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ABSTRACT

An equation was derived to determine the relationship
between the pooled within-subgroup r (correlation coefficient) and
the r obtained from the total group data. It was, thus, possible to
assess the amount of distortion introduced by pooling heterogeneous
subgroups. As a basis for deciding whether to pool two subgroups in
order to calculate a single r for the total group, a two-stage
procedure was recommended: (1) comparison of the two within-subgroups
r's; and (2) comparison of the total group r and the pooled
within-subgroup r. On the basis of results for the second stage test,
distortion in the total group r was shown to be a function of the
pattern of subgroup mean differences, total group sample size, and
the magnitude of the pooled within-subhgroup r. Implications were
discussed. (Author)
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Alan L. Sockloff
Terple University
An equation was derived to determine the relationship between the

pooled withiin-subgroup r and the r obtained from the total group data.
It was, thus, possible to assess tlie amount of distortion introduced by
pooling heterogencous subgroups. As a basis for deciding whether to
pool two subgroups in order to calculate a single r for the total group,
a two-stage procedurc was recormended: (1) comparison of the two
within-subgroup r's; and (2) comparison of the total group r and the

pocled wititin-subgroip r. On the basis of results for tihe second stage

test, distortion in the total group r was shown to be a function of

the pattern of subgroup mean differences, total group sample size, and
the magnitude of the pooled within-subgroup r. Implications were dis-

cussed.

lpapcr presented at the annual mecting of the American Lducational
Research Association. Chicago, 1974. Portions of this paper will be
published in the Summer, 1975 issue of Educational and Psychological
Mcasurcment.
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Frequently, in the psychological and educational literature, corre-
lational studics are reporteu in which product-moment correlations are
calculated beiwecn two variables for sets of data pooled across two,
possibly heterogeneous, categorical subgrowrns. The pooling of hetero-
geneous subgroups to calculate a product-moment correlation was first
discussed by Karl Pearson (Pearson, lLece, § Bramley-Moore, 1899). By way
of illustration, these authors presented correlational data betwecen
length and breadth of skulls for 806 males (r = .0869) and 340 females
(r = -.0424). When the two subgroups were pooled, an r of .1968 was
obtained, and this r was considered to represent a large spurious corre-
lation.

From a sampling of recent introductory statistics textbooks in
psychology and education, it was found that writers do discuss the
effects on the correlation coefficient resulting from pooling hetero-
geneous subgroups (Games § Klare, 1967; Glass & Stanley, 1970; Guilford,
1965; Walker & Lev, 1969; among others). Where references are made,
Dunlap's (1937) paper on the combinative properties of correlation
coefficients is most frequently cited. Dunlap presented a method for
calculating a total group correlation coefficient from subgroup corre-
lation cocffiéients and the means and standard deviations of the vari-
ables.

To date, a mathematical forrulation of the effects on the corre-
lation coefficient from pooling heterogeneous subgroups has becen lacking.
In lieu of such a formulation, tecxtbook writers have tended to stress
cautious interpretation and thc use of subgroup correlation coeffi-
cients to help provide a rational explanation for correlation results
in the total group. The major interest of this paper is the derivation

of a mathematical formulation and the demonstration of the effects of



pooling two sul)group:‘; on the' total group corrclation coefficient, Of
additional interest is a procedurc to guide the decision concerning
the pooling of data for the purpose of calculating a single corrclation
coefficient.

Formulation

Given two subgroups, lect n, and n, be the subgroup sample sizes,

2
where ny 4+ n, = N, Llet U and V be the distunces hetween the subgroup
means for X and Y, respectively, i.e., U=X, - X, and V = ZZ - 7.

