
DOCUMENT RESUME

ED 090 983 IR 000 594

AUTHOR Hsiao, D. K.; And Others
TITLE A Model for Data Secure Systems (Part 1) .

INSTITUTION Ohio State Univ., Columbus. Computer and Information
Science Research Center.

SPONS AGENCY Office of Naval Research, Washington, D.C.
REPORT NO OSU-CISRC-TR-73-8
PUB DATE Feb 74
NOTE 45p.

Et RS PRICE
DESCRIPTORS

I;)ENTIFIERS

MF-$0.75 HC-$1.85 PLUS POSTAGE
Computers; *Conceptual Schemes; Confidentiality;
*Data Bases; *Information Retrieval; Information
Storage; Models; Program Descriptions; *Security
*Access; Extended Logical Data Base; Privacy;
Protection

ABSTRACT
A description is provided of a conceptual model for a

data secure system. The discussion first offers a formal working
vocabulary and next, using the intuitive idea of a dichotomy between
permissible and impermissible accesses, formalizes the idea with an
Extended Logical Data Base and with protection specifications and
patterns. These specifications and patterns encompass the traditional
identification, authentication, and verification procedures by
recognizing that these procedures can be compared solely on the basis
of their answers to specific access attempts. A limited calculus of
protection patterns is offered, suggesting both comparative and
generative operators, and a variety of protection specifications is
defined and demonstrated. Finally, a demonstration is made of the
fact that it is possible to protect any accessible data in a data
base with a proposed protection specification which is independent of
the structure and implementation of the data base. (Author)

al

H

II

a11.

go

So

os,
/
. C

I
O
C

I
S
O

S
.

o
.k

I
d
o
d
o
,

pre,r

-
f
o
e

4
.
1

c.

'

.
9

o
f
.

e
t
.

S
o

'

i
s

.5
5
.

m
o
,
1

s
p
o
i
l

A
s
-

D
r.

O
Dc
p
s

0-
4
/
0

U S DEPARTMENT Of HEALTH,
EDUCATION &WELFARE
NATIONAL INSTITUTE OF

EDUCATION
TH,S DOCILE NT HA', MEN RE PRO
CyjCED .# At RE,:i MA"
THE. PE 4SONI OR C.EWCJANEZA ION ORIGIN
ACING IT PO NTS Or. VIEW 01. OPINIONS
STATED DO NOT N£ CESSAR,LY REPM..
SENT 0,, Ff C?Al NATIONAL I NSti,u if (4.
EDI:01,710N POSITION 04 PrIK

OSU-CISRC-1'R-13-8

A MODEL FO!. DATA SECURE SYSTEMS

(Part I)

by

O. K. Hsiao, D. S. Kerr

and E. J. McCauley III

Work performed under Contract N00014-67-A-0232-0022,

Office of Naval Research

The Computer and Information Science Research Center

The Ohio State University

Columbus, Ohio 43210

February 1974

Preface

lhe project on Data Security and Data Secure Systems was formed In

the fall of 1972 and funded on March 1, 1973. The principal investigator

of the project is Dr. David K. Usiao, Associate Professor of Computer and

Information Science, There are five Graduate Associates and Assistants

on the project, R.I. Baum, N. Kaffen, E.J. McCauley, C.J. Nee, and S.

Peden. Presently, Dr. Douglas S. Kerr, Associate Professor of Computer

and Information Science, is serving as an investigator on the project.

Five major research and experimentation efforts are underway. We

intend to issue a series of technical reports at the milestones of these

efforts. Although early reports may be preliminary, we believe that they

can serve as position papers for the research being pursued. These five

research and experimentation efforts are listed as follows:

(1) A data secure system based on the theory of security

deadlock.

(2) Theoretical foundations for context protection and

consistent control in data secure systems.

(3) A data secure computer (hardware) architecture.

(4) Design and certification of data secure system kernels.

(5) A system for experimenting with access control mechanisms.

The Office of Naval Research (contract N00014-67-A-0232-0022,), and

the Office of Science Information Service, National Science Foundation

(Grant No. GN534.1) are acknowledged for their support in the preparation

of this study.

The report is published by the Computer and Information Science

Research Center of The Ohio State University which consists of the staff,

graduate students, and faculty of many University departments and laboratories.

The research was administered and monitored by The Ohio State University

Research Foundation.

Abstract

A multi-level model for data secure systems Is proposed. In this

model the relevant issues in data security, such as integrity, privacy pro-

tection and controlled information sharing, can be studied, on the one

hand; and the conventional procedures such as identification, authentica-

tion, authorization, and compartmentalization can be characterized, on

the other hand. Furthermore, the model allows different problems in data

security to be considered at a level of abstraction appropriate to the

specific issue and procedure under study. The highest level is conceptual.

In it, "patterns of protection" (intuitively, the ways the users may access

the data) can be defined in formal and unambiguous ways, The intermediate

level of the model is structural. Here, the primitives to be utilized in

the realization of the patterns of protection defined in the higher level

will be specified. The most important feature of this level is that the

critical functions of an access control mechanis.A are no longer carried

out by complex, and thus potentially unreliable programs, but are inherent

in the basic structure of 'the system by the utilization of deadlocks. When

a user attempts an unpermitted access, he deadlocks with a "pseudo-user"

and cannot proceed. Thus, the uemonstration of system correctness involves

the certification of a limited number of small, single-purpose modules and

the verification of the correctness of the user/pseudo-user interaction.

On the lowest level, a system to illustrate the utility and practicality

of the model will be created. Overall, the research should suggest a mod-

elling and design technique for a demonstrably complete and correct system

for providing logical access control in a shared data base system.

Our present plan for this research consists of three studies. The

first is to complete our abstract model of data secure systems and develop

a general theory of data security as proposed. In particular, we emphasize

the structural level of the model. It is hoped that this level of modelling

can reveal the inner working of the access control mechanism based on the

theory of deadlock. With a good understanding of its inner working, the

access control mechanism can then be properly designed and implemented.

The application of the theory of deadlock to access control is new. We

believe that this is the first application. Traditionally, system designers

attempt to avoid and circumvent the system deadlocks which tie up system

iii

resources and utilities. However, in our case, we deliberately tie up

resources and utilities as a means to deadlock penetrators of the system.

