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ABSTRACT

Evamples of the use of Nultiple Linear Regression
(MLR) techniques are presented. This is done to shov how MLR aids
data processing and decision-making by providing the decision-maker
vith freedos in phrasing questions and by accurately reflecting the
data on hand. A brief overview of the rationale underlying MLR is
given, some basic definitions are offered, and MLR is described as
the process of defining alternative linear models and using
appropriate test gtatistics to determine the model which bhest
satisfies the criteria of simplicity and goodness of fit. Following
this, an actual guestion of interest to am cducational decision=-maker
is stated, and a linear model which reflects the relevant factors is
presented. The process of "testing the question" is outlined. An
action-oriented interpretation of the data analysis and the resulting
steps to be taken by the administrator are described. (Author/PB)
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PURPOSE

This paper shouid:

enable the aoministrator to decide if he should investigate further,
and become competent in, the use of linear models for decision-making.
acquaint the administrator with analyses based on the use of linear

medels.,

If the admiristrator already has a sufficiently strong background in
statistics, this paper should equip him, with varying deyrees of effectiveness,

to perform the following tasks:

express decision-questions in terms of expected-values.
define a linear model for "testing the question of interest".
arrive at an answer to the question of interest based on

the appropriate test statistic.

In order to achieve these stated objectives, we simply want to give
you some background definitions, familiarize you with linear models,
and then share with you some of our experiences in using linear models for

decision-making.

* The development of the technique reflected in this paper is largely the
result of work accomplished by b.ttenberg, Ward, and Jennings, and the approach
is patterned nfter a graduate course offered by Earl Jennings at the

University of Texas, Austin. Individuals enticed by this paper to pursue

the topic fu:ther should obtain a copy of Introduction to Linear Models

(Prentice Hall) by Ward and Jennings.
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Center of the Texas Education Agency. He received a BBA in Statistics
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APPROACH

After the introductory rationale and definition of some necessary .
terms, this paper will adhere to the following structure:

an actual questior. of interest to an educational decision-maker

will be stated.

a linear model that reflects the relevant factors will be presented.
the process of "testing the question" will be outlined.
action-oriented interpretation of the data analysis and the
resulting steps taken by the administrator will then be described.

INTRODUCTORY RATIONALE

Data processing has established its role in managerial decision-
making. For the education oriented community it has been the information
vehicle for budget formulation, needs assessment, and program planning.
Inherent in ecch of these areas is evaluation. Does spending money for X
instead of Y make a difference in student achievement? Does group A
need more help in reading than group B? Is curriculum C superior to
curriculum D?

Administrators are making decisions daily which incorporate explicit
or implicit answers to these questions. A relative measure of our
success as processors of educational data is the extent to which the
administrator does not have to compromise his inquiries to fit our
processing tools. Ideally, he is a creative decision-maker asking meaning-
ful questions about the intense human process of learning. Filled with
interacting factors, this process strains the boundaries of our data systems .
(the information vehicle) more than an analogous process in any other
environment. One tool capable of reflecting the human interactions
involved in learning is "Multiple Linear Regression".

By "Multiple Linear Regression" we mean the process of defining
alternative linear models and using appropriate test statistics to
determine that model which best incorporates the criterion of "simplicity"
and "goodness of fit".

PRELIMINARY DEFINITIONS

In order that the reader may be acquainted with some of the terms
necessary to the development and use of linear models, we proceed with the
following definitions.

expected value - the weighted sum of a set of values which yields an
average for a group; it is this average that we call an
expected value, i.e., "the expected reading level of
third grade girls".

column vector - a columnar method of presenting a series of numbers;

H o

is a column vector with three elements; if a column vector
contains only ones and zeros it is called a binary vector.
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linear model - an equation, designed to reflect relevant factors in a
process, and composed of a series of vectors and their
respective coefficients (also called weights); linear
simply refers to the fact that the coefficients exist
in our equation as multipliers and not as exponents.

criterion variable - the variable of interest that we hypothesize is
dependent on the factors included in our model.

DESCRIBING THE PROBLEM

In order to proceed with our definitions we must now introduce an
example of a linear model. Suppose we had scores from the administration
of a reading test to a group of four students. Subsequent to the testing,
the four students were randomly assigned to one of four teaching machines.
Two of the machines were programmed with teaching method A and two with
teaching method B. After an appropriate amount of instruction time they
were then given a second administration of the reading test and their
"gain score" was computed. We now want to determine if the two teaching
methods are different in their effectiveness.

