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ABSTRACT

A ma.thema.t1ca.1 model for computer aided instruction is
developed. It'is assumed that the course is divided into a h1era.rchy
of levels of difficulty. These levels are such that if a student -
is able to perform successfully at a given level of difficulty, he
can also perform successfully at all levels of lesser difficulty.
Furthermore, if a student performs successfully at one level,
it increases his probability of being able to periorm successfully
at the next higher level of difficulty. Given the initial vector
of probabilities for successful performance at each level, the
vector describing how these probabilities change with successful
performances at each level, and the expected times it takes to
attempt a successful performance at each level, this model
‘computes an instructional sequence that minimizes the expected
time required for the student to complete the course by performing
successfully at the highest level of difficulty. Dynamic programming
is used to find this sequence. '
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. A MARKOV DECISION MODEL FOR COMPUTER-.

AIDED INSTRUC TION

I. INTRODUCTION

Several researchers have been interested in the application
of 'optim'ization tech4niq»uesb to mpdels of learning a.nd instruction.
Karush and Dear (1966) de_velqpéd_'an optima.i strategy for teaching
students to learn a list of independent items. = The basic assumption
was that an item is either in a learned or unlearned state. If it is
given in the unlearned state it g‘o,eé to the learned state with
frobability c, while once it reaches the learned state it stays’
there. Atkinson and P_a.ulsbn (1972) de.scribed experiments in
which extensions of this model were applied to computer-assisted
| spkelling instruction with elementary school children. Chant and
Atkinson (1973) developed an optimization technique for allocating
instructional effo.rt to two interrelated blocks or;st:ands.of
lehrning material. Their kéy assumption was that the leaz;n'ing
rate for each of the two.stra.nds depends solely on the difference
between the achievément levels on the two strands.
The mode;l of this report concerns a system where a student
is to be taught to perform a certain skill at a given level of
| cor.ﬁp‘ete_nce. He achieves this by working pfoblems through or -

taking tests at various levels of difficulty. It is assumed that
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' . if a student is able to perferm~~SﬁC'ceesfully at one level of difficulty
he is able to perform at fhe next lower or preceding level of difficulty
and consequently at all lower levels of difficulf:y.' This Aa.ssun"xpt’ioh
is pa.rtlcula.rly aprlicable in the following two situations.

The first situation is one where the material covered at one
level includes all that covered at preceding levels, plus some
additional material. An example of this is a program developed.
at Behavioral Technology Laboratories to tee.eh sj:udents Kirchoff.'s
laws. This course is comprised of ‘elefen levels with the lowest
level defining the units for iroltage, current and resista.nce up to
the highest level which deals with the application of Ohm's law
and Klrchoff's voltage and current la.ws in complex networks.

The second situation is one waere the material and problems
. . covered at a particular level are virtue.lly the same as at the
immediately preceding 1eve1 except more clues and hmts are given
at the preceding level. A good exa.mple of this would be a version
of the Kirchoff's laws progra.m considered earlier at Beha.viora.l
Technology Laboratories in which problems would be given at the

following levels:
1. Problems are given in steps with eges and -kno_wledge
- of results at each step. |
2, Problems a.re given 1n steps with no cues or knowled_ge

of results at each step..

3. The student solves problems in steps but he chooses the steps. -

>




. 4, The student is simply given problems and asked to solve
them.. |

Note, however, the assumption given for this model would not
be applicable for the situation where a g1ven level did not use certain
material introduced at preceding levels.

It is also -assux;ned that if a stqdent performs succeésfully_ at
one level, it will increase his probability of being able to perform
successfully at the next higher level. The student completes the
course when he performs successfully at .the highest level. The e.im
o.f the model presented in this paper is to choose the levels at which

problems should be assigned in the course sequence so the expected.

time i'equir-ad by the student to complete the course is minimized.
5 II. THE MODEL

Mathematical Formulation

The problem of instructing the student so that he completes the

" course in minimum time is formulated as a Markov decls1on process,
The set of act1ons are 1,..., N where action i is that of g1v1ng the
student a problem at level i. The levels are numbered in decreasing
order of difficulty., Thus level 1 is the hardest and level N the
easiest. The state | ¢ is that in which the student has ‘performed
successfully at level 1. The states in which tﬁe student has not
performed successfully at level 1 are chara.cterized by the vectors |
P=(pp.-. ', p,) where p, equals the probability that the

student will correctly do a problem at level i. It is assumed
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that if a student can do a problem at level i, he can also do it .
at level j for all j > i.  Thus, | P; is non-decrea.sing in i,
For each a.c.:tion i, let
q; = P [student can 'perform at level i - 1/student completes
problem at level i correctly and could not perform
at level i -1 before]. |
Thus, if the state is p and we perform action 1, we go to
state ¢ with probability P and refna.in m state  p with probability

(- pl). If we take action i > 1 we go to state f) with probability P;
where i;i-l =p;q* qi(l - P 1) i':k = P K #£i-1, and remain in state
p with probability (1 - p,).

