
DOCUMENT RESUME

ED 086 223 IR 000 075

AUTHOR Ripota, Peter
TITLE A Concept For a Primary Author's Language (PAL-X)
INSTITUTION Freiburg Univ. (West Germany).
PUB DATE 73
NOTE 20p.; Paper presented at the International Conference

on Training for Information Work (Rome, Italy,
November 15-19, 1971)

EDRS PRICE BF -$0.65 HC-$3.29
DESCRIPTORS *Computer Assisted Instruction; *Computer Programs;

*Documentation; Higher Education; Machine
Translation; Program Descriptions; *Programing
Languages; *Translation

IDENTIFIERS COURSEWRITER II; LIDIA; PAL X; *Primary Authors
Language

ABSTRACT
A Primary Author's Language (PAL-X) has been

developed to serve as a documentation language for computer - assisted
instructional (CAI) programs. Its development, was necessary to permit
the dissemination of CAI given the facts that: 1)existing CAI
programs were written in over 60 languages; 2)the system for
COURSEWRITER II, the most commonly used language, was discontinued by
International Business Machines (IBM) ; and 3) an exchange of programs
was found to be nearly impossible. PAL-X was built to contain
answer-processing functions, to be independent of hardware and of
machine, programing or author languages, to have simple,
internationally recognized symbls, and to be capable of partition
into subsets. The language was designed to function with
non-generative and generative CAI; operations, names and text were
separated and the verbosity of programing languages avoided. It was
constructed to be used for primary authbring of CAI, to date it has
been employed to author CAI material at the University of Freiburg,
to translate programs from COURSEWRITER to LIDIA, to introduce
students to the principles of CAI, and to document a program in
general chemistry. (PB)

FILMED FROM BEST AVAILABLE COPY

A Concept for a Primary Author's Language

(PAL x)

by Peter Ripota

Projekt CUU, Universita Freiburg, W. Germany

Goal

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO

OUCED EXACTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIGIN

ATING IT
S

POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-

SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Taking a look into Helen Lekan's "Index to Computer Assisted Instruction" (1)
we find about 1300 programs for CAI written in approximately 60 different lan-

guages. Making a trend-analysis for the next (fourth) edition, we shall see some
1750 programs plus or minus 200. Both in the second and in the third edition,

the most widely used language was COURSEWRITER II, a language running on

a system no longer maintained by IBM. The point I'm driving at is the folio,.
wing: How shall this vast amount of instructional material ever be made
lable to the general public when an exchange of programs (even those written.
in 'the same language) is nearly impossible ? What is standard procedure in
computing science - the publishing of algorithm's in a suitable documentation

language (ALGAL) (2), or their exchange through a ge,nerally available pro-
gramming language (FORTRAN) R seems to be impossible within the field of

CAI. As a result, instructional programs usually are of pure quality due to
the lack of competition, criticism and 'survival of the fittest'.

To achieve this there are two ways:

(1) Persuade everybody that A.-3L, is the finest language in the

world so that everybody writes' his program in this language,
after which they are freely exchangeable.

(2) Develop a documentation language especially for CAI, then
start documenting instructional programs and publish these
documents.

Since I am not so sure about the feasibility of number one, I pursued number
two trying to create a language suitable for documenting programs in the
field of Computer Assisted Instruction. The result is a Primary Author' s
Language, PAL-X, the IX' standing for the sub-part of CAI it is intended
for. PAL..X is artifical, machine-independent and not intended for immediate
computer implementation. It is for the man in the field', the teacher who
needs some means of expressing his ideas about a certain program in a con-
cise, complete and unambiguous way.

Some of the requirements of such a language are the following:

(1) It is to be developed for purposes of Computer Assisted
Instruction (CAI) which means, among other things, that
it contain answer-processinl nctions.

(2) Operations are to be independent of any hardware confi.
guration, machine language, programming language or
author language. They are to reflect the logical structure
of an instructional program.

(3) Symbols should be simple, self.explanatory and effective.