DEFINING THE STARTING MODEL

Entertain the following linear model:

Y = alA + azB + E

I = U)o+ o o+ by
3 ar 1 azi 0 b2
2 0 1 b3
6: 0 Ll b4

- the Y vector contains the measures on our criterion variable (the
"gain score") for each of the four students.

- the A vector contains a representation for membership in the group of
students taught by method A; specifically, it contains a 1 if the
corresponding "gain score" in vector Y was observed on a person that
was taught with method A; a 0 otherwise. (Note that A is a binary
vector.?

- the B vector contains a representation for membership in the group of
students taught by method B; specifically, it contains a 1 if the
corresponding "gain score" in vector Y was observed on a person that
was taught with method B; a 0 otherwise. (Note that B is a binary
vector. )

- the E vector (called the error vector) contains the numbers necessary
to satisfy the equality once the values of a; and a (the vector weights)
are chosen; these numbers may be thought of as the deviations of each
student's actual score from the expected value of a group in which
he is a member.

We know that the first two elements of Y are measures on students taught
by method A and the last two, measures on Sstudents taught by method B. From
our model, the elements in Y can be expressed by the equations:
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1 = a, 1) + a, (0) + b

3 = aq (1) + aj (0) + bz

2 = a; (0) + a (1) + bsy
6 = a3 (0) + ap (1) + by,
SOLVING FOR THE VECTOR WEIGHTS

[t should be obvious that there are a number of different values for a
and ap (our vector weights) that would satisfy the equations. But which
values shoud we use? In order to answer the question let's begin by
experimenting with different values:

1 = 1 () + 1 (0 + (0 b, ] [0
3 0= 1 () + 1 (0 + (2 so B = by} =]2
2 = 1 (0 + 1 (1) + (1 . | by 1
6 = 1 (@ + 1 (1) + (5 b, Ls_
let a4 = 2 and ap = 4
1 = 2 (W) + 4 (0 + (1) [by] [T
3 0= 2 (1) + 4 (0 + (1) so Ep = Iby| =} 1
2 = 2 (0 + &4 1) + (-2 by -2
6 = 2 (0) + 4 (1) + (2) 154 | 2|
let a3 = 4 and ap =1
1 = 4 (1) + 1 (@ + (-3) b, 1 [-3]
3 = 4 (1) + 1 (00 + (-1) so Ej = [by| =]|-1
2 = 4 (0 + 1 (1) + (1) by 1
6 = 4 (0 + 1 () + (5) blL | 5|

Note that the values for by, by, by, and b, (the elements of the error
vector) depend on the chosen va}ues of a1 and ajp. Lo

In order to specify the basis for determining the "best possible values"
for a; and aj (the vector weights) we introduce the following definitions:




least squares solution - values for the vector weights that cause the
sum of the squares of the elements in the error
vector (E) to be a minimum; in our specific
example, values for a; and a, such that no
otger values would yield a smaller result of
bl + b22 + b32 + b42.

error sum of squares - the sum of the squares of the elements in the
error vector.

When the error sum of squares for a model is a minimum, the values
for the vector weiahts are said to be the result of a least squares solution.

from our choices for aj and ap we find

when a1 = 1 and ap = 1, (002 + (2)2 + (1)2 + (5)2 = 30
when aj = 2 and a, = 4, (-1)2 + (1)% + (-2)2 + (2)? = 10
when a; = 4 and a, = 1, (-3)2 + (-1)2 + (1)% + (5)2 = 3

Of these three sets, a; = 2 and a, = 4 cause the sum of the squares of
the elements in E (the error sum of squares) to be the smallest. In fact,
there are no other values for a, and ap that produce a smaller error sum
of squares. (There are a numbe} of computer programs that will take
vectors representing a linear model and produce a least squares solution
for the respective vector weights.)

In this specific case (with the least squares solution for a; and az)
one might note that the average "gain" (expected value) for the sample
%roup taught by method A is equal to the value for a; and the average "gain

expacted value) for the sample group taught by method B is equal to the
value for a,. (This fact is characteristic of models with multiple groups
defined by Einary predictor vectors.)

