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Researchers have long recognized that an increase in statistical precision
may result from the judicious use of information on relevant antecedent vari-

ables, Both the analysis of covariance and the analysis of variance of an

index of response of the form Y - KX have been advocated as precision gaining

analyses for a simple random assignment design (Fisher, 1925, 1935). An in-

crease in precision may also result from the use of the antecedent variable

as a blocking variable in a randomized block design. Gourlay (1953) compared

the effectiveness of the analysis of covariance (ANCOVA) and the analysis of
variance (ANOVA) of indices of response relative to simple ANOVA on the dependent

variable to determine the extent to which precision was improved by use of in-

formation on the antecedent variable. Cox (1957) examined the same question

- for ANCOVA, ANOVA of correct and incorrect indices of response, and ANOVA of a

randomized block design. Porter and McSweeney (1970, 1971) examined all four

parametric procedures--ANCOVA, ANOVA of correct and incorrect indices of re-
sponce, ANOVA of a randomized block design, and simple ANOVA on the dependent
variable--and their nonparametric analogues under conditions for which the para-

metric tests would be optimal. The findings of these simulation studies and the

earlier studies by Gourlay and Cox apply to data in which:

(1) the dependent variable, Y, is ronditionally normally distributed
with equal variances for each of the t treatment groups;

(2) the regression equations of Y on X for each treatment group are
linear with equal slopes;

(3) the errors are independent.

An analytic study of the robustness of ANCOVA to violation of its

assuniptions (Atiqullah, 1964) demonstrated that use of the ANCOVA model



=u + aj + B(Xij - X) + eij

yij
in the presence of a quadratic compouent of regression of Y on X leads to
serious bias in the estimation of the treatment effects and the ﬁean squares
for t > 2 treatments. Surprisingly, the presence of identical normal distribu-
tions on the concomitant variable X and a large number of treatment groups--
remedies the reader might assume would mitigate the effects of bias--are inade-
quate to overcome the bias in the mean squares for ANCOVA. Cox (1957) observed,
",..if the regression is non-linear but smooth, blocking methods will remain ef-
fective, while covariance methods will.not unless thé linear component accounts
for most of the regression...'" (p.157). Sukhatme and Sukhatme's (1954) compari-
son of two sampling procedures and their associated estimation techniques in a
sample survey context has implig%tions for the comparison among the previously
mentioned experimental designs and their respective analyses. Sukhatme and
Sukhatme‘examined the precisiovn of the simple regression estimate of the mean
in a simplé random sampling desis~ relative to the stratum-weighted mean estimate
in a stratified sample. Such a comparison is analogous to examining the pre-
cision of ANOVA of an index of response for a simple random assignment design
relative Eo ANOVA of a randomized block design. The authors observed:

", .the stfatified sample will, in general, furnish a more

efficient estimate than the simple regression method. The

relationship between Y and X is also not always found to be

linear in practice, in which case the efficiency of the re-

gression estimate is further reduced. For, while stratified

sampling with suitably chosen strata can take care of any type

of relationship, the regression estimate can eliminate only

the effects of the linear component of the relationship." (p.210).

Various writers on experimental design have observed that when the magni--
tﬁde of the linear correlation between the concomitant variable and the depen-
dent variable is less than .3, the use of ANCOVA will gain little if any pre-
cision relative to ANOVA in a simple random assignment design. For linear

relations such that p < .4, blocking is preferable to covariance analysis,

while for values of .4 < p < .6, there is no clear preference between ANOVA



of a réndomized block design and ANCOVA of a simple random assignment design.
When p > .6 ANCOVA is somewhat more precise than ANOVA of a randomized block
design, and at p > .8, ANCOVA is substantially more precise than ANOVA on
blocked data. (Cox, 1957; Bancroft,'1§68; Elashoff, 1969). The findings of
Atiqullah, Cox, and the Sukhatmes suggest that in the presence of a substan-
tial non-linear relationship, ANOVA of a randomized block design may evidence
equal or great.r statistical precision than ANCOVA, or ANOVA of an index of
response.

Reliance on the questionable robustness to nonlinearity of ANéOVA and
ANOVA of an index of resb(' - is one option available to the researcher
seeking increased statistical precision through the use of a concomitant vari-
able. Another option consists of selecting a statistical procedure which uses
the concomitant information but does not require linearity. Randomization
tests for th. analysis of variance of a randomized block design (Baker and
Collier, 1968) meet these criteria as does a newly developed randomization test
for the analysis of covariance (Robinson, 19735. Rather than work with ran-
domization procedures, we have chosen to retain the relative but not the actual
magnitude of the observations through ranking and the use of nonpar?mggg;sw .
tests based on ranks. A nonparametric test statistic satisfying tﬁege re;
strictions is available.as an analogue for each of the parametric procedures
reviewed. The four nonparametric techniques considered are:

(15 The Kruskal-Wallis test of equality of mean ranks for a
one way ANOVA design (KW);

(2) The Friedman test on ranks in a randomized block design (Fr);
(3) ANOVA of an index of response on mean deviated ranks, d -p d ,
(NI1l). Indices with underestimated slopes of .8p (NIZ)y S X

and overestimated slopes of 1.2 Py (NI3) are alsd examined.

(4) ANCOVA on ranks (NC).

