DOCUMENT- RESUME

ED 085 254 ~ ' SE 017 076

AUTHOR Rawson, Freeman L., III

TITLE Set~Theoretical Semantics for Elementary Mathematlcal
Language.

INSTITUTION Stanford Univ., Calif. Inst. for Mathematical Studies
in Social Science.

REPORT NO TR-220

PUB DATE 7 Nov 73

NOTE 130p.; Psychology and Education Series

EDRS PRICE MF-$0.65 HC-$6.58

DESCRIPTORS Computers; *Linguistics; Linguistic Theory; »

: *Mathematical Linguistics; Mathematical Vocabu]ary, v

*Mathematics Education; *Programing Lanquages;
Semantics; *Structural Linguistics

ABSTRACT

The development of computer language and analogs
capable of interpreting and processing natural language found in
elementary mathematics is discussed. Working with linguistic theories
in combination with the special characteristics of elementary
mathematics, the author has developed algorlthms for the computer to
accomplish the above task. (JP)

. =+ SET-THEORETICAL SEMANTICS FOR ELEMENTARY MATHEMATICAL LANGUAGE |

i
L(\t‘% .
<O ’ ' SCOPE OF INTEREST NOTICE

3;";3 BY The ERIC Facihity has assigned \ _,3\
o?{: this document for pfo!cchmg iy

@ to. . ., -t N

g § ¢l 1, thus document

n our judyement, 5

L 1 [F RE E MA N L . RAWS ON ! H[1s also of interest to the elearing-

7 houses noted 10 the nght, Index-

& 3 ing should reflect thew special

:‘;{ points of view,

#

5

fi

7]
i ¥

US DEPARTMENT OF HEALTH
EDUCATION & WELFARE
NATIONAL INSTITUTE OF
EDUCATION
ey DOCLNENT A BEFN WEPRO

L DOTED EXACTLY AN WECFIVED F RO
TECHNICAL REPORT NO. 220 2uCT0 £XhCiL Y i R LTI L bos
. ATONG T POSNTS D VB W OR QPINONS
STATED DO NOT NECESSAR LY RE PRE
SENTONE AT NATIONAL SNST- 10T OF
EDUCAT.OMN PO TGN OR POLICY

"NOVEMBER 7, 1973

PSYCHOLOGY AND EDUCATION SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY |
STANFORD, CALIFORNIA

FILMED FROM BEST AVAILABLE CdPY |

(Wanl
N
Ly

ED 08

SET-THECRETICAL SEMANTICS FOR ELEMENTARY MATHEMATICAL lANGUAGE

by

Prasman L, Rawson, III

TECHNICAL REPORT NO. 220

Nevembar T,'l973
PSYCHOLOGY AND FDUCATION SERIES

Reproduction in Whole or in Part Is Permitted for

Any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

Chapter

I. Introduction .
I.1 Qutline of the Thesis « « .
I.2 The Fragment of English Handled-~ e e
I.3 A Theory of Language as a Basis for a Question

: Answerer o+« e

1.4 A Note on the History of the Program .
I.5 Frerequisiteé e e e e e e |

: B n

II. yinguistic Aspects e e e e e e e e
VII.1 Preliminary Notions About Grammar
II.2 The Basic ngantic Theory
‘II.3 Constructive Set Theory and Its Role .
II.4 The Control Structure View Of Natural Language
II.5 Semantic Transformations and Surface Structure
II.6 The Deep Str&cture e e e e e e e e
II.7 A Detailed Transformational Example
II1.8 Program Schemata e e e e e e e e
II.9 The Restrictions Upon Schemata ..

Table of Contents

Page

10
0
12
15

20

23

25

29

32

39

III.

Iv,

II.10 The Relative Power of the Non-Transformational

and Transformational Schemata .

II.11 A Final Example

Aspects of the Actual Iwmplementation

IITI.1 Concepts From LISP e e e .

III1.2 Types of Functions to be Implemented .

III.3 Sgde Effects e e e e e

III.4 The LISP Calling Sequence .

IITI.5 Backtracking e e e e e e e e

I11.6 1iInterrupts and Dembns e e e s e e e e

I1I.7 The Implementation of Dara Typing~

II1.8 Mathematical Types . . .« .« =« « .

III.9 Arithmecical Relations e e e e e e e s

Ii1.10 Tﬁé Set Theoretical Functions: The 1 Function

ITI.11 The Other Set Theoretical Functions

III.12 The Verb 'Have' in an Existential Context .

III.13 Two Other Constructions Using 'Have'

717.14 The Importance of the Run-time Creation of
Functions e s e :

Informafion Ektraction and Heuriétics ¢ e e

Iv.1 Introduction to Information Extraction . .o

IV.2 Re<olution Is Not a Suitable Basis For .
Information Extraction .

Iv.3 The Application of Information Extraction To '
How Questions« =« .

V.4

Information Extraction As an Aid to Problem
' Solving . . .+ « < . .

i

ii

44

46

50

50

54

55

58
61
63 -
64
69
70

72

76

79

82

83

85

85

87

90

93

" 1V.8

IV.9

Mathematical Informztion To Be Used By

Information Extrvaction

The Heuristics actually Used in the Semantic
valvator

Heuristizs for the .Set Theoretical Functions
suristics For Doing Acithmetie

The Justification of the Heuristics .

Comparisons With Other Work« . .

V. i

V.2

V.6

Index

‘Refesences

Machine Transiation e e e s e e e e

The ﬁistbsz_pf Questibnjénswering Systems. .

_The Work of Winograd on the BLOCKS -Program .

The Predicate Calculusras Deep Structure--The
Work of Sandewall . . .

The Psychological Model-Approaéh'of Schank .

The Work of Woods on Natural Language

Processing . . b . .

iii

-y

. 94
. 95
. 96
. 97
. 100
.. 103
. 103
. 104
. 105
. 108
. 109
. 113
. 115
.- 119

O

ERIC

Aruitoxt provided by Eic:

Acknowledgments

This dissertation is largely the result of the patience and
hard work of Robert L. Smith,‘Jr., who supervised all phases of this
undertaking, and who provided most of fhe ideas and much of tﬁe
programming upon which it is based. He also read and cfiticized
prelimiﬁary'versiogé of this thesis.

The grammar that is usad by system was written by Nancy W.
Smith. She also provided many of the ideas about semantics which were
used,

I am grateful to Prcfessor Patrick Suppes for his general
supervision of the projeét, for serving as my thesis advisor, for
suggesting many important impfovements to this report, and for
providing the facilities of the Iﬁstitute for Mathematical Studies in
the Social Sciences for carrying on the work described herein,

My general education about the prcocgramming language LISP
benefited greatly from conversations with David R. Levine. I am also
indgbted to Rainer W. Schulz for modifying and maintaining TENEX? and
for his patience with-my endless questions abour the system.

I am grateful to Professors J. M. E. Moravscik and Dov Gabbay
for their willingness to serve on my doctoral reading committee and for
their patient reading of my efforts at dissertation writing.

This thesis was written wusing TEC EDIT, a text editing system

iv

developed by Pentti Kanerva. The processing of this document was done
Artificial Intelligence Project by Lawrence Tesler, and which was
modified to run at IMSSS by Robert Smith. The entire document was
reproduced on an IBM MCST using a program written by Robert Smith.

The research reported in this paper was partially supported by

2N

Grant EC-443X4 from the National Science Foundation.

O

ERIC

Aruitoxt provided by Eic:

Chapter I

Introduction

This thesis reports some work on computational linguistics and
question-answering systems. As is standard in this area only a small
fragment oflEnglish is handled, and that only incompletely. The work
cénters on questions abour elementary mathematical language, and in
particular on elementary number theory. The work is primarily

concerned with the probiem of dealing with natural language and only

P
o

secondarily with mathematical "problem-solving. Moreover, the system
accepts natural language input, but does not produce natural language
output: the problem of output in natural language, which is crucial to

any truly interactive system, is not touched upon in the present w rk,

I.1 Outline of the Thesis

The outline of the thesis is to present the lirnguistic theory
first, and then to comment upon the details of the implementatiop.
Included in thaf portion of the dissertation will be some ideas about-
the computer science involved in the project--only some of these have
actuall& been implemented. After this there is a discussion of the
heuristics that are called by the semantic eﬁaluation procedure and the
reasons that such heuristics are- necessary. We conclude ﬂwith a

comparative study of some other recent work in the field. -

O

ERIC

Aruitoxt provided by Eic:

In the remainder of the introduction we shall try to give the

reader a flavor of what the project is about, what its limits are, and

why it works (or fails tc work) as it does. Hopefully, the basic

motivation for this type ¢f work is fairly clear: the compurer would

be a much more useful servant if it couid be addressed more easily.

While it 1is our personal belief that the <computer is inherently

_incapable of understanding in any significant way, it 1is extremely

desirable to test this belief in an actual implementation.

1.2 The Fragment ci Engiish Handled

The subject matter that this question-answering system deals
with i§ elementary mathematical language. Although it is difficult to
defihe precisely what elementary mathematics 1is, a perfecily good
info;maf definitipn is that it is that part of machematics that 1s to

be found in the elementary school mathematics curriculum. Thus it

includes elementary &rithmetic, £fractions, decimals, percentages,

. simple operations on units, simple geomeiry, elementary s2ot-theory, and

tﬁe soiution of simple word problems. The reason that +this 1is a
partigularly good squecn matter for a question-answering system is
that the information that is needasd as a data-base is relatively
compact and is already well-organized. In an aréa like geography or
medicine one of the great problems is to organize che information that
the system is to have available in a reasonable way. - The relatively

elementary nature of the subject matter is dimportant because we are

o 2

O

ERIC

Aruitoxt provided by Eic:

primarily concerned witn machine comprehensiqn of natural language
rather than machine problem-solving: the algorithms that are needed to
answer the actual questions once the input has been put into the proper
form for the computer's consumptivon are all very well-known and quite
triviai. Thus, the subject matter for the questions does not get in
the way of the English. Morecver, the semagtics of the English are

fairly clear: most input sentences in this fragment have intuitively

transparent and universally agreed upon meanings.

I.3 A Theory of Langusge as a Basis for a Question Answerer

The basis for the processing of the natural language input is
provided by a theory of mnatural Ilanguage: this point 1is very
important, for many question-answering systems for elementary
mathematics have been written, and many of chese accept natural
language (or something closc to natural language) as input, but none of
these systems have, to cur knowledge, been based upon a systematic
theory of 1language. This ié z key feature of our system. Although
this theory will be discussed in some detrail later, we shall sketch it
now. The basic idea is to parse English much the same way as one would
parse an ALGOL program. Thic means that there must be a context-free
graﬁmar for the syntax of the language. Such a grammar has been
written by Nancy W. Smith, and in fact, deals‘with rather more of the
English than the system as a whole can handle. Associated &ith each

terminal symbol of the language is a denotation, which is formally a

O

ERIC

Aruitoxt provided by Eic:

set of some kind. (Note that we are considering functions and numbers
to be special kinds of sets.) With each production rule of the grammar
there 1is associated a set-theoretical function ﬁhat maps the
denotations of the right side of the produc;ion rule to the denotation
of the symbol on the left hand side of the rule. The setup is
essentially- that used by Irons {1} and Knuth [2] to aralyze the
semantics of computer languages. Using the syntax tree, the rules
associated with each production, and the denotations of the terminal
nodes, the denotation of thé start symbol zan be computed. In the
theory as expounded by Knuth, the evaluation is recursive-inside-out
like that.of the LISP interpreter. The evaluation algorithm that must
be used for natural language is considerably more complex than this and
will be discussed in detail in Chapter III. Suffice it to say that the
system gets most of its linguistic power from this feature.

