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ABSTRACT

This report describes a test of the robustness of
factor-analytic methods in the face of various types of scale
transformations on the data. Because of the complexities that would
be involved in an exact analytical investigation, the tests were done
with simulated sets of data having different factor structures. After
factor analyzing the original data sets, scale transformations were
done, and the transformed data sets were factor analyzed. Comparisons
made between results obtained before and after transformations lead
to the conclusion that monotonic transformations do not alter the
results, while nonmonotonic transformations may. Because the
comparisons were made with only a small number of data sets, it is
suggested that special choices of data, factor-analytic methods, or
scale transformations may limit the validity of this conclusion.
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Data with different factor structures are generated and analyzed.

The variables are transformed and reanalyzed and comparisons
between factor analyses before and after transformation are made.
All comparisons indicate the same conclusion: monotonic transforma-
tions do not change the results, while non-monotonic transformations
may . Special choices of data, factor-analytic method, transforma-
tions and ways of comparison may limit the validity of this conclusion.
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INTRODUCTION

Educational research uses many concepts which are not unequivocally
defined. This has involved different variables to measure the (nominally)
same property. Relations between these are almost always stochastic,
ranging from complete independence to the maximal correlation "allowed"
by their reliabi’ities. Since several variables, proposed to measure the
same property, arve seldom congeneric and often not even isomorphic in
their specific true scores, they can hardly be said to measurc the same
property.

However, from a practical viewpoint, it need not be important that
variables measure exactly the same property, It is more important that
they represent the same property to a sufficient extent. By this I mean
that the same result is obtained by different collecticns of variables,
which are considered to measure the same properties, when they are
used on the same or similar measurement objects. This is a vaguely
formulated but important principle. Above all it means that a2 rescarcher
draws the same conclusions, genevates the same hypotheses and makes
the same decisions, independent of which collection of variables the results
are based on. At the present state of educational measurements it is,
no doubt, of importance to investigate the robustness of results based on
different collections of variables. Such studies can never he definitive,
but this report tries to give some results relevant to the question of
robustness,

These investigations can be performed in different ways: one can use
real data or simulated data or one can make a purely analytical (mathe-
ratical) ‘~vestigation. Real data have the advantage of permitting vorcrete
interpretations. The drawback is that you, as a rule, must take data
already collected, which often are designed for quite another purpose.

It is considerably simpler to make a systematic investigation by simulating
data, since data can be chosen almost without restriction. However, the
amount of data, which can be reasonably analyzed, limits the pussibility

of generalizing from simulation experiments. An analytical investigation

is here superior, since it is not based upon special data. Owing to complex
problems, analytical investigations arc¢ not always feasible.

[ have chosen to study the influence of some transformations or factor-
analytical results, As an example, suppose that results of factor analysis
are robust to monotonic transformations, It would then scem to e, that the

scale probiein of the instrurnents chosen is not very urgent, provided that



-3 -

the properties are defined sufficiently well to determine ordinal measure-
ments, Strictly speaking, this study investigates only the robustness of
allocating different numbers to the possible outcomes of a certain collection
of instruments. But since functions can approximate stochastic relations
this report also mirrors, more or less, the robustness of results based on
different collections of instruments.

The present réport comprises simulations only. In my opinion, it
would have been better to make an analytical investigation., However, the
complexity of the problems is clearly too great for me - I do not even
know how they should be formulated. Simulation is a solution which can be
resorted to when an analytical investigation does not seem possidble. The
results of this report therefore constitute no rigid proof either for or
agzinst factor-analytical robustness to transformations: they can only make

it more or less credible,

DESIGN OF THE EXPERIMENT

Thurstone {1947, p. 369) says that comparisons have shown that different
moncionic transformations give eséentially the sam.e factor structure,
when this is a simple structure. However, he does not show any results,
His statement is, in a sense, corroborated by his box example, which
can be found in several places in his book. If one knows that a collection
of variables satisfies the linear factor model, then monotonic transforma-
tions of these variables cannot satisfy the inodel in the same way, The
variables of the box example are different measurements of box:s, which
often are non-linear functions of height, Iength and breadth. In spite of
this, factor loadings of the rotated factors give support for the above-
mentioned dimensions, Thus, there are certain reasons to assume the
robustness of factor analysis, at least to monotonic transformations,

