AUTHOR
TITLE
REPORT NO
pu: date
NOTE

EDRS PRICE
DESCRIPTORS

Husen, Torsten
Implications of IEA Findings for the Philosophy of Comprehensive Education.
IEA-HAR-2
Nov 73
39p.; Paper presented at the Conference on Educational Achievement, Harvard Oniv., Cambridge, Mass., November 1973
$\mathrm{MF}-\$ 0.75 \mathrm{HC}-\$ 1.85$
*Academic Achievement; *Comprehensive High Schcols;
Comprehensive Programs; *Cross Cultural Studies;
*Educational philosophy; Educational Policy; Educational Research; *Internaticnal Education; International Programs; Mathematics Education; Research Utilization; School holding Power; Schcol Systems: Science Education; Student Attitudes

ABSTRACT

The comprehensive-versus-selective school issue is primarily a socic-politico-economic rather than fedagogic problem. The International Project for the Evaluation of Educational Achievement (IEA) had as its primary objective tc relate certain social, economic and pedagogic characteristics of the different systems to the outcomes of instruction in terms of student achievement and attitudes. He limit ourselves here to proklems related to the different systems and focus on the problem given in the slogan "Does more mean worse?: The IEA mathematics survey comprised of 12 countries and random samples of about 133,000 pupils from 5,450 schools. Four target populations at the 13 year and pre-university level were sampled and tested in all the ccuntries. The Science survey comprised of 258,000 students from 9,700 schools in 19 countries. The students were sampled by random from four large populations. (1) Students aged 10:0-10:11, when they, in all countries, still were taught by one teacher in a self-contained classroom. (2) Students aged 14:0-14:11. (3) Students in the last grade of the compulsory school. (4) Students in the grade from which transfer to the university occurs. The mathematics investigaticns revealed a sharply fluctuating average level between countries among students in the senior, pre-university class. However, these comparisons of arithmetic means were not especially interesting unless allowance was also made for variations between countries in their recruitment bases or "retentivity." If that was done and equal proportions of cohorts were compared, the variations turned out to be considerably less on an average. (Author/JM)

US DEPARTMENT OF HEALTH, EDUCATION E WELFARE EDUCATION

Implications of IEA Findings for the Philosophy of Comprehensive Education

by

Professor Torsten Husén
University of Stocicholm

presented at
 Conference on Educational Achievement Harvard University, November 1973

best copy availabte

Implications of IEA findinirs for the philosophy of comprenensive education

Torsten Hus6n, University of Stockholm

The main purpose of the following introductory observations is to contribute to a clarification of the comprehensi.ve-versus-selective school 1seue. The main thesis i.s that we are here primarily not dealing with a pedagogic but a socio-politico-economic problem.

We lack an international terminolozy in education, at least one that lends itself to a descrintion of educational structures. To an Englishman, "comprehensive school" means a school offering under one roof the major secondary school procrams. To an American, it denotes a secondary high school catering to all children drawn from a certain district and providing all kinds of programs. To a Swede, it sienifies the basic, organizationally undifferentiated nine-year school. It thus refers both to the elementary and secondary stace and is conceived by and ?arce in the same way as was the ecole uniaue in France or Einheitsschule in Germany in the educational debate after iorle irar I. During the last decade Gesamtschule in the latter country refers to an integrated school covering the entire compulsory school period. To ise genuinely comprehensive the enrollment has to reflect in a representative way

Paper presented in November 1073 at a Symposium sfonsored by the Graduate School of Fiducation at Harvard University on the implications of IJA surver findings.
the social composition of the community outside the school, and its programs should vary enough to meet a broad range of student needs. Comprehensiveness is thus conceived of as Integration with reference both to onrollment and curricular offerings.

All educational institutions are indeed more or less selective in terms of both access and screening procedures, such as grade-repeating and drop-out rate. ${ }^{1)}$ But the national systems vaxy tremendousiy in the sevarity with which they employ these selective practices. In some countries there are almost no enrollment restrictions during the age range covered by compulsory schooling. When it comes to the choice of optional programs, this is up to the pupil and his parents. For instance, the nine-year basic school in Sweden is by law prohibited from selecting students for the various options in grades 7 through 9, whereas at the age of 16 , when transfer occurs to the upper secondary school, competitive seiection to the various programs ccurs on the basis of grades obtained In the terminal grade of the basic school. In most Western European countries, where until now transfer from the elementary to secondary school has taken place at the age of 10 to 12, competitive selection in terms or both scholastic ability and social background (which are intrinsicly correlated) has been rather severe. But there is a marked tendency to bring about greater flexibility and to postpone definitive selection by introducing a guidance period (cycle d'orientation). This was introduced by the famous de Gaulle decree in 1959.2) The Strukturplan submitted by the Deutscher Bildungarat in 1969

BEST COPY AVAILABIE

"orientation phase". 3)
Other types of selectivity also vary Greatly. Graderepeating during compulsory schooling, and particularly in the elementary school, is almost non-existont in some countries. Promotion from one grade to another takes place on the basis of chronological age. In other systems considerable graderepeating already takes place in the first grade in the elementary school.4)

The main forces behind the change from a selective-blitist to a more comprehensive school structure in many European countries can, it seems to me, be categorized under three. main headings:
(1) An increased standard of livins and improved public welfare has been conducive to heightened aspirations in terms of self-realization and an increased individual demand for education. This increase in educational consumption is sometimes referred to as "social demand" for education.5) Sweden is a case in point. Paulston shows in his dtudy of the Swedish School Reform that after basic reforms which aimed at establishing social welfare and full employment had been introduced and implemented, demands for a reform of the structure of the educational system that would increase participation and broaden access came to the forerront. 6)
(2) Democratization, particularly of secondary and higher education, with tine aim of equalizing opportunities end opening up educational careers, especially for talented students from lower-class homes. "Equality of opportunity" (Chancengleichheit) has becoms one of the catch phrases behind

