DOCUMENT RESUME

ED 086 223 IR 000 075

" AUTHOR Rlpota, Peter-

TITLE A Concept For a Primary Author'ts Language {PAL-X)
INSTITUTION Freiburg Univ. (West Germany). /

PUB DATE 73 S :

NOTE 20p.; Paper presented at the Internaticnal Conference

on Training for Information Work (Rome, Italy,
November 15-19, 1971)
/

EDRS PRICE HF-$0.65 HC-$3.29

DESCRIPTORS *Computer Assisted Instruction; *Computer Programs;
*Documentation; Higher Education; Machine
Translation; Program Descriptions; *Programing
Languages; *Translation

IDENTIFIERS COURSEWRITER II; LIDIA; PAL X; *Primary Authors
Language : 3

" ABSTRACT :

A Primary Ruthor's Language (PAL-X) has been
developed to serve as a documentation language for computer-assisted
instructional (CAI) programs. Its development was necessary to permit
the dissemination of CAI given the facts that: 1)existing CAI 4
programs were written in over 60 languages; 2)the syster for
COURSEWRITER II, the most commonly used language, was discontinued by
International Business Machines (IBM); and 3)an exchange of programs
was found to be nearly impossible. PAL-X was built to cdontain
ansver-processing functions, to be independent of hardware and of
machine, programing or auther languages, to have simple,
internationally recogqnized symbls, and to be capable of partition
into subsets. The language was designed to function with
non-generative and generative CAI; operations, names and text were
separated and the verbosity of programing languages avoided. It was
constructed to be used for primary authoring of CAI, to date it has
been employed to author CAI material at the University of Freiburg,
to translate programs from COURSEWRITER to LIDIA, to introduce
students to the principles of CAI, and to document a program in
general chemistry. (PB)

" FILMED FROM BEST AVAILABLE COPY

-

«J
O
. - ; l N .
o A Concept for a Primary Author's Language
L
= |
- ‘ : (PALaX)
" . -
‘. - . ALTH.
. | | s ST RS
NATIONAL INSTITUTE OF
’ EDUCATION

REPRC
THIS DOCUMENT HAS BEEN_
DUCED EXACTLY AS RECEIVED FROM

. .
by Peter Ripota RGANIZATION ORIGIN .
WE PERSON OR O
’ ® . NG 1T POINTS OF ¥!EW GR OPINIONS

RILY REPRE
STATED DO NOT NECESSA

SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION QR POLICY

4

Projekt CUU, Universitﬁt Freiburg, WeGermany

.Goal

Taking a look intd Helen Lekan's 'Index to Compﬁter Assisted Instruction” (1)
we find about 1300 progra;'ns for CAI written in approximately 60 different lanw
guages. Making a trend-analysis for the next (fourth) edition, we shall see some
’ 1750 programs plus or minu\s 200, Both in the second ahd iﬁ.'the th‘ird edition,
the most widely used l-anguaglle was COURSEWRITER II, a language running on
a syste;:n no longer maintained by IBM. The point I'm driving at is the folloam
wing: How shall- this vast amount of instructional material ever be made avai~
lable to the genﬁ-zra.l i)ublic when an exchange of programs (even those written |
in the same language) is nearly impossible ? What is standard pl;oced'azre in
. computing vscience - the publishing of algorithm’s in a suitable documentation
language (ALGPL) (2), or their exchange through a generally available prow
gr,ammihg language (FORTRAN) ~ seems to be impossible within the field of
CAI, As a resu%.te instructional programs usufially are of pure quality dus to

the lack of competition, criticism and 'survival of the fittest',

To achieve this there are two ways:

TR OooO7S

(1) Persuade everybody that APL is the {inest language in the
world o that everybody w:ifeg his program in this language,

after which they are freely exchangeable,

m ‘ .

Aruitoxt provided by Eic:

2w

(2) Develop a documentation language especially for CAI, then
start documenting instructional programs and publish these

r documents.

Since I am not so sure about the feasibility of number one, I pursued numter
4
two = trying to create a language suitable for documenting programs in the

field of Computer Assisted Instruction. The result is a Primary Author's

Language, PAL~X, the 'X' standing for the sub-part of CAI it is intended
for., PAL.X is artifical, machine~independent and not intended for immediate
computer implementation, It is for the ' man in the field', the teacher who
needs some means of expressing his ideas about a certain program in a con-

cise, complete and unambiguous way.
Some of the requirements of such a language are the following:

(1) It is to be developed for murposes of Computer Assisted
Instruction {CAI) which means, am;mg other things, that
it contain answer~-processing ' nctions,

(2) Opefations are to be independent of any hardware confis
guration, machine language, programraing language or
author language, They are to reflect the logical structure
of an instructional program.