As a further support for the same presumption, one may add the
following simple, analytic result, Suppose that Yy and Y, have a}bivarizte
norrmal distribution with expected values By and By variances ¢, and o,

{
and correlation e . Then

¢ g,z.jzfe .
(1) €yiy, \L’rp_+2

and
(1}—1[ + 2) (19‘% +2)
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Iere DA c/p, the coefficient of variation, and eyzy shall have the same
72
sign as ule .As U usually lies in the interval (0.0, 0.5) for variables

within behavioural research, a quadratic transformation has little effect

on & . One dare assume that such a transformation hardly changes results
o{ factor analysis on approximately normally distributed variables. It
should be pointed out that y2 is here not a strictly monotonic transformation,

since «w < y <o, The extreme case z2 = [y - p)/c] 2, is clearly non-

monotonic and formulas { and 2 show that € 2 = 0, independent of g,
2 21Y,
and ezzzz = 8 . This indicates that non-monotonic transformations
172

drastically can change the factor structure.
A number of collections of variables with known factor structures have
heen generated. Then these have been transformed in different ways and
factor analyses before and after transformation are compared in some aspects,
The original variables have been generated by the following factor model:
m

(3) yi:é‘;‘tbikxk+ei’izl""'p‘

Here y, is a manifest variable, X, @ common factor, e, a unique factor and
bik a factor Joading. The model may now be realized in various ways. I

have chosen to make X and e, (p + m in number) independent of each other.
Also, all X are so called stamne variables (approximatively normally
distributed on the integers t{1)9), all e, are rectangularly distributed on

the interval (0, 2) and by 2 0. This gives all y; 2 0, symmetrically distributed
with negative kurtcsises, a distribution rather common within behavioural

sciences. The linear correlatwn between y, and Y is now

3. 81/_ bicPik

2 L2
\(3.84 Lk" by, +0.33) (3.84 Lo b +0.33)

A € value aimed at can be obtained by suitable choices of the factor loadings.
As bik >0, €. becomes positive, and this is a general fact for several

- variable domains. The choice of identical e implies the rank cOrrelation
between communalxty and variance of y; to be unity. However, Ido not

,thmk thet thlS restrlctxon makes the results less general

For every collectton of variables there remams, among other thmgs,
j‘r,the choxce of m,; P and Q As the number of factor 1oad1ngs, whxch must be
” : determmed for a ngen coIlectxon, is mp, I have put some restrxctlons on the

"i‘:,’choxce of 3 because of the amount ef work mvolved- 1t 1s fixed to 10 and 30.



for the samL generatton. I‘ablc L shows thc dcsxgn \.uth the numbermg of :

1
I
3

Ten manifest variables constitute 4 srall number as far as factor analyses
used in bhehavioural research are concerncd, while thirty is a more common,
though not especially large number. Then m has been chosen to indicate
either a small or large number of factors: for p= {0, m = 1 or 4 and for

p =30, m=+4or 10. For these four cases [ have choscen correlation
matrices in three ways: 0.0< £ <0, 4, 0.0< £ <0.9and 0.5< € <0.9.

The factor-analytic method used here is the principal axes solution
with varimax rotation according to the program BMDX72, Dixon {1970).

