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Introductory Statement

The Center for Social Organization of Schools has two primary

objectives: to develop a scientific knowledge of how schools affect

their students, and to use this knowledge to develop better school

practides and organization.

The Center works through three programs to achieve its objectives.

The Schools and Maturity program is studying the effects of school,

family, and peer group experiences on the development of attitudes con-

sistent with psychosocial maturity. The objectives are to formulate,

assess, and research important educational goals other than traditional

academic achievement. The School Organization program is currently

concerned with authority-control structures, task structures, reward

systems, and peer group processes in schools. The Careers and Curricula

programbases its work upon a theory of career development. It has

developed a self-administered vocational guidance device and a

self-directed career program to promote vocational development and to

foster satisfying curricular decisions for high school, college, and

adult populations.

This report, prepared by the School Organization program, examines

the phenomenon of "fan-spread" that appears in educational achievement

measurement.
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Abstract

If educators hope to use educational achievement test scores to

assess the impact of instructional programs, they must deal with the

phenomenon of "fan-spread" - the tendency for groups with higher average

scores to have a greater amount of within-group dispersion of scores.

This paper discusses the nature of fan-spread, how it appears in measure-

ment situations, and its complexity in real data. The final section

generalizes to the question of choosing a score format for analytical use.
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Understanding "Fan-Spread" in Achievement Measures

This paper examines "fan-spread," a feature of educational achievement

tests that often proves troublesome to those who try to use such scores to

assess the impact of instructional programs. Fan-spread refers to the fact

that if the achievement score distributions of several groups are examined,

those groups whose average score is higher also tend to have a greater

amount of within-group dispersion of scores. The phenomenon is most widely

recognized in standardized achievement test data, of the sort now collected

by a large number of school districts. It can and does appear, however, in

other kinds of achievement measures.

In any real situation, the observed test scores are the result of a

complex combination of processes, but this paper will begin with a simplified

example. The first portion of the paper will describe a measurement situation

which appears quite different from that of achievement testing, but which is

formally quite similar. In both of these measurement situations, fan-spread

is a pattern which may or may not occur. The next section of the paper will

present in fairly simple algebra, and with an artificial numerical example,

a measurement situation with fan-spread.

The next two sections of the paper will re-introduce some of the practical

complexity that had been temporarily neglected. In real data, fan-spread is

neither simple nor constant. Moreover, it occurs in combination with other

artifactual influences upon the test score-- such as regression Affects--

and thus makes interpretation of scores very problematic. Following that,

another section will describe an adjustment approach of use in situations

where the fan-spread dynamics are pure.
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The last section of the paper will generalize from the preceling ones

to the question of choosing a score format for analytical use. This will

be discussed in terms of the general logic of model-building and utilization;

some general recommendations will be made.

The Analogy of the Military Obstacle Course

Fan-spread may well occur not only in achievement tests or other kinds

of psychometric measures which are scaled against inferred continuums, but

also in a parallel situation where the scale of measurement is that of

ordinary physical distance. There is essentially no doubt about the general

utility of the ordinary scales for distance, so the fan-spread phenomenon

may be more objectively considered in that context.

Suppose, for example, one was interested in describing the performance

of several groups of soldiers on a military obstacle course. To describe

the level of performance of an individual soldier, it would be reasonable

to establish a benchmark time interval and then record the distance on the

course covered by the soldier in that time interval. Let us consider the

parallelism between the obstacle course and the school achievement situation.

The parallel between the distance covered on the obstacle course and the

amount of material learned by a student is quite evident. The problems in

recognizing the similarity arise because the specific scale used for distance

is independently and firmly established by direct validation. This is not

possible with scales for academic achig'yement, so the exact nature of the

achievement scale is somewhat debatable. However, it is possible to suppose

that a particular scale of achievement is a good approximation of a linear

scale of distance, and then to consider whether any of the patterns in the

data force us to reject that supposition.
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To explore the parallel between the obstacle course and the achievement

test, consider some of the factors which might be expected to influence the

distance covered by an individual soldier on the course in a fixed time.

