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ABSTRACT
An equation was derived to determine the relationship

between the pooled within-subgroup r (correlation coefficient) and
the r obtained frog the total group data. It was, thus, possible to
assess the amount of distortion introduced by pooling heterogeneous
subgroups. As a basis for deciding whether to pool two subgroups in
order to calculate a single r for the total group, a two-stage
procedure was recommended: (1) comparison of the two within-subgroups
r's; and (2) comparison of the total group r and the pooled
within-subgroup r. On the basis of results for the second stage test,
distortion in the total group r was shown to be a function of the
pattern of subgroup mean differences, total group sample size, and
the magnitude of the pooled within-subgroup r. Implications were
discussed. (Author)
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An equation was derived to determine the relationship between the

pooled within-subgroup r and the r obtained frori the total group data.

It was, thus, possible to assess the amount of distortion introduced by

pooling heterogeneous subgroups. As a basis for deciding whether to

1-1,mq pool two subgroups in order to calculate a single r for the total group,

. a two-stage procedure was recommended: (1) comparison of the two

within-subgroup r's; and (2) comparison of the total group r and the

pooled within-subgroup r. On the basis of results for the second stage

test, distortion in the total group r was shown to be a function of

the pattern of subgroup mean differences, total group sample size, and
` se'

the magnitude of the pooled within-subgroup r. Implications were dis-

cussed.

'Paper presented at the annual meeting of the American Educational
Research Association. Chicago, 1974. 1'ortion3 of this paper will be
published in the Surmier, 1975 issue of Educational and Psychological
Measurement.



Frequently, in the psychological and educational literature, corre-

lational studies arc reporte.i in which product moment correlations arc

calculated beLv.een two variables for sets of data pooled across two,

possibly heterogeneous, categorical subgrows. The pooling of hetero-

geneous subgroups to calculate a product-moment correlation was first

discussed by Karl Pearson (Pearson, Lee, & Bramley-Moore, 1899). By way

of illustration, these authors presented correlational data between

length and breadth of skulls for 806 males (r = .0869) and 340 females

(r = -.0424). When the two subgroups were pooled, an r of .1968 was

obtained, and this r was considered to represent a large spurious corre-

lation.

From a sampling of recent introductory statistics textbooks in

psychology and education, it was found that writers do discuss the

effects on the correlation coefficient resulting from pooling hetero-

,..,-, gcneous subgroups (Games & Klare, 1967; Glass & Stanley, 1970; Guilford,

1965; Walker & Lev, 1969; among others). Where references are made,

Dunlap's (1937) paper on the combinative properties of correlation

coefficients is most frequently cited. Dunlap presented a method for

calculating a total group correlation coefficient from subgroup corre-

lation coefficients and the means and standard deviations of the vari-

q, ables.

Erl To date, a mathematical formulation of the effects on the corre-

lation coefficient from pooling heterogeneous subgroups has been lacking.

In lieu of such a formulation, textbook writers have tended to stress

cautious interpretation and the use of subgroup correlation coeffi-.

cients to help provide a rational explanation for correlation results

in the total group. major interest of this paper is the derivation

of a mathematical formulation and the demonstration of the effects of
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pooling two subgroup's on the' total group correlation coefficient. Of

additional interest is a procedure to guide the decision concerning

the pooling of data for the purpose of calculating a single correlation

coefficient.

Formulation

Given two subgroups, let and n2 be the subgroup sample sizes,

where n
4

+ n
2

= N. Let U and V be the distances between the subgroup
- -

means for X and Y, respectively, i.e., U =
2

- 3C
1

and V =
2

- 1 .- -

Sum of Squares and Cross Products

The sum of cross products for the total group, SS(XY)t, can be

defined

n1n2
ss(a)t = ss(a), + Kan2 + 4/1,

where SS(XY)
1
and SS(XY)

2
are the within-subgroup sums or cross

products. Since the sum of squares for X in the total group is actu-

ally the sum of cross products with respect to itself,

Din2
SS(X)t = SSW + SS(N)

2
+ 112

(-TT).

Similarly, for Y,

SS(1)t = + SS(Y)2 + 1/2(1.7D2 ).

Total Grour rt

Using equations 1, 2, and 3, the correlation coefficient for the

total group is:

SS (XY) + Kam, + tivcrif22/10

[1]

t
ASS(X), + SS(X)2 + U2(n1n2/N))(SS(Y)1 + SS (Y) IT2 (gig2/N))

An equivalent form of this equation was derived by Dunlap (1937). If

SS(XY)w = SS(XY), + SS(XY)2, SS(X)w = SS(X)1 + SS(X,.:. and SS(Y)11 =

SS(Y)1 + SS(Y)?, then the equation defining rt may be simplified:
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Yr

SQY)w W(11P2/N)
r r [4]

ifS(X)w U2(n1112/N)}(SSAX)w Y2 (nin2/N))

The correlation coefficient for the total group is therefore expressed

in terms of pooled within-subgroup sums of squares and cross products.

subgroup sample sizes, and distances between the subgroup means.

