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THE ORGANIZZTION OF THE CONFERENGCE

Uri Haber-Schaim

Physiéal Science Group
Newton College, Newton, Massachusetts 02159%*

. Even a brief analysis of s_ghobl subjects shows that the relations
among them is rather asymmetric. The subject matter and competencies
developed in the social science clasé or natural science class have little
effect on the su‘c_;ceés of the students in English or mathematics. However,
what goes on in English and mathematics has a difect and dominant effect
on what can be accomplished in the social and natural sciences. It is,
therefore, not surprising that the mathematical curriculum in the schools
has become thée concern not-only of mathematicians and mathematics teachers
but also of the users of mathematics, i.e., teachers of the natural and
social sciences. A Conference of members of all these professions took
place on September 9-12, 1973, at Cape Ann, Massachusetts, to discuss
the teaching of mafhematics at the junior high school level. The complete
papers written for the Gonferenceiform the bulk of this report. The purpose
of this baper is to describe the way in which the Conference was organized.

Participation in the Conference was by invitation. Every participant
(except John Lamb, the Recording Secretary of the Conferehce, Lauren G.
Woodby and Michael M. Frodyma from the National Scienqe Foundation,

Judson B. Cross and myself) was asked to write a paper on a specified topic.

* ' .
Present address: Department of Science and Mathematics Education,
School 67 Education, Boston University, Boston, Massa~husetts 02215.
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To reserve maximum time for discus-sion of the papers and exchange
of ideas, it was decided that the papers would not be read at the Conference
but only discussed.- This meant that all papers had to be submitted in time
to be duplicated, mailed by us, and read by the participants before the
Conferencg . Thus, léngthy presentations were avoided and discussion
could proceed immedi,a.tely. The papers had been grouped according to
topics as shown in Table 1, and the ;espective authors formed panels to
which questions and comments were directed. One member of each panel
acted as chairman. Since there were only 24 participants, the discussions
were on the informal side.

We succeeded in discussing 19 papers in pienary session in a little
over two and a half days. The first two afternoons and part of thé thiird‘
morning were_devoted to work in small groups for the purpose of summarizing
the papers and the general discussion into group reports giving someg-guide-
lines which could be useful to any group wishing to creéte curricular materi-
als for junior high school mathematics or simply getting some ideas for
direct application to the mathematics classroom. These reports were then
discussed in a final plenary seésion.

A summary of the conclusions reached by the various groups follows
this article. The final reports submitted by the groups and the notes made
by fhe recording secretary were edited and used in‘ putting togethér the
_su‘mmary. Group B split into two groups. each submitting separate reports.
. There was no report written for Groups E ancl F. ‘

The Conference was made possible through a grant from the National

Science Foundation.
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A SUMMARY OF THE DISCUSSIONS
AND REPORTS OF THE VARIOUS GROUPS
AT THE CAPE ANN MATHEMATICS CONFERENCE

Iudson B. Cross, Editor

Physical Science Group -
Newton College, Newton, Massachusetts 02159%

GROUP A: THE BACKGROUND: WHAT MATHEMATICS JUNIOR HIGH
SCHOOL STUDENTS DO AND DO NOT KNOW

N The primary objective of this group was the enumeration of matherria—
tical skills of students entering the seventh-grade. These skills and the
degree tb which they have been mastered are:

Setg, numbers, and numeration: There exists a general understand-
ing of these topics.
Qperatiohs and Properties: This is only partially mastered. In gen-
eral, students have some computational skills involving whole numbers, but
~not all. There is'little ability to work with fractions and decimals. It
should be noted particularly that there i;s»_a lack of understanding in the areas
of large numbers, reasonableness of answers, and estimati'on.

Similar deficiencies exist in the areas of: reading and problem solv-

ing, gedmetrv and measurement, functions-:and relations, graphing, and

probability and statistics.

For a more extensive explanation of the skills of entering seventh-
graders, refer to Fernand Prevost's paper.
Much of the discussion of this group was concerned with what the

non-mathematical world demands of a math curriculum - a topic closely

*
Present address: Department of Science and Mathematics Education,

School of Education, Boston University, Boston, Massachusetts 02215.




related to the shortcomings of seventh-graders. A dichotomy emerged in
the discussion between the "utilitarian" and the "aesthetic” aspects of
mathematics. On the utilitarian side, parents, i—ndustr‘y, teachers in other
fields making use of mathematics (and even state legislatures) are demand-

ing more emphasis on the "basics." The "new math" seemed to be related
to the aesthetics aspect. There is, in other words, a shift in public desires
away from the "understanding” and "theoretic" approaches of the "new
math, " in the direction of intense instruction in the‘ ;'babsics. "

Although there are areas of computation that are not being mastered
thvat should be mastere_d, seventh-.and eighth-grade teachers trying to help
their students gain the desired ma4steries should be strbngly admonished not
to repeat the same sterile drills that may have been used in grades 1 - 6.
New meaningfﬁl, effective tools fo'r learning must be provided.

Orinions were expressed against compartmentalizing math into

individual units. A new curriculum should avoid this by repeatedly using

important ideas throughout.

GROUP B1: APPROXIMATIONS AND ESTIMATIONS

Estimation, approximation, and the proper use of numbers obtained
from measurements are generally unfamiliar not only to junior high school
students but also to their teachers. Therefore, teacher training is deemed
vital.

It was apparent in the course of thé writing of this group's report
that there -was a need to clarify terminology (i.e., to distinguish between
- approximations and estimations). For this reason we decided to use the
following definitions: -

Estimation: The process of obtaining the approximate magnitude of
some quantity when the necessary data (input numbers) are not readily -avail-

able {e.g., estimate how many leaves are on a tree).



Approximation: The process of performing a "rough" calculation with
given data (e.g., recognizing that

27
X39
243

-81
324

is obviously wrong because
27 X 39=~30x 40 =1200).
The use of inequalities goes hand-in-hand with this area.

The practicing junior high school teacher in our group noted that ap-
proximation is mentioned' in only three places in current mathematics pro-
grams. It comes up in connection with the algorithm for division, as a check
to computation problems, and, simply, in a few problems in which students
are directed to approximéte quantities.

Too many students demonstrate the "exact answer syndrome" and
hence are hesitant to wo;k with approximations and estimations.

The need for increased attention to estimation and approximation
arose more often than any other theme in this conference's discussions.
Several conference participants noted that other recent mathematics confer-

ences have also stressed this need.

' Recommendations

It is‘ recommended that increased attentioh be given to the following
topics in the middle school curriculum: approximajions, estimations, orders
of magnitude, and numbers arising from measurement. These topics should
be imbedded in units throughout the course as often as possible; they should
not stand alone as isolated topics. |

Initial estimation experiences should involveA real objects so that
results can be checked by counting (e.g., estimate the number of ping pong
balls filling a shopping bag, rice in a jar, number of students in the sChool,

etc.)-



Continuing work on estimation should be done with circumstances
which seem real and interesting to the student. This is where one can
develop orders of magnitude and a feeling for large and small numbers (e.qg.,
estimate the number o; sixth-graders in the United States, or estimate the
number of ping pong k ls needed to fill the gymnasium). Care must be taken
not to use examples involving numbers which are too large to be meaningful
to the students (e.g., the number of drops of water in the oceans of the
earth, the number of grains of sand needed to fill the earth sphere).

‘It is especially important that some numbers arising from measure-
ments be introduced by having the students make the measurements them-
selves (e.g., using rulers, reading dials, reading graduated cylinders™etc.).
Appropriate care should be taken in interpreting fhe results of computations '
with numbers arising from measurements. However, we do not at all suggest
that a course in the theory of errors be introduced! Therefore, it makes no
sense to generate hard and fast rules for tolerance or significant digits but
simply to have some reasonablle understanding of ‘significant digits (e.g.,
doﬁ't give six significant digit answers when the data used contain only two
significant numbers).

In view of the importance of approximation, it was noted that grading
should reflect interest in “reasonableness" of answers. Hence, close

answers should be given more ciedit than absurd responses.

GROUP Byg: MATHEMATICS AND AESTHETICS

‘ The é'ssignment for this group was to séek out and suggest topics and
fhemes in mathematics which could reveal its structural and aesthetic quali-
ties to junior high school students.

At the dufcset thé practical and utilitarian roles of junior high school
mathematics were recognized: the need for improved skills deve_lopment,
‘calculational ability, capacity to translate between the languages of English
‘and mathematics. Any new curricular efforts must continue and intensify the
séarch for better and more effective methods to teach these skills and im-
prove these capabilities. Mathematics and science teachers share the con-

cern of the general public on the importance of this learning.



There is a danger, however, that this concern could cause too great
a reactive swinc Tn particular, it is essential that teachers continue to
demonstra‘te to siudents that mathematics is structurally beautiful, powerful, -
and fun to do. We caution against a retreat from the intent of the newer-
mathematics curricula but acknowledge a need for substantial improvement
in the methods used to accomplish that intent. Teachers must be trained
in these arts so they do not inadvertently turn even the most elegant of
concepts into hollow exercises in memory.

Aesthetic aspects :gf mathematics can be taught if, among other
things, the mathematics curriculum provides more than one avenue for learn-
ing each concept and provides opportunity to investigate problems with more
than one solution; affords lots of room for play and invention, proceeding at
one's own pace; encourages honest discovery and local deduction in the
classroom so far as possible; develops topics which contain surprises and
challenges and when possible provides counter-examples to illustrate points;
and deals with cases in which a student can verify the work for himself in
order to build confidence and self-reliance. '

Powerful unifying concepts, for example, the concept of funcfion
should be introduced early and used throughout the curriculum in a wide
variety of contexts and situations and used in connection with topics which
are intrinsically interesting and which get the student involved in the queé—
tion for its own sake. (See the work of Frederique Papy for ideas and illus-

trations on symbolic representations, arrow diagrams, etc.)-

Some Curricular Suggestions and Resources (No preferred order implied)
Much of the earlier cur_'ricular work should be reviewed and revital-
ized. Listed below are a number of possible topics.

Investigation of a variety of interesting and challenging geometrical

ideas both in 2- and in 3-dimensions. These might include tessellations,
symmetry, and projections, e.g., sphere on the plane. Use objects to

manipulate and construct, when and for whom appropriate.




- 10 =

Exploration of geometries other than the standard Euclidean gsometry

(for example, "Taxi geometry” and "7-point geomeiry"}. (See "Operational

Systems" done for the Carbondale Project, Compreh«nsive School _Mathematics

Program.)
Graph theory. (Contact Jean Deskins, University of Pittsburgh,

Mathematics Department, for references on introduction to graph theory.}
Combinatorial mathematics (see Engle's pape} in Walter's Dibliography) .
Modular arithmetic to exhibit the arithmetic processes. Explore the )

differences between using a prime number vs. a non-prime as the modulus..

Examine how we could reorder things {(calendars, clocks, etc .J) Ly choosing

the modulus which would make the most ideal system. (See Carbondale

Project, Book Zero.) ' , _
Elementary probability (It was recommended that slobpy "real" prob-

lems he avoided at first while developing concepts.) See probability trees

as developed by Arthur Engles in another book produced for the Carbondale

Project.

The curriculum should include a study of computers and algorithmic
languages. The computer should be viewed both as a useful tool for further
study in science and mathematics and as an interestiing object of study in
its own right.

S];gge_mentary reading materials should be produced on the historical,

cultural and biographical settings of various aspects of mathematics.

GROUP C: MATHEMATICS TN GEOGRAPHY, SOCIAL SCIENCE, AND BIOLOGY.

The following six mathematical areas were identified as of major
importance to geography, social science, and biologyl:

Estimation and approximation: Identifying relevant information and
using it to arrive at approximate quantitative conclusions; example of esti-
mation; estimate average family income; estimate what it- would cost to
build a school. _ o

Géofnetry: Computing area, volume, perimeter; relationships be-

‘tween length, area, volume.

IToxt Provided by ERI

ERIC
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Graphing: Various forms of graphical representation of many different
kinds of empirical data; reading off of ratios from graph: "eye-ball" fitting
of curves to scattered data; scatter of data about line of best fit, linearity;
comparison and addition of ratios; graphical- representation of functional
relations (analytical as well as erhpirical functions); cualitative reasoning
from graphs; departures from linearity (quadratic and square root relation-
ships).

Coordinates: Varicus kinds of coordinates (especially with regard
to map function); latitude and longitude, world scales, standard projections;
distance as a.function of coordinates.

Functions: Basic notion of functional relations; functions as mathe-
matical expression of causality; line'ar functions, equations; inverting
functions (graphically). '

Probability and statistics: Means“, medians; random sample (intuitive
- feeling for randomness),‘ tests of randomness, intrdduction to statistical in~
ference; range and variance -as measures of dispersion; compound probabili-
ties (hence, farﬁiliarity with arithmetic of positive fra'ctions);v graphical
representations of frequency distributions; concept of "reasonable behavior"
based on probability estimates; decision~making and optimization.

All of the above topics should be integrated with each other as well

as the rest of the curriculum.

GROUP D: TEACHING STRATEGIES AND STYLES*
It has been demonstrated that the mathematics classroom can be
made into an environment where children learn from one another. Those who

need more assistance can get it; those who need more challenge will find it.

*Ed. Note: Much of this group's plenary "discussion" of teaching styles and
strategies consisted of "live" demonstrations of the methods described
below. For more details about these activities refer to tne individual papers
submitted by members of this group. .
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We can encourage playful competitiveness in which a great deal of -
desired learning takes place. . )

' Creativity can be developed through student-initiated problems and
their solution. The math classroom can act as a synthesizer of experience
. of varying lengths of time in and out of the cla‘s.sroom. Experiencés involv-
ing a variefy of solutiohs can be provided. Fufthermore,‘given the oppor-
ttmity students will approach the ;same problem in different ways, on different
levels of sophistication.

Last, but not least, the junidr high school mathematics classroom
can be an area where it is fun to learn, by making judicial use of puzzles
and games. ' '

The kinds of active, vital classroom that include the above-mentioned
activities do exist, but too infrequently. The goals of any new curriculum
should include a recognition of the value of this kind of classroom. The ‘
structure of the text and teacher training should promote the appropriatel

learning atmosphere.
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WHAT IS LEARNED IN ELEMENTARY SCHOOL I\/[ATHEMATICS?1

Fernand J. Prevost
Consultant, Mathematics Education
New Hampshire State Department of Education
Concord, New Hampshire 03301

It is currently fashionable to look at curriculum in terms of major
strands. This has been especially true in mathematics and has been most
extensively evident in elementary school mathematics. Of the many ways
one can "break out" these strands let us consider these six.

Sets, Numbers, and N‘umeration
Operations and Properties
'Sentences and Problem Solving
.Geometry and Measurement

Functions and Relations

(o2 30NN+ 2 BTSN /C S A E

Probability, Statistics, and Graphing

These straﬁds encompass the material generally covered in programs.
currently‘used in the schools of our country. With the.possible exception of
probébility and statistics — not graphing — a_ll major publishers do some work
with these ideas in their series. The current series, copyrighted 1971 and
after, have started to de-emphasize sets, do less with numerals to bases
other than 10, 'incorporate'some work with metric measures, and look at ge-

ometry from varied points of view.?2

' In order to analyze what-is truly learned in elementary school mathematics

one should be far more scientific than this paper intends to be. No claim is
h made for research, except as noted, and the bulk of the statements are made

on the basis of observation, experience, .and teacher interviews. -

2  One must be aware that authors and publishers always include material

that is.outside of the main stream of the program. Final chapters are usually

written with the bnghter student in mind and other material is included for
EKC the purpose of "individualization." :
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The first three strands above cover material that society considers .
as fundamental. The-latter three cover material with which the student
should become familiar. Another way o‘f looking at it is to say that strands
1, 2, and 3 should be taught for ma s.te'ry while strands 4 through 6 are expo-
sure strands — covering material to be mastered at a point beyond the time of
initial introduction. Indeed, in these strands mastery may occur in high
school or beyond. _

Regardless of the intent of supervisors and authors, we are concerned
here with what the evidence ;hows with regard to the learning in each stzjand.
What does the average sevenfh—grader have as knowledge in mathematics

when he steps into our classroom in September?

Strand 1 4

Generally the student is familiar with sets and tﬁe basic;terminology
associated With these. Union and intersection are familiar but not always
clearly distinguishéa. A proper subset can be identified as a subset, but
the empty set and the set itself are not yet acéepted as subsets. If the ter-
minology is to be used, review is urged.

The emphasis on concrete devices has led us to a better understand-
ing of number and the "feel" for at least whole numbers is good. Integers
are seen as ple;,usible, especially in Northern climes, and fractions, as parts .
of wholes — not as quotients — are at least understood — in the sense of break-
ing something into equal parts and labeling each part. For some, the order of
fractions hés'béen learned and their position on the number line can be easily
located. Decimals are generally less firmly learned, a function no doubt of
our emphasis on fra;:tions in Grade 5. B

Numeration ideas, those Aof place value and the notion of a base, are
often well established. Where they lack, concomitant problems arise in ad-

dition and subtraction.
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Strand 23 ‘
The criticism of lack of ability to compute — beginning in 1968 and
~continuing unabated — has led to some changes in our treatment of the algo-
rithms. It is unclear if these changes will result in better computational
ability on the part of students in the future. For the moment, the picture
appears to be as follows.

Whole numbers: The student can add, subtract, and multiply with
80 per cent or better success. Division especially by three and four digits
is generally poor. Students perform better in all four operationé in non-test
situations than they do in achievement batteries.

Fractions: Addition and subtraction of fractions with like denomina-
tors is generally done with success. Unlike denominators significantly re-
duce the success level. Multiplication is relatively easy but division,
again, presents problems.

" Decimals: If the decimals are 6n1? to two places, addition ahd sub-
fraction are handled easily. More places and addends with an urilike number
of places reduces thé success level. Multiplication and especially divisio.n
present difficulties to most students.

The basic properties of the operations are surprisingly well grounded.
Students know and can give examples of the commutative (order) and associ-
a>tive .(grouping) properties. The distributive property is not as well handled,
but is recalled with little review. Unfortunately, we observe little ability to
apply these properties in order to aid in calculations. The properties of clo-

sure, identity elements, and inverses are less well mastered.

Strand 3
The presence of "open sentences" in the programs from Grade 1 to

Grade 6 has led to an intuitive ability to "solve" such sentences — when they

3 The reader may wish to review the publication: Sixth Grade Mathematics:
A Needs Assessment Report, Texas Education Agency, Austin, Texas, 1972.
(A criterion referenced test report on 212 objectives administered to 22,000

students.)
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contain but one operation. Some studenfs can use the "inverse operation"
procedure,. but it is not a skill one can assume.

What does one say about problem solving? As was the case in earlier
programs, some students can solve problems, others-cannot. No "algorithm"
is generally provided, no schema developed, and r.o common patterns of at-
tack evident. One current series has attempted to develop a "Tell-Show-
Solve-Answer" formét. Though used successfully by some teachers it has
yet to be tested in a large number of classrooms.

In general one can say, 'students in Grade 7 do not sclve problems

well.

Strands 4, 5, and 6

One can consider geometry, measurement, functions, graphing, and
probability and statistics together — because little can be assumed in any of
these areas.

Despite the presence of geometry in all series, it is the topic most
often "skipped" in favor of more time to develop skills in computation. Cer-
tainly students know the names of the common geometric figures, both plane
and solid, and have some abilitv to describe their properties. Alsé they can
identify points, lines, planes, segments, rays, angles, right ‘angles, and
paraliel lines. Notions of congruency, symmetry, similarity, and motions
in the plane cannot be assumed. In the same manner, constructions cannot
be assumed.

Generally, students can measure, but their experiences have been
limited. Length is handled with greater ease than area and area most cer-
tainly has greater mastery than volu,mve. Measure ds a function or measure
as co-‘mparison are both often lackiﬁg. Measure is seen as something you
compute if yéu‘re lucky enough to remember agfprmula. Some students, of
course, intrigued by the "applicat‘ion" of measdrement are quite capable in
the area. . |

At the m'Qmeht, little familiarity can be expected with the metric sys-

tem. It is to be hoped that this will change.
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Liquid méasuré, Weight, time, and other related topics are known
but it is questionéble as to whether or not the mathematics instruction has
contlributed most significantly to these.

Although "function machines" abound and "input" and "output" are
terms familiar to the rstudent, the concept of function is still developing —
and may continue to "develop"” through junior high. '

Graphing ability is erratic. In the more activity-oriented programs
it is well developed. 1In others, it may or may not be mastered. (We épeak
here of simple bar graphs, circle graphs, picto-graphs, and line graphs.)
Test scores indicate an ability to read and interpret graphs. Little is known
from these tests about the ability to construct a graph.

The graphing of ordered pairs and of functions is generally left to
Grades 7 and 8. _

And lastly, in the area of probability and statistics iittle, if anything
at all, shows mastery. We would do well to assume no prior experience.

Finally, one must admit that teachers have had little guidance from
us, mathematics educators, regarding specifically stated skills. Too often
we have iﬁtermingled "mastery" topics amoﬁg "familiarization" material.
Without gdidance, the whole has been taught for mastery or for exposure as
the teacher felt was the intention of the authors. Accouvntability has to be
shared by others and not exclusively by the teacher. _

It is hopéd that these observations of a suburban-rural area general-

ize to a larger — less parochial ? — population.
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MATHEMATICAL SKILLS OF SIXTH GRADERS IN DETROIT

Frederick Schippert
Supervisor, Junior High School Mathematics
Detroit Public Schools
Detroit, Michigan 48202

Encloséd is the mathematics portion of the Iowa Tests of Basic Skills
Form 5, Grade 6 that is administered each April to all sixth graders in the
Detroit Public Schools. It consists of two parts — Mathematics Concepts
and Mathematics Problem Solving.

An item aﬁalysis is done each year. Sihce the results for the April
1973 testing will not be available until late 1373, the data shown reflects
the results of the April, 1972 testing. They should prove adequate for the
purpose of the Cape Ann Conference.

A total of 20,000 sixth grade Detroit students were tested city-wide.
In addition to city-wide results, infermation regarding 3, 000 inner-city sixth
grade students is also reflected in the attached. Data is not developed in the
Detroit testing program fof ihe inner4city schools as a group as contrasted
with the peripheral school. In view of the work that vs;ould héve been involv-

ed to compile precise statements for all inner-city students a sampling of

3,000 was taken. » ‘ - i

Although the first enclosure may appear cluttered, the data has been
included with the test item for ease in analysis and discussion. |

The key for the letters at the beginning of each item is given as a
second enclosure. Two numerals precede each response — the first in a box
indicates the per cent of inner-city Detroit sixfh graders who gave that
fesponse, the second riumber is the per cent of sixth grade students city-wide
who gave that response. The numeral of the oorrect response is circled.. The
per cent of the national norms group which gave the correct response is shown

in a triangle. *NR indicates no response was made by the student.
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As an example, the third test item of Mathematics Concepts is

marked as follows:

M-3

—
41

32

20

[T} NR

3. Wh_at tenﬁperature does the thermometer show ?

44 ORELE

33 2) 39°
18 3) 410
5 4) 420
0 NR

Meaning of Symbols
Measurement - Temperature
41% of inner-city sixth graders selected the first response.

44% of the sixth graders city-wide selected the same |

response.
The correct response is No. 1.

63% of the national norms group selected the correct

. response.

1% of inner-city students indiced no answer.

The readers attention is directed to the third enclosure in which the

difference in per cent from the national norms group for the inner-city and

city-wide is shown.

The areas in which large variation exist should prov1de

much discussion.
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KEY FOR THE CATEGORY DESIGNATIONS

CONCEPTS

Decimals - Reading and Writing

Decimals - Relative Values:

Decimals - Rounding

Decimals - Fundamental-Operations Estimating Results

Equations, In=squalities and Number Sentences

Fractions - Relative Values

Fractions - Equivalence

Fractions - Terms

Fractions - Fundamental Operations - Ways to Perform
Fractions - Fundamental Operations - Estimating Results

Geometry - Points, Lines and Planes

Geometry - Recognizing Kinds and Parts of Geometric Figures
Geometry - Angles and Triangles

Geometry - Dimensions, Perimeters, and Areas of Polygons
Geometry - Parts and Areas of Circles

Measurement - Temperature
Measurement - Length
Measurement - Area and Volume

Numeration - Place Value and Expanded Notation -
Numeration - Properties of Numeration and Number Systems
Numeration ~ Special Subsets of the Real Numbers

Ratio and Proportional - General
Sets - General

Whole Numbers - Rounding

Whole Numbers -~ Partition and Measurement Average
Whole Numbers - Fundamental Operations - Terms
Whole Numbers - Fundamental Operations - Number Facts

PROBLEM SOLVING

Currency ~ Addition

Currency ~ Subtraction s
Currency - Multiplication
Currency ~ Division

Currency - Addition and Subtraction
Currency - Multiplication and Addition
Currency - Multiplication and Subtraction
Currency - Division and Subtraction



D-S8
F-A
F-S
F-M
F - AS
F - MS
P - MS
R

W - A
W -8
W - D
W - MA
W - MA

Decimals

Fractions
Fractions

Fractions.
Fractions"

Fractions

Per cents

- 22 =

Subtraction

Addition

Subtraction

Multiplication

Addition and Subtraction
Multiplication and Subtraction

Multiplication and Subtraction

Ratio and Proportion - General

Whole Numbers - Addition

Whole Numbers

Whole Numbers -

Whole Numbers
Whole Numbers

Subtraction

Division

Multiplication and Addition
Multiplication, Addition and Subtraction.



- 23 -

DIFFERENCE IN PER CENT FROM NATIONAL NORMS GROUP

CONCEPTS
Item Inner-City City-Wide Item Inner-City City-Wide
1 23 - 16 23 15 13
2 6 5 : 24 8 4
3- 22 _ 19 25 19 13
4 10 © 6 26 10 3
5 15 4 27 22 18
6 8 6 28 19 14
7 22 19 29 16 14
8 19 20 30 16 | 15
9 12 13 .31 22 18
10 13 6 32 9 5
11 20 16 33 6 6
12 15 11 34 21 17
13 28 . 20 35 16 8
14 26 22 36 25 - 22
15 18 14 - 37 29 22
16 12 11 38 18 - 12
17 18 19 39 - 17 : .14
18 8 8 40 - " 19 14
19 11 2 41 11 10
20 14 6 42 9 8
21 14 8 43 13 10
22 15 8 44 6 0
45 22 18
PROBLEM SOLVING
1 9 5 16 13 9
2 18 13 17 14 L 12
3 15 14 18 26 , 20
4 15 15 19 18 14
5 18 n 13 20 4 3
6 24 20 21° 20 17
7 16 14 22 12 11
8 9 6 23 _ 7 8
9 15 10 24 12 . 10
10 20 ' 12 25 17 13
11 16 : 12 26 16 15
12 21 16 27 21 19
13 11 8 28 19 16
14 0 1 29 7 7
15 17 13 30 16 14

Q ’ 31 5 5
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Begin Here

‘\*7: 1. What should replace the 71 in the num.bcr sentence
: 73,642 = 70,000 4 3000 + [ L 40 + 29
; |
L T 6@\‘;2) so@rﬁ) '4) 6000
; — VN QR
1 ¥ 2. Whichof these framons 18 nm equivalent to the other
; three?
®r niAe 254 0 T S @h
i I \0?\
YA 30 What wempegature docs this thermometer show?
—y
'..‘."1_] 4k ) 38°Z& 50
T‘}‘“—éﬂ 33 2) 39° '
[20[13 3) a1 a0
Ll 5 4y ar
Ao WR —30
- & Which numbers in thic set {3.5,8,9. 10,11, 14. 15!
- are divisible by aeither 3 nor 5?
1\3_“\% 1) 185
2) 13,9, 15
3) 5,10, 15,
8, 11,14! [lci
NR
. In which set below are both members factors of 167
Y1153 (0 28l 6] b 3) ne3
3b 13 2y 1,18 \\ (V& 4) 132, 2
. Sl v AR
¥ -6 6. Which addition exercise can be explained by the
picture below 7

I e

=[] ’“EEE

0

0 )
ie I
\

-
N
-

n

1) z+5% =

[A =Y
@

Wik it N

Ni= Nit=
DI~ BT b

MQ.

7. Bob sinved 75¢ a week for 9 weeks, He bought a new
light for his bicsele and had 90¢ left over.  Which
number sentence below can be used to find the cost
of the light for hh bicvele?