This distance would depend upon (1) the length of the time interval; (2) the

average level of difficulty of the course; (3) the distribution of particularly

difficult parts over the entire length; (4) the general physical condition

and strength of the individual soldier; and (5) the fact that a given soldier

might be completely stymied by one particular obstacle, even though he could

easily master the others. Other factors could be suggested, but the above

would undeniably be important.

More concretely, one might conceptualize the average difficulty as simply

the fact that the course is constructed on the' side of a hill, so that the

soldiers always are progressing uphill. Then, if there are several distinct

courses, each characterized by a distinct constant slope, we could use the

steepness of slope as a measure of the course's difficulty. This measure

would be logically independent of the performance of any soldier upon the

course.

The analogy between the obstacle course and the achievement test is close,

but has some limitations. The most important one is that the performance on

the obstacle course is what the soldier is trained in and it is what he will

be expected to perform when in combat. For the educational achievement test

(at least for the usual commercially- published, nationally normed test) the

relationship between the test and the training activities , and between _die_

test and subsequent performance dimensions, is far less close. This less

close linkage between test activities and either training or performance

further complicates the decision as to which particular summary measure is

most appropriate.
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The military obstacle course is much more similar to the currently fash-

ionable notion of the "criterion-referenced" test, and "behavioral objectives".

After agreeing that there is a close analogy, in measurement terms,

between the military obstacle course and the educational achievement test,

the next question is whether this analogy can lead to insight about the

patterns of scores on educational tests, and particularly about the fan-spread

pattern. For example, the question can be asked, "would one expect to find

the fan-spread pattern in the scores of several groups of soldiers on an

obstacle course?" Consider what that question might mean. There are several

groups of soldiers, and all of the soldiers in each group have gone through

. the obstacle course. The distance covered by each soldier in the established

time interval has been recorded as that soldier's score. We know that the

average score of soldiers in some of these groups is considerably higher

than the average score of soldiers in other groups. The question of fan-

spread might be phrased as follows: is there a positive correlation between

the mean score of a group and the standard deviation of scores in that group?

It is imaginable that such a correlation might be found.. One can think

of at least three ways in which such a pattern might have arisen. First,

the groups might have been allowed differing lengths of time to work on the

course. The possibility is excluded in our example, but would have to be

considered in a more general case. Second, the fan-spread phenomeonon

might be expected if the average difficulty of the obstacle course for some

of the groups was different from that for other groups. This too is ruled

out in our example, but would be possible in general. The third possibility

would be that the general ability of the soldiers in some of the groups

was higher than the general ability of thelsoldiers in other groups. Under

those conditions, which are possible in our examplei-the average distances
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covered would diverge. Suppose now that in fact the soldiers were placed

into groups strictly according to a rank order of their initial ability

on the obstacle course. It is quite possible, though not necessary, that

the dispersion of initial ability levels in the top group would be greater

in magnitude than the dispersion of initial abilities in the lower groups.

This pattern of ability distributions could produce fan-spread within the

groups in the same way that the dispersion of abilities between groups can

produce fan-spread between groups.

This line of reasoning, including the two possible explanations of

fan-spread which are not allowed in the example, is based on an abstract

model in which the amount of distance covered per unit of time is proportional

to an individual's ability and the difficulty of the material. This model

is reasonable, both for the obstacle course and for academic learning. The

important complication brought out in the above discussion is the fact that

the group average performance and the performance of individuals are related

only in a complex way. To anticipate slightly the argument, this relationship

is based on that for decomposition of an observed average dependent variable

into between-group and within-group components, as is done in analysis of

variance, or more generally in analysis of covariance. The next section

of the paper seeks to present these ideas more concretely and precisely

through use of an artificial example.