(3) Symbols should be sinflple, selfcexplanatory and effective,

(4) Symbols for mathematical and logical operations should

be as close to international practice as possible.

(5) It should be constructed in such a way that it can be parti-
tioed into independent subsets according to the needs and fa-

cilities of existing author languages.

3=

Let me clarify the concept of documentatior . People still think that drawing

a flow=chart is suffic;ient to tell programmers and users what the program

is about, It is ~ for tlie most simpie quéstion-answer-type programs so abune
dant in CAI (and so bad to. its reputation). But when you try to document either
a program with much text, or with a more complex teaching strategy (e.g. a
simulationegame), or with faradvanced algorithme {for analysis of natural .
language), then é. flow~-chart is a nice illustration of perhaps some esthetic
value. It is by no means sufficient for a programmer tryin’g-to;‘ understand

the program!'s logic or to implement it on another system. For thisoneneeds a

language,

From our few remarks about the goal of the language, its possible applica~

tions are easily to be seen:

(1) PALaX may be used for_prnnarlauthorl_g of CAI-programs, maklng

possible a division of labour between author and programmer. Authors
thereby are free from burdening their minds w1th. such irrelevant
things as loading counters,calling the calculator through some special
commands, or other implementation~dependent format-intricacies
that have nothing to do with program. logic or education, This ''source
program" in PAL«X can be given to an experienced programmer ac-
ting as a human compiler by translating PAL-Xesourcescode into any
convenient programming language - evel assembly language to gain
effectivity. (This transiating process may be done by a mechanical
preprocessor; in these manuals, however, we adopt the author's 'poirﬁ

of view and do not worry about the actual implementation of our ideas.)

2) PALeX is, as already said, a means of documenting instructional Prow

grams in a complete and unambiguous yet machine independent and
easily readable way. It could help tear down the language barrier in
CAI and enhance the exchange and evaluation of Computer Assisted

Material.’ _ ‘ ' L i

-l -

(3) PAL«X is an attempt at a standardisation for CAI and related fields.

' General books cn computing sdence usually contaih examples either in
FORTRAN or in ALGOL (or some modified version of these). Nothing
comparable is possible in CAI. An author attemping a text-book on CAI
would have to write his examples in COURSEWRITER III or APL, since

by now these are probably the most widely used author languages.

But COURSEWRITER and APL are very bad documentation languages as everye=
body knows who tried to read the printout of a CWe or APL~program of modes
rate complexit., On the other hand, PALeX is rather short (due to its notatioe
nal philosophy), covering many fields, operations and applications (due to its
independence of actual realisation) and easily expandable to cover aspects of
CAI unknown in the past (and present) but of probable great importance for the
future, if CAI wants to have any chance of survival (list processing, for exampe=

le, and formula manipulation).

Content
Adopting the scheme of UTTAL (3) there are three kinds of CAI:

(a) degenerate CAI where the student's reaction is confined to

pressing a button (and where you really don't need computer);

(b) selective CAI where all answers have to be prestored by the
author;

(c) generative CAI where the possible answers (and in some sy=
stems even the questions) are generated by some internal

algorithm,

«5e

Most existing CAI programs belong to (b) and although they to a great degree
are responsible for CAI's bad reputation, they have their justification even
“in the future, So, PAL-X starts with operations suitable for selective CAI,
for which the 'X'is replaced by an 'S': |

PAL=S for selective CAI

PALaS is treated in {4a) and (4b), (4a) offeringAa gradual introduction to both
CAI and programming for people not experienced in any field, whereas (4b)

gives a more formal and complete description,
. T ’

(4c) gives a description of desirable graphic inpute and output facilities;

" hence ‘X' now becomes 'G': \
PAL-G - for _graphic input and output

(4d) offers a notation for the documentation of algorithms useful in generae

tive Computer Assisted Instruction; and this subset of the language is called

!

PALeA for algorithms.

