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Abstract

Few manufacturers of small- and medium-scale computers offer
operating systems capable of supporting both terminal-oriented time -
sharing and multiprogrammed batch. The Experimental Time-Sharing
System (ETSS) was developed as a demonstration that a powerful,
general-purpose operating system of this type is feasible on a smaller
computer and that it can provide highly flexible and cost-effective com-
puter services. Developed for an educational application, the system
can be tailored or 'tuned' to meet a wide range of application require-
ments and can support a mix of terminal-oriented time-sharing, fast-

response process control and one or more batch streams,

This paper provides an overview of ETSS and describes the
organization of the operating system and its major components. Al-
though much has to be abbreviated in the interest of space, task

scheduling and memory management are described in some detail,
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Introduction

Few manufacturers of small- and medium-scale éomputers offer
operating systems capable of supporting both terminal-oriented time-
sharing and multiprogrammed batch. The Experimental Time-Sharing
System (ETSS) was developed as a demonstration that a powerful,
general-purpose operating system of this type is feasible on a smaller
computer and that it can provide highly flexible and cost-effective com-
puter services. Developed for an educational application, the system
can be tailored or 'tuned' to meet a wide range of application require-
ments and can support a mix of terminal-oriented time-sharing, fast-

response process control and one or more batch streams.

Based on a DEC PDP-15 computer with a fast, swapping drum,
the systern was designed for machine independence so that a later con-
version to a multiprocessing environment or to another computer would
be possible. In its current implementation, over 95 percent of the
operating system consists of pure procedures which have and require
no knowledge of the processor's input/output structure, memory pro-

tection structure, or interrupt structure.

This paper provides an overview of ETSS and describes the organi-

zation of the operating system and its major components. Although much




must be omitted in the interest of space, task scheduling, and memory

management is described in some detail.

System Organization

The ETSS operating system consists of {five major procedures, a
collection of peripheral device control subprocedureé, a body of common
subroutines and a variety of tables and context blocks, some permanent
and some dynamically created and destroyed through time, These
operating system components reside in a portion of main memory called
'syspace' for system space. User programs execute in the remaining
portion of memory called 'uspace' for user space. When required, por-
tions of uspace may be transferred to and from an auxiliary swapping

device,

Major Procedures. Although the five procedures share a body

of common subroutines, each procedure is independent of the others
and is responsibie for a major system function, Figure 1 shows the
five procedures and the lines of communication between them. The
EXECUTIVE procedure is the heart of the operating system and is
responsible for the allocation and control of all memory and computa-
tional resources. Any procedure can request the EXECUTIVE to create
a 'task' (or job) with a specified set of characteristics and schedule it
for execution., During its lifetime, the task is under the exclusive con-
trol of the EXECUTIVE although the procedure that requested its cre-
ation can also request the EXECUTIVE to suspend or destroy the task at

any time.

The requests to create and destroy tasks most commonly come

from the BATCH and MONITOR procedures although the INPUT/OUTPUT
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MASTER CONTKOL (IOMC) procedure does request the creation of
input/output spooling tasks. The BATCH and MONITOR procedures
each function as a software interface between the EXECUTIVE procedure
and the human users of the system., The MONITOR procedure supports
conversational time-sharing and provides the user at a terminal with a
MONITOR Command Language (MCL) through which the user.is able to
enter and exit the system, initiate tasks, acquire and return system re-
sources, display and modify dataset directories, request information on
system status and performance and invoke a wide variety of language
processors and utilities. The BATCH procedure maintains one or more
batch processing streams and interacts with batch input/output stations,
A BATCH Command Language (BCL) is provided with which tasks to be
run are specified. Although the MONITOR and BATCH procedures may
create tasks with different characteristics, the tasks are indistinguish-
able to the EXECUTIVE and are able to share all system resources in-

cluding a common file structure.

The INPUT/OUTPUT MASTER CONTROL (IOMC) procedure is
responsible for the allocation and control of all input/output resources
including input/output channels, space on auxiliary storage devices, and
access to system peripherals., By masking hardware idiosyncrasies,
the IOMC procedure enables user programs and other system procedures
to interface with a virtual input/output structure in which programs
reference 'files' assigned to any appropriate device or dataset. The
IOMC procedure serves as a translator converting these file-oriented
input/output requests into requests to actual physical devices or data-

‘sets.