Equivalently, the components of p above may be i'epresented

- by the following:

Pjy=(R-a)p ) ta
(1)
i')k = P k £i-l .
Once the system reaches state ¢, it remains there.  Associated with
each action, i, is a cost c; which may be equal to the expected time
it takes to attempt a préblem at level i, It is desired to choc.>s"e an

action policy that reaches state ¢ at minimum cost.

Some Solution Properties

A policy spe_c.ifies an ac.:tio'n for each state of bthe system other
than state ¢, Let V(m, i)) be the total expected cost under policy =
when the system is in state p, Ifi is the action specified for state P
by w, then it follows that:

. .



V(m,p) = ¢; + p;V(m,p) + (1 - p;)V(r, p)
' @)
where f’i-l = (l-q;) p;_; *q, and f)k = p for k #i-l.

It is of course desired to find ® so that ’V(ﬁ', p) < V(x, p)
for all p and all . |

Note that if action i is taken and the student does not complete
his ts.sk at level i successfully, the state doss not change and action
i will be repeated Thus any action taken will be repeated until the
student completPs a problem correctly. a.t which time the state. changes
and a new action may be taken. In addition, the state resulting from
the first time the student 'pei'forms correctly a.t. level 3 is independent
of the number of attempts it takes the student to perform sﬁecessfully
‘at that level. Thus ¥ and P determine a sequence of correct
responses at each level though not the number of trié\ls necessary
i:o obtain these responses. Of course, the seq_uence must end with
one correct response at level 1. The expected number of trials
necessary for the student to complete a problem successfully at

level i is 1}/ P -and the expected cost of this is ci/ P;-

Consider the _policy. that requires performa.hee at level 1 oniy
for p. The cost of this policy would be cl/p1 which would be less
than that of any policy requiring more than cl/ ;P successful
performances at level‘ i. Hence, the set of performance sequences
for p that are superior to.testing at level 1 only is finite and there
is an opt1ma.1 sequence for each p. This establishes the existence of

a pohcy T sa.txsfy:mg V(r,p) < V(w,p) all p and all .

«5a



We are now ready to prove the following theorems.

Theorem1l: If p-r >0, then V(r, p) <V(m,r), if = is an.
' optimal policy. ' | |

Proof: If w consists of ohe correct response (at level 1) for
both p .and r, then V(m,p) = c'l/p1 while V(m,r) = cl/r1 and the
theorem holds. Suppose the theorem holds for all p and r such
that m specifies n or fewér total correct responses for r.
Consider p and r such that w requires n + 1 or fewer correct’
responses for r and let i be the level at which the first correct
response for state r must take place. Then V{m, ) < ci/pi + V(r, p)

and V(m,r) = ci/ri + V(w,*¥) where from (1) ‘i’i-l =
Ml-aq)ptap ¥ 1 =0-q)r, ;+q;, B =p and T =1, for kf i-1,
Thus p > ¥, ¥ requires n or fewer correct responses and

Vir,p) < V(m,r). The theorem follows from induction. |

Theorem 2: There is an optimal policy m such that if
a), Aypecep By is the sequence-of the 'levels of correct responses for

state p, then a > a ., all k.

Proof: Let m be anoptimal policy and a5, 3550000 2 be the

sequence specified for p. Suppose there is a k such that 2 <3y -

Let p be the state and ¢ the expected cost resulting from the correct

responses to the sequence a5y Byeeerdy for the initial state P.

Consider the policy ‘which differs from = only in that a and a4

are iriterchanged in the sequence for p and let i = a4y’ j= ay.

® 6




If j<i-l, then V(m,p)= V(f}, p)=c+ °i/f’i + cj/ﬁj + V(mw, r) where from (1),

riac- (1‘qi) ﬁi-l + q; rj-l = (l'qj) f’j-l + qj. T, = f’!, ;11 other £ and

consequently V(m,p) = V(¥,p). Also from (1), if j = i-1, then
Vir,p) =c + ci/f’i + ci-l/f’i-l + V(m, r), where r is defined above while

V(w, p) = E + ci/pi + ci_l/ [(1-qi);‘,i_1 + qi] + V(mw,r). Thus V(w¥, p) < V(r, p)

and m is also optimal. Cpntinuing in this manner, an optimal sequence for
P is eventually pbtained in which the members of the sequence are in
non-increasing order. The theorem follows since p is general,.