In this é.rticle, we only explain the main features of PALS,

Sfructure

.The general princiiale in constructing PAL was a separation of gperatlcn§
(denoted by special symbole), names (represented by" mnemonic constructs

in capital letters), and text (i.e. character strings used fér output- and in=
put=analysis). The verbosity of common programming languages was avoided.
in order to get a notation very similar to that of APL in certain ‘\vays. Let me

give three simple examples,

wbo

One of the most important operations in procedureworiented programming
languages is branching., There is a very convenient and natural sign first
introduced in APL, the arrow (-), Based on this concept, PAL provides the

following operations:

3
- label branch to designated label
- ' | ' branch to next frame (where frame will be dee.

fined in our final example)

% branch back to vfaiting_’point after Wrong anse

‘wer (for the concept of ' waiting point* see our

third example)

t4 o branch back from subroutine
by indicator for reentry point when branching

VPN

back from subroutine

1 : ' ~ branch out of program (e.g. forced termination

. of dialog)

A second example shows how PAL takes into consideration special needs of

CAI Instructional programs make use of counters for counting answers of

certain kinds (correct, wrong, unanticipated, within certain limits of tolerance,

partié.lly i:.o:‘r.ré'c':"i:,_iji’artially wrong, etc.,) Assuming the counterevariable x to

be incremgted by n (n being any pbsitive or negative integer, whereby x is

decremented in the latter case), one writes

adnfe? in COURSEWRITER

which is short but not very natural (by which we mean close ‘o mathematical

notation), and
x:=x+n in ALGOL,

which is more like mathematics but rather long. PAL introduces two slashes

to enclose the variable and the incrementor:
/x,n/ in PAL,

meaning the same as the above. If n happens to be 1, then our expression re-

duces to
/x/
which is probably the most concise way to express a frequently used -operatioﬁ.

Our third example concerns the concept of the'waiti..rl;q.point and the combination

of signs reflecting the combination of c.o.n.cveptls. The waiting point is that posi-

tion in the program: . where the computer is ready to accept input from the ter-.

minal, In FORTRAN, this is indicated by the cdrnmand READ; in APL it's the
quad (173), but many CAI-languages provide no special statement which easily
leads to confusion. PAL makes use of a small c1rc1e (o) h1nt1ng at the fact that

the program now is open for the student's 1nput

o —s- wait (indefinitely) and accept

input from terminal

Sometinﬁes an author wants to limit input either through space or through time.
Let's take the latter case first. Suppose there should be a limit of twenty se-

conds (as perhaps required in a psychological test); "then this is written as

)

0 20 sec e wait no more then 20 seconds

Suppose the author wants the input to consist of not more than five characters,

Then he writes
o o5 . accept input'with no more than

five characters

Finally, in placing a slash over the waiting point, followed by a time appoint-
ment, the author indicates that the program waits (for a fixed length of time)

but no longer accepts any input:

4 30 sec ' wait thirty seconds but accept‘ no

input ("pause')
Our final example will introduce some other important features,

Exam}gle ’

SuppdSe we have a program about genetics. The student is asked what he

should do with a culture of Eschericha coli after certain preparations. The

‘answer should be:
"I put-it on.a. medium without adenine,
or anything semantically equivalent to it,
We want to determine if the student’s answer contains the keywords mediam,

adenine and without (with any of its synonyms). If it does not, we want to check

the past performance and take other actions that will be described in the example.

A program to achieve our goals would have the following code:

i

9
1 g1o ,
2 "What will you do with the culture?".
3 A = medium
4 B = no}not]withoutlfrée|deficient]minus -
5 C = ad<énine>
6 0
7 A&B % C: "Righttm, /[x/, -
8 A & B & ~C: "Which medium is missing?", /y/, t
9. A & ~B & C: "With or without adenine?", /y/, t
10 A: "Which medium?", /y/, t ¢
‘i 17 A Jy/,
' 12 hnint
13 "Choose one of the following media: ...", t
ST histidine: "No, that's the wrong medium." /y/, t
%1 16 ¢: "I didn't understand you. Try again.", /z/, t
17 . b 25 v & (13 ... 915)b: -remedy
% 18 intro: #Think about what you learned i the mtroduction.", [z/, t
8 19 'qigggg & ~A(é):i"I?ll give‘you a hint.", /z/, = hint
g 20 ~t MSEI11 wrong.", /z}, t |
2 21 ¢: "Better read thebbooks first.", /z/, 1
L2 g7 -
E 23 "Next guestion. ..."
5 24 o

Example (Zine numbers are for reference only)

-10-

Explanations

_ | _ . .
Line 1 contains the label (ql6) that heads the frame. It can be used for branching

or as a reference point when checking performance data. It is underlined to dis-

tinguish it from other operations.

Line 2 contains the text that is to be printed (indicated via the quotation marks

" and u).

In line 3 we start to define our keywords. In this way we can aiways write "A"
when we talk about ""medium', which makes the combination of keywords through

logical connectors much easier.