During the processing of a file request, the IOMC procedure

determines if the request refers to a 'directory' or to a 'non-directory!




device, Directory devices contain data as well as directories with the
names and the locations of the permanent entries or datasets stored on
the device. A disk unit might be used as a directory device, and a line
printer would be a typical non-directory device. If the file request re-
fers to a non-directory device, the IOMC procedure interacts directly
with the appropriate device control subprocedure, All requests refer-
encing directory devices are sent by the IOMC procedure to the DIREC-
TORY FILE MANAGEMENT (DFM) procedure,

The DFM procedure permits the programmer to treat a directory
device as a file-oriented medium withont any concern for the device's
physical properties or addressing structure, Data written to a directory
device can be left in a tefnporary state or it can be cataloged as a data-
set, Datasets may be cataloged in a user's private directory, in a
directory available to all called the 'library, ' or in the directory of
another user if permitted. Protection keys are provided to restrict
dataset access when required. During the processing of a request,

DFM interacts with the one or more device control subprocedures re-

sponsible for the control of the actual physical devices involved.

Inter-Procedure Communication. The five procedur=s, MONITOR,

BATCH, EXECUTIVE, IOMC, ahd DFM, are functionally independent
and communicate with each other in a standard andﬁwell-defined fashion,
Each procedure is assigned to a hardware priority interrupt channel on
the machine, and each can be viewed as a large, interrupt subroutine,
This last point is important and must be understood to grasp the structure
of ETSS. It should be mentioned that a unique interrupt channel is not
required for each procedure although three of the five procedures do

have a unique channel in the current implementation, The procedures

are ordered by priority with procedures such as the EXECUTIVE, which



is responsible for task scheduling, operating at a higher priority level

than the MONITOR procedure.

Each procedure has a 'request list' and a 'done list,' each a bi-
directional, circular-linked list as are all ETSS lists. A procedure
desiring services from another creates a 'message packet,’' inserts
the packet in the other procedure's request list and triggers a hardware
interrupt on that procedure's interrupt channel. The message packet
defines the request and consists of a variable number of parameters in
a standard format. The procedure stimulated by the interrupt first
scans its done list and then its request list, processing in turn each
message packet that it encounters. At the completion of a request, the
procedure performing the service inserts the packet in the done list of
the original requesting procedure and triggers the appropriate hardware

interrupt.

Common subroutines are available to handle message packet cre-
ation, deletion, and transmission between procedures. These sub-
routines access several tables containing implementation specific infor-
mation on each procedure. This level of detail is transparent to the
procedures themselves, and a procedure need only specify the destina-
tion procedure for packet transmission to occur. The procedure per-
forming the service simply requests that the packet be returned leaving
the responsibility of determining the original sender to the common sub-

routine.

System Tables and Context Blocks. Data defining the system and
describing its current status are stored in a variety of internal tables
and context blocks. Some of these data structures are permanently

resident within the operating system and others are dynamically created



and destroyed in response to changing conditions. The context block

structure is particularly important and is a central feature of the over-
all system design about which the remainder of the operating system is
organized. '<Any oversights or inflexibilities in this area would be diffi-

cult or impossible to remedy latex,

The operating system maintains four types of context blocks. Two
are permanently resident and may be modified only through a system
generation or reassembly., The remaining two are dynamically created
and destroyed over time. The System Context Block, or SCB is per-
manently resident and contains parameters describing the overall status
of the operating system and will not be described in further detail.
There is one Device Context Block, or DCB, for each device type sup-
ported by the system. These context blocks contain information
describing the device type and the status of each unit of that type and
are permanently resident. Associated with each task within the oper-
ating system is a Task Context Block, or TCB, that is dynamically
created when the task is initiated and is destroyed when the task is com-
plete or is otherwise terminated. Since all task-initiated input/output
processes reference 'files' rather than physical devices, the temporary
association between file names and physical devices or datasets is
recorded in File Coﬁtext Blocks, or FCB's. An FCB is created when-
ever an association between a file name and device or dataset is estab-

lished and is destroyed when that association is ended.