BEST COPY AUAILABLE

the attempts to reshape the structure of the oducational system by removing geograplic, economic and psychological barriers which hinder children from "under-privileged" homes to got access to high level education. 7) The demand for equality does, however, not imply identity in treatment. The Deutscher Bildungsrat in its recomnendations emphasizes: "The task is rather to equalize the opportunity early and. to differentiate the offerings of the educational system later in onder to promote the abilities and interests of the young people and to see to it that further education gives the corresponding offering". 8)

The liberal conception of "equality of opportunity" has been that geographic and economic barriers should be reduced or entirely removed in order to give all childreng irrespective of social background, the same chance to compete In climbing the educational (and social) ladder. As I have pointed out in anotler connection, 9) those in the Swedish labor party who wore framing the party's school policy during the $1920^{\prime} s$ and $1930^{\prime} s$ were even ready to tacitiy accept an 61itist educational system, provided support in terms of stipends or removal of tuition fees could be given to lower class students.

Under the impact of research conducted by educational sociologists and developmental psycholoeists, the concept of "equality of opportunity" has recently had to be thoroughly revised. 10) Previously, equality was felt to have its starting point with tho inlerited, once and for all given, ability to absorb school loarning. The students had varying "natural

BEST COPY AVAILABLE

capacities" which from birth had been bestowed upon them. Therefore, educational policy should aim at giving everybody an education that brought him to the limit of his capaciti.es. Society had only to see to it that material circumstances did not prevent the individual from utilizinf lhis God-given, unchangeable talent by obtaining a suitable, career-promotina education. Once he had been admitted to a suitable school or program, the blame for failing it lay primarily with him and not with the system. During the last decade we have become aware of the tremendous, but subtle, influence exerted by the home environment in providing the child with .earning tools, increasing his vocabulary, interacting witin him in order to train him to carry out tasks by hiaself, and influencing hjis attitudes and notivation. "Ability to learn" is to a iai: ? extent acquired at hone during pre-school age. The reason why lower class children fail at school to such a great extent in comparison with ridide or upper class children is chiefly trein: relative lack of certain skills which are basic prerequisites for suciess in echool learming. In France, for instance, grade-repeating at the boginning of elomentary school is much more frequent during the early stage of the fcole primaire among children with woricing class background than among the rest. 11)

Thus, the iosk of the school and of society at large could not be confingd ton noviding a merely forval equality in material terms, by, for instance, giving overybody free access to the same basic education provided in schools with uniform resources and standards. It is also up to these agents to

BEST COPY AUAILABLE

provide overy child with the ability he requires in order to profit in an optimal way from the education offered to him by the system. This moans that the school has to provide compensatory education for those with environmental fandicaps. This applies particularly to institutions catering for children of preaschool ago. Intollectual differentiation as measured by traditional so-called intelligence tests (and expressed by IQ's) chiefly takes place before children enter elementary BChool.

Daucational sociologists have made us aware of the fact that selective measures of all kinds, such as gradearepeating and drop-outs, are related to social background. 13) According to the traditional philosophy of "equality of opportunity" everyone should have the same chance to compete on the basis of his "native capacity". One's sociomeconomic handicaps have to be compensated for by material support in terms of free places or stipends. But what is meant by "ability"? The criteria used in selecting students could be placed in one of three categories: test scores (on intelligonce and/or achievement tests), school marks, and examinations (entrance or final examinations). All these criteria are to a varying dogree correlated with social background variables, such as parental education and socio-economic status indices. Thus, selection as such means that there is a tendency, sometimes weak but sometimes quite strong, to give precedence to pupils vith more privileged home background. Floud and co-workers ovaluated tho effect of "democratization" of erammar school
seleetion at eleven-plus in England, as supposedly achieved by the 1944 Education Act. ${ }^{1!\text {) }}$ They found that when all grammar school places were thrown open to thoes who did well on the eleven-plus examination the proportion of working class children decreased, whereas the proportion of aidale class cinildren increased. Previously, when iees had to be paid, a given number of free piaces were kept open for children from lower class homes.

The earlier the stage when selection takes place, the more atrongly the social factors operate. The child of 10 to 12 could not reasonably be expected to be actively and rationally involved in his future educational and occupational career decisions to the same extent as a youngster of 15 or 16 . Therefore, as was shown in the mathematics surrey by the International'Association foi the Evaluation of Educational Achievement (IEA), in systems where selection for academic secondary education taices place at an carly age the social class structure of the enrollment differs mich more markedly from the social composition of the goneral population than in countries where transfer takes place late or where the system throughout the ontire mandatory school age is comprehensive, that is, provides all children in a certain area all kinds of education under the same roof. ${ }^{15 \text {) }}$
(3) Mass education at the upper secondary and at the tertiary ievel, referred to as the educational exulosion, has to be regarded as a reflection of both the rapidly growing need for trained manpower and an increasing "educational consumption". Those forces, however, conflict with a school

beSt copy avallable

is rather static and a society with a rigid and elitist social structure. The problem could briefly be described as follows:

Until recently both tho occupational status structurs and the social system in many Europoan countries could be symbolized with a pyramid. 16) At the bottom of the pyranid there is a majority consisting of unskillod or semi-skilled manual workers. Mott of them have a very modest.formal education fiven by a compulsory, elementary school, which until recently has varied in length from aix to eight or nine years. The next level mainly consists of white collar workers, such as clerical and sales workers, supervisors in industry, and murs?s. The formel oducation required in most cases excoeds elementary school by a few years and was usuaily some kind of "middle school" with graduation at 15 or 16 , whtich did not oualify for university entrance. The middle schools were either separate establishments or consistod of the lo:ier section of the pre-univetsity, academic secondary school. At the top of the pyramid wo find a small percentage of the age group which has graduated from the acadomic preauniversity school and the university. Persons with these qualifications make up the professional. occupations.