- From this point on, any reference to vector weights will mean weights
which, for that model, produce the minimum error sum of squares.

Now back to our question at hand - are the teaching methods different?

In our model the expected value for method A is aj and each student's
actual score differs from that expected value by the corresponding amount
in the error vector. The same is true for method B and a;. This verifies
the fact that our first model allows for two different expected values for
the "gain scores" - a; for method A and aé”?br method B. And finally, in our
first model with the }east squares solution for a; and a2 as 2 and 4
respectively, our error sum of squares is 10.

" DEFINING THE RESTRICTED MODEL

Now let's construct a model that does not allow for differences between

the two expected values, find the least squares solution for any vector weights

that model contains, and then loox at the error sum of squares. To generate
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this second model, we must impose the restriction that a] = a,; we are in
effect requiring that the expected values for the two groups Ee equal. With .
this restriction our model becomes

Y = alA + 318 + E

(Note that since we have required that a; = ap we can subscitute a1 for ap as
the coefficient for the B vector.)

A

Since a;” + aIB = al(A + B) we have

Y == al(A + B) + E
3 = ay 1 4+ | dafor 3 = a3 (1) + ds
2 1 dj 2 = a3 (1) + d3

‘(Note that there is only one expected value (al) in this new model.)

The least squares solution for the vector coefficient (al) in this new
model is 3, and dy = -2, dy = g, d, - -1, dg = 3 or

w

-2

E,= | 0
-1

3 l .
and finally, the error sum of §qu5}es is computed (-2)2 + (0)2 + (-1)? + (3)2 = 14,

At this point it would be helpful to summarize at an intuitive level:

We want to find out if the two teaching methods produce
different results. we first define a linear model that allows
different expected values for the variable of interest. We then
find the "best possible estimates" for those expected values
based on the data at hand. (The "best possible estimates" are

defined as those that cause the error sum of squares to be
minimum. ) '

In the next step we define a model that does not allow for
differences in the expected values. The least squares solution
for the vector weight in this "restricted model" is the "best
possible estimate" for a common excected value. (No differences
between'expected values for the methods have been allowed.)




If the two expected values in the first model were almost
equal, then the "restriction" to a common value will yield a model
that "fits” almost as well. Therefore, the difference in the
measure of "fit" (the difference in the error sum of squares) from
the first model to the second will not be "very large".

On the other hand, if the two expected values in the first
model were "very different", the "restriction" to a common value
will yield a model that has an error sum of squares that is "much
larger".

TESTING FOR SIGNIFICANCE

The basis for deciding what constitutes "very different" or "much
larger" follows. Assume the cata is a representative sample randomly drawn
from the population of interest. It is pessible for us to have drawn our
sample in such a way that the students assigned to method A actually
averaged less than would have all students taught by A; similarly, the
students taught by method B may have performed better than the average we
would have encountered had all students used method B. Therefore, we
must "make relatively certain" that the sample performance differences
between the methods are due to real differences in the effect of the
methods and not simply a result of our randomizing process. To "make
relatively certain" is called "testing for significance".

In order for us to "test for significance" the following assumptions
about our data should be verified:

1) Our sample should be randomly selected from the population of interest.

2) It must be possible to express the actual expected values of the.
population in the manner of our first model.

3) The distribution of the variable of interest within each population
(group} must be normat.

4) The variance of the variable of interest must be the same within
each population (group).

5) The variable of interest within each population is distributed
independently of any of the other populations.

(Although full understanding and careful application of these assumptions .
is crucial to significance testing, we do not think such understanding is
necessary to the flow of this paper.)

If it is true that the data possesses the preceding characteristics,
then we may proceed with an F-test. An F-test involves the calculation of
the F-statistic which is determined by the following formula:

F o=, (ESSp - ESS;)/df,

ESSF/df2
where

ESSR is the error sum of squares for the second ox "restricted" model.
ESSF is the error sum of squares for the starting or "full" model.
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and dfp are "degrees of freedom" (df1 equals the number of
%Par1y 1ndeoendent predictor vectors in the full model minus
the number of linearly independent predictor vectors in the
restricted model; dfz equals the number of elements in the
criterion vector minus the number of linearly independent
predictor vectors in the full model*).