Sun of Squares and Cross Products

The sum of cross products for the total group, _S§(_X_Y)t, can be
defined
ey (v g;gg)
where §§(X_Y_)1 and §§Q(l)2 arc the within-subgroup sums of cross

products. Since the sum of squares for X in the total group is actu-

ally the sum of cross products with respect to itself,
nin
SS(), = SS(N), *+ SS(X), + uz(‘—l—g—z-). [2]

Similarly, for Y,

=}
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SS(D, = S0, + 5 + v

Total Grour 1y

Using tquations 1, 2, and 3, the correlation coefficient for the

-

total group is:
S5(XY), + SS(XY), + W(nn,/N)

r .
bS] ¢ s, + W /MHSS(M), + S50, + V(agn,/N)

An equivalent form of this equation was derived by Dunlap (1937). If

ss(0

Y), = $50Y); + S5(M,, S5, = S8(X); + SS(X; ;. and SS(V),, =

S8(Y); + SS(Y),, then the cquation defining r, may be simplified:



S.§(XE)W + UY (n ]n2//N)

r., = .
EOASS (N, + U2 gm0 HSS(Y),, + ¥2(nyny/N) )

4]

The correlation cocfficient for the total group is thercfore expressed
in terns of pooled within-subgroup sums of squares and cross products.
subgroup sarple sizes, and distances between the subgroup mecans.

Pooled Within-Subgroup r,.

The pooled within-subgroup correlation coefficient is obtained
from pooling of the subgroup sums of squares and cross products:
SS(XY), + SS(XY), SS(XY),,
T ISS(X)) + SS(0,HSS(Y) + $8(V),) ] /550, SM,,

(5]

It should be clear from inspection of Equation 5 that for equal vari-
ances of X in both subgroups and equal variances of Y in both subgroups,

I, isa weighted arithmetic mean of the within-subgroup correlations,

weighted by the number of observations in cach subgroup.
is

Furthermore, r,, may be compared to Ty in two ways. First, 7

a special case of T, resulting when subgroup mean differences are non-

r,, is that special case of T, when

—_— -

existent (i.e., U=V = 0). Sccond,
subgroup differences are eliminated statistically. The latter compari-
son requires the form of a first-order partial correlation IE;Y;'A’
where X, and Y, are the two variables measured in the total group and
l is a dichotomous variable indicating subgroup membership. In the
formula for the first-order partial correlation, since 2513 and zy;; :
are point-biserial correlations, the result of operating upon the
formula for the first-order partial correlation is:

SS(XY)y - W (nyn,/N)

Txpvesz ™ . . :
TS ASS@), - W(gny/N) HSS(Y) ¢ - Vi@n,y/N))
Since the above equation represents an alternative definition of T

then r,., the pooled within-subgroup correlation coefficient, is also



the result of statistically eliminoting subgroup differences from the

total group correlation coefficient. The latter definition of r, sug-
gests that r. can be meaningfully used as a descriptive statistic with
a known sampling distribution.

Further Derivation of r,

If the numerator and denominator of Lquation 4 are each divided by
the product of the pooled within-subgroup standard errors of the mean
(§ii and sy ), a more convenicnt definition of ry arises. To complete

A Ty -t
this scries of operations, by defining ty ® !/Ezﬂ and ty = Y/éig as
subgroup mean differences neasurcd in units of standard errors, the
following final form rcsults:
(N- 2)r, +t.t,

= (6]

r. = .
r -2 LZHEQ - 2) + 2}

In this form, r, is defined in terms of total group sample size, the

-t

pooled within-subgroup correlation cocfficient, and subgroup mean
differences that are neasured in units distributed as Student's t under
the appropriate assumptions.

The 2ecision to Pool

The following is a simple two-stage procedure, rccqmmended as a
basis for the decision to pcol two subgroups in order to calculate a
single correlation coefficient for the total group data.

1. The two within-subgroup correlation cocffiéients should be
compared. Under the hypothesis H,: Pl = P2s the unit-normal z test,
relying on Fisher's r-z transformation (Ef)' can be used:

g " 3, .
z= . 7]
1 1
/Bl -3 n, -3

If lij is rejected, it is wunreasonable to calculate r, as a measure of




corrclation for the two subgroups. If Uo is accepted, then 1y, can be

considered a useful measure of correlation for the two subgroups, and
the sccond stage should be followed.