In contrast, the status structure of the occupational universe in economically highly developed countriss, which are on their way into the post-industrial society, increasingly takes the shape of an egg. At the bottom of the status hierarchy there is a diminishing number of occupations that require a modest formal schooling and vocational training

BEST COPY AVAULABLE

over a considerable time. In the middle there is an increasing number of occupations requiring formal education extended to the age of $16-18$ and a specialized vocational training. At the top the number of persons with higher education and professional occupations rapidily increases. It has in cointries, such as the Federal Republic of Germany and Ingiand, repeatedly been emphasized that a reorganization of school structure ought to be based on adequate empirical research. Adherents of an 6litist aystem and those who favor an unselective school all endorse the statement that before policymakers decide to "go comprelensive" they shairl have evidence showing to what extent this means an improvement or impairment. However, a problem which is seldom explicitly raised is that different opinions exist regarding the criteria to be chosen as indicators of adequacy or efficiency of the systems. Those who are in favor of a parallel, bipartite system teni to measuro the quality of the end-products of the system, i.e., those who survive it until graduation or certification, whereas those in favor of a unified, comprehensive system tend to consider the quality of education given to all students who enter the system. Evidently, the end-product criterion tends to favor an elitist system, whereas the allstudent criterion is compatible with a comprehensive philesoping. But even if agreement on employing only one of these two main criteria could be reached, there would still be difficuities in reaching a consensus about the specific criteria to be employed in assessing the attainments of the indivirual students. What emphasis should be put on learning hard facts
beSt cofy available
as compared to skills? How should absorbed knowledge be Weighed in comparison with the ability to learn new things? How important should be non-cognitive objectives, such as independence, ability to cooperate or to talce responsibility? Those who prefer a bipartite system tend to value skills and affective objectives less highly than do those who favor a comprehensive system.

Thus, the comprehensive-versus-selective school issue provides another illustration of a problem pointed out by Gunnar Myrdal back around 1930 and recently taken up by him again: the piace of implicit values in the social scfences. 17) It would take us too far to spell out the problem here. Suffice it to say that the social researcher is guided by his own value preferences not only in choosing the problems ho sets out to investigate, but also in selecting the variables which seem to him to be relevant, and - last but no. least In interpreting his findings. This, however, does not mean that researchers are bound to be dependeat upon their different value premises to the extent that they would operate in perfect solipsistic isolation from each other. Such a viow would in this particular case imply that the researcher with a selective bias would consistently end up with facts favoring an Glitist system, whereas the comprehensively biassed researcher would only produce evidence supporting a comprehensive system. Consensus can be reached by defining carefully certain circumscribed problems which lend themselves to investigations which can be interpreted uniformly and independently of the

BEST COPY AVAILABLE

Abstract

dardized examinations, in which of the two systems do the students on the average score higher? Is it possible in a comprehensive system to bring the elite, say the top ten per cent students within an age cohort to the same level of competence as in a selective system?

The standard of the 6lite in selective and comprehensive oducational systems - findinfs from the IEA surveys.

Educational folkiore has always been full of sweeping statements about the relative quality of education in various countries. Under the impact of the Sputnik psychosis in the United States at the end of the 1950's eminent personages, such as H. Rickover, began to add to this folklore by making sweeping statements about the relative merits of American and European education. Typical of the spell of the, one is tempted to say, masochistic self-criticism that was levelled at American education was the eagermess to look for remedies in Europe that would enable the United States to revise particularly its secondary education and thus compete successfully with the Soviet Union and other countries, particulariy in producing qualified scientists and enginears.

Most of the naive comparisons between national school syatems that were made under the impact of the Sputnik shock. were based upon assumptions which have until recently never been empirically tested. So far, criteria of the "outcomes" of mational educational systems have often been enrolment or

BEST COPY AVAILABLE

graduation figures, but no international criteria for educational quality, such as internationally valid attainment tests, have been devised. 18) degree of uniformity in educational structure and practices, whereas across countries there are considerable differences. By relating input factors, such as the social background of students, teacher competence, curriculum characteristics and teaching practices, to outcomes in terms of achievement and in terms of attitudes toward school learning, cross-national comparisens could be made on a much firmer basis. We vould then bo able to identify factors which are decisive in influencing student achievement. In order to carry out meaningful comparisons between countries and to identify. such factors, we need to establish intermationally valid yardsticks by means of which the standaris of pupils at certain grade or age levels or at certain terminal points (for instance at the end of the pre-university school) can be assessed. 19)

The term "standard" has a time-honoured place in educational folklore; it often has connotations of self-evidence conducive to the belief that it is metaphysically anchored. The accusation of "lowering standards" is frequently levelled in order to counter attempts to change educational structure In order to broaden opportunities. It is a phrase which has an almost deadening effect upon those who advocate changes. When the 6litist type of secondary academic sciools in Sweden was gradually replaced during the $1950^{\prime} s$ and $1960^{\prime} s$ by comprehensive schools providing universal secondary education, a common objection was that the new system would "lower the

BEST COPY AVAILABLE

standards". The new schools had to disprove the contention that "more means worse" by being subjected to continuous crmparisons with the selective secondary schools. For almost a decade, it did not occur to anyone in Swedsn that one cannot compare a comprehensive with a selective educational systom solely in terms of their respective end-products. In the first place, one has to evaluate the systems in terms of the pirice paid for the quality of the end-products. What is the attrition rate? ${ }^{20}$) In the second place, we anst consider the pproductivity" of an educational system, by askings How many are brought how far? We shall here focus on a third type of problem where a fair comparison can be made: Does more mean worse? or: Is the standard of the 6lite lower in a comprehensive than in a selective system?