Before turning to a consideration of that example, one other point

deserv.ss mention. Although it is quite important, it will not be discussed

in detail here, for reasons of length and because of the limited focus of

this paper. This point is that in actual situations, the distribution of

abilities among group members at a point in time tends to depend to a

considerable degree not only upon the previous distribution of these same
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abilities, but also upon the policies of the training program for allocating

time and training energy. Thus, for example, in some situations, students

(or soldiers) who manifest initially poor performance-- which presumably is

indicative of poor initial ability-- receive extra attention so that the

ability (to the extent that it can be improved) is improved. This kind of

a policy will tend to decrease the variability of performance within a group,

but perhaps to increase the variability between groups, because of the relative

lack of attention to the high initial performers. It seems obvious that diff-

erent training programs will differ in their policies and actual practices

in allocating attention to students/soldiers with various levels of initial

performance. Also, a person's ability level can be more or less elastic,

depending upon the influences which affect it. If the influences are fairly

easily modified, then the performance level is more easily modified. To the

extent that the influences are not modifiable for an individual (as would be

the case if the influences were genetic), the level of performance will be

inelastic.

A Hypothetical Example

Let us consider a situation in which there are two groups of students/

soldiers, each containing five students /soldiers. For simplicity, we shall

refer to the learners as students. We also assume that the students are

placed into groups according to their rank on initial performance level (prior

to any training) and that the initial levels are as follows:

High Group: 70,65,60,55,50

Low Group: 50,45,40,35,30

For convenience, we can think of the task as being the obstacle course,

but it should be obvious that the analogous application to the educational

achievement tests applies at each instance. Assume the the established time



7

interval is such that in one unit trial, each student will progress exactly

as many units of distance as he has units of initial ability. This particular

choice of units in no way restricts the generalization.

With these assumptions, we can calculate the average scores and the

standard deviations for each of the two groups after one, two, and three time

intervals. These results are (using 5 as the divisor for calculation of the

variance):

High Group

Low Group

interval 1 interval 2 interval 3

X sigma X sigma X sigma

60 7.071 120 14.142 180 21.213

40 7.071 80 14.142 120 21.213

Several points should be noted about these results. First, if one

compares the gap between the two groups at the end of the second interval

with the same gap at the end of the first interval, the first impression

is that the gap has increased. That is, at the end of the second interval

the gap is 120 - 80 = 40, but at the end of the first interval the gap is

only 60 - 40 = 20. The question here is not the "reality" of this gap in

some metaphysical sense, because it clearly does change in size. Instead,

the question is how the gap.'s change should be interpreted. In this example,

the change in the size of the gap cannot be attributed to any particular

experimental treatment, because no such treatment is involved.

The second point about the pattern of these artificial numbers is that

the size of the standard deviation for a given group of students is exactly

proportional to the average score for those same students. That is, for

the High Group, the standard deviation increases from the end of interval 1

through the end of interval 2 and again through the end of interval 3. For

each time point, the standard deviation is 0.118 df the corresponding mean.

A similar pattern holds for the Low Group, except that the ratio of the
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standard deviation to the mean is 0.177.

This example leaves a number of topics neglected. One is that the

High and Low groups have exactly the'same size standard deviation at each

point in time. This is sometimes but not usually found in actual achieve-

ment test data. However, the reasons for this difference between the example

and the more typical real data lie in some of the special circumstances (such

as policyefforts to close the gap at the bottom, and also artifacts of the

measuring devices, such as floor effects) which affect the real data. The

pattern in this artifical data can be described by saying that there is fan-

spread within each group over time (the standard deviations increase over

time for each group); there is fan-spread between groups over time (the gap

between the means of the two groups increases over time); but there is no

fan-spread between groups at a given point in time (the two standard deviations

at a point in time are equal). In later sections of the paper, we shall

return to this example as a means of considering some of the ways in which

actual data are more complicated than the illustration given here.