2. In order to asscss the distortion introduced by pooling the
twvo subLgroups, 5& should be compared to r,, under the hypothesis H;:
Py ™ Pye For this test, if Iy is considered an estimate of Py?

2f, - 2f,,

2= (8]
If H, is rcjected, then r, may be considered distorted, but r, can be
used as a mcasure of corrclation for the two subgroups. If Hy is

accepted, then pooling the data from the two subgroups in order to
calculate a total group correlation cocfficicent appears to be a parsi-

monious and reasonable procedure.

According to Equation 6, distortion in Iy is affected by subgroup

centroid differences and total group sample size. Three patterns of

subgroup centroid differences are of intercst and are shown in Figure 1.

Insert Figure 1 about here

(1) If the mean of Subgroup 2 is higher than the mean of Subgroup 1 on
both variables (Cases a, b, and ¢ of Figure 1), the greater the dif-
ference between the subgroups on the two variables, the more exaggerated
the value of r, in a positive direction. (2) If the mean of Subgroup 2
is higher than the mcan of Subgroup 1 on one vériable, and equal on the
other variable (Cases d, ¢, and f of Figure 1), the greater the dif-

ference between the two subgroups on the one variable, the closer Ty

is to a value of 0.00. (3) If the mean of Subgroup 2 is higher than



the mean of Subgroup 1 on one variable, and lower on the other variable
(Cases g, h, and i of Figurce 1), the greater the difference between
the subgroups on the two variables, the more exaggerated the valuc of
Iy in a negative direction. Furthermore, for constant differcnces
betwecn the subgroup centroids as measurced in standard errors, increas-
ing the total group sample size serves to minimize the effects of sub-
group centroid diffcrences, i.e., T, approaches 1.
The cffects of subgroup sumple size discrepancy on the calculation
of r, and r,, can be shown by reference to Equations 4 and 5. According
tc Equation 5, for constant total group sample size, the larger the
discrepancy between the subgroup sample sizes, the greater the influence
of the larger subgroup in the calculation of r,.. In addition, according
to Equation 4, for constant diffcrences betwee; subgroup centroids and
for constant total group sample size, the larger the discrepancy between
n, and n,, the smaller the effect of subgroup centroid differences in
the calculation of Tes and, thus, the more equal the values of T, and L
For the second stage test, in order to demonstrate tne amount of

distortion introduced by pooling heterogeneous subgroups, Equation 6

was utilized to calculate Ty under varying sample conditions. The

-—

sample conditions were derived from combinations of four magnitudes of
subgroup centroid diffcrences for the three patterns, five tctal group
sample sizes (N), and three values of T By assuming two biv te
normal populations, the magnitude of difference between subgroup means
can be represented By employing four-decimal critical values of Student's
t distribution for p<.0S, p<.01, p<.001, and p<.0001, obtained for N-2
df from Sockloff & Ldney's (1972) tables. The .001 and .0001 signifi-

cance levels were uscd because these levels represent extreme differences

that are sometimes found in research data, although not necessarily



reported, ‘The five total group sample sizes were 10, 50, 100, 200, and

1000. The threec values of I, were .8000, .4000, and 0.0000, chosen to

represent high, moderate, and low corrclations, respectively.
Tables 1, 2, and 3 present calculated values of r, derived from

the values of r,

under the varying sample conditions. Also included

in these tables are the second stage two-tailed tests of t,:

to asscss the amount of distortion introduced under the cenditions.

Negative values of 1, arc not shown in the tables since the effects of

the three patterns for negative r,'s are opposite in sign from those

shown for positive r,.'s, e.g., the amount of exaggeration in a positive
direction for a positive corrclation under Pattern 1 is equal to the
amount of exaggeration in a negative direction for a negative corre-
lation under Pattern 3.