Thus the search for an optimal policy may be confined to those
which yield a sequence of correct responses at levels that are non-increasing
in the sequence, |

As noted before, if one elicits one correct response at level i,

P is transformed to (l-qi) p;.; + 9;- Applying this transformation

' recursively it follows that if one elicits k correct responses at level

i, Pi.i is tra.nsformed.to (l'qi)k P + (l'qi )k-l q; + oot q; which
sums to 1 - (l‘qi)k (1-p; ;) Thus, if = is a policy of the above

type and specifies k(i) correct responses at level i for p, then

N .
V(mr, p) = .}31 k(i) ci/f>i where
i=
Py PN | ' (3)
- k(i+1) .
B = 1-(1-pi) (l-qi'ﬂ) ( ‘“for i<N



Let Vn(p) be the minimum cost fﬁr state p - if we restrict
instruction to levels 1,...,n. That is no instruction takes .place
a:t levels n+l1, n+2,..., N. Of c.ourse.. only the first n
components of p are relevant in determining 'Vn(p) and throughout
the réma;inder of this paper it will be aésumed that p is restricted
to pl...b..pn in Vn(p)_. A

| In other parts of this paper, the symbol p will be used to

represent ;'es‘trictions of p to certain components where the._

restriction is obvious. In particular, in the expression. Vn(p, pn),

P represen'ts. the restriction of P to Pp» PpoceesPy e

From Theo‘rem 2 and (3) if follows that

= n:tin IVJ;(p)l where.

vVap =

| - | (4)
vl:: (p) = ke /p, +V, ) (p, 1'(1'qn)k(1'pn-1))
vilp) = ¢/p

Note that in the right hand side of the second line of (4). P

represents the restriction of p to Py» PpoceesP, _o-

Algorithm for Two Levels

For the two levels problem it follows from (4) that

rrlxtin ‘Vlz( (p)l where

VZ (p)

V'Izt (p)_

(5)
key/py +¢)/ (L - (1-g,)" (1-p))




Consequentiy,
Va(e) - V3 lp) = ey/p, + €/ (1 ~1-q,)5(1-p)) - €)/(1-(1-a,) -p)), (6)
4 Vlz‘(p)‘ < V'lzt"l(p)if and only if the expression in 4(6‘) is less than or
 equal to zero. This ha.ppensvif and only ifl
P, 2 i(k, p)) where

f(k, p) = ¢, |(1-,) (1-p)) - (2-q,) + T /clq2 (7)
| - (1-q,)  (1-p,) |

//

for k =1,2...

This, requiring a student to perform successfully k times at
. _ lével 2. is preferred to requiring him to perform' successfully k-1

times at level 2 if p, > f(k,p)), while requiring him to perform -
successfully k-1 time at level 2 is preferred if P, < f(k, pl)' and
these two strategies yield equal costs if P = f(k, pl)' _

Theorem 3: In (7), f(k, pl) is nondecrea.sing.in k and is
non-negative in all k.

Proof: Substituting in (7) and rearranging terms one obtains
flapy) = ¢, [plq2 + (1- (l-pf)) / (I'PI) ] /c1 q, ‘which is clearly non-

. | ) k-1, k-1 |
negative, Also, f(k, pl) - f(k-l,pl)-_-c2 1/(1-q2) (l-pl)_-(l-qz) (1-p1) /c1

which is non-negative since the positive term of the second factor in

‘ the numerator exceeds 1 while the negative one is less than 1,

-9-




Thus, f(k, pl) is increa.sixig in k. - Q.E,.D,

_Thé.ore.rfx 4: Define f(O,pl) =0 and f(k, pl) as in (7) for
k=1,2,..., m, where m is such that f(m, pl) >1 and f(m-l,pl) < '1.
Then the value of k that minimiées (5) is that v?hich satisfies
fk,p) < p, < fk +1,p)).

N M: If i<k, it follows iinmediately from Theorem 3 that
vi(p) < vElp) <ov< Vi) ami sir;xilarly if 1>k, V3(p) <V (p)
<eee< V;(p).

Thus from Theorem 4, for fixed Py the number of successful
performances required at level 2 to minimize cost is an increasing

step function of Pys sta.rting at 0 for P, = 0 and advancing in

increments of one.. The minimizing cost may be found from (5) once

k is known.