The example is deliberately simplified and artificial. Its major purpose,

however, is to illustrate that even in the situation where the measurement

scale is regarded as unchallengable (ordinary distance), and where no

treatment whatever exists, a pattern of fan-spread can be expected if the

process determining the actual score at a point in time is a cumulative

function of exposure time, difficulty of material, and level of individual

ability. Because these general properties apply to actual achievement data

as well, it seems fair to conclude that fan-spread in actual data also may

be (entirely or partly) irrelevant to the interpretation of real differences

in the impacts of some program.
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Patterns of Fan-Spread in Actual Achievement Test Data

The fan-spread phenomenon_can be represented in a variety of ways.

For instance, one can simply present a time plot of the scores of several

individuals (or groups) which differ in initial ability. Using the artifical

data of the earlier example, the time plot of averages would be:

Score

200

150

100

50

Time 2 3

This plot indicates why Donald Campbell (1971) chose to name this the

"fan-spread" phenomenon. This particular plot, or the corresponding tabula-

tion, is an appropriate way to present achievement test data if interest

centers on a comparison of the growth rates, and if the interpretation

of the fan-spread is not problematic.

A somewhat different approach, also a graphic one, would be to plot the

sine of the standard deviations as a function of time. This approach, for

the artificial data of the earlier example, yields:

Standard
Deviations

24

18

12

6

1 2 3

Time
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This approach is more relevant when interest is on the pattern of fan-spread

itself, and one is attempting to examine the dispersion of the standard

deviations of various influences. If the concern is to ascertain whether

there is a sizeable amount of fan-spread in some batch of achievement test

data, then a graph or tabuation of the standard deviations against time

seems the most straightforward and direct approach.

Now we can turn our attention to fan-spread possibilities in actual

test score data. One set of real data on any particular published test

is the set of data on which the test's national norms were based. For

most tests, such data actually are obtained by cross-section surveys of

grade-cohorts, and not from longitudinal measures of the same students.

Also, the data are processed in complex ways to derive the scores used in

ordinary reports-- grade equivalents, stanines, percentiles, growth scores,

etc. However, for our purposes, the norming study data can be regarded

as if they had been obtained from a single series of observations on the

same group of students.

Let us consider first some of the normative data for a widely used

test battery, the Metropolitan Achievement Tests, 1970 edition. Table 1

presents the standard deviations which were observed in the national norm

group for two of thempst widely used subscales of this battery, the Total

Reading score and the Total Mathematics score. The results in this table

are for scores in the "grade-equivalent" format. Other score formats also

are fairly often used. In particular, some publishers provide a set of

special scores which have been calculated by an elaborate procedure whose

aim is to make the scores an approximately equal-interval scale of the

underlying trait. For the Metropolitan series, the publisher has provided

such scores, and has labeled them "standard" scores. It should be made
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Table 1 BEST COPY AVAILABLE

Standard Deviations for Grade-Equivalent Scores,
Metropolitan Achievement Test, national norm data

Time in
Years

1.7

2.1

Std. Dev. for
Total Reading

0.690
0.77

Std. Dev. for
Total Math

0.71
0.725

0.741

2.7 1.01 0.86

3.1 1.17 0.92

3.7 1.38 1.11

4.1 1.61 1.19

4.7 1.67 1.35

5.1 1.83 1.29

5.7 1.88 1.51

6.1

2.020 1.725
6.7 1.97 1.77

ratio of.smallest pair to
largest pair is 2.92 2.38
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clear that in this context, these scores are simply "special"; they are

not standard scores in the ordinary sense of the word, but instead are

essentially the same as the scores called "growth scores" by S.R.A. (1969).

Table 2 presents the standard deviations for the norm group in terms of

these publisher's standard scores, for the same two subtests.

Table 1 shows that there is a consistent increase over time in the

size of the standard deviation of the grade-equivalent scores for reading

and math. For the publisher's standard scores, however, this tendency

toward fan-spread is much less evident. For the standard scores in Math

(see Table 2) there is no consistent fan-spread operating. This lack of

parallellism between the reading and math subtests stands as a puzzle, and

one which quickly leads to real-life complexities and ambiguities.