As shown in Table 1, under Patterns .1 and 2, large differcnces

Insert Table 1 about here

between the subgroup means have a small effect on the value of Ii-when
I * .8000. Under both patterns, a total group sample size of 50
appears to be sufficient to minimize the distortion introduced by
subgroup mean differences that are significant at the .0001 level. On
the other hand, the results were quite different under Pattern 3. When
the means of the two subgroups are significantly different at the .0001
level, but in opposite directions, for a total group sample size of 50
T, was calculated to be .3089, which is significantly different from
a; r,, of .8000. Furthermore, even for a total group sample size of
1000, the pooling of subgroups when subgroup means differ in opposite
directions at the .0001 level produced an r, of .7729. Although this

24
value of r, is significantly ¢."‘erent from an r,, at the .05 level,



one can argue that 'such statistically significant differcnces between

r, and X, have little practical significance.

According to Table 2, when r, = .4000, the results for Pattern 1

Insert Table 2 about herc

suggest that total group sample sizes of 50 are sufficient to avoid
distortions introduced by pooling subgroups when both scts of subgroup
means differ significantly in the same dircction at the .0001 level.
Under Pattern 2, significant distortion was not found, cven for a total
group sample size of 10. The Pattern 3 results suggest that a total
group sample size of 200 will avoid distortion in the calculation of r,.

According to Table 3, total group sample sizes of 50 appear to be

Insert Table 3 about here

sufficient to avoid distortion when r* 0.0000 and the two sets of
subgroup means differ at the .0001 level. Based on the symmetry of the
sampling distributions of r when p = 0, this conclusion holds for subgroup
means differing in the same or opposite directions.
Discussion

The various results clearly suggest the varieties~of distortion
that may be introduced by haphazardly pooling subgroups of data for the
purpose of calculating a single correlation coefficient. The two-stage
test procedure should ofier protection against such distortions. In
addition, it was shown thatlgrcater latitwle exists in terms of non-
distorting pouling when the subgroup mean differences are small, the
subgroup sample sizes are large, and the pooled within-subgroup corre-
lations arc low to modcrate. The calculated examples supggest limits

within which distortion does not seriously aifect correlational results.



The types of subgroups to which this discussion refers arc those
resulting {rom natural dichotomies and those resulting from an arbitrary
split where (a) the decision to split the total group was based on
consuderations other than that of ridding the data of non-lincarity, and
(b) middle range data has been discarded, When an arbitrary split is
made to rid the total group data of nen-linearity, the two subgroups
may show cvidence of different, but lincar, rclationships. According
to the first stage test, if the two within-subgroup correlations arc
diffcrent, then it would appear unrcasonable to even consider pooling
the data on the basis of the original rationale for having mode the
split. Uu the other hand, if middle range data is not discarded when
an arbitrary split is madc for reasons other than ridding the data of
non-linearity, then pooling would appear to be a rcasonable step
toward restoring the information contained within the total bivariate
set of data.

Implications of this study relate to the usc of the pooled within-
subgroup correlation coefficient, to current practices in educational
research, and to generalizations of this study in terms of pooling
multiplc subgroups in the calculation of correlation matrices. First,
assuming no difference betwcen the within-subgroup correlation coeffi-
cients (non-rejection of the first stage test), the pooled within-subgroup
correlation coefficient is useful as a descriptive statistic with
hypothesis-testing capabilities resulting from its equivalence to a
first-order partial correlation coefficient. Second, in rescarch
involving multiple decpendent measures that arc analyzed via several
ANOVA's, rather than MANOVA, intercorrelations among the dependent
measurcs should be asscssed through pooled within-subgroup correlation

coefficicnts rather than total group correlation coefficients. Othemvise,
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the meaning fulness of the intercorrelations would be contingent upon
the failurce to find subgroup differences in all of the ANOVA's,
last, considering the demonstrated varicties of possible distortion

of a single corrclation cocfficient from the haphazard pooling of only
two heterogencous subgroups, the generalizations of these results must
be inherently rore complex, i.c¢., the effects of pooling multiple sub-
groups on corrclation matrices. If, indeed, such complex distortion
can be demonstrated, and it is desirable to pool data for recasons of
parsimony, this suggests that further study should be devoted to the

multivariate case and the development of appropriate test procedures.
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Table 1