Additional Solution Properties

In calculating Vn(p), it is much more difficult to get a closed
form such as that for Vl(p) and Vz(p). However, as this section
will show, for fixed Po_1? P v sPp the value of’ k that minimizes
4) is a non-decreasing‘ step function inpn with a value of 0 at P, = 0.

However, the increments of the step function are not necessarily one.

The next lemma and two theorems show this. First, define

-10-



£,k p) = (k=j) € / [Vﬂ-_l(p.l-(l-qn)j (1-pn_1n-vn_1<p.1-(1-qn>‘_‘(1-pnn]

fpr j <k, p=(p2....,pn) . -

Lemma 5: In(8), f_(j,k,p)>0 when defined and Vi(p) > Vi(p)

for p_<f (.,k,pi Vi(p) < VX(p) for p_>f_ (j,k,p); and equality

holds for P, = fn(j,k,p).

Proof, The denominator of . fn(j,k, p) is non-negative by
Theorem 1. The theorem then follows from the definition of
vE(p) in (4).

Theorem 6: The number of successful performances required -

at level n in order to realize Vn(p) is non-decreasing in P,

Proof: For i =1 the theorem obviously holds since only one
successful performance is required for all Py ‘For n>1 assume

the theorem is false. Then there is a system with k>1, p <p_
such that VE(p,p.) <V (p,p.) and Vi(p,p) < VE(p,D.). Let
n n n n ) n*-"n n n

fn(j,k, p) be as defined in Lemma 5. Then f’n < fn(j,k, p) and

P, > fn(j,k,p) for a contradiction.

Thus, it has now been showﬁ that for fixed PpsPprecesP he

n-1’ t

value of k that minimizes V:(p) is a non-decreasing step function

of P,

Of course, for P, = 1, the minimizing value of k cannot exceed

Vn_l(p)/cn. since any value exceeding this would be inferior to k =0.

~11-
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Mso, f.G.kp) 2 cf |V, 101- -a ) -p, ) -V, mD] .

. 1, _ .
Thus, if Vn (p, 1-(1-qn)_ (l-pn_l))s c + Vn-l(p' 1), fn(J,k,p) >1

and j successful performances is preferred to k successful
performances for all k > j. Thus, the sequencé of optimal values

ofk in (4) isa subsequence of the set 0, 1, 2,..., min [[Vn_l(p)/cn], i

where j is the smallest integer satisfying

V(1 (g P-p, N < e +V, (p1)

Theorem 7: Suppose j <k < 4 and £ (j,k,p) > £ (k,4,p) and
pl, Pyre++sP ) aTe fixed. T?zen Vi:(p)f Vn(p) for any P

Proof: For p < f (j,k p) .V'L(p) <Vi(é) thle‘ for p,;z fn(j.#- P
b, > 1 (k tip) and Vip) < VE(p).

Theorem 8;: Suppose n(l), n(2),...,n(m) is an increasing

sequence of integ¢ »3 such that fn(n(i), n(i+l), p) is increasing in
i and that V'!il(p) # V (p) forany p if j is not in this sequence.

Then _v;‘(i)(p) ='V_(p) for f_(n(i-1), n(i), p) < p, <f_(n(i), n(i+l),p).
Proof: For p, >{f, (n(i-1), n (i), p), V::(i)(p. p,) < Vnn(inl)(P- )
< o< V2@ p,p ) for p_ < £ (n), i), B VEip,p) <

nli+l) (m) : |
Vi pepy) <e0e< Vo | (popy). Q.E, D,

=12 -



This means one may start with the sequence 0,1. eeey Min -
{[Vn-l(p)/cn]'j'} , Where j is the smallest integer such that
Vn_l(p. lf(l-qn)J(l-pn-_l)) < < + Vn-l(p)' eliminate tho‘se members

that cannot be optimal for any P, by Theorem 7, continue to eliminate
from the remaining sequence until the sequence left satisfies the
. conditions of Theorqm 8. This procedure must be finite since

only a finite number of eliminations may occur.

General Algorithm

‘Formally, the algorithm for finding the value of k that
minimizes Vl;(p) as a function of P, is as follows:
. Algorithm 1
1. Set n=1 and V_(p) = cl/pl.

2. If n =N, terminate. Otherwise increase n by one and
define n(0), h(l), «.», n(m) where nf(i) =i and .

m = min {[Vn-l(p)/cn] , j} where j is the smallest
integer satisfying V.n-l(p'l - (i-qn)J(l-pn_l)) <
c t Vn_l(p.l).