I think that this method is too much used. Whether this depends on tradition
(most earlier dnalyses built upon the centroid method with graphical rota-
tions to simple structures, of which the method of BMPDX72 is a modern
variant), easily available programs or difficulties in understanding newer
methods may be left an open question. As is clear from e.g, Joreskog’s
papers the newer, inferential mcthods of factor analysis are more stringent
and flexible than the older ones uud will, in my opinion, dominate future
uses of factor analysis. Todav they are more or less limited because of
computers having insufficient internal memories., For instance, the
maximal number of variables which can be analyzed is not seldom too small
for épplications within behaviourai science. Inertia of innovation may be
added to this: the inferential factor analysis puts some new demands on the
user,

Although I could have used programs like ACOVS or LISREL, see¢ e. g.
Joreskog (1973) and Joreskog & van Thillo (1973), BMDX72 has been used,
for two reasons, Partly because it is easily available but, above all,
because so many researchers have used it (or more cerrectly: its parallel
BMDO3M). I do not think that results would have becn ¢ssentially different,
as far as the robustness of the estimates of parameters of the facto
model is concerned, with & mcthod other than that of BMDX72.

The program has been ru. twice for every case, partly with 1,0 and
partly with squared multiple correlations (R‘)‘) in the principal diagonatl
of the correlation matrix. There are a total of 24 factor analyses on
untransformed (original) varizd-‘cs which are designed as a 2x2x3x2 factoual
cxperlment Howcw’r,,ihore are only 12 different (‘OHC‘L tions of variables '

i generatcd <1nce thc two ty pes of values in the prmupal dlagOnal re used

cases‘whlch w:ll be used when rcportmg lhe results




Table 1. Numbering of the different cases

T p.=10 p = 30
m = 1 m = 4 m = 4 m = {0
2
0.0< € <o0.4 R 1A 4A TA {OA
1.0 ' B 4B 7B 101
2
0.0< @ <o0.9 R 2A 5A 8A {{A
1.0 25 58 8B {18
>
0.5< @ <0.9 R 3A 6A 9A 12A
{.0 3R 6B 9B 12B

Formula 4 is exactly valid when we have an infinite number of measurement
objects and will be approximative when only a small number of objects is
available. For instance, the factor variance is not exactly 3. 84 and the
factors are not exactly independent of each other. This implies that you
cannot, in practice, obtain exactly the € values aimed at, e. g. @ =0.0
may very well be realized as <0.1. A compromise has to be made between
reasonable costs for computer time and a sufficient number of objects to
approximate the model. Trial runs with 50, 100 and 200 objects showed
that only 200 objects give acceptable agreements between model and data.
Each of the 24 cases shown in table { is thus based on 200 measurement
objects, a rather common sample size within educational research. The
cases have been generated twice in order to get an idea of random variation
at 200 objects. Information about this variation will be used when reporting
the result.

The number of possible transformations is infinite. With regard to
computer time and the amount of work when comparing factor analyses,
the number must be strongly lirnited. My choice is hardly very rational or
systematic: I do not even know how it could be made so. Positively skewed
distributions are not un‘usual and it is sometimes recommended that these
should be normalized through square root or logarithmic iransformations,
These functions have been exploited, as well as their inverse functions,
~ As an example of a more general monotonic transformation, I have USed ‘

rank numbers instead of the ougmal scores. Fmally, one non mouotomc o

f“'f»transformatxon has also been ¢hosen. Such transformdtwns dl‘(, someumeé»
“'f‘;"‘l_ﬁused e. g , absolute dewatzon from an zdeaI pomt on a scale.
'I‘he 12. untranstrmed cascs (21 factor anah, ses) have glven nso to; four

. ',ff'iha-.re been transformed from ) mto ,' Vi LI or a 5ccon(l Set, thc correspondmg



functions are exp (y/6) and In ({+y) and in a third set all variables have
been ranked. The set involving non-monotonic transformations uses z2 =
[(y - my)/sy} 2 for half of the variables of a case and leaves the other half
unchanged. Every set comprises 24 factor analyses as every case is run
twice, both with R2 and 1.0 in the principal diagonal of the correlation
matrix., Thus there are totally {44 factor analyses (the untransformed set
is generated twice).