The limits of the linguistic theory that we are dealing with
have not been fully explored, and indeed, its mathematical limitations
are not completely known., The present implementation is still in a
very incomplete state, and is essentially limited to questions about
elsmentary number theory. Note that while the implementation is biased
strongly toward interrogatives, the liﬁguistic theory dis a general
theory of language. The present project should be regarded less as a
question answering system for arithmetic and more as a partial

-

implementation of a natural language system for the computer.

O

"ERIC

Aruitoxt provided by Eic:

I.4 A Note on the History of ihe Program

The tﬁeory of language that is described above is actually
implemented on the PDP10 c.mputer in the form of a rather large program
callea CONSTRUCT (for cor tructive set theory, which is the basis for
the general view of language thac is embodied in the program).
Although some parts of the program were written in 1971-2, most of the
york that is described in this ‘thesis was done in the first six months
of 1973. The syntactic parser and the macro expander that generates
the semantic parses with whose evaluation we shall be concerned were
written by Robert L. Smith, Jc., and dage from the 2aziier period. The
syntactic parser that CONSTRUCT uses is writpen in a mocular rashion so
that the grammar upon which its parses are based is read from a disk
file-and can be written independenrly of the program itself. There is
not only the obvious advantage of modularity o this scheme, but also
the equally important feature of assisting in the task of keeping the
theory as independent &f the machine as paésiblee As will be apparent
throughout thié dissertation, we are attempting to develop a theory of
language that is implementable o¢n the ‘machite rather than just an
implementation. As we mentioned above, the grammar'that the program
uses was written by Nancy W. Smith: her work was also done during the
first six mon?hs of 1973. The semaacic functi;ﬁs that are attached to
the precduction rules of th2 grammar are also placed in the disk file
with the grammar itself: these functiong which are tﬁe ones that must

be implemented if questions are to be answered were written (as opposed

to being implemented) by Robert Smith and the author although many of
them are bésed upon sugges s made by Nancy Smiﬁh: this was also
done during early 1973. The actual implementation of these semantic
functions was done largely byl the aufhor with some help from Robert
Smith. Most of the ideas on the theory qf language that are used in
the program are also due to Robert Smitﬁ.

The CONSTRUCT program runs on the PDP1O oﬁly under a very
special environment--that provided by the TENEX operating system.
TENEX is a special operating system developed by Bolt, Beranek, and
Newman. Its most notable features are a paged memory allocation
scheme, and the ability to run two independent, but intercommunicating
processes in the same job with great ease. 1In TENEX each process is
called a fork, and one Jjob may have several forks: there are monitor
calls which alluw one to map pages from one fork of a job into the
memory map of another. Thus, it is.possible for the parsing program to
run as a controlling process, which reads the natural language input,
parses it, forms the semantic parse, and then passes that to the
evaluation.program which runs as another process in a separate fork.
The semantic evaluator, after finishing ifs computations, passes its
output Back to the parsing program. At this point in the current
implementation what is passed back is simply printed on the output
device, but in future versions, we hope to have a proéram that -will
produce natural language‘output to cali at this point. The reason that

the parsing program and the semantic evaluator must be 1in different

TENEX forks 1is that- the parsing program is writtem in SAIL and the
semantic evaluator is written in LISP, but the runtime systems of both
languages must have a virtual PDP10 to themselves. The use of forks
allows us to use together two languages that ordinarily could not be so
used. Needless to say, there 1is also a very great gain in modularity
in using two forks, and one of our most important aims has been to make
our programs modular and easily extended.

SAIL is a high level extended ALGOL compiler developed for ﬁhe
PDP10 at the Stanford Artificial inteliigence Project by [I. Swinehart
and R. Sproull. The LISP system that is used was also developed there
by\John Allen and Lynn Quam. Bo:th of ;hese systems were originally
written for a modified Digital 1050 operating system and run under
TENEX by means of emulaﬁion. |

The parsing program compiles. the grammar that it obtains from
secondary storage, which must be context-free, into a Chomsky normal
form grammar, which is actually used to do the parsing. The parsing
algorithé'is a bottom—ué parse using total badkup: this means that all
possible parses are attempted, and found. . There are at .least two
advantages' to this thoroughness in parsing. The first is that the
CONSTRUCT Erogram has neén used as a portion of 'a larger system
involving ,speech recognition. A speech recognizer, written by D,
Danforth and D. Rogosa, is used to analyze audio input; phe results of
this.analysis are passed ‘to the linguistics program which.”atfempts to

parse them and to perform semantic analysis on them. As audio

!

understanding is so difficult the bartial parses must be used in the
| .
analysis of the results of the speech recognizer. The other advantage
to having partial parses available is that it provides us with a start
towards a solution to the habitability problem. The habitability
probleﬁ is simply the.difficulty that arises due to the fact that is
not reallyApossible to consider all the English sentences that may be
typed at the program in advance and that one cannot write ~a grammar
that handles éll grammatica%ikxand also all sensible and quasi-
grammatical, inputs. This probiém is of course crucial to a fluent
program; for furcher discussion of this almost the only reference is a
paper by Coles [3]. During the parse trees are formed representing
the derivation of the input string in the grammarf using these trees
the semantic parse is formed from thé associated semantic functions by
means of a macro expansion. This 1is formatted in such a way as to be
acceptable input for the LISP éystem. As was explaiﬁed above, the LI‘S_P‘.-_w
" system is in another TENEX fork, and the CONSTRUCT program operates in
such a way that LIéP reads -the semantic parse in precisely the same way
that it reads input strings from a teletype. The output from the
sgyantic evaluator_ is alsc done by LISP in the usual ménner, but is
intercepted by the SAIL program in the upper fork before it actually
éets to the teletype. -

The current LISP implementation is likely to be reprogrammed at

some point in the near future in either MLISP2 or L70, which are newer,

more powerful derivatives of LISP. The first of these is currently in

use at the Stanford AI Project, and was developed there by Horace Enea
and David Caﬁfield Smith; L70 is spill being implemented as of this
writing by Enea, David Smith, and Lawrence Tesler. The notdtion that
we shall use in the description of the actual implementation in this
paper is that of MLISP2 rather than theractual LISP that we -used. VThe
language of schemata that is used in the theoretical discussions igtthe
second and third chapters is ﬁakén from the dissertation of C. Hewitt
[4], and is LISP-like in character, but erarts somewhat from both fhe

conventions of LISP and MLISP2.

I.5 Prerequisites

There are a few prereéuisites to.feading this dissertation.
:The first is an acquaintance with very elementary>ideas from logic such
as the - notion of an evaluation function and the concept of a model.
More significantly, thé reader 1is expected to have a ;easonable grasp
of the basic elements of the prog;amm;ng language LISP and to be

familiar with LISP-like notation.

O

ERIC

Aruitoxt provided by Eic:

As we stated in
dissertation is to deveicp

ypon a theory of languagze.

Chaprer II

Linguistic Aspezts

Sectior 1.3 the basic thrust of this
and to implemenc & question-answerer based

In this chapter ws shall discuss our ideas

about natural language by introducing the gsneral sicruzture of the

theory in some detail {3sction II1.71 and Secvion TII.2). During

the course of this the p:

sblem of the mna%Zure of the denoted objects

that our system must manipula‘e arises:™ this is dealt with in Seztion

IL.3. After that the key

(Section 1II.4), and is

idea of zinirol structures is introduced

related to semantic transtormations in.

3

Section IT.5 and Seztion 11.6. Finélly, the . 1ideas of

schematology are presented

in Sewtion I!l.8, and are put forward as

the proper mathematicai anaiysis of our linguistic theory.

It should bz borne

this chapter has been hea

‘the - implementation of ou

in mind here that much of what is said in

vily influenced by our actual experience in

Y system. Morsover, the state of the-

‘mathematical analysis is still rather incomplete, for the idea of using

schemata to analyze linguis

tiz theory is still gquite new.

I1.1 Preliminary Notions Aboui Geammar

Let V be a finite

set of symbols. Then V% is the set of all

finite strings of symbois chosen out of V. Also V+ is V% -{el where e
is the empry string. We shall now define the notions of generative and
context—-free grammar.

Definition: Let G = <V, T, S, P> be an ordered quadruple. Then
G is a generative grammar if V is a finite se£ (the vocabﬁlary), T is_a
subset of V {the terminal vocabulary), S is a distinguished element of
V that is not in T (the start symbol), and P is a finite subset of V& x
Vx (the set of productioné of G).

The set V-T is called the set of non-terminal symbeols, and is
often demoted by N. L(G) is che set of all members of T# that can be
obtained from S by a sequéncé of.appli:ations of productions in P : we
éay that a production p is applied to a string t just in case the left-
hand éide of p matches some subscring of t and that substring is then
replaced by the right-hand side of p: L(G) is called the language_
generated by G. A context-free grammar is a particular type og
generative grammar--all of dits production rules have a single non-
terminal on the léft—haﬁd side of the production, and a member of V% on
the right. For more derails about coﬁtext«free grammars and languages,
'see (5].

- The ﬁotion of a context-iree grammar was introduced by Chomsky
in the mid—f950'é to explain some accounts of the syntax of English
that he thought were deficient in various ways. Although the notion is
used in this thesis to implement a mnatural language input system for
the computer, most of the ideas that are involved pgrallel ideas that

have been developed by compiler writers in the last fifteen years.

O

ERIC

Aruitoxt provided by Eic:

I1.2 The Basic Semantic Theory

-

Next we shali int:oduc the notion of an evaluation: this is
derived from the classical modell:heoxetl;al notion of én assignment to
the non~logical symbols, asud 1indeed, serves the same purpose 1n our
semantical theory. We shal. assume that a domain for the evaluation is
given, and is denoted by D even tchough the precise anature of this
AOmain is still an open ques:ian; It should also be noted that this
notion of 4an evaluation .1s guizsz ditferent from the notion of
evaluation in LISP, and rhe twc shouid no: be confused, The notion
that we are about to defiine 15 an ebsiract model theoreti:c idea that is
relevant only to the semantic theory while the LISP EVAL function is

the basic routine that 1s wused by rhe LISP incerpreter to do its
computatidns. (Most of the definivions of this section are takean from
[7] ox [6])

Definition: Let D be a | sn-empty set, let G be a phrase-
structure grammar, and let v be a cctal function from t the terminal
vocabulary of G to E, whers E is aiso & non~em§cy set. Then v 1is
called a valuation runciion.

While one can ¢ertéinly use many arbitrary valuation functions,
throughouf the remainder of this thesis we shall be concernedlonly with
one--the valuation functiog which gives rise I~ rhe intended classical
interpretation of e2lementary mathematics. We shall now introduce some
terminology that will piove to be convenient later.

Definition: Let D be & non-empty set, let G be a phrase-

iz .

E

O

structure grammar, and let v be an evaluation function. Then the
ordered pair <D, v> is almodel structure for G.

Now we shall develop first intuitively and then more formally
the semantical ideas that are involﬁed in our program. With each
terminal symbol of a context-free grémmar we may associate a
denotation: we shall later spell out precisely what kinds of.objects
these denotations are, but for thé time being we trust that the reader
will treat them as some kind of primitive, Also with each production
of the grammar we shall associate a function from ‘cfosé—products of
denotarions to denotations: this is not a new idea as it first appears
in the work of Irons in the early 1960's. Each of these functions maps
the denotations of the symbols on the right haﬁd side of a production
to the denotation for the single symbol on the left hand side of the
rule. Note that the requirement that the grammar be context—free is

essential to this, for in a context- sensitive grammar there may be

‘more than one symbol on the left hand side of some production rule. In

this way K the denotations of the nonterminal nodes appearing in a
dérivafion of a string in the language of the grammar may be computed.
The denotation of the start symbol is taken to be ché denotation of the
sentence.,

We shall next introduce the notion of a potentiaily denoting
grammar and indicate how fhis idea <an be Jsed to define the concept of

the denotation of a non-terminal node of a derivation tree.