1) (8 x75) + 90
2) (9% 90) — 75 =
@ (9 x 75) - 90 -
4) 90 - 75 = n
NQ

]
3 3 2

i

£n

.
MW 1)

NG

| 8.
I

Pége 17

What should replace the (T to make (96 X 24) = [} =
96 a true number sentence?
\ThSs) 96

W 1) 1\:}1@ 2) 4@‘“@» I
3

9, Which of the line segments in the figure below is a
diameter?

24

"0,

o) G505 o
it 12 2l @

! i}V N
| 12. Which pair o numerals below connot be used as

;’N-% replacements for the ¢ and the A in the number
12477

sentence 7 4+ (7] X AT
Veltb1) 26 133 42 O 5.7 (5
WV 2y 3,4 126123 4y 1,12
... 2 2 NK ]
13. Which of these fractional numbers iy greatdr than
“L one-half?

ﬁoolm N =

Be] % 3
géi@’s% 1)
VN

4. What should replace the [ in the number sentence
WS 9X(7TX4)=63%x{ ?

12775 '4\'%\?1) 1%2%3)9114:28
' v NR

Go on to next page p

(AT

G b=

@56 D

Which of these fractions can be expressed as a mixed
T-% numeral? _
a1y 7 0 NR
VN4 1) ¢ 2\ 3 m \
) 3 5
2) = 2
o) 3 ﬂ@ﬁ%l}
11. In the picture below how many inches longer s line
Y\—s

segment b than line seament ¢?

e

et

Ll o
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Page 18
A
15. What should replace the (] in the equation
5 0 5
- —_ = -9
9 + 9 ! 9° .
@1’1 1) 1 2\ 3v Q) 9 &
E\a‘ 2) 4 \ 2\ 4) 10
V) 2 WX

-5 16. What should replace the [ in the number sentence
(7><12)+(7><5)=[j><l7?
§\% T 1) g ‘L\o 3) 12
|37 Q7 & 4) 19
\ 3 N
Y 17, How could the equation [J — 32 = 78 be solved?
’Z.Ll 2\ @ Add 32 to both sides of the equation./*
25125 2) Subtract 32 from both sides of the
—] equation, _
1L |25 3) Multiply both sides of the equation by 32.

2%/ L 4) Divide both sides of the equation by 78.
1 3 N

G-%1s.

Which of the following statements about rectangles is
not always true?

129123 Q) Thelengthofarectangleis twice its widt
'L:L 2L\ 3) Arectangle is a parallelogram.

Hol[5\ 4) Arectangle has 4 right angles.

T NK

‘F‘G_ 19. What should replace the [J in the number sentence
o 3777 d
®{ Hse TR W™ 310
Bl e (35 D SN
\ 3.

L N

If 313 is rounded to the nearest ten,
resulting number?

.
what is the

W3 20.

_———\(g 1) 300 . 1\l v 3) 320
:\&a\ Q@) 3104} 1] 5 4) 400
VN

(5 21.

Which graph shows the set of whole numbers greater
than 5 and less than 7?

01 2 3 456 7 8
@ s

01 2 3 45 6 7 8
i;T\EJ)mnhfe -o—»>

0‘! 2 3 4 5 6 7 8

: m \1 1) A-rectangle has 2 pairs of parallel sidesz@z’\l’] ) 20

-\
22. How would you read 7.02?
ol 45 | ) 7 point 2.
‘7 7 and 2 tenths
7_(3) 7 and 2 hundredths

A

i 23. The plans of a new house are drawn 1o the scale
Q %inch = | foot. The living room is 8 inches long.
How fong will the living room be in the new house?
L\271) 8feet W 3) 20 feet
w4l 2) 16 feet \\ 4) 24 feet
RAN 7 N
Ww-5

24. Which of the following is a fictor 0f2 % 2 X 3 % 5?

i

2w 8 3L % Q) 1o/l
ALW2) 9 DB 3T 4) 16
| Ci oy e

25. Bob's room is 12 feet long and 8 feet wide. How
Y- b muny square feet of floor space does he have in his
0|3 b (@) 96

| .
BN@&

~ What should erlilLL the box in 27 + 7] =157 ~

\“\ \’l 3) 12
ﬂ@ —12'1

-\'b \%  3) 48

vWeiv2.2) 40

4) 42

%= 27. Which pair of numerals could be used as replacements
for the [[J and the A in the equation
, =(Ox3)+ A?
[2\\2\ 1) 15and4 | 20|20 3) 20and1
\TW\e2) 2and2 (5% {33 (@) 21 and 1 éA
- [31b we
28. What should replace the [T} in the equation
T2 122,
. 8 8 [ .
aley o (3B e Q) s L\B%
292 2) 5 YN 4) 16
Y WK
“29 Which of the following expressions is not equivalent
D 108 (4 Y?
= \Q @+ £33 rﬂ\ 13V (4x3) +8
A3 2) 8+4+4t \%Jmn 843 x4)

(3] 6tk

Go on to next page »
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. What is the perimeter of the figure below? 1 38. The average age of 4 boys was 12 years. What was

1) 17 I\Y=% the sum of their agcs"

5 .-_
2) 18’ \5 1) 3years Ci K 3) 36 years %
7_\ \§ 2) 16 years S @ 48 years (S 6\
3) 24 a \'D NR
\ : \% ¢
o owb L - |
AR AR 8 39. Which of the following expressions would give. the

. :\;};cb[lrff these numerals represents the greatest best estimate of 3.9 X 51 ’

1) 307 [ZZz] et 3) 3.07 l %unsxs Zolrn ) a x5 &

2) .730 \§ 122 @ 3.7 2gi262) 3x6 R |\s4) a4xe6
\0j 7 NR (Za\e ne

. Which figure below is nor a paralielogram?

40. Which equation below does nor have a solution?

Gllb!) 9~n=0(\5|\L 3) 8X0=n
[{]\32) 94-0=nf2_‘i5‘{@0xn=9@§
| [2ve ne

‘ £ 41. What numeral should replace » in the number sentence

z

Make no marks in this bookvlet.

2
| ‘ 4X"=3 5 -
T 33. In which equation would you divide to find the value
. ljaz 1) —@zoz) THs@ glud) 15

N of n?
: n
,3'2. 1) n+7=8 \‘\\%3):;=6 @\C\ NQ
24l 2 9n = 72& 4) n-8=14 -
- ¥ QD on Yo \:E‘)I '\:({n 8 J 52. What should replace the [} in the equation
< -3 34. Which of the following is a set of equivalent fractions? % + % =3 tD 9
- 2 3 4 » '
7\0®(3691~2-'@ SHun 1) 1 \\ 3) 3
11011 s @ 2 \> 4) 4
: LA L , (22
@17_2){2345 22)ig NR
123 4 G
> 3) {_, €, 2,2 43. At which of these times do the hands of a clock form
; 3) U 555 5_ an angle of 90°?
IR (%g 2.3 | . R\t @D 3 o'clock/zN141203) 6 o'clock
TR LYY ' . Wzl 2) dco'clock  f244234) 12 o’clock

' 'q 35. How many numbers are in the intersection of the sets
tor {7,8,9, 10} and {8, 9, 10, 11}?

;f‘\"% \S ) Exactly two ;);’303) Exactly four 44. Which of the Z‘g})wing represents a prime number?
- ._“\ 31 O Exactly thre \3 h24) Exactly five ‘rﬂ W) 5:}\%@ 7@\‘*3) BIDN34) 9
2i [AShy N 5 NR
9 “™ 36. If8.52is rounded to the nearest whole number, what
is the result? @ ' 45 Which of the followrg is greater in value lhan 7617
& \g 1) sfz\sr2) aaE’]Im 9@\\4) 10 }w@ 8 LN, L Wy 3) 7603
NQ 7 2) .699 \ 716
€.  37. Which numeral below will make ] X 8 < 56 a true 7.0 ‘ 0
i i number gentence?
. El\ > (D 6.-/3‘._... V3 VL 3) 9 3 Here
0

9 ) 7 25 |24 4) None of these

LV We ,
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IOWA TESTS OF BASIC SKILLS
Test M-2: Mathematics Problem Solving

_Directions: This is a test of your skill in solving mathematics problems.  SAMPLE EXERCISES
The excreises in the test are like the samples shown at the right.  After
cach exercise are three possible answers and a “Not given™ — mcaning that

the correct answer is not given,

Work euch exercise and compare your answer with the three possible
Il the correct answer is given, till in the answer space on the
answer sheet that has the same number as the right answer. I the correct

ANSWCrS.

answer is not given, fill in the fourth answer space.
The sample exercises show you what to do.

You will have 30 minutes to complete the test.

Begin Here

AR v

1. At Lincoln Park on Junc 18, there were 33 boys who
wanted to play in the Little League baschall club, If

they nceded 9 players for each team, how many
complete teams could they have? .
T iy 2 L1 3) 4
Sk © 3@&.&.@)5 4) 6
O1Q

2. By the cnd of Juncenough boys had joined the Little
League so that there were 4 teams of 9 players each,

W M v and 4 boys who served as stand-ins. How many boys

24

were in the Liu_lg\ League by the engd qf Junc? -
32 (3231 O 40&

2) 36 \®=|?d  4) (Notgiven)
AN N _
3. The distance betWeen bases on a basehall diumond for

e

Y older players is 90 feet. The distunce between bases
. on a Little League diamond is 2 as long. How many
, feet apart are the_bases on a Litde League diamond?
P._g 1) 30 V3 I\ 3) 135
v (O 60 F_z: 3D 4) (Not given)
Vi A NR
Yo, 4. For the gamcs.‘nj the Fourth of July, the Little

I
ERIC

Aruitoxt provided by Eic:

5

\3

Leaguers sold 50 tickets to adults and 46 tickets to
children, The tickets cost 25¢ cach Tor adults and 104
for children, How mueh in all did the club receive for

the tickets?

1) sa.60 | bi% G 1710 Z‘ﬁ v

2) $12.50- _g\;__\*\ 4) (Not given)
VT NR

S1. Peg has | sister and.2 broth-

S2. Ben had 5 butterflies in a jar,
away.
have left?
1) 6
2) 4

3) 2
4) (Not given)

i : ANSWERS

S1. i

|s2. 323

“

5. Trees arc the oldest of all green plants. A piant
scquoin tree cut down recently was estimated to be

W =%700 years old. A bristlecone pine tree was found that

i was 4600 years old. How many years older was the

f pine tree thap lhc;;_i_:_llm sequoin? .

YUY 2900 A LIW 3) 3900

\1j2) 3100

2% 4) (Not given)
MO

6. The General Sherman, a fumous tree in California, is
; almost 300 feet all. This is § times as @l as a fully
W grown maple tree. About how many feet tail is a
' fully grown maple tree? _
%\M) 50 ~_ T\a| \b  3) 80
@ 60&5 BNY35| 3 4) 150
[ Y i 2 N
7. Maple syrup is made from the =ap of maple trees. If

it takes 30 gallons of sap to make one gallon of maple

K syrup. how many gallons of miaple syrup can be made
D from a tree that gives up 20 gallons of sup in one
L_— season?
AR RN Z_:;\ 2\

’

“3) 13
N S i S _2
13 D I .?:fu_?’.] "4} (Not given )
. - __\__3./)'.;,_\ e N R

Go on to next page b

ers.  How many brothers
and sisters does she have?
1) 2 3) 4

2y 3 4) (Not given)

He opened the jar and 4 flew
How many did he |
|
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Aruitoxt provided by Eic:

RIC

\Q" Ry
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8. The Page family drove to Montreal for their vacation,
By the route they took, it was 693 miles fram Tulsa to
Chicago and 848 miles from Chicago to Montreal,
How many miles was it from Tulsa 10 Mantreal by

this route/
ORI

2) 1631

9. Mr. Page had 3 weTks of vacation.” The family spent
g Y S|

{0 days in Montreal on their trip and 2 days in Detroit,

How many days did they have left faetravel ?
1y 210 {4} SV Q) 9 h
2) 12 4) (Not given )

The Page WY stayed at motels Tor 7 nights on their
trip, and the rest of the'time with friends or relatives,
The total cost for motels wits about $100. About what
was the average cost for cach nigin thy stayed in a
motel?

10.

) s70862) s1ogj 1) s11f_},\ $14
Ron had saved $15 to xpgnd on the (i In the Tirst

ays he spent one-third of the $15. Haw much did

he have left to_spend ?
\Q 1) 5300 [25 ’a“@smooh
23 2) $5.00 Q)b 4)N( Not given)
12. Ron wanted {07 dmhve home by way of Detroit and
Denver. Mr, Page said the distance that way would

be 2550 wmiles. but it would be 1618 i they drove from

Montreal to Detroit 1o Tulsa.  How many miles
longer was theroaty by \\v'a)" of Denver?

1) 832 3) 948

@ 932 [¢, 132 4) (Not given )

Iy, ONQRS

-9 13 Mike Llnd hlb friecnd Van found a walkie-talkic sct in

v.__

L_

W-9
8]

K-NS

1‘% T3 @ 25 4N
& )8

a store for 52.59. In u crtalog they found a toy tele-
phone set they liked betier far $7.95.  How much
more did the welephone set cost than the walkie-talkie?

1) $436{ 3T ) \L 3) $5.46 t

2) $5.44 T_} C;q. @ Not given

The catalog gave the slnpme weight af the telephone
set as 35 ounces.. [tsaid the Post Office charged postage
far a Tull pound on any sart of & pound. For how
many pounds would the boys have ta paty postage on
the telephone sc(" (16 ounces. = 1 pound)

1) 1.:,.4‘,\_ ) ?J:y@ \Q@p\4 ) LoNoL given )
7 [ :
The boys wanted to ku, it telephone®™ih eilh ol their

Shouses. A Tine 30 feet long was included with the
telephone set.
~ houses, 45 feet Trom o window to a table in ke
croom, and 6 feet from a window to a table in Van's
room. How muany more feet of line did they need 1o
reach from the table in Van's room to the table in

\
\R
14,

15.

Mike's r m‘n 2
I\TY 3 901
24- 122 4) (Notgiven)

They measured 42 [eet between their - ¢
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' 16. Helen's mother made a matehing Jacket and skirt for
K -\ Helen to wear to school. She used 13 yards of woolen
I cloth for the jucket and 1} yards for the skirt. THow

: many yards of woolen cloth in all did she use?
Q13 g (a3 Q@ 27 [

22.\4 4) ( Nat given)
Iteost 3¢ a yard. How much did she

17.
ards of linipg ? éé
81y

&M
— pay for the 15 yards
YA \\z 1) 27¢ 2} EE)
b1242) 760 126127 4)  (Not given)
C b &
felen a jacket from 1} yards of

" 18, Last year sfic-made
VCD material,  This year she used 15 yards to make a
Jucket. How many more yurds of material did she use

! this year for the jacket?

L\ Z'ICD }@\‘T’) zﬁ;\ 3) 4E{;}l‘w) ! Not gwung\“{
E P{”Kﬁ\ mother hdd v.lrds of cottonTmuterial. She
?-ﬁ used 13} yards of it to make Helen a blouse 1o go with

the skirt and jacket, How m.my vards of cotton
material did she have left?

]\% 1) BE\‘!?) ROV 135\],\6) { Not gwun)@”
5 % ne

Helen's mo
line the jacket.

“oought 14 yurds of rayon fabric to

'

In a rccent census the population of Alaska was
226.167.  In the same census the population of
Anchorage, the largest city, was 44,237, At the time
of the census about what fraction of the people in
Alaska lived in Anchorage?

ANVET E_{}:v) ﬁ 16244y 4
1 2 5 ‘é N@

Mount \kl\mlc) llu. nghest point in /“ﬂ&d 18
20.320 feet above sea level. Before Alaska became a
state, the highest point in the United States was
Mount Whitney in California, which is 14,495 feet
above sea level,  How muny feet higher is Mount
: MceKinley than '\Mm Whitney?

238 Q@ 5.825 '1\\‘1 1) 6.825

20(\% 2) 6,175 2307 4) ('\Jo( given )

f 22. Alaska has an .L:lln m.nl\ 600.000 square miles.
: ;_Y\ About } of Alaska is north of the Arctic Circle.
! About how many squire miles of Alaska are north of

. the Arctic Cirel

NS 1'% 1y 120,000 L6]2% ) 200,000

2220 () 150,0004N.7Y 22 4y 240,000

; 23. The Lnited Sl.m.:\l aught f\'l?!.\}\d. from Russia for
7.2 million dellars. The Louwisiina Territory was
i purchased from France for 23 miltion dollars. How
: many million dollars Tess did the United States pay
for Aduska thap Tor the Louvisiana Territony ?
ALVl Vo3 302

Lﬂl 39 4V (Notghven)

\;o'].q P

20.

8

Y Go on to next page »
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e SPECIAL -~ [Bfo6rAPH SuPpLIES
‘f‘/ﬁfo\ ?r?csi_ﬁ%icléﬁ?fgmuw 1L5S, FILM, \ ;—— -
e [N 51588 /J 1, [BECLWELL |
0rg0._ } / EiTy //ﬂfj L f,’ASh B”Lt,j with standard lens §89.95 |7
[\0,50 2.775 P Siﬂ FCR with zoom lens $119.50 L
%534, 5\/*1' LhJ msrwmm& cr IZ - e

Low cost 15

Ve\uxe 319,207

/\)‘X‘DI“
5l|de\/sewer e A ,“’7"
;25 fa H’OV{‘: :

) ,Z %’ 09

!
5 12715?"@3% 3 h
CAMFRA 2 ,‘.~-'.;3

\[Col% Filgy

To work problems 24-31, look at the picture above to find the price of thmgs Do not allow

for sales tax.

G\, 24, Mr. Douglas bought the following items: Gunsar
“500" slide prOJcctor 40" by 40" movie screen, and a
25’ roll of 8 mm. movie film. What was otal bill?
\% % 1) s95.79 3] 33 ) s10579&
A\ |\ 2) $10270 35 3 4) (Not given)
Y 9. WR
<X\ 25. Before going to Glacier Park the Dennis family

-bought 7 rolls of 8 mm, movie film. How much did

they pay?
A% Q) $21.63¢ %"q\'z_ 3) $27.03
\L 2) $2263 (30, 30 4) (Not given)
: MoV NR

¢Y\526. Don bought 6 flash cubes and paid for them with a

$10 bill. Ho»\unuch change should he have received?

\
WDV 1) s2.88 N\ !N\ 3y ¢8.12
%z‘z&lz‘\ Q2) 712425125 4) (Not given)
\\o W N
C:(v ‘27. Roger wanted to buy a large gadget bag. If he saved

65¢ a week, how many weeks would it take for him
to save enough money?

1)_29{15(2) 21,\\3) 23 1'14) (Not given)
|y L i \\ﬂ“w N®

C-AS '
’\28. Doug bought the Cosan camera kit. If he had bought
. the same items separately, the flash camera would
" have cost $14.95, the flash bulbs $1.25.and the film

$1.98. Ho h did he save by buyingsthe kit?
RN 1) $18.18 | =) w QY $2.30 Z‘*]_b:

No NS 2) $3.30 {g, 22, 4) (Not given)

29. . Rick found h,z—same\ ‘deluxe’ tripod at'a discount

_“ store for } less. How much would he save on this
tripod by buying at the discount store?

M\ 1) s7.40 A TNIINT 3) s11.92
o@D $7.4533

i
'%-3 2\ 4) &\Iot given)
30. Every Saturday T{hc store has a ‘“special’” on flash
CDS  cubes at 39¢ cach. This is how much saving over the
regu]ar,p{lcc on one cube? —
B CD/\(9¢ 22) 27¢13=@) $1 o.:ﬂm) (\Nq‘t given),
31.

Next week thc 50" movxe screens are going’ on sale at

cost next week?

\i\> 1) $6.90 |20
\B\32) $17.25 |7 1]

Ley

@) s27.60 &

2 4) (Notgiven)
W

Here

20

Q-N\S20 per cent off. What will one of these movie screens
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MINIMAL ESSENTIAL PROFICIENCIES
OF
MATHEMATICS TO BE ACCOMPLISHED IN JUNIOR HIGH SCHOOL

Glyn H. Sharpe
Coordinator of Mathematics
Jefferson County Public Schools
Lakewood, Colorado 80215

Overview .

An earlier listing of more comprehensive objectives and topics was
advocated for students in the junior high grades. These are felt to.be desir-
able for average and above average students.

The listing indicated in.this paper advocates a minimal or essential
listing of objectives and topics deemed essential for all students. The posi-
tion reflects strongly the point of view recently stated by the NCTM Commit-
tee on Basic Competencies in Mathematics of which the writer was a member.
Introduction |

Few educators will deny that past efforts in mathematics education
have produced significant gains for many pupils. There are too many cases,
however, where many pupils leave our schools without the necessary skills
to make them employable and to allow them to apply mathematics to help them
solve the problems of daily life. _

Some decisions are desperately needed to give guidance and direction
to teachers and administrvators concerning:

— what mathematics must every pupil master to "barely get by"

in contemporary society? "

—  what mathematics is essential for full participation of an

individual in contemporary society ?

— what teaching techniques and processes not only assure the '

acquisition of mathematical skills and competencies deemed
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essential but also convince pupils to be willing to use these

skills once acquired.

Individuals often find the need to use mathematics in everyday life

and in many jobs that frequently require some technical application of mathe-

matics.

heading, as to what minimum "doing skills"

The following outline of content gives some indication, under each

citizen.

Grade Six - Seven

Pupils can describe areas of plane geometric
figures by measuring bases and heights and
applving—~a-rule to determine areas.

Pupils can apply & rule for determining the
area of a circle.

Pupils can describe the volume of solids by
applying a rule to determine volume in stan-
dard units.

Pupils can describe volume of liquid measure
of a given container to the nearest whole unit
using both English and metric units.

Pupils can describe time measures in years,
decades, centuries, time zones, and relate
distances in light years.

Pupils can ,déscribe by reading temperatures
from either centigrade or Fahrenheit scales.

'Pupils can identify standard units used to

measure length, area, and volume. He can
describe and use arbitrary units to measure
length and area. ‘

Pupils can describe approximate measures to
nearest 10,100,1000, etc. or as being be~
tween two known measures.

& |

(S

.bl_wwl_
—

‘ o ol

o~ ook

-‘51—> actual length™> 1"

are needed by the enlightened

Area

Area of a circle

Volume

Liquid Measure

Time

Temperature

Arbi;crary and
Standard

Rounding off to
approximate
measures.
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Pupils can apply a rule to determine
speed. e.g.,

D=R T
R =D/T
T =D/R

Pupils can describe angle measures in
degrees using a protractor.

Pupils can describe sums, differences,
products, and quotients using denominate
numbers. e.g.,

_ 214 mph rectangle
642 miles
= area
L 214 miles/hr. )
= ; . base = 8 in.
3hr. miles

height = 4 in.
area = 32 sg. in.

Pupils can describe sums and differences
for money problems.

Pupils can describe products and quotients
of decimal fractions. . '

Pupils can describe sums, differences
products, and quotients of two fractional
numbers with like and unlike deonimators.

Given numbers like 1/5, pupils can convert

the rational number to a decimal.

Pupils can de_scribe the products, quotients
or missing factors for problems like the
following:

20% of 140 = [_|
40x [ 1% =10
L% 30% - 21

Speed and Velocity

Angle measurement

Computation with
measurement

Computation .

Basic Facts of Multi~
plication and Divi~-
sion of Decimal
Fractions.

Basic Facts for Add-
ing, Subtracting,
Multiplying, and
Dividing Fractional
numbers.

Decimal Notation

Percent Notation



Pupils can construct a set of equivalent
fractions from a given fraction.

Pupils can interpret models like

as 6/4 or 1-2/4 or 1—1/2 by writing the
improper fraction or mixed number asso-
ciated with the model.

Pupils can identifvy and describe fractions
whose denominators are 10,100 and 1000.
e.g., 35/10 =3.5 or2 7/1000 =2.007.

Pupils can sequence a set of rational num-
bers like 1/8, 1/4, .3, 16, 1/2, 7/8 in
order from smallest to largest.

Pupils can convert percentage to dec1ma1
notation and conversely.
e.g., 47% = .47; .35 =35%

Pupils can convert percents to common

fractions and conversely.
e.g., 40% = 2/5; 1/4 = 25%

Pupils can convert numbers like 8 to
exponential form. e.g.,

g = 23

Pupils can tabulate information and_interpret
trends like population growth, product costs
and cost of living.

Pupils can.d.amgnsn’_i_or dlsplay data col-
lected by cons tructing histograms, circle
graphs or line graphs.

Pupils can apply a rule for finding perimeter

or circumference of plane figures.

By using the number line, pupils can demon-
strate which of two integers is greater.

a>b,a<b, a=hb

Pupils can convert a given measure into both
smaller and larger units in both the English
and Metric systems. (No conversion from
one system to another)
e.g., 39 in. = 3.25 ft,

100000 mg.= .1 kg.

Equivalent Fractions

Improper Fractions
and mixed numbers.

Decimals

Order Relétions
Percents
Percents

Exponential Notation

Interpretation of Data
Demonstrating Data

Perimeter and
Circumference

Inequality of Integers

Conversion of
Measures
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Pupils can dgmonstréte the definition of
a ratio using physical models.
e.g., 4 pennies to 3 nickels at 4/15

Pupils can demonstrate indicated division
by renaming numbers like 13/4 as 3 1/4 or
3.25.

Pupils can illustrate ti.c position of integers
like 3, -4, or -2 by graphing them on the
number line.

Pupils can describe that division by zero
is not allowed because there is no unique
number A such that

A/0 = because 0 - j £ A

Pupils can apply a rule to solve long divi-
.sion problems of four place dividends and
two place divisors.

Given a sequence of numbers like 63, 71, 73,
86, and 90, pupils can identify the median
and solve for the arithmetic mean (average).

Pupils can describe answers to multiplication
and division problems by using the.inverse
relation of multiplication and division.

e.g.,

63 X 41 = 2583

2583 _ , 2583 _

63 ~ 4lor Ty =63

Definition of Rational
Numbers

Names for Rational
Numbers

Integers as Directed
Numbers

Definition of not
dividing by zero.

Long Division
Algorithm

Average Determina-
tion

Inverse relation of
Multiplication and
Division
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Grades Eight - Nine

Students can apply rules to write the
products of any two integers.

Students can state rules to write the
guotients of any two integers in terms
of multiplication.

Students can describe the sums of any
two real numbers.

Students can describe the differences
of any two real numbers.

Students can describe products of any
two real numbers.

Students can describe guotients of any
two real numbers. -

Pupils can identify period values of
fifteen digit numbers.

235 512
Trillions Billions

819
Thousand One

223
Millions

Pupils can apply tne Pythagorean Theorem
to solve right triangle problems. -

Pupils can convert measures from English
to Metric measures and conversely.
(Basic units of lensth, area, volume,
liguids, temperature, and mass.)

Pupils can dgg-g;cibg lengths in both English
and Metric units.

Pupils can describe numbers like:

124 =(1x 1/10) + (2x 1/100) + (4 + 1/1000).

Pupils can desgribe answers for problems like:
34 = 3x3%x3x3 = 81

Pupils can describe any number as a number
between 1 and 10 times some power of 10.

e.g.,

643 = 6.43 X 10°
45 = 4.5% 10
42763 = 4.2763 x 104

045~

Multiplying fractions

Dividing fractions

Addition of real
numbers

Sustraction of real
numbers

Multiplying real
nu mbers

Dividing real
numbers

Place Value

Pythagorean Theorem

Conversion of
Measurement

Length

- Expanded Notation

for Decimals

Exponential Notation

‘Scientific Notation

Algorithm
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Pupils can apply rules to determine surface
area and volume of geometric solids.

Pupils can describe by computing measures
with needed regrouping to larger or smaller
units.

Pupils can interpret percentage problems by
describing a mathematical sentence, and its

solution. e.g.,

60% of ___is 120. (.60x|__|=120).
_% of 10 is 5. ([Jx10 =5).
20% of 80 is __. (.20x80=[].
Pupils can interpret gauges that measure
some required quantity. e.g., utility
meters.

Pupils can jnterpret graphical information
by constructing a table showing the relation~
ship displayed by the graph.

The pupil can identify a required measure
from scale drawing.

Pupils can construct a simple budget.for a
given income alloting amounts for necessi-
ties‘and contingency.

Pupils can describe by determining total
cost from given unit costs of items.

Pupils can construct a scale drawing of a
simple object, building, or site.

Pupils can construct a frequancy table from
given data.

Pupils can manipulate variables by applying
properties of equality to solve mathematical
problems.

Pupils can describe sums, differences,
products, and quotients of two integers.

Pupils can describe by computing the sum,
difference, product, and quotient for any two

rational numbers in fractional or decimal form.

Pupils can ¢construct a diagram and ratios to
solve indirect measurement problems (similar
triangles) .