The International Project for the Evaluation of Educational Achievemont (IEA) was not launched primarily to compare countries. The cooperating research centers did by no means intend to conduct a kins of "cognitive olympics". The overall aim was to relate certain social, economic and pedagogic characteristics of the different systems to the outcomes of instruction in terms of atudent achievement and attitudes. We shall limit ourselves here to problems related to the different systems and focus on the problem given in the slogan: "Does nore mean worse?" It should, however, be pninted out that the IEA project was desiened to study the relationsinips between education and the salient social and economic factors within countries. An educational system doos not operate in a

BEST COPY AVNLABLE

socio-economic vacuum. The change in school structure from a dual, class-stratified to a more integrated and unitary one, which we aro witnessing in several European countries, reflects a trend toward a society and an economy with a rapidly increasing need for highly trained manpower. Such a noed cannot Be satisfied by an elitist system based on social and intellectual selectivity.

The IEA mathematics survey comprized twelve countries. and random samples of about 133,000 pupils from 5,450 schools.

Four target populations at the 13 year and pre-miversity level. Were sampled and tested in all the countries; consisting of:
(1) A11 the pupils who were 13:0-13:11 on the day of testing; (2) A11 the pupils at the grade level where the majority of pupils of age $13: 0$ - $13: 11$ were to be found; (3) all preuniversity pupils studying mathematics as an integral part of their course for future training or as part of their preuniversity studies; and (4) All the pre-university pupils studying mathematics as a complementary part of their studies, and the remainder who did not take mathematics at all.

The Science survey comprized 258,000 students from 9,700 schools in nineteen countries. Most countries collected data on Reading Comprehension and Literature from the same students. The students were sampled by random fror four large populations. (1) Students aged 10:0-10:11, when they still in all countries vere taught by one teacher in a self-contained classroom. (2) Students aged 14:0-14:11. (3) Students in the last srade of the compulsory school. (4) Students in the grade from which transfer to the university occurs.

beSt copy ayallable

The rationale behind choosing these populations was, briefly, the following. If one wants to analyse the relationship between such factors as age of school ontry, parental education and occupational status, teacher compotence, anount of homework, number of hours of instruction, on the one hand, and the outcomes of instruction, on the other, there are evident reasons for choosine an age when all are still at - school to insure a representative sample of the total age group. The age of 13 in 1964 proved to be best for this purpose. In 1970 we found that practically all children at the age of 14 were in full-time sciooling in the industrialized countries. In some countries, the grade with the majority of 13 year olds consisted of those left in elementary school after the academic secondary school had taken off the "cream". In other countries, practically all the 13 year olds were found in the same grade. The pre-university group lends itself primarily to studies of "retentivicy" and factors associated with selectivity. Together with an intermediate group of 15 to 16 year olds tested in a fow countries, the preaniversity group constitutes the basis for an analysis of the ${ }^{n}$ to tal yield" of the educational systems under study.

At tho end of the 1950's I attended an interesting conference sponsored by the Vollege Entrance Examination Board. 22) The theme was "lalent lunting", a most fitting one during the period of intensive soul-searching that occupied the Americans after the Sputnik shock. A European scholar in comparative education gave a lecture on "talent hunting abroad" in which he vory competently described tho high astandards reached by upper secondary school Leavers in most European countrios and

BEST COPY AVRILABLE

thereby emphasized the high level of intellectual excellence on which undergraduate university education could be built. In the discussion afterwards, I took the liborty of pointing out that what had been so accurately and competently described was the high standard reached by the intellectual - and social Glite which survived the various screening procodures in twe secondary academic school in Europe. These students consisted at that time of $5-10$ per cent of an age cohort as compared to over 60 per cent in the United States. In order to make a fair comparison, therefore, one should take the top 15 per cent of high school graduates in the United States and compare them with the entire "high school graduating' group" in European countries.

The first colum in Table 1 gives the "retentivity" figures for 1964, when the data for the IEA mathematics survey were collected. ${ }^{23}$) About 70 per cent of an age cohort in the United States and more than 50 per cent in Japan are in the final year of the secondary scinool, as compared to less than 20 per cent in most of the European countries which participated in tho IEA mathematics study.

Eut not oven a comparison which takes into account the differences between countries with regard to the proportion of the total age croup reaching the pre-university level would be "fair". One shoutd also take into account the price paid for the hieh standard achieved by the few. In that price, one shoula includo the able pupils from underpriviloged homes who were not given the chance to realise their potentialities because of the selective structure of the school system. In
still divided into two categories, whereby the "academic goats" are meparated: from the "non-academic sheep". One thus gets a dual-track system which reslects the traditional class atratification of the society. Students at the age of 10-12 do not have. any articulate plans about their educational and rocational carcer. The deciaions are made by their parents in terns of social ambitions and economic resources. Furthermore, the attrition rate, in terms of dropmont and grade repeating, io often rexy high in the traditional Suropean scademio secondery chool. To taice only one examples of 100 pupile Tho entered the German nine-jear Grananium at tiae age of 10-11 less than" 20 succeed in ifniabing the course in due time, at the age of $19 .^{24)}$ The rest consiste either of grade repeaters or drop-outs. The relationship established in the IEA mathematics study between selectivity (or its reverse, "retentivity") on the one hand and social background of the pre-unirersity atudents, on the other, 18 given in columas 2-5 in Table 1 . An index of 100 means that a group is fairly represented, wheres more than 100 means over-representation and leas than 100 under-representation. As can be seen from Table 1 , the higher the retentivity the lower the social bias. In for instance the Federal Republic of Germany, which both in 1964 and in 1970 had a ratrier low retentivity, students whose parente are professionals and exeoutites aro vestiy over-represented, whereas woricing class atudents are otrongly uncer-represented.