The discrepancy between the two subtests in the amount of fan-spread

suggests that there are some general differences between the processes

through which reading is taught and learned and those through which math-

ematics is taught and learned. Measured skills in mathematics seem more

easily detected, and shortcomings more evident also -- to the student or

to a teacher or other adult helper.. Also, because the basic knowledge and

skills in math are more algorithmic in structure than the corresponding

skills for reading, it is easier for specific difficulties in mathematics

to be remedied by a brief leoson or summarized in a brief rule of procedure.

This difference in the process of learning may tend to raise the floor of

performance on a mathematics test above that of the related tests on reading.

Obviously, this is a conjectural analysis. It suggests, however, some

of the benefits and dilemmas that may arise from a careful and detached study

of achievement data. files.

A related point concerns the possible "treatment" differences in the
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Table 2
BEST COPY AVAILABLE

Standard Deviations for Publisher's "Standard" Scores,
Metropolitan Achievement Test, national norm data

Time in Std. Dev. for Std. Dev. for
Years Total Reading Total Math

1.7

10.45 12.35
2.1 10.9 12.1

2.7 10.9 11.1

3.1 11.6 11.4

3.7 13.0 12.0

4.1 14.0 12.0

4.7 14.3 12.1

5.1 13.5 10.4

5.7 13.0 12.2

6.1 14.7

14.10 12.40
6.7 13.5,

ratio of smallest pair to
largest pair is 1.35 1.00
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national norm data. To the extent that fan-spread is found in the norm data, it

ma be due only to the process of cumulative-advantages-of-ability which

were described in the artificial example. There is, on the other hand, at

least one other hypothesis which appears to be worth considering. This

hypothesis might be stated as "them that has, gets." In some circumstances,

attention given to high-performing students may he greater than the attention

given to low-performing students, which would tend to accentuate the pattern

of fan-spread. It should be emphasized that no prejudice in favor of high-

performing students is being assumed here. Such prejudice is possible, of

course, but a number of other mechanisms could and do operate. To some

extent, for instance, the community resources available in communities where

most of the children are high-performers tend to be larger than in communities

where most of the children are low-performers. Another possibility is that

low-performing children also have additional needs of a social or emotional

nature, so some of the total resources of the school must be devoted to dealing

with those needs instead of to direct training on academic skills.

In short, once we move from considering simplified artifical data to

real data in real situations, the problems of interpretation become far more

complex. Issues of widely different kinds come to be tangled together in the

data, and considerable caution (as well as additional data) is needed if

practical inferences are to be drawn properly.

To pursue this general point slightly further, and also to illustrate

some of the possible uses of the fan-spread aspect of test scores, Table 3

presents some specific real data showing patterns of fan-spread.

The data in Table 3 are taken from a recent field experimental study

aimed at assessing the impact of monetary incentives payments as a way to

improve academic achievement among low-income students in elementary schools

(Planar Corporation, 1972, Appendix B). In this study, standardized
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Table 3
BEST COPY AVAILABLE

Standard Deviations of "Standard" Scores, Metropolitan Achievement Tests
U.S.O.E. Incentives Project (Pretest Only, Data by Grade, School, Site, Subtest)