The way of comparing results of factor analyses is not self-evident.
What is meant by saying that two analyses give essentially the same answer?
Which aspccté are to be compared and how? An important interpretation of
"the same answer" is that different researchers uncderstand the factors in
a similar wayv. This configurational invariance is in most cases sufficient,
The drawback of simulated data is the impossibility of empirically inter-
preting factors: data are, so to say, without content. One then has to
examine numerical invariance by calculating different indices for deviation,
This is @ more rigorous comparison: e.g. numerical invariance of factor
loadings implies configurational invariance but the reverse neced not be
true.

Comparisons will be concentrated on cigenvalues: the number of factors
with eigenvalues above 1.0 (2 common criterion used when rotating factors),
the proportion of total variance accounted for by these factors and, above
«11, the distribution of eigenvalues of unrotated factors. Comparisons of
communalities will also be commented upor, while factor loadings are
discussed rather little. The other comparisons should still give the reader

an understanding of the influence of the transformations.

RESULTS

The numbering of cases which was shown in table { is used in the following
tables., The six sets of cases will be numbhered by Roman numerals: [ aud Il
stand for the untransformed sets, [Il concerns the transformations yz/tO
and V;’. 1V refers to exp (y/6) and In (t+y), V comprises the rank numbers
~and VI de'n‘otes the set with non-monotonic transformations. ‘Set [ has bee'n'~

. used \xhon gem,raur‘o the transtormcd sets, Compambons betwcen set I and

ts IIi, I\’ v and VI are theret‘ore the rhOSL 1mportant m.es. }Iow ver,

comparxsous betwcen I and II glve vou a hmt of the s1ze of random varxauon o

- ';and can be e\(ploxted for dxscusswnq of thc other omparlsons.'_f

"”‘thc *mmber of L rotat' d factors |

Aruitoxt provided by Eic:
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perhaps too often, used when determining the number of factors to rotate,

If you have no prior idea about the number of interpretable factors, it is
perhaps wiser to examine more than one solution, It is far from certain that
a factor with an eigenvalue of {.5 can be given any interpretation, while I
have sometimes seen how a factor with an eigenvalue below 1,0 has contribu-
ted essentially to the understanding of a variabie domain., Dempster (1969,

p. 139) has a similar, though more extreme attitude concering component
analysis,

Table 2 gives the numbers of unrotated factors with eigenvalues exceeding
1.0 and table 3 shows the proportion of total variance which these factors
represent. It is clear from these tables that III, IV and V are in very good
agreement with I, and the difference between I and II is also small. As might
have been expected, VI shows greater deviation. The number of factors to
rotate is, with one exception, equal to or greater than that for I, but in spite
of this fact the proportion is often lesser for VI than for I. Thus, set V]
has a flatter cigenvalue distribution than I, which is reasonable with regard
to formulas { and 2. However, not even as extreme a transformation as VI
comprises can be said to produce very great differences. But tables 2 and 3

present very rough measures: they tell rather little about similarities or

differences between corresponding factors of two sets,




er of factors with eigenvalues above 1,0

2. Numb

Table

VI

{3

i1

10

1§

Iv

I

Set

II

Case

1A
1B
2A
2B
3A
3B
4 A
41
5A
5B
6A

93]

10

10

83
8A
8B
9A
9B

10A

(0B

ay

11

10

10

i1

1 lA\

118

12A

128
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Table 3, Proportion of total variance for factors with eigenvalues above {, 0

