot test will be useful in "debugging" the code manual and in prellminary construction of codes for the more complex open-ended questlons.

## Mail Out:

Once the sample has been manually selected, the contractor will access the master tape file, selecting all tape records whose ID numbers correspond to those selected In the sample. The new tape flle, or "Master Control Tape Flle" will be used to prlnt name and address labels to be used $\ln$ malling all materials to respondents.*
\#The first contact with the respondent wlll be a "commitment" letter in which the contractor explains the study and asks the respondent if he would join in the project by filling out a questionnaire which will be malled at a later date. The respondent is asked to Indicate his willingness to participate by returning an endorsed form. After a period of two weeks respondents, not returning a commltment form will be telephoned. At the completion of this process, the Master Tape file will be updated to delete all superintendents who are unwilling to participate in tho study, and questionnaires will be mailed to the remaining names in the file.

An additional set of name and address labels will be used t. .. mrate a printed card "Control flle." This flle wlll be updated dat, so that the contractor will always know how many commltment letters and questionnalres have been :alled, how many returned completed or refused, how many follow-up latters have been malled, etc., and in each case who the respondent is.

Expected Response Rate, Follow-up, and Non-Response Study:
Some beneflts of this survey wlll be answers to such basif questions as: What is the response rate of superintendents? What constitute the most approprlate research Instruments and questlons to use in monltorlng of Innovation? What are the most efflelent and frultful follow-up procedures? it is difficult to specify actual response rates $1 n$ advance. Therefore, what follows is a rough estimate, and the procedures outlined will be subject to some modiflcation. For this reason also the survey of non-respondents becomes cruclal,

Approximately 3 days after the lnitial mali-out of the questlonnaire, a reminder post card wlll be sent to non-respondents. After an additional two weeks, remalning non-respondents will be malled a letter and a second questlonnalre. It is hoped that within 10 days of this follow-up the response rate will have reached $80 \%$ leaving 100 non-respondents. At this polnt the contractor would attempt to contact each non-respondent by. telephone and urge him to return a completed questionnaire.

The samplling procedure will be to draw a probabllity sample of 500 operating publle school systems stratifled by enrollment size and geographic regions.
A. The Study Population

The study population is all operating publle school systems in the U.S.; exclusive of those In Alaska, Hawall, U.S. Service Schools, Canal Zone, Guam, Puerto RIco, and the Virgin Islands, according to is llst obtalned from the Office of Education whlch wlll be used to prepare the Educatlon Directory, 1970-71: Publle School Systems.
B. Deflnltion of Terms

To assure maximum comparabll, ty, the concept of region, the categorizatiop of pupll enroliment size, a nid the definition of public school system were designed to agree generally with the categorles and terminology of the followling U.S. Offlce of Education documents. For the concept of region, the document Statistles of Non-Public Secondary Schools, 1960-61, U.S. Department of Health, Education and Welfare, Office of Education, National Center for Educational Statistics, 1963 was used. For the concept of enrollment slze categorles and the definition of school system, the document, statlstics of Local Publle School Systems, fall, 1970, U.S. Department of Health, Educatlon and Welfare, Office of Educatlon, National Center for Educatlonal Statistles was used.

## C. Sampling Unit

The sampling unft is the operating public school system. The selection of this unlt makes it possible to direct questions to the school superin" tendent about the process of innovation, adoption, and management of educational change in the school system.

School districts will be the unlt of study and analysis for .. : rollowing' reasons:

1. major policy decisions for educational change are made at the school district level;
2. when support or funding is glven for educational innovation, it is frequently provided at the school district level:
3. a natlonal listing of school districts was avallable for samplling. No such list ls avallable for individual schools or other types of educational units.
D. Sample Size

Considerling the budget resources and the research objectives of the investigation (to get acceptable rellablity for estimates of means, proportlons, and measures of association), the contractor decided to draw a stratifled sample of 500 school systems with probability proportionate of pupil enrollment.
E. Type of Design: Stratified Single Stage Sample wlth Varying

Probabilities
It is assumed that educatlonal change is likely, to vary from region to region, and among school systems of different sizes. It was deemed desirable to reduce samplling errors in estlmating means and percentages for the population to be studied. The assumption of low variabillty within region and within the pupil enrollment size category provides for greater precision of estinates as a result of stratification of these factors. Further, the contractor wanted to insure adequate representation of regions, and school systems of different sizes.