1 2 3 4 5 6

1 READ CIN EXP 4.53 6.33 10.25 9.25 11.79 12.59

2 READ CIN CON 3.57 8.38 7.38 9.04 8.42 12.06

3 READ JAX EXP 4.83 6.15 7.77 12.12 11.44 14.48

4 READ JAX CON 5.16 6.38 9.62 9.74 10.09 12.08

5 READ OAK EXP 4.90 8.62 8.39 12.41 10.74 15.22

6 READ OAK CON 4.12 8.43 9.42 9.40 12.17 10.43

7 READ SAN EXP 4.11 5.20 10.93 9.57 13.27 12.39

8 READ SAN CON 4.69 5.15 9.76 11.39 13.70 9.82

9 MATH CIN EXP 6.32 5.39 13.57 12.17 11.35 11.30

10 MATH CIN CON 5.22 9.72 10.49 10.30 8.05 10.30

11 MATH JAX EXP 5.47 7.82 9.12 12.05 12.46 14.33

12 MATH JAX CON 6.37 7.88 9.96 11.43 12.76 12.54

13 MATH OAK EXP 4.92 9.17 8.56 14.50 12.13 13.33

14 MATH OAK CON 4.67 9.20 11.35 12.31 13.52 12.07

15 MATH SAN EXP 6.76 4.84 12.57 11.72 11.87 14.34

16 MATH SAN CON 6.16 6.49 11.08 12.32 11.77 9.82

Average of 8-reading 4.4888 6.8300. 9.1900 10.3650 11.4525 12.3838

Average of 8-math 5.7363 7.5638 10.8375 12.1000 11.7388 12.2538
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achievement tests were administered at the beginning and again at the end

of the academic year during which the incentives program was in effect.

Because our interest here is only in patterns of fan-spread in ordinary

school situations, we have examined only the scores and standard deviations

in the pretest data. Thus, the standard deviations presented in Table 3 can

be regarded as an ordinary set of test scores on students from grades one

through six in eight different schools, two schools per city for each of

four cities; all of the schools attended primarily by disadvantaged children.

Table 3 shows the standard deviations by grade and by school, city, and

subtest content. The test used was the Metropolitan Achievement Test. Here,

as in Table 2, the score format is that for the publisher's "standard" scores --

the specially calculated scores which are presented as being more appropriate

for measuring growth. The number of students tested in each case ranges from

40 to about 120, with an average of about 75 students. Results are presented

for the Total Reading and Total Mathematics subtests.

One unusual feature of the testing procedure should be mentioned. This

testing was done by the researchers as part of the project, to obtain the

most exact possible information on each child's performance level at the

beginning and end of the year. As one feature of that special testing,

individual students were assigned to levels of the test which best matched

their personal reading level, as reported by the teacher, at the time of

testing. Because these students were typically below nominal grade-level

in performance, it happened fairly often that students in the upper grades,

say grade five,would be tested with a test nominally targeted at grade two

or at grade three. This procedure avoided the problem of floor effect on the

pretest, which would have worked to invalidate the experiment, since actual

gains for many students would occur below the floonand would not be detected.
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Thus, although the procedure had advantages for the main purpose of the

experiment, it will be seen that it also produced on atypical pattern of

standard deviations.

Each line of Table 3 shows the standard deviations for the six grades

in one school on one subject. Inspection of the rows indicates that there

is a general pattern of fan-spread, for both the reading and the mathematics

tests, contrary to the pattern in the publisher's norming data. There is

also considerable fluctuation in these standard deviations. However, if

all eight standard deviations for the reading test in each grade are averaged,

and these averages are compared across grades, the pattern of fan-spread is

pronounced. The shift occurs mainly between grades one and two on the one

hand, and the four higher grades on the other. A similar general pattern

obtains for the mathematics standard deviations. Both of these patterns are

shown in the summary lines of Table 3.

The fact that the standard deviations of scores at grades one and two

are substantially smaller than in the norm group is as expected, because the

data in each row include only students from single schools, deliberately

chosen to be relatively low in average performance and restricted in their

range of performance. The puzzling aspect of these data therefore is in the

size of the standard deviations at the higher grades. These are much larger

than would have been expected. The obvious explanation of this pattern is

that the procedure of individually assigning test levels did indeed eliminate

the "floor" effect on obtained scores, and that this led to the recording of

some very low scores. The point to remember about this example is that the

low scores are accurate. The distortion occurs not here but in the more usual

testing situation, where obtained scores may be restricted in range because of

the restrictions of the published test levels.
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Further specific analysis of these data could perhaps be pursued, but

to do so would lead us away from the general expository aims of this paper.