Definition: Let G =<V, T, S, P> be a context-free grammar.

13

RIC

Aruitoxt provided by Eic:

O

Let SEMFUN be-a function that assigns to eath p 1n P a set-theoretical
function SEMFUN(pj(We require that SEMFUN (p) have exactly as many
arguments as there symbols on the right~hand side of p. Then G' = <V,
T, S, P, SEMFU&> is called = porentially denoring context-free grammar.

In {7] this defination is given in a somewhat more general
form, but the above suffices for our purposes. ' Alchough we have
introduced the notions of set-theoretical funcrion and denctation we
have really explain wha£ they are: thét task is the functlon of the
next definitionmn.

Definition: Let D be a nonempty set. Then H'(D) is the
smallest family of sets suzh that

(1% D is in H' (D), 4
(ii) if A and B ars in H'(D) then A union B
is 1m H'(D), '

_(iii) if A is in H'(D) then PA is in H'{D},
ivy if A is in H'«D) and B is a subset of

A, then B is in H' (D).

We define H(D) = H'(D) union [T, F}, with T not equal to F, T
and F not in H'(D). |

So far 'we have defined the semantic interpretations‘ of only
terminals, but it is our iateunzion that non-terminals sHould aiso have
denotations o:r semantic valiues, These wvalues are defined in texrms of
the idea of & potentially dencoting grammar. It is intended that the
denotations of the non-terminals ghould be members of the hierarchy
H(D) defined above.

Definition: Let M be & model stru:tﬁre for a.potentially
denoting grammér G. The value v of a node N of a derivation tree T in

the'grammar G with model structure <D, vm> is defined to be:

V4

ERIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

(i) vm(N) if N is a terminal node
(ii) if N1,...,Nk are the immediate successors of N and the rule P
used to derive N1,...,Nk from N has associated with it the function F
then the value of the node N is v(N) = F (V(N1),...,V(Nk))}.

I1I.3 Constructive Set Theory and Its Role

We have assumed that the terminal syﬁbols-of the grammar are
assigned dencotations from among the elements of H(D). This means th#t
everything is to be- thought of as a set in some sense. Note that
neither the machine nor the human <can represent every set as an
explicit list, for lists such as that of the even nuﬁbers are infinite.
Such sets must Ee represented as a characreristic function. Although
the representation for a set is completely transparent matheﬁatically,
it is quité impoftant in our semantics system. One of the major tasks
of the semantic evaluator is to convert from one representation of a
set to the other. Usually, our system attempts to convert everything
to lists from the characteristic function representation: this is done
for reasons of mathemafical fluency. In general, it seems to be better
to represent a set as an explicit list whenever possible.
Mathematically, one gets answers that are intuitively more appealing
and somehow more‘informative° For example, it is possible tq determine
whether all of the members of the ser of even pfimes are factors of &
once one has repgpseﬁted this set as the 1ist containing only thé
number 2. The pu;éling thing about this.phenamenon is the lack of any

<

easily stated reason'as to why one should almost always prefer the list

/

¢
]

15

O

ERIC

Aruitoxt provided by Eic:

representatioﬁ to the characteristic function form. As it turns out,
one cannot always list even‘finlte sets 1in practice due to the
constraints-of tlmé and memory space; however, similar constraints are
also in force for the human so that " in fact, most of the‘ secs thart
actually occur are either relatively small finite sets which are easily
Iistable or are infinite sets that are easily describable.

It is also worth noting that whlie the conversions between
representations for sets seems ¢to be eésential. to the question
answering performancé ot the systém, it *is also ‘true rthatr these
conversions derend crucialiy upon the semantics. The reason -for this
is- that the uonversions can bhe made only upon a knowledge of the
mthematical properties of the sets being represented: there is no
uniform wéy to determine if an arbitrary recursive set is finite, and
hence, can be represented as an explicit list. This fact ig a
corollary of the unsolvability of the halting problem. If there Qere a
uniform method of determiniﬁg if an arbitrary recursive set is finite
or not, then one could determine this for the set of tape states for a
computation of a Turing machine on any input. But then. one could
determine recursively whether the Turing machine halts on that inpuc,
which ‘is impossible. Hence, the semantic evaluator mus& use its
knowledge of what set is involved and what its mathematical properties
are 1in order to determine when it c¢an and should convert Irom one
representation of a set to another.

At this point it should be fairly clear chat we have ‘a very

16

O

e

Aruitoxt provided by Eic:

nonstandard set theory in mind as the basis for our semantic theory.
While we do not have as yet a complete understan&ing of this, there are
some ideas that we shall use in the sequel that must be explained. It
should be noted that our wviews on sét theory are not motivated by
abstract philosophical considerations, "but rather by the practical
necessities of implementing our theory We shall not discuss the
abstract philosophy of mathematics involved in this, but rather some of
the more concrete aspects tﬁat are necessary to our implementation.

In the standard classical set-theory that forms the basis of
modern mathematics, sets are very abstract objecrs: in Godel-Bernays
set~theory ény class that belongs tc another is a set. In general
there need be no way to determine algorithmically whether an object
belongs to a particular set. In fact it is the case that there are
sets of integers that can be specified quite simply that are not

recursive, i.e., whose membership problem is not algorithmically

‘decidable. For example, by the wunsolvability of the halting problem

for Turing machines the set of indices of recursive functions that halt
when applied to that index is not recursive. But it is fairly clear
that most of elementary mathematics does not involve such esoteric.éets
of integers; for most of the sets of integers that are ~considered in
elementary mathematics there is a well-known and usually very simple
algorithm for deciding the membership prob;em for that set. For
example, it is easily decidable whether a given integer is even or not

by dividing it by two and testing for a zero remainder. Indeed, most

17

O

ERIC

Aruitoxt provided by Eic:

of the sets such as the prime numbers, ché gven numbers, the odd
numbers, and so on are deiined 1in terms of such an algorithm for
determining if a particular number belcngs to the set.

Although our semant:.s for nacural language is based on set-
theory, we demand that only trecursive or algorithmically defined or
constructive sets be used. No: only must we know that there 1is an
algorithm for the membership prcblem, but also we must have that
algorithm in hand: knowledge that sich an algocichm exists 1s not
sufficient. Of course in <the domain that out aztual i1mplementation
deals with this is no problem.

This idea of construc:iive set thecry is not the one that seems
to be envisioned by the ccnsfru5t1visc1: philosopliers ot mathematics,
for their idea is based upon philsophi:gl considerations abocut what a
set 'really" 1is, and lieads them 1incoc the development of a very
different mathematics. Our consrructivism is much more straightforward
and is based wupon the necessity sr desaiing with the computer in a
reasonable way: the efiects of. this upen the way in which our system
performs mathematically ace essentialily non-existent. The quescion
answering system does classical arithmecic, and makes all the standard
assumptions that classical mathematicians make about numbers and sets
It does not, for egample, inscrporate an 1intuitionisric arithmetic.
Rather the constructivist position that we are taking deals not with
ﬁhe subject mapter of the question answeref, but rather with the

semantical machinery. What we are claiming is tha: the only kinds of

sets that may appear in the semantic parses that our system produces

are sets that are algorithmically defined, and for which we have the

O

algorithms at hand. This is so simply because these are the only sets
that we have any hope of representing in our data structures. It
should be pointed out also that the fact that we gannot represent non-
recursive sets in our data structures seems to be inherent in the
nature of the problem rather than any iﬁdication of a flaw in the data
structures themselves.

Next we shall show that in a certain sense the set-theoretical

. L

hierarchy -rhat we have described in the pievious section 1S Too strong.
The following completely trivial theorem shows that there is a setr that
our system cannot deal with and that indeed the machine cannot
represent in our framework.

Theorem: Let H(D) be as in Section II.2. If D is taken to be

. e

the set of all natural numbers, then there 1s a non-recursive set in
H(D).

Proof: Simply notice that since the set of all natural numbers
is in H(D), so that all subsets of natural numbers also belong to H(D).
Now simply note that there are only countably many recuzsive sets, but
theré are uncountably many subsets of the natural numbers.

At this point one might suggest that the definition be modified
in some way to eliminate the non-recursive sets. While this can

probably be done, the obvious modification fails to provide us with the

proper structure. The obvious modification is of zourse to require

19

ERIC

Aruitoxt provided by Eic:

that all of the sets in H(D) be recursive. The difficulty is withvthe
third clause. Clearly, something like power set is needed to handle
the escalation of type that may occur in dealing with elementary
mathematics. However, the followiﬁg manifestatioa of the halting
problem prevents us from using the natural analog to clause (iii) of
the previous definition.

Theorem: Let A be a recursive set, and let B be the set of all
recursive subsets of A. In general B is not recursive.

The procf of this result can be touri in Chapter 14 of [5]. This
gives a completely deterministic description of the method of computing
the wvalues of the nodes of the parse tree and 'hence of answering
questions in our system. However, this is really quite misleading, for
the computation procesémié very much more complex than this description
indicates. We shall use the remaig@ez of this chapter to show why it

must be so complicated and the next two chapters to indicate how this

can be implemented.

IT.4 The Control Structure View Of Natural Language

The above definitions can well lead one to believe that things

that are parsed tcgether by the rules of the grammar are to be

assoclated as semantic units. This is of course not the case and if it

were to be implemented the system would not be able to deal wvery well

with éﬁy reasonable fragment of Engiish. To indicate what must

]
" actually be done it is necessary to discuss our view of the structure

of this fragment of English and to make a number of distinctioms.

20

E

~As we have said before, the semantic objecis that we are using
are all sets of one kind or another. However, for heuristic purposes
we may also regard this fragment of English as consisting of functions,
their arguments, and constructions which relate functions . to their
arguments. There are a number of ways besides application in whiph
functions may be related to afguments, and the English surface
construction of a question in this domain can be used in a number of
ways to pass arguments to functions. As we shall see later, the verb
"have" causes a very diifferent sequence of computatrional results from
the verb "is". There are two things to be emphasized in this analysis:
the first is that this 1s a method of viewing the surface structure of
the sentence. While there may be some other reasons for believing that
this analysis is either useful or truthful, all that it will be used
for here is a metaphor to help explain the"way in which our program

analyzes its input. The other point that must be made is that the

“functions that we are discussing are of two quite distinct types, and

O

correspond to two different kinds of funcrions that we must program in
our semantic evaluator.

Before indicating what these funétional types are, let us look
at a sample.

What are the even multiples of 127 {a)

In the above sentence the words '"even" and '"multiples"
correspond to functions of elementary mathematics which have well-

defined algorithms for computation. The number 2 1is wused ®*as an

wnlp

21

RIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

argument to the function ‘''multiples', and the result of that
computation is passed as an argumenf to. the function "even'". The rest
of the sentence 1is used to indicate that some speciai compuration is
required to relate properly the output bf the applization of multiples
to 2 to the even function, The reason for this special procéssing
should be obﬁious—~the even function normally tests its argument for
membership in a set of numbers, and hence, expects a number as an
argument. ‘But the resulr of :he.applicétion of the mulciple funcrion
to 2 is a set of numbers. . -

The two types of iunctions that appear in the surfaﬁe structure
of an input sentence are the mathematical functions such as even,

factor and odd, ali of which have well defined mathematical properties

associated with them, and all of which represent operations of
elementary mathematics or sets of numbers that are commonly wused in
elementary mathematics. The other type of function is tﬁé mechanism
that is used to control the way functions are passed their arguments
and the order in which they are calisd. Since these components of a
sentence are ‘Flso functions, they may be manipulated in exactly the
same ways as the other functions in the sentence. One may thipk.of the
sentence as having a controi structure. This control structure is
expressed in the form of a LISP s-expression that is prcduced by the
parsing program and which is passed to the semantic evaluator.