Obviously, these resources and utilities ore logical resources such as

files, records and fields and functional utilities such.as data access

and manipulations. Such deadlock is called security deadlock. One of the

basic requirements is that no authorized use of and access to the data

base will cause a security deadlock and any unauthorized use or access will

cause an immediate security deadlock. This requirement will be met,

The Part. I of this report deals only with the conceptual model,

iv

Table of Contents

page

Preface

Abstract ii

I. Introduction 1

II. The Conceptual Model 5

III, Examples - Modeling Existing Protection Mechanisms 11

Example 1: Modeling Protection Mechanisms Based
on an Access Matrix 11

Example 2: Modeling Protection Mechanisms Based
on Capability Lists 13

Example 3: Modeling Protection Mechanisms Based
on Authority Items 14

Example 4: Modeling Protection Mechanisms Based
on Formularies 17

IV. Four Types of Protection Specifications 18

V. The Data Base Protection 25

VI. An Example of Data Base Protection Specification 30

VII. Access Types 36

VIII. Summary 38

References 39

V

I. Introduction

We now realize that perhaps the most important and powerful computer
applications will involve the use of a computer as an extension of
the human Intellect rather than as a replacement fo'r it

[zschau]

Computer applications are moving towards this goal with increasing

speed. One of the ways in which computer systems can extend man's intel-

lect is through their capability to store and retrieve data. As such

data base becomes larger, more complete and more common, the importance

of protection of the data grows. Without adequate protection, no user will

be willing to entrust his sensitive data to the system. Further, no user

can be sure that the data base is an accurate reflection of reality unless

we provide sufficient protection of the data base. Running counter to the

security requirements for protection is a need to provide for sharing of

data so that users can "build on the work of others." Without sharing of

data, there is little intellectual value in the accumulation of data.

Thus, one of the most difficult and perplexing problems is how to provide

adequate protection and still allow flexible sharing.

A data base is a collection of data structured in a way to facilitate

some aspect of its use, such as query answering, update, report generation,

etc. The exact structure chosen depends on precisely what the intended use

of the data base is. Increasing amounts of work have been done in support

of a separation of the physical and logical structure of the data base,

Such a separation allows users to be concerned with the logical content of

the data base rather than its physical representation. Data base computer

systems must have some protection from unauthorized use and destruction of

the data base. Conventionally, this is done by means of procedures which

check the legitimacy of certain user actions, monitor the interaction be-

tween the user and the system and enforce the control of the user's access

to the data.

In order to build a model which will allow us to study data security

in comparative isolation at a level of abstraction appropriate to each

specific study, we will need a multi-level model.

The highest and most general level, the conceptual model, lets us

focus on the specification and description of protection patterns which

eonstituie the iiindamental eoncepts for data security and integrity re-

ctuirements in data secure systems. ConventiOnal procedures such as idenli-

f teat ion , verit ioation, au hent Loot Lou , au t ri?at ion and compar Merit

tion should be easily characterized ill terms of protection patterns. Fu-

thermore, the roles of these procedures in data secure cyst ms should be

clearly delineated. With the conceptual model, we can then study the re-

lationships among these proeedures and their of en data secure systems.

:;ew procedures and consistant variations may be formed when new security

and integrity problems arise.

To provide it means of rigorously characterizing the various patterns

of protection, the cOnceptual model will he d formal model. We define a

protection relation:

I) x 1 x A 4pormit, deny)

where D is the set of logical data in the data base

U is the Set of users

A is the set of possible access types

The method of specification of which members of D, the set of logical

data, are involved is potentially the most difficult part for us to do.

Nevertheless, there are solutions which we shall present in later sections.

A protection pattern will he a pre:e:rihed collection of protection re-

la0ons. For consistency, the protection patterns themselves are part of

the logical data base. They may he manipulated by suitably authorized users

in much the same way as the rest of the data base. The conceptual model

is, therefore, also concerned with the establishment of the rules by which

the patterns of protection can be maintained in a consistent and complete

way. For example, a given user should not be able to modify the patterns

which affect him, for this would be tantemount to no security at all. The

major thrust of the conceptual model is aimed to provide a well defined,

easily understood model fo: the characterization of logical data base pro-

tection.

The second Level the structural model lets us examine the prob-

lems associated with use of the data base and computer system under the

patterns of protection defined in the conceptual model. It is in the

structural model that the protection mechanisms of the data secure system

are enaracterized. It is also planned that the chai-eterizations will show

clearly the working of the mechanisms.

The structural mottel Is mainly concerneu with the logical implementa-

tion of the conceptual model in terms of a sot of primitives by which any

protection pattern defined in the conceptual model may he carried out.

Mechanisms needed for regulating the Implementation of the protection pat-

terns are called protection mechanisms. The structural approach of this

model will enable the reader to gain enough insight into the design of the

mechanisms and to understand the working of the primitives in relation to

the mechanisms.

A crucially important fact of the structural model is how the patterns

of protection in the conceptual model are to be presented In the structural

model as a subset of primitives. The most promising mechanisms under con-

sideration for regulating the patterns are deadlock-based. The deadlock-

based mechanisms create for each real (user) process* a pseudo-process which

does not exert any effect on the system, other than deadlocking with its

process if the process attempts an illegal access. Deadlock -based protec-

tion mechanisms have the advantage that checking of whether or not the

access attempt is legal is an implicit and intrinsic feature of the struc-

ture of the process/pseudo-process relationship. This feature is in con-

trast to other schemes which require an explicit checking for each request.

Implicit checking requires almost no overhead. Furthermore, it is possible

to verify the correctness of the working mechanisms by verifying their In-

trinsic structural features and by applying the theory of deadlock.

The structural model is therefore process-oriented with each active

user corresponding to a process and the related pseudo-process. The data

base activities of the user can thus he viewed as requests of his process

and pseudo-process for data base resources, if the request is illegal,

the process and the pseudo-process will deadlock each other resulting in

no activity for the user.

In deadlock-based protection mechanisms, many of the

cedures, like verification and authentication become more

basic structure of the system, than of explicit programs,

conventional pro-

a feature of the

There is con-

siderable advantage over more traditional approaches because we can prove

the correct interactions of a limited number of processes more easily

than we can prove the correctness of a set of potentially complex programs.

*.The process referred to here has the same meaning as a process in the
MIT-Multics or a task in the IBM 370 VS2/Release 2.

To convincingly demonstrate that the process and pseudo-process inter-

locking on data base items will create a deadlock situation if and when the

process makes an illegal request, we have the well-developed theory of sys-

tem deadlock to rely on. Thus, sufficient and necessary conditions in

which a system deadlock will occur are known. We only need to apply the

system deadlock theory to security deadlock situation.

At the third level, the implementation model is concerned with

practical aspects of actually implementing the model described by the other

levels. It will be an experimental data secure system for the demonstra-

tion of well conceived ConL'epts in the conceptual model and et.refully de-

veloped mechanisms in the structural model.

11. The Conceptual Model

One of the problems that plague us in attempts to study protection

is the lack of a suitable theoretical framework to allow for the compari-

son and analysis of the many different ideas for providing' protection for

data base systems. The goal in building the conceptual model is to

provide such a framework and to demonstrate its utility.

We shall try to use a more formal approach with the hope of arriving

at more precEie definitions of the model. Nevertheless, there are defini-

tions which must remain intuitive and somewhat 'undefined.'

Defn: The Physical Data Base is the underlying physical reality

of a data base, e.g., a reel of magnetic tape, a deck of cards,

a collection of disc tracks, etc.

Defn: The Logjcal Data Base is the set of all elements of informa-

tion contained in the PUB. Furthermore, the elements of informa-

tion in LDB are referred to as logical data.

Defn: A Data Base System(s) is (are) the collection of computer

programs, procedures, and components etc. for the creation, use

and maintenance of the Logical Data Base on the Physical Data Base,

Examples of Data Base Systems are many, such as IMS, CICS, TDMS, etc.