P T A



The first two nonparametric.statistics are well-known {c.f. Conover, 1971);
ANQVA of an index of response arl ANCOVA were constructed.by applying
parametric procedures to the ranks. Monte Carlo studies by the authors
(1971a, 1971b) verified that the small sample properties of the ANCOVA

based on applying éarametric procedures to ranks were comparable to those

of Quade's (1967) nonparametric ANCOVA which adjusts the dependent variable
ranks on the basis of a total sample regression estimate. Because the

small sample properties of the two nonparametric ANCOVAs were comparable,
the test based on a direct analogy to parametric procedureé was chosen

for its greater familiarity and ease of computation via standard parametric
'ANCOVA techniques. The index of response on the mean-deviated ranks was
created to take advantage of the retained degree of freedom when the re-
gression slope for Y given X can be specified a priori rather than'requiring
estimation from the sample. Our past Monte Carlo studies demonstrate.

that the randomized blocks design analyzed by Friedman's ANOVA is a success-
ful method for improving power over that for a simple random assignment
design analyzed by the Kruskal Wallis when the correlation between the
blocking vgriable and the dependent variable is greater than .4. When the
correlation is equal to .4, power ié not a relevant dimension for choosing
between the two designs and when correlation is zero the simple random
assignment design analyzed by the Kruskal-Wallis test is the more powerful{
Nonparametric ANCOVA on data iﬂ a simple random assignment design is more
powerful than Friedman's ANOVA on data in a randomized blocks design for

all values of the correlation between the concomitant variable and dependent
variable. Moreover the nonparametric ANCOVA is equal in power to the

Kruskal-Wallis w’nen.pXY = ,0, but becomes progressively more powerful chan
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the Kruskal-Wallis for increasing values of p The use of ANOVA on a

Xy’
correctly determined index of response proved more powerful than either

the analysis of covariance or the analysis of variance on indices of res-
ponse with over-estimated or under-estimated slopes for nonparametric tests.
Overestimation of the slope impaired the power of the test more serioﬁsly
than.did underestimation, and the effects of overestimation became more
severe as DXY increased.

All of the parametric tests were slightly more powerful than their
nonparametric counterparts for data which completely satisfied parametric
assumptions. As the linear correlation pXY increased, the discrepancy
between the power of the parametric and nonparametric tests increased, but
the relationships among the analyses of covariance and analyses of variance
on the indices of response for both parametric and nonparametric cests were
. The fact that the relative advantage of the

XY

parametric tests was slight even when the assumptions necessary for their

unchanged by increasing o

valid use were completely satisfied suggests that little loss, and possibly
considerable gain, in power will result from the more general use of these
nonparameﬁric analogues. Since the ﬁonparametric tests require only the
identity of the marginal distributions of X and the monotonicity of the
XY relationship, they may well be preferred to the parametric tests when-
ever there is doubt as to whethef the conditional distributlons of Y are
normal, the regressions linear or the variances equal.

Qur previous investigations of the small sample properties of the
nonparametric statistics and their parametric counterparts were restricted
to data in close agreement with the parametric assumpticns. The single

exception was our decision to use a normally distributed random concomitant

variable rather than a fixed concomitant variable. The exception was
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motivated by our concern for the utility of the results since educational
researchers rarely if ever have data available on a fixed concomitant
variable measuved on an ordinal or ratio scale. The purpose of the present
study was to replicate our previous investigationé of goodness-of-fit and
small sample power of parametric and nonparametric tests with a data genera-
tion model that further violated the parametric assumptions while still
satisfying the nonparametric assumptions. Thus the only restrictions on
the selection of a data generation model were that it provide observations
on independent experimental units for two monotonically related variables,
that the observations on each varlable allow rank crdering without ties,
and that there be no treatment by concomitant variable interaction. Again
the decision was made to have a random rather than fixed concomitant
variable. Clearly a wide variety of models satisfy these less restrictive
nonparametric assumptions.

The selection of a data generation model is one of the most important
steps in conducting a Monte Carlo study since the utility of the subsequent
results 1is in large pért dependent upon that choice. Given the above restric-
tions, our selection of a general model was guided by the desire to simulate
data that were consistent with those likely to be encountered.by educational
researchers. Our choice was the asymptotic regression curve or modified
exponential defined by the equation

: Y=c¢+8(D)x.

The asymptotic regression or modified exponential is a general form of
growth curve wigh three parameters, ¢, 8, and p. In our use of this curve,
the random variables X and Y represent the concomitant variable and the

dependent variable respectively. When p is restricted to values between

zero and one and B is negative, the curve rises from a + 8 at X=0 to the



asymptote of o for large X. A member of the family of asymptotic regression
curves satisfying these properties is presented in Figure 1.
Figure 1
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When o=0, the curve simplifies to the exponential, Y = 8(p)x, which describes
a series.that changes by a constant ratio p. Exponential or modified exponen-
tial (asymptotic regression) growth seems more reasonable to investigate
than second-degree polynomial growth if we want to simulate that type of
curvilinearity resultiﬁg from the operation of a ceiling effect on the
dependent variable measure. (Croxton and Cowden, 1960).

When the -asymptotic regrecsion curve is used to represent the under-
lyihg relationship between the concomitant and dependent variable, the full
model for simulating data is

Y =q -+ B(p)X + vZ

where &, B, p and Y are constant,
2
N o
X~ NCu x)

and
Z ~ N(O, 1).

The.model represents a bivariate population with a normal marginal distri-
“bution of X, normal and homoscedastic conditional distributions of Y given

X, and a negatively skewed marginal distribution of Y. The negatively




skewed marginal distribution of Y violates the normality assumption of

both one way and two way ANOVA, and the monotone incréasing curvilinear
relationship between X and Y violates the linearity assumption made by ANCOVA
and ANOVA of an index of response. ELducational researchers encounter

similar data when there is a ceiling effect on the dependent variable either
because of a test which was too easy, or because of a true ceiling effect

on the latent dependent variable. One example of the latter situation is

the use of mental age as a dependent variable and chronological age as a
covariable,.

Further specification of the data generation model required assigning
specific values to each of the several constants in the equation. We wanted
an asymptotic regression curve and a distribution of X such that the linear
correlation between X and Y wohld be near .7 which we felt represented a
substantial departure from one. A computer program was written to simulate
data conforming to the asymptotic regression curve with X normally dis-
tributed. The output of the program was the Pearson correlation between X
and Y(QXY) and the first four moments of the distribution of Y. Using‘
samples of size 10,C00 the values of p were systematically varied for «=0,
8=—l,'ux=0 and ox= 1. Setting a=0 simplified the curve to the exponential,

Xy

Y = Bpx. As p increased from .1 to .9, p increased from .29 to .95,

Although p = .3 resulted in a desirable value of p = ,72, the standardized

Xy
‘third and fourth moments for the marginal distribution of ¥ were -5.94 and
'63.78 respectively. We decided to vary the other parameters in search of
a similar Pearson correlation but a less substantial'deviation from normal
for the marginal distribution of Y. A value of p = .5 had resulted in

p = ,89 and third and fourth moments of Y equal to - 2.53 and 12.62 respec-

XY
tively. Varying values of B from - 1.0 to - 1.5 did not have a noticeable ef-

fect on reducing the value of Pyy MOT On the third and fourth moments. A lack

O




of change in correlation and third and fourth moments was found when ux

was varied from .0 to 2.0. Increasing cx from 1.0 to 1.6 did reduce pXY

to .72 but resulted in a concomitant increase in negative skew and kurtosis

to approximately that of thc value for p = .3, When we set p = .4, a = 0,
g = -1 and ux = 0, an increase in Ox from 1 to 1.3 resulted in a decrease
in Py to .73 with third and fourth moments equal to -4,98 and 39.03.
Therefore we used p = .4, ¢ = 0, 8 = -1.0, Hy = 0, and o; = 1.3

for our data generation model. Thus Y = 6" 4 vZ and X ~ N(O, 1.32).