The foregoing consideration leads to the formulation of the following sampling procedures. The sample of school systems will:

1. give proportionate representation to the eight regions of the U.S.;
2. glve proportionate representation to the six pupll enrollment slze classes;
3. use pupll enrollmant to measure proportionate representation.
F. Sampling Frame

The operating publlc school systems are to be stratifled according to the elght regions and six classes of pupil enrollment size.
G. Sampling Procejure

The sample will be selected manually using the following procedure. It is glven that there are $44,753,426$ puplls distributed among 17,467 public school systems with probabillty proportionate to pupll size stratifled according to reglon.

Specifically the total number of puplls ls divided by the sample size in order to determine the number of puplls that each sample system will represent:
$\frac{\text { Total number of pupl15 }}{\text { Sample size }}=\frac{44,753,426}{500}$ p $89,506.85$
Thus, each public school system selected would represent.approximately 89,507 puplls. 8ut since some school systems have enrollments larger than 89,507 , it is felt that these should all be included with certainty rather than sampled. Looking at the distribution of enrollment sizes, the contractor declded to choose a natural cutting off point for thls selection and include with certainty all school systems with enrollments
of 80,000 or more. These systems then will have weights proportir the to their actual enrollment size and hance will represent anly menselves. In contrast the remalning systems in the sample, the "nonnsulf-representing" school systems, represent not only themselves, but also other school systems belonging to the same stratum from which they are selected. H. Listing of School Systems and Sample selection

The contractor has prepared a complete llst of all school systems In the sampling size in each of eight geographical regions. He set aside the 40 school systems with enrollments of 80,000 or more (to be included wl th certainty) and then allocated the residual 460 systems across 18 cells, each cell representing one of the eight regions and one of the six pupll slze categories. In each cell, the school systems are listed in ascending order according to pupil enrollment size.

He will then determine the unlt welght, that is the number of pupils that each sample system wlll represent. Using the formula listed, he arrives at a rounded flgure of 81,695 as follows:

```
Total pupll enrollment in non-self-
\(\frac{\text { representing school systems }}{\text { Sample slze minus self-representing }}=\frac{37,579,703}{(500-40)=460}=81,695.007\)
school systems
```

The total number of systems to be selected from each cell is determined by dividing the total number of pupils in that cell by the unit weight $(81,695)$.

$\frac{\text { Total pupil enrollment incell }}{\text { Unit weight }}=\quad$| Number of systems to be |
| :--- |
| selected from that cell |

1. Mechanics of Sample Selection

Sample units will be selected by systematic random sampling method.
To do this the contractor first determines a skip Interval by dividing the total number of pupils in a given cell by the number of systems to be
selected from that cell:
Total pupll enrollment

$\frac{\text { in cell }}{\text { Number of systems to be }}$| selected from that cell |
| :--- |$\quad$ akip

Using a table of random numbers, he selects a random number which is equal to or less than the skip Interval. Looklng at the cumulative totals of pupll enrollment size in the cell, he locates the school system whose enrollment size contalns this random number, and selects that system as a study unit. Then he adds the skip Interval to the random number, arriving at a new number, and selects the next school system whose cumulative enrollment contalns thls number. He continues this process until he has selected the requlred number of systems from that cell. Thls process is then repeated across all the 48 celis. Selections. in each cell are made In palrs for convenlence of calculating sampling errors (see section K). If a cell does not contaln a total number of puplls large enough to glve at least a palr of selection units (school systems) we sklp that cell. J. Welghting *