Area, Volume

Computation' in
Measurement

Percents

Measuring Devices

Graphing

Scale Drawings

Budget

Costs
Scale Drawingv
Frequency Table

Equation Solving

Operations on
Integers

Computation on
Integers

Indirect Measurement



- 38 - .

Pupils cén construct the Euclidean
standard type construction.

Pupils can demonstrate a method of computing
perimeters and areas of plane geometric
figures which can be divided into triangles
and rectangles.

Given a number n, pupils can construct the
next few consecutive integers as n + 1,
n+2, n+3, etc.

Given a number, the pupil can identify
whether the number is divisible by 2, 3, 5,
9, or 10._ ‘ '

Pupils can gonstruct true sentences using =,
>, and < to show the relationship between
two integers.

Pupils can construct mathematical sentences
to solve verbal or written problems.

Pupils can apply rules using prime factoriza-
tion of two given numbers to find the greatest
common factor and least common multiple of
the numbers.

Pupils can seguence rationals from least to
greatest by the method of equivalent
denominators.

A given positive rational number can be gon-
verted by pupils to either decimal, common,
mixed numeral, percent, or scientific notation
form.

The pupils' can goriygr_t numbers to exponential
form and conversely.
e.g., 81 =34 or 25 = 32.

Pupils can identify rationals by mapping on
the number line.

Pupils can descfibe by computing interest,
time, rate, or principal from the formula
I = PRT.

Construction

Perimeters

Name for numbers

Divisibility

Equations and

Inequalities
Inequalities

Word Problems

Numbers and

Numerations
Common factors
and Multiples

Value of Rationals

Equivalent names

Exponents

Number line

Relations and Functions

Interest
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Pupils can apply the rule for implications
like:
ifa>hb
and b > c¢
then a > ¢

to indicate understanding of the substitution
principle.

Pupils can apply rules for solving proportions
to compute answers to indirect measurement
problems.

Pupils can jdentify and describe distances on
maps. :

Pupils can jinterpret regions of a graphed rela-
tion to identify minimum and maximum values.

Pupils can describe the chance of events
occuring by computing simple combinations.

Pupils can interpret data to identify measures
of central tendency.

- Pupils can state a rule to predict the proba-
bility of an event occurring from such activi-
ties as a coin flip or the roll of a die.

Pupils can demonstrate his competence to
use a wide variety of measuring instruments
for distance, time, temperature, velocity,
capacity, etc. ’

Pupils can apply rules to determine the total
cost of items with a fixed interest rate and a
given time.

Pupils can interpret advertisements as to

total consumer costs regardless 'of payment
schedules indicated. . ‘

Pupils can demonstrate ability to compute
electrical or other utilities bills from given
data on cost per unit and meter readings.

Pupils can state rules to determine surface
areas and volume of geometric figures.

Pupils can demonsgtrate that two given
triangles are similar by writing the appro-
priate proportion. '

Substitution
principle

Indirect Measure-
ment

Distances on maps

Probability, Statistics,
and Graphing
Graphs

Combinations

Measure of central

tendency

Probability

Measuring instruments

Interest

Consumer costs

_ Utility bills

Measurement
Surface Area and

Volume

Similar triangles
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Pupils can demonstrate data by any two of
three possible illustrations {graph, table,
mathematical sentence).

For two given composite numbers, the pupils
can state the rules for finding the greatest
common factor and least common multiple.

Pupils can state a rule to define whether any
number is odd or even.

2n = always even
2n +1 = always odd

Pupils can demonstrate computational ability

by writing solutions. of mathematical sentences .

Pupils can describe the order relationship be-

tween two or more numbers in sentence form.
e.g.,

5>3 or 8>3>1 or 6>a_>l.

Pupils can manipulate variables to solve for
any term for problems like:

a_gc _bXc  _axc
b-g &9,385 4 b=73
aXxXd cXb .
c = d=
b a

"Pupils can state a rule indicating the
decimal form of any given rational number.

Consumer Mathematics
Data Interpretation

Greatest Common
Factor and Least
Common Multiple

Odd or Even

Equation solving

Inequalities

Equation solving in
terms of variabiles

Decimal names
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MATHEMATICS AND THE SCIENCE STUDENT

Thomas J. Dillon
‘Chairman, Science Department
‘Concord Carlisle Regional High School
Concord, Massachusetts 01742

. Cne then hears high school science teachers say that they can teach
their students the math they will need at the apprOpriaté point in the science
course. The math they refer to, however, is usually a specific topic such as
the laws of éxponents, ratios-and proportibns, graphical techniques, or the
use of the slide rule. Indeed, math topics such as these are often presented
in a science cdurse, and sometimes, with success. In some instances the
student has "had" this material before and this treatment in the science class
provides the aplproprié'c’e review., In most cases, however,' although the stu-
dent may have met these ideas before, he never really understood them. It
is with these students that the science teacher feels he can introduce physi-
cal applications to make the math more meaningful and, therefore, understand-
able. He is often rudely shocked. No matter how hard he tries, the.science
teacher soon accepts the fact that some students will never get these ideés
straight.' And the reason for this soon becomes obvious.

At the heart of the problem is the uncontestable fact that too many
high school students demonstrate a widespread lack of basic skills in ele-
mentary egr‘ithmetic. Because the subject is so broad and because so many
- valuable years have passed where the concepté should have been maturating,
the science teacher LS usually powerless (if not ill-equipped) to correct the
situatior-l.' Iam referring to elementary school topics such as lo‘ng division,
decimals, and fractions. To illustrate the point, here are some examples

taken from student papers in a sophomore science class:
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1.9
FOUE 2. 4.
@) 227530 gz =4 @ g=s.0
2 6.0
2 4.3

Not only are many of the basic skills missing, but students generally
demonstrate almost total refusal toldo mental arithmetic. It is almost as if
there was no way to get an answer unless one followed a specific method.
Examples of this phenomena from freshman and sophomore >cience papérs in-

clude such as these:

/7.& _
@ 10 T76 0 b 2,1 2z =7 © 2T =6
10 / | %12 _ L
¢ - o
1o F=b
bo T =3

When confronted with the obvious mental solutions to these examples, thé
student exhibits a fear that if he tries to do it in "his head" he might make
a mistake. Clearly, one cannot criticize a student's attempt to be carefull
or thorough, but not to the extent shown by some. A basic awareness is
lacking. )

Because many students seem to demonstrate a blind allegiance to the
rules and methods of arithmetic, they seldom bother to read what they have
written. Apply the rule, that's all you have to do. It is as if by magic_: the
answer appears as long as the rule has been applied. For example, "how do
you find the average. of a list of numbers ?" Answer, add them up and divide
by the number in the list. That's the rule. So after collecting several ammeter
readings in a science lab that fall between a low value of 0.50 amps and a
high value of 0.76 amps, students report average values of 0.94 amps or
(even worse) 6.5 amps. They have applied the rule but are completely un-
.aware that their answe'rv makes no sense. They do not bother to read what
they have written. Again, a lack of basic awareness.

Which mathematical operation to use in a' given situation is very often

EMC a source of confusion. Year after year I can count on the class to be split
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down the middle on their answer to a question like this: To change feet to
inches do you divide by 12 or multiply by 127? |

Whenever a slight change is made in a familiar situation, students
are often unable to “transfer" a technique. For exafnple: solving a propor-
tion with the unknown in the numerator usually meets with success. How-
ever, place the unknown in the denominator of a proportion and then watch
the fireworks. "We never did this kind before!"

The rough estimate is a very helpful tool in science. This idea is
foreign to many in-coming students. Which ‘is larger, % or %? They usually
will answer only after Lsth have been reduced to decimals. Estimate your
height in centimeters. To some students this guestion is of the same order
of difficulty as estimating their weight in gra;'ms of sand. Evaluate mentally:

35
49 X5

One could go on, the list is a long one. And all of these examples
will point to a basic lack of skills, the inability to reason, the inability to
detect their own mistakes, a fear of méntal arithmetic, and; i_n general, a
lack of awareness of what arithmetic is all about. However,. I do detect one
very positive phenomena among my students. Perhaps this could be used as
one of the starting points for those who would address theméelves to the
problem of middle school mathematics. And that phenomena is this: 'In spite
of poor math backgrounds exhibited by some students, almost all of them are
able to demonstrate an a_bliity to reason mathematically but they are usually
unaware of it. That is,‘they can get an answer sometimes but cannot tell you
how they got it. For example: | _

From a sciehce text, "If a wheel makes seven revolutions
each second, how long does it take to go around once?"
Co.mplete silence!

One then ésks the following question, "If you ca'n wash
two cars in one hours, hbw long would it take to wash

one car?" Immediate response — one-half hour.
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Replacing "revolution," "seven," and "second" with "wash, " l'twd,’" and
"hour, " that is, the unfamiliar with the familiar, appears to make all the
difference. Again, from a science text:
If one calorie = 4.2 joules, two joules.= how many calories ?
No responsel |
"Go ahead, use your pencils." After several minutes of
doodling, a few of them come up with the answer.
Restated: If one foot = 12 inches, six inches = how many
feet?
Unanimous response.
But in each of these examples, when you ask them how they got the "easy"
answer, they cannot tell you. They are unable to identify the mental opera-
tion used. They would reply, instead, "well, if it takes one hour to wash
two cars, then it takes ohly one-half an hour to wash one car.” They seem
surprised that you do not see how simple the solution is. -They did not use
any "mathematical operation” to solve the problem, they simply "did it in -
my head. ‘f
This, to me, is‘ an encouraging starting point. They are able to rea-
- son as long as the language is familiar to them. This, then, should allow
us to concentrate on the operations. When the language is unfami'liar, it
appe‘ars to block any attempt on our part to introduce the eve.n more unfamiliar
language of mathematics. But identifying the mathematical operation is the
second half of the problem. They must first learn how to perfo'rm the opera-
tion. This brings me back to my earlier comments, and this, I suppose, is

the reason for this conference.
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THE PLACE OF ESTIMATION IN THE
MATHEMATICS CURRICULUM OF THE JUNIOR HIGH SCHOOL

Romualdas Skvarcius
School of Education
Boston University
Boston, Massachusetts 02215

This paper will attempt to look at three aspects of the relationship
of estimation to the mathematics curriculum of the junior high school.1
i) What advantages to students can reasonably be expected
to come from studying estimation
ii) What are the procesées and skills needed to learn how to
estimate.

iii) What are some appropriate ways by which estimation may be

taught.

This may already sound like a paper that promises to fill an important
gap in mathematics education literature. Such is not Ehe case. The goal of
 this paper is two-fold. First it attempts to focus the reader's attention on
major issues of teaching estimation by illustrating, in many cases .with ex—
‘amples familiar to th _.der, problems related to the place of estimation in
the mathematical education of 'children . Secondly, it is hoped ti’lat it may
prove useful in generating ideas on how to integrate estimation into the
mathematics curriculum of the junior high school.

1. The Advantages of Estimation

Consider the following problems taken from actual work of elementary

children. 2
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(a) | (b) ‘5 ) (c) | l?)g
t ;Z = b 0 —or

() . () Lfé%
3
~ 43 X330 g\))"/a’}g(;
Bk )

Although each of the above errors is interesting in and of itself and can be
precisely diagnosed as a specific failure in understanding and correctly
using the appropriate algorithm {problem (a) for example involves improper
carrying, (b) confusion as to the meaning of place value, and {(c) handling
of each place value'as an independent problem as wel! as always subtracting
the smaller number from the larger, (d), (e), and (f) invoive similar difficul-
ties) the one common and striking feature of all is the lack of reasonableness
of the obtained answers. The child appears to be so involved in the formal -
processes of computing that even the complete lack of sehsibility of the
answer is totally overlooked. _ |

‘ | Realizing that the obtained answer does not make sense w;ll not in
and o‘g’ if:self correct the error, but there is very little doubt that children who
have the ha‘bit of cons.idering’ the reasonableness of their answers are not as
prone to adopt incorreg:t comp_utational procedures. Therein lies one of the
greatést benefits of acqﬁjiring the ability to estimate.

As one proceeds into either more complex algorithms such as extrac-
tion of square roots.or more difficult numerical situations such as 6perations
involving numbers with decimals, the va_lue of'estimati_ng increases. There
is, for example, ample evidenced that even at the high school level students
often eﬁper’ience uncertainty over the proper placement of the decimal point
in products, quotients or square rodts of numbers that involve decimal

fractions. This, of course, is a serious matter since misplacement of a
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decimal point is -a non-trivial error indeed — much worse than many students
seem to realize. Here again, there is very little doubt -that if students be-
come accustomed to making rpugh eétimates of their answers, they are not
as likely to make this type of error. The esfimatfas, in this case, do not
even have to be very good ones, .c;md they can generally be made mentally
with radically rounded-off numbers. For ';nstaﬁce,_ consider an example4
as follows. The product 0.327 X 49.2 yields an answer consistihg of the
sequence of digits 160884. Where is the decimal point to be piaced to yield
the correct answer? 1If the student realizes that 0.327 is close to 3/10 and
that 49.2 is just about 50, it will be immediately apparent to that student
that the product is som-ehwere near 15, which is three-tenths of 50. This,
of course, leads to the conclusion that the only place where the decimal
point makes sense is after the 16. In other words the answer must be 16.0884.
The use of this type of procedure to check the answer or even to place the
decimal5 should greatly alleviate misunderstanding of the formal rules involved.
A student needs to find the square root of 29.6. He has tables which provide |
the square)root for the whole number N where 1 < N <1000 as well as the |
~ square root for LON. He can easily locate the row labeled 296, and suspects
. that he can use this to obtain the square root of 29.6 but which of the two
columns AN or V10N is he to use? What is he to do with the decimal? The
_answer is readily obtained with an estimafion. Since 29.6 is close to 30 and
therefore, between 25 aqnd 36, the square root of 29.6 will be somewhere be-
tween 5 and 6. This information indicates that the column of interest is NION
since it contains 54.4059 versus 17.2047 in the NN column. Furthermore, the
decimal must go after the 5. That is, the square root of 29.6, as li-sted in
this table, is 5.44059.. A more rigorous algebraic verification of this result
using the relationship between 29.6 and 2960 is of course possible but it is
ac.tually not that important since the obtained answer is the only possibility .
that even makes sense under the circumstances. Many additional examples
of this type are possible but even the few so far presented illustrate the use-

fulness of estimating as a most powerful procedure to check computational




- 48 -
.
results. As a matter of fact, as the last example illustrates, and as any
user of the slide rule will attest to, many situations call for uses of estimat-
ing procedures not only as means to check the reasonableness of answers but
as a fundamental part of the procedure itself. _.

Estimation is the very backbone of the most common algorithms of
what to most children is the most difficult operation of them all: division.
There are many ways by which children learn how to divide, hoWever, most
procedures involve estimating either a product or a quotient, dependihg on

6 point dut almost all procedures used

one's point of view. As some authors
in estimating quotients are either a one-rule or a two-rule method. Accord-
ing to the one-rule method, the divisor is always rounded downward to the
nearest 10 while in the two-rule me;hod the divisor is rounded both down-
ward and upward. The second plan follows the usual pattern for rounding
nu-mbers. The key point here, however, is the fact that both methods involve
estimating a quotient as a first step to actually finding the true quotient.

For example, in the problem 32755 a typical reasoning process might be the
following: "It looks like the number of 32's in 96 is the sarﬁe as the number:
of 3's in 9 or the number of 30's in 90. Therefore the answer must bé 3."
Only after this type of reasoning ]:.S an actual multiplication perfbrmed and
values compared to determine if the estimate is correct. Although the ex-
ample is a Simple one, similar processes are used in all division problems
the exact details differing mostly along the lines by which quotients or partial
quotients are estimated. It would seem reasonable to assume that the more
competent a child .is at estimating the better he will be in the use of the
division algorithm. Similar examples from 9th grade algebra are quite easy

to obtain. A popular Algebra text’ describes three methods of obtaining
square roots of real numbers. Wit‘h' the exception of mefhod 3 which requires

8 9 are based on estimating the

the use of tables® the remaining two methods
square root in one manner or another. The reader, I am. sure, is familiar with
the following general procedure which is one of the outlined methods.

1. | Estimate the square root of the number as best you can.

2. Divide the number by the estimate.
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3. Find the average of the quotient found in Step 2 and the
estimated square root. This is a closer approximation
of the square root than the original estimate. Repeat
Steps 2 and 3 if necessary. |

From the above it is quite obvious that fundamental to the whole pro-
cess is the ability to estimate well. Even though a poor estimate will work,
an accurate one will provide & more precise answer more readily. In many
ways a procedure such as the above is to be preferred over more complex,
even if rriore efficient, algorithms since the procedure is relatively easy to
understand as to its mechanics and purpose;

The examples so far described indicate two major uses of estimation
in mathematics. An idea of the gains to be made through estimation can be
obtained by contrasting it to traditional algorithmic processes. Williams!0
in an article discussing aspects of calculétive thinking, pointed out that

" mathematical calculations, especially those based on the use of algorithrhs,
often involve many stages and that procedures are usually pfescribed in every .
detail. This makes the process of learning how to compute quite difficult.
Often the only alternative to compléte mastery is complete failure. The
detection of errors by a careful examination of parts of a calculation is not
an easy process for a child in elementary school or in junior high school.

This is usually further compounded by the fact fhat'due to the highly prescribed
nature of most algorithms, the child is-a.passive learner in a process over
which he has no influence. Estimation provides some relief in both areas.
By allowiné the student to evaluate the reasonableness of his answer Without
having to retrace k}is steps through‘ the many strands inherent to most algorith-
mic processes, estimation.reduces at least some of the ihability of siudents
to check théir work. By being incorporated into an algorithm, estimation by
the virtue of usually reducing the number of steps required in the algorithm
and by making the remaining steps more "intuitively obvious" does not force
the student into as passive a role as highly formulated algorithms do.

. Yet another benefit of estimétion which is often overlooked probably

o because of its very obviousness is the relationship between estimation and

ERIC

IToxt Provided by ERI
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mental arithmetic. Some investigators have indicated that about 75 percent
of adult non-occupational uses of arithmetic are mental.}}’ This further under-
scores the value of estimating in that it is an ideal vehicle for mental work.
It is through this relationship with mental arithmetic that estimation can
provide a much needed link between the formal structures and patterns which
‘are so heavily stressed in current mathematics curricula and the skills which
are so sorely lacking in the mathematical repertory of most children. Two
simple illustrations should make this quite apparent.

How shall we quickly obtain the answer to the following add.tion
problem: 14 + 17 +8 + 23 +16? Through judiciou.s use of the commutative
and associative properties of addition the problem can easily_be solved with=-
out paper and pencil. 14 + 17 + 8 + 23 +16 becomes 14 + 16 + 17 + 23 + 8
which in tﬁrn becomes 30 + 40 + 8 and finally 78.

Another slightly more complex example follows. Compute the answer
- to 3 X 398 without using paper and pencil. A straightforward application of
the distributive property of multiplication over addition to a slightly rewritten
problem produces a ready solution. 3 X 398 becomes 3x{400-2) which is the
same as 3 X 400 - 3 X 2 or 1200-6 or 1194.

Although the above examples are not exactly estimations th_ey none-
theless are excellent illustrations of how properties of numbers and operations
may be used in mental arithmetic. - _

Examples more complex in nature and more closely related to estima-
tion are readily obtainable. How could one estimate the answer to say
712 - 448 or to 616+ 22 ?12 Both of these problems are excellent vehicles
to demonstrate relationships between the operations under considefation and
inequality. The fact that 723 is between 700 and 800 and that 448 is between
400 and 500 does not immediately allow us to determine what numbers
723 - 448 is between. As a matter of facf the most»"obvious" attempt to
bracket the difference as between 700 - 400 and 800 - 500 leads to total
nonsense. A much closer look at the relationship bétweeh subtraction and

inequality is needed.
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This eventually involves considerations of upper and lower estimates,
the resulting argument being similar to the following; Since 700 is a lower
estimate for 723 while 500 is an upper estimate for 423, 700 - 500 is a Jower
estimate for 723 - 448 and, similarly, 800-400 is an upper estimate. Not
surprisingly, therefore, 200 < 723 -448 < 400. A similar argument can be
used to estimate 16 + 22. Of cour;e better estimates are possible and not

. difficult to obtain, however, the point here is that the process of estimating
a difference brings into focus an important relationship between inequality
and subtraction. This should not only lead to-an imbroved periormance with
‘respect fo subtraction by providing a tool to estimate how reasonable answers
are but at the same time it should enhance the student’s understanding of in-
equality — a difficult area indeed. This has taken us somewhat afield frdm
the intent of this section of the paper, but it does "llustrate how estimation,
properly taught, can serve an integrating function between wvarious topics of
mathematics. If does so even more forcefully if it remains rooted within the
common sense experiences of the student.

A Finally, it must be pointed out that estimating is in and of itself
indispensable to the operation and planning of many eminently practical
evéryday projects. Budgets, tax rates, '_c0nstruction bids, merchandising,
manufacturing and a host of many other activities are based on estimates;
without intelligent estimates, they cannot be p]:énned or executed. If students
could be kept aware of this, it should help to enrich their mathematical
experience and deepen their insight.

2. The Estimating Process

In view of its importance, there is nAo pﬁase of arithmetic which is
more néglected than estimation. Much of this is probably due to the fact
that even though at almost every meeting of mathematics teachers, uniform
agreement is reached'as to the value of estimati‘on little beyond telling
children "You shéuld learn-to estimate?l " is done in the classroom. 13_

| Estimatinq is itself a complex of skills, any one of which may require
instruction and practice apart from the more g« neral question "Is your answer

@ reasonable?" Some of the relationships between estimation, operations and
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inequalities have already been pointed out, other skills can be identified with
relative ease. Included among these are at least the following14
i) The ability to round a whole number to the nearest ten,
hundred, etc. . . .
" ii) The ability to multiply by powers of ten in a single step.
iii) The ability to add, subtract, and multiply two numbers
each of which is a multiple of a power of ten.
All of the above should be done mentally without the use of algorithms.
Other skills which would aid in the estimation processes can, of course, be‘

easily found, however they are probably not as peculiar to the estimation

process as the above. There is no doubt that an ability to handle inequalities

"is important, howev.er, inequalities are already studied in many other contexts

and such skills are therefore not unique to estimation.

The ability to reund whole numbers and decimals is perhaps the skill
that is most unique and fundamental to estimating. It is because this ability
is sb closely tied to a "feel" for how large or small numbers are that it is so
crucial. This is also the ability that is the most similar, from a. numerical
point of view, to skills associated with meesu;ing physical objects. If an
object is 3/4" long what would it measure 1o the nearest inch? The answer
to this question is akin to rounding .75 to the nearest whole number. It
must be kept in mind, however, that what we are interested in is the ability
to round off a number without having recourse to a physical process such as
measuring lengths. The latt_er, however, does indicate possible avenues
through which su,ch' a skill may be taught.

To be able to multiply by 10, 100, etc. . . . with ease is a necessary
prerequisite to any estimation involving an operation. Taken together with
the ability to handle numbers which are muﬁl»t-i’i)le»s of powers of ten it ellows
the student to use number facts for single aigfit rnumbers in a greatly expanded
set of situations. For instance, 20 + 50 can easily be handled from simple
knowledge of the addition fact 2 +5 =7. Similarly, 20X 30 is eas'ily, obtained
from 2 X 3 = 6 and from the fact that multiplying by 10 is tantamount to tacking-
on a zero. Thus, 2 X 3 = 6 leads to 20 X 3 = 60 and finally to 20'x 30 = 600.
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There are, of course, other ways of approaching the problem but the above
solution does serve to illustrate the fact that estimations are poss1ble based
on a relatively small number of skills. “ .

If additionally one includes knowledge of structural properties of num-
ber systems with the above described skills then more sophisticated estimates
become possible. For example, 233 X 19 can be readily estimated by round-
ing off the numbers to 230 X 20 then applying the distributive property to
(200 + 30) X 20 which becomes 4000 + 600 or 4600. Note that in addition to
the distributive property the only skills needed are the ones previouély de-

- scribed. The actual answer to the problem is 4427. The answer that would
have been obtained by rounding 233 to 200 would have been 40C0. Although
not'és onod as the previous one, it is still not a bad estimate especially '
when one considers the small number of skills required. _

Estimation involving decimals are, of course, more complex and do
involve some "feel" for fractional equivalences of decimals, as well as the
ability to perform operations on these fractions. They are, however, essen-
tially the same as the ones described above if we include 1/10, 1/100,
etc.iv,- . . in our def1n1t10n of powers of 10 and 3/10, 4/100, etc. . . . in _
our defin1t10n of multiples of powers of 10. Th1s is not to say that the skills
. involved in handling fractions are exactly the same as those for whole num=-
bers, but it does point out that the similarity is greater than apparent at
first glance. ' ‘

There are other situations for which the skills thus far ennumerated
appear not to suffice. For exa:Eple, in estimating-a square root it would
appear that skills of a different order and sp_eéific fo the process of extract-
ing square roots are needed. In the final analysis, however, even in this
situation, the estimation problem is very similar to one related to estima‘cingr
products and hence can be handled within the context of the processes thus
far examined. If we further restrict ourselves to the kind of estimates that-

. are generally made by junior high school students, then the ability to round-
off coupled with the ability to handle multiples of powers of ten will probably

cover most 51tuat10ns
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It does appear, therefore, that the actual skills invoived in making
estimates are few in number and simple in naturc.  Coupled with an i‘etuitive
feel of how numbers behave under certain operations they should improve
students' quantitative reasoning by removing some of their dependence on

formalized symbol manipulations.

3. The Teaching of Estimation

A survey of texts used in grades 6 through 9 will rapidly convince
one that work in estimation is either totally absent or at best minimal. A
look at the professional_literature in mathematics education will only serve
to reinforce the point. Suggestions about methods of teaching estimation
are few and far between. Some small articles Suggesting such practices as
use of the number liné in facilitating mental comptitati'ons15 or the use of
the greatest integer function as a means of providing specific practice in
estimation16 may be found. But even these articles are primarily aimed at
the elementary level and are highly specific in scope. The last of these ha)s
some possibilities as an interesting way to practice some skil'l's which in
fact are highly'related to estimation processes, however, it is questionable
as a substitute for the process of estimation itself. ,

Ir"1 view of the apparent simplicity of the skills required to make
estimates, what is pefhaps needea is an abproach to integrate estimation -
into _the- mathematics curriculum rather than some new clever ways of teaching
it. -

First and foremost children should be encouraged to guess. and shguld
be given the opportunity to do so. The practice of recording an estimated
answer b.efore computations are performed should be highly encouraged. By
guessing, trying their guesses, and revising these guesses when needed the
children should become _mgre and more able to determine when an answer is
‘reasonable.

‘What, then, is advocated here is the inclusion of estimation into
other mathematical work instead of teaching it as a self contained activity.

Somé more or less "pure" estimation problems should be considered such as
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"Estimate the number of ping-pong balls that it would take to fill this room

completely" 17

if for no other reason than the fact that such problems are in
many cases interesting in their own right. Most of the work on eétimation,
however, should probably be done as an edjunct to other topics, either
simply to check answers to computations or to practice using the skills
learned in a familiar and useful context.

In order to accomplish this a deliberate effort must be made to include
estimation topics where ever such an addition may prove beneficial. This is '
most readily accomplished by the inclusion'of problems which would require
a child to estimate an answer without or pfior to computing it. Thus work on
addition, subtraction, multiplication and division whether with whole numbers,
decimals or fractions should have estimation problems embedded in it.
Similarly in Athe study of such topics es the distributive, associative, or com-
mutative properties exercises should be included to illustrate how these
topics can be used to simplify computations and aid in estimating answers.

Throughout practicel and independent applications of estimation to "’

- such areas as busihess and science should be presented. In this manner
estimation will not only enrich a student's understanding of the mathematical
topics but will in turn be enriched by the apphcatlon of these toplcs to reahs—
th 51tuatlons, including areas outside mathematlcs ‘

In summary, it can be seen that the ability to estimate is intimately
related to many fundamental mathematical skills not the leest of which is the
evaluation of the reesohableness of answers to mathematical computations.
Additionally, the skills involved in making esti-mates are not very complex
‘and can probably be_ easily mastered by most students. Thus maximum benefit
"from studying estimation processes can probably be best obtained by incor-
porating such study directly into the presentation of other topics. Such mesh-
ing of estlmatlon into other toplcs, where its study can be of benefit, can
probably be accomplished quite easily in view of the small number of add1t10na1

" skills required.
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APPROXIMATIONS AND ORDERS OF MAGNITUDE

Leonard T. Nelson
Department of Mathematics
College of Liberal Arts
University of Oregon
Eugene, Oregon 97403

In this paper I would like to present four areas that I believe need
emphasis in the middle-school mathematics curriculum: estimation, physical
numbers, approximate calculations, and orders of magnitude. Although the

- easiest way to approach these topics would be to present them as chapters
or units, I believe that the efficacy of these ideas will be enhanced if they
can be woven throughout the middle~school mathematics curriculum.