3. Compute ' fn(n(i)', n(i+l),p) fori=1,...,k-1 according
to'the formula in (8). For n >2, Vn-l(p) may be
calculatéd by Algorithm 2. |

4. If no i satisfies £ (n(i), ‘n(i+l), p) > fn(n(i+1)l. n(i+2), p)
delete from the sequence any i such that fn(n(i), n(i+l), i)) >1

and returh to 2 as the value of k which minimizes Vn.(p)

-13-



. | is that which satisfies £ (n(i-1), n(i) ,p) < p, < £, (nli),

n(itl), p). Otherwise deletc any i from the sequence

satisfying £ (n(i), n(i#l), p) > f_(n(i+]), n(i+2),p), relabel

the members of the reméining sequence n(0), n(l),...,n(m)
in increasirifg order with m +1 equaling the number of

elements in the remaining sequence and return to step 3.

Gi\}en the sequences generated by algorithm 1, the optimal
number of successful performances to require at each level and 'Vn(p-) |
for n >1 may be found as follows. |

Algorithm 2 N

1. Set m =n and define f)n =Py k(n) as tﬁe n(j)~thét
satisfies f (n(j-1), n(j), p) < p, <{,(n(j), n(j+), p).

2. Decrease m by one.

k(m+1)

3, Define f)m =1 - (l-pm)(l-qm+1) .. Then define

k(m) as the n(j) that satisfies _fm(n(j-l), n(j)._p) < f)m
< f(n(j), n(j+l), p).

)k(Z)

4, if m =2, define 51 =1 -(1-p))(1-q, and go to 5.

Otherwise go to 2.

. n '
5. Terminate. V _(p) = % k(i)ci/f)'i - where k(1) =1.
i=l
. III. ESTIMATION OF PARAMETERS

Maximum Likelihood _

The past performances of students may be used to obtain a maximum
likelihood estimate of the p and q input vectors.

. Let a,. and bki respectively be the number of incorrect and v

O ‘ : . -14-




correct responses of students at level i who had given k correct
responses at level i +1, and define L(p,q) as the likelihood

function of the vector (p,q). It follows from (3) that

n

m g kay k, Pki |
L(p,q) = i]-:.-lnl k]lo (1-p;) (1-q.,,) = (1-(-p,) {I-q; ) . (9
Taking the partial derivatives of L(p,q) with respect to all P; and
qv one obtains (10) and (11) setting them to zero yields (12) and (13). .
aL( m | -3 by (g |
_B_ML = L(p,q) = T-p + X (10)
i i=1 1 1-(1-py)(i-q; )
3L(p, q) om | -kay Kby (1-p)(1-q; )"
i+l k=0 i+l 1-(1-pi) (1-qi+l)
m m b, .(1-p.)(1-q )k
z _ ki "Pi i+l (12)
“ 8= I k
kl; (1-p.) (1- )k
m m KOV -Py 944 3
£ ka, = ) N7 . (13)
k=0 k=0 1-(-p)(l-q;,)

-15-




Note that in {12) and (13) the only unknown that parameter p;
. . depends onis qi+1' and vice versa, Thus the p and q vectors may |
be estirnated by solving sets of two simultaneous e@uations in two
unknowns, 'Howgver » there is no analytical way of solving these
equations in general for P; and q +i. Nevertheless,» éuppose |

one takes into account only the values of k with the highest number
df'obse_rva.tions. Denote these vé.lues by r and s.

Then from (12) and (13) one obtains

r .8
b= (1-9;,1) b ;(1-p;)(1-q; )

gt T = ot - : - (4)
1-.(1-pi..) (l-qi+1) : 1-(1-P1)(1-q1+1)

rb_(1-p)-qy,)t 8 b_(-p)-g;,,)° -

r a’ri+sa'si - Jri i 1+¥ + : si i i+l . (15)

1-(1-p;)(1-q; ;)" 1-(1-p;)(1-g;,)°
Subtracting r times equation (14) from equation (15) yields

_ 1 .8
(s-1) a_. = (s_'r)bsi(l-pi)(‘-qi'ﬂ) (16)
si - s .
1-(1-p;)(A-q, ,,) : _

which yields

s
- : bsi(l-pl)(l-ql'l-l) _ . (17)
1-(1-py) (1-q;49)° |

a .
81
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. = by(1-p)(1-q; ) ' |
ri r ° ‘ (18)
1'(1'pi)(1'qi+l) .