Because each superlntendent represents 81,695 puplls, in the analysis each superintendent is to recelve equal welght with the exception that superintendents from districts wlth more than 80,000 puplls are to be assigned weights in units of 81,695 . For example, a superintendent from a system of 164,000 puplls would receive a welghting factor of 2 . This type of design in whlch respondents recelve equal weight greatly simplifles data processing and analysis as compared to a design that has numerous sampling rates and consequently requires that many weights be applled before data can be combined across cells. Furthermore, the sample con*

[^17]centrates among the larger school districts, and selected super.ntendents tend to be those having the greatest Influence in terms of the number of pupils affected by their decisions.
K. Calculation of Sampling Errors

Sample selecitions are to be made in palrs to facllitate the calculation of sampling errors using. palred difference technlque or a balanced replicated half-sample technique (Kish, L. and Frankel, M.R., "Balancer! Repeated Replications for Standard Error," Journal of the American Statistical Assoclation, Vol. 65, Sept., 1970, pp. '07/-1094; Kish, L. and Hess, I., "On Varlance of Ratlos and Thelr Differences In MultiState Sampling," Journal of the American Statistical Association, Vol. 54, June, 1969, pp, 416-446).

October 1: Mall Commitment Letter
October 15; Telephone follow-up
October 29: Update Master Tape File
November 1: Questionnalre Approved by $0 M 8$
November 8: Completion of printing and reproduction of materlals
November 12: Mallout date
November 15: Postcard follow-up
November 29: follow-up letter and questionnalre
December 13: Closeout date
December 14 -
January 3: Tlme of quallty check and non-response study
January 31: Completion data for output by data processors
February 14: Completion of requested tabulations
March 1: Completion date of manuscript for review
March 7: Completion date for revlew and editing of manuscript
March 14: Date when coples of report wlll become avallable for distribution

Paragraph
No. 362: Oata Preparation
Returned questionnaires will be "logged" on the controt flle and then coded by project staff according to the codebook directions established during the pilot phase. Contractor's data processing staff in liaison with project staff will coordinate the coding, key punching, and computer processlng of all Information, Once coded and key punched, the data will be read onto tape. This tape will then be matched against and merged with the Master Control Tape File, Data records which do not match will be checked for errors (e.9., miscoded 10 numbers) corrected, and merged back onto the tape.

## No. 363: Analysis

After all records have been matched, preliminary analys l will be made. In thls phase, univarlate frequency and percent distributions on all variables will be generated. No control variables will be used. Thes. printouts will be scanned for "illegal" codes and other obvious coding errors. Once this data "clean-up" is completed the major analysis will be made.

Throughout the analysis contractor wlll control two variables: the geographic region and the school system size which each respondent represents. These wlll be comblned and collapsed into a composite variable (e.g., perhaps using three enrollment sizes and four geographic regions) to reduce complexity,

The enalysis will be divided into four sections:

1. System background Information
2. Correlates of Innovativeness
3. Creation of an innovation Inventory
4. How innovations become adopted
5. Backgrcund Information:

This section wlll be limited to slmple blvarlate numerlc and percent frequency distributions. All varlables llsted below wlll be run against the controls speclfied above. Where appropriate, tests of association and differences between means wlll be computed, Speclfically the ltems Included in the background phase will be:

Question
Number
Item
Statistics
10
Index of proportion of graduates
Mean, F-test continulng education
lla, llb Index of difflculty ingalning cltizen Mean, f-test support for financling education

12a, 12b, 12c Occurrence of school disruptions Mean, f-test
12d Relationshlp of disruptions to
Chl-square
13a(1) Grade Span

13a(2) Slze of student enrollmen
13a\{3) Number of teachers employed
13b . Change in enroliment size
13c
$14 a$
$" 11$
Mean, F-test
$" 11$
$" 11$
$14 b$
14 c

Per pupil expendl tures
Mean, f-test
Change In per pupll expenditure
Reason for change
Reason for change
Chi-square
" 1

Chl-square
2. Correlates of Innovation:

In thls section an Innovatlveness score based on the responses to that part of question 5 asklng for total number of Innovations wlll be derlved. Thls number wlll be summed over all innovation areas to yleld a single measure of innovativeness for each school system sampled. In
addition, these scores will be averaged to obtain Mean Innovati: is Scores for reglons and Mean Innovativeness Scores for pupil , ze groups. In most instances product noment correlations will be used to examine the relationship between this score and variables such as use of internal and external resources (question 6) and measures of system reward structure (question 9), use of medla (question 8) and the background variables,

To ald in the interpretation of these correlations, numerical and percent frequency tables wlll be generated by cross-tabulating eich of the above variables with innovativeness scores.