The middle-school mathematics program whiéh I envision is a dynamic
approach to mathematics which incorporates student involvement fhrough ex-~
perimehtation and éxploration. It utilizes the inQuiry approach. It is a pro-
gram in which students encounter "real" situations before moving to hypo=
thetical situations T real in the sense that they are meanir&gfﬁl, interesting,
and the étudents want to explore them. Hopefully, this program will have

imore situations "to think about" and fewer problems "to solve".
Estimation
| Estimation can be thought of as the procéss of obtaining an approxi-

- mate magnitude for some quantity when exact values are not readily available.
For exampi‘éw,h how many bottles and cans are discarded each year in the .
United States? A facility fur estimating is lacking in students at all levels.

. 'The ability to estimate seems to be the result of experience and needs a
éertain degree of practice, A perusaiof elementary and juniof high school
mathematics curriculum materials indicates that very little has been done

to enhance children's ability to make estimations.
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While attempting to teach certain science units, members of the
Elementary Science Study Project found that students had difficulty in making
estimates and grasping large numbers. Ir order to remedy this situation they

developed a unit, Peas and Particles, which they have classroom-tested in

the early middle-school years. They start their unit with many concrete ob-
jects (di‘y peas, com.,4 tennis balls, frozen jﬁice cans, etc.) and have stu-
dents estimate and then count handfuls, bagfuls, and ja'rfuls. Not only do
the students developtheir ability to estimate but they discover somé ingenious
counting methods — taking a sémple, counting by area and volume, counting
by halving or doubling, counting by weighing, and counting by ratios. After
these initial experiences the students moved to more difficult problems which
could not be so easily counted. In fact, they suggested many new challenges
for themselves (e.g., How many grains of sand in a sandbox? How man?
hairs on a person's head? How many gallons of Water in the Atl.ar'ltic Ocean?
etc.)

Estimatiori might also be closely associated with meas‘urement. As
soon as units of meas'ure‘ment are known the students should be encouraged
to make estimates before measuring (this is a good way to teach — not teach
about — the metric systerﬁ). By estimating and then measuring students are
able to determine if their estimates are good or not. This also gives them
the opportuh’ity to consider the size of their error in relation to the size of.
the quantity measured (estimating errors can also be introduced at this ppint).

. Students soon discover that it is more difficult to estimate large entities than
small and.that time, weight, and volume are more difficult to estimate than
'length and aréa.

In shorf, the procéss of estimating is i_mpbrtant for many reasons: it
insures that numbers for measurement and counting are used more meaning-
fully; unifs of measurement are made more meaningful; it leads to a better
understanding of large numbers; it is useful in everyday life when measuring

or counting are either inconvenient or impossible.
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Physical Numbers

Often when counting and always when measuring, .our results can only
Be attained approximately. Let us call such numbers physical numbers. There
are several ways to introduce physical numbers to students. Currently, the
rﬂost common approach is, simply, to tell the students — as illustrated in the
following passage from one of the mdre popular junior high school textbooks.

Can you ever find the exact length of a given line segment? The

answer is "No, " for no matter how accurate your measuring in-

strument or how carefully you use them, a physical measurement

is necessartly only approximate. You can measure only to the

smallest unit of measure available on your measuring instrument.

While smaller and smaller units of measure may be used to give

you more and more precise measurements, you obtain closer and

closer approximations to the length.

" This passége is followed by three definitions (greatest possible error, pre-
cision, more precise) three eXamples, and then three pages of drili problems
(paper and pencil type). The students are never encouraged to use any real
measuring instmments to'experience the problems of rﬁeasuring. They are
outside observers reading an account of someone else's experiences. '
Wouldn't it be more meaningful to have themﬁéngaged in projects where mea=-
surements are needed — to have therﬁ use several different measuring devices
to experience the approximate nature of measuring: directly, to discover pre-
cision and to discuss significant digits in connection with these activities ?
Then they can. move to hypothetical situations. The .ﬁpproximate nature of
counting problems is not even éonsidered. By using pictures of- crowds, jars
of rice, and discu.ssing census-taking or polls they can experien”ce the
approxifhate nature of situations other than measuring.

At the present time it may be more important t<; talk about physical
numbers and computations with physical numbers than ever before, because
more and more students have access to computers and calculating machines.
The computational power of these machines many times overwhelms the

student. For example, by pressing a couple of buttons, including a = button,

it is so easy to take a circle whose radius measures two inches and find the
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area to be 12.5663701 square inches — increasing the accuracy of their data
through computation.

| The current emphasis of middle-school mathematics focuses on thé
development of mathematical number systems — usually through an introduc-
tion to the real number system. Although I have no hard evidence upon which
to base this opinion — other than my own experience and reports from other

teachers — our students are very confused when they switch to problems

-dealing with physical numbers.

Approximate Calculations

There are times when one is not concerned with exactness in compu~
tation, but only rough approximations. This may occur when we are estimat-
ing or when we want to check the result of a computation. Consider the

following calculations:

1.19
a) 357 b) 579.2 c) 705 d 37.8/452.7
-289 +324.1 - . X 63
168 893.3 4230
' 2118
6345

Do these results seem reasonable? Do most students pause to consider the
results of their computations ? How can we develop the ability to do quick

mental checks on computational results ? We might begin by having the

students:
(1) (11)
(I) Round each number to one - " 357 400 360
significant digit, then per- ~ =289 - =300  -290
form ‘Fh.e operation. The : 1_6—5 100 70
approximate calculation can
then be compared to the ~ 579.2 600 580
original computation to see +324.1 +300 +_(_3__2_0_
if it is reasopable . 893.3 3500 900
{I1) 'If the results of (I) are not 705 - 700
convincing, round to two X 63 x 60
significant digits and repeat 634_5 m
the process.. ‘ - ‘
1.19 12

37.8/452.7  40/500
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Of course, this process is not going to catch minor errors in computation
but it should prevent gross errors and provide practice for quick mental
calculationé. In place of written rules and individual drill problems it is
suggested that many of these problems should be énalyzéd orally with much
class discussion. The nature of problems involving approximate calculations
can be varied — consider, for example, the following:
A. Using the symbol, ~, to mean "approximately equal to, "
| explain how the answers to the following statements were

arrived at.

a 19.8 X 42.3 =20 X 40 = 800

b. 324.5 + 18.9 =300 +20 =15

c. 173.6 +243.2 ~ 200 + 200 = 400

~d. 784,62 - 397.86 ~ 800 - 400 = 400
o B31.2x47.7 30x40_30.,
‘ 163 160 4
| 29 30X 10 -
+ .72 = ToRTT— ~4 X =
f. 29+.72= 77 7 4 X 10 =40

B. Using approximate calculations, as above, which of the
following are obviously wrong. '
a. 27.30X41.67 =1726
b. 243.3 +79.1 +105.6 =319.0

28.83
. T =3.1
C 93 3 -
C. Using approximate calculations, locate the decimal point in
each of the following answers. o .

726 _
a- Tysq T 47

b. 6.23X17.91X0.131 =144
Once the'_studer‘lts have developed their ability to make approximate calcula- .
. tions, they are able to move on to estimation problems that illustrate the
power of their new calculating abilities. (I will assume that the s}tuaénts

are familiar with exponential notation.) As an example, let us consider a
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pr_oblem that I have asked several different groups: About how many
revolutions does an automobile wheel make on a trip from New York to

Los Angeles ? It doesn't take long to agree that the diameter of an automo-
bile wheel is about two and one-half feet in diameter and, thus, about
seven feet in circumference. Since it is about 3,000 miles from Los Angeles

to New York, we can make the calculation

3000 milesX 5280 feet/mile ~ 3000 miles X5000 feet/mile

7 feet ) 7 feet

_ 15x106 feet
7 feet

~ 4 x 106
to obtain about 2 million revolutions.
- Many junior high school students are interested in environmental
problems. Consider the following statement made by the well-known environ-
mentalist, Paul Ehrlich:

Each day American cars exhaust into our atmosphere a variety
of pollutants weighing more than a bumper-to-bumper line of
cars stretching from Chicago to New York.

Is this a reasonable statement? How many people take the time to challenge
such a statement? Estimating the distance from New York to Chicago at 1000
miles, the average car length to be 15 feet, and the average car weight to be

about 3000 pounds we can make the following calculation

(1000 miles X 5280 feet/mile % 3000 1bs

15 feet »
~ 1000 miles X 5000 ft/mile X 3000 lbs
15 feet -

=107 1bs.
to obtain the approximate weight of -pollutants. Since "a pint is a pound the
world around” we can convert the pounds to gallons, distribute the gallons
émong the cars in the United States, and determine the reasonableness of the
statement.
There is no end to such problems, in fact, there is a problem for
alr'nost\any student interest. Notice that these problems involve many skills

in addition to estimation and approximate calculations. For example, the
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above statement by Ehrlich contains no numbers, does not ask a question,
must be analyzed and translated from English to mathematics, and the
studenté have to decide what arithmetical operations to use.
Qrders of Magnitude

For all the time and effort spent on the development of number sys=-
tems and number properties in the contemporary school mathemat%ics‘ curricula,
one would think that students should develop a good number "sense.” How-
ever, in my experience this is not the case and I am in full agreement with
Buckminster Fuller who said that "like parrots, we learn to recite numbers _
without any sensorial appreciation of their significance. We have yielded
so.completely to specialization that we disregard the comprehensive signifi-

cance of information." This lack of number sense is especially obvious in
the realm of large and small numbers. Most students are fascinated by very
large and very small magnitudes and we should be able to capitalize on this .
built-in motivation factor.

A few nights ago the headlines in the locahl newspaper declared that
.personal income in the Ur_11ted States is expected to exceed $1 trillion this
yeer. I couldn't help but wonder how many people read that same statement
and what went thrbugh their minds as they read "$1 tril‘lio'n. " (A few million
people must have been exposed to that figure because it was repeated that
evening on a national network news progfam.) Skimming fhrough that news~-
paper I found over twenty articles which contained large numbers — the num-
bers ranged from Henry Ford II's 1972 salary ($874, 567) through many millions
to the projected cost of automobile anti-pollution devices over.the next
decade (8147 billion). Are such numbers meaningless magnitudes imposed
upon faulty number senses ? Is it possible, and important, to reify such
large magnitudes in terms of personal life experiences? I believe that we"- 7“
ean, and should strive to enhance a sensorial appreciation for such numbers.
‘ To develop a meaningful sense-of large numbers we might start with
something that is quantifiable and personal like time or moneyl. Time is
especially meaningful because an average healthy heart beats about once

every second and hea:.heats are very personal. Locking at the common
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everyday large numbers — millions, billions, and trillions — in terms of
seconds we see that:

1 day = 24 X 60 X 60 sec ~ 25 x 3600 sec =-1%x3600 sec

=90,000 sec.
Thus, a million seconds is about 11 days, a billion seconds is about 30
years (11,000 day zl—ls‘sooﬁyears ~ 30 years), and a trillion seconds is
about 30,000 years. This approach may illustrate the relative sizes of these
three numbers and correct the often mistaken idea that the difference between
a million and a billion is the same as the difference between a billion and a
trillion. An interesting project might be to have the students construct a
historicalltir'ne line in seconds ~— including their own two and one~half billion
second life expectancy. | '

Some people make large quantities, especially money, meaningful to
themselves by distributing the amount among a given group. For example,
the U.3. defense budgéf is about 80 billion dollars. A quick calculation
shows that this is about 400 dollars for every man, woman, and child in the
country. However, this mav not be meaningful unless one has an idea how
large 200 million (our aprroximate population) is. (Of course, if the average
family size is about four, this means about 1600 dollars for each family is
contributed for defense — almost as much as the family spends for food each
year.) Almost everyonc has seen a large group of people gathered — either
in person or on television. Many of the nationally televised sports events
have 100 thousand people in attendance. How 80 billion dollars distributed
among this group means 800, 000 dollars for each person!

' Students can also be encouraged to appreciate large numbers by going
outside to identify a million of something. This could include things like thé :
area of lawn needed to enéompass one million blades of grass. (How much
area is needed to include a billion blades ? a trillion?) How many grains of
sand in a sandbox? How many jars of rice (that we worked with in our esti-

mation unit) are needed to have a million pieces of rice? a billion?
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Once we have established an appreciation for these largé numbers
through meaningful experiences, we can attempt to extend appreciation to
' . the very large and very small numbers of science. One way to facilitate
learning ahout orders of magnitude might be to construct a large classroom
power-of-ten chart and have the studenths.placé particular magnitudes on the

chart as they-encounter them in their studies. For example:

lO3 = 1,000 : number of grains of sand in cubic inch
4 (coarse sand) visible stars in the sky
10° = 10,000
5 _ ' .
10 = 100,000
lO6 = 1,000, 000 _ population of a big city
107 = 10,000,000
10% = 100,000,000 population of U.S.
109 = 1,000,000,000 population of world; age of earth in years
1010'= 10,000,000, 000 - number of grains of sand to fill classroom
10ll = 100,000,000,000 ' number of grains of sand to fill school
10%% = 1, 000,000,000, 000
lO28 = 10,000,000, 000,000,000,000, 000,.000, 000
(number of grains of sand to fill earth
'sphere)

'~ When the students have gair_led a feélihg for the very small — for example,
af;cer examining sméll obje_cts 1.m,der a microscope and discussing the small
things of science — a similer chart could be. constructed for neg.ati‘ve powers
of ten. - .

Curriculum Materiallé: and Projects

In order to introduce positive changes in the teaching. of middle~
school mathematics it seems to me to be absdlutely essential to change the

format of the instructional materials. Instead of as’king questions, answering

4




o - - 68 -
those questions,- working several examples, and then providing exercises,
we need to provide more open-ended questions to promote the inquiry method.,

Successful }naterials with this format have been deyeioped for junior high
science programs. |

There is also a need for well-conceived projects which afglinteresting
to the students and which illustrate the need for mathematics. Some of the
projects should involve physical as well as mental involvement. As an-
example, SMSG (in _Mathematics and Living Things) constructed a mathemati-
cal unit afound transpiration in trees. Very briefly, .this unit involved:

(i), Physical numbérs - measurement of the length and width of

leaves; tracing leaves on graph paper and measuring their

surface area; finding average area of leaf.
+ .

(i) Ratios and graphing - computing the ratio of length to width

of various leaves from same tree; graphing length vs. width

of leaves from same trze.

(iii) Physical Activities - placing plastic bag around leaves on a
tree branch to collect water.1oss; weigh water collected.
(iv) Estimation - use microscbpe to count stomates on portion
of leaf and then estimate total number of stomates on a
leaf; estimate number of leaves on a particular trée.
(v) Approximate calculation - amountk of water-loss per leaf,
per tree and pér stomate.
Very rarely do mathematics teachers have their students read materials
other th# n the text. N.ew‘spape‘rs and magazines have an abundant supply of

statements that could be collected and discussed. For example, National

Wildlife Magazine, (October-November 1970) claims that 76 billion bottles
and cans are thrown away each year in th.e United':States . hbout how many
bottles and cans does this amount to for each family in a year? in a day?
Does this seem reasonable ? If 76 billion bottles and cans were laid end-to-
end, about how long would the line be in feet? in r£niles? in circumferences

of the earth?
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Maybe the mathematics curriculum materials should contain short
articles from areas like astronomy, social science, and science (appropri-
ately selected fo_r middle-school students) to serve as a background source
for "applied"” problems. Such articles may contain mathematical statements
that could be discussed, interpreted, or challenged. Thére are many articles
which distort number facts in order to prove their point of view (as illustrated
in Huff's How To Lie with Statistics). Advertisemen_ts, on television and in

- print, provide numerous exémples of statements which can be analyzed for
their assumptions and "logical"v arguments . ‘

Lastly, there has been vast increase in the production of games and '

manipulative devices in the past three or four years. Some of these devices

iy

do illustrate and embody mathematicallconcepts and others provide practice
for certain tasks in novel ways. The better materials should be integrated
into the middle~school mathematics curriculum.

There is quite a difference between the way numbers are used in the
current mathematics programs énd the way they ar-é used in daily life or
in studies other than mathematics. Most mathen{atics courses concentrate |
‘on numbers -in the "exact” sense — problems and computations lead t_b éxact
answers and there is heavy emphasis ori the structure of number systems.
However, when we mea é.ure we are using physical numbers a;nd when we pick
up a nev.spaper-or magazine we are confronted with estimafes, approximate
calculations-and very large numbers. It seems to me that students should be
able to deal with exact numbers, understand and perform operations with.
physical numbers, deal loosely with numbers through approximate calcula-

tions and estimation, and, in general, develop a number "sense":



71 -

VISUALIZING IN TWO AN]j THREE DIMENSIONS

Marion Walter
'The Children's Hospital Medical Center
' 300 Longwood Avenue
Boston, Massachusetts 02115

I will start with a brief outline justifying bdth the ‘inclusion Qf more
visual woi'_k in mathematics classes, and more generally the development of
students' geometric intuition. I shall then indicate by a very few short ex-
amples what type of work I have in mind. Many of the references in the bib-

liography give more detailed examples.

A, Why is such work needed?

1. General reasons

The fact that th; ability to yisualize is required in any profession
suéh as architecture, chrystalography,. plumbing, highway co>nstruc.tion, 3
medicine, englneering, ana ord'man? household chores and everyday living
“is not disputed. I suspect it is also needed in such activities as driving
especially while looking in the mirror, pa_rking,‘ or backing. }Jnles's one
assumes that fhese skills develop naturally these would be reasons enough '
why more visual work should be done in schbols.

2. Reasons pertaining to the learning of mathematics

i. From exberie_rllceu that T have had in schools with children AT
doi_r1g~mathematicé that_is highly visual, tactile, and non-verbal, I have
noticed that many children classed as failures, especially in mathematics,
have been exceedingly successful with this visuql type of wo_rk. Introduc--
tion of this type of visual work into the mathematics cgrriculum could give
these children a new lease on _1'1f<?. Although I believe such aétivity has
transfer value, even -if the eviaéri.ce éi‘lould be riegative, thislactivity is

worthwhile in its own right.
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ii. We place much emphasis on children being able to carry

out certain algori_thms, on being able to do certain kinds of formal reason-

ing, on being able to follow verbal rules, on being able to mar'llipulate sym-

bols but little or no emphasis is placed on visual ability. We check whether
children are ready to do certain kinds of logical operations, whether they are
ready for certain kinds of ébstractions but we don't concern ourselves with
adequate visual preparation. Here are two small exémples where visualizing
is necessary. Three-dimensional diagi’ams are drawn in textbooks but usually
one does not check that children can interpret these diagrams. Yet the crux
of a particular explanation or understanding may hang on being able to inter—

pret the diagram. It may be exceedingly difficult for a child to interpret a-

. diagram unless he has aiready seen or constructed the actual figure. Or as

a second example, a problem in geo'metry may deal with a figure such as the

one below and may involve using ABEC and ABDC but the child may not see
these embedded triangles. Of course such visual activities are needed for

other subject matter as well.

- 5
3. Reasons dealing more directly with specific mathematical topics

or concegts

Visual facility is necessary for the successful solving of or even un-

derstanding of'p'roblems{ I will give just three specific examples start-ing
with the most sophisticated.

(a) Vo<lume problems in Calculus. Students often have difficulty
in setting up the.double integrals. For example, what does the intersection

of two right circular cylinders look like? 1 know of several teachers including
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myself, who just before teaching a_clase, practice drawing the appropriate
diagram. If a student can't picture the appropriate cross-section he won't
be able to set up the double integral. I am not suggesting that junior high
school students should be doing calculus problems but that havmg appropri-
ate visual tactile experiences will prevent difficulties later on.

,(b)' Locus problems lend themselves to concrete visual experi-
ence. That is, at an early stage children can plot loci by various means
before proving anything theoretically. ‘

(c) Then there are those endless algebraic problems of the kind
that deal for example, with a flat sheet of paper out of which pieces should
be cut to make.a box. Their difficulty could be avoided or lessened if stu-
dents could visualize what they_ are doing. Students often can't solve such
and other problems because they can not set up the equation, they can't set
up the equations because they can't visualize the problem.

Clearly there afe many mere basic mathematical topics, for exampie,
those dealing with symmetry aﬁd transformations related to visualizing.

The se will be inherent in specific examples given later.

4. Reasons relating to learning and teaching strategies

i. ' The type of visual work that I will describe lends itself to
students asking their own questions and prox}iding their own problems —a
~much neglected activity. (20) | » '

- Much of the standard work requires a particular algorlthm,

‘one way of doing a problem, one answer. Usually children have no oppor-
tunity to decide in what manner to attack a problem and they usually get
little time to explore a’'situation. This work lends itself to solving problems
in a variety owaays, to providing problems that have severe.lfor.\even an in-
finite number of different solutions, and to work that requires exploration.

iii. Visual type of work with concrete material lends itself tov
the student checking himself whether he is right or w'ror;g rather than always
relying on ‘the teacher to make the judgment.

-~
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iv. Of course when I emphasize visual work I am not ruling out
written work and computation. . This kind of work gives rise to some honest
calculations and problems rather than the so often dull, 'cooked—.up, verbal
problems or endless repetitious exercises.

v. _Too often concepts are given verbal labels first (often caus-

-ing discomfort and lack of confidence and understanding) and theh experience
follows. 1 feel it is important to use the objects, or situation first apd de-
fine them when necessary and when children become familiar and comfortable
with them (whiéh may be five minutes or five years later). 4

. vi. Students are usually given examples of how to solve partic-
ular types or classes of problems. In this type of visual work students will
often have to decide on not only what to do but on how to do it.

B. A few examples of topics or situations which lend themselves to the
type of visual work referred to above.

In each example I have indicated just one or two suggestions out of
a much larger number of possibilities. The references have more details.

1. Going from two to three dimensions and vice versa -

‘ Vishalize a cubical box without a top. Visualize how it looks flat-
tened out. Draw it. How many different ways can you flattén it.
How many different patterns can you obtain using five squares regard-
less of whether they fold into boxes ?
" The students discuss what is meant by ndifferent" when the need
arises. They also discuss What,' if any, restrictions.should be placed on
the arrangement of the five squares.

el

-t -

Which of the above patterns fold into boxes without tops? What

other questions can one ask?
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Given a milk carton cut-to be a cube without a top, tear it to obtain

the patterns below for example.

Repeat these type of problems with rectangular boxes, six~sided
boxes, or with triangles. For detailed discussion of this see reference (18).

2. Cutting things into different number of parts

Construct a square. How many different ways can you do this? Can
vou do it without ruler and é:ompass ?

How m_any different ways can you cut it in half? (Adults usually pro-
duce only four ways.) Draw some of them. In cutting them in half, did you
use a ruler and compass? If so, what geometrical constructions did you use?
What do YOu notice ‘about your halves? . ‘ ‘
. How many different ways can you cut a cube in half? Agéin students

“decide on their own restrictions. Examine theorems or facts used. For one
simple interesting half of a cube, see reference ‘(9(:}.

Can you cut a cube in half so that the crosé-section.is a square? A
rectangle, a paralleiogram, a regular hexagon? What other cross-sections
could you look for? What other questions can you ask ? A
L How can you be sure you'have cut a cube in half.

3. A combinational coloring game

Ho_w many different ways can you cut an equilateral triangle in half?
Into three congruent parts? What db.yOu notice about your work ? Make a
set of equilateral triangles, cut them out. ~You have four colors. Divide
each triangle into three congruent parts in some interesting way. Use the
same method f>or each triangle. Now color them. Each triangle can have
one, two, or three of the four different colors you have and they all must
look different. How many different triangles can you get; '

Make up games using the triangles,

For other combinational problems see referen;:e (11)
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4. Tessellation proble.ms

See references (15a), (16), and (8) in the bibliography.

5. Geoboard work

How many different ways can you find the area of

Assume that a .sm.all‘square has unit area. What other questions can you
ask about the shape? I |

How many different shapes of area 3 can you make on 5 X.5 bhoard.
There are numerous references on geoboards (including (1), (2), (7), (8),
and (19)) an<;1 many non-trivial 6th - 9th grade proble-ms.

6. Combinational activities

A rich source can be found in reference (11). I particularly like prob-
lems of the type — Into how maﬁy regions c_ah two rectangles in the plane sub-

divide the plane?

Closing ‘Remarks ~

I have only sketched a few ideas above. Most important, many of
the activrities lend themsglves to the looking for numerical patterns and gen-
eralizatiohs . Many functions are obtained and they can be on a very sophis-
ticated or elementary level, depending on.the problem. We also learn to be
cautious in making generalizations. That is, although it may seem ‘;hat all.
the samples are élementary, the math involved can become as ,hiéh—powered
as olne wants. Incidentally, the problem of how.-many shapes there'a_re Qf
areanonab5Xx5 ge'oboérd is unsolved, and other problems are non-trivial
even for much older children.~- To sum up, this type of visual work, not only
gives needed visual experience, a fresh chance to some': children who are ‘
failing in ot_her type ofwork, ‘but also opportunity for posing their own prob-

“lems, finding ways of attacking these pfoblems, and checking on their own

, ~.work.
-
ERIC

IToxt Provided by ERI
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MATHEMATICS AND AESTHETICS

Byron L. Youtz
_ Evergreen State College
\> Olympia, Washington 98505

I begin with three propositions concerning thé nature of mathematics
which I believe to be of fundamental concern in the design of a curriculum in
mathematics for all ages: .

1. Mathematics is beauﬁful. It is this aspect of the subject

which has attracted most of us to the study of mathematics,
both as physicists and as mathematic’ians;

2. Mathematics is fun.. For those young people not frightened
off 'at an early age in school mathematics clasées , the wide
range of mathematical puzzles and games available and
popular speaks for itself. |

3. Mathematics is utilitarian. Included here is everything

from balancing the check book anfj fencing the garden to
the remarkable, apparent fact that the laws of the na;cural
universe seem to correspond ever so closely to the laws
of mathematics.

The "old math" of my youth was principally concerned with Proposi-
tion 3. Lots of fine examples were provided which enablied us to turn the
crank on our rote methods and rules. We got lots of practice. m setti};:j up
rather impractical and uninteresiing word p'roblems, learning the methods of
translation from English into Algebrab_or Geon:xetry. The best of us developed
an intuitibn of why the "rules" worked as they did and began to see some of

the beauty and the logic and the power of mathematics in spite of fhe methods

of teaching.
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The "new math" of our children has concerned itself mosfly with
PrOpOSitiOn‘ 1. The emphasis now seems to be very much on the fundz—lmental
bases of the logical systems. For those students who are willing to suspend -
the questions of relevance, a good bit of the beauty of the system is being
exhibited, the reasons behind the rules are shown through a variety of clever
examples, and the potential for a lot more "fun” is available. But it really
is a bit difficult to convince the majority of students in the lower and middle
schools of the importance of Unions and Intersections of Sets, of counting
in Base 7, etc. And precious little is done in the whsy of developing practical
uses of the mathematics which is emphasized,' largely perhaps because there
are very few practical uses for such mathematics, dealing as they do with
foundations. . ‘

What is needed then is a sensible ]oalance between "old" and "new",
between 1. and 3., with a much more substantial eye on Proposition 2,
which can be the rallying point. The major pleas of this paper are twofold
then: that we not go overboard in correcting the iils of the new rnz;th, and
that we keep an eagle eye on the necessity,for making mathematics fun. In
this latter context, I have been trying for some years to interest particularly
elementary school teachers in the idea of "free math" in much the way such
teachers now use the bribe of "free reading” as inducement for ﬁnishing. an-
assignment early. The wide assortment of commercially available mathe-
matical games and puzzles, and also many of the possibilities available in
the "new_math" offer some real opportunities in this direcfion. To my
knowledge, only one of my teacher acquaintances~ has fallen for my sugges=~
‘tion, but she reports somexmeasure of success with some of her students
in improving attitudes toward ‘mathematics. We should keep someth1ng of
this sort in mind as a possible vehicle fof making math fun and also for pro-
viding some of the insights and extensions which the new math has generated

and made available to young people.