The rest of the discussion that we will present oun the

linguistic aspects of our system is probably best regarded as a

22

e

E

O

J

discussion of the types of cqntrol structures that are suitable for the
analysis of natural language. Although we have not as yet really
compléted the study of the mathematics that is needed to describe these
control structures, we shall present the beginnings of it as well as
some of the important linguistic intuitions behind our work. Despite
the fact that much of our work is to be formulated in terms of examples
rather than in terms of mathematical theory and despite the fact that
the detailed results that we would like to have are not completely
worked out as yet, we feesl that it is important to present the basic

ideas used in our semanric evaiuator as well as some analysis of them.

II.5 Semantic Transformations and Surface Structure

Therxre are a number of 1issues that we wish rto cover in our

survey of linguistic theory in the rather harsh light of a system for

computational linguistics. The first of these is the now overburdened

v

PR

problem of deep structure: the.avowed purpose of our wark in tﬁis area
is to make a case for the idea that there is a semantic deep structure.
The basic arrangement of our system 1s that a context-free grammar
which 1is designed in such é way as to lay out the computational
structures involved is used to parse the iﬁput sentence. By the phrase
laying out the computational structures, we ﬁean éimply thaﬁ the
grammar is rather detailed in its analysié of English, ‘giving detailed
classifications of the synfaatic types involveé inbthe sentence. In

general structures which lead to very different computational processes

should not be parsed in‘the same way.

RIC : 23

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

For example, the verb '"is" leads to a fairly simple and

straightforward application or iunctions to arguments. In a sentence’

like

Is Z a factor of 3%
the factor function i1s appiied to 3 16 produze a list of factors of 3
and then it is determined wheihel the list consisting of 2 is a sublist
of the list of factors of 3 or nort. However, the use of the verb

"have' leads to a very dirrareac computational process For example,

if we take the sentencte
Does 2 have a faccor cf 37

then we do not apply the <rfawios fun:stion to 3, but rather to 2. Then
the semantic evaluatcr chezks :to see 1f 3 1s amcng the factors of 2.
Although in practice the actual periormance of the system 1is somewhat
different from this, the 1déa ske:zhgd above is 1intuicively correct,
and illustrates our point‘absut the grammar. The grammar must parse
these two quesfions differently, sc that they are seen as having
different semantics by <¢he semantic evaluator: chis is what we mean
when we talk about the idea of the syntax laying out the computational
structure. It is clear, for example, that a grammaz that used the
blanket categsry VP would not do. (For .aifurther discussion of this
issue; see [81}.

Using the productions that were involved in the parse of the
.
input, a semantic reprasentation of che 1input is produced. We claim
that this corresponds to the surface structure semantizs. The idea is

that the functions asscciated with the production rules are closely

24

. o

ERIC

Aruitoxt provided by Eic:

associated with the grammar, and that the semantic parses that are
formed by the parser represent the semantic structure of the sentence

prior to the application of semantic transformations.

II.6 The Deép Structure

During the course of the evaluation process certain of the
functions that are called have the effect of causing a transformation
in the semantic structure. While our implementation never actually
traﬁsforms the semantic parse into a new one to be evaluated in a ﬁore
straightforward manner, it could do éo, and for the purposes of this
discussion is convenient to assume that it does do so. The major
characteristic of the transformed semantic parse is simply th;t things
that are parsed Eogether grammatically form semantic units and >can be
evaluated together. . »

To clarify this a little, we pfesent a simple example.

Is 2 or 3 even? (B)

It should be intuiﬁively obvious thar this séntence is to mean the
following:

Is 2 even or is 3 even? (C)

Indeed, if one wsare to translate (B) into logical symbols as one often
does in elementary logic ﬁourses, then one might well write down (C) as
aﬁ .intermediate step. = It should be clear that (B) and (C) are
logically equivalent sentences of English. However, the grammar is

such that the most natural syntactic parse lumps the entire' phrase "2

25

E

O

or 3" together as a noun phrase, and indeed, this type of example is
often used to motivate the intzﬁdu:tion of synta:tic transformations.
However, in cur system chis probiem 1s handlsd in the semancics by the
use of a special funziion wnhi:h prouduces a transformation of the
semantic parse of the s=sentence. For this particular example, the
system in the #rocesé of evalvzting -(Bf actually evaluates (C). The
details of what these transfocrmarticns are end how they :eally work are
in the next chapter.

The question immediaceiy ‘arises as to why the transformacions

-

are piaced in the ssmantics tather than in che syn;ax-~wﬁlzh is where
the linguists have always pu: cthem. Ine first ceaszcn why 1t is
necessary to put the transfcimsticnsi compoment into the semantics is
that there is no known way toc parse a transformational grammar with any
reasonable speed. Although Petrick 1in {9} did develop an algocithm
for such parsing as long ags as 1965, Woods pointe ocut 1a ., 10; that the
time - required for computations using the Petrick &slgorithm is-
prohibitive., Even though Woods' own augmenta cransition neﬁworks give
the power of a transformaiional grammar and still allow parsing in time
close to that'needed by Early's aigorithm { i1} for parsing contegt—free
languages, the Wozds method is very different from the methods used by
linguists, and 13 ratne: less pétsplcuous thao the standard context—
free language. The other preblem with the Woods parsing scheme is that
the parser must be writien as a set of procedures in LISP, and

therefore, is rather difficult co modify sr excend. Thus on purely

RIC

Aruitoxt provided by Eic:

E

O

practical grounds it was necessary to avoid the use of syntactic
transformations.)

Yet there are other more compelling reasons for doing without
syntactic ﬁransformations‘ The most important of these is simply that
it is easier to see what kinds of transformations are needed if one
uses semantic rather than syntactic transformations. In the domain
that our system is written for, almost all educated adults can agfee on
the answers to the questions, and indeed, can answer them quite easily.
Given these intuitrions about - how one wants to answer a‘partiéular
quéstion, it 1is fa; easier to write the transformations on the
semantics that one wants than to write some syntactic transformations

and hope that they do the proper thing semantically. This approach is

also simpler in the sense that it is more direct: one just writes the

-transformational functions that one needs rather than hoping that the

proper transformétions will ‘be a side-effect of some syntactic
transformations.

Given that we accept the idea of semantic transformations, we
may ﬁell ask what their general form is and what the general form of
the semantic deep structure that we imagine to exist is-. The general
purpose of a semantic transformation is to ‘move functions énd their
arguments into structural proximity within the semantic deep structure.
That is, semantic transformations such as those that are aSsoc}ated
with the verb '"have' serve to move functions closer to their arguments:

this should be apparent from the earlier discussion of this verb. To

RIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

put this somewhat differently, a semantic transiormation serves CroO
alter the semantic parse tree in such a way. as to make the values of
nodés ""depend" only on the values ot their immediate descendents. Thus
the general form of a semantic transformation 1is that of a recursive
function that carries semantic parses Ttc semantic parses.

From the above it should now be fairly obvious what the
semantic deep structure tree should look like. 1In-an intuitive sense
it should be a txee.such that one -an evaluate its nodes from bottom to
top in such a way that the wvaiuve of any one mnode is complétely
determined by the +wvalues of its 1immediate successors 1n the tree.
While this can always be done by means of cocding defices, the semantic

deep structure should not use such, so that the denctations of all of

‘the nodes of the deep structure trez should have denotations which are

relatively simple computationally.

It should be noted in passing thatr the format of the deep
structure tree is not to be radicallr dlfferent from that of the
surface structure tree as some have suggesred (e.g., -Sandewail in
[12]). (For further discussion of thié point, see Section 1V.2 and
Section V.4). | That- 1is, the deep 'structure tree 1is taken to
repreéent a transformafion of the surface scruccuré rather cthan a
translation into some formal language such as first order %ogic. This
is imporrcant, for while 1¢ 1is possible to. see how toc do

transformations, it is difficult to find reasonable methods for

trénslatingisentences of English to, say, first order logic. Although

28

O

ERIC

Aruitoxt provided by Eic:

some heuristic methods are wusually presented 1in introductory logic
courses, they do not have sufficient generality or precision to be used
aé the basis for a question answering system or as the basis for a
semantics of natural language. In general, it seems ¢to be the case
that the translation problem is harder than the problem of a proper
semantics of natural language, and indeed, only once the semantics of
ﬁatural language are well~understocod, will the translation problem then

be approachable.

II.7 A Detailed Transformational Example

As much of the preceding has been fairly abstract, we shall now
present a rather detailed e#ample of how all of this is to work. We
shall use sentence (B} above. The idea is not' to givgl an explicit
account of how our current imple@entation works, as thig is discussed
in the next chapter, but rather to indicate the behavior of the
mechanism of sémantic transformations in a particular ’‘instance. The
parse that is produced by the CONSTkUCT program 1is

(S (CHL (LST 2) (LST 3)) (STS EVEN)}. (D)
In order to get a good idea of how our transformations do work, we
shall trace through a computation with this parse, indicating the
important transformational aspects involved.

The ev?luation process is a recursive procedure, and 1is best
explained in‘éerms of a stack ST. We shall not really worry aboﬁt the

details of the stack, but rather assume that there are appropriate PUSH

29

and POP operations: the PUSH operacion puts an item on the top of the
stack while the POP instruction removes the top item from ST. The
input to the computation process is the entire form (D). On ‘input the
evaluator tests to determine if (D) is an atomic form, i.e., if (D) is
a LISP atom (an identifier). This test fails, so that the firsc
element of-the list is pushed ontolthe stack.

ST = [S]. scanning (CHL (LST 2) (LST 3)).

We shall use diagrams of the above type «to keep t%ack of the current
state of the semantic evaluator.

The semantic processor now attempiés tro evaluate the CHL, but
again the form is not atomic, and so the rest of the list that was
being scanned above must first be evaluated. Since this is the case,

CHL is pushed onto ST, so that we have the following computational

. State.

ST = [CHL S] scanning (LST 2)

Once more the expression being scanned is too complex to be

~ evaluated immediately, so LST is pushed onto ST, and the system is left

scanning 2. However, 2 can ‘be immediately evaluated to 2. At this .
point all of the arguments to LST, which is on the stack; ‘have been
evaluated, so that LST may be popped from the stack, anc applied to 2.
The result of this is simply the form (LST 2). A similar process
eyaluates (LST 3), so that ’all of the arguments to CHL have been
evaluated, and CHL may be popped from the stack and applied to (LST 2)

and (LST 3). Diagrammatically, we have:

30

ST = {S] scanning (STS EVEN)
applying CHL to arg! = (LST 2) arg2 = (LST 3).

At this point the trénsformational mechanism comes into play:
prior to this the evaluation process has been precisely that wused by
the LISP interpreter. The application of CHL to its arguments has the
effect of popping the stack once and writing on the input device the
forms: o '

{S {LST 2) (ST5 EVEN)) (D1}
(S (LST 3) (STS EVEN)) (D2).

Then the CHL itrself is pushed onto ST. Now following a process that is
essentialiy the same as that above, (D1) and (D2) are evaluaied. The
following diagram shows this process in some detail.