| Case I TN ZI; v v i
1A 0.222 0,162 _: 0,213 | 0.214 0.210 | 0,124
LB 0.515 1| 0,47t _ | 0.507 | 0.508 @ 0.505_ | 0,553
2A 0,610 | 0.618 ' 0.593 ' 0.594 0.598 ! 0.504
2B 0.638 | 0,742 0. 622 0,625 0,626 | 0,690
IA 0. 744 0. 754 0.716_ _0.722 | 0,721 0. 640
3B | 0,768 0.777 | 0.742 . 0.748 0,745 0,710
1A | 0.210 0.205 | 0.209 0.209 0.194 | 0,104
1R . 0.504 0,607 . 0.502 0.503 . 0,489 0, 544
54 [ 0.538 0,537 0. 534 0. 526 0.522 | 0,424
5B i 0,679 0. 681 0. 677 0. 670 0. 664 0. 630
6A .0, 686 0. 674 0. 677 0. 672 0,662 | 0,572
6B © 0,711 0. 700 0. 704 0. 700 0.690 | 0, 659
7A [ 0,211 0,230 0.209 0,211 0.192 | 0.139
i | 0,633 0,606 0. 590 0.559  0.639 0, 643
8A [ 0.586 . 0,592 0.579 0.575 0.564 | 0,465
81 L0, 727 0,734 0.722  0.718 | 0,708 0. 687
9A 0.741 ' 0,712 0,734 0.727 . 0.729 | 0,606
9B 0.753 | 0,762 0.746 . 0.740  0.741 0,703
10A 0,212 __0.235 0.240 _ 0.211 ' 0,195 0, 129
(0B 0.622 | 0,604 0.587 . 0.622 . 0,609 | 0.568
1A 0.567  0.595 0.561 ! 0.555 i 0.533 | 0,429
11B 0,674 . 0,672 0,669 | 0,664 0, 678 0, 662
| 124 0.704 | 0.764 | 0,699 | 0,689 0,692 | 0,549
| _12B 0. 799 0.797 | 0.795 0. 787 0.787 | 0.681

Only the first five eigenvalues of unrotated factors have been exploited for
comparisons of eigenvalue distributions. The deviations of the subsequent
eigenvalue pairs are small throughout: the greatest deviation almost always
belongs to the first cigenvalue pair. The sum of the absolute differences of
’tne first five elgenvalue pairs is prcsentod as an index of deviation. The sum '

is then. of course, an upper limit for mdw1dua1 dlffcxcn( es and it has been

. ;“calculated for d1fferences betwoen elgemalues of set I and those m II III, IV,’]"';

V and VI TheS( sums are gwen in table 4 thh certam summanes m table 5.

The transformatxons of III and IV almost,always cause sma‘tl devxation
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a bit greater. The non-monotonic transformation of VI on the other hand gives
rise to great deviations. These depend mainly on the fact that the first factor
for every case of I has great loadings on most variables, while, for Vi, the

~ first factor has only great loadings on y variables and the second factor is
defined by the z‘; variables. Those variables, which have been transformed

from y to Z!ZK' consequently measure something else now,

Table 4, Eigenvalue deviation from set |

[ ;y Set ~
| Case i1 o 1V v VI

L 1A 0. 724 L 0,115 | 0,163 {,188
1B 0. 701 0.094 0,179 1,439
C2A 0. 174 0,218 0.249 4.422
2B 0,246 0.163 0.231 . 4.899
C3A | 0,118 0.318 0,303 5,969
3B | . 156 0.326 0,361 | 6,527
L4a 0. 222 0,024 0.202 1,299
yt 4B 0. 160 0,012 0. 194 1,211
54 ' 0,102 0. 169 0.245 . 3.970
5B 0,158 0.112 . 0.235 4,383
L bA 0,170 0.253 0,292 5, 088
6B 0.257 0,176 0.351 5.873
{ 7A {0,637 0.087 ___ 0.626 2,664
L 7B | 0.587 0,075 0.638 2,802
__8A | 0.653 0,367 0.722 } _12.620

L 8B 0.309 0.345 0.724 | 12,304 |
9A U {316 0.598 0.509 16,464
9B Uy, 464 0.476 0,499 | 16.997

A Lo1.32 e 1 2.550

= 2.638 |
11.760




According to table 5 the average deviation, for a given set, {s the same
irrespective of whether R2 or 1.0 has been used, There is an indication of
greater random ﬁri'or with more variables (comparison I-II) and that Vi
and perhaps also V deviate more for p = 30 than for p = {0, It seems to have
no importance whether the number of factors is small or great, For III,