My thesis and my examples for mathematics and aesthetics,’ then,
center on the notion that the "new math" movement was generally a good
development wh1ch was overdone; that the correctmn S not to throw out the
baby w1th the bathwater but rather to dip the babv in the bath; and that these
“"new math" techniques continue to offer the best wa, for making math fun and
imagihative and captiv_ating to the best students if embedded in & proper con-
text of applicability and relevance. Following out my assignment, then, I
wiil speak to some of the aesthetically satisﬂf_ying and beautiful aspects of
"new math” which seem to me worth including in any/every math curriculum,
at least as seductive examples of what the "handmaiden of the sciences'.'
can really do.

Geometry: One of the trends in the new math curricula has been
the displacement of a considerable amount of geometry by algebra, mostljr
abstract. 1 As one who was bored by an excess of Euclidian proofs in school
mathematics, I am not arguing for a return to a bulk of forlmalism {although
some amount of thi¢ is in order).  But I woulc -rgue that it is natural to
think geometrically, and that we can hope to go a long ways further in devel;-
oping 'intuition” ?aPout mathematics and its applications if we do more geom-
etry. Geometric examples, in fact, cah then l~ad us to develop algebraic
expressiens of some interest as a means for stretching our intuition.

1. Geometric « ~tions afford an _activity which is appealing
to both the »‘mathematically bright and the nearly illi. rate. Starting with
Euclidian constructions using compass and ruler, one can work up to con-
struction of three d. nensional paper—-folded objects of great bea\.tty.2 Along
the way. one can davelop many questions on why things work as they do
‘according to the rules of Euclid, two and three space, etc. Using construc~
tion methods based on a cellular approach2 in two and three dimensions
brings one very close to nature's way of constructing objects and gives -
access to a number of such natural or phy“sfaai(questlons Artalysis of
geometric patterns leads one to the possibility of extrapolating from a few
simple examples to more general and less intuitive cases. (e.g.,' given 2,

-3, 4, 5, etc. points in a plane interconnected by line segments, how many
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b
e

segments are at eacn point? How many total line segfnents are there for
each case? How rnany would there be for "n" points? What if the points
were not in a plane? etc.) : @

2. Exercises 'in spacial visualization are enormously fun and _
challenging, and represent an area where intuition can probably be developed.
‘Such exercises are often a part of an en'gineering aptitude' test, 1.Q. test,

" etc. and are almost universally considered as one of the pleasurable parts

of such tests. These develop {or test) one's ability to think logically, |
geometrically and to express a result of this thinking in a simple quantitative
way. As they are now used, almost exclusively in the test format, there is
little opportunlty to use these exercises in a teaching format where they
could be both fun and challenglng

3. Symmetry concepts represent one of the most elegant, and at
the same time fu- :ti\onaland natural sets of ideas available. Precious little
has been done with such principles in the school curricula, in spite of the
- fact that they are so powerful 1n science and in art, and so read11y available
—as examples in nature. Many of the exercises and examples in Martin
Gardner's little book3 could serve as beginning material for such develop-
ments. These can readily be carried over from the mafhematics class into
the biology, chemlstry and physics classes as well (leaf and flower patterns,
crystal structure,. molecular models, etcﬂ.) . And of course, the subject can
.be taken to almost any degree of complexity one wishes to use, including
considerable -;;roup‘ fne'cry.4 .

) 4. The Golden Section of the Greeks (the ratio of the sides of a
r'ectangl'e which-can be divided into a square and a rectangle with sides of.
that same ratio) is a<geometric property of almost mystical quaiity in terms

of its versatility: art, architecture {the Parthenon), some biological exainples,
even molecular structure! Pure aesthetics ..... or is it? A lovely little |

film titled, The Golden Section,5 may nrovide some points of departure.

Parenthet1 cal clause even the ratlo of successive Plbona ci numbers (the .

sequence 1,1,2,3, 5 8 13 21 .)_appr0aches the Golden Sectlon;__for. large . ‘
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numbers-of the sequence!, thus giving a possible entrance into number
theory. | -

5. Pmally, under geometry, it should be p0551b1e to develop the
basic 1deas and some practical apphcatlons of elementary trigonometry at
a much earlier stage and in more intuitive fashion than is common now.
Back to surveying! ‘

Tonology: While I would not recommend a large amount of"this in a
curriculum, some elementary considerations in topology form a logical ex- '
‘tension to geometry and there are some cute examples which Y6ung people
" enjoy. The Konigsberg Bridge problem and its extensions into network theory
represent one such track. 6 Another, related track is represented by the
Descartes-Euler Pormula7 connecting the numbér of faces-edges~-vertices
for polvhedra. This is a lovely example, Pythagorean-Euclidian intertwin=-
ing', representing the height of Greek aésth’etics in mathematics; and one
of the happy by—prddhcts is a proof that there exist only five regulér poly-
~“hedra. Here we,aré, then, back into three diinensional geometry and con-
structions using D-Stix and connectors. 8 |

Number Theory: A whole variety of prefty examples exist in number

theory, many of which are rea}ly quite simblve;. The motive here should not
be to develop a wholé set of -rfgorous ahd;ebnnedted, theofems in th‘é"feal
numbers, as has been the tendency sometimes in the past. Rather, attention
should be given to-developing the methods of thinking inherent in humber
theory. Pfincipal among these is the methdd of mathematical induction, so
siin_ple and.'yet so powerful. By its very nature, this method stimulates> a
person to investigate a numbz_arbof cases .on exploratory and intuitive grounds,
then develop.a generaliza{tion, and then test it by extension from "n" to
"n+1". Also, number theory cilows .one to pberform a collection of playful
acts .with numbers, some of which arle quite useful. in other work, others af:e
more :uriosities, all provide lots of practice with numerical calculations.
Among these are: sums of consecutive integers = n{n+1)/2; sums of odd

integers = nz; prime numbers and their theorems; magic squares and their
. " - : (el .
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design; multiplication by Napier's rods; numbers in base 2 and their
extension into many kinds of binary systems; factorials; and many other
possibilities.7 The possible combinaﬁons of beauty, fun and practicality
here are numerous. - ,

Probability: Picking up from factorials and their uses, one can go
‘into some intriguing and'potentially useful discussions of probability, per-
mutations, combinations, exponential growth and decay, dice and other
- games of chance. Again there is opportunity for activities as well as logic
and thought to give the study more life and interest. If tied into biological
growth, chemical rates, radioactive dec’éa?, etc., there is good background
built.for future use, as well as elegance in concepts and methods .

i ‘Algebré:' I will not put in a plea for preservation of all the "nev.v
math" work_tr{l"abstract algebra and the theory of sets. All too often, this
work turns out to bo nothing-but t_t1e empty set as far és meaning, value and
retention are concerned. But iét's do develop more of cartesian geometry, |
graphical analysis, concepts of functions and'slopes at an early and.,'intuitive
stage and continue that developmén_t right throuch into aigebraic and analytic
forms. ;I‘his goes for the trigonometric functions, exponentials, logarithmics,
conic sections, polynomials, etc. A number of 8mm film loops ekist to help .
this along, and what is lacking in such teaching aids should be made so that
thése all important c'oncepts are more readily available in the general popu-

" lace. The cufre,nt ecological crisis just goes to show that r_n'ost people don't -

appreciate the nature of the exponential function, for example. 27 “Q
In conclusion, let me assert that the above is a mere scrotc‘gingp of t_he

surface of all those concepts and materials which are now readily av-'éi"'i}laé'bfl_jo__m

and accessible to young people, which reveal the beauty and eleganoe of

: mathematios. In our great concern for the functional and the practical, let

us not neglect the sense of fun and beauty which has served as a strong

magnet in ‘ottracting some of the ;)est minds in history (including our own, of

course) to a love of mathematics.
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QUANTITATIVE REASONING IN GEOGRAPHY

Clyde F. Kohn
Department of Geography
University of Iowa
Iowa City, Iowa 52242

I. Background Information

A. The Recent Quantitative Revolution in Geography

Dufing the decade 1955~ 1965, geography underwent a radical trans-

formation of spirit and purposes, best described as the "quantitative revolu-

tion." The‘consequences of the revolution are still being worked out and are

“'likely to involve the "mathematization” of much of the discipline, with an

attendant emphasis on the construction and testing of theoretical models..
B. Long before the mid-1950's, however, geographers were inter-
ested in the ap_blication of mathematics to geographic problems, but this .

interest was ﬁ1ainly limited to the use of data in geographic analysis, t«

cartographic developments, and to the use of maps.

C. Many of the recent learning activities being introduced mto the

elementary and secondary schools», as well as into college programs, calls

for guantitative reasdning_v_es_'s_tudehts seek solution to prob;;ems from a geo-

graphic point of view.

II. Some Traditional Uses of Ba51c Arithmetical Skills in Geography

A. Purmshmg Evidence
Data serve as evidence for statements. made by students or teachers.

Their effectiveness fo: this purpose depends ir some degree on the arrange-

‘ment and grouping of the statistical ite-r'ns Often this calls for adding (to

ascertain totals of groupo), subtractlon (in deducting “he white population
from a total population to find the non—whlte populatlon) d1v1dmg (to prd

the density of an area given its size and numbers of people)., and multiplying
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¥
(e.g., if one dot-equals 5000 people, how many are represented by "x"
number of dots?). | -

B. Expressing Changes Qver Time

In various connections, geooraphic work involve's dealing with facts
as limited by time relations. Chandges are frequent in the 'patterns with which
human geography deals. Designated variety in space and variation i‘n time
are two concepts that should be emphasized in the study of geography.
Variety rin space, together With orderliness in arrangement, is the keynote
of world pattern. Variation in time belongs to the story of how the existing
‘patterr_lv came into being. Any number of changing phenomena are of interest
to geographers: population changes, lar.‘d—u_se trends, commodity trade_mo.ve_—
ments, rainfall and temperature chaogeé b;r months, or by years, changes in
sizes of cities, etc.

The uamlatlon of these changes into graphlc form.is a famlhar prac- ;
tice. A simple curve makes the genera1 trend clear, and 1ts constructlon is

. simple enough not to try the patience of even young students.' In fact, the
rpechanical work of construc't‘mg even a simple graph is likely to absorb the
attention of the beginner to such an extehf that he miese._s the facts portrayed.
This tendency may be overcome, however, by a little -ca.refully directed study -
of the completed graph. Attention might be called, for example, to compari—

‘son of stated periods of time or other comparisons demanding skills in read-
ing a completed graph-.

Other types o‘f'g“;raphs may be constructed, including overlapping
squares, often used to represent areas of larger size, ‘bar graphs, climatic
charts which combine both line and bar graph.s, proportional circles, etc.

In dealing with data'," the cohc; it of "means" might be developed,
as for example, annpal_mean temperatures, or mean t.'-‘mperat;lres for ggven
months. |

,C. Discovering Facts of Area Pattern

The plotting of ;:.atlstlcal data on maps .is a- famihar proc°dure for

showmg the areal d1str1but1on of various phenomena: Used in thls way,.sta-

tlSthS contribute to knowledge of areal pattern, thus performing a definitely
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geogréphic function. The degree to which statistics can reveal details of

- paitern depends on the siz-e of the statistical units, on the method of plot-
tiny the data, on the value of a symbol, and on accuracy of judgment en-
lightened by knowledge of the area involved. -On¢ principle to keep in mind
in plotting statistical data on maps is that the smaller the statistical divi-
sion selected as a base, the .clos'.é‘r can the statistical pattern approach the
true battern of distribution. Also tk;e dot-value is selected which, for the
pa'rticular data involved, will give a maximum of contrast without overcrowd-
ing an-area of concentration, #nd withisome indication of pattern in minor

areas.

III. Basic Mathematical Skills Needed in Readirg and Making Maps
A.,.- Ma-ps are representations of the earth or parts of the earth drawn
"to scale on a flat surfaceé. The degree to which a student can interpret maps
depends on his ability to: (1) orient the map and note direct.ions, (2) reCOQ—
nize the scale of a map and compute distance, (3) locate places on maps and
globes by means of grid systems, (4) recogﬁize_and_ express relative locations,
(5) read symb.ols and lork through maps to see the realities for which the sym-
bols stand, and (6) coirelate patterns that appear on maps and make inferences
o concermng the association of peoplé and things in particular areas. ' '
B. Obviously, arithmetic skills are needed to perform most of these
activities, -but especially numbers (2), (3), and (4). )
“ C. Recognizing the Scale of a Mdp and Computing Distance
The definition of a map includes the phrase "drawn to scale." A. map,
therefore, is more than a sketch, or gliagram. It represents, in reduced size,
,-/a portion or all of the earth's surface, a surface which may be many thousand
or even mény miilion'time's larger than the area of the paper on which if is
drawn. In other words, .all maps are graphic reductions of real areas, and _
the area on the map is pfoportional to the aréa in reality.
, Graphic reduction is, in itself, not a difficult problem in map read-
ing, ‘fOr the human mind accepts.readily many reductions without hesitation.

‘The child recognizes houses or trees in 3 picture ‘because he is familiar with

their shape and structure and has no difficulty in accepting the degree of
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their reduction. On the other hand, even re_latively small parts of the earth's
surface 'are beyond the range of the child's sensory experience. -Hence, their
graphic repre sentation on maps in a reduced form is an abstr’actien because it
cannot be directly related to'any such experience. This poses one of the ma-
jor problems of map reading. Because the reduction of areas on maps is diffi-
cult for the child to comprehend, map scales are correspondingly difficult.
'Yet he must learn to read the map by scale and to understand the degree of’
reduction. Here the mathematics teacher can be extremely useful.
| 1. Ground and Map Distances
The first step in understanding scale is to de\_/elop a knowledge

and a sense of ground and. map distances. Scal.e is an expression of

the relation between these two types of linear measurements. The

developmenvt of understanding involves: (a) a knowledge of the ter-

minology and the mathematical relatio:ship among the linear units

themselves: inches, feet, yards, blocks, miles, and degrees of lat-

itude and longitude, and in the future components of the metric system;

(h) experience in observing and recognizing these linear units or in
e acquiring mental impressions of their lengths: and (c) the ability to
compare linear units applicable to the mag with those applicable to
the grdhnd. Children's world should be graded with-respect to each
of these steps, but work in all three sifeps may be carried on simul-
taneously. Usually, however, instruction in recognizing the scale
of maps and in computing distances cannot be undertaken in the pri-

mary grades. It must walt for the development of certain arithmetical

~ skills. Normally, the first large scale maps introduced into the first

or second grade rooms should be drawn to scale by the teacher. Chill—.
dren of primary age can then be led to expfess and cqmphte scaies in
terrhs of number of blocks, ameunt of time required to walk, ridé, or
fly from one place to another. They can use relative terms such'a‘s
"nearer" or "farther" in comparing distances.

" In the mtermechate grades, chlldren can easily be asked to draw

_'a plan of a school desk 0 scale, make a plan of the school room Wlth

;
et



- 9] -

accurate measurements, make a map of the home neighborhood, and
then compute and express longer linear distances which cannot be
directly observed or measured. These maps might be made a* three--
or four different scales, and in so doing the pupil can begin to grasp
the ideal of large-scale and smal_l—scale maps — that large-scale maps
show much about a small area and small—seale maps show larger areas
but not as much detail. This concept will need reinforc'mg at almost
egvé‘-ry grade level. Itis =ften very difficult for students to'grasp, and
the teacher must not be =:az impatient.
- 2. Ways of Expressing Scele .

There are three ways of expressing the concept of scale: the
graphic, the in\E:h—to—mile statement, and the representative fraction..
They vary in difficulty and a,re' used for certain special purposes.

The three means of expressing scale need to be téught with care and ’
simultaneously with the teaéh'mg of ground and map distances.

The graphic scale is the easiest and simplest. It is a line sub-

‘divided into actual units of map distance"but marked to represent any

- of a variety of ground distances. The relationship (proportion) be-

tween the unit of map distance and the unit of ground distance is

arbitrarily decided upon by the map maker. In drawing a plan of a

desk or the room, for example, children can assume that anY specific

map distance represents any other specific ground unit. For instance,

a half inch can represent a foot and a graphic scale using those pro-

portions can be constructed to use with the plan. }
' Exercises may be designed in which studenis use the scales as

rulers to read directly from maps, the ground distances between boints.

- For example, on a desk map of the United States, the class may de-

termine the number of inches- whrch two cities are apart They can
then mark off this .distance on a strip of paper Then by applying
this. measurement or the graphic scale, they can ‘read off the ground I

distance. Agaln the students might be asked to do tl.is on maps of

different scales (using cistance between same cities) to develop thei;};ﬂi‘."ﬁ:‘;ﬁv_&‘tﬂi:'..'.'_-i',.J

concepts of large and small scale maps.
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The statement scale is a more advanced way of expressing scal'e,
for example, "one inch equals one foot," or "one inch equals four
miles." Whereras the statement of scale appears to be a simple con-
ceptl, it presents difficulties in visualization because' it is a mixture
of linear units. One does not ‘say that 6ne inch represents 253,400
inches, since long.distances are not Iexpressed in 'mches.‘ Inéteadi
the statement scale is exprjessed in inches to miles, as one inch
equals inur miles. The student is forced to try to visualize four miles
for ¢ach inch of linear measurement on the map.

The representative fr'actioh 1s the third way to express size and

is also the most advanced‘mathe’matically. It is a ratio of a single
unit of map distance to the ground distance represented, measured
in the same units. It réquires a knowledge of fractions, so for theb‘
most part is delgyed until the juniof or senior high sAcBool.. The ad--
vantages of the representative fraction are 1ts universality and pre-
cision. Such precision is possible becausé most fractional map
scales are very small fractions such as 1/10,000 or 1/2,500,000.
S"mch it is almost impossible to visualize a 1/2,500,0\00 relationship,
the srrialle_st of such fractions (in itself a difficult concept) makes for
lack of concreteness as compared-to such s'm{ple lérge,fractibns as
"1/2 crl/10. To help'ovércome this difficulty, the learner must de-
velop rﬂm... :matical abi_lity in cohverti_ng the fractional scale to a
statement of scale or\a graphic scale which he can understand. For |
.example, 1/62,500 is approximately one inch to a mile; 1/500,000
‘is one inch to eight miles; and 1/10,000,000 is approximatély one
inch to 16 miles. The scale of 16-inch globes is 1/31 , 580,000 or
one‘ inch to 500 miles. . |

For more precise purposes, the pupil ﬁeeds to learn ;co use a
simple equation, first reducing all values to the same linear units/‘
and expressing known values in the;e units. The unknqwn is repre-

sented by X. For exampie, two cities are five anhes apart on a map
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which has a scale of 1/153,250. What is the ground distance between
the two cities ? '

Map Distance ' Map Distance

Ground Distance

Ground Distance

1 _ 5
153,250 = X
X = 766,250 inches
. _ 766,250 .
766,250 inches = ___63,360 or 12.09 miles

Learners need practice with similar probféms giving either ground
or map distances and ﬁsing either fractional or statement scales to -
give them facility in converf'mg from one type of scale to another.

3. Visualiz_ation of Scale

Understanding map scales requires more than the mzchanical
ability of inathematical manipulation. Since a map is a graphic re- 7
duction, intelligent interpretation of it depends on the ability to vis-
ualize map distances in terms of Qfound distances in the landscape,
or the reverse process. This ability is easy in terms of 1argé scale
maps (relative small areas showing detail), but it becomes difficult
with small scale maps. _ ,

. That it is difficult even for the adult is demonstrated by the fail- |
ure of many teachers who must take examinations for certification.
The following three questions on a reéent “Certificatior.l Ex'am'mation.
for Teachers of High School Geography" administered in one of our
' higlcity school systems proved not only to be very difficult, but
lacking in power té discriminate between those who obtained-high
scoreé and those with low scores. |

(d) If a giveﬁ map has a fractional :calé of 1/63,36(_) and two
points on that map are six inches apart, how far apart in miles are
those two points? . (1) 1-mile, (2) 2 miles, (3) 4 miles, (4) 6 miles,

_(5) 63,360 miles.

b T ,
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(B) If you were to measure distances on a globe whose scale
was 1/16,000,000 an inch would represent about: (1) 500 miles,
(2) 250 miles, (3) 125 miles, (4) 50 miles, (5) 5 miles.

(C) If the scale of a map is 1/125,000, then one square inch on
the map represehts how many square miles on the earth? (1) 2 square
miles, (2) 4'square miles,. (3) 8 square miles, (4) 12 square miles, .

(5) 16 square miles. | -
(D) What Can a Map Show (Re_solution) ? - _ -
Once that a student understand scales, he is able to understand the

differences between largé and small scale maps, and what can be shown on

a map of a specific scale. It is necessary, for example, for the student to
understand that as the map scale becomes smaller (holding the page size
constant), the size of the area covered can be increased, but the detail
Which can be expressed must be reduced. In uviher words, the resolution is
not so good. Resolution is here defined as the concept of separating a pat-
tern Into its components. The limit of resolution is reached when the compo-
.nents merge together to an unacceptable degree and cannot be separated.
For exémple, at one scale, many details of a‘s;aecific city can be shown —
its street pattez-'-‘n; even individual buildings. But at a smaller scale, these
merge together and only the city as a whole can be seen, At a world scale,
~even the city disapbears and its location cannot be accurately depicted be- '
cause of the scale of the map. | |
Perhaps an illustration can be used to clarify the meaning of resolution.
On a scale of_1:62,SOO‘_(approx'imately oﬁe inch to one mile), the street pat~
tern and thé location of individual government building can be mapped. dne
could use such a map to find one's way about th_e capital. If the scale of the
rriap were reduced however to 1:250,000 (-_a";&prdi?imate‘l? one inch to four miles),
only main arteries '(and these greatly exaggerated in size) could be depicted.
One could not locate specific buildings very readily. At still a smaller scale,
1:1,000,OOO.Y(approxima‘;:ely one inch to"16 miles), thé details are even fewer.
At a scale of 1:4,000',0007'7(one inch to 64 miles}, Washington, 'D.C. canhbe

shown only symbolically.
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The term large scale map means one on which most of the details, or
small things, can be show... A large scale map shows ctreets, roads, small

rivers, and sometimes even buildings. .--A-medium scale map shows some of

the more important details but not all. It may cover several degrees of lati-
tude and-longitude. A s.mall scale map does not show much detail; in fact,
often does not even show all the important things. A map of the world on a
piece of paper this size would very small sdale. No detail could be shown.
The' resolution pf such a map is said to be low. |
| E. The Ability to Locate Places on Maps and Globes

Any point on the earth's surface .may.be. located exactly be determin-

ing its longitude, i.e., the po'mf of the intersection of a parallel and é merid- -

ian. This exact location may be expressed in degrees of latitude and longi-

.tude. The learner should understand that latitude is a measure of the angle

between the plane of the equator and lines projectrd from the center of the

earth. Lines on latitude connect points on the face of the eai’fh whose pro-
jections to the center of the earth form a 30 degree angle with the plane of
the equator. The latitude of the equator is zero degrees. _L'mes of latitude
north and south of the equator are numbered to 90 degrees because a line
drawn from the pole to the center of the earth forms a 90 degree angle with
the plané ~f the equat_or. There is no latitude higher than 90 degrees.
Longitude is the measure of the angle I;etwéen the planes of tvs}o me-
ridian circles, one of which is the prime meridian. For example, the plane
of the 90th line of longitude, on which New Orleans is locéted, forms a 90

degree angle with the plané of the prime meridian. All places on the 90th )

"line of longitude west of the prime meridian, the;'ga, are at 90.degrees west

longitude.

Understanding what a system of lines of latitude and l%ngitude are,
students'can examine a globe to discovef importa'nt. facts about the system,
e.g., ‘all lines of longitude are great circles which converge at both poles
and bisect the équator and every line of latitude; only the‘ equator, on the
other hand, of all lines of latitude is a great circle, and all lines of latitude
are parallel to teach other and are true east-west lines. Other facts can also

be observed.
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With these facts obtained from studying the system of latitude and .
 longitude lines on a globe, students can then examine sstems of lines of
latitudé and longitude on world and larger scale maps. When they do not

agree with the global network, they know that the map contains some kind
-of distortion as to size, shapes, distances, etc.

Sirr_lpler grid systems can be introduced in the elementary grades,

and students can locate places on maps by rows and columns that are num-
bered or lettered. - . A' -

F. The Ability to Recognize and Express Relative Location

The concept of "relative location” is an important one in geography.

It is an expression of the distance between any two or more places, and the
direction in which anyone lies in respect to others. It alsd depends upon
certain features that make one more accessible to another. ,
It is important, therefore, for students to know how to read and give
directions, and how to fneasure distances before the relative location of two
or more places or objectslcan be stated. |
" . With the use of aerial photographs, the term resolution has been in-

' »tr‘oduced into the vocabulary of those 'mtefested in reading and interpreting
them. Rather Simply, it might-be defined as the minimum separétion at which
two objects can be distinguished on a photograph or map. In aerial photog-
raphy, the term "spatial resolution” is used and applies to both imaging and
non-imaging sensors. It refers to their ca_pability of recording terrain patches
of limited size distinctly from othe. adjacent terrain patches. The resolut.on
of a sensor is given by the'émailést distance between t'wo equal objects that
st_ili permits one to recognize these objects as separate entities. It can be

" expressed by an angle (angular resolution). This concept, however, is quite
difficult, and is usually left to the experts to understand and utilize.

1V, Some Modern Applications of Mathematics to Geographic Analysis.

As indicated during the late 1950's and early_“1960's, the study of
geography underwent a veritable revolution, sometimes referred to as the
"Quantitative Revolution in Geography." Two stages can be recognized in

this revolution. First came the analysis of the data according to recognized
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statistical procedures. Second, the use of the f_Qrmal logic of mathematics

was introduced to state propositions and develop logical structures. The
first has since been introduced into learning activities at the high school™
level; the second, insofar as isg¢known, has not yet been introduced at the

L4

pre-collegiate level.

Statistical Applications /

. "The bulk of statistical procedures utilized by geographers in the S

period 1954 - 1965 were of the "regression-correlation” type. This develo‘f)‘/-
ment was due to the 'accebted philosophical position that area co-variation .
was a central problem in geography, and that geographers eought morphologi-
cal laws derived frorh pattern co-variation. .It gave rise to such Hypotheses |
and laws as, "where x - there y." .

A second organizing concept Wthh is currently dommatmq geographic

research and instruction at the collegiate level is that of "spat1a1 mteractmn

E,camples of spat1a1 interaction models introduced early in the 11terature in-
cluded the use of grav1ty. models. More complex decision-making models
have now replaced these earlier models. |

Use of SEatistical Techniques in Learning Activities

It.is possible, ¢specially at the high school level, to introduce ac-
tivities in which learners must work out simple cotrelation problemhs .involv;
ihg area association or spatial interaction. Students might also st'udyv distrib-
u"cien patterﬁs to discover their trend surfaces, me;sures of centrality, inten-

sity of distributior, and other attributes.




SOME THOUGHTS ON SCHOOL MATHEMATICS,
ESPECIALLY FOR THE MIDDLE GRADES

lrvmg Mory 1ssett

Department of Economics, University of Colorado,
and Socigl Science Educauon Consortium, Inc. '
Boulder, -Colorado. 80302 . e

; or
Mathematics, like all other academic subjects (or, like all other'
subjects taught academically — that ‘is, in schod's), suiffers from being iso.—
lated. It is isolated from other subjects and ‘r-t" is isolated from "the real
world. " Effo_rts to overcome this isolation, such as introducing 1nto mathe-
matics illustrations from other subjects (for example, socrologrcal data) and
from the real world (for examplel, making change in the grocery-store), point
in the right direction, but are usually too.little and too late. .They are like
a little sweetening for a brtter p1ll or like Band—Aids for a badly wounded
patrent. Far too many students are turned off to ‘mathem at1cs early in their
school careers often with the aid of. teachers (eSpecrally elementary teac,hers,
who must teach mathematrcs whether they like it or not) ~who were also turned
off to.mathematics early in their academrc careers. ' '
The cry in recent years for more relevance in the schools polnts to a
very real problem; but the solution to the problem has not been helped much
by the dragnosrs "lack of' relevance "1t helps a little to break "lack of
relevance" down 1nto what usually turn.out to be 1ts chief compcments , lack
of interest and lack of apparent usefulness IntrrnS1c 1nterest and apparent
uss fulness are the chief motrvators for any kind of learning. .Both" should be

\\0
appealed to, but not necessar1ly at the same tlme with:thie: same students

[

or. with the same emphasis. ' e . LY ' :
The sugge stions given here are 'rntended to provslde" the beginnings of-
3 <
an overall framework for the teaching of mathematrcs and, within that frame—

work, some specrfm 1deas that are compatrble w1th the framework lvlo_st of
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the suggestions apply to the teaching of mathematics throughout_elementary
and h1gh school beginning, of course, with the f1rst grade. The emphasis
on mathematlcs as a part of the knowledge and SklllS needed for coping w1th
‘the real world should be particularly useful in the m1ddle school years,
when youth are partlcularly concerned with their 1dent1ty, their place in the
world, and how to cope w1th the world
.+ The overal] {ramework is intended to:
1. Put mathematics into a broader context than is usudlly used.
2. Make this broader context available to the teacher.
I 3. Make the broader context ayailable to students as they feel
a need or desire for it.
4., Enrphasiz_e the usefulness of rnathemat_i.cs» for éeping with the

world, without denigrating the joy ‘v()f mathen1atics' for its own sake.