BEST COPY AVAILABLE

Table 1
Relationsinip betwers Retenticily ona Social class Coinporition of onro11ment at the Pre-triatersi!; Leece!

Source: T. Husen (Ed.): International Study of Nichievement in Mathematics: A Comparison Between Twelve Countries. New Yorks Wiley. 1967.

beSt Copy Avallable

Let us now look at the mean abiovezent at the pre-

 university level and begin our comparisons with those who study mathomatics as a main subject. As can be seen from the dotted line in Figure 1, the average mathematics score among United States high school graduates taking mathematics is far below that of all other countries. However, we thon
Figure 1

Mean Mathematics Z"est Scores
(J) for the Tctal Sample and (a) for Egita! Proporitons of Age Group in Eaci Comutry
jor Tersminal ifrahmiatics Populations

Source: T. Husen (Ed.): Intornational Study of Achievement in Mathematics: A Comparison Between Twelve Countries. New Yorks viley, 1967.
take into account that in the United States about 18 per cent of the age group of 17-18 year olds took mathematics and science in the graduating class as compared to only $4-5$ per cent of tho age group in England or the Federal Republic of Germany. Considering this fact the problem could more fruitfully bo resiated: To rihat extent has it been possible within a comprehensive systen like the American to produce an Elite comparable in size and quality to the one produeed within a European selective systom? One way of mavering this question is to compare equal proportions of the age groups in the respective countries. The dottod line in Figure 1 gives the average performance of all terminal mathematice pupils in the twelve countries. But when we compare the average score of the top four per cent of the corresponding age group, a proportion selected because it representa the lowest relative number of students in any country taking mathematics, namely Belgium, we obtain the results represented by the solid line. The range between countries is thon much narrower then for the entire group of terminal mathematicians. Tne United States* top four per cent score about the same as most comparable European groups. Two countries with a zomprehensive system up to the age of 15 or 16 , namely Japan and Sweden, score the highest of all. On the basis of the distribution of scores among all the terminal mathematics students in all the countries international standards, in terms of percentile scores, can bo obtained. In Figire 2 we have given the per cent of the total age group within each country which

BEST COPY AVALLABLE

Figure 2

Perren: of Age Grens Reaching Eiphor Tenth of Terminai Wathematies Jupils by Intcruntiona! Sanuarcis

Source: T. Husén (Ed.): Intemational Study of Achievement in Hathematics: A Comparison Between fweive Countriea. Eew York: Wiley, 1967.
has reached the standard achieved by the upper tenth of all the terminal mathematics pupils. As can be seen, none of the comprehensive and/or highly "retentive" systems are among the five countries at. the bottom, whereas two, Japan and Sweden, together with England, are found at the top. Thus, the mathematics investigations revealed a sharply fluctuating average level between countries anong students in the senfor, pre-university class. However, these comparisons of arithmetic means wore not especiaily interesting unless allowance was also made for variations between countries in their recruitment bases or "retentivity". If that was done and equal proportions of cohorts were compared, the variations turned out to be considerably less on an average. The 61ites in most countries proved to lie by and large on the same level. So the question to ask now is: Does the same relationship govern in Science? ${ }^{25)}$ We first decided to compare tize best 9 per cent of the tested population within the industrial countries. This percentage was chosen because it was the lowest proportion of the age cohort in any of the countries representing graduates from the upper secondary school.

To arrive at ueasures of two smaller 6lito groups we also chose 5 per cent and 1 per cent, respectively. In Table 2 the means for the graduates in participating industrial countries are indicated for the whole sample, for the best 9 per cent, for the best 5 per cent, and lastly for the best 1 per cent of the corresponding age cohort. Sizes of the graduate population are stated in the same way.

BEST COPY AVAILABLE

Table 2

Mioans and standard deviations of scores on the test in Science for all the fraduates from the upner-secondary (pre-university) school and for the best 9%, 5% and 1% of the antire corresponding are cohort

Country	\% at School	\mathbf{N}	Full Sample Mean SD		Top 1% Measi SD		Top 5% Mean SD		Top 9% Mean SD	
New Zealaod	13	1676	30.8	12.6	52.8	2.8	43.5	5.9	36.8	9.0
Englaod	20	2181	24.4	12.4	51.6	3.2	41.6	6.5	35.5	8.5
Averolia	29	4194	26.1	11.5	51.5	3.2	44.0	4.7	59.9	5.9
8codesed	17	1321	24.4	12.9	50.7	3.8	40.6	6.4	34.4	8.7
Emoden	45	2754	20.1	10.9	49.5	3.4	41.2	5.3	37.0	6.2
Hungary	28	2828	24.0	9.6	48.0	3.8	39.0	5.4	35.0	6.1
Nectherlands	13	1138	24.4	12.0	47.1	3.6	37.2	6.5	30.3	9.4
Finland	21	1725	20.8	10.5	46.0	4.1	35.7	6.4	30.7	7.4
USA	75	2514	14.2	9.9	45.8	2.8	36.8	5.5	35.1	5.9
ERG	9	1989	28.4	9.6	45.0	4.1	35.3	6.2	28.4	9.6
France	29	3523	19.1	9.1	40.5	3.5	33.3	4.4	29.9	5.1
Belpism (Fi)	47	467	18.1	8.5	39.8	3.7	33.0	4.0	30.5	4.2
Iealy	. 16	15719	16.5	9.2	38.2	4.7	27.4	6.5	22.7	7.3
Belcium (Fr)	47	941	16.0	8.9	36.2	2.0	30.9	3.1	28.4	3.7

a
Proportion of the whole age group which goes to school.