From (17) and (18) one obtains

a

(1-p)(1-q;)" = T = X, (19)
. : rl rl
s a'si p—
(1-p;)(1-q;,))" = 2 75, = Xg (20)
' Sl 81

where ir and }—Cs are the proportion of unsuccessful performances

at level i given r and s successful performances at level i +1

respectively., Solving these two equations for estimates of P and

. q;,, one obtains

- S=-T _ 8=-T .
p = 1-X, X, | (21)
1
_ ._ 8-r
q = 1-(X_/X ) . (22)

Confidencs Intervals

Consider the two Bernoulli random variables, Xr and Xs,

with parameters (l-pi)(l-qiﬂ)r and \'l-pi)(l-qi_u)s reépectively.

From (19) and (20) it follows that }—Cr and 2—{s are the sample
means of such random variables. Thus, it follows that for large sample

sizes, a 100 (1-B ) percent confidence intérval for (l-pi)(l-qiﬂ)r is given

.. - by

=17-




< Z
L, = X ¢ —m— X 1-X '
J r( r) (23)

1z b
a‘ri+bri
L, = X + =2 X_(1-X_) | (24)
2r r 'y
Ja.+b.
ri ri

and for (l-p;) (l-q,,)° by

- Z - — —

L, = X . = ’X (1-X ) (25)
1 8 s
° ° \Ia-‘si +bsi .

3 Z B |
L, = X + \/a“m#b . ‘F{s(l-xs) (26)
“si si : ' }

where Z = Z, /2 that is Pz <Z1_p/2] = 1-B/2 where Z
is standard normal, *

Since the probabilities that (Llr’ L, r)' and'(Lls,LZS) bracket
(1-p,) (l-qi_'ﬂ)r' and (1-p;) (1-q; +1) are each 1- and independent, the

probability that both of these bounds }old is 1.2 + bz > i-28.

*Larson (1966).




—

From this it fongws that Lls/LZr and LZs/Llr form a 100 (1-2B) percent
nfidence interval f -q.)5-T. .. . - s ;0T .

confidence intex v§ or (l-q;) Similarly it f_lol_lo?n_s that Llr/LZs

and L;r/Lfs form 100 (1-f ) percent confidence ir?.‘;erval for (l-pi)s'r .

1

These sets of bounds taken to the 1/(s-r) .p"owg-:‘r give 100(1-2 )° Tpercent
confidence intervals for (l-qi +1) and (Il-pi) reppe@tiyely.' Consequently

a 100(l-a) percent confidence interval for p; is given by

1
Pp=1- (LSZr/LIis)s-r .(27)
_ § ;T .S-T
P,=1- (L, /Ly ) | (28)
and for q ") by
X
= / §-T
Q =1- (L, /L) (29)
1 , 1
Q, =1- (L /Ly )" - - GO

L, L

where Lls' LZs' 1r

o .are as defined in (15 - 18) and B = (- /2)%°F .

Note that the above simplifies if s-r =1 and that this is likely
to happen as the two most likely choices for the numbe-r of successful
performances to require at a given level are likely to be consecutive

integers.

-19-




}_\ Linear Estimation Model

In this model the stud.ent is given a questionnaire to
determine his level of competence. Each question is scored one
or zero, depending on whether thé student answers the question
right or wrong. The P "s and q;'s for a student are each
assumed to be linear combinations of the scores he receives

on a question. Thus,

p. = £ u,w, (31)
1 j oo
q; = 3‘;' vijwj | o (32)

where wj is the score on question j for j>1 and w, = 1.

This yieids, for the vector pair (u,v), the likelihood functicn

n K :
L(u,v) = 1 I (- & u..w, - Zv. W) n (1-(1-g u..w.,)
’ i=1 leii j i je § itlj e LeX, ;i WO

(33)
k

where wjl is the score of student or trial £ on question j and
ii = {2: student responds incorrectly at level i }

'X(i ={4: student responds correctly at level i }

-20-



Note that in (33) k is actually a function of ¢,

Taking partial derivatives of L(u, v) one obtains:

w, (1-
- -, : ‘ J!( ij +1j Jl)
BLwY) -y, | Y — Y (34)
u,. " %z l-Zu.w - 1. (- Tu, Wi PL-Zv, w, )k
1 teX, “%ij 30 feX, ij “Vid15 4
i A 1 J J
-1
-kw., &(1- ;qujl)(l Zv l+1_] _u)k
gﬁgu, )+ Liu, v) Z jt + i (35)
' 1 teX. 1- ;viﬂjwjl fe X, -1 - ZuIJW )(1 ‘.Ev1+1_]wj[)
1 J 1 J J
Setting both derivatives equal to zero, one obtains:
| k
Wy - jz"i+1j‘"jz)_
z ——'1— z (36)

teX, - P ogex, O T J.z"1+13 Jl)

. kwjl(l' z Y )(1- Zv1+1 Jt)

it j j
: z (37)
- z:v:i‘l-ljwjl teX, 1-Q1- JZqu 2= jzv1+1 Jl)

leXi

© =21-




. ~ Since different values of f lead to different denominators in the

terms of (36) and (37), some simplification of these'expressions in needed.