,The specific suggestions, Withl’n the framework, are intended to:

1. Relate mathematics more closely to s.tudents' goals.

2. Relate mathematics more closely to the real world.

3. Réduce some of the forbidding aspects of mathematics.

The suggest ions, not necessarlly in logical order; follow. _
1. Mathematlcs should be: viewed as a part of the knowledge and

sklll needed to cope with the world. An 1mportant part of every 1nd1v1dual S
.effort is d1rected toward explaining, \predlctlng, and controlling events in. o

the world about him -- Whether'this is done intuitively or with scientific

rigor. Loglc, mathematics, StatlSthS, and scientific theorizing are inter-.

related approaches or tools to this common goal of expla1n1ng, predlctlng,

. and controlling events. A _

2. Language, or llngulstlc thinking, has many parallels with
scientifle*a-nd .m_athematlcal thinking,” mostly at an 1ntu1t1ve or subconscious
leyel. ‘\.Ne do much quantitative' logical, theoretical thinking with everyday

_vlanguage. The teach1ng of mathematlcs could proflt from linking me thematics ©
more closely to language tak1ng advantage of the facts that (a) language

has already been learned by all school-age chlldren because of its
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demonstrated usefulness in coping with the individual's world, and (b)

v

embedded in language is much of the structure and set of concepts. that are
basic to mathematics, statistics, Joglc and theory. ‘

3. Mathematlcs is not 1dent1cal with perfect precision, and the
highest level of precision 1s not necessarily the best state of affairs.
Approx1mat10ns are not a necessary evil (as imperfect approaches to a per-
fect state of affairs), but useful and acceptable means of measurement. As
.a general rule, it is more useful to ask "How accurate does this measure-
ment need to be ?" rather than "How accurate can I make this measurement?"
It is unfortunate that the term "error" as used in mathematlcs and statistics
carries over from common language a heavy moralistic taint. As antidotes

to the goodness of "precision” and the badness of "error," we may need
' and "The Virtue of Error." ,
4. The concept of inequality is simple and powerful. In school

mathematics it is underused; yet in eve.vday life it is probably the most

" used.concept, $ince it is the basic ingredient in choosing, or decision

" making.. Many decisions require only a statement of inequality.

5. Students need early and constant practice with the concept of - .
orders of magmtude a practlc,e that has probably been inhibited by the em~
phasis on precision with whtch mathematics is commonly associated. The
concept is tremendously useful in everyday coping, (a) for estimating quan-
tities or magnitudes on the basis of inadequate data, and (b) for chécking
on the approximate corre_ctness.of‘ (exact) answers. : '

6. Mathematical, logical, and scientific thinking are considered
by .many to be less applicable to the social sciences than to the natural
sciences. .This is probably due to the belief that the mpeasurement of qﬁanti— .
ties and relationships is generally; much more accurate m the natural sciences
than in bl_the social sciences. Leaving aside the question of wﬁat "accuracy"
means when applied to the measure ment of different objects or events w&th
different kinds of "measurin‘g instruments, let us assume as correct the com-

mon belief that the "hard" sciences are much more amenable to precise

i
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measﬁrement than the "soft" sciences. Why should this consideration make
the social sc;ien_c'e.s less amenable to scien‘tiﬁc t_hin}'iing about cause and
~ effect -- to explanation, prediction, and control? While a high .degree of
pfecision is often important, énd sometimes cruci‘al, in scientific endeavors,
it is ﬁot tﬁe gss'enge of scientific thinking. | |
_ 7 v .Préblem“solving or deci sion making with incomplete information

is a common problem in the real world which is given little.attfa-ntion in
school mathematics. It sheuld receive more attention within fhe cbhtext

of early school mathematics. . '

8. The cost of seduring data for problem solving or decision making
is largely ignored in school mathematics; most mdthematical problems giQe
sufficient data and train-and test students only in data rrianipulation-.

Some of the ideas and relationships described above are illustratéd
in Figure 1, which is quite..prelimina.ry and incomplete. The figufé shows

.some 'paralléls among liriguisjc‘ic, logical, mathematicai, statistical, and
theoretical fhinking; elements on the same horizontal level are comparable )
to each other. In general,' the more elementary modes of thought are ét the~
bottom,s'the more comprehensive ét the'tép, leading to the main purpese of
i+ 11l — coping, controlling, and managing. L ' ‘

Turning to moré specific. curriculum suggestions, drawn from the
social sciences ahd relate‘a at least.in part to some of the ideas presented
above, the following items are suggested. ' o '

1. The social sciences abound with data, ‘rr;ost of which are dull :
and/or mea’ningless L;I’ltil and unless you have an impor'\tlant question t'hat
might be answered by some of the data. ‘The Statistical Abstract is.a source
of such data -- easily available, massive, and dull or useless unless au
important question is posed to. which.it might have an vans@ver. The telephone
book is another source of mu‘ch dull and useless data -- uniess an appropri-

ate question is posed. Many problems about how to use a telephone book
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can be posed, excludlng the simple problem in wh1ch yOu know the full and
correct name and address of a party k.iown to be 11sted in the book, whom
" vou wish to call. Suppose, for example, the problem is how to find the
number of a person whom you very much want to call (a pretty girl, a‘hand—
some boy, an electronics expert, a person named Chuck who knows about L
A -a big record 'buy, etc.) and about whom you have inc'omplete information. 7
What are some good search strategies ? Can logical or mathematical -or
statistical or scientific reasoning help? Are the knoWn or probable costs
worth the known or probable benefits ? i
_2_. All of us carry around in our heads a great number of conclusions !
about correlations among traits of individuals: unpleasant voices go with"q
unpleasant dlsp051t1ons, girls are better English students than boys, boys
are better science and math students than girls, Jewish families ase more
clannish than non-Jewish families, students and teachers who dress con-.
‘servatively have stricter moral standards than those who dress more casually,
etc. How can such generalizations be tested? What dataar"e needed,? 'Are
some such data available ? ? Must new data be gathered to answer sﬁbch‘
ouestlons ? How are approprlate data handled to give useful answers ?
3. A very 1mportant ‘concept in human behavior, developed most
completely in econom1cs but appllcable to many ‘situations, is the concept
of trade off ratios. There is almost noth1ng ~- in¢luding life and the most .
precious tangible an‘d 'jntangible- possessions .—.-':'that an individual will not
trade for, son1ethin_g else -~ if-the'price (the trade—off ratio) is right. Most
commonly, money is-traded for}goonds and services. But we also trade time - -
‘for entertainment, an inconveniencé for the approval of a friend, health for
s pleasure disoomfort now for comifort in the futllre and so on. There are
two important k1nds of trade-offs =- trade-offs preferred (by the 1nd1v1dual)
and trade-offs available (to the individual) . Much of life's decision making
.consists of comparing preferred and available trade~offs and selectin'g from
amc__ng the available trade-offs those to be acted upon. What determines
the preferred trade-offs ? How can inf'ormat'ion about available.and preferred

v

\ .
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trade-offs be obtained? How can selections be made from among the

available trade-offs ? - .

4. .Related to (3), what causes changes in available trade-off
ratios ?.. what causes changes in preferred trade-off ratios°-
5‘._ There is a wide range of phenomera in the physical and social

sciences that can be compared under the headings of equilibrium and dis-

equlllbrlum Equlllbrlum is a state in which all opposing forces are in

balance so that no movement is taking place in the relevant var1ables Dis-
equlllbrlum is a state m which movement in relevant variablés 1\s taking place
due to an 1mbalance of forces acting upon.them. Social examples of equilib-

rium mclude many kinds of 5001al conservatism, market prices under some

, conditions,” and stalemates of various kinds.- Social examples of disequilib-

rium include escalation and de-escalation of personal and social conflicts,"
inflation, stock market fluctuations,,;and rumors.

6. System analysis has had an mteres\tmg parallel development m e
the natural and social s01ences Many aspects of systems analys1s can be

developed for the early and middle grades, concentratmg either on the natural

.sciences, the social s01ences, or parallels betWEen the two. These aspects

include slgnals, noise, and signal-noise ratlos, commumcatlon, information;
positive and negative feedback; cybernetic systems (detector-selector-

effector); preference systems; transections; and organizations.

.
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'BASIC MATHEMATICS NELDS FOR LIFE SCIENCE AT THE
)'UNIOR HIGH SCHOOL LEVEL

Charles Walcott
.State. University of New York
‘ “‘at Stony Brook
Stony Brook long Island New York 11790
Life Sciencés can probar)ly be taught without any quantitative skills

\vhatever, al least at the Iunlor quh School level. At this level brology
should 1dc,ally 1nvolve a’'great deal of observatlon and slmple experrment,
neither of which necessarllv involves a heavy use of mathematlcs But I
bclleve that quantltatlve skills are essential for a well educated person and
that one' can use blology to help students understand some basic ideas. In
partlcular I see five ma]or areas that seem to me to be 1mportant and which I
believe would fit naturally into a bioclogical framework. These are: Graphing,

Geometry, Measurement, Estimation and Probability. I assume that students

know the basic arithmetic operations and need only practice to become pro-

ficient, unless of course, they're .dunces like me and have to resort to slide-

rules ‘and ealculations tc keep the numbers straight! A .

. Graphing and the interpretation .of' grap;hs/ is one of the more generally-
useful tools thatb"can come out of biclogy. The growth of a plant plotted as
height against days makes a natural graph. Days that were sklpped ‘pffer the -~
chance for inoterpolati‘on. Bets on how h1gh it will be next Wednesday lead
f;d notions of eXtrapdlation and its problems. One can relate two variables

gra.phicaolly; using the same example one could relate-the amount of water to

the height of the plant on any. given day or the - amount of nitrogen or whatever

~Usin§ graphical techniques with living material is bound to lead to all sorts .

of causes. There should be linear, as well-as other curve shapes, and
students should have the chance to work from graphs back to real data: look
1ng at a graplr they should be able to des\,r1be what went on: to produce the

curve they see. The main issue here, of course. is that graphs should not
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be a sterlle exercise by itself — a graph is a- descr1ptlon of reallty and unless
students have the reality I don t belleve that they will ever -really understand
graphical representation . -' '

Measurement is another cent'ral_ topic. Whether it is math or science
I don't know. But it has a habit of'le'acling to numbers'which are then added,’
multiplied, or whatever.. »It certai’nly is something that had.b.etter be under--
stood. Measurements are almost always tied up with geometry so some basic
ideas about area’ volume mass, etc. are essential. Agaln_l don‘t think these
are things that one should make a major toplc by themselves. .They are tools
for answerlng guestions — How big a plant do I have ? Area ? or Volume?

How do you begin to answer the quostrons that arise naturally from chlldren S

work with living materials? At the‘end .we'want students to understand how
to measure and how to connect measurements from one form to another. This
1nvolves fractions, decimals, and fudge factors {°F to °C). Somewhere there
should be a s1mple“1ntroductlon to shapes,_ areas, volumes, and formulasfor
calculating what you nee'cl *But please, no l.ong lists of formulas to memorize
and the? forget. ThlS does no one any good, or perhaps I should say that it
‘never did me any good One needs real thlngs and a reason for measuring and
calculating. This again comes natu.rally.— one can measure leaf area, plant
volume, plant weight, etc. .

Thlrdljr‘, I.believe that sgme basic ideas of probabil'it'y will be help- ~
ful. I don't propose an analysis of variance or even an x2 but ratner some
notion of chance. This is. probably coin ll'lpping, seed sorting, and the like.
It will come up when discussing class results in an experiment,-it leads to
a crucial idea in basic Mendelian genetics and it lies at the heart of what
science is all about namely predictability. I'm not sure how'this can be _
taught in Junior High or how it fits with biology. But it is well worth explor—
ing. 1 suspect that it might well come out of a "Peas and Partlcles approach
to estimation which is the fifth area in need of attention. He we are dealing
~with the five-gallon jar full of beans How Amany are there? One can't really

count, at least not if you're lazy: Ba‘si.calily kids develop ways of sampling

—a

y .
3 1 . ' . . ’ /
. .

and estimating. This experience is very i'mportant because there has been so
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much ‘\é_'mphasis on "éxactly the right answér" that kids have ho feeling for
guesses. 673 x 12 is more than 6730, nifactaboutldbO more. Kids heed
to feel free to approximate and make guesses. Such guesses may indeed
greatly~help accﬁracy rather than the oppoéité. _ Ox;e can also use the rather
fun game of estimating all sorts of wild things. For example, if one has been
growincj beans in the classroom, suppose one estimated the amount of water
used byr"a 100-acre bean field; How many beans would you exbect to get?
How mavny people would that feed at one meal? And what-are likely to be the
high and low limits? The aim here is not exactitude, but a feel :ior,numbérs
and size; the ability to make an intelligent guess.

Looking over what I've written, I'm not‘ sure I've answered the question.'.
These skills are not 'reélly needed for life science, they a}e needed for under-
standing the world. Life science makes & good context in which to deve'.lo'p .

them.

=y

©
3
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. TEACHING JUNIOR HIGH MATHEMATICS IN A HETEROGENECUS CLASS

Jeanne Albert - ' ’ o X
"Weeks Junior High School
4 Newton, Massachusetts 02158

/

A "heterogenous class" is a class where the'rang.é of studént bé{*
formance and/or ability s significantly greater than that/ c:vm:nonly foundk"'b{}
a homogeneous class. In additibn to social I;enefits, st.udents Ln heterogen\—'
- eous classes gain in other ways. The class tends to be more gxcitiilg' as

there are more children who serve as examples of mdtiv’iation-, {mtere'st, and .
behavior than one generally finds in a low or averqge homogeneous class.
As the heterogeneous class does not‘. carry an abil,ilty label, the stJdents.
with low or aver'agt_é performance records are less;"llik‘ely to dev.e‘lop or rein-
force a negative self-image. Also, '-'the)level at wh‘ich a child is taught is
rhore likely to depend on his knowledge of:a.‘part{}:ular con’ggpt rather than
_be predetermined by his permanent grouping. :'.“In addition:v low performers

* can participate in the regula.r rﬁathematics curricula as well.as receive. re-
med\ial help. ) _ )

) Gﬂiven a broad Spect.rum of students, 4rangiralg from the high performers
to t.hose needing remegiiél h_elp, the géal is to best provide both for the class
to work as a single group and to'a&commodate.the. ne'ecis:‘of each individual”
studgnt. | Features 6f good >te'aching - a géod learning éh.vironment,'oppor—
tunities for léarnin'g iﬁ a variety ’6f ways, and enabling each ‘student to"max-
imize his grdv:‘gh in matkiemati‘cs — must not be ighored. In addition, through
‘;heterogex'lous c:las.s orgénization, o_n_e:hope's to avoid premature "ability la-

. beling" of studehts and to provide class members of Varying performance and
\ .

ability levels many oppottunities to work with one another. Students teach-
"2 ‘

ing otheﬁr students is a crucial aspect of a heterogenequs class. Small groups

within the\plass-'bor;tinually change their compositior;, nd thus it is not only
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thy petier students who are helning the slower ones. Sometimes it is better

studentz helping other good students; and sometimes it is slower students
wisrnyn with other slow stucs ats.
Two features appear essential toachieve the above goals- (1) vari-

DS GIOUNING :mtrcrnﬁ, including "full-class, teacher—led" sesSions small

ST Raoous groups, and small homogeneous groups; and (2) use of mamp—

2w malerials, The amount of time given to particular grouping patterns

I

Ty redative tu the topic, and progress of the students the availabilit/ of
aides, and the use of materials.

Uis assun .eo that not all students will proceed in a linear fashion
srgasnh he same »_ehpcricnces varying only in. speed. Rather, it is felt that

G MDY O of'le @arning averues should be.provided. Manipulative materials

oiten seem to provide for the necessary alternatives. ‘For the above-average

studants, manipulative devices can be used to extend the understanding of

a concept. For the average student, experiences with materials allow the

gragp of a ‘concept on a more concrete and understandable level. The low-

RER A mrxent neads the materials to express ideas and to aid him in com-

;:;wtmw aad problem solvmg

Following are three days in my heterogeneous math class which illus-

trale how these ideas work.

DAY 1 (1? Review Yvith'whoIe c‘lasﬂs definition of a rectangle, making sure

studentsfunderstand that a square-is a rectangle. Review idea

~ . of perirneter Draw rectangle on the board — give its base and
| , ~height, have students tell what perimeter is.
 (2) Students sit around tables in groups of four to Six mixed heter-—
ogeneously. Pass out worksheets and scissors and paper. Stu—

o

'dents_ to go work. (See' Worksheet 1 — page 117.)



Things’. to nu..ce:

(1)

(2)

(3)

(4)

-does not find the as

Most-of the period is spent by students working, not teacher
talking. - ) ;

Students are working individually, but they are all wo'rking on
the same p;roblem They are working arciund a table and encour-
aged to talk about thelr work, and help each other. At the end
of class, however, each turns in h1s 1nd1v1dua1 solution.

The worksheet is open-ended and so even the brlghtest student
Zignment trivial. The sheet assumes that
students wi\ll cut ou< squares and so the slowest student has
som‘eth.ing to manipulate, yet a student who can think abstractly
is free"to complete the assignment without moving squares if he
doesn't need tc. Each student is free to!"think't the problem in-
stead of "moving squares ai'ound" at the stage he's ready for it.
(Often I find that students will request graph paper, and shade
in squares to help solve the problem. ).
Concepts are reviewed before ;tudents beg_in working — I can
check that each pupil knows the basic ideas by the. judicious
asking of questions. While working, students are seated in heter-
ogeneous groups and SO can quest,on each other. At the end of
the lesson — or at the start of the next day — a summary of the
basic 1deas students should have found is d1scussed. That is,
it is not expec.ted that students "wil_llmake all the gen-eralizations , -
forythemselves —time is allowed for this to be done on a class _
basis. Of cours‘e, some of the btighter students might go bey‘o:nd

this, but for the majority of the students there is a definite need

for class summary of major ideds.



DAY 2: (1)

| -1l -

Class time is very non-threatening. Students can ch'eck'their' E

answers'by moving squares and counting. And whén questionea
by the téacher can be asked, "Show me how you got that answer. !
"Why?"  “Prove it." The type of questi;@‘s“teachers should be
asking. Students are free to talk to each other —and do. (Con-
versations often overheard — "Why did;you write that 7" "Ex-
plain to me how to do this." "You're not right — teacher! ")

Thus the amé\ nt of learning that takes place is grqatly increésed
as I cannot possibly ask all the students -‘a_l‘l the questions I'd

like to. And ma

ing the class more enjoyable‘for the students,
for one characteristic of junior high pupils is that they are very

sociable.

Students are' separated into two groups — one group-is composed

\,

. N\
of six to eight better youngsters (based on observations of teacher

during Day 1) and the other g%,\is the rest of the class.-

"Top" group has assignment to do~Z a continuation of the previous

day's work — and they are given a tabléNn the corner to work at.

. (See Worksheet 2 —page 118.) . : Y.

Rest of class talk with the teacher about what they fo'ur;_d the pre-

_v,ious‘ day — mak-é generalizations which these students do not do

auto'ma’tically by themselves. Then they a‘regiven the next as-
signment to do, and may work together as usual. (Seé Work-

sheet 3 — pagé 119.)

Things to notice:

(1)

4

Students who made gé'neralizations by themselves were not re-

quired to si:t still while teacher ,he'lped others realize them.
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(2) "Top" class was chosen on the basis of the previous day's work,
and is a flexibte group — m_‘embership variés based on the concept.

Of course, there are some students who are generally in this

. 3

. group, * and there are others who fluctuate hetween groups.

o

(3) "“Top" group works in the room and so students not anolved can
see them" - they are not sSeparatéed from the majority of the class:

(4) _Some days the "separate” group.is the bottom four to sgxlstudents'
and some days it's an arbitrary group (maybe using a game or ma-
terial only available in 1“imited guantity), SO each pupll has the
opportunity of being a _}‘Jart of a special group perlodlcally.

. Teacher's membership fiuctuates from group to group.

(5) Teacher must talk wrth members of each group every day. Junior
high pupils dc not seem able to sustain thembelvee wrthout know-
ing that the teacher will be asking what they've discovered, what

- : they've léarned,! or scme such queétioxj each’ day. ;{n the lesson

described above, the teacher can check in with the top group at

2

‘ ‘ the end of the class when others start on their a551gnment

(6) Students are taught to rer on group members — they must learn
{}- [
‘early in the school year. (after explanatlons by the teacher and

s

muchlnractice) that when the teacher is 1nvolved with anothe1
group, they must resolve problems for themselves —i.2., don't

1nterrupt The work students are asked to do must be carefully

F

- planned so problems are not lrkely to arise whrc‘h a ,group member

canndt solve.

?

e

DAY 3: (1) Teacher' introduces new idea to whole class by use of the over-
. head projector, film loop, or some such device. (the b_‘la"ckbéa,rd

can even be used). : : ‘
Truly gifted students who always grasp concepts first and enhter junior tigh
with facility in aritimetic seem to need their own class. ’I'hey do, not see€m
to benefit from the heterogeneity and may be handicapped by it—1i. e., they
are ready for a much more-abstract currrculum._ : oo
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(2) " Discussion by whole class and then problem assigned — students

(3)

-work individually or in pairs, but each turns in assignment.

Possible game relating to idea being intrqducéd available for
use when worksheet is finished (or reverse the order — all stu-

dents play game in pairs for about 10 minutes, and then work on

~ work sheet).

The above outline of three days in a heterogeneous math class gives

’yqu a sample of what I consider desirable education in math on the junior high

level. The structure seems quité effective — I've been using it for two years

now. However, there are problems:

(1)

(4)

The organization is'complex — grouping changes constantly — and
so daily evaluation ¢f individual students is needed. Bookkeep-

ing is complicated, including keeping track of which student

- does which assignment.

Grading is difficult if your schc;ol requires letter grades. "I’ests
need to be given on several levels. But then how to decide which
students gets an A lfc'>r a report card?. And how to’ ;ebort to parents
on what a student seems to be learning that doesn't show up ém
tests + T‘or how to write better tests that reveal all the students
are learning ? |

There is a dearth of non-worksheet activities. S teachers need
to create these on their own — an'd it's QULtedlffLEUIttOWELte
appropriate a’ctiyitiés that'are open-ended. Projects, building °

things, etc. seem like they thlg be appropriate, but are 'diffi—

“ cult when limited to 40 minutes a day and a shared classroom.

Relating activities to algorithms is hard. Algebra teachers want
st idents who are proficient in arithmetic, and use standard

algorithms.
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WORKSHEET 1 | :

oL

2.

Cut out 24 one-inch sguares (use thcse below).

How many different ways can you fit them together to make a rectangle?
(Use all 24 each time.) Write down the length of the base, the heiglic.
and the .perimeter of each rectangle you make. Record this information

- in a chart

Are any of these rertangles also squares’> Which?

How manv of the 24 one-inch squares would you use to make- the
largest square possible? How many more one-inch squares than the
24 would yvou need to make the naext largest square? And the next
largest? And the next? Can you continue this pattern?

How many more rectangles cohld you make if you used one more one-
inch sguare than the 24 allowed above? List the rectangles. ‘How .
about if you used 26 one-inch squares? List them. How about if

‘vou used 27 one-inch squares ? List them. Can you find a pattern?

How about if you had 100 one-inch squares — can you predict how

‘many rectangles can be formed?

=
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WORKSHEET 2 o 4
All the rectangles you made yesterday of 24 one-inch squares have
the same area: 24 square inches. You found that their perimetérs varie:d.

Thus we-could-say., if two rectangies have-the same—area their perimeters

vary. _
Write the converse of this statement:

Prove the above converse TRUE or FALSE.
Can you find'an example where the perimeter and the area of a rec-

tangle are the same?

If two rectangles have the same area and the same perimeter, are

they congruent? Prove-it.
Is 'the converse of this statement true?
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WORKSHEET 2 |
Create all possible rectangles whose perimeter is 36 inches.
Make a chart showing the bas’eL height, ‘and area of each of the

.

rectangles. . . ' '

e
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THE "LIGHTER" SIDE OF MATHEMATICS

Gwendolyn Steele
Butzel Junior High School
Detroit, Michigan 48200

Y

"T can't do math," or "I hate math," or "Math was always my worst

asuinect” are not uncommon statemoents made by many adults. These attitudes

are not forined in the adult stage, however, but _early in life, probably as a
result of unhappy or ur__xsucces‘sful .experiences with mathematics. As a math
ref'n_xr-ho’r. in an inner-city junior high school, I am trying te' prevent or lessen
these negat.i\)«:f‘auitude:; towerd mathematics by showing the student that
meath can be fun and that he can be successful with it. ¢

Math games have proven to be an exeel'ient means of doing so.
Lceeming occurs most effe'ctjvely when students are eager and willing to
lodrn;'gamos are @ means of motivating students to learn mathematics .,
Games are fun, challenging, competitive and vet there<s no great fear of

failure. During normal instruction the right answer is expected, but when

' vﬂaying: qamo fosing is atw*cptabi; Consequently in game playing, the

junior high school student responds more Lrecly without fear of ridicule from
peers. Remember peer groups play an important role in the adolescent stage.
Games, with-their various designs and complexities, -serve ‘many

functions in my claserom. For example "Mancala" is a very simple game

whlch involves two pldyers droppmg beads in S:JCCeSSIVG pits on a board.
There are only a couple of mles for the game. The game yoes fast. ,Studente
can apply strategy to wi:n. But most of all, mature thinkers and immatufe '
thix;}:crrs, too, enjoy the game. Thus, it is an excelleﬁt game for getting
stedents to class and many tines even beforé class actually begins.-
"Qumto, " a game which deals w1th summing multlples of five is also good

in attracting stuclents o class. Tho better math student is very much
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attracted to "Krypto." "Krypto" is a‘game which involves combining five
numerals -(dealt from a check of Krypto cards)_ with any of the fundamévntal
opérationg to obtain a final numeral (goal card) .".The Tower of Hanoi, which
req‘ﬁires use of ekponents, is also a drawing card. Thus, not only is the
student getting to class and enjoying the games, he is also learning and
using mathematics. “"Numo," "Quizmo," ".Baseball,;" and other similar
garﬁes are goosi exercises of recall.. Students enjoy them and the gafne can

. be varieq depending on the students’ ‘mathemal‘tical abilitie,s. All of the pre-
viously mentioned games can befemploy'ed at the end of the class period,

or when individuals fihish regu_lgf assignments, or sometimes for remedial
work. © | '

The last game I'gi liké to discuss in~somewlhat more detail because of
the tremendous affect it ha;d,on so many of my students is called "Equations."
On-ze the game rules are leai:ned, the student can concentrate on the mathe-
matics. The airﬁ in playing is to win by correctly challenging your opponents
or to haye written such a compléz{' solution for the goal that you are ihcorrectly
challenged., In my room I had 15 hierarchy tables ;/vith threé pléyers at each. -
Students with similar mathematics ability competed against each other. Thus,
there is a winner at-every tableA. Conseqﬁentiy, a student of low ability couiﬁ
experience success as well as a student of greater ability. A "bumping" sys-
tem whicﬁ shifted a player from a lower or higher table maintained the compe-
titiveness of the gamé aﬁd kept students with si“milar abilities playing each
Aother. _So, vif a student grasped @ mathematical concept that others at his |
table’hardn't, he could _embloy if in the game and pos sibly' move to a higher
hierarchy table. Thus .student’.q ~ome to me asking for additional help bn an
old ‘concept or t5 be taught a new concept. w_hich the? could use to win the
game. - My teaching lessons’ were aétually taught as strategies. to be used in
pléying "Equationsgl" For example, my lesson on exponehts jinvolvéd writing’
solﬁtions with exponents. . The students were very attentive because they

" knew that they would be using these expressions in the game. If they could
use ";'his tool Well‘, it meant a "win" for them. Other topics: integers,

E}

fractions, roots, etc. were deyeloped similarly.
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No'tn' only did the "Equations" game help my students devélop

v
]

acade‘mically, but socially as well. The student was constantly infer-acting '
with his peers. He was able to experience success whether a; the top'of
the cl.ass or the bottom. "He was a_nieﬁwber of a team. So, he was tfying
for the team as well as self esteem. Students were helping each other; a
top, pl_ayer on a team would sho;k a boftom player on that same team sorPe
strategy which might be helpful in the next playing period. Students looked
forward to'{he next playing period énd were very disappointed if for some
reason pl’ay’ was not possible Atténdance picked up because students

dldn t want to drop down to a lower table nor lose points for their team.
Students even asked to borrow equatlons games so that they could practice
out51de of class. When a student begins coming to a math class early,

working in t,lass, and askma to take math materials out of class, these are

signs that he is motivated to learn mathematics.