B is defined as all the synonyms for ''without' meaningful in this context. The
. \ . N
synonyms are separated by a bar (]) (this is called alternation) and the letter B

(called identifier or name) stands for any one of the words in line 4.

C represents the word "adenine'" but the program only checks for the 1eadi11g
characters 'ad', the letters''denine'’ being unnecessary ('no-care characters’).
They are included only for the information of the progfammcr or for whoever

reads the program.

The symbol in line 6 is the waiting~ or reentry point. The program stops execu-

tion ard waits for a student input.

‘Line 7 through 21 show answer processing. Let's start with line 7.

If the student’s answer contains all three keywords (i.e. "medium!", a synonym

- from B and 'ad'!) the student gets a confirmation, 1 is added to the variable x

that counts the correct answers (/ / is:the counting operator) and the progi'am

branches to the next frame - that is, to the label immediately preceding the next

waiting point, Since the next waiting point is in line 24, the next frame starts at

line 22 with the label q17.

-11-

If C is missing (line 8), then the student is given a hint, the variablé y (or
"the counter y) that counts the wrong answers is incre;ﬁcnted by 1, and the
program branches back to the reentry point in line 6. A similar proces’é ta-
kes place in line 9 where B is missing in the student's answer, Line 12 con-
tains a new label which we'll ignore for the moment (it is ignored by. the
program when it jumps from one line to the next). Line 10 and 11, both star-
ting with A:, show the automatic sequence control of PAL-S: The first time
the student answers "A' {i.e. "medium" without "B'" and "C'") he hits line 10,
is given a hint and branched back to the reenvtry point to give a new answer.
The second time he says '"medium!" (without "B'" and "C') he gets the hint
~at line 13 where a list of media is printed for him. One of this media is "histi-

dine', and if he gives it as an answer he is transferredto line 14 where the

\
f

usual actions take place.

(Line 15 signifies other prestored answers (media) we are not interested in.)

The overstruck o (”(1‘)") in line 16,17, and 21 denotes an unanticipated answer,

that is any character string (or none atall). Student is transferred to line 16
when all matches with prestored answers or their combinations fail the first
time; he is transfered to. line 17 the second time his answe.z; is unanticipated,
-and to line 21 the third time this unfortunate event takes place. z is the counter
that counts the unrecognized (una.nticipated) answers. 1' |

1

Line 17 tﬁrough 19 show how performance data can be used.

The first question thé program asks itself is: Was the number of unanti-
cipated answers (z) greater thaﬁ 5 or was there an unanticipated answer (¢)
at _g_m label from gl3 till g15 incluﬁive ? (“everyﬂ is indicated by the unary -
use of théslog'ical and (&), meaning all in this case, and gl3 ... ql5 meaﬂs:
look for the condition at the indicated range of labels. Undérlining of labels

. . . F
is unnecessary because of the range indicator ...}).

If the condition in line 17 proves to be true, the program branches to the

label remedy; if the condition.proves to be false; everything at the right

e o o ke o8 05 i e Lo : - : -

e i o £

-12-

of the colon (:) is ignored and execution continues at the next line. (Note that

right of the branching operator (») labels need not be underlined since bran-

ching always takes place to a label.)

Assuming that our condition in line 17 proved 'false', the program looks at
the next condition in line 18 and checks, if during program execution label
intro was encountered at least once. If that is the case; a hinf is printed re-
ferring to that frame, z is incremented by one and the student is branched

back to the reentry point at line 6.

P4

If the condition "intro'proved 'false' the program would continue at the next
line, L, '

In line 19,"the program checks if frame intro_ was not_ encountered and ans-
wer "A'" was not given a second time. If this is true, the hint of line 13 was)
not.yet given to the student and a branch to the label hint (to present this hint) :
is meaningful. ' '

If noreof the above conditions proved true (indicated by a wunary "..!" in line
20, corresponding to else in other programm_irig languages) a not very sti-
mulating text is printed and the student is branched back to the reentry point.

Lines 18 to 20 showed a procedure called "nesting' in computing jargon. These
lines are only executed if the first condition in line 17 (""6") proved true. Other~ -
wise they are ignored and the program skips directly to line 21, where, if a
third unanticipated answer was givén, a throw-out occurs. '

At line 22 a ‘new' frame starts.