Let:

wijk number of one scores for question j resulting in
successful performances at level i following k

successful performances at level itl.

ijk number of zero scores for question j resulting in
- successful performances at level i following k

successful performances at level itl,

w'ijk = number of one scores for question j resulting in
unsuccessful performances at leveli following k

successful performances at level itl.

. ' \;J'ijk = number of zero scores for question j resulting in
unsuccessful performances at level i following k

successful performances at level itl,

Suppose further that only question j is to be copsidered on the

questionnaire. .'I'hen (36) and (37), when applied to uij’ v, 5’ Yor Vid0
become:

m ’w'..k m W, . (l=v, .-V, )k

v —ijk _ v ijk i+l "i+l0 - (38)
k=0 l'uij'uio | k=0 1-(1-uij-uio) (l'vi+1j'vi+10) .

m k w! m kw.. (1-u -;u Ml-v, ..~V )k"1

ijk _ ijk ij i i+lj "i+l0

z =z : n (39)
k=0 l-v. k=0 1-(1-uij-uio) (l'vi+1j'vi+10)

® i+1j7Vi+0
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m w., -y .. (1- -
. ik, op ik T Wi kl=Vi41"Vino)
k=0 l-u..- " k= -u. =
i L k=0 1 LI k=0 1-(1- uJ uo)(l v1+1J 1+10)
(40)
.o Wik (-Vi410)
Kk
k=0 1-(L-u)l-v, o)
m kw'.. m kw,. m kw,. (1- u l-v., -V | )k']'
5 1]k + 3 qk - v ijk 10 1+1 1+10
k=0 l-v;.-¥; k=0 lv,, k=0  I- (1-u;,-u; 0,\1 Vidl” 1410’

(41)
- k-1
. ;:n kwi.k(l-u.o)(l-v +1~0)
k=0 1-(1- uo)(l -V, +10)
However, when (37) and (38) are multiplied by l-t:l.ij Y and
1- -V, +1_1 Vi410 they become (12) and (13) with w'ijk' wijk' uij+ui0'vi +1j+vi +10

replacing 31;’ b Py and q., respectively.

Thus if one takes into account observations corresponding only
to the two highest values of k, r and s, one obtains from (19- 22).

~ 8 -T

w!. s-r w!, \ s-T '
_ __ijs ]
u; g = 1- == =L ) (42)
] 1 1
Wisr ¥ Yjr Wijs tWije
«23.



wi, (w.. +w!. )
ijs' "ijr  ijr

W'ijr(wijs.}w'ijs)

Vitrj TViero = 1- (43)

Subtracting (38) and (39) from (40) and (41) and then multiplying
through by l-u;, and l-v, ., yield (12) and (13) with Gijk. ;Vijk’ u,,» and

V4o Teplacing a bki' P;» and 9,4 respectively. Thus, after

considering only r and s as values of k, one obtains from (19-22)

and (42) and (43).

£ .t
/  w, 8-r Wi, 8-r
w=1- [—4=—) —L— | (44)
w wi w,. twl,
ijr ijr ijs  ijs
L
- _ _ s-r
wi's(w'i'r"’wi'r) '
V. q=1- L l (45)
110 W (W )
ijr *Vijs  ijs
8 - 8 3
. s-r w. 8.1 . 8-T, o1 8-1
.. = ijr _ 1_18 _ _ ijr —ijs (46)
3 w! w,. tw'., ! wi
ijr  ijr ijs " " ijs ijr Tijr ijs " ijs
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1 1
_ 8-T “8-r
1 1 -
Vs = “'ijeWijr *Wije) _ [ “iis Mijrt ijr) @)
itlj = = -
WiirWiie * ije) 1 Wijr(Wize T Wije)

In a similar manner one could also obtain 100(1-a) percent

‘.d 3 - . “ 3 .
confidence intervals for uij’ v 15’ U and Vitio BY noting that

100(1- o ) percent confidence intervals for u,. + U and vi+1j + V10

are also 100(1-o) percent confidence intervals for Y and vi+1j and
making the appropriate substitutions in (23-30). Note that the length
~ of these confidence intervals tends to zero as the sample size for

both k=r and k=s tend to infinity and consequently the estimates in
(44-47) are cénsistent.