Informally, the Logical Data Base is the collection of all possible

"answers" obtainable or extractable by the Data Base System from the

Physical Data Base in response to "questions" by users of the Data Base

System.

Assumption: It is possible to enumerate completely every piece of logi-

cal data contained in the Physical

Data Base.

This assumption often goes unstated since it appears so obvious. If we

accept the assumption, however, it is not clear for many data base systems

how to form the "answers" since the enumeration

is hardly an efficient way to extract. them. Nevertheless,

the basis for this assumption is that if an element of data is capable

of being "found" to the Physical Data Base by the Data Base System, then

it can be enumerated. If it can be enumerated, then it can be used for the

formulation of an "answer' in Logical Data Base.

The Logical Data Base will occupy the central position in any dis-,

cussion of protection. A major lack In most Data Base System protection

capabilities is, the ability to protect only the Physical Data Ba3e, rather

than the Logical Data Base. This lack of more subtle protection makes

many existing protection capabilities inadequate for modern, multi-user,

integrated Data Base Systems. The inadequacy will be greatly multiplied

since al the current research in Data Base Systems suggests, there will

be in the future even greater difference and separation between the Physical

Data Blise and the user's view of it , the Logical Data Base.

Now we define more formally some of the terms which have been fre-

quently used in data base system technology.

Defn: A User will be the generic term for any agent which attempts to

use the Logical Data Base in some way.

Defn: Access is any activity'by a user which requires logical data from

the Logical Data Base-and which demands a completion.

Defn: An access is denied if it is indefinitely delayed (never completed);

otherwise, it is permitted.

Access may be further subdivided into access types, such as read, write,

execute, search, retrieve, etc. We shall leave the exact connotations of

any particular access type unspecified at this point.

Let us now define some of the terminology more leisurely. The inter-

action of a user with the Data Base System can be viewed as a series of

requests and replies, with the system making some requests and the user

making others. The first dialog is the identification procedure. The

identify and access types of the user are established and retained by the

system for future use. Once the identity of the user is known, thQ pur-

pose of a data base system is to use the information in the Logical Data Base

in the reply to the user's requests. For every such request the system

performs an authentication procedure to determine whether the request

should he permitted or denied, utilizing the information established and

retained in the identification procedure. The system then carries out

authenticated requests. As more sophisticated data base systems are de-

veloped where the separation of Logical Data Base and Physical Data Base

is evident, more of the burden of searching for the information in the

Logical Data Base which satisfies the user's request is placed on the sys-

tem.

To allow users to access only certain parts of a data bse, the divi-

sion of the data base into logical regiong may be requested. Furthermore,

the logical data base may take on different apparent regions for different

users. The study of logical divisions, their access requirements,,and

their physical organizations is termed compartmentalization, in which parts

of the data base are separated logically and/or physically. For particu-

larly sensitive parts of the data base, it may be necessary to further

check on the legitimacy of attempted accesses, These verification proce-

dures may be as simple as asking the user "ARE YOU SURE?", or may be much

more elaborate. It is well to compartmentalize even if especially sensi-

tive data is not involved. With these "firewalls" the entire data base is

less likely to be affected if some untoward event (such as physical dam-

age, accidental destruction, or illegal access) occurs.

It is also reasonable to consider the information used in the identi-

fication, authentication, compartmentalization and verification procedures

as part of the data base which may be manipulated in the same manner as

the rest of the data base. An authorization procedure is the only means

by which this information is created and maintained, In particular, cer-

tain users (say, the creator) of logical data can authorize other users

of the Data Base System to access the data by exercising the authorization

procedure.

With this discussion, we have the following important notions.

Defn: Security is the prevention of unauthorized use of the data.

Defn: Integrity is the prevention of unauthorized or accidental de-

struction or modification of the data.

8

Defn: Access Control is the process of determining the authorized

users of the Data Base System (and this the Logical Data Base),

and of determining which accesses anal, be permitted and which

should he denied.

l)efn: Contamination is a breach in integrity; Penetration is a

violation of security. Both of these are- caused by the.user

of the Data Base System and known collectively as interference.

Defn: A Protection (or simply, protection) is an attempt._______

to provide security and integrity by means o. f access control

and interference prevention.

Vhat has been characterized is a general data base system with access

control and interference prevention. Practical systems embody the proce-

dures discussed above in various forms reflecting the needs and purposes

of the system. Any data base system must have some security and control

if the user is to place any confidence in the data stored and retrieved.

What distinguishes a data secure system is that the security and integrity

are integrated into the system, not hung on as an extra module or two.

The protection mechanism of the data secure system is logically complete

and can be convincingly demonstrated to operate correctly and effectively

even when under strong attack by well equipped (skillful and knowledgeable)

penetrators.

The preceding discussion has laid the formal basis for the conceptu-

al model and has also outlined in a somewhat less less formal way the con

cepts of most contemporary Data Base System protection mechanisms. Let

us now first go strongly into the theoretical aspects of the conceptual

model , and then show how such a th(!ory may be applied by demonstrating

how some fairly diverse protection mechanisms may be described by the

model.

Defu: The Extended Logical Data Base (ELDB) is a set triples

where

(u,a,d)

u is a user identifier,

a is an access-type Identifier,

d is the identifier of an element of the Logical Data Base,

The Extended Logical Data Base is formed by making a triple for every pos-

sible access to the Logical Data Base by every possible user. Thus, the

Extended Logical Data Base is a complete characterization of all possible

accesses to the data base. Clearly, the Extended Logical Data Base has

an immense number of elements for even the most trivial cases. Our goal

is to suggest methods which deal with aggregates of Extended Logical Data

Base elements. The Extended Logical Data Base forms the foundation for

any discussion of interfereuce prevention and access control.

Let us consider the components of these triples in some detail. Not

too much need be said about, the user identifier, since its meaning and

importance are obvious. However, our definition of access was quite broad

so as to include all actions in which information from the Logical Data

Base is used. Thus, we must consider the connotations of particular ac-

cess types. A servicable definition is, "Each access type is a program

which effects a particular variety of access..." [PopeG731. The access

type identifiers in the triples are, thus, program identifiers. These ac-

cess programs range from basic hardware operations through supervisor ser-

vices to more elaborate user created programs. Finally, we have made the

assumption that every element of the Logical Data Base can be identified

and assigned a unique name. These names are the data identifiers of the

Extended Logical Data Base.

Defn: A protection specification is a relation

p: S 4 (permit, deny), where S c ELDB.

Given x c S, p(x) = deny will indicate that under this protection specifica-

tion, the access is denied and p(x) = permit that the access is permitted.

Intuitively, a protection specification is an assertion about the pro-

tection of the data base system. We do not require that a user who is cre-

ating protection specifications have global knowledge of the system. He

can make the specification cover only that Extended Logical Data b,:se subset

about which he is cognizant.