## 3. Innovation Inventory:

In this section, the specific Innovatlons Ilsted in Question 5 will be examined. An attempt will be made to codlfy these into a workable and meaningful Inventory to be used in subsequent monl toring efforts. Analysis wlll consist of numerical and percent frequency distributions of the responses given $\operatorname{In}$ Question 5. An additional control variable wlll be the content area of Innovation.

## 4. How Innovatlons become Adopted:

In this section we will examlne the innovation process by analyzing the case study of a signlficant innovation tried out in the respondent's school system in the last year.

Specifically analysis will utillze the two control variables or some combined composite of these and will consist of:

1. Numeric and percent frequency distribution of the specific innovation described in Question la.
2. Bivariate numeric and percent frequefcy distributions in which specific innovations are cross tabulated with the followling:

| Questlon Number | 1 tem | Statlstics |
| :---: | :---: | :---: |
| It | Actual consequence | Chi-square |
| Ic | Key factors in success or fallure | $1{ }^{\prime}$ |
| 1 d | Recommendation to adopt thls innovation | 11 |
|  | Advice on adoption | $1{ }^{\prime}$ |
| 2 | Aspects of innovation procedures | Mean, F-test |
| 3 | Barrlers to innovatlon | is 1 |
|  | tor Analysis of Innovation Procedures (Ques Barriers to Innovation (Question 3). vatlor, of Mean Factor Scores for each o tors extracted. <br> of F-test of the differences between th tor scores across the varlous innovation Part 1 above. | Ion 2) <br> mean <br> sted |
| 4 a | Other major area of change | Chl-square |
| $4 b$ | Utillty of checkllst | 11 |
| 7 | Use of resources | Mean, F-test |

No. 370: D. Documentation of Consultation
To determine the suitability of the questions for this form, members of the staff consulted with proctitioners in school systems and members of the Research Advisory Complttee on Innovation Processes in Education. A questionnalre was prepared and dellvered to the practitioners for their comments and suggestions. Their criticlsms and responses were carefully reviewed. Using their suggestions a second questionnalre was prepared and then formally presented to the members of the Research Advisory Committee on Innovation Processes in Education as they are to be the immediate users of this information. As a panel, thef reviewed the question:nalre with some of the revisions suggested by the practitioners and provided criticism.

Subsequently this revised version was reviewed by a secund group of superintendents; again, their detailed reactions were used to simplify and clarify the form.

The practitioners who responded to the questionnaire were from Michigan school systems which differ in enrollment size and populations served. The systems were selected on their perceived degree of innovativeness in different areas of educational practice. The selection of these systems was based on a discussion with Dr. George Mills who is a school systems consultant at the University of Michigan, Bureau of School Services.

The persons who assisted in reviewing the pre-submission questionnaire from the practitioner's viewpoint were:

1. R.A. Montambeau

Supervisor, Research \& Assessment Livonia Public Schools 15125 Farmington Road Livonia, Michigan 48154
2. Dr. Lawrence H. J. Valad Superintendent of Schools 235 E . Thirteen Mile Road Madison Heights, Michigan
3. Saries H. Rossman

Superintendent of Schools
Plymouth, Hichigan
4. Garlo W. Kelkkinen

Superintendent
Adrian Public Schools
204 E. Church Street
Adrlan, Michigan 49221
5. Jack E. Meeder

Superintendent
Albion Public Schools
709 N. Clinton Street
Alblon, Michigan 49224
6. Elwood Larsen

Superintendent
Charlotte Public Schools
378 State Street
Charlotte, Michigan 48813
7. Malcolm Katz