Unfortunately, subsequent runs for the same set of parameters revealed that

the third and fourth moments of Y were quite unstable for samples of size

10,000. The implication is that we could have left the standard deviation

of X at one without markedly changing the third and fourth moments of Y.
The remaining constant to be defined 1a the Qata generation model was

Y, the standard deviation of the conditional distribution of Y given X.

The value of y was set according to the desired strength of relationship

between X and Y as defined by

where oyZ < = Y2 is the variance of the conditional distribution of Y given

X and oyZ is the variance of the marginal distribution of Y. Since

2 2 2 :
o 20 , let 0 =0 + C where C > 0. Then
y y.x y @ y.x
2
2 Y
n =1-—g—
Yy +C

and
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The standard deviation y can be evaluated in terms of the desired nz as
soon as C is known. Analytic attempts to solve for C = oi in the reduced
model

Y = -.4% where X & N(0, 1.3%)
failed. Consequently a simulation based on 100,000 observations from the
reduced model was used to estimate C = 11.3906. Thus for a given value of

2
n , Y was set equal to

1- 2
y = —rz‘— 11.3906

n

Finally, a pseudb-random unit normal deviate generator for the IBM 370-165
computer was used to.provide observations on the random variables X and 2
in the data generation model. The unit normal deviate generation involved
two stages. First, the multiplicative congruent method was used to generate
sixteen pseudo-random numbers from a uniform distribution. Second, the
sixteen numbers were summed and linearly rescaled to provide a pseudo-random
unit normal deviate via the Central Limit Theorem.

Design of the Monte Carlo Study

The parameters of the Monte Carlo study were t, the number of treatmenfs;
b the number of experimental units in each treatment; and nz, the correla-
tion ratio. Figure 2 presents a summary of the conditions under which the
sampling distributions of the nonparametric and parametric test statistics
were investigated. For each X in Figure 2, sampling distributions based
on 1,000 samples of size tb were generated for the null case of no treatmeht
effects and for a single noncentral case. Both central and noncentral
sampling distributions were described by the frequencies of the various test
statistics falling above their respective critical values for the .10, .05,

and .0l levels of significance.



Figure 2
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The population distributions indicated in Figure 2 were chosen to
facilitate comparisons with the results from our earlier studies. Three
values of t were investigated because of possible trends in the sampling
diétribﬁtions as the number of levels of the treatment independent variable
increase, The smallest value of t was three since the Wilcoxon matched
pairs test offers a more powerful alternative to the Friedman test when t
equals two. Three values of b were investigated because of possible trends
in the sampling distributions as the number of units under each level of
the independentvvariahle increases. The smallest value of b was five
since exact tests would be more appropriate for smaller values. Three
values of th. correlation ratio (n2 = .8, .6, .4) were investigated since
the deviation from parametric assumptions increases with. the size of the
correlation ratio. The noncentral case was created by adding the value
1 Oy to the dependent variable value of each unit under one level of the

2
treatment independent variable. The choice of-% Oy was made because it
seemed to represent a deviation from the null hypothesis that most educa-
tional researchers would wish to notice. Further, it produced intermediate

values of power which facilitated comparisons of the various test statistics.

Defining the Indices of Response

Prior to the actual generation of the sampling distributions, a final
set of parameters had to be defined. Both the parametric and the nonpara-
.;etric indicés of response require a priori knowledge of the slope of the
‘regression line for predicting the dependent variable from the concomitant
variable. The slope for the parametric index, By.x’ is defined on the
ériginal observations while the slope for the nonparametric index, és’
is the Spearman correlation. Both parameters were estiﬁated for each of

the three values of the correlation ratioc by generating 4,000 samples with



eight treatment groups and eight units per treatment group in each sample.
The large samples (64) were used so that the estimates of Py would be
minimally affected by sample size.

The three estimates of each parameter and their standard errors are
presented in Table 1. The value of By.x was approximately 1.78 for all
three values of eta squared, but the value of ps increased with an increase
in eta squared, i.e., .3595 for n2 = ,4 to .6027 for n2 = ,8,

Since nonparametric and parametric indices of response require a priori

information about the parameters pg OF B , it was also of interest to

y.x
investigate the sampling distribution of the F test for each procedure when
the a priori information was in error. Somewhat arbitrarily we decided to
investigate the effect of a priori "guesses' about the slopes that were in
error by twenty percent, either too high or too iow. ‘The slopes for the
incorrect indices are also presénted in Table 1.

The exfensive simulations necessary for estimating ps and By.x provided
interesting additional descriptive information about the data generated by
the model. The Pearson correlation between X and Y as well as the first
four moments of the marginal distribution of Y for varying values of eta
squared are contained in Table 2. The mean was approximately-2.0 for all
‘three values of eta squared. The variances are in quite close agreement
with what was predicted using the equation

05 = 11.3906 + v2,

given earlier. Skewness, kurtosis and Pearson correlation increased with
increases in eta squared as was expected. Skewness ranged from -1.8721 to
-5.3158, kurtosis ranged from 10.4755 to 73.8704 and the Pearson Correlation

ranged from .4436 to .6301.