10

Dan: A p.-...:otection pattern is a set, P, of protection specifications

such that every triple of the Extended Logical Data Base is in

the domain of at least one specification.

oefn! A protection pattern, P, is consistant if every triple of the

Extended Logical Data Base which lies in the domain of more than

one protection specifications of P is mapped onto the same value

by each of the protection specification in whose domains

the subset is contained. A protection pattern which is

not consistant will he said to be inconsistant.

We shall assume that protection patterns are consistant unless speci-

fically indicated otherwise. (Later, we shall suggest methods to resolve

inccnsistant specifications). In a consistant protection pattern it does

not matter which protection specification is applied to an element for

which several are applicable because by definition if access to the ele-

ment is, for example, denied as a result of the application of one Of the

protection specifications (i.e., pi(x) . deny), the access to the same

elements will still be denied no ,latter which other protection specifica-

tions are applied. lie may simply refer to P(x), rather than some particu-

lar p (x).

Thm: A consistent protection pattern partitions the Extended Logical

Data Base into those accesses which are permitted (may he completed)

and those which are denied (indefinitely delayed).

This theorem is the heart of the conceptual mcd(A. It formalizes the

notion that of all the "things" that the users might try to do, the pro-

tection mechanism, at any instant, partitions the "things" into a set

which are allowed, and a set which are not allowed. This formalism lets

us consider all deterministic protection mechanisms in the same framework

because the result of any protection mechanism is to return a binary (per-

mit. or deny) result to a tIser access attempt. Let us demonstrate how

some of the existing protection mechanisms may be characterized by the

model.

Ill. Examples - '40dcling ixis;titbt Protection Mechanisms

IAA

11

u.tr,t: ,:on. 1 :HO existiw7 protection mechanisms may

he cbaractori ed by the model.

Lxample 1: Modeling Protection Mechanisms Based on an Access

[GrallG71, GrahG72].

The access matrix used by the protection mechanisms may he conceptu-

alized (as depicted in (GrahG72]) in the following figure:

Subjects

Si

S

S3

Subjects Objects

-1
----/.-1

Files Devices

S3 r
1

' D
l

D
2

b t ('

wakeup

-1

read

write

stop

delete

update

seek seek

I -1

Fig. 1 - Portion of an access matrix

'the access attributes (permitted access typos, in our terminology) of

subject (user, in our terminology) S. towards object 0 arc contained in

the (i,j) entry of the access matrix. For ease of discussion, let us con-

s ider a system environment in which we are only concerned with accesse

Cowards files (e.g., F
1

and 19 in Fig. I). Further, let there by only four

different access types: read, write, update, and delete as shown in Fig. 1.

Each entry of the table in Fig. 2 is a protection speci ication. Col-

lectively, the protection specifications form a protection pattern which

partitions the data base into accessible and inaccessible files.

in other words, th. table depicted in Fig. 2 is the protection pattern.

This example shows many things. First, the conceptual model can describe

the access matrix in a naturl, even trivial way. Second, the Fxtended

Logical Data Base has an Impossibly large number of elements. Finally, it

(u, a, d) {permit, deny}

(SI, R, F1) permit

(S W, F1)

(S
1'

U, F1)

(S
l'

0, F
1

)

(S
2

R, F)

' 1

(S
2'

W, F1)

(S,),
1

)

(S1, 9, F1)
1

(S
3'

R, F
I

)

(S
3'

W, F1)

(S
3'

U, F
I
)

(S
3'

9, F1)

(S
2'

V, F.))

(S2
'

D. F2)

(S R, F2)

(S3. W, F
2

)

(s3, U, F9)

(S3, 19, ,)

(SI, R, F.))

(S2, W, F2)

(s1, U, F2)

(S
1'

1), 12)

(S2, R, F.,)

(S
2'

W, F
2
)

permit

deny

deny

deny

deny

deny

deny

deny

deny

deny

permit

permit

deny

deny

deny

deny

deny

dcny

deny

deny

deny

deny

deny

Fig. 2 The Portion of an Access Matrix as
Characterized in the Protection Pattern

should be noted that access matrix based protectlou me()nisms as dis-

cussed in (CraliC71) were mainly concerned with the protection in operating

systems where the file-like objects were comparatively few in number and

were the same for every user (i.e., protection was limited to the Physical

Data Base) . In general n?ither of these Iwo assumptions is true for Data

Base Systems, which deal with the Logical Data Base,

Example 2: Modeling Protectien Mechanisms Based on Capability Lists.

In essence, a capability list (c.list) is one row from the access

matrix. Many different definitions for c.lists exist. We, rather arbi-

trarily, will use the one found in (DennJ66):

Each capability in a c.list locates by means of a pointer some
computing object and indicates the actions that the computation
may perform with regards to that object. Among these capabilities
there are really several (memory) segment capabilities, which
designate segments that may be referenced by the computation and
that give by means of access indicators an indication of the kind
of reference permitted. . .

Although the definition of c.list confines the protection to memory pro-

tection, we will allow more liberal interpretation of the term 'segment.'

Let us consider these segme ts as files. The characterization of a c.list

based protection mechanism by the conceptual model is again relatively

trivial. Considering only the files, let us first characterize access

matrix in Fig. 1 as a c.list.

C.list for SI

R,W; Pointer to F1

null

C.list for 53

C.list for S2

null

U; U; Pointer to F2

D; Pointer to FL.]

[
null

Fig. 3 - The Rows of an Access Matrix as
Characterized by Capability Lists (c.list)

14

The eilist system may he modified to compress out the null entries, How-

ever, this has no effect on the concept of either the c,list or the eon-

.'eptual model , I,, map lo the protection pattern of the conceptual

model, we f,llow the following procedure. Everywhere that the c,list

gives the user a capability to reference some segment, locate the Extended

.Logical Data Base element (consisting identifiers of the user, access

type and segment) corresponding to that segment. There will he such an

element becaus'e we have explicitly defined the Extended Logical Data Base

to consist of all possible accesses. Next assign the value 'permit' to

"1° element ("0., P(x) = permit) , In other words, we have just formed a

protectioo specification of the element to which access is permitted, When

all the c.lists have been exhausted, we have obtained all the poss'ble

elements to which accesses are allowed, Finally, assign all the other non-
,

referenced elements with the value deny (i.e., P(x) = deny), Thus, the

non-referenced segments are not accessible. We have now a protection pat-

tern in the conceptual model correspondim7 to the c.list,

Example 1: Modeling Protection Mechanisms Based on Authority Items.

Let us consider one of the first systems to introduce logical access

control, subfile protection and user-created control procedures filsiaD68a,

lisiaD68b1. The basic system protection mechanism uses capability lists

which are called authority items. One authority item is associated with

each user. The file authority items is itself maintained much like

other files on tire system. The system is notable in its ability to offer

protection of arbitrary subfiles. These subfiles are defined not by physi-

cal parameters but rather by logical descriptions, such as Boolean and

arithmetic expressio of key words and symbolic names. Within the authority

item, logical expressions indicate for each file which records are Inac-

cessible, which are temporarily blocked, which are presently opened for use,

etc. As re,:ord is retrieved in response to a user query, it is pro-

cessed against these logical expressions to determine hether it should

be output to the user. Figures 4 and 5 (from [HsiaoD(1))) illustrate

these system features. The user is permitted to create a procedure

associated with the file which he owns. This procedure would be invoked

whenever access to the file is initiated by any user.