Hopefully, the preceding discussion will serve to indicate that fan-spread

is itself an empirically variable phenomenon; it can and should be analyzed

in terms of its dependence upon school policies, contexts, and accidental

practices of teaching and testing.

The preceding several paragraphs have described how floor effects

resulting from test level boundaries can lead to complications involving

fan-spread. It should be obvious that similar complications are possible

as a result of ceiling effects in other kinds of situations. In the next

several paragraphs, we shall consider a different issue -- the consequences

of the simultaneous occurrence of fan-spread and the statistical regression

effect.

Regression Toward the Mean and Fan-Spread

One serious implication of the fan-spread phenomenon is that it complicates

the analysis or comparison of changes or gains over time between two schools

or programs. For example, it is not at all unusual to have an experimental

program in one school, and a control program in another school, but to have

the scores of students in the control group initially higher than those of

the experimental school group. This happened, for instance, in the national

evaluation study of Project Headstart, and created serious problems for the

analysis (cf. Campbell and Erlebacher, 1970). If the two groups were chosen

on the basis of some variable which is really associated with their initial

ability levels, but not perfectly connected with initial ability, then over

time there will be a tendency for the average scores of the two groups to

converge. In other words, the initial differences will have had a transitory

component, and that component eventually will disappear. This is the well-known
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but less well-understood phenomenon of regression to a common mean.

The regression phenomenon is a fully general property of any data set,

regardless of what the dependent variable is. In applications of achieve-

ment data to program analysis, however, the regression phenomenon can be

expected to be operating is a complex way, and to be operating in conjunction

with a fan-spread phenomenon which is also in the data. The regression

effect will tend to cause the means of the two groups to converge; the fan-

spread phenomenon will tend to cause those means to diverge. Thus, these two

patterns occurring together can cause compensating movements, and can obscure

any rval impact of school-to-school differences in a program, or of an experi-

mental treatment.

This difficulty was noted in the Incentives study mentioned earlier

which was carried out for the U. S. Office of Education. In that experi-

ment, there were four pairs of schools, each pair including an experimental

and control school. For three of the four pairs, the initial score of the

control school was higher than that of the experimental school, and these

may have been non-accidental differences. This created some ambiguity in

interpreting the results of the experiment,because there was some regression

effect causing the means of the schools to move toward each other, and some

fan-spread causing a tendency for the means to diverge, without taking any

account of the experimental treatment.

In that analysis, the only solution was to accept a reduced precision

of inference. Fortunately, the school averages initially had been relatively

close together, and therefore the numerical magnitude of any fan-spread, or

of any regression, had to be small. Furthermore, the two should have tended

to cancel each other out. Thus, the conclusion for the purposes of the analysis

was that only patterns showing sizeable movement of scores over time would be
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interpreted as clear evidence of a treatment impact. For that particular

study, the problem was not severe, but it was a hindrance. Dealing with it

more directly would have been possible only if prior design work had allowed

for these possibilities, and if additional data had been collected (or a

strict randomized assignment had been used, so that the inference of equal

initial ability would have been tenable).
ti

One Possible Solution -- Compensating Adjustments

As has been indicated, in actual situations fan-spread is folind mixed

with other complicating sources of influence upon test score behavior, and

thus is quite complicated to deal with. This section does not offer practical

advice, but outlines one general way that pure fan-spread can be handled.

Before describing this approach, it should be repeated from the preceding

section that one way to deal conclusively with fan-spread and regression in

experimental studies is to make use of strict randomized assignment of subjects

to treatments. However, even for experiments, this option usually is not

available in field settings, and it is not conceivable for comparisons of

existing programs.

A second general approach, not the one to be discussed here, has been

suggested by Fennessey (1973) for the comparisons of existing programs. It

rests upon a benchmarking and calibration of the scores used by the local

agency, so that what is in effect measured by changes in score is a departure

from the conditions during the benchmarking period. That approach is basically

practical, though inelegant. The suggestions to be made below, though more

elegant, have utility primarily as part of a broader effort to analyze test

score data quite systematically, and this may not be very practical for school

administrators.