The Task Context Block and File Context Block structure is de-
picted in Figure 2. The base of this structure is the permanently re-
sident Task Context Block Table located to the left. The length of the
table defines the maximum number of tasks permissible in the system.
Each entry in the table is either a nuli value or a pointer to a Task Con-

text Block. When a new task is initiated, the EXECUTIVE procedure
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creates a Task Context Block and stores a pointer to the TCB in the

first free position in the table. The relative position of the pointer in the
table defines the 'task number' of the task which is used for internal
identification only and is unknown to the human users of the system.

The Task Context Block contains a set of descriptors fully defining the
task and describing its current status. The TCB also contains two sets
of list-processing pointers. The first is used to link the TCB into
various scheduling queues, and the second links the TCB to any associ-

ated File Context Blocks that may have been created.

A File Context Block is created by the INPUT/OUTPUT MASTER
CONTROL procedure whenever a task wishes to establish an association
between a task-specified file name and a particular device or dataset.
Si‘nce all task-initiated input/output processes are directed toward 'files, '
the FCB contains the information required to translate file requests into
requests to actual physical devices or datasets. As is shown on the
right of Figure 2, the File Context Blocks of a task are linked in a bidi-

rectional-linked list with the Task Context Block serving as the list head.

There are two types of File Context Blocks. The first associates
a file name with a physical device; the second associates a file name
with a dataset stored on a directory device. In the first case, the FCB
contains the file name and a number specifying the device type and the
unit number. In the second, the FCB contains the file name and the
dataset name. In both types, there are entries with additional descrip-

tors further defining the file and describing its current status.

The Device Context Block structure is shown in Figure 3. The
Device Name Table at the left is the logical starting point of this
structure and equates device names to type and unit numbers., All

devices supported by the system are classed by type with i~dividual
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devices within a type referred to as units. When a task wishes to
associate a file name with a particular device, the task provides the
name of the device. A request to associate a file name with a dataset
is assumed to refer to the device 'disk' unless it is otherwise specified.
The INPUT/OUTPUT MASTER CONTROL procedure responsible for
processing these requests locates the device name in the name table
and retrieves the associated type and unit number. If the unit number
is nonzero, the type and unit number is stored without modification in
the newly created File Context Block, If the unit number is zero, this
indicates that the unit is to be allocated by the operating system from
among the available units of that type. The IOMC procedure selects an
available unit and stores the type number and the unit number of the
selected unit in the new FCB, All subsequent requests by the task
specify the file name, and the Device Name Table is not accessed again

until the task wishes to initiate a new input/output process.

Once the association between the file name and the device has been
established, the logical starting point for all subsequent requests is the
Device Context Block Table, shown second from the left in Figure 3,
This table contains the addresses of the Device Context Blocks and is
ordered by device type. Each device type has an associated Device
Context Block and a Device Control Procedure (or I/O driver). The
device type code is used as an index into the Device Context Block
Table to the entry containing the address of the appropriate Device Con-

text Block.

The Device Context Block consists of a Type Context Block de-
fining the device type followed by one or more Unit Context Blocks,
each describing the current status of a unit of that type. The Type

Context Block is in a standard format common to all DCB's and contains
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approximately 30 descriptors fully defining the device type. The Type
Context Block also specifies the number of physical units of that type,
the size of each Unit Context Block and the address of the Device Con-

trol Procedure controlling the device type.

The Unit Context Blocks that follow the Type Context Block are of
variable length depending upon the device type although the first part of
each Unit Context Block is in a standard format coinmon to all types.
Whereas the Type Context Block contains inforination on all devices of
one type and is never altered, the Unit Context Block contains informa-
tion on the current status of a particwlar unit and portions may be used

as working storage by the controlling Device Control Procedure.

The Unit Context Block also contains a set of list-processing
pointers which serve as the head of the request list for that unit. This
list, shown on the right of Figure 3, is a bidirectional-linked list of
outstanding requests against the particular unit. Input/output requests
issued by a task are decoded by the INPUT/OUTPUT MASTER CONTROL
Procedure into requests to an actual physical device. These requests
are added to the end of the request list of the appropriate Unit Context
Block, and the controlling Device Control Procedure is notified that a

request is pending.