Superintendent
East Lansing Schools
509 Burcham Drive
East Lansing, Michigan 48823
8. Lawrence Gasnon

Superintendent
Hillsdale Community Schools
30 \$. Norwood
HIllsdale, Michigan 49242
9. Kenneth W. Oslen

Superintendent
okemos Public Schools
4406 Okemos Road
Okemos, Michigan 48864

Prior to consulting with the Research Advisory Committee on Innovation Processes in Education members, the contractor submitted the questionnaire to OE for informal revicw. The Clearance Staff of USOE informally reviewed the questionnaire and suggested a number of worthwhile changes. The amended questlonnaire and the Clearance Staff's coments were placed before the panel for its comments and reactlons.

The panel nembers who invested a great deal of tlme and ener. 1 un Improving the questlonnalre are:

Or. Richard O. Carlson
Center for Advanced Stuojy of Educational
Administration
tiendricks Hall
University of Oregon
Eugenc, Oregon 97403 Tel: (503) 686-5171
Or. Robert Chin
Human Relations Center
Boston Universlty
Boston, Massachusetts Tel: (617) 353-2770
Or. Neal Gross, Dean
Graduate School of Education
Unlversity of Pennsylvanla
3700 Walnut Street
Philadelphia, Pa. 19104 Tel: (215) 594-7014
Or. Ronald Llppltt
Center for Research on Utillization of Sclentlfic Knowledge
Institute for Social Research
426 Thompson
Ann Arbor, Michigan 48104 Tel: (313) 764-6108
Or. Matthew B. Mlles
Program on Humanlstic Education
State University of New York (Albany)
Retreat House Road
Glenmont, New York 12077 Tel: (518) 472-8680
Or. Everett Rogers
College of Conrnunication Arts
Department of Communication
Mlchigan State Universlty
526 South Kedzie Building
East Lansing, Michigan 48823 Tel: (517) 355-3480

Paragraph
No. 372: 0 (2): The time necessary to complete the submitted form on the average requires approxithately 40 minutes.

## APPEDDIX D

## LETIERS TO PESPONDENTS

NIER FOR RESEARCH GR, UTHIAATION GE CCIENIFIC KNOWI EOGE /INSTITUTE FOR SOCIAL RESEARCH / FHG UNIVERSITY OF MICMIGAN
ANN ARBOR, MICHIGAN 48106

Within the last yar the U.S. office of Education has established a "division
of practice improvernent." The misslon of this new agency will be to provlde rore
effective support to local school districts considering and implementing innovations.
As a firsi step in thelr program they have asked the University of Michigan to
provide an accurate plcture of current innovation activitles across the nation.
Because your district has been chosen as representative of districts of similar size
in your region, I am writing to ask for your cooperation ln the project.
The focus of this survey ls the process of change. Past studies have shown that the superintendent is usually the one person in the best position to observe and comment on this subject. For that reason we feel that federal pollcy guldance should be based initially on infomation reported by people llke yourself and collected from a select national sample.

Results of the survey will be tabulated quickly by the Michlgan survey team in a way that protects the anonymlty of yourself and your distrlct; these summary fesults will be returned to you within a few months and should be of specific help in planning and guiding your own efforts next year, in other words, we see this project as a two-way activity providing guldance to the U.S. Offlce of Educatlon and to you and your own staff at the same time.

The initlal survey form, whlch will be sent to you within a few weeks will be four pages in length and should take about 30 to 40 minutes of your time. It has been pretested and pared down to a minimum length. Most questions require thought, but you will not be expected to dig through files or make extenslve inquiries among your staff.

Finally, 1 think you will find the questions interesting and provocative. The sew superlintendents we have talked to sp far tell us that these are the questions that are relevant for them today and they want the answers just as much as the USOE does.

Wlll you join in this project? I would like to have your response by return mail if possible.