(4) Symbols for mathematical and logical operations should
be as close to international practic'e as possible.,

(5) It should be constructed in such a way that it can be parti-
tio-ed into independent subsets according to the needs and fa-

cilities of existing author languages.

-3-

Let me clarify the concept of documentation People still think that drawing
a flow-chart is sufficient to tell programmers and users what the program
is about. It is - for the most simple question.an.swer.type p..cograms so abun.

dant in CAI (and so bad to. its reputation). But when you try to document either

a program with much text, or with a more complex teaching strategy (e.g. a
simulation.game), or with faradvanced algorithms (for analysis of natural
language), then a flow-chart is a nice illustration of perhaps some esthetic
value. It is by no means sufficient for a programmer trying to understand
the program's logic or to implement it on another system. For this one needs a

From our few remarks about the goal of the language, its possible applica-
tions are easily to be seen:

(1) PAL.X may be used forpriyxa.ring of CAI - programs, making
possible a division of labour between author and programmer-. Authors

thereby are free from burdening their minds with such irrelevant
things as loading counters,calling the calculator through some special
commands, or other implementation-dependent format-intricacies
that have:nothing to do with program. logic or education. This "source

program" in PAL..X can be given to an experienced programmer ac-
ting as a human compiler by translating PAL-Xsource.code into any
convenient programming language - ever:s assembly language to gain

effectivity. (This translating process may be done by a mechanical
preprocessor; in these: manuals, however, we adopt the author' s point
of view and do not worry about the actual implementation of our ideas.)

(2`) PAL.X is, as already said, a means of documenting instructional pro.
grams in a complete and unambiguous yet machine independent and

easily readable way. It could help tear down the language barrier in
CAI and enhance the exchange and evaluation of Computer Assisted
Material.

(3) PAL.X is an attempt at a standardisation for CAI and related fields.
General books on computing science usually contain examples either in
FORTRAN or in ALGOL (or some modified version of these). Nothing

comparable is possible in CAI. An author attemping a text-book on CAI
would have to write his examples in COURSEWRITER III or APL, since

by now these are probably the most widely used author languages.

But COURSE WRITER and APL are very bad documentation languages as every-

body knows who tried to read the printout of a CW. or APL-program of mode®

rate complexity. On the other hand, PAL-X is rather short (due to its notatio.
nal philosophy), covering many fields, operations and applications (due to its
independence of actual realisation) and easily expandable to cover aspects of
CAI unknown in the past (and present) but of probable great importance for the
future, if CAI wants to have any chance of survival (list processing, for examp-
le, and formula manipulation).

Contente.=4/M.D.ONO

Adopting the scheme of UTTAL (3) there are three kinds of CAI:

(a) degenerate CAI where the student's reaction is confined to
pressing a button (and where you really don' t need computer);

(b)

(c)

selective CAI where all answers 'have to be prestored by the
author;

generative CAI where the possible answers (and in some sye
stems even the questions) are generated by some internal
algorithm.

Most existing CAI programs belong to (b) and although they to a great degree
are responsible for CAIls bad reputation, they have their justification even
in the future. So, PAL-X starts with operations suitable for selective CAI,
for which the 'X' is replaced by an IS':

PALMS for selective CAI

PALMS is treated in (4a) and (4b), (4a) offering a gradual introduction to both

CAI and programming for people not experienced in any field, whereas (4b)

gives a more formal and complete description.

(4c) gives a description of desirable graphic input. and output facilities;
hence 'X' now becomes 'G':

PAL-G for graphic input and output

(4d) offers a notation for the documentation of algorithms useful in genera-
tive Computer Assisted Instruction; and this subset of the language is called

PAL.A for algorithms.

In this article, we only explain the main features of PAL -S.

Structure

The general principle in constructing PAL was a separation of operations
(denoted by special symbols); names (represented by mnemonic constructs
in capital letters), and text (i.e. character strings used for output- and in
put..analysis). The verbosity of common programming languages was avoided

in order to get a notation very similar to that of APL in certain ways. Let me
give three simple examples.