Scheduling and Memory Management, Any procedure within the

system can request the EXECUTIVE to create a new task with a set of
characteristics called a 'task profile.' By controlling the type and mix
of the tasks that are created, procedures other than the EXECUTIVE
can perform high-level or 'course' schedutling. However, once created,
the low-level or 'fine' scheduling of the task is under the exclusive con-

trol of the EXECUTIVE procedure.




The EXECUTIVE maintains multiple queues of tasks that are ready to
execute, one queue for each priority level. The number of priority .
levels {(and queues) is installation dependent and can be readily modified
through a system generation or reassembly. Higher priority queues are
normally serviced before lower priority queues so that a task gains access
to the processor only if no higher priority tasks are ready to execute.

To ensure that extremely active higher priority queues do not lock out
tasks on lower priority queues, each queue is assigned a 'queue ratio'

which specifies the frequency with which a queue must be serviced even

though higher priority tasks are ready to execute.

As part of its task profile, each task has an assigned priority
range that defines the highest and the lowest priorities that the task can
assume during its lifetime. A task gaining access to the processor for
the first time is placed in the queue associated with its highest permis-
sible priority. The task profile also specifies an initial time-quantum
class which defines the maximum time period that a task will be per-

mitted to continuously execute.

Once the task gains access to the processor, execution normally
continues until the task requests to be suspende:d on 2 time-delay, issues
an input/output request or attempts to exceed the established time-quantum.
This latter case is termed a 'quanturn overflow.' If aﬁ overflow occurs,
the task is dropped to the next lowest priority level and is assigned to the
next time-quantum class with a longer quantum. unless it is already on its
lowe st permissible level. If the task is already on its lowest permissible
priority level, the task remains on that level and retains its current
quantum class regardless of the fact that a quantum overflow has occurred.
If the task executes for less than its current time-quantum, it is eligible to
be moved to a higher priority level if the actual execution time falls within

a shorter time-quantum class and if the task is not already on its highest

13



permissible level. If it is eligible to be moved upward, the task is

assigned to the next shortest quantum class and is moved one priority

level higher,

The task profile also assigns each task to one of three 'preemption
classes.' A ready-to-run task in the 'immediate preemption' class will
immediately preempt a currently executing task of lower priority. A
task in the 'delayed preemption' class will immediately preempt lower
priority memory resident tasks and swapping tasks that have been in
memory for more than one time quantum. However, if the task to be
preempted was swapped-in immediately prior to its execution, pre-
emption will be delayed if the executing task has not been allowed to run
for a specified period of time. The intent is to avoid unnecessary
swapping while still ensuring that the higher priority task receives ser-
vice within a short period of time. A task in the 'no preemption’ class
is not permitted to preempt a lower priority task and will only gain

access to the processor when the lower priority task is removed.

Memory space for tasks is allocated and deallocated dynamically
by the memory management subprocedure within the EXECUTIVE,
Fixed-size partitions are not used, and through system calls, tasks can
acquire and release memory as required. The task profile assigns each
task to a 'memory size class' which specifies the maximum amount of
memory the task can acquire. All language processors, editors, and
utilities begin executing with 2 minimum of memory and expand and
contract in size throughout a run, As the memory size of a task varies
and crosses certain threshold points, it is raised or lowered in priority
within the constraints of the maximum-minimum priority range specified
in the task profile. A task's CPU use and memory size are additive in

their effect upon priority so that, if pe rmitted, a large, compute-bound
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task will drift to a lower level than either a smaller compute -bound

task or a larger I/O-bound task.