Thanks for your corisideration; it is greatly appreciated.
Yours sincerely,

Ronald G. Havelock, Ph.D.
RGH: rw
Program Director

Re: Project on Innovatlon Process for the Division of Practice Improvement, U.S. Offlce of Education

To: Ronald G. Havelock
Program Olrector
Instltute for Social Research
University of Mlchlgan
Ann Arbor, Michigan 48106.
;
Yes, $I$ wlll be willing to particlpate $\ln$ this project.. $\qquad$
No, I will not be able to participate..................... $\qquad$
Reason for not partlclpating:
Our rules do not permit this $\qquad$ I am not interested
I cannot afford the tlme Other reason $\qquad$

I need more Information about the project before I can make a decision. $\qquad$

How should future correspondence regarding this project be addressed?
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## SR

TER FOR RESEARCH ON UTILIZATION OF SCIENTIFIC KNOWLEDGE / INSTITUTE FOR SOCTAL RESEARCH/THE UNIVERSITY OF MICHIGAN ANN ARBOR MICHIGAN 48106

Novenber 9, 1971

Dear Superintendent

Approximately 3 weeks ago wo mailad you the enclosed letter asking for your partilcipation In a major survey of changs in school systems. Since we have had no response as of this date, we thought that the original letter might have been mislaid. Because the study is nationally lmportant l hope you will be abie to participate. In any case we need to have your response before we can procede with the study. A duplicate response form and stamped return envelope are enclosed for your convenience. If this matter has already been taken care of, I hope you will accept my apologies and disregard this reminder.

Yours sincerely,

RGH: rw
Ronald G. Havelock, Ph. D.
Enclosures
Program Director

## ISR

CEnter for research on utilization of scientific knowledge /institute for social research / the university of michig/ ANN AREOR, MICHICAN

Oecember 10, 1971

Dear Superintengent
We are most grateful that you have agreed to particlpate in the study of Innovation process for the Natlonal Center for Educational Communlcation. As 1 indicated in my letter of October 13, the enclosed form is intended to cover the issues that are usually relevant to the management of innovation In education. Up to now there have been few attempts to collect Information of this nature. For that reason we are especlally eager to have your comments on the questions themselves and on Important issues which you feel we may have overlooked.

Although most of the questlons are self-explanatory, an Instruction sheet is includad which provides additional clarification. If possible, we would Ilke you to respond to every item on the form. However, If you find that you cannot readily answer particular question, we would like you : o indicate very briefly why you cannot respond to that item.

If you encounter any difflcuities or have further questions, please call me collect at (313) 764-2560. If I am not in the of fice when you call, Mr. Sripada RaJu, Mrs. Ellzabeth Markowitz, or Mr. Bruce Shaw should be able to help you.

Yours sincerely,

Ronald G. Havelock, Ph.D. Program Olrector
RGH: rw

## Enclosures

## SR

NTER FOR RESEARCH ON UTILIZATION OF SCIENTIFIC XNOWLEDGE/ INSTITUTE FOR SOCIAL RESEARCH / THIE UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN 48106

December 16, 1971

As I indicated in an \&arller letter, the institute for Soclal Research is conducting a study of In movation management for the National Center for Educational Communlcation of the U.S. Offlce of Education. The enclosed form is intended to cover the Issues which are usually relevant to the management of innovation. However, there have been few previous attempts to collect information of thls nature, and for this reason we are especlally eager to have your comments on the questions themselves and on 1 mportant issues whlch you feel we may have overlooked. Results will be used by the U.S. Office of Education in determining how it can best serve the needs of Results will also be returned to participating school districts, and they may be useful in planning and guiding your own program for the coming year.

Full partlclpation $1 s$ necessary if the study is to have validity as a national survey. Your district was chosen as part of a carefully drawn probabillty sample representing all regions and district sizes in the United \$tates. The procedure and the form have been carefully reviewed by the U.S. Offlce of Education and cleared by the U.S. Offlce of Management and Budget.

Al though most of the questions are self-explanatory, an instruction sheet is included which provides additional clarification. If possible, we would like you to respond to every 1 tem on the form, but extensive staff work and flle searching are not expected. If you find that you cannot readily answer a partlcular question for this or any other reason, we would like you to omlt that item indicnting very briefly why you cannot respond.