Temporarily ignore the effect of dfl and dfn. Note that the
numerator of the fraction is the difference betwéen the error sum of
squares for the restricted model and the error sum of squares for the

'starting (full) model; the fraction itself is simply the ratio of that

difference to the error sum of squares for the starting (full) model.

For any given full model, a comparison to restricted models that have
larger and larger error sums of squares will result in larger and larger
values for F. When the value for F exceeds some "prespecified" amount,
the differences in the effectiveness of the representation of the data

by the models is said to be significant. But since we know that the

first model incorporates all necessary expected values, it follows that
the restrictions resulting in the second model! do not adequately allow for
the reflections of relationships that exist in the data.

Each significance test results in an F-value. There is always a
possibility that the calculated F-value reflects differences found in the
sample qroups, while no differences actually exist in the two populations.
Standard tables for the F-distribution contain the probability of such
an error. It is this probability value which the administrator must
ultimately incorporate into his decision-making.

At this point we should mention that sianificance testing is
applicable when the data is a random sample. If, as in some situations,
data exists on the entire population of interest then we recommend a simpler
procedure. Construct a starting model which reflects possible differences
in expected values; find the least squares solution for the expected values;
and finally, calculate the differences in ihe expected values. The adminis-
trator can then base his decision on the size of the difference. In
our specific example, if the decision-maker feels that an average "gain
score”" of 4 instead of 2 is worth whatever other differences between
method A and method B exist then he has reached his conclusion. If he
does not feel the difference in the expected values warrants the
recommendation of one method over another then he has also reached his
conclusion.

ALTERNATIVE STARTINAR MODELS

We have now established all of the terms and definitions necessary
for understanding the remainder of the paper. In the next step of the
background and definition phase we discuss a different starting model
for the example problem of the teaching methods. The following discussion
should highlight the flexibility of linear models in reflecting relevant
factars.

Suppose we show a colleague the starting model

k Y = alA + azB + E
where the vectors are defined as before. Upon realizing that we used "gain
scores”" further suppose that he asked. to see the original scores upon which
the calculation of the "gain scores" was based. They are presented below:

* Full understanding is not necessary to the flow of the paper.
8



o [FiEIEEE TITmEREIT[ e
1 8 9 1
2 6 9 3
3 6 8 2
4 2 8 6
SR _— ——

After examining the table he points out that teaching method B "had a
lot more to work with" because students assigned to it scored so low on the
pre-test, and that "it's not fair to compare the two methods using the
‘gain score'". Further, suppose he adds that he's "not interested in a
'gain score' anyway". He wants to know "where the student is" when the
instruction period is over. We acknowledge that his concerns are valid
and begin thinking about alternative models which will incorporate the
essence of his objections and still allow the "testing of the question
of interest".

One possible such model could contain the post-test as the criterion
variable and include the pre-test as one of the predictor variables.
It is shown below:

A agn aoB o aglA s agilbh E
‘ R |1 : 0 (& (o] by
E Pl ay | 1 ; poas [0 ay Ot a4 U (e tbo
E ; o‘ 1 3 6] |,
i
L& (’i 3 Ll | 2 ..b('f.J

- the Y vector contains the post-test score for each student.

- the A vector contains a 1 if the post-test sccre in Y was observed on
a student taught by method A; a 0 otherwise.

- the B vector contains a 1 it the post-test score in Y was observed on
a student taught by method B; a 0 otherwise.

- the PA vector contains the pre-test score (for students taught by
method A) that corresponds with the post-test score in Y; a O for
students taught by method B.

- the PB vector contains the pre-test score (for students taught by
method B) that corresponds with the post-test score in Y; a O for
students taught by method A.

- the E vector is the error vector.

Note that in this model the criterion variable is no longer the "gain

score". It is now the post-test score. Furthermore, the expected values
. for the two groups now "depend on" membership in the group, and the beginning
leve? of achievement as measured by the pre-test.
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The expected value for a student taught by method A and who had a
pre-test score of x can be expressed as:

E(A,x) = ai(l) + ap(0) + az(x) + ay(0)

where a1, 35, s, and a, are least square vector weights. Coefficients
mu1t1p11ed y 0 drop out and the equation becomes

E(A,x) = aj(1) + agx

For any given score on the pre-test we can now estimate how a student
taught by method A will perform on the post-test. Following the same
procedure we could estimate expected performance on the post-test for
students taught by method B. Furthermore, restrictions "testing"
different questions of interest could be imposed as in our previous
example. However, we have explored the use of this alternative starting
model simply to highlight the flexibility of linear models.