13
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TABLE 1

ESTIMATES OF THE SLOPES FOR DEFINING THE PARAMETRIC AND NONPARAMETRIC

INDICES OF RESPONSE

By x S.E. | .88 1 L.28 P S.E. 8o, | L.2p_
1.7837 | L0115 | 1.4270 | 2.1404 | .3595 | .0018 | .2876 | .4314
1.7807 | .0107 | 1.4246 | 2.1368 | .4666 | .0017 | .3733 | .5599
1.7864 | .0009 | 1.4291 | 2.1437 | .6027 | .0015 | .4822 | .7232




A DESCRIPTION OF THE SIMULATED DATA FOR THE MARGINAL DISTRIBUTION OF Y
FOR VARYING VALUES OF ETA SQUARED AND SAMPLES OF SIZLE 256,000

TABLE 2

n? A .6 .8
Mean - 1.9913 - 1.9982 - 2.0030
Variance 27.9597 18.8208 - 14,1010
Skewness - 1.8721 - 3.9729 - 5.3158
Kurtosis 19,4755 64.6519 73.8704
Pearson Correlatior L4436 L5414 .6301

15
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Correlations Within and Across the Treatment Groups for the Simulated Data

Table 3 reports the empirically generated correlations on the original
data and on the ranks assigned to the data. Correlations are reported for
the case of no trgatment effects on the dependent variable (the central case)
and for the case in which the dependent variable observations in one of the
treatment groups have been increased by the addition of 1/2 Oy units (the
noncentral case). The total sample correlation ratio, E(Rz), is an empirical
estimate, based on 1000 data sets, of the expected value of ﬁz for the design
defined by the specified values of t, b, and n2. A comparison of each of
the tabled values of E(ﬂz) with the respective value of n? shows that the
simulation has been quite successful in achieying the desired amount of
curvilinearity. The largest difference between the empirical estimate of
the expected value of ﬁz and the desired parameter is ,6 0257 for nz = ,6,
and the average size of the differgnce is only .0085. The total sample
Pearson correlation for the underlying model, E(rxy)’ is an empirical estimate
of the expected value of rxy when the error-free model Y = - .4X with
X ~ N(O, 1.32) is used to describe the X Y relationship. The estimated ex-
pected values of'rxy are very close to the desired measure of liﬁear rela-
tionship, pxy = .7, and are approximately.equal across all designs sFudied.
These data demonstrgte that it was possible to keep the amount of.linear
felationship constant while varying the strength of curvilinear felation. Thus
as nz increaées, for constént pxy’ curvilinearity increases.

The remaining coeffiéients are also averages obtained over all 1000 data
sets for their respective designs, and they represent empirical estimates of
the corresppnding mathematical expectations of those correlations in the popu-

lation. The coéfficient E(rw) is an average across 1000 data sets of the

pooled within treatment group measures of association where

Ty = SS4y /"r-SSX

. SS
W X oYY,
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andSSXYw represents a sum of squares within groups on the variables X and Y.
Since it is a mea <& of the linear velationship of X Y, we find, as expected,
E(ré) S E(R2). The Spearman correlation, E(er) is similarly defined as an
average across all 1000 data sets of the pooled within group measures of associ-
ation. However, the scores are ranked separately on both X and Y across the
total sample prior to the computation of the sums of squares. The only com-
parable measures of association obtained from the application of Pearson and
Spearman correlation coefficients to these data are the resﬁective pooled

within group estimates given by rw and o ﬁhen empirical estimates of the
expected values of these quantities are found from the summary results of the
1000 replications, E(rw) is consistently higher than E(er) by .055 to .075
units, with no clear pattern of decrease in the discrepancy as a function of

the total sample size, b t, alone 6r the value of n2 alone. If the joint dis-
tribution of X and Y were bivariate normal, we would expect

Y

= 6 (sin_ Pyy / 2))/w

Pg _
and E(rg) = 6 (sin t oy * (n - 2) sin T(o/2) )./ (a4 1)) .
(Moran, 1948). Kendall (1949) demonstréted that these relationships may be
substantiélly in error for samples from other than a bivariate normal distri-
bution and that no siﬁple modifications exist to express the exact relationship
between Pg and Py for arbitrarily épecified populations. Kendall's illustra-
tion of a particularly large discrepancy between predicted and actual values of
py occurs for a skewed, leptokurtic population not unlike the population defined
by the dependent variable Y. For our data, use of the formula for Pg in terms of
Pyy yields a value of Tow . 634 when E(rw) = ,6513 (b=8, t=3,n2;.8). This

= ,5891. The

value is noticeably different from the obtained value E(er)

_heavy concentration of Y values in ﬁhe upper tail of the distribution may be
responsible for the sizable differences between E(rw) and E(er).
The remaining measure of correlation in the central case, E(rs), is the

average across simulations of the Spearman correlation based on all b t ranks.
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As expected, E(rs) increases with an increase in n2 for fixed b t. The values
of rg also increase slightly with an increase in b t, which may be reflective
of the diminished effect of discreteness.

The average values of rs and er for the noncentral case can be compared with
those for the central case. The v&lues of E(er) are relatively constant over the
two cases with discrepanciés of (.0012, .Q002, .0018, .0034, ,0005, .0009, and
.0003) respectiQely. The total sample values E(rs) are smaller in the noncentral
case than in the central case. The direction of this difference is expected since

" the addition of values of 1/2 cy to the dependeﬁt variable in one group with no

compensating change in the values of X, introduces noise into the X Y relationship.

Goodness-of-Fit and Empirical Power for Varying Values of n2 When t = 3 and b = 8

Table 4 compares the empirical sampling distributions of the test statistics
for the Kruskal-Wallis (KW), Friedman (Fr), parametric ANCOVA on ranks (NC) and
nonparametric indices of response on mean deviated ranks with the'correqﬁ slope
(NI1) and with slopes that are systematically underestimated (NI2) and overesti-
mated (NIB). The three rows labelled 'central' depict the goodness—of~fit of the
empirical distributions to their respective null'distribﬁtions. Both the Kruskal-
Wallis and Friedman testa are referred to Xi—l’ the ANCOVA test refers to Ft—l,bt—t—l’

and all of the ANOVAs on indices of response use F Since all of the

_ t-1,t(b-1)"
sampling distributions were based on 1000 cases, standard errors for‘the estimated
actual alphas can be determined from S.E. = /571:5§71666 where p denotes nominal
alpha level. For nominal alphaslof .10, .05, and .dl, the respective standard
errors are .009, .007, and .003.