ST = {8} scanning (LST 2)
- 8T = {LST S| scanning 2
evaluate 2 to 2
POP LST and apply to argl = 2
evaluate (LST 2) to (LST 2)
ST = {S] scanning (STS EVEN)
ST = {STS S} scanning EVEN
evaluate EVEN to EVEN
POP STS and apply to arg! = EVEN
evaluate (STS EVEN) to (STS EVEN)
POP S and apply to argl = (LST 2) arg2 = (STS EVEN)
evaluate (S5 (LST 23 (STS EVEN)) to (TV T)

ST = | S] szanning (LST 3)
ST = [LST Si scanning 3
evaluate 3 to 3
POP LST and apply to argl = 3
evaluate (LST 3) to (LST 3)
ST = {S] scanning (STS EVEN)
ST = [ST8 S] scanning EVEN
evaluete EVEN to EVEN
POP STS and apply to argl = EVEN
evaluate (STS EVEN) to (STS EVEN)
POP S and apply to argt = (LST 3) arg2 = (STS EVEN)
evaluate (S (LST 3) (STS EVEN)) to (TV NWIL)

31

The result of evaluating form (D1) is (IV T) while the outcome
of evaluating form (D2) is (TV NIL). Popping CHL from ST, we have as a

final result (CHL (TV T) (TV NIL)).

II.8 Program Schemata

We shall next make some attempts.to deal with the problem of
characterizing the exéct mathematical nature of the semantic‘deep
structure, and the precise way in which tﬁe transformational component
that we envision should work. It should be pointed out that this
presentation is only a sketch of the outlines of what we feel can be
developéd into a theory of semantics.

The first step that must be takén in the analysis of the
semantic aeep structure 1is one of abstraction. The mathematical
functions are themselves capable of great complexity, but we do not
want to claim that simple computations calling relatively complex
functions are transformational: rather the édditional complexity comes
from the way in which arguments are passed to functions and the way 1-
which control flows from one function call to the next. One should
note that that this is analogous to the description given earlier of
the structure of English in this fragment being the method of passing
arguments to functions. The basic idea of the abstraction 1is replace
those functions which are known and which do not have any
transformational import by variables. In what follows we should use

two types of variables--one for the mathematical functions and one for

32

the semantic functions that do not have any transformational imporet,
but our theory is not as yet so sophisticated that this néeds to be
done. This is strictly analogous to the use of program schemata in the
mathematical theory of computation. As is weil-known, most programming
languages are universal in the sense that a progcam for any recufsivé
function can be written in them. Yet it is clear that some programming
languages havelfeatuxes that make them more powerful than others. TFor

exampie, 1t 1is intuitively obvious thac ALGOL 1s more powerful than

machine language, but both will allow one to program any recursive

tuncrion. For this reason progrém schemata have been developed. By
replacing the Lasic functions by wvariablas and studying only the
control styuctures involved, one can compare the power of programming'
language features: for an example of this see | 13j.

It should be pointedu out beiore we actually dintroduce the
schemata themselves that they- aré presented as an analysis of the
funcrions that are actually called by the semantic evaluator: they are
not templates from which ﬁhese functions were written. Thus, there is
the question as to whether the schemata that we write down actually do

represent the funztions that we claim they represent. This 1is an

~assertion that 1s not subject <to any formal <checking at the present

O

ERIC

Aruitoxt provided by Eic:

time: we believe that our analysis is fairly self-evident.
We shall introduze two classes of schemata for use in this
endeavor. The first of these 1is to correspond to the full

transformational struccure that 1is used by our system. It should be

33

O

ERIC

Aruitoxt provided by Eic:

noted that this is probably stronger than our semantic evaluator, i.e.,
there are programs fhat can be represented in this class of schemata
that are not used in, and indeed, should not be used in the programﬁing
of a semantic evaluato; sﬁch as the one that we are discussing. This
is analogous to the problem that has plagdéd linguists for some time--
that of finding natural constraints on their transformations. The
class of transformational schemata is exactly the class of program
schemata that is defined in Hewitt i 4] and the following BNF definition
of the class is taken directly from that scurce.

Definition: The BNF syntax for a transformational schema is:
<program> ::= <term> !
. <term> ::= <block> !
* <repeat> '
<again>
<exit> |
(if <term> then <terms> else <terms>) |
<assignment> !
false E
<literal-string>
<identifier>
<function-call>
<block> ::= (block <body>)
<agsignment> ::= (<identifier> "<-" <term>)
<repeat> ::= (repeat <body>)
<function-call> ::= (<uninterpreted-function> <arguments>) !
. (is <term> <term>) :
(call (<uninterpreted-function> <arguments>) <function>)
<again> ::= (again) T (again <name>)
<exit> ::= (exit <name> <terms>) I (return <terms>)
i <body> ::= <name> <declaration> <terms>
’ <declaration> <terms>
<terms> ::= <term> ! <term> <terms>
<declaration> ::= (<identifiers>)
<arguments> ::= <empty string> ! <terms>
<identifiers> ::= <empty string> E <identifier> <identifiers>
<identifier> ::= <letter> | <letter> <alphanumeric>
<alphanumeric> ::= <letter> | <digit>

|

34

E

O

A number of comments need to be made about this definition--mostly in
the form of giving the semantics of some of the more wunusual
constructions, and describing some of the terminology that is common in
the field, but rather non-standard outside of it.

The most striking terminological‘problgm is with what we shall
call variables. The variables of a schema are the identifiers that
appear in 1it: they serve as memory locations that are used by the
schema in the course of a computation. Usuaily, the wvariables that
appear in a schema are divided ingo two ciaSses——the input variables
and the working variables. The input variables are those that appear
following the name of the schema on the left hand side of the defining
equality sign: the working wvariables are all of the rest; $ometimes
the term registers is used instead of the term variables.

The evaluation of these schemata is basically a very

straightforward process. The execution begins with the first

statement, and proceeds sequentially, one statement at a time, with the
u;ual excéption that there are statements that when exeéuged affectrphe
order of evaluation. It should be noted that forrthe class of non-
transformational schemata that will be introduced shortly there are no
legal statements that change the flow of control, so that each
statement in such a schéma may be executed precisely once.

...These schemata are not recursive, so that a function may not
call itself: there are recursive schemata, but they are even more

powerful than transformational schema as there exist recursive schemata

35

RIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

~

which cannot be programmed using only the features of transformational
schemata. (There is a proof of this result in AHewitt {41.) These
recursive schemata will not, therefore, be considered here. The basic
idea is that a transformational schema represents an ordinary iterative
program with conditionals and assignment statements. The looping power
of these schemata is supplied by the repeat fgature. First any
statement that 1is associated with the repeat itself 1is executed
precisely once: usually this is an assignment statement that
initializes some wvariable. Then the body ofﬂ the repeat is executed
until a return statement is encountered; when a return is executed the
program returns to the smallest containing block with the indicated
values. Thus, the action of the return statement is strictly analogous
to that of the RETURN function in LISP. The blocks of program schema
may be némed and the exit statement allowé one to return from the named
block with appropriate values: this generalization of the return is
somewhaﬁ like the done construct in SAIL. Also it should be pointed
out that the predicate '"is" is used ‘to test for equality to a finite
number of distinguished constants. Otherwise, the equality relation is
not available as an interpfeted feature of transformatibnal schemata.
The uninterpreted functions may be cailed in the usual fashion: first
their érguments are evaluated left to right and then the function name
is applied to the érguments to produce a value: a function letter
accepts only a fixed number of arguments. This last feature is, of

course, at variance with the practice in LISP, but it makes the

36

O

ERIC

Aruitoxt provided by Eic:

mathematics of the situation easier. Finally, it should be noted that
the LISP conventian with regard to truth values is uéed, i.e., there is
some object in the domain of the computation that is to serve as false,
and evérything else is considered true. This device allows us to
dispense with the wusual distinction between predicates and functions.
All of the other constructs should be seif—explanatory.

In order to make this a little more concrete, we shall give a
rather simpie example-of a program schema.

(g x} = (repeat ((y <- x)}
(if (is x "nil") then (return y))
(y <= (£ x))
(x <= (h x))).

This schema initializes y to the input value of x, and then enters a
loop. If x is equal to 'mil", then the value of y is returned as the
value of the schema. Otherwise, the wvalue of y 1is set to the wvalue of
(f x), and that of x is set to (h x), and the loop is started again.

Now we are ready to intrpduce. tﬁe notion of a non-
transformational schema. Such schemata are all transformational
schemata of a very restricted type, s§ that all of the restrictions
that applied to transformational schemata apply to non—transformationél
schemata as well. 1In particular, these schemata are non-recursive and
use only uninterpreted functions of a fixed number of arguments. The -
basic idea_bf a non—transformétional schema is that it is a séquence of
assignment statements, followed by a return statement that indicates

the value of the computation as a whole. This class of schemata is too

weak to be of interest to specialists in the mathematical theory of

37

O

ERIC

{AFulToxt Provided by ERIC

computation, and consequently is not to be found in the standard papers
on the subject. The interest of these schemata is simply that they
seem to be a reasonable formalization of the notion of a non-
transformational semantic evaluation.
Definition: The BNF definition for the syntax of the class of
non-transformational schemata is as follows:
<program> ::= (block <terms> <return>) | <term>
<terms> ::= <term> <terms>
<term> ::= <assignment> | <function call>
<assignment> ::= (<identifier> ''<-" <term>)
<function call> ::= (<uninterpreted function> <arguments>)
<arguments> ::= <argument> l <argument> <arguments>
<empty>
<argument> ::= <identifier>
<return> ::= (return <identifier>},
1t should be clear from this definition that the non-transformational
schemata form a subclass of the class of transformational schemata.
A simple example should serve to make this much more concrete.
This particular program schema assigns to y the value of £ applied to
X, and then assigns that to z, which is returned as the value of the
whole schema.
Example of Non-transformational Schema
(g %) = (block
(y <= (£ %))
(z <= y)

(return 2z)).-
We shall briefly consider how this particular schema is to be evaluated
in order to clarify the evaluation process for such schemata. TFirst
the assignment statement assigning to the variable y the value (f x) is
executed, and then this wvalue is assigned to 2. The schema then

-

returns z, and since there are no more statements to execute, halts.

38

O

ERIC

Aruitoxt provided by Eic:

1I1.9 The Restrictions Upon Schemata

Before showing the relationship between the class of
transformational schemata and the sub-class of non-transformational
schema, we shail first consider a bit more fully the reasons for the

restrictions that are placed upon both classes. These restrictions are

quite important beoth formally and linguisticaily. Our analysis of the

camputational processes inﬁolved in the semantics of natural language
is swvch that the fcorms thar are barfed by the restricrions on
transformational schemata do not occur . in the actual semantic
bomputaticns‘

There are itwc important restrictions that we wish to discuss:
the first of these applies to both transformational and non-

transformational schemata. Both classes are T¥yestricted to non-

recursive forms. As was poinied out above, there is a definite sense

in which recursive schemata are more. powerful than non-recursive
schemata: this is discussced in [4] and will not be dwelled upon here,
for the basi: point that we wish to make is that all of the recursion

that is used in the evzluation of a semantic parse 1is done by the

(a8

uﬁinterpreted uncticns. The parse can be analyzed into a non-
recursive program schema, To see this, simply note that each parse
represents a saquenre of‘assignmént statements and transformations on
this sequence. The transfcrmations involve looping and conditiomnals,

but are non~recursive in character, or at least, have been non-

recursive in every semantic computation ithat we have dealt with in our

39

O

FRIC

Aruitoxt provided by Eic:

work. Of course, there is no formal proof as yet that this must be
true of natural languagé, and indeed, this seems to be an empirical
assumption about natural language that. is borne out by our
impleméntation. Since we wgnt the non-transformational schemata to
form a subclass of the tfansfofmational schemata, this restric;ion is
also applied to them.

The second restriction is thé one that is applied.to the class
of transformational‘ échemata to obtain the nnn-transformational
schemata. The essential idea, as we have already menrioned, is that a
non-transformational schema is a transformational schema that consists
only of assignment statements, followed by a single return. We shall
attempt to show that this 1is an adequate analysis "~of non-

transformational schemata, by giving an algorithm using such a schema,

.that allows ome to traverse a tree ' from leaves to root in end-order.