In summary for this section we make the follnwing points:

the decision-maker should be permitted to decide on the form of
his criterion variable.

the decision-maker should be permitted to include all factors
he deems to be effecting change in that criterion variable.
finally, he should be able to test any hypothesis about which
he has sufficient data.

It has been our experience that Multiple Linear Regression goes a long
way in meeting these needs. In our next section we will share with you
some of these experiences. '

APPLICATION OF MULTIPLE LINEAR REGRESSION
PROBLEM SETTING

For many years kindergarten experiences have been available to those
students whose parents could afford to enroll them in private schools.
The benefit of such programs were apparently of value to those who bore the
cost. It was said by many that this early childhood experience enabled

these youngsters tc accelerate their achievement in later school experiences.

With the coming of President Johnson's War on Poverty, this concept
of the value of kindergarten was proffered as a way to enhance the educa-
tional attainment of those who were disadvantaged. Almost immediately the
Office of Economic Opportunity initiated the Head Start programs. This
was followed in the summer of 1966 with early childhood proarams funded
with Title I, ESEA. These programs were advocated by early childhood
specialists and were sold by all of the agencies managing the poverty
programs as a way of compensating for the lack of development experiences
on the part of children about to enter the formal educational system.

In 1969 the Sixty-first Legislature of Texas enacted a sweeping
educational law which provided, among other things, for the gradual
phasing in (by 1975) of kindergarten type experiences for ali youngsters
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age five and over. Few studies have been conducted to determine the

actual long-term benefit ¢f early childhood educational programs on the

achievement of either disadvantaged or advantaged students. An evaluation

of an early childhood program in Fort Worth Independent School District

indicated that mean I.Q. scores of participants increzsed by as much as

ten points during the one year (nine months). (3, pp. 91-93) An evaluation

of such a program in Edgewood Independent School District indicates, "A

?Zgnifiza?t gain at ages five, when tested for English language development."
s p. 46

A research study by Norman Silberberg to determine The Effect of
Kindergarten Instruction in Alphabet and Numbers on First Grade Reading
concluded that, "the beneficial effects of kindergarten training were
dissipated by the end of grade one." (2, p. 14) Another study by Melvin
Allerhand, which looked at the Head Start program, indicates that there
are decreasing differences between the Head Start group and the non-Head
Start group. (1, pp. 3-8)

Even without any clear evidence either to support or disclaim the
value of early childhood education, the clamor to move early childhood
education down to children ages two and three is widespread. There are,
however, many who feel that this educational experience is not of much
consequence and is an expensive baby-sitting service at best. As the
convening of the Texas Sixty-third Legislature approached, the concern
about early childhood education continued to be expressed. There was no
clear cut mandate by the State Board of Education or the general public
to do an evaluation study of early childhood education. However, we
realized that some data was available to us which related early childhood
education to some types of achievement data. It was our thinking that
perhaps this available data would present at least some trends which would
tend to support the experts in early childhood education.

The data which we had was collected by the 1971 Elementary School
Survey from 98 Texas school districts. This survey was developed by the Joint
Federal-State Task Force on Evaluation operating with funding from the U. S.
Office of Education. The campuses which were surveyed were selected because
of their participation in federally funded programs. A sample of pupils
in Grades Two, Four, and Six on these campuses was incliuded in the survey;
however, their teachers provided the data needed to complete the data
collecting instruments.

From these data, information was extracted about pupils who had
experienced kindergarten or Head Start training and who had both pre- and
post-test scores on some form of standardized test. Since the pupils
included in this study were in either Grades Two, Four, or Six during the
1970-71 school year, their early childhood education was either through
private programs or perhaps in some cases through programs funded by OEQ or
Title I, ESEA.

The implication of what I have said about the data up to this point,
is that the sample was very biased by initial selection of the campuses and
by subsequent scoring for thosz who had both pre- and post-test scores
reported. The data is further contaminated by the gathering of all
achievement scores into one pool regardless of the manufacturer of the test

11
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or the form of the test which was used. The fact that the early childhood
programs were different for different groups of students may or may not be
important to the findings. .