One of the most important operations in procedure.oriented programming
languages is branching. There is a very convenient and natural sign first
introduced in APL, the arrow (-3,). Based on this concept, PAL provides the

following operations:

-> lab el

t

tt

I I

branch to designated label

branch to next frame (where frame will be de...

fined in our final example)

branch back to waiting point after wrong ans.
wer (for the concept of 'waiting point' see our
third example)

branch back from subroutine
"ImelIMMO

indicator for reentrt when branching
back from subroutine

branch out of program (e,g. forced termination
of dialog)

A second example shows how PAL takes into consideration special needs of
CAI. Instructional programs make use of counters for counting answers of
certain kinds (correct, wrong, unanticipated, within certain limits of tolerance,
partially correct,_ etc.) Assuming the 1..ounter.variable x to

be incremlted by n (n being any positive or negative integer, whereby x is
decremented in the latter case), one writes

ad n/c 7 in COURSE WRITER

which is short but not very natural (by which we mean close ro mathematical
notation), and

x:= x-En in ALGOL,

which is more like mathematics but rather long. PAL introduces two slashes

to enclose the variable and the incrementor:

/x,n/ in PAL,

meaning the same as the above. If n happens to be I, then our expression re-
duces to

/x/

which is probably the most concise way to express a frequently used operation.

Our third example concerns the concept of the waiting point and the combination
of signs reflecting the combination of concepts. The waiting point is that posi-
tion in the program: . where the computer is ready to accept input from the ter-
minal, In FORTRAN, this is indicated by the command READ; in APL it's the
quad (0), but many CAI-languages provide no special statement which easily
leads to confusion. PAL makes use of a small circle (o) hinting at the fact that
the program now is open for the student's input:

o wait (indefinitely) and accept

input from terminal

Sometimes an author wants to limit input either through space or through time.
Lets s take the latter case first. Suppose there should be a limit of twenty se-
conds (as perhaps required in a psychological test); then this is written as

o 20 sec wait no more then 20 seconds

Suppose the author wants the input to consist of not more than five characters.
Then he writes

o 5 accept input with no more than
five characters

Finally, in placing a slash over the waiting point, followed by a time appoint-
ment, the author indicates that the program waits (for a fixed length of time)
but no longer accepts any input:

9(30 sec wait thirty seconds but accept no
input ("pause")

Our final example will introduce some other important features.

Example

Suppose we have a program aboUt genetics. The student is asked what he
should do with a culture of Eschericha coli after certain preparations. The
answer should be:

"I put it on a medium without adenine."

or anything semantically equivalent to it.

We want to determine if the student's answer contains the keywords medium,
adenine and without (with any of its synonyms). If it does not, we want to check
the past performance and take other actions that will be described in the example.
A program to achieve our goals would have the following code:

016

2 "That will you do with the culture?"

3 A = medium

4 B = noinotlwithoutlfreeldeficientiminusl-

5 C = ad<enine>

6

7 A & B & C: "Right!", /x/,

8 A & B & (-C: "Which medium is missing?", /y/, t

9 A & NB & C: "With or without adenine?", /y/, t

10 A: "Which medium?", /y/, t

11 A: /y/,

12 hint

13 "Choose one of the following media: .e.", t

14 histidine: "No, that's the wrong medium." /y/, t

15

16 4): "I didn't understand you. Try again.", /z/, t

17 z>5 v & (q13 q15)i): -> remedy

18 intro: "Think about what youlearnedjn the introduction. ", /z/, t

19 Nintro & ,,,A(2): "I'll give you a hint.", /z/, hint

20 "Still wrong.", /z/, t

21 4: "Better read the books first.", / /,

22 217.

23 "Next question. ..."

24

Example (line numbers are for reference only)

Explanations

Line 1 contains the label (q16) that heads the frame. It can be used for branching

or as a reference point when checking performance data. It is underlined to dis-
tinguish it from other operations.

Line 2 contains the text that is to be printed (indicated via the quotation marks
" and ").

In line 3 we start to define our keywords. In this way we can always write "A"
when we talk about "medium", which makes the combination of keywords through

logical connectors much easier.