2

CHR

5

WP NERPRENON

-13-

Application

PAL-X has been successfully applied to primary authoring of instructional
material at Projekt CUU (Computer-unterstiitzter Unterricht = Computer-
Assisted Instruction) at the University of Freiburg;

to trz ~lating one CAI-program (PFLABE), developed in Freiburg, from
COU. .WRITER via PAL-S into LIDIA for implementation at the Zentral-
stelle fiir Programmierten Unterricht in Augsburg, whereby the original
COURSEWRITER -program remained unknown to the translater in Augsburg;

to introducing students into the principles of Computer-Assisted Instruction
- at the Computing Centre of the University of Kéln (two two-hour courses for
two semesters);

and to documenting a program on ‘generé.l chemistry (CUS-Chémie), which

to the author's knowledge is the first attempt at 2 complete and machine-inde-
pendent documentation of a CAl-program (see ref. (5)).

AERendix

The append'ix lists the important commands and procedures in PAL-S

Commands for mput output and answer analysis

G ™ e am N WV e G G R e WR s G e G G G m e BN R w4 B e A% e WM S Em M g e B e S am am W

o quotation marks to indicate text to be printed or displayed.

o) waiting~ or reentry point. Encounter of this symbel causes
- the program to stop and wait for an input,

& or B denotes catenation ("'and', "both', "all of them')
(a blank)
v or | denotes alternation ("or', "and/or!, 'at least one of them!')

wrre

~ Or o denotes negation ("not')

—————

e

A

-14 -

denotes implication ("if - then", '"do what is to the right
if the condition on the left is true')

denotes an unanticipated answer or any character string
(which may be the 'empty word', too) (any - string sign or phi)

denotes any one character (any character sign)

names for string variables . They always start with a capital
letter, and they may contain up to eight letters or letters
plus digits.

enclose characters that may be missing (are not checked for)
in an answer, but are useful information for whoever reads’
the program.

Special variables, functions and procedures in PAL-S

INPUT

POS(é;',n)
EQU1
EQU2

EDIT (a)
EDIT (a=b)

EDF

STRICT

SEQ

SYN

PHON

| [KC CALG.

wll Toxt Provided by ERIC

number of characters in the answer between a and b inclusive;
either a or b or both may be missing

a buffer containing the student's latest input; may be referen-
ced by position, e.g. INPUT(7); 'INPUT(2 ... 5) etc.

position of n-th appearance of a in INPUT. Default n: n =1
upper case letters are converted to lower case letters
lower case letters are converted to upper case letters

eliminates a in INPUT wherever it appears
replaces a by b in INPUT wherever a appears

same as EDIT, but with first appearance only

kayword~matching is replaced by character-
by-character matching ‘

sequence of keywords in INPUT has to correspond to se-

quence of keywords in prestored logical expression

matches numbers and formulas semantically

input has to contain at least n of the specified keywords to
achieve a match '

phonetic encoding of answer

‘to allow or forbid the student! s use of the computer as a

desc -calculator

i . T ——

e RSt gt e ¢

Branching in PAL S

— label branch to specified label
- branch to next frame
(e branch to reentry point
i branch back from subroutine |,
\H reentry indicator for branch back from subroutine
R branch out; termination sign
o /
{
Checking performance h1story' in PAL-S :
% (range_of labels): all~quantifier: - Check to see if every label

of the indicated range was encountered
during program execution '

\.r(range of labels): ... existence-~guantifier. Check to see if at least
- ' one of the indicated labels was encoun..ered
during = program execution
X (labl ... 1labl0) A: ... see if answer A was given at every label

- . " from labl till lablO

v(labl ... 1abl0) A: ... same as above, but anylabel
lab: ... : check to see if label lab was encountered

during program execution

(1)

(2)

. 3)

(4)

(5)

-16-

Literature

’

LEKAN, Helen A.: Index to Computer-Assisted Instruction.
! Third Edition, Harcourt Brace Jovanovitch 1971

‘Communications of the Association for Computing Machinery, (CACM),

Algorithms Section

f

UTTAL, W.R., et al.: Generative Computer Assisted Instruction in
‘ Analytic Geometry.
ENTELEK Inc., Newburyport 1970

RIPOTA, P.: A Concept for a Primary Author's Language (PAL).
Projekt CUU, Universitdt Freiburg, 1971 - 1973

a) PAL-S - User's Guide

b) PAL-S - Reference Manual

‘c¢) PAL-G - Graphic Input~- and Outiput Facilities

d) PAL-A - Generative Computer Assisted
Instruction -

GEIST, W.; RIPOTA, P.: CUS-Chemie. Eine maschinenunabhingige

- Dokumentation. Projekt CUU} Universitit Freiburg 1973

t