THE PROBLEM

Does this data give any trend information which would support the
theory that early childhood education is a factor in the performance of
either disadvantaged or other students as reflected in achievement scores
for reading or mathematics? If there is such a trend, does it have a
greater impact on the performances of students who are disadvantaged?

There are a number of specific questions implied in the problem
statement. Some'pf these are:

Do second grade students who attended kindergarten perform better,
as measured by the reading test, than second grade students who
did not attend kindergarten?

Do fourth grade students who attended kindergarten perform better,
as measured by the reading test, than fourth grade students who
did not attend kindergarten?

Same for sixth grade.

Do disadvantaged second grade students who attended kindergarten
perform better, as measured by the reading test, than disadvantaged
second grade students who did not attend kindergarten?

We found that each of these specific questions were "testable” using
the same general model. Therefore, we will demonstrate the procedure for ‘
only three such questions. First considur the second graders.

DEFINING THE STARTING MODEL o
Using post-test scores as the cr’*erion and inciuding factors reflecting
the pre-test score,
‘. instruciion time between tests, and
kindergarten attendance;

ve constructed the following starting model:

Y a1k + aNK+ biIK + DboINK + ¢y TK + czTNK+d1(IK*TK)+d2(INK*TNK)+ E
2.3 1] ‘0] 1.8 KR "6 | 0] 10.8 o] [
1.8 1 0 1.4 0 8 0 11.2 0 X2
3.6 1 0 2.1 0 10 0 21 0 x3
. =2 al . + az . + bl . + b2 » -+ C1 . + Cz . + d1 . '4'd2 . +1.
2.8 0 1 0 2.1 0 7 0 14.7) |.
2.9 0 1 0 2.4 0 10 0 24 .
L} 'S ;..0..4 _1_4 L.o_a B'Z. _.0_4 _S_. ._.0_ __8'_'1 ‘\__J
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- the Y vector contains the post-test score for each student.
- the K vector contains a 1 if the corresponding score in the Y vector
. was observed on a student who had attended kindgergarten; a 0 otherwise.

- the NK vector contains a 1 if the correspondina score in the Y vector
was observed on a student who had not attended kindergarten; a 0
otherwise.

- the IK vector contains, for all students who had attended kindergarten,
the pre-test score corresponding to that post-test score in the
Y vector; a O for all students who had not attended kindergarten.

- the INK vector contains, for all students who had not attended
kindergarten, the pre-test score corresponding to that post-test
score in the Y vector; a O for all students who had attended kindergarten.

- the TK vector contains, for all students who had attended kindergarten,
the amount of instruction time between tests; a 0 for all students who
had not attended kindergarten.

- the TNK vector contains, for all students who had not attended kinder-
garten, the amount of instruction time between tests; a 0 for all
students who had attended kindergarten.

- each element in the IKTK vector is simply the product of the correspond-
ing elements in the IK and TK vectors.

- each element in the INKTNK vector is simply the product of the corres-
ponding elements in the INK and TNK vectors.

Note that the expected score on the post-test for a student that had attended
kindergarten, scored 2.0 on the pre-test, and had eight months of instruction
is expressed as:

. E(K,2.0,8) = a; + by(2.0) + cy(8) + dp(16);

the expression for a non-kindergarten student with the same pre-test and
instruction time is

E(NK,2.0,8) = ap + bp(2.0) + c2(8) + d2(16)

After solving for the least squares vector weights, the error sum of squares
was computed to be 219.94.

In order to test for significant differences between the performance
of the students who had been to kindergarten and those who had not, we
next imposed restrictions on the vector weights in the starting model that
would force the expected values for the two groups to be the same. That is, let

al =32. bl =b2, C1=C2, d1=d2

The following model results:
Y = ag(K+ NK) + by(IK + INK) + c4(TK + TNK) + dy ((IK*¥TK) + (INK*TNK)) + E

pranee r—- - ~ ™ = - -
T2.%] 1] 1.8 6 10.8 1
. =: al . + b1 . + Cl . + d1 . +1.
2.8 1 2.1 7 14,7 .
2.9 1 2.4 10 24 .
O .6 1 1.7 5 8.5 y
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tote that in our restricted model we have included the same relevant factors
contained in the starting model, but we have not allowed for differences

between students who attended kindergarten and those that did not. From ‘
this restricted model the expected value for any student with a pre-test

score of 2.0 and eight months of instruction 1S expressed as:

E(2.0,8) = a; + by(2.0) + cq(8) + dqy(16).