It should be pointed out that this is not the usual end-ordgr traversal
algorithm of computer science, for we start at thé leaves of the tree,
rather than having to find those nodes. It should be intuitively
obvious thét such a traversal corresponds to a-non—transformational
evaluation of a semantic parse tree, for all this traversai does 1is to
start at the leaves of the trze and then on the basis of the denotation
of each leaf compute the denotations of the immédiate predeceséofs of
the leaves, and then in turn compute the values of the nodés above
those, and so én, until finally the. value of the root has been

computed. But this -is just what we mean by a non-transformational

40

computation: the semantic functions are applied to the denotations of
the terminal nodes of the parse tree to compute the denotations of the
nodes immediately above them, and then in turn, the semantic functions
associated with the derivation of these nodes are applied to these new
denotations to oBtain the denotations of successively higher nodes in
the tree wuntil finally the denotation of the roor node has been
computed. We shall present the traversal algor;thm only for binary
trees, but the generalization should be fairly obvious.

Algorithm: Let T be a binary tree with nodes nl, n2, n3,...,nm
where nodes np,..«,0NM are leaves of the tpge, and nl1 is the root of T
and where associated with each non-leaf node of the treé there are a
functions f1i, f2;u,q,fp-1 such for 0 < i < p, we have that fi is a
function of precisely as many arguménts as ni has successors in T.
Assume that there are fun:tions left and right which when applieu to a
node of T return, respectively, the left successor éf the'node and the
right succesgor of that node. If the appropriate successor™ is missing
~then the value NIL is returned by the function. Then the following
non-transformational schema returns the wvalue of T if the values of
vnp,...,vnom are set at the beginning of the computation to the
denotations of np;...,nm, respectively. The value of T is the_value of
vni.

(block

(vp-1 <= (fp~1 (left p-1) (xight p-1)))
(vp-2 <~ (fp-2 (left p-2) (right p-2)))

(vl <~ (£f1 (lefr 1) (right 1)))
(return v1}).

41

In ordgr'to clarify this a bit, we shall give an example:
Figure 1 shows a simple binary tree, the value of whose top node we
wish to compute. We shall refer to the leaf nodes as x4, x5, x6, and
x7, and assume that there.are functions associated with nodes 1, 2 and
3. Using the algorithm, we get the following schema.
(f x4 x5 x6'x7) = (block
(%3 <= (£f3 x6 x7))
(x2 <= (£f2 x4 x5))
(x1 <= (f1 x2 x3))
(return x1)).

It should be fairly clear that this schema represents a straightforward.

bottom to top computation of the value of the root from the values of
the terminals. ' '

42

Figure 1. Simple Binary Tree for Evaluation

43

O

ERIC

Aruitoxt provided by Eic:

~II.10 The Relative Power of the Non-Transformational and

Transformational Schemata

We now wish to show a rather elemenratVyi"fact about the classes
of schemata that we defined in Se:rion 11.8. This facr involves a
notion of equivélence of schematsa. The idea is that there 1is a
transformationa} schema which cannoc be programmed using only the
computational structures available in the class of non-transformational
schemata.

Definition: Let Si and S2 be two schemata. Then 81 is

equivalent to S2 if and only if S1 and S2 either both fail to terminate

- or return the same value for all interpretations of the primitive

function letters. .
This definition is due to Hewiit (4. We shall denote the
function computed_by a schema S undér some fixed interpretation by f8S.
Theorem} There is a transformational schema that is not
equivalent to any non~transformational schema.
Proof: We must shoﬁ that there 1s some transformétional'schema
8 such that for -any non—transformafional schema N there 1s some
interpretation I such that fS is not equal to fN on some input in the
domain of the computation. ZLet S be the following schema.
(g x y) = (repeat (z <~ x)
(if (P y) then (return z)}
(z <= (R z))
(y <= (L yI»

Consider the following interpretation. Let the domain of the

b4

E

O

interpretation be the set of natural numbers, and let P be a test for
equality with 0O, let R be the successor function, and let L be the
predecessor function. Interpref all other function letters as
constantly zerc functions. Furthermore, assume that initially all
variables except the input variabies x and y are set to O. Lt should
be evident that under this interpretation fS is the ordinary addition
function for the natural numbers.

We claim that under this interpretation, there is no equivalenﬁ
non—transrormational schema. Let N be a non-transformational schema,
and assume that N has m statements, where following Hewitt, we define
the number of statemenﬁs in a schema to be the number of left
parentheses in the schema. By the interpretation of the function
letters, we know that the execution of any one statement can add at
most one to the valﬁe of ahy variable in the schema. (Recall that any
function call in a non-transformational schema has only identifiers as
its arguments, so that mnested function calls iq one assignment
statement are not allowed). But since in a non-transformational schema
each statement can be exeéuted oniy once, the value-feturned by - N can
be at most. the maximum of the initial values of x and y plus m. If we

take the input value of x to be 2m and that of y to be 3m, then we have

that at best N can return 4m, which is less than the value 5m returned

by S for these inputs. Hence, N and S are not equivalent. But N was
an arbitrary noen-transformational schema, so that the result is- proved.

Clearly, there are hany other formal results about schemata
@'ﬂ,

45

RIC

Aruitoxt provided by Eic:

O

'ERIC

Aruitoxt provided by Eic:

that may have application to computational linguistics. One important
class of theorems in this area would be results that would indicate
some natural reétrictions upon the computational power of our
transformations. The lack of such constraints has always been the
great difficulty with syntactic transformations, but by using schemata,
we can hope to obtain some reasonable restrictions upon the
computational power of semantic transformations. The discovery of such

results is an important open problem.

IT. 1 A Fina® Example

Before going on to the discussion of the Acfual implementation,
we shall give an example of how one would represent an actual semantic
computation in terms of schemata. The semantic parse that we use is
the one that was discussed earlier for the question

Is 2 or 3 even?
As we stated previously, this is parsed into
(8 (CHL (LST 2) (LST 3)) (STS EVEN)).

In Figure 2 we have a graphical representation of the surface
structure and deep structﬁre trees for this sentence.

‘ The schematological representation fog the computation needed
to evaluate this is as follows. Let x1 Le the list of choices, let x2
be the set of even numbers, and let us have the following

interpretations of the functions:

o 51 checks for an empty list (NULL)
52 adds an item to the front of a list (CONS)
S3 is the subset function . :
46

S4 " selects the first element of a list (CAR)
S5 selects the rest of a list (CDR).

The constant NIL is to represent the empty list. The schema that
represents the desired computation is:
(Vv x1 x2) = (repeat (z <- NIL)
(if (81 x1) then (return z))

(z <-"(82 z (S3 (S4 x1) x2)))
(x1 <= (85 x1)).

47

SWRFACE STRuc:ruRE

/I\

 Lnk . NP

even
AP

I

NP or NP |

| |

a 3

DEEP STRucTURE
| S ,
/ | ™~

or S
AN | \\
;_m/ A,ID NP L:(NP NP

%)
Figure 2. Surface and Deep Structure Trees for a Sample
- Sentence '

ERIC | i

Chapter III

Aspects of the Actual Implementation

In this ‘chapter we . shall discuss the actual computer
impleméntation of the semantic evaluatqrf There are several issues to
be discussed in this area, and we have geveral proposals relating to

5
future implementations. In particular, we shall discuss the computer
" language. features that would be desirable for implementations of this
type of system. However, for the‘sake of completeness, we shall
present in Section III.1 a brief discussion of the programming
language LiSP, and also present the notation that we shall use in the
rest of this chapter. This will be followed by an analysis of the
utility of certain concepts from current computer science: this is the
conteﬁt -of Section IIT.3, Section III.4, Section 1I1.5, and
Section III.6. Most of what we have to say here 1is drawn from the
,work of others, but’ it represents the area ifrom which_. the most

important improvements to our work will come., The actual programming

that we did is covered in detail beginning in Section III.7.

IIT.1 Concepts From LISP

r

The language din which - our actual implementation -will be
described is an extension of LISP called MLISP. In point of fact, we

shall need only a small fragment of the language which we present

50

below. For more details, the reader is adviséd to consult [14], [15],

and [16].

Definition: The BNF definition of MLISP is given below:
<program> ::= <gxpression>
<expression> ::= <simple expression> {<infix operator>
: <simplie expression>]*
<infix operator> ::= * | + | @ | = | not= | <identifier>
<prefix> ::= <identifier>
<simple expression> ::= <block> |
<if expression>
<while expression> |
<for expression> |
<until expression> |
<assignment expression> |
<function call>
<quoted expression> I
<atom> |
<prefix operator> <simple expression>
(<expression>)
<block> ::= BEGIN
[<declaration> ;]* |
[<expression> ; |# |
<expression> END
<declaration> ::= NEW <identifier list>
<identifier list> ::= <identifier> [<identifier>]*
<lambda expression> ::= LAMBDA
(<identifier list>); <expression>
<if expression> ::= IF <expression>
THEN <expression> | ELSE <expression>}#*
<for expression> ::= <for clause>
' (DO | COLLECT) <expression>
<for clause> ::= FOR {NEW]| <identifier> (IN ! ON)
: <expression>
<assignment> ::= <regular assignment> ‘
<regular assignment> ::= <identifier> <~ <expression>
<function call> ::= <identifier> {<argument list>)
<argument list> ::= <expression> [<expression>]* |
' ' <émpty> .
<quoted expression> ::= '<s expression>
<s expresgsion> ::= <atom>
Q)

(<s expression> . <s expression>) ‘
. r 1 3
(<s exprassion> [[,] <s expression>]#)
<atom> ::= <identifier> [<number>

<identifier> ::= <letter> [<letter> | <digit>]*

:

Q 4 51

ERIC

Aruitoxt provided by Eic:

We shall now present some of the basic LISP functions that will
be used in the discussions of the actual implementation. First we need
to highlight the definition of an s-expression that was given above.

Definition: An s-expression is a LISP atom or is

(s1 . s2j

where 's1 and s2 are s-~expressions.,

The primitive functions of LISP can be explained in terms of this
notioﬁ. Therq are two functions that analyze s~expressions into theiy
parts—-CAR apd CDR. We shali assume that both of these are undefined

for atoms, and that

CAR ({(s1 . s2)) = si.

and
s2.

CDR ((sT . s2))
There is also a LISP primitive, calied CONS, used to build more complex
s—expressions from simpler ones.

Definition: If sl and s2 are s—-expressions, then
CONS (s1, s2) = (s1 . s2).

We shall now define the notion of a list: in general, the only
s—expressions . that we shail deai with will be lists. The empty list,
which is called NIL, is distinguished by the LISP system. NIL is both
a list and an atom te LISP, and is zsiso used to represent -the truth
value false: anything that is non-NIL is considered to be true.

Definition: .

(1) NIL is a list.
(2) If 11 is a list and sf is any s-expression, then
CONS (s1, -11) is a list.

Lists are written as sequences of elements surrounded by

52

O

ERIC

Aruitoxt provided by Eic:

parentheses; The s—expressions that appear in a list are <called the
members of the list. There are some other LISP funétions that we shall
use later. Among these are-NULL, ATOM, NUMBERP, and LIST. The LIST
function is LISP function of an indefinite number of arguments that
returns as its valﬁe a list whose members are the arguments in the call
to LIST. The NUMBERP function tests whether ité argument is a number:

it returns T if so and NIL otherwise. The ATOM function tests to
determine whether its argument-is an atom or not. It returns T 1if so

and NIL.if not. Finally, NULL is a function that accepts one argument

and test§ that for equality to NIL. If it is equal, then the function
rerturns T, and in &ll other céses it réturns NIL.