SOME OTHER EQUATIONS

David A. Page
. Mathematics Depaftment
S University of Illinois at Chicago Circle .
’ Chicago, Illinois 60680

-~

One of the common aétiyities in SChool_mathemafi\cs is éol\;i)ncf
{:equati-on_s. It bften seems important to point out to students that an eduatio_n
may hévé no roots, someroots, or that every number (among the numbers
under consideration) r‘nay be a root. After the extreme cases of "no nurhb_ers
““are roots” and "all numbers are roots" are in\/estiq'ated the situations in be-
tween where only somé numbers work are the interesting ones. H-owever,
suéh‘equatior_ls are often quite difficult to solve. . .
A linear équation has one well behaved root. Quadratic equations
will have two roots but they are not necessarily well Beha_ved unless the
. : equation is constructed with care. If a student were so bold as to supply
' his own coefficients for a quadratic equation, he‘would be likely to.get un—
pleasant irrational roots or even complex roots.

Of.course to deal with equations having several roots one can restrict

the equations to factored form. Thus the-equation

e

X (x-2) (% + ‘3-)(-,“.7):0 |

. ’ 1 r : . N : ' n n
has roots 0, 2, —E' =7 . This is an interesting technique for "making up

equations but-woe to the class where a student constructs an equation in

. ~ this fashion with a half dozen roots and then multiplies out the factors and

presents it to the claks for solution! =~ LT e
2 KS "

The theory of polynomial equations involving variocus astute detective -
methods for séarching out root's has been a commonly studied subject at

the high school and early college level but its popularity seems to be waning.
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:Nowadays, of course,' one can have, the friendly neighborhoéd computer

chase down the roots of such equations.

M st ~he
B < <

.Ity is the purpose of this paper to sugges’t that eq'ua‘fion_s,of manage-'
able diffi'culty but with interesting collections of roqts can bé introduced
into the curriculum by the use of a common mathematical function not ordi-
narily dealt with at the junior. high éch'ool'level; |
| Consider the "greatest integer not gr,eafcef" than" function. Perhaps
a less twisty name for this function is “the integer part éf" although it is.
‘not so clear what the integer‘part of a negative numEer is. Whatever words
are used to na'rr}é it otherwise, we shall here call it “Square Brackets" and
’use brackets like thé/:s/e[ Jto symbolize it. 'I_‘he wholé notion-of this l‘uﬁc-

tion would be communication "tb‘ students by numeroué examples such as:-
’ 4 o= 427 - 4
[5)=5 [33] =3 |49

' e . R N S
| [—\4]=i2, \__“95.] = -0 [_‘2] " |
.A reasonable description_of this function for a schbol student would

involve a number line. There are two cases. Square Brackets of an integer. -

leaves the number unchanged.

\'4 A SR ) R LS i
- 4 A S - =1 o

j el- 2

1

. I A\ : ’ . -
;Square Brackets of a number between integers gives the first integer left of.
I ' ’ . .

(less than) the number.

»
&
p

' / . ("\—“T‘ ‘
S a \ . i’ 4\ \ N 1 l
/ -3 . -2 ) -1 O - | Z
L) - -
-1-= = -
- . 5 2
/ ) _ .
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'vTh.e ‘main reason for suggesting the Square. Bracket functioﬁ here is
that intere.stin”g equations can be constructed using it. Howéver, it might
"'be_,pointed out that Square Brackets has mundane, "practical” uses also.
If you have x dollars and want to buy as many que’zrts"o{ milk as
poésible at 35 cént\s -per .quart, how maAny can you buy ? Answer:
35

How much \cha_nge do you have left? ?—\nswér in dollars:-

<. 100x |
) x-_,35[ 35 :I

_Ata slig’hﬂy fang'ier level, a first class letter weighs exaé:tly x ounces. How+

2

much postage is'required? ‘Answer in cents:

af]

s A sl
-~ “I~ -~

-

Now we willlconsider some egquations and their roots. Insteaa of .
de.aling with su‘ch equétior{s in mathematical generality we will ckip quickly
among specific exarhples to hint.at hﬁow one might pre serit suc;h problems to
students. Mgst -c.iiscus sion of pe'dagogyf_v\‘zill be omitted in the interest of
brevity. ‘ ’ | o

 What aré the roots of
‘Equation I ) [x] = x
Answer: - . ;
All of the integers (and only the integ'ers) .
) From-here on-we will give a graph of the roots instcad of describing
them vérbally. ~Many of the following equations have infiﬁitely many di__stinc't_

roots and the diagram shown will only suggest the entire set of roots.

Equation 1T ,’ 4_ L%} '; = X

“Roots: ‘ _ . .

e S VRS R S S S VD G N S S UL S T SN0 U H U S S S W

~10 -5 -~ © § ..o,



- _].28'-.

Equation 111 [ 3 7‘]
‘ o

Roots:
-2 - o o 2 3
Equation 1V 4 X_+ | ] I

Roots: - |

_u.‘a_,L~,.l..~—l___‘_-L——~_t_1__‘_L_J_L_‘—‘——L_1_+_1_L_L—_‘ { R S S|

- 10 -5 ) s /0
l . . o
‘Lguation V - ‘ix -2 - X -2
. 7 '
Roots: . T ' -
R M S S— U S SN R S S— TR A S [ SN NI S W — FJ 1
- 10 -5 - Q K .y : ‘0

Given any constantly spaced infinite collection of roots (dots), an
sauation like 1 - V above can be constructed which will be satisfied by them.

Through a \;ariety of problems like these the student comes to realize |
ihit the multiplication-division in the equation determines the spacing be-

woen rodts and the addltlon-subtractlon determines the actual left—rlcjht

position of the roots. If one wants to pursue it, the student can begin to’
gt o feeling for transformations which are dilatioﬁ-contractions and trans-
foi mations which are (rigid) translations. The whole area of functions,
yransformations, or mappings which are cons-trUCted using Square Brackets is

a right extension of this work.

* * *
ﬁmothér class of equations. -
Equation VI p ¢
A
Roots:
-~ i A i . } :b . { \\'.
=2 - o / 2 3



129 -//30"

The symbols on the diagram above mean that the number O_i_s_ a root
< and the number 2 is not a root {(and, of course, all the numbers between
0 and 2 are roots). . .
Equation VII [3 ‘X] I Z
Roots:

’ - ———o -

-3 -2 : | g . |
| Given any halfway.d'ecent interval an equation along the lines of
VI and VII can be constructed which will have that interval as roots (as its
"solutioh sre,t";but we are not sure here that ;/ve want to allude to any exten-
sive use of conscious set theory). '
S K i
» The preceding examples are intended to suggest a consldexable body
of materlal that can be covered by average junior high school students.
There are many more roads to go down with Square Brackets than have even
been hinted'at here. Furthermore by:“éombining Square Btackets with Absolute
Value (and possibly Slgnum) another wealth of mater1al arises.
This fUl’lCthl’l can lead to problems which are probably suited only to
a very bright and motlvated student. Here is one such problem. Its SOluthl'l
will be given without oorﬁment. How we sttimbled upon, equations like this
~is an. iritere'sting story 'which will bei'supplied upon request. '

Equation VIII

425\ _ aco

'Roots (listed rather than .graphed): | _
1 : 2 1 4

. . ‘ 1 N . —— — .
. | 400, 200, 1333, 100, 80, 665, 575, 50, 445, 40
4 1 - 10 4 2 ‘
36’—11, 335, 3073, 28, 26

(The author does not guarantee that there has not been a typographical error

in the listing of these roots but this is the general idea in any case!)
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USE OF DATA FROM RLAL PROBLEMS. IN THL MATHEMATICS
CURRICULUM AT THE JUNIOR HIGH SCHOOL LEVEL

Earle L. Lomon _ _ ,
Unified Science and Mathematics for Elémentary Schools ‘Pr%ject
Education Development Center.

Newton, Mass. 02160

The objectives of the conference — to improve the math_skilis, quanti-
tative reasoning _and thc ability to apply nﬁa‘the_rhatics caﬁ be app.roachcd by
introducing curricular materials in which the problems addressed-and the
means of dealing with them are considerab.jy more real (t‘hét is, such as those
that indiv_iduales and society really face) than those typically used in math'
courses. A detailed ratione;le for this was expressed at the 1967 Cambridge
Conference and has been applied in a fully real problem-oriented, integrated
: fofm by the Unified Science and Mathemat_ics _for'Eiementary Schools Project
(USMES). UJSMES docs no.t.expect all of mathematics (or science or social .
science, or language skills, etc.) to be learned through-' this fully unified
stfategy. in secondary schools in particular, the pfesent o-rg’anizational
modes and specialization of teachers inhibits an intensebapplica‘tlion of that
.stratng- | y ~ |

" An ihtermediate strateg'y, always useful, and more readily applicable
now, is to use real data as.sources for quantitative considerations, without
fully intending to treat all as parts of the c.ontexfual problem {nor to try to
find préctical ameloriatic‘ms of the problem). It is my intention to discuss
this possibility here by presenting an example of this mode. Many of these |
types of activities arise in the context of USMES units. Some have béen,
considered Ifor pos(sible ‘USMES units, but have been put aside for lack of '
‘b.eing able to put them into a complete USMES "challenge" context.

' -Among the examples to pbe discuséed are: ‘

1. Taking samplé bolls on importantllocal issues (school buésing,

cafeteria food, a new road or rapid transit, etc.). The students must decide
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on the yuestions (imbortant variables), wE)rding (reaction and t?iaé) -a‘r_)é
sampling .. They can follow the first sample with others (variance, long
run stabilit;«', etc.) and at times with the whole re_levant population (predic-
tive power). Addition, division and graphing are among the skills involved.
Forma!l elements of probability and statistiés may be introduced and teéted. ’
Pim_ctio'nal rélations (variance and sample size) may be developed and used." .

2. Making écale drawings to ..éimu,late sitgations to study their
modification (streets, intersections and pézrk\mg lots, assembly halls,.ca‘fe-
terias, playgrounds, etc.). M'ea'suremcyants can bé made and remade (ol'otain—‘
ing distributions and accuracy estimates). The scaliné calculations are done '
(arithmetic) and the drawing made (angles, lengths, triangu.ar requions,
symmetry, etc.). On the drawing, modifications can b’%_ mad'é in movable
components — (lights, car spaces, chairs, tables, swings, bésketball fields,
.etc — to observe 1mprovements such as mcreases in crossing or parking
space, seating or corrldors : (Arlthmetlc and geometry, optlmlzqtlon n

problems .)
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VERBALIZATION AS A MEANS OF IMPROVING PROBLEM-SOLVING
SKILLS IN JUNIOR HIGH MATH

i

. James Rule
Grand Blanc Community Schdols
® 12500 Holly Road
Grand Blanc, Michigan 48439

It is my position that problem }s'olving must begin ‘in elementary school
. as soon as the student begins the study of arithmetic. Oral problems can be
o . given to t'he' students; they in turn may tell how to find_a suitable solution,
or wrrte an aopronrrate n.athefnatrcal sentence Later tne‘y can make stories
to frt grven equatlons or sets of data. It is interesting to see that many dif-
ferent storiés fit the same equation, but all of the stories have a common
thread. -rchn’ildren write fine stcries -~ much better in many ways than t’hos'e’
. that appear in their books.
‘ Oral work ir. orohlem solving should also be a part of middle school
mathematrcs. SLudents should be encouraged to make hypothescs Will the
* solution be cfreater of less? What operations must I use? Dol have enough
mformatron’P What mathematical sentence may I write? Is my’ answer rea-
'sonable" ‘In the beg.nmng one must be willing to accept all hypothesea
wrthout undue criticism® After all one must begin somewhere. If the prob-

lem situations are presented. orally, the students may re\spono by makmc a

note on their paper so that they may check themselveb a ~some approprrate

responses are given. As students become more proficient, or less-embarrassed,
. E. H .
" more interesting situations can be devised.

Problem situations should be. presented to groups of <tuden't’s,— with
wri‘rten ae well as oral reports civen' to the class on the strategies used in
ree'clving_the situation. Other members of the class shouid be encouracedl
bfco offer alterna‘Ee methods or strategies. Being able to explam — verhalizo —

not only What ycu did but why you did it is often more difficult than just
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cranking out a solution. How rhany times have you heard a student say',. "1

.don't know how I-did it. I just did it." As groups of students discuss pos-

sible solutions, and listen to how other gropps worked, some kind of learn-
ing must be going on. , - , ,

Another technique I use is to "give dictation." The idea\is to give
the st:udents practice in translating English sentehces into matherhatical sen-

tences. 1 usually start with expressions like "two more than a certain num-

“ber," "five less than tw1ce a certain number, " "three thes a number plus ;

—— e

five. " Notice that the last one depends upon inflection in the voice, or a
suitable pausc. - While these are not "problem" situations, they do resemble
the kinds of problems found in many books.

Unfortunately the current emphasrs on the structure of- mathematics -
has produced- textbook n;ateriats that do not offer themstudent opportunities
to practice problem-solving skills. Students c'to not have the opportunity -td_
try to‘. solve "gr'iginal" problems,— problems that could be a part of their -6r1d
their conéerns, their interests Conse\quently junior hlgh teachers must spend
mordmat\. amount of time searchmg for mteresttng srtuatlons (they do AgkdSt) .

Perhaps the "lab-approach" to junior high mathematxcs is the solution,

--Qr, at least a step in the rlghr dlrectlon Seemg students get involved solv- =~

mg problem situations, woerg with geoboards, tangrams, Cuxsenaxre Rods,

’

l\ttrlbute Blocks, mirror cards,etc " will make a believer out of you.

(/



SOME THOUGHTS ON ALGORITHMS AND COMPUTERS

Peter Braunfeld

. Department of Mathematic§
~University of Illinois at Champaign-Urbana

' Urbana, Illinois 61801

The idea of an algorithm, and interest in algorithms, predates the
invention of computers'by several thousands @f years. Indeed, it is amusing
to note that one of the earliest extant mathematical texts {the Ahmes Papyrus)

is essentially a collection of algorithms for solving certain problems. In

- fact, it appears that prior to the Greeks — with their concern for deduction

and abstraction — mzst mathematics consisted of a search for algorithms.

- Obviously, most of "arithmetic" is algorithmic in nature. Indeed, the glory

N

(and utility) of our Arabic system of place notation for numbers lies precisely -
in the fact that it makes the algorithms for elementary computations reasonably

easy and manageable “Itis, of course, possible to state algorithms for per-

forming the elementary arrthmetrc operatlons with Roman numerals, but such

algorlthms would have an order of complexnty far greater than the "Arabrc" ,

algorrthms we currently struggle to teach chrldren in the elementary school.

We mlght mention two non- computatronal algorlthms that were known to the

- A

Greeks: First, the Sieve of Eratosthenes is notbrng more than an algorithm

$

for finding-all primes. between 1 and some ftxed number N. Second, consider

* the Euclidiar algorithm for finding the greatest common measure of two given

line segments. " This algorithm is particularly interesting. It will terminate

if and only if the-two given line 'segments are commensurable, and, in that

)

case, it will praduce therr greatest common measure. On‘ the other hand, if
the given segments are 1ncommensurable, then it will not terminate. Thus,
as early as the Greeks, it was known that there are algorithmic procedures

that, for given inputs, may go on forever.

N
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With the advent of the digital computer, our interest in algorrthms has
taken a quahtum jump’ upward The reasons for this are simple: (l) Computers

are used for an enormous variety of tasks in contemporary society,.and (2)

—

(,omouters can only carry out algorithmic. procedures ~— they cannot do emythmg

else. We can characterize our situation vis~a-vis computers somewhat more.
~ picturesquely as follows: Computers constitute a very large and"important

servant class in our society. If we are to use this servant class effectively

- we must first know wha_t they can and what they cannot do (i.e., we need to

understand the nature of algorithmic procedures). Secondly, we must be able
to “talk'l to the.'computer—,_servants in order to convey_lto them what they- are
to d» for us {i.e., we must have a facility for using algorithmic la"nguages)'..
out l?x:guistic situation vgi_s—a—vls computers is somewhat analogous to the
situation of the Russian arlstocracy-befo_re World War I. That aristocracy

rather drsdained the use of the Russian tongue and much preferred to. talk

~ French among themselves. Nevertheless, .if they wanted to convey their

wxshes and 1nstructlons to their often 1llrterate servants, they were required
to do eo in Russran. Thus a working knowledge of Russian was probably in-
wspensrble even to the most "effete" francophrlrc Russian nobleman. We

are in a somewhat srmrlar position today As much as we may dislike talking .

“to the computer we-must do so if we are to make it perform its chores.- Our

N only alternatrve is to give the problem to an expert (computer programmer)

and have him do the talkmg for us. But it is generally a bad business to .
- give a problem to someone else uniess we have at least a general'_idea of '
how he is gorng to solve 1t for'us+ WitHout such an idea it is diff;.’:ult to
know .is reasonable to expect and it is also often dlfflCUlt to 1nterpret the

answers we get. ; ’

. In addition to the very dlrec.t» practical reasons dlsCusse?d above for
teaching people to deal with algorithmic process/es,v there are intellectua_]
advantages \t’o learning about algorithmic lan'guages. To, learn a'computer
language - whtchever one it may be — is to learn a new la'lguage. Now , we
have belleved for a very long time that learnlng a forelgn language is not

only a directly practical thing, but is also intellectually broadening. The

-

ot

’
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French language,; for example, forces us into.quite different categories and
maodes of expressionthan‘wo are accustomed to tn English. These different
categories and modes of expression will certainly result in our looking at

. thre world from 4 new and dllferent perspective. Perhapq mlost important,
1earmnq Freneh w1ll glvo us insight into our own language, Eﬂ(;llah * By get-
ting outside of Engligh, and looking at it from the perspective of, say,

> . ?rench, we shall begin to understand more deeol_y our mother ton.gue. 1 be-

lieve that what 1 have said here about Frehch'als'o applies to any non—triv‘iel

[

oomputer language." As we try to talk to the _computef" in x“cs la_nguag_e, we -
- shall beqin to see thi gs ih a quite ditferent way. Since E}nglish ~-i's not an
algorithmic language, we shail soon discover that things ‘sirnple to say in
English m‘ay hecome very complex in the co'.mp,uter language, and things coin-
plex in English may become much gimpler. Our wholg pe\rspecttve on problems,
and how big problems are put together from smalter probfemgs, wi'—ll change as
we translate from ordinary Ehgli.sh to an algorithmic language. Thus, prufd
arque that the "lea'rning of algorithmic languages — quite apart from any imme-

diate practlcal utility — should serve as a very broadening intellectual experi-
s ehnco, very much ltke the loarmng of French. It is certamlyi true that no com-
| puter language comes even close in sophtsttcation to a nat‘ura-l language like
_French. But, in a way, I think that therein lies precisely the strength of such
languages to serve as the vehicle for important intellectual experience;*
Computer languages are characterlzed by paucity and prec151on when compared
to natural Ianguages. What 1is mterestmg and surprising about computer lan-
guages is two-fold: On the one hand, how much one can get the computer to
| do if one is suff‘iciently clever and patient' on the other hand, how incredibly
romple\ and difficult it {s to state certain tasks in these languages that are
almost trivial to state in English. Thus, I submit that by teachlng children to
use and cope with simple algorithmic languages_, we shall be providing them
not only with u'seful tools, but with important broadening intellectual experi~-
ences. ' ‘

T ) Let us look now a little more closely at what is-involved in program-

ming a computer. A computer is a device that can execute (i.e., perform)™a
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certain number of fixed instructions (stated in a__prescrzbed language) that

are.fed to it by means of some input,device. A programmer, on the other
hand, is’a human being, who has sor/ne'more or less complex task in mind

that he would like the computer t»o,,e/xecute for him. The programming task

v

s now two-fold. Tirst, the Humén beinag (programmer) must make it com-

pletely clear to himself what the task is. Frequently, what we think we

want to have done is not reallx what we want. Perhaps the most telling

~e‘<amples of tms proposrtlon are the many fairy tales dealing with the story

-of the_ three wmhes. Our, first problem then as programmers is to make clear

to ourselves precisely’and.unambiguousiy w‘hat the task is. This is often a
surprisingly'c.hfficulE thing to do because in our ordinary interoorirse with
other human beinqsh we rely on an enormous body of unspoken presuppositions.
For example, if there is a knock on the door, and I say "come in," I do not
expect the hearer Slmply to batter down Lhe door 1 nee'd not say "turn the
door knob, open the doorr and come in, " because there are well- establlsheci,
unspoken conventions that govern the proper reactloxg to "come in." As soon
as we wish to “elk.to computers, however, this whole enormous set of un-
spoken, oftenl unconsc1ous,tpresuppoqxtronb is no longer at our dtsporal

In the worltt of computer algorlthms, nothing "gocs without ~-say1ng" — every-
thing must be clearly defined and spelled out, all possible non-desirable
alternatives must be disposed of. * ' ?

The clarification and specification of the task is computer-independent.

It mus)x1 Yone, and can, at.least in principle, be done _in’depende‘nt of the

computer that is to carry out the task. ‘,Now the programmer faces hi‘q second
problem — to specify the defined task in tiue particular language'(s) his com-
puter can "underetand." This is a problem of task-analysis and ¢omes essen-
tially to this: to break down the‘given task 'into a series of ,spbtasks, each -
of which the cornputer oan'execute.l Wnether this can or cannot be done de-
pends on the gjven task'and the richness of the given computerlanguage.

For example, Suppose we bhave a computer that that can only adci integers
(i'.(-%., given a and _Q‘ it can form a +,b) .' If we gt,ve it two integers a and b

and ask it to find their difference, a-- b, this is impossible. On the other

-3
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hand, if we have a computer that can only subtract, then we can use it to . -
find sums, sincea+b=a -~ ((b-Db) - b). It' seems to me that at some, tlime
in the curriculum it might be appropriate to give Students tasks that cannot':
in prin'ciplé, be done on a givén machine. I ’s',uggest this because I belie:v\eﬂ
that the idea "in principlé, impbssible" is an intriguing intellectual concept
that certainly plays an imbortant role in ma;chematics. of course: in addition

to questions of principle, there are also practical considerations: Supposing

that a given task is in principle programmable on a given computer, there re-

mains the question whether it is practically possible to do so, e.g., hcw
lony wi]nl the computer require to do the given problem? It is alsp important
to note that the same task- can be progr@xnmea in many different ways, some
of which will be much more "efficient” than others. The art of programming
COn‘sists, of course, precisely in findi_n_g refficient” programs. 1 believe ’
that the kinds of task—analysis required for programming aré an important

and useful intellectual exercise and should' thus have a place in the school
curriculum. ﬂ | )

. As a teacher of mathematics, I am most particularly interested in the

utility of t'eaching algorithmic thinking for mathematics itself. I think there .

.are reasons to hope that the "pay-off" might be very great. One of the most

important things we ultimately try to teach- in mathematics is the idea of

proof. 'A‘matihematical proof is, of course, a convincing argument, but let

.us look at the idea of a strictly formal proof. Here we have a sequence of

steps, each of which can be obtainéd from the preceding steps 'by clearly
stated, logical rules of inference. In this sense, a proof is jusfc li}’.e an al-
gorithmic procecure. The purpose of a formal proef is to get from tﬁe hypbthJ;
esis to _the concluéion — using only previousl\é‘ agreed on rules of inference.‘v
The correctness of a formal proof can .be'checl:ked by a computer; indeed, .if

we list the "reasons" for each step, ther the sequence of "reasons" is es-

sentially an algorithm for generating the proof itself. Now we know that

'many students find the idea of proof very difficulf. I am not speakirj_g of

their ingenuity at finding proofs for di’ffircult' theorems; I am simply talking
about the idea of what is involved in a proof. 1 suspect that one reason for

-
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this difficulty goes back to something I said before: we are just not in the
habit of talking in the nit-picking detail that mathematics.requires. It is

not natural to think logically; rather it is a habit 6f mind to be acquired.

4

But now, in the case of writing proéfs, the.student see‘s no need for all the
fuss. The proof is, at best, read by k;ié'teacher‘, an‘d he can claim with some
injustice, that "she knows what he meank" even if he hasn't said it. More-
Q(/.éf, to submit a wrong proof has no practical _conse'_quen_ces whatever (ex- ‘
ce}at, perhaps, a low grade m the «course!). All these motivational problems
disappear in teaching programming. The student can easily accept the fact
that the compute;' "doesn't understand" — it is not af all like the teacher
"playmg.dumb. " Further, if the program is-incorréct, the computer will not
perform the desired task — there ié no room Whate\‘/er for quibbling about what
is right and what is wrong. Finally, the ”art of "debuggii‘;g " an incorrect pro-
'gram is in itself a valuable learning experience. To suinmarize: I have
great hope that early experiences with algorithmic procedures w"ill serve to'
make the idea of mathematicai proof much moré acce_s_sible to students.
To conclude, I think it is very important to gather together a wide

variety of .,in;cerest'mg and challenging problems for:the stgdqnts to do. 1
‘think there is no point whatever in talking o‘to 7students\e\about theég matters
- in the abstract. Their feeling for algorithmic.'pro.cedhre's, for t@sk"—‘analysis,
for precision of language will come only as a function of dding proble;ns. By

way of illustration, I cite two amusing problems that I heard about several

years ago from my colleagues in computer science.

o
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Problem 1: Consider an infinite, rectangular-grid as«ind}icated below: "
) .

Y

! A

i YA .
i : R ' .
," . - ~ B / \A S :

R

At point A of the grid is l‘ocateci a light bulb. At an arbitrary point R is lo<
cated a robot. The task is to get the robot to walk to the light bulb at A and
stop there. The robot has the followmg instruction repertory .

N: Take one step north
W Take nne step west ~
E: Take one step east
S: Take one step south
1(k); If light is more intense now than at precedmg location.
jump~to instruction at memory location k. Otherw:se
go to next instruction. :

7(k): Jump to instruction at. memory locatlon k.
S: Stop . w
Problem 2:- Consider an infinite strip of tape as indicated below:

’

One cell there has been marLed with an "X". On another cel‘l is a robot R,

—/ The task is for the robot to find the cell marked "X" .and stop. As shown
/oo below the robot can make and erase its own X's. For reasons of elegance,
J/ _ the problem further requires that at the_end no X's other than the original one

remam on the tape. The robct has the followmg instruction repertory

L ‘Take onerstep to the left _

R: .Take one step to the right . ¢

X: Make an X on the current cell .

Y: Erase any X on the current cell

J(k): - Jump to instruction at memory location k

I(k): ii there is an X on the cell, ;jumyr to instruction at memory
~ location k. Otherwise, go to next instruction.

F: Stop ’ '

Remark:. the innterest'mg part of this pr'(o'”blem is that the rohot does not know
whether the X is to the left or the right of his starting position.