Sourse: L.C. Comber \& J.P. Keeves: Science Education in Nineteen Countries. Stockholm á New York: Almquist a Wiksell/Halstead Press (Wiley), 1973.

BEST COPY AVAILABLE

Figure 3

Means for all tested students and for the 9%, 5 and 1% best students.

Now Zealand
England
Australia
Scotland
Swoden
Hungary
The Netherlands Finland
USA
Weat Germany
France
Belgium (FI)
Italy
Beigium (Fr)

Source: L.C. Comber \& J.P. Keeves: Science Education in Nineteen Countries. Stockholm ¿ New York: Almqvist \& Hiksell/ Halstead Press (Wiley), 1973.

BEST COPY AVALLABLE

As will be seen from Table 2 and Figure 3, the mean ranges from 30.8 for Now Zealand to only 14.2 for the United States. The former country has a recruitment base or tetentivity of 13 and the lattor of 75 per cent. Sweden, with a retentirity of 45 per cent, scores 20.1 points in the alltestees colum. Hungary, witin a 28 per cent retentivity, scores 24.0 points; Australia, with a 20 per cerit recruitment base, scores 26.1 points. If we then compare the means for the best 9 per cent of the age group, we find that countries with a broad recruitment base get sharply increased means. Australia lands in first place, Sweden in second. The U.S. ecore doubles and winds up higher than for, say, West Germany and France. If we next examine the means for tine 5 per cent best students, we find that countries with a broad recruitment base move ahead even more. The highest means for the best percentagea originaie in four English-speaking countries with Pairly similar educational systems, namely New Zealand, England, Australia and Scotland. Next comes Sweden, somewhat ahead of other European countries.

"How many are carried how far?"

Another method of evaluating a national system, of education is to establish certain international standards. This eives more faceted information than means about how far the system carries the great mass of young people forward to certain levels of competence. The analyses set out below build upon the mean total score

Proportion of students in the pie-university grade and corresponding proportions estimated for the whole age Eroup shicll attains certair intermational percentile norms on the test in Science

Source: L.C. Jomber i J. J. Keores: Science Education in Ninoteon Cuvnirias. Stockholm \& New York: "Almqiet «Wiksell/Halstead Press (Wiley), 1973.

BEST COPY AVNLLABLE

on the science test, including six assigned items which !have boen headod "advanced ceneral science". Intornational porcontiles (for the industrial countries) were calculated for the $95,90,85,75$ and $25-p e r$ cont levels. Tinis means that our first task is to find out hov many students in eacn country exceed the intemational standard for the best 5 per cent, 10 per cent etc. It will be soen from Table 3 that the average value of 43.3 points for the 95 th percentile is exceeded by 3 per cont of pre-maiversity students in Sweden ox by 2 per cent of the whole age cohort.

As was observod in the intermational report on scienco,
the comparisons made here unst talse into account the fact that the dinferent countries vary somewhat in their definitions of the target population for the particular level under study. As mentioned there, tho definition called for the random sanpling of those students who were ready to enter universities and other instikitions of higher learning upon completion of socondary school. Since the qualification rules in forco for Sweden were extended at the time this investigation vas conpletod to include ad hoc entry for continuation school students, it was decided to maise provision for these in spite of their limited qualification. In Vost

BEST COPY AVALLABLE

Germany, on the other hand, the focus of investigation did not go beyond those pupils who after grade 13° found themselves In the senior arrmasium class (Oberprima).

In Table 3 we have coupared the countries with respect to those proportions of the random sample which attain certain international standards expressed in percentiles. If we start from the top with the 95 th percentile, i.e. with the 5 per cent which lies at the top within the random sample itsolf, we find that Now Zealand is distinctly superior to the other participating countries. This superiority also holde for other percentiles, the best 10 per cent and so on, a findine that could be expected in view of the high mean performance of the premuniversity students of that country. England, Scotland and Australia have also high proportions of students bove the international 5-per cent standard.

However, the question of deciding what a school system "produces" with its students is pertinent not only to how far it carries those who remain at the level under study, but also to what happens to those who have not gotter that far, 1.e. have disappeared from the system. One would very much like to kow about the formal educational experience (or In the majority of casea, the lack of such experience) of those who have not stuck it out to the end of premunivereity

BEST COPY AVALLABLE

Bchool. In other words: Fhat ebout the atandard of the mole age group? Since we obriously were in no position to administer achievement tests to those who no longer attend school, we bave been compelled to makk an absumption about the level below which the rast majority of those who have left the syistem zay be thought to lie. (See the loper portan of Table 3). In countries where the inajority finish school at the age of 24-25, and thus by the time they axe 18-19 hare bean out of chool for sereral jeare, it doed not eppenr uncequonable to expect thone who here left echool to fall below the 25 th percentile Ior thone wino gradute erom upper secondery sohool. This atanderd roughly equatet with the velue etteined by the ererage of high school seniorn in the United States. In other countrieq, euch as sweden, where great may mere left at the ege of $16,1 t$ miny be dubious whether the assumption holds for virtually everybody. Howerer, we have applied it throughout the whole mexies of countrica.