B is defined as all the synonyms for "without" meaningful in this context. The
synonyms are separated by a bar (I) (this is called alternation) and the letter. B
(called identifier or name) stands for any one of the Words in line 4.

C represents the word "adenine" but the program only checks for the leading
chaiacters "ad", the letters"denine" being unnecessary ('no -care characters?).
They are included only for the information of the programmer or for whoever
reads the program.

The-symbol in line 6 is the waiting- or reentry point. The program stops execu-
tion and waits for a student input.

Line 7 through 21 show answer processing. Let's start with line 7.

If the student's answer contains all three keywords. "medium", a. synonym

from B and "ad") the student gets a confirmation,, 1 is added to the variable x
that counts the correct answers / is; the counting operator) and the program
branches to the next frame - that is, to the label immediately preceding the next
waiting point. Since the next waiting point is in line 24, the next frame starts at
line 22 with the label o17.

If C -is missing (line 8), then the student is given a hint, the variable y (or
the counter y) that counts the wrong answers is incremented by 1, and the

program branches back to the reentry point in line 6. A similar process ta-
kes place in line 9 where B is missing in the student's answer. Line 12 con-
tains a new label which w.et.11 ignore for the moment (it is ignored by the

program when it jumps from one line to the next). Line 10 and 11, both star-
ting with A:, show the automatic sequence control of PAL-S: The first time
the student answers "A" (i.e., "medium" without "B" and "C") he hits line 10,
is given a hint and branched back to the reentry point to give a new answer.

The second time he says "medium" (without "B" and "C") he gets the hint
at line 13 where a list of media is printed for him. One of this media is "histi-
dine", and if he gives it as an answer he is transferredto line 14 where the
usual actions take place.

(Line 15 signifies other prestored answers (media) we are not interested in.)

The overstruck, o ("+") in line 16,17, and 21 denotes an unanticipated answer,

that is any character string (or none at all). Student is transferred to line 16
when all matches with prestored answers or their combinations fail the first
time; he is transferred to line 17 the second time his answer is unanticipated,
and to line 21 the third time this unfortunate event takes place. z is the counter
that counts the unrecognized (unanticipated) answers.

Line 17 through 19 show how performance data can be used.

The first question the program asks itself is: Was the number of unanti-
cipated answers (z) greater than 5 or was there an unanticipated answer (4)
at every label from ail till 9,15 inclusive? (every is indicated by the unary
use of the logical and (&), meaning all in thiS case, and a13 q15 means:
look for the condition at the indicated range of labels. Underlining of labels

is unnecessary because of the range indicator ...).

If the condition in line 17 proves to be true, the program branches to the
label remedy; if the condition.proves to be false.; everything at the right

of the colon (:) is ignored and execution continues at the next line, (Note that

right of the branching operator (-)) labels need not be underlined since bran-
ching always takes place to a label.)

Assuming that our condition in line 17 proved :false, the program looks at
the next condition in line 18 and checks, if during program execution label
intro was encountered at least once. If that is the case, a hint is printed re-
ferring to that frame, z is incremented by one and the student is branched
back to the reentry point at line 6.

If the condition "intro" proved I false' the program would continue at the next
line.

In line 19 /'the program checks if frame intro was not encountered and ans-
wer "A" was not given a second time. If this is true, the hint of line 3 was
not-yet given to the student and a branch to the label hint to present this hint)
is meaningful.

If nomof the above conditions proved true (indicated by a unary 11,-11 in line
20, corresponding to else in other programming languages) a not very sti-
mulating text is printed and the student is branched back to the reentry point.

Lines 18 to 20 showed a procedure called "nesting" in computing jargon. These
lines are only executed if the first condition in line 17 ("401) proved true. Other-
wise they are ignored and the program skips directly to line 21, where, if a
third unanticipated answer was given, a throw-out occurs.

At line 22 a new frame starts.