5

Such procedures can be arbitrarily complex, the only constraint being

that the procedure return a 1 or 0 to the system indicating whether the

access to the file is to be permitted or denied. This idea is expanded

upon in Noff1,70, Hoff1,711 and subsequentLy became known as formularies,

A File

Records Permanently Protected
from Access

Records Belonged
to Open Portion
of the File

Records that are
Temporarily Blocked
from Use by Others

Accessible Records Inaccessible Records

The sets of records in a file specified by three types of logical

description.

Fig. 4

No

Any More
Records to Retrtev

in this File?
Any_More Opened Filg5/

14

Does It SatisfyRecord Does Not No
the User's QuerySatisfy the Additional

-__
Condition in the Query Expression?

A Record Is
Retrieved From
an Opened File

16

[-

Service: A Request for
the Retrieval
of Records

No
rxIt

L_

Does It Satisfy
Record Is r*-4the Expression for the

Classified
Protected Portion ff,//

this File?
iNo

1 i

Output the
Record

Fig. 5 Expression Validations in Record Access

For the Protection
of Priv cy\
For Temporarily
Blocking the Access

For Other Access
Control Purpose

17

Example 4: Modeling Protection Mechanisms Based on Formularies.

Perhaps the most difficult protection mechanisms to he characterized

in the conceptual model arc the ones based on the user -- defined authoriza-

tion/verification procedures, These procedures are termed formularies in

[HoffL7(l, noffL71) are are also adopted in NODAS71). Essentially, a user

could create whatever procedures he would like, and is allowed to have

such procedures invoked at various phases of data base activity. Thus,

access to data is determined by these procedures. One reason for the dif-

ficulty in characterizing procedUral mechanisms in the conceptual model

is the lack of definition of the procedure (i,e,, formulary) itself, It

is also not clear what is the environment for the invocation of the pro-

cedures. By this we mean what are data that are accessible to the proce-

dure in order for the procedures to determine whether to permit or deny

an access attempt.

Fortunately, the conceptual model is only descriptive in nature.

Thus, we are not concerned with how a decision to permit or deny access

is reached; rather, we only want to know what such a decision is. In

effect, we could build the protection pattern equivalent to a given pro-

cedure (formulary) by "running" (or executing) the procedure on every ele-

ment of the Extended Logical Data Base. Intuitively, then, we can char-

acterize procedures (formularies) in terms of the corresponding conceptual

model protection patterns.

18

IV. Four Types of Protection Specifications

Throughout the preceding discussion we have ignored two areas because

we lacked the theoretical tools to deal with them. First, how do we

resolve the protection of subsets of the Extended Logical Data Base which

are assigned different protection by different protection specifications?

Second, how do we get an orderly characterization of the creation, alteration

and destruction of protection specifications and patterns? In order to

tcoat these questions in a thorough way, we again develop some definitions.

Defn: The user extraction operator U returns for an element x of the

Extended Logical Data Base the user identifier of the element.

U(x) - user identifier

Defn: The access ,type extraction operator A returns for an element x

of the Extended Logical Data Base the access-type identifier of

the element.

A(x) = access-type identifier

Defn: The data extraction operator D returns for an element x of the

Extended Logical Data Base the data identifier of the element.

D(x) = data identifier

We also adopt the following notations. Lower case x aeld y will

denote elements of the Extended Logical Data Base. Lower case p and q

will denote protection specifications while upper case P, Q and R,

possibly with subscripts, will denote protection patterns. Recall that

the difference between a pattern and a specification is that the domain

of a specification is a subset of the Extended Logical Data Base while

the domain of a pattern is the entire Extended Logical Data Base. Finally,

the set of all possible protection patterns over a given Extended Logical

Data Base will be denoted by IP.

Now we make some definitions of relations between protection patterns.

Dein: Two protection patterns, P end Q are equal, P = Q if Vx (P(x)

Q(x)).

In order to define a partial ordering on 4, we will say that for a,

:deny, permit} a b means a = deny or b = permit. Then we say that

pattern P is a restriction of a pattern q, P Q, if Vx (P(x) Q(x)).

Informally, P Q says that

19

a) There are some of the Extended Logical Data Base subsets which

are permitted under Q but denied under P.

b) There are no subsets which are permitted under P but denied

under Q.

e can conceptualize restriction as a partial ordering on the "strength"

of the patterns, that is

a) P < P for any protection pattern.

b) P Q and Q P implies that P = Q.

c) P< Q, Q R implies P 5. R.

It is also possible to define the dual concept, P is an expansion of q,

Q, meaning Q P.

Given two protection patterns P and Q we define the greatest lower bound

(g1b)_ of P and (1, St = glb (P,Q) as follows

deny, if P(x) or Q(x) = deny.

permit, if P(x) = Q(x) = permit,

A similar definition for the least upper bound (lub), S = lob (P,Q) is

also possible.

The glb and lub can also be defined for specifications.

deny if p(x) or q(x) = deny.

s (x) = permit if p(x) = q(x) = permit.

undefined if p(x) and q(x) are undefined.

20

The glb and lub characterize two constructive operations, since neither

is necessarily equal to either P or Q. Thus both gib and lub represent pos-'

sibilitiesfor resolution of the protection of subsets in pretection patterns

which are not consistanti Another facet of this resolution is that it is how

we can create a consistent (global) protection pattern from potentially not

consistent (local) protection specifications. In attempting to make a con-

sistent pattern, we may be fortunate enough that th.i individual specifications

are consistent and that they cover the entire Extended Logical Data Base. It

is more likely that one or both of these conditions does not hold. The question

is, then, "How do we solve these problems?" First, let us consider the situa-

Lion in which some of Extended Logical Data Base subsets are in the domain of

no protection specification. Here, an essentially arbitrary decision on

whether to permit or deny such accesses must be made. Such a decision cre-

ates, in effect, a protection specification covering these subsets, The

problem of two or more specifications giving the same subset different incon-

sistent protections is far more difficult. The best working hypothesis is to

suspend any access and refer such problems to a higher authority. This restric-

tive strategy corresponds to taking the lub of the contending specifications

because if they differ it is because one says to permit access, and another

says to deny it. Intuitively, it seems best to suspend the access while

waiting for the higher authority, to decide, because such actions can he simply

reversed. On the other hand, once access has been incorrectly permitted,

there is little that can be done to reverse the action, Such a higher

authority may well be one of the users. It should be remarked that the

resolution of inconsistant protection specifications is really the more

philosophical question of how do we arbitrate between two conflicting re-

quirements in system design. Each of the specifications is an assertion

about the desired protection of the system. For this reason, no mechanical

procedure for such resolution was suggested. The method suggested repre-

sents a compromise. By suggesting that some decisions can only be made by

mechanisms and people outside the model, we endow it with great flexibility.

Those decisions about which no controversy exists will be made mechanically

and routinely.

To have a complete system we introduce two artifices which we shall

employ later.