I manl aingle out Sweden here, because the change-arer to a comprehensive aystem with a spectacular broadening of the enrollment to the upper secondary school bus been seen as an ect of "lowering the standerds".

If re ligure out how large a part of the whole age conort Lies bove the 95 th percentile, we ilud that Sweden with its 2 per cent joins the company of the four Commonwealth countries at 2 rope All things considered, those countries which

BEST COPY AVAMLLABLE

have a broad recruitment base and/or have recently broadened It also show a high standard among the best. But Smeden also etands rather high when it comes to the 25 th and 50th perm centiles. This means that the "belou-average" students in a system having a broad recruitment baso may vexy well achieve respectable results by international standards.

Sumainf up, the followinf can be statod, Acsording to the criteria of 6litism here devised, 1 .e. the standard specified as a man for oqually Large proportions of the age cohort, etudents in the Swedish upper secondaxy school clearly 1ie above tho internationil average in Science. As to the aeond criterion, namely what the school mystem "produces" with the vast mojority of ite students, the following points may be noted. The Swedish meau works out a bit below the international average. Here it should be borne in mind that the Swedish randor sampie embraces both the continumtion school and the ghmasiun (the regular pre-university school), whereas the other European countries with more narrowly defined qualification rules have 1 imited themselves to gymasium students. When the proportion of the afe cohort in school is appropriately allowed for, we find that the Swedish average, like the American one, is strongly influenced by the breadth of recruistment to the indicated level. Analysis of the effect of this broader recruitment base diecloses that the Swedish school system ends up on the plus side of the standands ledeer. International percentiles have been calculated, making it possible to determine how many within the samplad population. as well as within the whole ase cohort, velonf to the best 5 ,

10, 15, 25, 50 and 75 per cont by world standards. we then find that countries with broad recruitment tend, whore the whole age cohort is concerned, to be superior to those with relativaly seloctive systems.

The most reasonable explanation for these findings is that the conpromensivo or "retentivo" system provides a broader range of opportunities and better utilization and development of talent. Systems with an early selection to academic secondary education shov a stronger bias in favor of upper and middle class students at the pre-university level than do systems which are more comprehensive or retentire, as vell as more flexible in the sonse that the rinal chodce between a preaniveraity and a vocational program is made at the age of 15-17 instead of at the age of 10-12.

As was emphasizod earlier, the "productivity" of a school syistem ought to be assessed not only by the quality of its final products: the students who qualify for university entrance, because we are thon comparing widely varying profortions of age groups, and ve leave out those who are either excluded from socondary education or do not survive it. Wo are therefore ontitied to put the question like this: "How many are brought how far?"

We have shown that an 6lite comparable in quality to that of an "6lite systom" can be cultivated within a retentive and comprehensive system. In the selective system, however, the high standard of tho 6lite is often bourht at the price of Low accomplishments by the mass. Selection for the premui-

best copy availabis

versity school takes place at an early age, and the majority of students are left to complete either an elementary school or a low-prestige prosram within the secondary school with virtualiy no chance to transfer to a university-proparing program. In order to be able to asscss the total yield we, oufht to measure the periormances or pupile at the interrediato torminal point, when compulsory schooling has been completed. Postlethwaite has used IFA data to sinow that hicher metentivity is associated with higher "yield"; that 1s, the majority of students in a retentivo syetem tend to achieve better than the corresponding groups in a selective system. 26)

Concludinf remarks

Whon the 1946 Swedish School Comission submittod its main report to the Govermment in 1948 and sursested aineoycar comprehensive school to replace all other school types covering the period of compulsory schooling, its recommendations were allegediy based upon commissioned studies on the intellectual developrient of ability structures in school children. 27) Everybody who took part in the debate, pro or con, was at that time convinced that scholastic aptitude vas mainly inherited and that the ability to profit from academic prosrams could be assessed at the age of 11 or 12. But the Commission rejected selection for the academic, grammar school type of program at that early age chierly because this would deprive the other programs and the onsuing vocational tracks of their "proper share" of talent. Furthermore, the aptitudes for many of

BEST COPY AVAILABLE

the more "practical" ocelpations seemed to "nature" 1 ater than those far theoretical pursuits. Unfortunately, both thoso who vere in favor of late differentiation and those afainst it confused diagnosis with prognosis. It is ono thing to measure the actual ability (ror instance the verbal proficionc! of tine cinild, which certeitily can be done ratiáx eccurately; it is quite another to use the score as a predictive index. Good measures of bome invironmont (inciuding "procea variablea" covering child-parent interaction) predict uccess in the secondary academic school better than IQ and aimilar indices do. 28) But so far nobody nas augeosted (or dared to sugisest) that social backisiound should bo used when selecting children for the grammar type of school:

The main pedagogical issuo, as can for instance be sean from the two "Black papers" 28) prepared by a group of anticomprehensive pereons in England, is to what extent the comprehensive system is "lovering standards". To come to grips with this problen one of course has to define what is meant by "atandand". Thore is much to be said for defininet it by the Cormula "how many are brought how far?". A comparative evaluation of comprehensive and selective systems would be incomplete j.f limitod to the end-products of the systems, mainly bocause tho price paid for tho quality of the endproducts is not taken into consideration, There is, for inetance, no point in comparing tho average performance of nigh school craduatos in the United States or Japan with those who sit for tho baccalaureat in France, because tho

BEST COPY AVNLAB! 5

former consist of the majority of the corresponding age cohort, whereas the latter are a clear minority.