After solving for the least squares vector weights, the error sum of
squares was computed to be 226.67.

Calculation of the F-statistic yields an F-value of 3.268. The
probability associated with this F is .0045. Thus, if the total population
of second grade students who had not attended kindergarten can actually
perform identical to those who did, only .4 percent of the time would
differences between sample groups be as large as those in our sample.

Using identical starting and restricted models, and samples of fourth
and sixth graders, we produced table 1 shown below:

ERROR SUM OF ERROR SUM OF
GRADE SQUARES, FULL SQUARES, RESTRICTED F-STATISTIC PROBABILITY
4 1601.56 ' 1612.80 2.1053 .0780
6 761.75 787.90 4.8996 .0007

Table 1
®

The figures on the following pages were produced using the least
squares weights generated by the appropriate starting model. For each
of the two groups, at specific levels of performance on the pre-test,
and different amounts of instruction time between tests, expected values
for the post-test performance are plotted.

DECISION OPTIONS

This presentation, we hope, will illustrate for you the importance of
multiple regression analysis in developing decision options which can
consider various alternatives that may be controlled by the planner or
evaluator. One could examine identified non-controllable variables, if
these seem important; however, the planner or evaluator is usually
interested in improving performance by describing more successful ways to
mix the controllable variables.

In the example which we have presented, one of the controllable variables
is early childhood education. This educational experience can be withdrawn,
or increased amounts can be provided. In table 2 we examine this variable
to see its impact as children move through levels two, four, and six. These
are average gain scores for groups of students who have been exposed to
early childhood education and for groups of students who have not been so
exposed.
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SECOND FOURTH SIXTH

GROUP GRADE GRADE GRADE
Reading, Kindergarten . 094 .102 .079
Reading, Non-Kindergarten .083 094 .079

Table 2

You will note from this analysis that the second and fourth levels
appear to have gained in performance as a result of the early childhood
experience while this effect has been negated by Tevel six. Although
the gain score analysis takes into account the time between pre- and
post-testing at these levels, the significance of that time factor is
Tost in the group average.

The expected value plots obtained through the 1inear model described,
allows one to consider the effects of both the time interval factor and
the differences in pre-test performance. We are now able to examine the
effects of early childhood experiences upon the performance of groups of
.students who were comparable upon entry into the instructional process for
tnat year and who had approximately the same amount of instruction during
the year.

An examination of these plots (Figures 1-4) reveals that early childhood
education has a positive impact upon the reading achievement of students at
the second Tevel but that this impact lessens over time. It may also be
observed (Figures 1-4) that the groups with higher entry points require
shorter periods of time before the positive effects of early childhood
education are Tlost.

Although the gain score analysis indicated that the effects of early
childhood are lost by level six, the Tinear model plots (Figures 5-10) at
this level do not confirm this. You will note, however, that in all af the
graphs presented for this level, the groups with early childhood experiences
did Tess well in the shorter time periods. As the performance -is plotted
for the longer time periods, 1t appears that the early childhood experience
is beneficial.

THE DECISION SELECTED

Today we have reviewed only a few of the 30 different analyses which
were accomplished using tae multiple linear regression technique. These
are sufficient to illustrate the value of this technique in generating
decision options for planning and evaluation.

After examining the various expected values which resulted from the
Tinear model just described, and considering the quality of the data which
was available for use with this model, we concluded that a more carefully
controlled study of early childhood education is needed before we can
recommend any action be taken with respect to such programs in Texas.

Early chiidhood education programs are being conducted in most Texas
schools. We think we have gained some useful insights into better ways to
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evaluate these programs. It is our hope that we have provided you with
some new ideas that can make your planning and evaluation effort a little.
better and thereby make the education available to students in your schools
more meaningful.

SUMMARY
What we have tried to say can be summarized in the following statements:

decision-making is an integral part of the process of evaluation and
program p1ann1ng
data processing in general is assuming an ever-increasing role as
the vehicle for information requ1red by decision-makers.
two measures of our success in this role are
1. the extent to which the decision-maker experiences freedom
in phrasing questions.
2. the degree to which our systems accurately reflect the
process symbolized by the data.
the purpose of this paper has been to show how "Multiple Linear
Regression" satisfies these two measures.
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