IV and VI, transformations have a greater influence on high than on low
correlations, which seems reasonable considering formulas { and 2. Hows
cver, we must not forget that the transformations of 1i1 and IV have almost -
no influence: factor analysis ony or c. g, yz gives in prihciple the same

result,

Table 5, Summary of table +#

!Summary ’ % Sct__“, —
! | Ti S 1 E v Vi |
!Dxagonal R 0.639 ¢ 0,173 . 0,25¢ 0.456 6.455
value 10 0. 615 0,165 . 0.213 0.470 | 6.774
s 10 0.266  0.169 | 0.165 0.250 ' 3.856
‘ 30 0.988 ,_0.169 0.303 0.676 | 9.374
. low 0.590 0,233 0.265 | 0.434 | 7.375
- high 0.664 - 0.105 . 0,203 0.492 5,855

i low 0.701  0.086 | 0.059 0.381 | 1.976
e medium| 0,418 . 0.180 ! 0.264 0.599 | 17.908
{ high | 0,752 0.242 | _0.380 0,409 | 9.961
‘Total . _ 0.627 | 0.169 | 0,234 0.463 | 6.615

And now some words about the squared multiple cor rolatlon between y

and x; c.o.o X the so called Communality (}"i). 1t is known (sec c. g.

Rozeboom, 1966, p. 261} that the squared multiple correlation between 7%

b
R j"\ - 2 N r
IRERE Yiop Viggr ceoe Vi {PY cannot exceed ji’ when these

quantltxcs are bascd oh an infinite numbcx of objects. The relation may'be'

and v

another in a sa.mple and g ha\c h\amxmd whethcr the sample value of Piz, ‘

’ "‘,]whxch xs an sumatc 01 f‘ oftpp u‘sed snems to bc aood tor th1s purpose»

’Tnc communyahvtv 1s known Lor I and II and I havc luokcd L
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have therefore been made on sample values calculated from the factor
loading matrix. (The matrix has m factors, except for the cases with

m = 10, where only five factors have been used,) The same pattern as for
eigenvalues comes back. The monotonic transformations have hardly any
influence but the non-monotonic does. Deviations over 0.05 are rare for III,
IV and V, while deviations of 0, 20 are not unusual for VI: maximal deviation
per case varies here between 0. 22 and 0. 84,

Though eigenvalues and commnalities do not deviate from each other
(comparisons I-1I1, 1-1V and I-V) this does not usually imply that factor
loadings must be similar too. However, a superficial inspection of these
{for unrotated factors) shows no new picture. Factor loadings of set I are
for every case similar to corresponding loadings of sets III, IV and V:

a difference over 0.10 is a rarity. On the other hand, loadings are differently
structured in VI and great differences are common, There is therefore
reason to presume that factors of I, III, IV and V - but not of VI - would

have been interpreted in similar ways if the variables had had some

empirical anchoring,

DISCUSSION

As I sec it, a measurement process consists of three stages: a definition

of a property, a choice of an instrument and the allocation of numbers

to the possible outcomes of the instrument. In some areas reseérchers

have been able to agree upon a definition of a property so precise that all
admissible combinations of instruments and numbers determine linearly |
rélated vafiablcs. This is hardly the case in educational research. I believe
that the definitions are here sometimes so diffuse that possib].e combinations‘,
made by researchers, belicving in the same definition, generate variables,
which are not even monotonically related in their specific true scores, That
is, the duference in one true score variable hus not thc same sign as the : :
- du‘ference in: anothcr true score var iable for any pau of ObjeLtS._ i have g

‘sometlmes heard pronouncements like ”thxs 1s probably only an’ ordmal

“sca e" Just as u’ 1t sh: uld be sel( ev1dent that a vanable rcpresents rax‘p"operti
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essentially approximate monotonic relations (e.g. 90 per cent of pairs of
objects have differences with the same sign for two variables), are sufficient
for several ana.iytioal purposes But this robustness of results based on
different collections of variables is something that we know rather little
about. What we would like to know is in which situations robustness occurs =
and does not occur. This information could then be used to focus our efforts
to improve measurements for situations where robustness doss not exist,