Values of ry Resulting from Three Patterns of

Subgroup Centroid Differences and Five Total

Group Sample Sizes:

r, = .8000

W

Total group

Significance levels for t distribution when

subgroup mean differcnces cqual critical values

sample size

p<.05 pe.01 p<.001 p<. 0001

Pattern 1: X; > X, Y, > ¥y, both significant

10 .8799 .9169 .9521 L9727%

50 .8155 .8261 . 8408 .8546

100 .8077 .8132 .8210 . 8288

200 .8039 . 8066 .8107 .8148
1000 .8008 .8013 .8022 .8030

Pattern 2: X, > Xl’ significant; Y, = Y,

10 .6200 .5156 .3914 .2953

50 .7683 .7460 .7138 .6822

100 .7844 .7732 .7568 .7403

200 .7923 . 7867 .7784 .7699
1000 .7985 .7973 . 7957 .7940

Pattermn 3: _Xz > X0 Zz <Y,, both significant

10 .0813% -, 2523088 | _ 5601RRRR| _ 7547AAAR

50 .6602# .5654%# .43328R88) _ 30ggRnas
100 .7305 .6816%* .6108%" ..5412***‘
200 .7653 . 7405% . 7040%% .66728%R%
1000 .7931 .7881 . 7806 .7729%

Note.--Asterisks refer to significance levels

2 tests comparing Iy and r,.

* p<.05
#% p<.0l
#8% ne<.001
o 444 1¢.0001

of unit-normal



Table 2

Values of r, Resulting from Threce Patterns of

Subgroup Centroid Differences and Five Total

Groub Sample Sizes:

T, .4000

P

Significance levels for t distribution when
Total group
subgroup mean differences equal critical values
sample size
p<.05 p<.01 p<.001 p<.0001
Pattern 1: -X:Z > X—l' _Y_'Z > _Y_l, bot significant
10 .0396 .7508 .8564 .9182%#
50 .4466 .4782 .5223 .5637
100 4232 .4395 .4631 .4863
200 .4116 .4198 .4320 .4443
1000 .4023 .4040 .4065 .4090
Pattem 2: X, > X,, significant; ¥, = ¥,
10 .3100 .2578 .1957 .1477
50 .3842 .3730 .3569 .3411
100 .3922 . 3866 .3784 .3701
200 . «3961 . 3933 .3892 .3850
1000 .3992 .3987 .3978 .3970
Pattern 3: X, > X5 ¥, < -Y-l’ both significant
10 -.1590 -.4184* -.6648%* - .80928%%
50 .2913 .2175 JA147% | 0181#4
100 .3459 - .3079 .2529 .1987#
200 .3730 .3537 .3253 .2967
1000 . 3946 .3907 .3849 .3789

Note.--Asterisks refer to significance levels of unit-normal

2 tests comparing r, and
* p<.05 B
*% p<.01
"A% p<.001

Ly



Table 3

Values of 1, Resulting from One Pattern of

Subgroup Centroid Differences and Five Total

Group Sample Sizes: r, = 0.0000

Significance levels for t distribution when

Total group
subgroup mean differences equal critical values
sample size
p<-0s p<.01 p<.001 p<.0001
Pattern 1: X, > X, Y, > Y,, both significant
10 . 3993 .5846 .7606* .8637*%
50 .0777 .1303 .2038 .2728
100 .0386 .0658 .1051 .1438
200 .0193 .0330 .0533 .0738
1000 .0038 .0066 .0108 .0151

Note.--Asterisks refer to significance levels of unit-normal
Z tests comparing r, and r,..
* p<.05
*% p<.01




(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

FIG. 1. Nine exaggerated bivariate plots of total group data

resulting from pooling heterogencous subgroups.