21

Defn: The epmplycely protected data e is defined such that

for every triple (u, a, co) in the Extended Logical Data Base,

P((u,a,o)) ..- deny.

Dan: The comilletely accessible data element, el is defined such

that for every triple V(u, a, el) in the Extended Logical Data

Base, P((u,a,e)) m permit.

Roth definitions hold for any protection pattern, P. They give us a known

property upon which we can depend.

All of the above formalism would be rather uninteresting if it could

not be related to the practical considerations of system design. Recall

that we are attempting to create a formal model for description and dis-

cussion of a wide variety of protection schemes. It is easy to lose sight

of this and fall into a pedantic discussion of esoteric properties of the

model. We have developed the notion of the protection pattern as the central

descriptive means. By showing protection patterns to be partially ordered

under restriction we were able to motivate the glb and lub as operators.

Now, we shall consider a more basic question, how do we create and

modify the specifications which make up the patterns.

Defn: A context-free protection specification is a protection specification

which does not depend upon the previous access attempts (permitted or

denied) by any of the users governed by the specification.

We shall initially restrict our discussions to such memoryless speci-

fications, since they are the most basic type.

The most primitive specification glares the protection of a single

Extended Logical Data Base element, (u, a, d):

TYPE.1((u,a,d),1 deny
permit j

It should be obvious that, formally, this single operator is sufficiently

powerful. Other operators will thus he measured against this one for

flexibility. However, it should also be obvious that this operator is an

awkward way to specify the protection of more than a few elements. Moreover,

to create such specifications, the user must know explicitly all the users

22

and access types to be governed by the specifications, an undesirable

feature which violates our assertions about global knowledge.

The next step in flexibility is to allow the specification to cover,

a subset, S, of Fxtended Logical Data Base, rather than a single element,

TYPE.2 (S' deny)

permit

We obsery ,.! that in naming a subset there is the practical problem of des-

cribing the subset to the protection system, Certainly, we shall not want

to describe the set by enumerating Its elements since we are no better off

than with the TYPE .l protection specification. We can ameliorate this prob-

lem by restricting the type of subset to one which can he described by

parameterization. For example, the set definition fx x > k} implicitly cre-

ates a set selection function with parameter k indicating whether or not the

element is a member of the subset. Although we would be somewhat premature

in specifying the set selection functions which we shall use at this point

of discussion, we nevertheless stipulate that Whenever. S is used in a protec-

tion specification TYPE.2, there is a set select ion function of a few pa-

rameters associated with S. We shall continue this assumption throughout

the rest of our discussion on the conceptual model.

The TYPE.2 specification enables the user to choose S such that every

element of S has the same protection. What we would now desire is to relax

this by allowing the user to specify that some subset Si is to be protected

"like" some other subset S
2'

First we must define what we mean by "like".

Let f be a function from S
I

into S
2

. Then for)u.S
1
we define p(x) to be

p(f(x)) which is already defined since f(x)E1S, and p(v) is defined for all

yrS7.

to

Since f maps Si into S2, the specification can actually he simplified

TYPE.3 (Si,f).

A example of one such function is

fd ((u, a, di)) = (is, a d2)
2

23

With such a function we can permit and deny the same set of accesses to

two different data elements, That is, if p(u, a, d2) = permit, then

1)(u, 4, di) = permit. For the same user u the data element d
l

is protected

with the same a..cess attributes as the data element d2. Obviously, we

would like to extend this idea to other elements of the triple, for example,

to give one user access privileges identical to those of another user, or

to say that users may have a9 access to some data element only if they have

al access to the element. The following general function can be used for

all of these situations.

f (x; u
i'

a
j

,

U(x), if null A(x), if aj =3 null-1

u
i

, aj, otherwise
._

D(x), if dk = null

dk, otherwise

where x Extended Logical Data Base.

Let us consider the following special cases of f for x = (U , a , dc)),
o o

an element in Extended Logical Data Base.

Case 1:

St)' that

I (x; null, null, d

But P(x) = uo

A(x) = a

= (U(x), A(x), (11),

f
1

(x. null, null, d
1

) = (u0, a , d
1

)

Intuitively, this function indicates that for the user u the data

element d
0

be accessed in the same a
0
manner as data element dl.

Case 2:

f (x; ul, null, null) = (u2, A(x), 1)(x))

= (ul, ao, do)

This function says that the user uo will have the same ao access as

the user u
2

has to the element d
o

.

Case 3:

f (x.
'

u
1,

a
1,

null) = u
1,

, d0)

This function says to make user u ts a
o

access to data d the same as

user ill's al, access to d
o

.

It is, of course, possible to define many such functions. But first

let us show how some common protection requirements can he translated into

protection specifications of TYPE.3. Typical systems have a default pro-

tection for newly created objects. One of the strengths of our model is

that a wide variety of methods can be used to achieve the same end. One

way to get the default protection would be to explicitly specify whether

each access was to be permitted or denied, using TYPE.1 specifications.

Another way would be to group the permitted and denied accesses into sub-

sets and use TYPE.2 specifications. This subset grouping would be fairly

easy since, in general, the default rules are quite simple. The most

natural way is to introduce another artifice. For each user we shall con-

sider a default data object, d
default'

such that the protection of newly

created objects is "like" that of the default object, unless otherwise

specified. More formally we have the following specification:

TYPE.3 ({XID(x) = dnew), f (x; null, null, ddefault))

That is, give every access of the form (u, a, dnew) the same protection as

the corresponding access (u, a, d
default

). The default specification can

be changed, should the user desire, effecting only subsequently created ob-

jects. We can ncw close a potential loophole. The tacit assumption was

made that the function mapped elements to other elements whose protection

was defined. If we use this default idea for each newly created object,

there will he no accesses for which the protection is undefined.

Let us consider one more type of specification. If we allow multiple

valued mappings sore additional possibilities occur. A user can create speci-

fications that say "peiii,it tlits lccess if any of these other accesses is

denied," We shall use the following new specification

TYPE,4 (S , F , OP)

where S is an Extended Logical Data Base subset,

F is a finite set of functions (f f
2'

...) mapping the Extended

Logical Data Base into itself, i.e.,

fi: ELDB ELDB, and

OF Is gib or lub.

The specification operates as follows:

P(xes) = 0P(p(fl(x)), p(f2(x),...)

recall that the gib will deny an access If it was denied under any of the

specifications, and lub will permit it.

It is certainly possible to define other, more elaborate, !-;pecifica-

Lions. However, one reaches a point of diminishing returns in the ability

to apply them.

V. The Data Base Protection

The preceding development of protection specifications made no explicit

use of the fact that we are dealing with data base systems. It is here that

the present work makes a sharp difference from other efforts which were

primarily concerned with protection in operating systems. Though certainly

no less significant, the problems of protection in operating systems are

different from those of data base systems. First, even a largo multi-user

operating system is concerned with the protection of a small number (like

hundreds or at most a few thousand) of relatively large objects , the majority

of which are some kind of physical resources such as disks and memory seg-

ments. A data base system is concerned with large numbers (tens of thousands to

26

millions) of relatively small (tens to hundreds of words) objects such as

the records and fields. Second, in an operating system the objects are

mostly unrelated to each other, and where such relations exist between objects

they are fairly simple. In modern data base systems a large variety of re-

lations exist between objects. Indeed, this is a fundamental purpose of data

base systems, to allow the retrieval of information from many different

objects based upon some relationship or affinity among rhose objects. Thus,

a data base protection system should, even must, use those relations to

provide or enhance security.