Application

PAL-X has been successfully applied to primary authoring of instructional
material at Projekt CUU (Computer- unterstutzter Unterricht = Computer-
Assisted Instruction) at the University of Freiburg;

to try -lating one CAI-program (PFLABE), developed in Freiburg, from
COL_ _WRITER via PAL-S into LIDIA for implementation at the Zentral-
stelle fur Programmierten Unterricht in Augsburg, whereby the original
COURSEWRITER-program remained unknown to the translater in Augsburg;

to introducing students into the principles of Computer-Assisted Instruction
at the Computing Centre of the University of Köln (two two-hour courses for
two semesters);

and to documenting a program on general chemistry (CUS-Chemie), which
to the author's knowledge is the first attempt at a complete and machine-inde-
pendent documentation of a CAI-program (see ref. (5)).

Appendix

The appendix lists the important commands and procedures in PAL-S

Commands for input, output and answer analysis

It I! trotalioriks to indicate text to be printed or displayed,

o waiting- or reentry point. Encounter of this symbol causes
the program to stop and wait for an input.

& or izs
ca blank)

v or

ni or

denotes catenation ("and", "both", "all of them ")

denotes alternation ("or", "and/or", "at least one of them")

denotes negation ("not")

or =>

A,B,C,

< >

denotes implication ("if - then", "do what is to the right
if the condition on the left is true")

denotes an unanticipated answer or any character string
(which may be the 'empty word' , too) sign or shi)

denotes any one character (any character sign)

names for string variables . They always start with a capital
letter, and they may contain up to eight letters or letters
plus digits.

enclose characters that may be missing (are not checked for)
in an answer, but are useful information for whoever reads-
the program.

Special variables, functions and procedures in PAL-S

LEN(a b) number of characters in the answer between a. and b inclusive;
either a or b or both may be missing

INPUT a buffer containing the student' s latest input; may be referen-
ced by position, e.g. INPUT(7); INPUT(2 ... 5) etc.

POS(a,n) position of n-th appearance of a in INPUT. Default n: n = 1

EQU1 upper case letters are converted to lower case letters

EQU2 lower case letters are converted to upper case letters

EDIT(a) eliminates a in INPUT wherever it appears
EDIT(a=b) replaces a by b in INPUT wherever a appears

EDF same as EDIT, but with first appearance only

STRICT

SEQ

SYN

KEY(n)

PHON

CALL.

keyword-matching is replaced by character-
by-character matching

sequence of keywords in.INPUT has to correspond to se-
quence of keywords in pre stored logical expression

matches numbers and formulas semantically

input has to contain at least n of the specified keywords to
achieve a match

phonetic encoding of answer

to allow or forbid the student' s use of the computer as a
de sc - calculator

Branching in PAL-S

3 label branch to specified label

branch to next frame

branch to reentry point

branch back from subroutine

reentry indicator for branch back from subroutine

branch out; termination sign

Checking performance history in PAL-S

gc(range_of labels):_ all-quantifier; Check to see if every label
of the indicated range was encountered
during program execution

v(range of labels): ... existence-quantifier. Check to see if at least
one of the indicated labels was encountered
during program execution

lablO) A: ... see if answer A was given at every label
from labl till lablO

v(labl lablO) A: ... same as above, but any label

lab: ... check to see if label lab was encountered
during program execution

-16-

Literature

(1) LEKAN, Helen A.: Index to Computer-Assisted Instruction.

(2)

Third Edition, Harcourt Brace Jovanovitch 1971

Communications of the Association for Computing Machinery, (CACM),
Algorithms Section

(3) UTTAL, W.R., et al.:Generative Correlterssisted Instruction in
Analytic Geometry.
ENTELEK Inc., Newburyport 1970

(4) RIPOTA, P.: A Concept for a Primary Author Is Language (PAL).
Projekt CUU, Universitat Freiburg, 1971 - 1973

a) PAL-S User's Guide
b) PAL-S - Reference Manual
c) PAL-G Graphic Input- and Output Facilities
d) PAL-A Generative Computer Assisted

Instruction

(5) GEIST, RIPOTA, P.: CUS- Chemie. Eine maschinenunabhaIngige
Dokun-ientation. Projekt CUU)Universitat Freiburg 1973