Pooled Idthin-Subgroup rlti

The pooled within-subgroup correlation coefficient is obtained

from pooling of the subgroup sums of squares and cross products:

SS(XY)1 SS(X/)2 SS(XY)w

rw = , [5]

1(SSWI +55. ()2)(SS(X)1 + SS(I)2) iSSOilwSS(Ilw

It should be clear from inspection of Equation 5 that for equal vari-

ances of X in both subgroups and equal variances of Y in both subgroups,

rw is a weighted arithmetic mean of the within-subgroup correlations,

weighted by the number of observations in each subgroup.

Furthermore, rw may be compared to rt in two ways. First, rw is

a special case of rt resulting when subgroup mean differences are non-

existent (i.e.. U = V = 0). Second, rw is that special case of r
t

when

subgroup differences are eliminated statistically. The latter compari-

son requires the form of a first-order partial correlation r
gfft.1!

where X
t

and I
t

are the two variables measured in the total group and

Z is a dichotomous variable indicating subgroup membership. In the

formula for the first-order partial correlation, since r and r

are point-biserial correlations, the result of operating upon the

formula for the first-order partial correlation is:

SS(XY)t - tly(gin2/)
.

15tIrL l(SS t "2 (Li1n2/N) {SS (111112N

Since the above equation represents an alternative definition of

then r, the pooled within-subgroup correlation coefficient, is also
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the result of statistically eliminating subgroup differences from the

total group correlation coefficient. The latter definition of rw sug-

gests that r can be meaningfully used as a descriptive statistic with

a known sampling distribution.

Further Derivation of Et

If the numerator and denominator of Equation 4 arc each divided by

the product of the pooled within-subgroup standard errors of the mean

(s and s. ), a more convenient definition of a arises. To complete

this series of operations, by defining 4 = U/s.. and tv = V/s- as

subgroup mean differences measured in units of standard errors, the

following final foram results:

(N - 2)rw + txtv
r, = r

i((N - 2) + q}{ (N - 2) +

In this form, rt is defined in terms of total group sample size, the

pooled within-subgroup correlation coefficient, and subgroup mean

[6]

differences that arc measured in units distributed as Student's t under

the appropriate assumptions.

The Decision to Pool

The following is a simple two-stage procedure, recommended as a

basis for the decision to pool two subgroups in order to calculate a

single correlation coefficient for the total group data.

1. The two within-subgroup correlation coefficients should be

compared. Under the hypothesis Ho: p1 = p2, the unit-normal z test,

relying on Fisher's r-z transformation (zf), can be used:

fl f2

'747B2

If Ito is rejected, it is unreasonable to calculate r
14
as a measure of

[7]



correlation for the' two subgroups. If 110 is accepted, then can be

considered a useful measure of correlation for the two subgroups, and

the second stage should be followed.

2'. In order to assess the distortion introduced by pooling the

two subgroups, it should be compared to under the hypothesis U0:

pt = pu,. For this test, if rw is considered an estimate of pw,

;ft Ifw

JR-1-7

If do is rejected, then rit may be considered distorted, but can be

used as a measure of correlation for the two subgroups. If Bo is

accepted, then pooling the data from the two subgroups in order to

calculate a total group correlation coefficient appears to be a parsi-

monious and reasonable procedure.

5

[8]

rrampine nf nictnrtinn

According to Equation 6, distortion in rx is affected by subgroup

centroid differences and total group sample size. Three patterns of

subgroup centroid differences are of interest and are shown in Figure 1.

Insert Figure 1 about here

(1) If the mean of Subgroup 2 is higher than the mean of Subgroup 1 on

both variables (Cases a, b, and c of Figure 1), the greater the dif-

ference between the subgroups on the two variables, the more exaggerated

the value of rt in a positive direction. (2) If the mean of Subgroup 2

is higher than the mean of Subgroup 1 on one variable, and equal on the

other variable (Cases d, e, and f of Figure 1), the greater the dif-

ference between the two subgroups on the one variable, the closer rt

is to a value of 0.00. (3) If the mean of Subgroup 2 is higher than



6

the mean of Subgroup 1 on one variable, and lower on the other variable

(Cases E, h, and i of Figure 1), the greater the difference between

the subgroups on the two variables, the more exaggerated the value of

rt in a negative direction. Furthermore, for constant differences

between the subgroup centroids as measured in standard errors, increas-

ing the total group sample size serves to minimize the effects of sub-

group centroid differences, i.e., rt approaches rw.