-In (44-47) the weights are based on-the assumption that a;ll
weights except for question j are zero. For the more general case
where this is not assumed, it is suggested that the weightq used be the

average of the results in (44-47) taken over all j. That is:

] -T
‘;| S-T ;"  S=-1
ua=1- -~ ¢ [—HE— —5 | (48)
i0 o ... +w! w,.. +w
J ijk’ " ijr ijs’ " ijs
L
- — - S=-T
w!, (wl. +w.. ) _ ' .
Vo =l- &+ f | E (49)
n | Wy (Wt W)
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_| 8~ —' 8=T
u,. = L ijr ijs
ij - -
n ijr “'ijr wijs w'us
- (50)
8 -r
S-r B-r
w!, wi.
- = He — L3#0
]
n o\ Wijr T Wijr Wijs T Wije
L L
_ 8-r 8-r
1 w'ijs(wijr 1]r) 1 w'ija(wiir +v""ijr) '
Viej T = e - = »jEO (51)
n w!. (w!. +w,. ) n w!. (w,. +w!. )
ijr ' ijs " ijs ijr' ijs  ijs

where n is the number of questions on the questionnaire.

1v. EXAMPLE

Consider the three level problem with the following data.
(°1’°2'°3) =(6.7, 4.3, 1.9)

(Py» Ppo Pg) = (.07, .23, .46)

(ap,93) =(.6, .8)

It then follows that V,(p,) = 6.7/p,.

-26~




' For level 2, substitute the appropriate values for €0 €20 Ppp 9 in
(7) to obtain £k, py) = .995(.4)" - 1.498 + 115/, 4%

This yields (1, pl) = ,050, f(z,pl) =1,536. . Since the latter exceeds
ocne, no more than one successful performance at level 2 will ever be

required. This yields the following table for v, (p).

n(i) f

0 0 . 000
1 1 . 050

Table 1: Output for level 2

This table may be read as follows. For 0 < P, £.050, require no
. successful performances at level 2, For P > .050, require one
successful performance at level 2,

For level 3, note from (8) that

£5(k-1,1,p) = L.9/ [V, (p, 1 -. 77.2" ) V, (p, 1-. 77(.2)%)] .
In order to find £,(0,1,p), V,(p, 1-.77(.2)°) = V,(p,.23) and

Vz(p, 1-.77(.2)) = Vz(p. .846) must be calculated by algorithm 2. For the
calculation of V(p,.23), k(2) =1 by table 1. Thus 131 =1-(.4) (.93) = . 628

and V(p,.23) =4.3/.23 + 6.7/.628 = 29.37. Similarly, V(p, .846) = 15.75. =
Thus £,(0,1,p) = 1.9/(29.37 -15.75)= .140. Similarly, V,(p,1-.77(.2)) =

Vz(p00969) = 15.11 a»nd f(l.z. p) = 2.97. For k > 3. vz(pll -.77(.2)1("1) -<.

®  V,(p,.969) = 15.11 and V, (p, 1-.77(.2)%) > V,(p,1) = 14.97. Thus

Q. - -27-




f(k-1,k, p) > 4.3/(15.11 - 14.97) =30.71 >1. Thus no more than 1

successful performance at level 3 can be required, yielding the

following tab.le.

i n(i) f

0 0 . 000

1 1 | .10

Table 2: Output for level 3.

Table 1 and 2 contain the information necessary to use algorithm 2
to calculate V(.07,.23,.46). From _table 2, k(3) =1 since .140 < .46 <1.
. Thus f)z =1-,77(.2) = .846., From table 1, k(2) =1 since .140 <.628 <1.

and 51 =1- .93(.4) =.628. ' Thus one successful performance is required

at each level and the expected time to complete the course is

V(.07, .23,.46) = 6.7/.628 +4.3/.846 +1.9/.46 =19.88.
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P= (Plo_---o PN)

ki

_ L{p,q)

l.iist of Symbols

state vector where p; is the 'probability
student can perform at level i.

probability student can perform at level
i-1 given that ne performs succeasfully
at level i and could not previously per-
form successfully at level i - 1.

expected cost under policy 7 when the
system is in state p.

minimum cost for state p if we restrict
instruction to levels 1,..., n.

same as Vn (p) except that exactly k

successful performances atlevel n are
required,

the value of p_ such that V:(p) = V]z(-l(P)
for fixed p. = |

the value of P, such that Vg(p) = Vﬁ(p), j <k.

number of incorrect responses at level i
following k correct responses at level i +1,

number of correct responses at level i
following k correct responses at level i +1,

the likelihood function of the vector (p,q).

score on question j.

weight of question j upon p;-

weight of question J upon ¢,

"as defined in text.

-29-
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