To describe the adjustment procedure, let us consider again the artifical
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data used earlier. In originally using these data, we assumed that the

individual ability levels (70,65,60,55,50 for the High Group, and 50, 45

40,35,30 for the Low Group) were known. The assumption about the dynamics

was that progress per unit is proportional to ability level. In actual

situations, there is no direct way to know ability levels. Instead, what

is typically available is sets of scores collected at, say, two or three

time points on a large number of individuals.

Suppose the High and Low Groups of the previous examples instead are

School A and School B. Suppose also that an investigator is interested

in comparing the "effectiveness" of the two schools. For this purpose,

a direct comparison of the average levels of score, or even of changes

in levels within a specified time interval, would not be appropriate.

For instance, comparing average scores at time point 2, one finds a differ-

ence of 120 - 80 = 40 points in favor of School A. Similarly, comparing

gains made between time 2 and time 3, one finds that School A is performing

better than School B. But because these data from the artificial example

were created without any School impact, it is clear that no such impact

exists in the data. In other words, the.observed score differences arose

from differences in initial distribution of.ability and from the dynamics

of achievement growth.

The dynamics to which we have referred can be summarized by saying

that the following equation holds if no other influences are operating:

1. (Yi,j4.1 = K.(Y. .)
3 1,3

In this equation, the left side represents the gain observed in an interval,

and the equation says that such gain is proportional to initial performance

level. To extract a term for the initial time of all (when j = 1), we must

postulate a value, call it 7i which is not observed, and regard it as the
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ability. Note that we have thus begun to link initial score and ability

in the discussion. This is a linkage which in practice is made problematic

by many complicating factors. But, for the purposes of this model, admittedly

highly simplified, it is satisfactory.

Note that the constant K. does not depend on which school, i, is being

considered. This however, implies that, if no other influences are operating,

the following equation should hold for all the schools in a data set at time jr

2. (i. - .)1,j+1 1,3
=

J

Yi

Eventhoughl..may not be known in advance, it can easily be estimated as the

average over i of all the left-hand-side expressions,in equation 2. Thus, the

method provides a means of adjusting the observed iain,to remove the influences

of the differences in ability between schools. To apply it to the artificial

data, the equations are

for School A: 120 - 60
- 1

60

for School B: 80 - 40
- 1

40

=1 for j = 1

Thus, there is no difference between the two schools as far as program.impact

is concerned.

It can be seen that in this adjustment process, there is no need to deal

with the standard deviation. This is because we are now considering not a

strange pattern in some outcome measurement data, but instead a formal model

of a learning process. The model asserts that individual gain rate is propor-

tional to ability and that ability is measurable by initial score, across

individuals, for any time interval, j to j+1. Thus, the fan-spread aspect

of the data pattern becomes irrelevant.
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General Discussion

Perhaps the more important point here, however, is that the interpretation

required the acceptance of some connected assumptions. The conclusions rest

on the validity of a particular model as well as on the data. This particular

model provides a partial description of how achievement progress is determined.

The model used for this example is about as simple as can be imagined. It

includes only the influence of ability on progress (neglecting such other

possible influences as curriculum, amount of attention, measurement peculiar-

ities, etc., all of which we have had to mention in the pradtical discussion).

Also, it chooses a very simple relation between ability and progress, namely

a linear relation. Any models to be used in practical work would have to be

considerably more detailed and realistic.

However, even a model as simple as this may serve to raise the usefullness

of discussion, by forcing an open dialogue about the exact role of prior

ability in influencing gain, and how that role is modified by various educational

practices in the concrete situation. Introducing such a model will create

debates, and this may be uncomfortable. One important stimulus to the develop-

ment of models of this general type (e.g., the FEHR-Practicum and related

packages) is that without such models interpretation of achievement test data

is bound to, be crude, and perhaps positively misleading.
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