The effects of subgroup sample size discrepancy on the calculation

of It and Li can be shown by reference to Equations 4 and S. According

tc Equation 5, for constant total group sample size, the larger the

discrepancy between the subgroup sample sizes, the greater the influence

of the larger subgroup in the calculation of iw. In addition, according

to Equation 4, for constant differences between subgroup centroids and

for constant total group sample size, the larger the discrepancy between

ni and n,, the smaller the effect of subgroup centroid differences in

the calculation of rt, and, thus, the more equal the values of rt and Ew.

For the second stage test, in order to demonstrate the amount of

distortion introduced by pooling heterogeneous subgroups, Equation 6

was utilized to calculate r under varying sample conditions. The

sample conditions were derived from combinations of four magnitudes of

subgroup centroid differences for the three patterns, five total group

sample sizes (N), and three values of rw. By assuming two biv tc

normal populations, the magnitude of difference between subgroup means

can be represented by employing four-decimal critical values of Student's

t distribution for E!.05, p<.01, p!.001, and 2!.0001, obtained for N-2

df from Sockloff & Edney's (1972) tables. The .001 and .0001 signifi-

cance levels were used because these levels represent extreme differences

that are sometimes found in research data, although not necessarily



7

reported. The five total group sample sizes were 10, 50, 100, 200, and

1000. The three values of Ew were .8000, .4000, and 0.0000, chosen to

represent high, moderate, and low correlations, respectively.

Tables 1, 2, and 3 present calculated values of rt derived from

the values of under the varying sample conditions. Also included

in these tables are the second stage two-tailed tests of LID: pt = pw

to assess the amount of distortion introduced under the ccnditions.

Negative values of rw arc not shown in the tables since the effects of

the three patterns for negative Ws are opposite in sign from those

shown for positive Ws, e.g., the amount of exaggeration in a positive

direction for a positive correlation under Pattern 1 is equal to the

amount of exaggeration in a negative direction for a negative corre-

lation under Pattern 3.

As shown in Table 1, under Patterns 1 and 2, large differences

Insert Table 1 about here

between the subgroup means have a small effect on the value of I when

r = .8000. Under both patterns, a total group sample size of SO

appears to be sufficient to minimize the distortion introduced by

subgroup mean differences that are significant at the .0001 level. On

the other hand, the results were quite different under Pattern 3. When

the means of the two subgroups are significantly different at the .0001

level, but in opposite directions, for a total group sample size of SO

r
t
was calculated to be .3089, which is significantly different from

an rw of .8000. Furthermore, even for a total group sample size of

1000, the pooling of subgroups when subgroup means differ in opposite

directions at the .0001 level produced an r1 of .7729. Although this

value of r
t
is significantly e:"erent from an rw at the .05 level,
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one can argue that'such statistically significant differences between

r
t

and r have little practical significance.

According to Table 2, when 4 . .4000, the results for Pattern 1

Insert Table 2 about here

suggest that total group sample sizes of SO are sufficient to avoid

distortions introduced by pooling subgroups when both sets of subgroup

means differ significantly in the same direction at the .0001 level.

Under Pattern 2, significant distortion was not found, even for a total

group sample size of 10. The Pattern 3 results suggest that a total

group sample size of 200 will avoid distortion in the calculation of It.

According to Table 3, total group sample sizes of 50 appear to be

Insert Table 3 about here

sufficient to avoid distortion when r = 0.0000 and the two sets of

subgroup means differ at the .0001 level. Based on the symmetry of the

sampling distributions of r when p = 0, this conclusion holds for subgroup

means differing in the same or opposite directions.

Discussion

The various results clearly suggest the varieties of distortion

that may be introduced by haphazardly pooling subgroups of data for the

purpose of calculating a single correlation coefficient. The two-stage

test procedure should offer protection against such distortions. In

addition, it was shown that greater latitude exists in terms of non-

distorting pooling when the subgroup mean differences are small, the

subgroup sample sizes are large, and the pooled within-subgroup corre-

lations are low to moderate. The calculated examples suggest limits

within which distortion does not seriously affect correlational results.
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The types of subgroups to which this discussion refers arc those

resulting from natural dichotomies and those resulting from an arbitrary

split where (a) the decision to split the total group was based on

considerations other than that of ridding the data of non-linearity, and

(b) middle range data has been discarded. When an arbitrary split is

made to rid the total group data of non-linearity, the two subgroups

may show evidence of different, but linear, relationships. According

to the first stage test, if the two within-subgroup correlations are

different, then it would appear unreasonable to even consider pooling

the data on the basis of the original rationale for having mode the

split. On the other hand, if middle range data is not discarded when

an arbitrary split is made for reasons other than ridding the data of

non-linearity, then pooling would appear to be a reasonable step

toward restoring the information contained within the total bivariate

set of data.