The issue whether a school systen (local or national) should "go comprehonsive", i.e. becomo integratod or not in terms of social recruitment and programs, cannot, as I have tricd to show in the presentation above, be settled on the basis of purely pedagogical considerations only. Nor can $\ddagger t$ be settled by drawing mainly upon evidence from poychological research. The educational system does not, and should not, operate in a social vacumb it is today more than ever an integral part of the socio-economic rabric. Therofore, an educational syeten cannot be ahaped chiefiy on the basis of pedagofical considerations.

NOTES

1. T. Husen, Social Background and Educational Career. Paris 1972.
2. Reviews of National Policies for Education: France. Paris:OECD, 1971.
3. Deutscher Bildungsrat. Empfohlungon dor Bildungskommission: Strukturplan fir das Eildungswesen. Bonn: Deutscher Bildungsrat, 1970.
4. Reviers of National Policies for Iducations France. Parie: OECD, 1970, p. 56 ff. U. Undeutsch, "Auslese ffir und durch die Hohere Schule", Bericht Uber den 22. Kongreas der deutschon Gesellschaft fur Psychologie. GSttingen: Hograefe, 1955, pp. 175-197.
5. Orgenisetion for Economic Co-operation and Development, "Study Group in the Economics of Education." Social ObSectives in Educational Planning. Paris: OECD, 1967.
6. R. Paulston, Swedish Comprohensivo School Reform 1918-1950: The Period of Formulation and dontion. New York: Teacherm College Press, Columbia University, 1968.
7. See e.g. Reviews of National Policies for Education: Germany. Paris: OECD, 1973.
8. Deutscher Bildungsrat, op. cit., p. 30.
9. T. Kusen, "Responsiveness and Resiatance in the Educational System to Changing Needs of Society: Some Swodish Experiences." International Review of Education. XV, 1969, 4, pp. 476-487. Cf. T. Hus6n, Social Backegound and Educathonal Career. Paris: OECD, 1972.

BEST COPY AVALLABLE

10. J. S. Coleman, "The Concept of Equality of Educational Opportunity". Harvard Educational Review. Uinter 1968, 38:1, pp. 7-37. R. Breton, "Academic Stratification in Secondary Schools and the Educational Plans of Students." Review of Canadian Sociology and Anthropology Association. 7:1. 1970, рр. 17-34.
i1. Keviews of National Policjes for Education: France. Voi. 2. Paris: OECD, 1969.
11. B. S. Bloom, Stability and Change in Human Sharacteriseics. New York: John wiley, 1964.
12. See e.g. G. Bosit, Skolutbildning och skolnesultat för barn ur olika samhkilsgruppor i Stockholm. Stockholm: Norstodts, 1947.
13. J. E. Floud (ed.) : A. H. Halsoy $\&$ F. M. Martin. Social Class and Educational Opportunity. London: Meinemann, 1956.
14. T. Husen et al., International Study of Achievement in Mathomatics. Plase I. A Comarison of Twelve Countries. Stockholm/New York: Almquist \& Wiksell/Jolun Wiley, 1967. Cr. L, C. Comber \& J. Keoves, Science Education in Nineteon Countries. Stockholm: Almqvist \& \quad ikikell, 1973.
15. T. Husen, "Lifelong Learning in the 'Educative Society'." International Roview of Apnliod Psycliolojr, 17, 1968, 2, pp. B7-99.
16. G. Myrulal, Objectivity in Social Research. New Yoric: Pantheon, 1969.
17. F. Harbison \& Ch. Myers, Education, Manpower and Economic Growth. Now York: MeGraw-Hill, 1964.
18. T. Husén, "International Impact of Evaluation", Educational Evaluation: New Roles, New Means. 68 th Yearbook, Part II. Chicago: University of Chicago Press, 1969, p. 335-350.
19. T. Husen, "Loss of Talent in Selective School Systems", Comparative Education Reviev, 48, 1960, pp. 70-74.
20. T. Hus6n, International Study of Achiovements in Mathematics Vol. 1-2. Stockholm/New Yorks Almqvist \& Wiksell/ Wiley, 1967.
21. College Entrance Examination Board, The Search for Talent. College Admission 7. New Yorky CERB, 1960.
22. The resilts of the study wore published in two volumes, edited by T. Husbn, International Study of Achievement in Mathematics. Fhase I. A Comparison of Twelve Countries. Sto jkholm/Now York: Alwqist \& Wiksell/wiley, 1967. The following countrics were represented in the study: Austra2ia, Belgium, England, Finland, France, the Federal Republic of Germany, Israel, Japan, the Netherlands, Scotland, Sweden and the United States.
23. U. Undeutsch, "Auslese für und durch die Höhere schule". Bericht Hiber den 22. Kongress der deutschen Gesellschaft Plux Ysychologie. Göttingen, 1955. Cf. the OLCD reviow of France.
24. L.C. Comber \& J. Keeves, Science Education in Nineteen Countries. Stockholw: Almqvist \& Wiksell, 1973.
25. T. N. Postiethwaite, School Organisation and Student Achievement. Stockholm: Almqvist \& Wiksoll, 1967.
26. T. Fus6n, Problems of Differentiation in Swedish Compulsony Schocling. Stockholm: Scrandinavian University Books, 1962.
27. T. Husén, Social Background and Educational Career. Paris: OECD, 1972.
28. C. B. Cox \& K. E. Dyson, Black Paper Tro: The Crisis in Education. London: The Critical Quarterly Society, 1969.