The nominal and empirically esgimated'actual alphas are in close agreement
for the nonparametric ANCOVA and the ANQVAs of.correCt and incorrect indices of
response, Without exception thgse empirical alphas ére withir two standard errors
of.thé respective nominal o for all values of nz. The Kruskal-Wallis test is
noticeably conservativé for nominal alpha values of .10 and .0l and slightly

conservative for a nominal alpha of .05. The Friedman test is somewhat

[ERJ!:‘ liberal at o = .10, but its empirical sampling distribution does
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not depart appreciably from good fit to the chi-square distribution at

the other nominal alpha levels. On the basis of these data it can be con-
cluded that the fit of the nonparametric analysis of covariance and analysis
of variance of an index of response to their respective F distributions is
quite good and is independent of the size of the correlation ratio, n,

The fit of the Kruskal-Wallis and Friedman tests to Xi—l is somewhat poorer,
although it too seems independent of the size of nz.

The goodness of fit of the corresponding parametric analogues:

ANOVA for a one way simple random assignm-ut design (Al);

ANOVA for a two way randomized block design (A2);

ANCOVA for a one way simple random assignment de;ign (PC);

ANOVA of an index of response for a correctly determined index

{(PI1), an underestimated slope (PI2), and an overestimated

slope , (PI3);
to their respective F null distributions can be studied by examining the
“central® case reported in the first three rows of Table 5.  Fit to the
respective null distributions is good throughout the table, with the only
exceptions occurring for the index of response when n2 = ,8 and a.; .0L.
In that case all three ANOVAs of the indices yield slightly conservative
Eests; empirical alphas fall at least two standard errors below the
nominal alpha = .0l.

The fit of the test statistics to their corresponding null distri-
butions is somewhat berter for the parametric than for the nonparametric
tests when the comparative goo&ness—of~fit is described by the relative
incidence of values of estimated actual alpha that fall outside the 68
percent and 95 percent probability intervals defined on nomina. alphas.

For the nonparametric analyses, a total of 17 out of 54 values of estimated

actual alphas fall outside their respective 68 percent probabiiity inter-.



vals and, of these, 6 values are also outside their corresponding 95 percent
probability intervals. For the parametric analyses, 13 of 54 values are

not within the corresponding 68 percent probability intervals and, of

these, one value falls outside the 95 percent probability interval.
Although the parametric test statistics seem to exhibit slightly better fit
“than do their nonparametric analogues, the differences in absolute dis-

crepancy between nominal o« and estimated actual o ,

e = lnominal o - estimated actual al R
~are not large. For nominal a = .10, the mean difference in fit between
the parametric tests and their nonparametric analogues is e, = € = -,005,

P NP
with the discrepancy almost entirely attributable to the poor fit of the

Kruskal-Wallis and Friedman tests. The corresponding mean differences for
a = .05 and .0l are +.002 and +.001 respectively; The somewhat poorer fit
of the Kruskal-Wallis and Friedman tests may be attributable to the use

of the chi-square distribution, the traditional large sample approximation
for each of these tests, rather than the F distribution, found by Wallace

(1959) to give slightly better fit.

Tables 4 and 5 may also be used to compare the small sample power
against a slippage alternative for the nonparametric and parammfric tests
includea in this study.” The values éppearing in the three rows labelled
"noncentral" represent the empirical power of the various tests at o = .10,
.05, and .0l. The maximum standard error of the reported empirical powers,

2
.016, occurs for power equal to .5. .To facilitate power comparisons, we
Have averaged power differences between statistics across the nominal
alpha levels. Although tﬁe power comparisons at the differing nominal
alpha levels have siightly different precision, the»differences in precision

do not seem substantial enough to negate the use of these summary measures.
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When the power of each of the nonparametric procedures which use informa-
tion on the concomitant variable is compared with that of thé Kruskal-Wallis
test which makes no use of this information, the former is as high or higher for
all values of nz, all nominal alpha levels and all nonparametric tests using the
antecedent information. The corresponding differences in powef relative to the
Kruskal-Wallis test for n2 = ,4 are .024 for the Friedman test, .049 for nonpara-
metric ANCOVA,..OSS for an ANOVA of a corract index of response, and .054 for both
the underestimated and overestimated slope in ANOVA of an index of response. When
n2 = .6, the r?spective differences increase to .054, .062, .069, .067 and .004.
Further incrégges are noted for n2 = ,8, where the corresponding differences are

I\\' .
. 088, .147,/4&59, .159 and .144 respectively.
As expected, the empirical power of nonparametric ANOVA of thé correct and

incorrect indices of response exceeds that of all other statistics when n2 is

" large. This difference is already noted when n2 = ,4, The slight superiority

of the indices with respect to ANCOVA was anticipated on the basis of the retained
degree of freedom in the former technique and its loss in the latter. The superi-

ority of the indices of response and ANCOVA to the Friedman test at n2 = ,4 is

a little surprising if the designs alone are compared. Such a comparison over-

looks the fact that the Friedman test does not exploit the existence of inter-
block differences to gain power. Hodges énd-Lehmann (1964) hypothesized that

the use of intrablock ranking in the Friedman test, with the attendant disregard -
of interblock differences, resulted in a ;ess than optimal nonparametric test

for the randomized block design. Their test, based on intra- and interblock com-
parisons, is asymptoticélly more efficient than the Friedman test. We conjecture
that because of the exclusive use of intrablock ranks in the‘Friedman test, fhe

full advantage of blocking may not be gained relative to the use of direct ante-

‘cedent variable adjustment in ANCOVA and ANOVA of indices of response. The power