In order to emphasize the relationship among objects of data base

systems, a more formal model is needed. Although the topic of data base

modelling has been an extremely popular one in recent years, reflecting the

very real need for such formalism, we do not need the complexity which

characterizes many of the models proposed.

The following terminology and ideas are mostly derived from (iisiaD70,

WongE72) and are needed to express relations among elements of Extended

Logical Data Base.

We start with two undefined terms: a set A of "attributes" and a set

V of values. We shall leave these undefined to allow the broadest possible

interpretation.

Defn: A record r is a subset of the Cartesian product A xV, in which each

attribute has one and only one value. We can consider r to be a

collection of ordered pairs: (an attribute, its value).

Defn: An index for record r is a set of its attribute-value pairs which

collectively characterize r.

For practical reasons we usually desire to choose pairs which are succinct.

We shall call the ordered pairs in the index keywords. In the discussion

which follows we shall denote keywords by Ki. From the definition of index

above, we can characterize r by the keywords of its index.

Defn: Every record is assigned a unique address.

In practical systems, the address may give locational information,

but we shall not concern ourselves with such specifics at this point,

all we need is the uniqueness.

27

Defn: Associated with each keywork K In record R is the address of another

record with the same keyword. We shall call this the pointer of r with

rqs2ect. to K or briefly the K-pointer. We allow the existance of

null pointers to retain the uniformity of definition,

Defn: A list L of records with respect to keyword K (or briefly a K-list)

is a set of records each containing K such that

I) the K-pointers ere all distinct,

2) each non-null K-pointer gives the address of a record

within L and L only,

3) there is a unique record in L not pointed to by any other

record containing K, called the besinnin.g of the list,

4) there is a unique record in L with a null K-pointer, the

end of the list.

We may view this organization as a directed graph. The set of nodes

corresponds to the set of records. There is an edge from r to r' for each

K-pointer of r that Is equal to the address of r'. We can label these edges

with their associated keywords. From the definition of K-lists, no cycles

exist in which every edge has the same label,

Defn: A set F of records is called a file if every K-list containing one

or more of these records is contained in F. Every file is assigned

a unique file name.

Defn: Let R(Ki) be the set of all records containing keyword Ki.

Defn: Let A(K) be the addresses of the records in R(K).

Clearly, for a file F of m keywords we have

F = U
.1

R(K,)
i

We shall say that a keyword K is true for a record r if the record contains

K. Thus, every Boolean function f(K1, Kn) is either true or not true

for each record. R(K1) is then the set of all records for which K
i

is true.

Further) we denote R(K) to be the set of all records for which K
1

is not true,

Similarly:

and

28

R(K1) R(K) = { records for which (K1 or K) is true}

R(K1) f R(K) = {records for which (K and K
.1

) is true)

Fxtend Q = {R(Ki), 1 = 1, 2, n) to a Boolean 4-,1gebra B(Q) by

taking unions (U), intersections ((l) and complements (-). It is then

clear that any data base query can be answered by one element of B(Q).

Define CI, C2, .. C2 as the 2
n

intersections of the form

R R* (K1) where R* = R or R
1=1

and assume the Ci are numbered so that CI, C
m

are non-empty and

Cpl,C2 are empty.

Defn: C1, C2, C
m
as defined above are called the atoms of B(Q).

It is then easy to see the following

Theorem: Let C C2, C
m
be the atoms B(Q), then

1) C cB(Q) for j = 1,2,...,m;

2) C
j

and C
k

are disjoint if j # k;

3) UcB(Q) implies that for each j, UfCJ is either empty

or is C .

4) Every UcB(Q) is the union of some of the C

Intuitively, the atoms are the elementary expressions of keywords

which characterize the elements of the logical data base. Thus, with the

development of the atoms we have a means of explicitly characterizing the

Logical Data Base, 'these ideas will be illustrated in the next section,

In our early assertion, we stated that it was possible to enumerate

every answer to any question that the user could put to the data base,

This result can be achieved by characterizing any arbitrary subset of the

29

Logical Data Base as a collection of atoms, Furthermore, it is possible

to completely characterize a protection pattern as either the subset of

permitted or of denied accesses, In other words, we can make another

assertion concerning protection patterns. It is possible to specify pro-

tection patterns on any subset of the Extended Logical Data Base for the

purpose of either permitting or denying the access to the subset, The

assertion goes without saying that every retrievable item in the Logical

Data Base may be protected since retrieval specifications are like TYPE,3

specifications, Although this statement is simple and basic, it is funda-

mental, It offers the complete protection of every possible element in the

data base whether the elements are small fields, large files, data or pro-

grams. Again, the impact of such formalism is that it allows us to prove

the assumption that we can find every piece of data in the Logical Data

Base,

In order for a system to function as described, it must meet the fol-

lowing requirement,

Design Requirement: The only source of addresses is the K-pointers.

No user can fabricate or modify addresses.

Without such a requirement, a user could supply fabricated addresses and

circumvent any controls on the data base,

Now we can introduce a new type of protection specification in the

conceptual model.

permit

TYPE.5 (U, Q,
deny

where U is a set of users

and Q is a Boolean expression of keywords.

Note that this is a logical protection specification, and that the specifi-

cation is posed completely in terms of the users view of the data base,

i.e., Boolean expression of keywords. It may be that the set of records

satisfying Q is null, in which case the specification has no effect.

30

VI. Au Example of Data Base Protection Specification

Let us illustrate the use of the TYPE.5 protection specification

with a simple example as follows:

A small data base consists of ten records which are characterized by

four different keywords, The record addresses and their keywords are de-

picted on Fig. 6 and the structure of the data base is depicted on Fig. 7.