Implications of this study relate to the use of the pooled within-

subgroup correlation coefficient, to current practices in educational

research, and to generalizations of this study in terms of pooling

multiple subgroups in the calculation of correlation matrices. First,

assuming no difference between the within-subgroup correlation coeffi-

cients (non-rejection of the first stage test), the pooled within-subgroup

correlation coefficient is useful as a descriptive statistic with

hypothesis-testing capabilities resulting from its equivalence to a

first-order partial correlation coefficient. Second, in research

involving multiple dependent measures that arc analyzed via several

ANOVA's, rather than MANOVA, intercorrelations among the dependent

measures should be assessed through pooled within-subgroup correlation

coefficients rather than total group correlation coefficients. Otherwise,
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the meaningfulness of the intercorrelations would be contingent upon

the failure to find subgroup differences in all of the ANOVA's.

Last, considering the demonstrated varieties of possible distortion

of a single correlation coefficient from the haphazard pooling of only

two heterogeneous subgroups, the generalizations of these results must

be inherently more complex, i.e., the effects of pooling multiple sub-

groups on correlation matrices. If, indeed, such complex distortion

can be demonstrated, and it is desirable to pool data for reasons of

parsimony, this suggests that further study should be devoted to the

multivariate case and the development of appropriate test procedures.
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Table 1

Values of rt Resulting from Three Patterns of

Subgroup Ccntroid Differences and Five Total

Group Sample Sizes: lw a .8000

Significance levels for t distribution when
Total group

subgroup mean differences equal critical values
sample size

P<.05 2.<.01 .001
i

p!.0001

Pattern 1: y2 > II, y both significant

10 .8799 .9169 .9521 .9727*

50 .8155 .8261 .8408 .8546

100 .8077 .8132 .8210 .8288

200 .8039 .8066 .8107 .8148

1000 .8008 .8013 .8022 .8030

Pattern 2: y2 > ICI, significant; yl y2

10 .6200 .5156 .3914 .2953

SO .7683 .7460 .7138 .6822

100 .7844 .7732 .7568 .7403

200 .7923 .7R67 .7784 .7699

1000 .7985 .7973 .7957 .7940

Pattern 3: y2 > Xi, y2 < 71, both significant

10 .0813* -.2523*** -.5691**** -.7547****

SO .6602* .5654** .4332**** .3089****

100 .7305 .6816** .6108*** .5412 * * **

200 .7653 .740S* .7040** .6672****

1000 .7931 .7881 .7806 .7729*

Note.--Asterisks refer to significance levels of unit-normal

z tests comparing rt and lir.

* 2.4.05

r .01

*** ag.001

**** r.0001



Table 2

Values of rt Resulting from Three Patterns of

Subgroup Centroid Differences and Five Total

Group Sample Sizes: El = .4000

Total group

sample size

Significance levels for t distribution when

subgroup mean differences equal critical values

n<.05 <.01 2c.001 E<.0001

Pattern 1: X-2 > X1, Y2 > Y1, bot significant

10 .6396 .7508 .8564 .9182**

50 .4466 .4782 .5223 .5637

100 .4232 .4395 .4631 .4863

200 .4116 .4198 .4320 .4443

1000 .4023 .4040 .4065 .4090

Pattern 2: 7.2 > X1, significant; Yi =

10 .3100 .2578 .1957 .1477

SO .3842 .3730 .3569 .3411

100 .3922 .3866 .3784 .3701

200 .3961 .3933 .3892 .3850

1000 .3992 .3987 .3978 .3970

Pattern 3: 3C > 3T
1'

Y.
2 <if

1'
both significant-2

10 -.1590 -.4184* -.6648** -.8092***

50 .2913 .2175 .1147* .0181**

100 .3459 .3079 .2529 .1987*

200 .3730 .3537 .3253 .2967

1000 .3946 .3907 .3849 .3789

Note.--Asterisks refer to significance levels of unit-normal

z tests comparing rt and .rw.

* v.0

** r.01

*** v.001



Table 3

Values of r
t
Resulting from One Pattern of

Subgroup Centroid Differences and Five Total

Group Sample Sizes: 144 0.0000

Total group

sample size

Significance levels for t distribution when

subgroup mean differences equal critical values

r<.05
11<.01 2.(.001 2<.0001

Pattern 1' 7
2

>
4'

Y
2
>7

1'
both significant

- - -

10 .3993 .5846 .7606* .8637**

SO .0777 .1303 .2038 .2728

100 .0386 .0658 .1051 .1438

200 .0193 .0330 .0533 .0738

1000 .0038 .0066 .0108 .0151

Note.--Asterisks refer to significance levels of unit-normal

z tests comparing rt and 41.

* 2.<.05

** Ec.01
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FIG. 1. Nine exaggerated bivariate plots of total group data

resulting from pooling heterogeneous subgroups.