The task profile also assigns each task to one of four 'memory
residency classes.' Tasks in classes one through three are eligible
for swapping with each successive class having a higher 'sticking
priority.' The sticking priority determines the order in which tasks
are to be swapped with tasks having a lower sticking priority eligible for
swapping before tasks with a higher sticking priority, Class four tasks

are permanently resident and are never swapped,

When a task is ready to run, the scheduler first determines if the
task currently resides in memory. If it does not, it must be swapped-
in, and the memory management subprocedure is invoked. The subpro-
cedure first scans for a block of free space large enough to accommo-
date the task, selecting the smallest if more than one of adequate size
is available. If no block can be found, a calculation is made to deter-
mine if 'shuffling' or moving tasks within memory would create a single
block of sufficient size. This calculation is not straightforward since
there may be blocks of allocated space that cannot be moved until some
ongoing input/output transfer, usually swapping, is complete. If shuf-
fling is possible, a block of free space is created, and the task to be run
is swapped-in. If it is not possible, one or more tasks must be swapped-
out. The tasks currently in memory are scanned by memory class be-
ginning with class one, the class with the lowest 'sticking priority.'
Within a class, the scanning is by priority with the lowest priority task
most eligible for swapping. However, a task cf the same or higher
priority that has been swapped-in preparatory to execution is not eligi-
ble to be swapped-out. This and a number of other considerations can

greatly cemplicate the selection process, Once the one or more tasks
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have been selected and swapped-out, some shuffling may be nécessary
before the task to be run can be swapped-in,

If the task to be swapped-in is a memory resident task, it will
remain in memory throughout its existence. The shuffling algorithm .
will cause memory resident tasks and other tasks with high sticking
priorities to drift downward in the memory address space so that
memory very quickly becomes stratified by sticking priority, This
vwpeeds and simplifies the selection of tasks to be swapped-out and re-
duces shuffling since tasks with lower sticking priorities will tend to
be adjacent at one end of the address space. Minimizing shuffling is
important since shuffling can consume large amounts of CPU time, and
if unrestricted, may be far less efficient than simple, brute force

swapping.

This scheduler and memory management design permits the
system to be tailored to a wide range of applications. By altering the
queue ratios (the frequency with which lower priority queues are to be
serviced even though higher priority tasks are ready to run) and the
task profiles of the tasks created by the MONITOR and the BATCH pro-
cedures, the software can be dynamically reconfigured while the system
is running. For example, if the application requires foreground time-
sharing and memory resident, background batch, the MONITOR pro-
cedure would create time-sharing tasks with a low sticking priority,
with a high priority range and with a relatively short initial quantum,
The BATCH procedure would create batch tasks with a high sticking
priority to force memory residency, with a low priority range and with
a relatively long initial quantum, One or more batch streams might
be supported depending upon operator specifications to the BATCH pro-
cedure. Within each type of task (i.e., time-sharing and batch}, the

16




scheduler will dynamically allocate computational and memory re-
sources based on task performance and will favor small, I/O-bound
tasks over large, compute-bound tasks. However, the priority range
concept ensures that the batch and time-sharing tasks do not overlap in
priority unless this is felt to be desirable and is specified. Depending
upon the queue ratios that are assigned, the batch stream(s) can be
kept moving regardless of the degree of time-sharing activity, or they
can be permitted to be locked out entirely during periods of extremely

active time-sharing.

Clearly, a great many other scheduling configurations are pos-
sible. In a time-sharing service bureau environment, outside paying
customers could be placed in a higher priority range than in-house
software developers. In a process-control application, background
software development could occur while operational process control
tasks are active. Those process control tasks responsible for emer-
gency or alarm conditions would be restricted to the highest priority
level (where the priority range consists of one level only), placed in the
immediate preemption class and assigned the highest sticking priority.
Depending upon requirements, other process control tasks could be
stratified on one or more lower levels, each with a unique task profile
if necessary. Software development in a time-sharing or batch mode
would be restricted to the lowest priority levels with a low sticking

priority,

Conclusion

ETSS is an operational demonstration that a multilanguage,
general-purpose operating system supporting both conversational time-

sharing and multiprogrammed batch is possible on a medium-scale
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computer. As equipment costs continue to decline, medium-scale
systems such as ETSS should see increasingly wide use in the many
application areas in which large~computer capabilities are not re-
quired. Although total hardware cost for the research and development
prototype constructed four years ago is in excess of $200, 000, a forty
time-shoring port version of the sy}stem could be constructed today for
$50, 000 - $125,000 depending upon peripherals and disk storage re-
quirements. This price range places medium-scale systems of this
type well within the financial reach of many smaller educational, busi-
ness, and research and development organizations whose computing re-
quiremrents are extensive but not of a type or magnitude to economically

justify a dedicated large-scale system.
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