There are also some convenient ways in MLISP to egpress'
iterative constructions: as some of these are used'in our subsequent
discussions, we shall ';o over them now. The basic iterative
construction that we shall wuse 1is .the FOR expression. The FOR
ékpression is a command to the computer to step through a l1ist and to
perform a certain operation upon each element of the list. If the»FO%i

expression‘ uses COLLECT mode, then the results of each of these

.operations are assembled into a 1list and returned as the value of the

i-

expression while if the DO mode is used, then the value refurned is the
value of the operation on thé last element of the list. MLISP has many
other iterative constructions which are described‘in [14]; gﬁt which
will not be used here;

Although we shall not deal with the evaluation algorithm that

53

is used by the LISP system in any deﬁail until Section III.4, we do
need to introduce some terminology that will be used throughout this
chapter. In general LISP funcgions evalﬁate their arguments, but there
is a special class of them which do not. A standard LISP function that
eva;uates its arguments before using them is called an EXPR while a
funétion that does not have its arguments evaluated prior to being

‘called is known as a FEXPR.

III.2 Types of Functions to be Implemented

As we pointea out in the Section IIL.4, thére are two different
types of functions that are to be implemented. One of these ;s the
type of function that appears in the surface structure of the input
sentence: examples of these are the purely mathematical functions such
as factor and multiple. Another type of function 1is that which
corresponds to the English input, but that does pot appear explicitly
in the surface structure. These are not mathematical functions in the
sense that factor or divisible are. Moreovéf, many of these funqtions
have a tfansfo;mational character in that they control the sequence of
evalua;ion by the values that they.return.

Some simple concepts- from computer science areu ﬁéeéed to
understand how the implementation works. Thé Semaﬁtic evaluator is
written in Stanford AI LISP 1.6‘although_it CQuid bevmodified!to run in
any othér LISP dialect. Since the evaluation program is in. LISP, the

semantic . functions are really functions, for every program in LISP

54

returns a value. This applies to both the mathematical functions and
those functions that serve to implement the control structures that

relate functions to their arguments (Section II1.4).

o

III.3 Side Effects '

There are several other aspects bof the programming language
LISP that are importént to the understanding of our implementation.
One of these is simply that functions may have side-effects. That is
to say that_while the function returns a value, it may also modify the
list structure ‘that - the LISP interpreter maintains. Although the
mathematical theory of computation at present lacks the‘téolS'to give a

complete analysis of functions that have side-effects, we shall attempt

.to give both an intuitive idea of what we use these side-effects for in

our system and also a reasonable mathematical analysis of them. The
mathematical analysis will, of necessity, be somewhat informal and
incomplete due to the difficulty of the problem.]

The first thing that ought to be pointed out about the use of
functions with side-effects in our system is that we use them primarily
to define functions whicﬁ are not part of the actual LISP code, but

which are derived from programmed functions and which represent

intermediate steps in the semantic evaluation procedure. 0f course,

this has profound implications (which are discussed in Section III.14

for the structure of our system, but let us for the present delve into

O

ERIC

Aruitoxt provided by Eic:

how all of this actually operates.

¢

55

O

ERIC

Aruitoxt provided by Eic:

In LISP there is a systematic aftempt to avoid making a
distinction between programs and data. In the implementation that is
actually used in this project, the function definitions are éimply
special types of 1list structures that may be manipulated by the LISP
system in the usual ways. These 1list structures have the additional
property that they may be applied as functions to other 1list
structures. Thus, we can in the course of evaluating a semantic parse
produced by the CONSTRUCT program create functions that are not in the
pre-coded semantic evaluation program and use rthese in the later
evaluation of the semantic parse: the appropriate liét structures are
simply. created and stored. This is done, for example,' in . the
manipulation of 'thé characteristic functions of sers. To handle the
intersection of thé set of odd numbers with the set of prime numbers,
the system produces a new characteristic function for the set of odd
prime numbers by éombiningJthg_characteristic functions for the set of
primes and for the set of odd numbers. Some of the details .of these
created functions will be described in Section IIL.10. For now it is
sufficient to note that the side—éffects that are used by the semantics
system are rathér'limited in nature and rather straighgforward: there
are -no functions which make massive and strange changes to the list
structure. All of the functions that are defined are based on rather
simple.combinations of functions that previously existed in the system
and involve only locally available iiét structure, i,é., things that
appear as a;guments to the functions that _creatg new functions from

old.

56

In an attempt to make this a little more precise, we shall go
into some more -detail about the structure of functions with side-
.effects and their properties. What we shall éay in the following is
based on the concepts of Section II1.8 and is not entirely accurate for
any actﬁal LISP system, but it does convey 1in some ways an abstract
picture of what is going on. What is important here is not the lists
maintained by the interpreter itself, but rather the functions and
structures that are accessible‘to‘the user.

Definition: Let f be a transformational schema described in the
notation of Section II.8, and let x1, x2, x3,..u,_.xn be the input
variables of f. Assqme that f returns its value in a wvariabie z. Then
f 4is said to have a side-effect .if and only if there exists y,'a
variable distinct from z, such that the value of y is changed by the
application of £ to x1, x2,...,X0, ‘

Definition: Let f be as above, and let yi, y2,:..,ym be the
only variables in f othef than x1, x2,...,xn. Then f is said to have
only local side-effects if and only if the only variables that are
altered by the application of { to xI, k2,,,.,xn other than z.are among
¥lyaaoy, ym. |

Our fundamental claim is that other than for the lists that are
maintained by the LISP -system the functions that areb used by our
semantic evaluator havebonly local side—effects. In order to verify
this claim, we shall consider the role of side-~effects in the class of

" transformational schemata. Any non-local side-effects that may be

57

produced by the LISP system are the result of the actual application of
a particular instance of this schema to some arguments, and should, if
the LISP interpreter is properly writteﬁ have no effect on our
functions. Hence, these schemata are é ésgdf~model for our semantic
IR

evaluator.

Theorem: A transformational schema S can have only local side-
effects.

Proof:» This 1is actually gquite obvious, but we shall explain
what is going on at ;he risk of belaboring the point. Let S be a
transformational schema. Then we shall show that S has only local
side-effects. The only constructions in a transformational schema tha;
can aﬁfect the value of a wvariable (whepher it appears in the S or hot)
are the assignment statement and the return statement. But both of"
these construcﬁions must contain the name of the variable whose value
is to be éhanged. Hence, the variable appears in S.

A lfo#mal proof of this would involve an extremely messy

induction on the structure of transformational schemata or on the

length of S.

III.4 The LISP Calling Sequence -

However, the LISP interpreter has some features which are
actually in the way of doing a proper implementation of the_semantics
system. The most important of these is the LISP calling sequence ‘or

evaluation algorithm. As is well known, LISP uses a recursive inside-

58

out method to evaluate funcrions. That is, the LISP interpreter first
checks to see if the function being called is a function that evaluates
its arguments. If this is the case, then the arguments are evaluated
before any evaluation of the function itself. Note that the evaluation
of the arguments to the function may involve the evaluation of other
function calls--including perhaps calls to the same fﬁnction that
appears at the top level. . Once the evaluation of the érgumeﬁtéhis
complete, the function is -then called on those arguments. If the
function does not evaluate its arguments, then it is igﬁediately called
on its apparent arguments. Any function or any instance of functional
application 1is an s-expression. The LISP function that actually
governs the evaluation of s-expressions is éalled EVAL. EVAL may be
given the following recursive definition for functions that evaluate

their arguments.,

EVAL (X) <- IF ATOM X THEN VALUE X ELSE
CAR X (CDR X)

where VALUE x is a special wvalue that is'associated with the atom and
where in the other case, we apply the CAR of the expression to the CDR.

While the recursive inside-out algorithm described anve is the
one used by LISf to evaluate our fuﬁctions, the functionsbthemselves.
afe coded in various sfrange ways to prevent the LISP "interpreter from
really‘dqing the evaluation in exactly that order. The basic method of
controlling the calling' sequence 'in the semantic evaluarion routine

involves ‘the introduction of certain special functions into the

semantic routines that serve as flags to the LISP interpreter that tell

O

ERIC

Aruitoxt provided by Eic:

59

O

ERIC

Aruitoxt provided by Eic:

it not to evaluate the s—expression 1in question. These flags are
written as LISP functions and appear as the CAR of an expression. LISP
sees the function and applies it to the CDR of the s-expression--
usually doing nothing to that part of the expression. Intuitively the
function often also serves as a data type telling outer functions what
type of arguments that they have received and hence how to behave on
these data.

To clarify this point further, let us give an example of one of
these functions: this example will be given in somewhat general terms
as we sha;l cover the actual function in Section I11.7. The

function LST is defined in such a way that it passes an explicit list

of elements to higher lével {outer) functions. LST evaluates non-

atomic expressions that occur as members of its argument list:. it
always takes.a single list as its argument. Atomic members of the list
of arguments are not evaluated, but rather are passed up £o the next
level of the s-expression. Since EVAL normally " would evaluate
everything in the list before calling LST, LST is definéd to LISP as a
function that does not want its arguments evaluated. When LST is
called it scans 1its arguments and decidegh which ones it wants to
evaluate.

. Another type of function that appears in the semantic

-evaluation_routines is that which serves to alter the <calling sequence

of LISP to produce the effect of a transformation. As was pointed out

in the previous chapter, our linguistic system obtains its - power from

60

E

this fea;ure. There are essentially two different reasons why such a
transformacion is necessary. The first 1is the infinity problem--one
cannot list dinfinite sets. The other is that the semantics--the
intuitive meaning of the sentence--demands that the order of evaluation
be based on something other than proximity within the surface sentence.
One of the most surprising things about the semantic evaluation
routines is that these two very different problems can be handled in
essentially the same. way. In both cases LISP performs- an evaluation
that has a side-effect, the side-effect baing to define a new LISP
function that is later applied to arguments. _ For example, if we are
asked to apply a sat-theorerical intersection function (the I function)
to two sets that we have.no reason to believe to be finife, then the
chgracteristic' functions of the sets are combined into a " new
characteristic function for the set which is the result 6f the
operation upon the ¢two given sots. Similarly, if we are given

something that we cannot re.lly evaluate in the current context, then

certain flags may be set and the whole thing passed to the next level.

I11.5 Backtracking

~—

The standard computer science method of dealing with this

calling sequence problem is, .of course, backtracking--something that is
absent in LISPlalthough present in languages such as PLANNER and
MLISP2. In order to explain clearly how ouf implementation differs
from this sﬁandard we shall present an informal account of backtracking

or nondeterministic algorithms which is drawn from Floyd [i7].
1 - L3 :

Q. ' 61

RIC

Aruitoxt provided by Eic:

Nondeterministic algorithms are simply standard algorithms
expressed in some gpitable language such as that of Section II.8 with
the exception of .the intvoduction of a Amultiple*valued interpreted
function CHOICE whose values are less than or equél to the the value af
its argument. The idea behind CHOICE is that one makes an arbitrary
deéision at the choicepoint of which branch to take. It is known that
for the class of recursive functions this.-does not add any power
although it is the case that for pushdown automata one does gain some
power by the use 6f sﬁcﬁ a function. Following the treatment of Floyd,
we shall'also assume tﬁat each of the terminal points of the schema is
labelled by either SUCCESS or FAILURE. Only those computations that
end at nodes labelled SUCCESS are considered to be computations using
, the schema. Again this feature does nthaddvany power to programming
Alanguage in the sense that no -mbre functions will be computed.than
without this than with it.’ However; the fact that recursive function
theory does not make aﬁy discriminatioﬁ in this regard is probably more
of a failing>on'its part as a mathematical theory of computation rather
a lack of any.real difference. AMoréover, it is shown in [4] that
schemata that allow certain types of backtracking aré more powerful
than transformafioﬁal schemata in the .-sense that there is a
backtracking schema that 1is not equivalent to any transformaﬁioﬁal
schema. While we have mnot explored the.relapionéhip betwee; fhe kind
of lbacktrackiﬁg‘descriﬁed- he;e and that of Hewitt, it .seems quite

likely that a similar result can be obtained using our formulation.