ANOVA of an index of response using an underestimate slope is comparable to

that of an index using the correct slope, while that of an index using



an overestimated slope is slightly less. The diécrepancies in power between

2
the under- and over-estimated slope increase with increasing n from .000

to .003 and .012 respectively. We had found differences comparable to
these in our earlier work with linear relations. Now, as then, it seems
reasonable to ascribe increasing differences in the power of NI2 versus
NI3 to underestimation in the average noncentfal values of rs. A compari-
son of the average noncentral values of the total sample Spearman corre-'
lation for nz = ,4, .6, and .8 (Table 3) with the estimates of Py to
define the incorrect slopes (Table 1) reveals that the underestimated
slopes, .SDS, are consistently closer to the ayerage noncentral total
sample ps than are the overestimated slopes, 1.2 ps. The differences for
the underestimated slopes relative fo the average noncentral pS are
-.0557, -.0591, -.0688 for n2 = ,4, .6, and .8 respectively. ‘The corres-
ponding differences for the overestimated slope are .0881, .1275 and .1722
respectively. The comparison of NI2 and NI3, although based on .8ps | .
versus l.ZpS, employs sample correlations such that the magnitude of the
error of unde;estimation is considerably smaller than that »f overestima-
tion. Consequently, the differences in empirical power ére consistent

with the differing size of the errors in estimating the slope.

A comparison of the empirical power of the nonparametric tests with

that of their parametric analogues shows higher power for the nonparametric

analysis of covariance and all nonparametric indices of response, irrespective

of the value of n? . Moreover, the advantage of the nonparametric.tests
relative to their parametric analogues increases with an increase in the
correlafion ratio. Fof the analysis of covariance the average differences
in power for the nonparametric techniques versus the parametric techniques

‘vary from .015 at n2 = .4 to .0ll at n= .6 and to .071 at n® = .8. The
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differences for the correct and incorrect indices follow a similar pattern
for increasing values of n?. In the case of the correct lndex the values

are .008, .014, and .095 respectively; for the index based on the under-
estimated slope, the respective quantities are .008, .011, and .077; and

for the index based on the overestimated slopé they are .006, .019, and

.115. Since an increase in n? for constant p iﬁ the underlying model implies
an increase in curvilinearity in the modelf the results are consistent in
demonstrating the relatively superior power of thosé nonparametric procedures
which assume oniy monotonicity of the X Y relationship to parametric pro-
cedures assuming linearity of the relationship. The cdmparison of nonpara-
metric to parametric procedures for the randomized block design tends to
favor the parametric test slightly, despite the fact that the dependent
variable distribution is negatively skewed and extremely peaked. The dif-
ferences in power for the Friedman test relative to the F test for the
randomized block design are - .007, .001, and - .003 for increasing values

of n? when averaged over the nominal alpha ievels. The relative weakness
ofvthe Friedman test in this context occurs primarily in the upper percentiles
(1L - @ 2 .95) of the empirical sampling distribution and may be partly at-
tributable to the discreteness of the sampling distribution of the Friedman
test. As was noted earlier, the Friedman test does not use the interblock
differences that are a source bf increased precision for the F test in the
randomized block design. ‘This too may be responsible for the lower power
relative to the pérametric competitor. The Kruskal-Wallis statistic élso
exhibits somewhat lower power than the F test for one way ANOVA,especially

at the .10 and .0l alpha levels. The conservativeness of the Kruskal-Wallis
nuli distribution at these same 5lpha levels may explain the reduced power
relative to the F tést. When power differences are averagéd over the nominal

alpha levels, the results for KW - F are - .012, - .006 and .017 for increasing

n2. Only at n2 = .8, is the power of the Kruskal-Wallis test superior tO F's.
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Although not of direct concern in this study, the empirical powers
of the parametric tests can be examined to determine the extent to which
they reflect the effects of curyilinearity. All of the parametric procedures
which employ antecedent variable information are more powerful than the one
way analysis of variance F test on a simple random assignment design. The
following differences in power, averaged over the nominal alpha levelé, are
found when the power of each of the other parametric‘procedures is compared
with that of the one way ANOVA F test. The differences are reported as
three-tuples, with the elements ordered in terms of increasing n2:

ANOVA in a randomized block design (.020, .048, .109)

ANCOVA for data in a simple one way design (.023, .046, .093)

ANOVA on a correct index of response (.035, .049, .093)

ANOVA on an index of response with an underestimated slope (.034, .050, .099)
ANOVA on an index of response with an overestimated slope (.031, .039, .049).

The.results support the earlier conjecture that as n? becomes large,
the analysis of variance of a randomized block design, which does not assume
linearity, becomes more powerful than ANCOVA or ANOVA of response on correct
or incorrect indices. The differences between the indices of response based
on correct and incorrect slopes are slight at n2 = .4 or .6 (.001 for the
correct versus the underestimated slope and .004 and .010 for the correct versus
the overestimated slope). However, at nz = ,8, the index with the under-
estimatedlslope is slightly more powerful than the index with the correct
slope (.006) and noticeably more powerful than the index with the overestimated

"~ slope (.050).

Coodness-of-Fit and Empirical Power for Varying Values of t_When b = 8 and ﬁ2= .8

When the goodness-of-fit of the respective parametric and nonparametric
tests is studied for increasing numbers of treatment groups (t = 3, 5, 8) and

constant curvilinear relationship (n? = .8), no pronounced trends emerge. (Tables 6
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and 7). The majority of the estimated actual alphas for these statistics
fall within the 95% probability intervals based on the corresponding nominal
alphas, with only five exceptions out of 54 caées for the nonparametric tests
and fourteen out of 54 fo} the parametric tests. The fit is similar when

68% probability intervals are examined: 22 nonparametric estimated actual
alphas and 31 parametric empiriéal alphas fall outside of the respective 68%
intervals. Most of the instances of lack of good fit‘result in the over-
estimation of the actual alpha through the use of the nominal alpha. Thus
the associated tests are ccuservative., The fit of the nonparametric tests

is somewhat better than that of the parametric procedurés. The parametric
tests are especially conservative for t = 8; however, it seems unlikely that
the conservative behavior of almost all the parametric procedures for this
design is a consequence of the change in design from t = 3 and 5 to t = 8.
Unreported portions of this simulation stud& examined the central distribution
of the parametric tests for varying t and n? = .6 and did not find comparably
conservative behavior. Thus it séems more reasonable to assume that these
results are an artifact of the particular 1000 data sets simulated for t = 8,
b = 8, n2 = ,8 that are used for the analysis of all the parametric and non-
parametric tests having these design dimensions.