The form may be completed el ther by yourself or by some member of your staff. It would be helpful to us if you would indicate the title of the Individua; who actually completes it.

If you'encounter any difflculties or have further questions, please call me collect at ( 313 ) 764-2560. If 1 am not In the offlce when you call; Mr. Sripada Raju, Mrs. Ellzabeth Markowltz, or Mr. Bruce Shaw should be able to help you.

> Yours sincerely,

- Fionald G. Mavelock, Ph.D.
- Program DIrector

RGH: IN

## Enclosures

We have not yet had a response from you or your office since mailing out the form on innovation process about three weeks ago. We are very appreciative of your consent to participate in the project and would like to make your task as easy as possible. Therefore, If you have encountered any difficulties, I hope you will not hesitate to call me collect at (313) 764-2560. In the event that this form has been misplaced, an additional copy is entlosed for your convenience.

> Sincerely yours,

Ronald f. Havelock, Ph, O.
RHG: PW
Enclosures

Telegram sent to non-responding superintendents as part of the followup procedures:

We are still very concerned to include your district as A PaRT OF THE NATIONAL STUDY OF JNNOVATION. WILL IT BE POSSIBLE FOR YOU TO RESPOND WITHIN THIS NEXT WEEK? A REPLY WOULD 8E APPRECIATED. IF YOU NEED FURTHER ASSISTANCE MY NUMBER IS (313) 764-2560.

RONALD G. HAVELOCK


[^0]:    *Subsequently re-organized as the National Center for Educational Communication before becoming part of NiE in 1972.

[^1]:    "See Question 1 a of questionnaire, "Innovation from the Superintendent's Viewpoint", in Appendix A.

[^2]:    * Question 5 of the questionnaire.

[^3]:    * Participants named in Question le.
    ** Participants named in Questions lb or lc, but not in le.

[^4]:    * Less than 0.5\%
    **Federal resources include ERIC, Title 1, Title III, U.S.O.E., Reglonal Labs, and other unspecified federal resources.

[^5]:    *8oth ERIC and a Regional Laboratory were used

[^6]:    * Advice was glven In response to Question lf.

[^7]:    * "Procedure" statements were derived from R.G. Have lock et.al., Planning for Innovation Through the Dissemination and Utilization of Knowledge, Ann Albor, Michigan: Institute for Social Research, The University of Michigan, 1969, Chapter ll. See subsequent chapters for fuller explanation.

[^8]:    * There was only one very large district reporting an innovation in the category of curriculum change and instguctional technology; in this dlstrict newspapers were reported to be used weekly or more often. This category, with a frequency of one, would not affect the chi-square test for significance.

[^9]:    * "Barrier" statoments were derlved from R.G. Havelock, et. al., Planning for Innovat Ion Through the Dissemination and Ut llizetion of Knowledge, Ann Arbor, MIchigan: Tnstitute for Social Research, The Unlversity of RIchigan, 1969, Chapter ll. Ste subsequent chapters for fuller explanation.

[^10]:    *See for example Chesler. M.A. et al., "Change-Through Crisis Model," pp. 150-155 in Havelock and Havelock (1973) or Ches ler, M.A. and Lohman, J.E. (1971).

[^11]:    *Kaiser (1958).
    **Nunnally (1967), pp. 332-333.

[^12]:    *In the few cases where respondents repeated the "showcase" innovation in their inventory listing, we were careful not to count lt twlce.

[^13]:    *These variables were measured on a 3 point scale of:decrease (1) - no change (2) increase (3).

[^14]:    * Question \#13a(2)
    ** Less than 0.5\%

[^15]:    * Question \#13a (3)

[^16]:    * Question \#13a (4)
    ** Less than 0.5\%

[^17]:    * After consulting wlth other researchers, the decision was made to forego the welghting of the larger districts $(\geq 80,000)$ and in lieu of that technique to treat them as a separate category throughout the analysls. (See footnote on page 28 of the report.)