\
\
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. NOTES FOR A COLLOQUIUM ON JUNIOR HIGH MATHEMATICS

_ D Newton Smith -
. Western Carolina University
Cullowhee, North Carolina 28723

I. ‘!Mo"st of what's wrong with junior high‘ rnathematics is the same thing
that's wrong'withf’junior hich. - | ’ _
o ) My first memory of math in school goes back to the 4th grade. By
then 1 had already S1zed up, what school was all about. It was a game which
the teacher played w1th us — the old "I've got the answer" rout1ne The way
she played it was to ask some kind of silly questlon that she already knew
the answer to, and- we were supposed to act 1nterested and give-her the
answer It was no dlfferent 1n math, h1story, geography or reading. When
° was Amerlca discovered, what is the cap1tal of South Africa, who wrote Kim
'.and 2 + 2 is what, are all the same game: Kids don't believe 1n the1r hearts
that the questrons are serious; the only reason they play it is for &he sake
of soc1al or psychologlcal comfort
Certainly there is no quick cure for the Ameri:ca.n educational system‘;
it seems to be suffering:" from a terminal disease. The-artificial leaning situa-
tion of fake questions and answers 1gnores what seems to me to be a ba51c
axiom: an answer given to a student before he asks the questlon h1mself is
for him useless information. Providing gquestions that we would llke for him
to ask is pretty suspect too. The studentsees the whole situation rigged so
that in the end the teacher gets to what he already knew was the answer
The answer then becomes useless and we are surrounded by information -all
_ the. t1me = most of it as useless as the fillers in the newspaper . School is

. like trylng to discover the news and only getting flllers




- 144 - s

Thi :.)roblem is how does one so arouse students that they generate
PO wn Gues txons. 1 do not know the answer. .Perhaps only master teachers
“ HuldEe 1. But it does seem that if students generate their own qu'estions_
Ty ::-.-.;::“a"r:f;:' permitted to ask them in whatever order they wish. The textbook

Sadieim DS "1rtt1ally impossible. "We can't take that up now. You'll get to

i, Matr amatics is not normally presented as a way of structurmg the
wesrhd o one of the t_pols to use in making sense of our experience. - gD

1

' ran away from schoo/l the second day of .the llst grade. Something
~.:.;;s s owrong with The whole set—u'p How could you 12arn, anything that mat-
ey bebnd avrh walls and cham link fences 9 ~What I wanted to know was
e 10 hane sense of my experiences and the world around me. Watching
sarpenters bueild a~house seemed, at the time, more educatronal than learn-

~ ghout Dick and Jane. Not only that but there was a magic about the car-

penters rule and square that held my curiosity. Learning to write numbers

< and add up columns of figures made no sense out of anything at the time.
This is perhaps the crux of the whole issue. Once you are inside the class-

[T, m‘at‘\ is"no Ionger operatmg in the world.

rt seems to me that all our sys‘rems of knowledge are slmply alternate
mpans of nammg and structurmg the world. Each system has 1ts own features

_rh‘at make-it attractive and only part1a1 -And of course each system overlaps

z‘hlrz a)th'ers since it is, after all, one world. For example, one of the few
Drimary means of,knowing something.about our world is by measuring it. Thi_s'
is not, the exclusive ‘domain of mathematics. Historians measur_e,timeuandm_,ﬁ_w%___ﬁ
cesiznis by dates and, 'before” and "after". Poets have their own sense of
e wuro - metors and feet — overlappmg into the world of dance. 1

here Iam remmded of what opportunities were lost whlle I was 1r1
junier high mathematlcs. Then measurements and proportions were matters . .
of -fmqumh and desire. I grew out of that period without ever discovering that
f Was mscmai“c by the world in a way that mathematics could make sensible.

That seems to be part of what is missing in math education. Numbers have a -

m)

v

O
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Aruitoxt provided by Eic: . . .
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magical relationship to the world. They are metaphors in the same way that

-

roses are 'in poetry. 'When you-put t‘ogether' a string of metaphors, vou make
a'ir'nodel of the world that tells you more than you thoudht to ask. When vou
put together a series of numbers or eguations, here too is another model for‘ |
the world. A model always says more than was intende.d; it speaks as much

bout itself as it does about what it repllcates It is a spell or an incanta-
\

thl’l that orders the thmgs and events of the world according to the desires

and powers of the wizard and whatever magic he controls.

On this point it seems to me mathematics teachjing could be improved
if other disciplines were brought in as parallels to shew that math has been
w1th us in the world as an alternate tool a long t1me What the Greeks and
the Egyptlans and Arabs d1scovered and believed about the relatlonshlp be--
tween numbers or geometric sh’apes and the world would not only st1mulate
curiosity, but perhaps make hustory, art, poetry, philosophy and math sister
arts as they once were. Imaglne a few weeks 1nvest1gat1ng Pythaooras — the
triangle the proportlons, music, art ‘and Greek civilization.

But beyond r.he purely pedaqoglcal concern of making math relevant
is the questlon of the use of the mind. To solve a problem requlres creat1ng
a structure such that sor"nethin_lg falls out of the whole'that will satisfy us as
being sufficient to stand for the whole Of course most .problems are not new
to the human race, and the structures already accumulated gver the centurles
to solve them operate quite well, As a result we usually hurry to provide the
solutions, the ahswers, knowlng that these work and work well. But what is
lost for the student is the creat1ve act and the: sat1sfact10n that comes of
brlnglng one's mind into the structure arnd order of the universe. The associ-
at1ve law is a remarkable structure, but to requlre a student to memorize it
before he has discovered it:is to depr1ve him of one of the pleasures of be1ng
human. I&n fa'ct, it seems that Math teachers should incorporate some of the

findings of creativity studies in their teaching. "'Synetics, " for example,

. suggests that in problemisolVing better solutions come if.you probe intoothe'

~ problem rather than struggling for the soiution. I remember geometry 1n this

way; If you looked at your triangle and thought about how it, was made, all
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sorts of things became apparent.’ Ge\or\n_etry was the high point of my math
‘career, for in that class.it was possible to create a "proof" the teacher had
never seen. Tha't was a thrill! I even read a book about Pythagoras and |
Euclid. | |

If a student is ,allowed or encouraged to creatively engage in mathe-
matics, he will soon learn the peculiar orders and properties of that model
of the world. Math is one way of speaking about the world, and like any ]
language it has characteristics implicit within it that carry meaning over and
above what it says about the world. In.terms -of linguistics, the syntax or
the rules of operation .carry meaning as well as the semantic elements. -Here
it séems math teachers could make use of Chomsky s generative or transfor—
~ mation grammar. To break a complex sentence down from 1ts surface structuro
" to its deep structure, whether the sentence be the written language or the 4
language of Mathematics, reveals the elegance, the continuity, the creative'
powers of that language. In junior high I would have been intrigued to dis-
~ cover that beneath the algebra I_was puzzled by lay the simnle structures of
addition, multiplication, division, and beneath that 1, 2, 3, and beneath
that my fingers and toes. ' s
III. When the math program igneres that students are phy?sical bodies
living in a physiCal_world,, it neglects the major portal of knowledge-the
students posseSS.

School years, for me, were always interminable. Every summer I
dreaded the thought of those long hours of sitting s‘till in the classroom l‘ook; o
ing at the same walls or out the same windows. In math class you atgleast',
got to get up from your seat, but it was only to face trial by chalk, As a-
‘result most.of my childhood days in class were spent in daydrearns. I always
dreanied I was doing something. In my dreams my body was of use; in class I
never knew what to do with it:

This lies at the heart of education's failure in America. We as
_ teachers are all too,anxlous.to go directly to the abstract, forgetting that the
abstract by definition is derived from the concrete. For most of us analysis

is the key to learning. To consume a novel so that it changes one's life has
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no proper entry in the midterm quiz, vet we i_nsistﬂ one must be able to abstract
the\glot, analyze the s__tyl_c and capsule other critical analyses.

The majority of our teaching secms directed at denying the ‘most persig—
tent fact of ou.r“eXisten.ce — our bodies. It was through the 5 senses that we
"gained consciousness and bega'n to distinguish the thiﬁngs around us. Indeed:
all knowledye, no matter how abstruse or ab‘strabt, derives from our sensory '
perceptions, yet in‘the classroom’ and even in theftoaching machines all
that is addressed in instruction is the brain. It s a sci-fi horror story

I believe that teachlng by means of abstract concepts is begun far
too soon in the schools. We. are told Lhat by the time students reach junior
high they have reachnc: the stage where they can learn by this method. If my
e\perlenCe was in any way tvplcal, the opposite is Lme gl could hardly get
my mind off my body éhd the bodies of those around me. It is true that at
this age I was shy and awkward, but that was all the moic reason for my ex-
ploring the world for tho surety I wanted. What is needed is a teaching that
is grounded in perceptions'— eight, sound, touch and perhaps smell and taste.

Math is particularly culpable It is perhaps the most abstract of all

ystems of k nowledges but it too is rooted in its origins in"p_er_/oeption." /_x‘s
I understand it in most languages numbers of thinge were at first inseparéblc
from f’ho things = two coy}s was a differeh_t concept-from two apples — and
only later did man arrive at the concept of oure humber._ Men built dwe!liﬁn_}s
and ritual structures long before there were texts on geom.etrv and trigonerﬁet— '
ric tables. The problem with math teaching 1s that it suggests te tho ctudcnts,
that unless you can work it out on paper it'can't be done. . anctaons, for ex-
ample, are matters of ultimate concern to a younger brother or sister. He has
to know how things are dLVlded if he is going to get his share of the koolaide.
Yet when he see "6/12 = ?" he is apt to write his answer "2".

Althcugh improving the writing of ‘math texts mm\/\\help, the real prob-
lerh is their abproach. Perhaps the'best learning.device I know of in educa-
tional circles is the Cusinaire Rods. They weren't around when I came ~

through, but they are remarkable kits. They are a pal’pahle and visible way
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of learning math. The color scheme alohe is ingenious &s w,éiras_ st'imr;latincj. .
- This suggests that the game kit approach has th& more_ to oifer than practically

any text at the junior high level. A kit with mirrors to a 'gi‘rlhbwho spends hours

before them might say more about parallel lines than all of Euclid To relturng ’

. to geometry, why shOuld geometry be reserved until high school For student’sb_"
so intrigued with shapes and rroportions, angles and curve\s the subj‘ect of
geometry might find an entrance by means of the tape measure:. Furthermore,
saving geometry for so long tends to- limit students to linear or algebraic
thinking. Most of us have been at one time or another stumped at solvmg
something algebraically when the geometric approach WO'uld have seemed ;
simple. h‘ h

The advantage of approaching math in this way in'these-yeﬂars is that °
without paper stude_nts would be forced to derive a feel for math‘ematical
'operations. They would develop a head mathematics, a means of ."gue‘ss—
‘timation" .that would serve them far better than. the formulae they dsually

-~

memorize. - Along this line I think some investigation should be made into

R

& + —— s

whati§ called the "Nuiffield Project” in England.. Much -of their time is spent
in developing this "head math". / Students micht be asked to-measure'a soccer .
‘field's area but not told or gi'ver any standards of mee surement They come
back in with.a. wide variety of answers "333 X 150 of these sticks", or

"220 85 Cindy's" etc. Area becomes real for them for they have walked it, °
measured it, and discovered that it was. necessary to agree on unit standard

of measurement if they wanted to communicate

1v. Math textbooks usually are. difficult to read, offer no relationships to
other subjects, have only precarious connections with the livmg world, seem
'to be directed at solving quantities of problems rather than understanding, So
rarely acknowledge that alternate approaches exist or that much can be learn-
ed from incohclusive attempts, and concentrate too narrowly on present con-

cerns rather than demonstrating the connectedness of the whole field of

mathe matics.

N
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Why math té\xthooks, in the prose parts, have to be so difficult to
read I could never understand. Perhaps in the higher reaches as math
attempts to beco}ne mgre systematic and ir}‘clusive, a.philosopher's turgid
style has its place, but on the junior high level there is no reason. If my, -

’ informationuis,eorrect, math textbooks as a rule arc written in language
which is designed vfor that grade level or ahove while most other texts are
designed to achieve the designated grade level (readability) by the end of
the'term if at-all. Most students reading skills fall below the level they '

.,have.‘aehmieved in school, and any reading on their own grade level réquires

. a' etruhggle Yet math textbooks, while :intr»oducing difficult concepts, fail

to put these concepts into a language the studonts can understand. The pur-

pose of a math textbook is to teach mathematics not reading. It would 'seem

- that if the pro’se text were writtén in a language one grade level below the
one the toxt was designed for, many of what were presumed to be poor math
students would be successful.

In Englrsh classes, the history~of an‘"era is often\introdhoed into the
study of a work of literaturo. In the same way history might refer to a
Shakespeare or a Dascartes ora Newtoh Though it is poorly done,v as a
rule, there is a general attempt at providing a cross dlscmlmary LOHtOXt »

- : for most courses. The eXCeptlon is mathematlchs . As it is taught, the student
.might come to b\elaieve that mathematics was born tike Minerva, fu_lly devel-
oped out of the head of Zeu‘s. The pressure of events has in some ways shap- .

. ) ed the development of mathe_maticé. In the same way mathematlcs h‘ae had

N ‘, . a considerable tmpact on the world as it developed.. To teach a puroly con-

ceived math C’OUI‘SG..iS to preaume that the student's mind has av'well defined
compartment in his brain that'o"verlaps mothing. Math ought to b'e’ frequently
re\lated to other subjects, forlthese associations might im}ﬁrove retention.

' One possibility in providing a. context for math might ‘come from
°1mple vocabulary studies. ‘When student.s are introduced to a hew term,

a moment. m1ght be taken to study the Greek and Latin roots and othor English

* cognates. It might also be possibie to design a method of diagramming

LS
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English sentences so that the "what to do" becomes apparent.” However,
such a system is probably limited to the artificial sentences in the problems

at the end of Sections’in the typical math book.

.

Tl'i’e word problems wegre for me the most difficult. They were an at-
tempt by .the authorshtoJ show that hath wés appli_cable ‘in tne practical world.
The attempt faiki‘,ed. The _r"eal.world does not present its problems in sentence
form. The man on the street has to make up the sentences and then solve the
problem. The task is to ‘show how one breaks experience down into sentences
that are useful in rnathqe\n'}ati.cal solutions. Ag.ain, Ithink the problem-solving
techniques‘ developed by\}'esea'rchers'in creativity are most valuable. These
techniqde.s show how"one goes about sorting 't'l_'le data of the world for solu-
tions. In order to make such training meaningful very real problems for whtch -
no answers are possible in the back of the bo’ok, rﬁust be presented. This,
to rne', .means that/-elementary:stat}stics and prob'abifity theory should be a
part of j~unior high. Problems,of this sort might tome from the daily newspaper
(school bond issue and its cost) or typical student life (alloWances', cost of
education, or royalty earnings for a million record hit). S
Teachers of mathematrcc have a sado masochlst tendency They as-
sign far too many problems causing the student.to revert'to the answer nunt

With a few well-chosen problems requiring perhaps a descriptive narrative

of what and why something was done in arriving at a solution, the teacher '

- -
K}

can produce better results. ] ’
Because of their rigidity textbooks make mathematics a lock-step
drill. One concept, since it is written that way, necessarily follows another.,

Logarithms cannot be taken up until high school yet.exponents come much

" garlier. There appears to be only one way to solve a SpGlelC problem, be-

cause-that is the only way discussed in the book. The_ method is disCussed

in nthe first of the chapter and problems to test if that method has been mas-

tered come at the end.. There is no room for c_uriosity or exptoration. . Mat.h

texts.never take dead ends in-t'heir' problem solx)ing. The student, however,
does take dead ends ‘and will for the rest of his life, but he learns nothlng

from these dead ends except that they are wrong " He is never asked to think



for himself; he is only tested. No wonder logical reasoning is TiQt.(:.(‘.VClODC:\:..
I-‘urthern‘lor.ei, because there exists a "correct" answer in either his or -hiS.“\
teacher‘s boo}": the student doesn t lcarn to reason quantitatively to seo af
his answer is "in the ball park " ‘ , ‘ : .

Frna]ly, what llft]e 1 understood of Principia Mathenatzta by Russell

and Whitehead led me to believe that within the elementary operations of '

- mathematics are the means of developing'-complex operations. Yet, 1 don't

1

reme mber sensnng any sdrt of conttnulty in my math education. Going bach

occasionally fo see the implications of ‘our bastc numbher >ystcm rstquite «

\

helpful in understanding more comple*c operations. ['or ekam vit the woncept

of place value is learned very early, yet I was Complotely bafflul by ;»olyno-—

mials. A teacher tould have\shown me that ax3 + bx? + cx! + < could be -

related to the base 10 system. Thenif a=1, b= 2. ¢ =3, ‘clh-: 4, and X =10

" that polynonnal is 1,234 or 1{10'% 10 x 10) + 2(10 x 10) + 3(10) + 4(1),. .

A

v, Transference from mathematics to other disciplines rarely occurs be- .
Caus%nath teachxng generolly has few pomts of conta(t wnth the phenomenal
WOr]d whete-all dlscmllnes meet.

As a final word and a summary I wouid like to ceonsider the problem of
transference. In literature translating or transferring a.pomn from one lan-
guage to another presents ¢ ..ue problems that are quite revealing. /\.lthough
some elements o:f the poem can be transferred successfh ly, it is vxrtuaHy
1mposs1ble to carry the full experience of the poem across fanguage barrlers
Images are the easiest — "the frail, pink,- Cherry blossoms." lmages are
easy because they are, made of perceptions, pictures constructed out of sen-
sory impre.ssions of the world. All humans have the lancuage of, the senses
in common. ACtio‘ns too are. not that difficult — “flbat ‘l'ike kites in the wind.
These are also based on perceptlons with the ktnesthetrc and spatral rclatrons
added. Agaln this is common to all. "But there is always an area somchow
inaecessible to the translat’or which is carried in the very structure of the ~-
orit;inal ’languat;e"and not in the seoond language. 1 woufd call it @ mode or
perhaps a mooed or mode.l.aWhatever it is calléd,_ there is a kind meaning

mherent 1n every language anrd its very svntax and phonology, that ‘s im-

bued w1th the collectwe lives and meaning of all those 'who spoke that tongue,

i
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Those who have learned French and German can intuit that.in matters of love
French is ore appropriate, for in the very tones.ahd tenses of I'rfench there
is an erotic perceptien of the world. .J\nwd every language carries in i.t an ap-
proach to the world uniquely 'differen; from all others. )

" If mathematics is a languagé, as I believe it is, then in téaching it
we should remembér what language is and how it usually is learned. A lan- /
‘ guage is born of man's attempt to project himself into the world; it’: is a re-
sponse to what he finds‘in the worl.d. He breathes in the air of his world and
breathes ‘it out again adding his o’wn"’-‘voice, hisowrn mark. A l‘enguage is
made of billions of such regponses, but all altered so that when he speaks
his cg)n%rades know to what he is responding to. And as they all speak, eéch
begins to-tak2 into cognizance the ways and degrees his neighbor responds to
the worlri Soon there is a- commumty of language that carri s-in it the col-
lectwe meaning of the lives of those who spoke that tongue. When it is
taught, the Mother or Father points to the world, calls attention to the sen-
sory perception and thén repeats his word. In that experience we are drawn
together, thiere are sensory perceptions, images, even symbois:-we share;,

Y

and to, acknowledge thatawe use the same name, a name common to the whole

language group. - ' i _ . -
_ In‘t'é,a“clhiné math, it seems we should as much as possible, return

to the roots of experience, the sensory perceptlons, for there all systems of
khowledge, all lenguages,' begin. There we discover that transference is
possible. It is diffi(‘ult“to’ learn from abstractions exclusively, for their re-
latlonshlp to the phenomenonal world we know is dim, and dlscermng the
.structures that ]anguage has added to’ phenomenon is even more dlfflCUlt

The best way to leatn French is to go somewhere where French is spoken and’

try to qury on your life with that 'language. 1t is hard to learn French from a

book. To learn math'best, you mug§t brihg its language i’nt‘o your daily life.

.

. . . \ l !
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TEACHING APPLIED MATHEMATICS AND TR’\I:‘QING T}f,’\CJ HERS

& < . Peter Hilton
Battelle Research Center
4000 N.E. 41st Street
Seattle, Washington 98105

- <

- My c-oncern is with the special problems arising in designing a teacher
t"rain;ivr_lg_progrém to teach children who are eventually going to.b.e; able and w"111—
i__hg to use mathematics. Thus, the emphasis is rather on teaching futurfe users

.. of rriathen_latics than teaching merely for the understanding of mathematics it-

self. i ' ' Y

»

_ The starting-eff point of my c'onsid,_erations will \be an attempt to de-
scribe the equipment and training of an apblied mathematician. I will then

endeavor to deduce from this .de‘sc_,,ription an appropriate way of educatir{.g
children in méthematics, and finally, 1T will try to infer from_that an appro-
. priate way of t{aining théir teachers. | . .

. : "~ I start from the _pro_posit'ion than an applied mathematician is é math.e-
maticiapﬂ.“ From this, it_follows, first,ythan an applied mathematician is more
than a mathematician, and, second, that the training of an applied mathema- |
tician ‘?lS more difficult than the training of a pure mathematician. It also fol-
lows frorﬁ this that I distinguish between é‘n' applied mathematician and, for. R
example, a theoretical physicist_, even when the applied mathem‘aticyian is
abplying his mathematics to physic;'é.-‘ The difference between the mathemé—
tician and the scientist is most cleatly seen when the problem is in the pro- ‘
Gess of- hbeing solved. The mé_thematicia,n may very ,wel_l'waish to take thé
mathematics fur:iher than is required by £he strigt demvands of the problém. _
The scientist may véry well wish to tak-e- his speculation further than is jus- |

. 3 tified by 'the mat.he’r'natical theor}}. Iﬁ this way, each :lS behaving perfectly

properly and each should be encouraged. ' ' .

+
-
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The .training of an applied matHematician cannot be predicated on the
assumption that there exists some proper subset of mathematical knowiedqge
-\&lh'ich is proper for the applied mathematician, and whose complement is 'tho

- 2

exclusive concern of the pure mathematician. Thig view, though current, is
utter nonsense. Of course, the the¢oretical physicist may very well ;Nish‘to
cifcbmsc:ribe his knowledge of mathematics and is justified in do%ng so. So,
fof exampje, is the econome:trician. But the applied mathematician should
have available at his disposal a very b.r'oad knowlvedge of mathematics, and
) certainly should not ignore certain fields of mathematics because curreﬁtly
the main thrust in their dev,elo'pment 'S cc;mmg from within mathematics it-
self. An excenllent example of this principle is th.e recent use by Thom of ’t;he
theory of {ibre bundles and the glob@l tlr;eory of differentiable manifol'ds,” m.‘

a

his investigations in biology.

?

Thus, the ihferencé to be drawn is that the student who wishes to
have some understarqdi;g of the applications"of mathematics, must,' w:here'—
ever appropriate, be pres'gnt!ed with applications in the course of .his study
‘of mathematics¢ He must, moreover, become familiarzwith fhe methodology
of applying mathematiés. It is prol)e;bly more important that he understand
this methodology than that he l'e’.am some area of science, phy'sic‘al or social
or bioloaical, to a sufficient level q’ﬁ sophistication to be able to tackle a

real problem with the help of his mathematics. Certainly, it is quite inade-
quate to present applications of mathematical ideas simply as illustrations
_of the most recently acquired mathematics. This is the conventional proce- .
dure, and it is V\;ro'ng on two counts. First, it falsifies the process of ap-
npl'y'{"-ng mathematics, and second it fails to distinguish betweeri.“th’e -role of
illustration and that of a;;;plication.

It is, of course, necessary to develop further and moré systemati-
cally lthis description of the appropriate way in which applic_ations of math-~
ematics.:;hould enter into the curriculum. However, in this talk, I believe
I should give greater emphasis to the teacher tra'ining broblem, and T be-

'.lievé that enough has been said abo“ut the end result which is to be achieved

to indicate that the'problem' is a very difficult one. It is, I believe, far
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easier to train a person to be able to teach mathematics for its own sake
than somebody who can teach mathematic.s with a view to its being used.
This comment,lwhile true, rhight appear ironical to those familiar with the
extreme difficu‘ltly of training effective teachers of mathematics. |

The first remark 7 would wish to make is that, throughout the teaching
of mathematics, procedures can b.e used which would in fact favor the unfje:;
standing of the methodology of applying mathema;tics.' That is to say, eveh
where a topic is being taught simply as part o{ the mathematics curriculum,’
it can be taught in such a way that its relevance to other parts of mathematics

is emphasized. For example, the theory of quadratic polynomials in one vari-

‘able may be applied to geometrical problems and to maxima and minima prob-

lems. These are geﬁui:we applications of mathematics, even though the ap-

plications happen to be ,to topics within n)athemati'cs itself. ‘By stressing

these inéerrelatidnships, ttlle teacher will be preparing the student to under-

stand tbe role played by mathematics in comprehending the woflﬁd around him.
The second point to be empt;'asized, is that the teacher ‘mﬁSt be. at

home with the idea of,ap,plica”'tions himself.. Very"many teachers are extremely

‘unsure of themselves when it comes to applications of mathematics. It'was -

the eX‘penence of the teacher training panel of CUPM, when it made‘its Slte
v1sns recently in order to explain and discuss the’ recently amended recom—
mendat1ons for the training of teacners of mathematics that the teachers
present af those meetings were extremely apprehénsive of the responsibility
that yould fall on thelr shoulders 1f they were to carry out the recommendatlon
of the panel to empha51ze applications. We weré constantly asked to provide
examples of .applications. When we mentloned the forthcommg pub]lcatlon by

Q

Henry Pollak 'and Gail Young which would provx_de a compendium of applica-

_ tions appropriate at high school level, many teachers asked when it would

-

- appear and wheéther copies ‘céuld be made immediately available to the

teachers. It was clear that the intention ‘NO,&Id be simply to use the appli-
S g
cations listed by Pollak and Young, and that fone of the'teachers had in mind

the absolute necessity of updating applications, and of finding applications

themselves which would be appropriate to the particular interests of the chil-

dren under their charge. : . L



Third, the teaching of mathematics with a view to applications cer-
tainly involves some’sort of cooperation with other departments within one

school. Tt is ¢lear that the children must have some knowledge in a scientific

area if they are to be able to make an application of interesting mathematics

to interesting problems. It similarly follows that the teacher trainee must
also be made familiar with certain scientific ideas in order to discuss appli-
cations.

<

Offcourse-, these scientific ideas do not have to be-terribly sop'his'ti—

. cated, particularly at the more elementary levels. In this respect, I would
. 'Y . ’ :

. Suppose that the junior high school constitutes the first occasion upon which

it is legitimate to try to motivate mathemati¢s by reference to ideas which

do not correspond to the immediate interest of the child. That.is to say, my,
v ' . -
own view would be that, although elementary mathematics should also be

.mformed and enrlched by frequent reference to nonmathematical s1tuatlons,

those situations should be of natural and intrinsic interest to the Chlld On
the other harjd I would suppose that, starting at the junior hlgh school level,
scientific ideas could be mtroduced 'Wthh would be substantlally beyond the,
capacity ot’ the qhild to invent. For example, I would expect that conserva-

t

tipn notions could appfopriately'be‘ introduced at ttie junior high school level
together with such concepts as momentum a1:d energy which would not, 1
be);eve occur.in thetr precise form to even the most intelligent child.

To sum up, it appears that the conclusmn is the following. The
recommendations of the teacher training panel of CUPM specify the content
of courses appropfiat'e to the te‘a_chers of mathematics- at the elementary level,
at the junior high school level, and at the high school leyel. Already, the
achievement of those levels of knowletige and understanding impose consid- -

erable difficuities. sincett{ey are held to require a commitment of tfme,"which

it is unrealistic to expect with the present situation obtaining in the univer-

‘sities where teachers are trained. Nevértheless, the .claim is being made

'

that. if the /teacher‘s are to be able td teach mathematics in such a way that
it will be really. useful to the student, and in such a wa'y that the student

himself, at the end of his mathematical education, be in the position to use
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his mathematlcs in an mtelhgent way, then somethmg more is requlred of
the future teacher than a mere grasp of the content of the courses which he
will receive: In particular, even the ~junior high school teacher will have to
" be familiar with the rudiments.of some branch of science. My own recom-
mendation would be :that.the best possible branch of science here is biolog}./,
since it concerns matters of clear interest to the child and since fairly ele-
meﬂn'tary mathematics can be brought to bear on it. It is crucial that the
future teacher E;C&’:Jire the right attitude towards mathematics and its appli-
cations and that he should then be able .t'{j communicate his attitude to his
own students. - : . - ) o
It'is not possible for me to be préscfiptive as to ‘precis_‘ely. how this

should be done since I lack the necessary experieice. On the other hand,
it has freque"ttly been argued that the recommendations .of the teachér trajn-
‘mg panel are madequate premsely because they concentrate on content dl’ld
do not chscuss the many other problems wh1ch beset us in trying to design
an effective way of teaching mathematxcs. I do not believe that this criti-
cism is a fair one, since tbe teacher training panel was asked to concern .
itself with content and fully recognized the existence of these other very
difficult pro_,b-lems.' On fhe other han_d,“ tiie time is clearly ripe now to give
attentlion to-these other problems, and I hope that, by ventilating this' par-
ticular problem of the teaching of applicable mathematics, I have contributed
to thé'initiation of this "second round." At least it should bé clear that it ‘
is far harder to teach mathematics wh’ich” is going to be_ aprlied the;n fo teach
mathematicF as a self-consistent d‘iscipline, since the former includes the °
“latter.. Thus the 4na'1ve idea that we can somehow simplify the teaching of
'mathematicé by concentr“ati’ng on "relevant™ mathematics is revealed'as

opportunistic nonsense.

P . . ’ \