Wheﬁ the empirical power of the nonparametric tests is examined as a
function of an increasing number of treatment groups, the actual magnitude of
the power decreases but the relative ardering among the tests remains unchanged.
The decrease in empirical power with increased t merely reflects the fact that
the single differing treatment group makes up a smaller proportion of the
total sample size (1/3 versus 1/5 versus 1/8 for t = 3, 5, 8 respectively).
Thé power of each of the other nonparametric tests using information on
the concomitant variable is compared with that of the Kruskal-Wallis test

and differences are averaged over the nominal alpha levels to yield the



following results for increasing values of t:

Fr - KW Power: (.088, .114, .104)
NC - KW Power: (.147, .151, .153)
NIl - KW Power: (.159, .159, .153)
NI2 - KW Power: (.159, .156, .154)
NI3 - KW Power: (.147, .148, .141) .

The most powerful of the nonparametric techniques foxj_n2 = ,8 are the analysis
of variance on a correct index of response (NI1) and on an index of respons=z
with an underestimated slope (NI2). These are followed closely in power
by the analysis of covariance (NC) and the analysis of variance on an index
. of response with an overestimated slope (NI3). The Friedman test (Fr) has
substantially more power than the Kruskal-Wéllis test in the presence of
such a strong X Y relaticnship, but its power'is considerably lower than
that of the other procedures which incorporate information about the nature
of the X Y relationship more directly into their respective test statistics.
A comparison of these nonparametric tests with tﬁeir parametric
analogues for the substantial curvilinear relationship impiied by p = .7 and
n2 = .8 reveals that all of the nonparametric tests are more powerful than
their parametric counterparts for all values of t. . The gains in power for
the Kruskal-Wallis and Friedman tests relative to the F tests for one way -
ANOVA and ANOVA of a randomized block design respectively are quite slight,
while those for the other procedures vefsus the parametric tests demanding
linearity are somewhat more substantia;. For,increasing values of t

KW - AL Power: (.017, .034, .020)
Fr - A2 Power: (.013, .013, .029)
NC - PC Power: (.073, .084, .107)
NIl - PI1 Power: (.095, .102, .117)
E NI2 - PI2 Power: (.077, .093, .085)
NI3 - PI3 Power: (.115, .117, .128)

The strong showing of the nonparametric analysis of variance on an index of

¢ ' '
[ERJ!:( response with an overestimated slope is probably reflective of the very
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conservative behavior of the parametric analogue in the central case, and

the reuse of the same data with 1/2 oy added to one treatment group to

create the noncentral case. A very slight increase in the advantage of the
nonparamefric procedures to the parametric tests occurs with increasing t.

Such a finding 1s consistent with the results of many Monte Carlo studies

which have established that nonparametriﬁ tests tend to make their best

shéwing relative tolthe parametric analogues when differences between populations

are small and power 1s low to moderate.

Goodness-of-Fit and Empirical Power for Varying Values of b' When t = 3 and n? = ,8

Tables 8 and 9 provide evidence with respect to the goodness-of-fit of
the nonparametric and parametric tests for increasing numbers of observations.
per treatment group. Both tables indicate relatively good fit of the empi:i-w
cal sampling distributions of the test statistics td thelr corresponding null
distributions. Only 6 of 54 estimated actual alphés'for the nonparametric tests
and 3 of 54 for the parametric tests fall oﬁtside the-QS% probability intervals
based on the corresponding nominal alphas. The fit is similar when 68% proba;
bility intervals are studied: 11 nonparametric and 18 parametric estimated
actual alphas fall outside the respective 687 intervals. The quality of the
fit does not vary appreéiably with b, although there 1s slightly better fit
for the nonparametric tests at larger values of b. -The Kruskal-Waliis test
and the Friedman test are once again the principal source of lack of fit among
the set of nonparametric tests examined. All 5 estimated actuallaiphas that
ére outside the limits of the correspbnding 95% probability intervals on the
nominal alphas are ldentified with either the Kruskal-Wallis orhthe Friedman
test. |

The power of all of the parametric and.nonparametric tests considered is
a monotonically increasing function of the sample size per treatment group, b.

Substantial increases in the powér of the tests occur as b increases from

5 to 10, but the relative superiority of the various statistics is only
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moderately affected by changes in b.

Each of the nonﬁarametric tests using information on the concomitant
variable 1s more powerful than the Kruskal-Wallis test which ignores this
information. Furthermore, the gain in power relative to the Kruskal-Wallis
test increases with an increase in the number of observations. The analyses
of variance on a correct index of response and on an index with an under-
~estimated slope are again slightly higher in power than the analysis of
covariance or the analysis of variance on an index of response with an over-
-estimated slope and substantially more powerful than the Friedman test. The
resulting differences in powér relative tg the Kruskal-Wallis test, averaged
over the nominal alpha.levels, are:

Fr - KW Power: (.032, .088, .109) . For, increasing values of b
NC - KW Power: -(.086, .147, .1B6) '
N1l - KW Power: (.097, .159, .192)

NI2 - KW Power: (.097, .159, .185)

NI3 - KW Power: (.085, .147, .183) .

All of the nonparametric tests except the Friedman test are more power-
ful than their parametric counterparts. The Friedman test, which exhibits a
conservative null distribution, is slightly less powerful than the F test for
a randomized block design. _The Kruskal-Wallis test realizes only’a slight
advantage in power relative to the F test for one way analysis of variance,
but this advantage increases with an increase in the numﬁer of observatipns
per group. The nonparametric analysis of covariance and the analyses of
variance of the indices of response'aré all substantially more powerful than
their parametric analogues, and this gain in power increaseé with increasing b.
These results are indicative of fhe effect of curvilinearity in decreasing
the power of the parémet:ic teé;s which assume iinearity. Our earlier work
dealing with similar design dimensions But a data modei satisfying parametric
éssumptions provides'an informative comparison with.these data empioying a

curvilinear relationship.
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Empirical Power of the Nonparametric Tests Minus That of Their
Parametric Analogues Requiring Linearity, Averaged Over o Levels

for t = 3, b = 5, 8, 10 and Differing Assumed X Y Relationships

Parametric Assumptions Met Curvilinearity Present
p=.6 p = .7 né = .8
NC - PC - .033 -~ .043 -~ .053 041 071 .112
NIl - PI1 - .050 - .058 ~— .058 .056 .095 .128
NI2 - PI2 - .022 - .050 - .049 .053 077 .110
NI3 - PI3 - ,068 - .077 - .,075 .055 .115 .154

As the results indicate, the advantage of the parametric tests increases

with increasing b when parametric assumptions are met, but the disadvantage

of the parametric tests increases when the X Y relationship is markedly

curvilinear.