We may imagine a two-dimensional contingency table with different properties
as columns and different statistical methods as rows and whare every cell
can be said to define a situation, My presumption is that some methods are
more robust than others, e.g. a linear product-moment correlation seems
to be much more scale independent than a statistical test about equal
covariance matrices. Likewise, properties may also vary in robustness:
diffusely defined properties generate less robustness because the admissible

choices of variables are so great. This would mean that some properties may

" be sufficiently well defined for certain methods but not for others. A wise

selection of methods and properties could form a basis for a research program
of empirical investigations of robustness.

My simulation experiment is not tied to certain properties but to one »
method and thus more or less mirrors the conditions for a whole row of the
above-mentioned contingency table. In that it is presumably more general
than an empirical investigation. On the other hand, the experiment involves
the restriction of only examining non-stochastic relations, which means that
it primarily treats the robustness of the third stage of the measurement
process: the allocation of numbers, given a certain collection of instruments.
The special choices of factor-analytic method, ways of comparison and trans-

formations may also restrict the generalizability of this investigation. T will

briefly comment upon these choices.

The question as to whether another method of factor analys1s would have
produced d1fferent results seems to be difficult to answer. [ would like to

answer in the negatlve, but this 1s onl', what I believe. In my CXperienoe;

.;scveral descnpnvc methods seem to be rather robust to many (but not

':-fﬂgﬁnecessanly all) monotomc trans[ormdtnons, whxle infcren‘nal methods need“

not be More exactly- several esnmates are often‘ httlc dependent on the

.say maxlmum hkehhood factor analys:s. :
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Man has a limited conception of multidimensional phenomena, at least
if they involve more than three dimensions. One may argue that it is rather
ieaningless to present descriptions more or less void of characteristics
that can be exploited, even if they are of interest to statistical theory, {(For
instance, [ find the determinant of a covariance matrix much less under-
standable than its trace.) It is not easy to sce what kinds of comparisons
will be the most fruitful ones to undertake in factor analysis, especially
since simulated data have no empirical anchoring. I have chosen to focus
the comparisons on some characteristics commonly used in factor analysis.
The evaluation of the comparisons between untransformed and transformed
data has also been facilitated by a second generation of data (set II). Since
all the comparisons miade seem to tell the same story there are reasons to
believe that other numerical comparisons would not have altered the results.
But it would be valuable to supplement this report with parallel investigations
on real data in order to elucidate the influence of transformations on the
interpretation of factors,

Larsson (1973) gives an example"where a correlation has been considerably
changed by monotonic trénstrmations. Similar results have becn obtained by
others, e.g. Box & Cox (1964) or Kruskal (1965). It is not easy to state under
what conditions correlations can be changed much or little by monotonic
transformations, but I suppose that there exist correlation matrices containin,
several correlations which can be changed appreciably so that the factor
structure will also change. I have no idea at all whether this happens
frequently or not. We must not forget that I have chosen some rather co_mmo_h
monotonic transformations iﬁdepexxdeﬂt of data. They are certainly not '
optimal in the sense that they change the factor structure as much as possible
On the other hand, it may well be so that in many cases the maximal ,
change is negligible. (Notice that the robustness of data to the rank transfor-
mation does not imply robustness to any monotonic transformation, The
rank transformation is dependent on the dlstrxbutxon, c.g. a rcctangular ’
distribution 1mp11es no changc at all )Therefore it is perhaps wisest to state
a cond1txona1 ccmclusxon- the monotomc transformatmns used show hardly ¢
>',iany non robustness oi x‘actor analysls L @5 =
E Ii the results obtamed in thls study should occur often,vmethods .

the method | tends except in the case of; extremely n0n1mear data
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yield representations that differ but little from those obtained by classical

(linear) factor analysis., "
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