For the structure, we use the numbered circular node to denote the record

at the address so numbered. Along with each edge directed to a node there

is a keyword indicating that the node (therefore, the record) is charac-

terized by the keyword. if there are several edges directed to a node, then

the node is characterized by several keywords. For example, the record at

8 is characterized by keywords, K1, K3 and K4. Obviously, Fig, 7 is a

graphical representation of Pig. 6, In this discussion the directory is a

special node which can only be accessed by the system, .thus no keyword

leading to the directory is known. In general, directory may be records;

access to and protection of directories can be handled in the same way as

records. However, for ease of discussion, we shall not consider the gen-

eralization in this example. The atoms of the data base are listed on

Fig. 8,

K
1

K
3

K
4

2 K
1

K2

7 K
1

K
2

3

8

R (K1) = 1,2,4,5,7,8,10

R (K2) = 2,7,10

R (K
3
) = 1,4,5,8

R (K4) = 3,5,6,8,9

K4

K1

K3

K4

4

9

K
1

K3

Fig The Records of a Data Base

10

K

K
3

K4

K
1

K
2

31

32

Fig, 7 The Structure of the Data Base

Atoms Addresses of Records
satisfy the atom

K1 A
2

A T:
3

A k
4

1, 4

K1 AK2AK3AK4 2, 7, 10

- -
K1 A K2 A K3 A K4 3, 6, 9

K A AK
1

K2 K3 K4 5, 8

Fig. 8 The Atoms of the Data Base

34

Now consider the following specification of a protection patterns

TYPE.5 Q, deny)

where Q . K2 A ((ICI A 1(4) v (k3 A 1(4)),

This specification indicates that the system iilust deny user Ul access

to any record in the data base for which Q is true. Thus, this user has

only a portion of the data base for access and his view of the data base is

depicted in Fig. 9. Let us elaborate on the last remark. The Boolean

expression Q can be decomposed into disjunctive normal form as follows:

. K2 A ((K] A 1(4) V (K3 A K4))

= (K
1

A K2 A K4) v (K
2

A K3 A K4)

- -

= (K
1

A K2 A K3 A K4) v (K
1

A K2 A K3 A K4) v

(K
1
A K2 A K3 A K4) V (K

1
A K2 A i3 A K4)

By comparing the above four conjuncts derived from Q with the atoms of

the data base listed in Fig. 8, we learn that only the conjunct (K1 A

K2 A R3 A R4) is an atom. Furthermore, we learn from the same Fig. 8 that

the records for which the atom is true are the records at 2, 7 and 10. Thus,

we can conclude from the TYPE.5 specification that the user Ul is to be

denied access to records at 2, 7 and 10. Thus, the user Ul's view of his

data base, as depicted on Fig. 9, does not include the records at 2, 7

and 10.

The use of atoms to partition the data base into mutually exclusive

subsets for protection specification is powerful and effective. It is

powerful because all retrievalbe information can be protected. Since

any data retrieval is a response to the user's query and a query is a

Boolean expression of keywords, the same expression can be used for

protection specification. It is also effective because the atom is a

logical specification which is independant of the structure and imple-

mentation of the data. The reliance on keywords is not a restriction

since keywords may be either symbolic names in their most sophisticated

form or numeric indentifiers in their primitive form.

Fig, 9 The User's Vie' 4 of Dlti Base

36

VII. Access Types

As we indicated earlier, to be a useful model, we should be able to

accommodate a variety of different access types. The following considera-

tion will lead to a more unified treatment of access types. For each

record we allow the possibility of a special attribute-value pair, (proc.

name, proc.) where proc is a procedure. When a record with such a proce-

dure is accessed, control is passed to the procedure. The procedure uses

only the information in the other attribute-value pairs in the record. To

achieve uniformity of definition we shall assume that every record has a

proc.name-proc pair, although it may be null. Further, such pairs always

have null pointers.

Thus, the particular access type for a given node is dependent upon

the path followed through the data base in getting to that node. This

solves the problem posed by multiple access types to the same data element.

The particular path followed is of course determined by the Boolean expres-

sion of keywords supplied by the user. However, in this way the Boolean

expression not only determines the set of records to be accessed but also

the types of access to be involved. The following example demonstrates

the utility of this formulation.

Consider a situation in which the users can be divided into two dis-

joint groups, A and B. Those in group A are skilled and trustworthy and are

thus to be allowed free access to the data base. Those in group B are

more suspect. We therefore desire to make a record of every one of their

accesses. The. data base may be structured as follows

Group B entry

Group A
entry

The rest part of the
Logical Data Base

Each user in group li must make all Ills accesses through the auditing pro-

cedure, which has a pointer to the normal search procedure, the directory

node. On the otker hard, group A may access the directory node directly.

In this new formulation, the directory is not merely an entry into

the data base, but also a node at which the normal search procedure is

triggered. We term this the directory pode, As It is shown in the ex-

ample, it may be desirable to incorporate more than one entry into the

data base. We shall term all these entries as mte nodes. Recalling an

earlier discussion of basic terminology, we see now that the function of

the identification procedure is to direct the user to the proper gate node.

3d

VIll. Summary

Let us conclude our discussion of the conceptual model by summarizing

what we have done.

The discussion was started by forMal and contextual definitions of the

working vocabulary. Using the intuitive idea of the dichotomy of all pos-

sible accesses between those which are at some instant permitted and those

which are denied, we formalized the idea with the Extended Logical Data

Base and protection specifications and patterns. These specifications and

patterns encompass the traditional identification, authentication, and

verification procedures by recognizing that these procedures, though possibly

so complex as to preclude meaningful analysis, can be compared solely on the

basis of their "answers" to specific access attempts. We developed a limited

"calculus" of protection patterns, suggesting both comparative and generative

operators. Finally, we defined and demostrated a :ariety of protection

specifications. Most significantly, we demonstrate that it is possible

to protect any accessible (or retrievable) data in a data base. The

proposed protection specification (TYPE.5) is independent of the structure

and implementation of the data base.

CODAS71

DennJ66

GrahG71

GrahG72

HoffL70

HoffL71

HsiaD68a

HsiaD6Cb

HsiaD70

PopeG73

WongE71

39

REFERENCES

CODASYL Data Base Task Group, Report to the Programming
Lanklage Committee, Rev. Apr. 71.

J. B. Dennis and E. C. VanHorn, "Programming Semantics
for Multiprogrammed Computations," CACM, 9, 3 (March 66),
14:.

G. S. Graham, "Ptotection Structures in Operating Systems,"
(M. S. Thesis), Dept. of Computer Science, University of
Trronto, (Aug. 71).

G. S. Graham and P. J. Denning, "Protection - Principles
and Practice," Proc. 1972 SJCC, 40, AFIPS Press, 417-429.

L. J. Hoffman, "The Formulary Model for Access Control
and Privacy in Computer Systems," (PhD. Dissertation,
Stanford), Stanford Linear Accelerator Center Report
SLAC-117, (May 70).

L. J. Hoffman, "The Formulary Model for Flexible Privacy
and Access Control," Proc. 1971 FJCC, 39 AFIPS Press, 587-
601.

D. K. Hsiao, "A File System for a Problem Solving Facility,"
(PhD. Dissertations Penn.), The Moore School of Electrical
Engineering, University of Pennsylvania, (May 1968) (Also
available through NTIS as report AD 671-826).

D. K. Hsiao, "Access Control in an On-line File System,"
File Organization - Selected Papers from FILE68, an I.A.G.
Conference by Student literature Ab, Lund, Sweden, 1968.

D. K. Hsiao, and F. Harary, "A Formal System for Infor-
mation Retrieval from Files," CACM 13, 2 (Feb. 3970), 67-
73.

G. J. Popek, "Correctness in Access Control," Proc. 1973
ACM National Conf., 236-241.

E. Wong and T. C. Chiang, "Canonical Structure in Attribute
Based File Organization," CACM 14, 9 (Sept. 1971), 593-597.

COMPUTER

SCIENCE
REOEFIFICH CENTER