Summary of the Empirical Results

The data fof this study indicate some consequences, in terms of the
estimated Type I Errof and power, of the choice between a nonparametric
test and alparametric test when there is a nonlinear relation between the
dependent variable and the concomitant variable. The empirical sampling
distributions of all of the parametric and nonparametric tests employing
the F distribution showed relatively‘good fit ﬁo their respective null
distributions. The Kruskal-Wallis and-Friedman tests, both.of which were
refegred to the chi—équare distribution, occasionally demonstrated poor fit.
The Kruskal-Wallis test was consistenﬁly somewhat conservative, while the
Friedman tést tended to be consccrvative in thé eﬁtreme tail of the distri--
bution but liberal at the o = .10 level.

All of the nonparametric tests were more powerful thén the Kruskal-
Wallis test at all levels of relationship.studigd and for -all design variations
of t and b. Among the nonparametric tests using information on a éoncomitant

El{i(f variable, the tests could be ranked in order of decreasing empirical power as:




ANOVA of correct > ANOVA of index > ANCOVA = ANOVA of index > Friedman
index of response slope too low slope too high test

The differences between an index of response based on a correct slope and omne
baeed on an underestimated slope were typlcally very slight, as were the dif-
ferences in power between analysis of covariance and analysis of variaﬁce of
an index of response on an overestimated slope.

When the nonparametric tests were compared with those parametric tests
which demand linearity of the X Y relation, the relative superiority of the

nonparametric tests increased with increases in the size of n?

, the number of
observations per group, b, and the number of treatments, t. The effect of
skewed, leptokurtic distributions on the dependeﬁt variable was not sufficiently
strong to yield nonparametric tests for the one way ANOVA (KW) and for the ran-
domized block design (Fr) which were consistently more powerful than their para-
metric analogues. However, for n? = .8, the Kruskal-Wallis and.Friedman tests
tended to be slightly more powerful than their parametric counterparts.

When the parametric‘tests were compared among themselves, our conjecture
that a sizable amount of nonlinearity might favor the F test for the randomized
block dcsign over its parametric counterparts which require a linear X Y rela-
tion was substantiated. Thus conclusions regarding- the deereasing power of

parametric procedures for data in which the X Y relation is linear,

ANOVA of correct > ANCOVA > ANOVA of a randomized
index of response block design

! s
are not supported in the nonlinear case. Instead,

ANOVA of a randomized > ANOVA of a correct » ANCOVA
block design index c¢f responsc

The study as a whole supports the Viability of selecting a nonparametric
test in preference to a parametric one if the relationship between the depen-
dent variable and the concomitant variable is nonlinear. The declared chances

of committing a Type I Error adequately describe the ectual chances, and the

_ power of the nonparametric analyses of variance of indices of response and

of analysis of covariance is higher than that of their parametric analogues.
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*We have asserted that, '"Since an increase .in n2 for constant p in the under-
lying model implies an increase in curvilinearity in the model,..." This
statement does not imply that n2and p are reported for comparable data.
The value of p pertains to the linear correlation in the error-free model,

Y = - 4% with X N(O, 1.3%) .
The value (1 - p2) is a measure of the lack of f1t of a linear X Y relationship
to the function specified by

Y = - 04‘{0
The correlation ratio
2
n? =1 - Sy.x
o2
y .
is based on the full model which includes normally distributed error,
Y = - 4 + yZ with 2 N(O, 1) .
The value (1 - n2) =02 / 02 1is a measure of "pure error" in fitting

empirical data to theyn§n11nezr functional X Y relation. Unfortunately, no

comparable data are reported for the total sample values of the Pearson

" correlations. . These would measure both "pure error'" and lack of fit (Draper
and Smith, 1966). Of necessity, comparisons will be made between E(n?) and
E(r..), both computed on the full model, but the former measuring association
in the total sample and the latter measuring the pooled within groups linear
correlation. Under the null hypothesis of no treatment effects and the as-
sumption of identical distributions on the concomitant variable, needed by
the nonparametric tests, r._ and r for the total sample both serve as estima-
tors of the corresponding population Pearson correlation. It can be noted
that as n? increases, both E(% ) and E(r.,) increase, but at differing rates.
Since r2 < n2 in the presence of curvilinearity and r? = Az for linearity,
the increasing values of E(M2) - (E(r })2 with an increase in n2 imply an
increase in curvilinearity. :
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TABLE 3

TOTAL SAMPLE CORRELATION RATIO E(n2), TOTAL SAMPLE PEARSON CORRELATION FOR
THE UNDERLYING MODEL E(r__ ), AND AVERAGE CORRELATIONS WLTHIN TREATMENT
GROUPS E(rw), ACROSS XY ALL RANKED OBSERVATIONS E(rs) AND WITHIN TREAT-
MENT GROUPS ON RANKED DATA E(er)

n? = -4 -6 .8
t = 3 3 3 5 [' 2
b= g 8 5 8 | 10 B 8
E (n2) .3920 L5743 LE029 .801.0 L8135 .801¢ . 8068
E(r,,) L7109 L7175 L6978 L6925 G L6576 7045
CENTRAL E(r,) L4187 .5261 NIVERE IR ST BRSO .6553
.E(rs) -3539 L4496 L5698 L5910 | L5293 G028 L6074, |
B(ry) | P00 | A T 5670 | L5691 | .93 | L6031 | 6019
E(rs) W3433 .4324 25353 | .5510 55 L5772 J . 5887
NON-CENTRAL
E(rg) 2517 <4501 R 5857 L2898 | LO0RE AJ L6002
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