62

E

As we stated above, our system does not use any backtracking

techniques. We regard this as an advantage at its current state of

development for the simple reason that the use of relatively weak

" methods at this point means that with more powerful - techniques it

O

should be possible to extend the system fairly easily.

IT1.6 Interrupts and Demons

Another feature of compﬁtational linguistics systems such as
that of Winograd is the use'of asyn;hronous processing via the wuse of
ipterrupts and demons. (For more discussion of the work of Wipograd,
see Section V.3.) indeed, Winogfad‘gets_ thé transformational power
in his syste@ ftoa ?hé use of a demon in his parsing routine: this is
how, for example, he checks“for agreement., In our relatively simpie
semantic evaluation system this feature is absent. All. of. our
transformational power is gétten from the use of functions thé%"delay
fheir actual evaluation to the appropriate tiﬁe._ It seems to be rather
clear at this point that much of our. system’could be coded soﬁewhat
more easily by the wuse asynchronous processing features, for rather
than having to trick: the LISP'interpfeter into changing tﬁe calling
éequenée forl various functions, we could simply use the asynﬁhronous
processing feature to generate an interrupt to handle any procéssing
that is desired but mnot in the éfandard_recursiveﬁ inside-out 6rder.
What is lost by dding this is a certain‘apqgnt of coﬁceptual4clarity,

for in event-directed prbgrammiyg it is often difficult to discover in

RIC | : LS

s - ,
R

O

"FRIC

Aruitoxt provided by Eic:

what order things are actually eyaluated when the program 1is actually
run. Furthermore, the analysis of such proéramming is quite difficult,
and at least at the present time we are not sarisfied that the cuffent
ideas of mulfi—process schemata (see _4}) are adequate to deal with
this computational structure. In our system this zan be discovered
quite easily by simply looking at the definitions of the functions in

the semantic parse of the input sentence.

III.7 The Implementation of Data Typing

At this point we are in & position to give a detailed
description of our actual implementation. .The first.thing that will be
described is our method of data typing——ﬁow it works and what it is)
good for. Then we shall-deal with the funcrions..that coffespond to the

mathematics of the system all of which appear in the surface structure

— r

of the input sentences, and’ afl of which are quite straightforward in
the mathematical sense as well as in their implementationé. Finally,
Qe shall deal with the fﬁnc%iéns that correspond to the English of the
system; these are the functions that perform transformations to tHe
semantic parse free.

| In-order to understand the manner in which the type functions
operate it is 'neceséary to exﬁlain soﬁething about the way 1in the
CONSTRUCT program processes its input and the kiﬁds of things that are
passed to ﬁhe _semantic evaluator. Essentially, the CONSTRUCT program

produces a semantic parse which is in the format of an s-expression.

64

This is passed directly to the LISP ﬁEAD program, which in turn reéds
it and calls the toplevel of LISP, EVAL. The CONSTRUCT program-is
written in such é way that each atom in the s-expression that is passed
to LISP is quoted: this can be done in AILISP by placing an atsign in
front vof éach atom. Whgt LISP sees as atoms'are strings to the
CONSTRUCT program, which is written in SAIL. .The atoms in the semantic
parse correspond to words of the iﬁput sengence and calls to
tranéformatioﬁal functions (obligatory semantic transformations if one
likes that terminology). It should be noted that the quotation marks,
which .are actually calls to the LISP QUOTE functioh, are presenf
primarily for historical reasons: the current‘type functions serve.to
‘eliminate the need for them: Indeed, the quote functions are a bit of
a nuisance as the tyée functions must make special provision to ingare
thaf EVAL is called on those quoted atoms which are used to index int&
the ddta base that thév'program'uses. The reason is simply that the
atom and the gquoted atom are éeen. as differen;. sﬁructures by the
functions that are used to index _the database. By calling EVAL on tbe
quoted atom, the quotation function is removed from the list structure,
and»the atom is seen by LISP-as the atom itself. An fexaﬁple should
make thisja little less opaque. .Suppose that A is a LIéP étom. Then A
has a list of elements associated with called«iﬁs property li§;: data
can be stored on this property list under various property ﬁamés andv

retrieved with a simple LISP function, called GET. However, if GET is

called with (QUOTE A) rather _than with A and if GET is told not to

- . Y.

. 65

evaluate the expression it receives as the semahtig evaluator informs
it that it should do, then the wrong property list is scanned and the
information that is desired is not found. Thus,‘it is necessafy for
the semantic type functions to ellminate the extraneous quote marks on
the atoms that appear in the lists thaﬁ théy govern. | .

There are ten of these semantic typing functions,' and" they
divide semantically and computationally into two major groups. The
first of tbese is the sentence typing group: these functions appear
ohly at the beginning of a semantic parse and serve sclely to tell the

semantic evaluator - the type of sentence--~question, command ,

declarative, or formula--the input string was. Not too surprisingly,

“the current evaluation routine has relatively little use- for this-

infofmatioﬁ because.it is not handling declaratives in a realistic way
as yet. These sentence types are also for the benefit of the output
routines for the system, which are also ag yet ‘non-existent. There is
one sentence typing function -for each of the sentence types indicated
above. Eaéh of these sentence .typing“functions simpiy evaluateé the

contents of the argument list .and then CONSes on the appropriate

sentence type. The following diagram gives these functions and their .

definitions.

~

DCL DECLARATIVE DCL(X) <- CONS ('DCL, EVAL (X))
QUS QUESTION QUS(X) <- CONS ('QUS, EVAL (X))
FML FORMULA FML(X) <- CONS ('FML, EVAL (X))
CMD COMMAND CMD(X) <- CONS ('GMD, EVAL (X))’

" The other type functions are more complex and more important to

66

AN

the operation of our program. Essentiaily all of these except CHL are
quotation functions that turn off the LISP evaluation process at that
point at which they are encountered. All of these functions share the
rather special property that LISP does not evaiuate their arguments,
and moreover, they all accept an indefinite numb;r of arguments. This
is done by dgfining these functions in a special way. Whenever,
evaluation is desired, EVAL is called explicitly. bThese‘functions also
are used By other functions that are called later as flags: on this
point see Section III.10. In some cases the function -also simplifies.
its input: this is crucial for things that are to be seéﬁ as explicit
lists, for we want to have ali of the members of the list in simplest
‘form with any function calls occcurring within'the list evaluated out.
As a result of the quotation marks this is also important for functionms
wﬁich are to be éppiied, for as Was;remarkgd before, these depend upon
a database lookup{ which in turn depequ on the function name being
passed to the GET function rather.than a quoted version of the fuﬁction
name.
Thg LST function is defined as follows:

LST (X) <- CONS ('LST, FOR NEW I ON X COLLECT
"LSTEVAL I)

LSTEVAL (X) <- IF ATOM X THEN X ELSE EVAL X.

As an example, consider the following form:
(LST A (PLUS 2 3) (LST B C))

First the A is scanned and found to be an atom. Then the form (PLUS 2

¥t}

3) is evaluated to 5. Finally, there. is the s-expression (LST B C),
whieﬁ involves a call to the LST fpnction again, Tﬁis time both ef the
members of ehe list of afgements are atoms, So that this evaluates
immediately to (LST B C). Hence, the value of (LST A (PLUS 2 3) (LST B
C)) is (LST A 5 (1st B C)). .
There are four other functions whose behavior is quite similar
to LST tﬁat serve to flag different datatypes. FCN - marks a
mathematical functionviike factor; it also serves to eliminate unwanted
quotation marks. The function STS flags a set that is represented as a
characteriseic funetion while TV marks a truth value. Finally, there
is UNT which marks a unit-and which 1is not wused 1in the present
implementation. For the sake of completeness, we shail give the
definitioﬁs of these functions.
FCN (X) <- CONS ('FCN, IF CAAR X = 'QUOTE THEN CDAR X ELSE X).
STS- (X) <- CONS ('STS, X).
TV (X) <- CONS ('TV, LIST X).
UNT (X) <- CONS ('UNT, X)f
The CHL function that was mentioned above has .a slightly'
different role from the etﬁer type~checking functions. Although it
behaves like LST in calling’EVAL on the members of the list that follow
it,' it also serves as %é signal” to higher-level functions that are
applied to it that the list is a special type of list——av list of
choices one or more of which isvﬁo chosen. For example, the semantic
parser produces this type of a lis£ when it parses the list . of answefs

to a multiple choice question. Another example is the sentence

Is 3 greater than, less than, or equal to 2+37

68

i

In this sentence, the CHL, acting as a flag to the higher level

* functions that serves to change the calling sequence. In this

instance, rather than attempting to evaluate together the elements of

the phrase ''greater than, less than, or equal to" and failing due to

the fact that these functions are arithmetical relations that expect

numerical arguments, the elements of the phrase are made into a list of

choices and the function CHL is applied to this list. At a’higher

level éfter thelhrguments have been ceen by the semantic evaluator, the
functions that check the arithmetical relations are actually called,
which is;~ of Eourse, the intuitive content of the sentence. This point
ié discusged further in Section III. 10.

Finally, we shall give the definition of the CHL function. It
sﬁould be noted that like the functions above it éccepts an indefinite
number of érggﬁents, and does not evaluate these until explicitly told

toc do so.

CHL (X) <- CONS ('CHL, FOR NEW I IN X COLLECT
CHLEVAL I). — .

CHLEVAL (X) <- IF ATOM X THEN X ELSE IF CAR X = 'CHL THEN X

" ELSE EVAL X.

I1I.8 Mathematical Types

We shall now briefly discuss the implementation of appositions
in our system. In elementary mathematical language' appesitions

generally _aré used to express mathematical type-checking, which is

69

quite distinct from the internal data typing done by the semantic

evaluator. For example, one might well ask what the sum of the numbers.
2 and 3 is: the word '"mumbers" serves in this context to call a

special functioﬁ’in the semantics fork which checks to make sure that

its argument is a number. Of course in this particular case the system

just calls the function NUMBERP. In the more complex éase of fractibns‘
it checks for the internal list représentation of a fraction, which is

the LISP atom DIV as the CAR of a ilist, the CDR - of which is a list

consisting of the numerator fqllowed by the denominator. Ih MLISP

"notation this func;ion, which is called FRACTION and which is fai;ly

representative of.theée kinds of functions is defined as:

FRACTION <= IF CAR X NOT= DIV THEN NILA

ELSE IF LENGTH X NOT= 3 THEN NIL

ELSE IF NOT NUMBERP CADR X THEN NIL

ELSE IF NOT NUMBERP CADDR X THEN NIL
ELSE T.

III.9 Arithmetical Relations

Next we consider thé arithmetical relations, which are the only
mathematical functions that are qot.completely straightforward in their
implementation. The ’préblem that.is involved here is fairly simple:
the semantic parses that are produced are such that theée arithmetical
felations are not always paéSed the same number of arguménts each time
that they are called, but they must never the less ﬁev;luate ;Qgir

arguments. Moreover, they must be used in conjunction with the APPLY

70

PU—

function of LISP .which doeé not work properly with LISP HFEXPRS. The
solution is rather simple: jtne topievel function 1is a FEXPR, but it
calls~-on the basis of the input that it receives--one of two ENPRs.
It is assumed that each relation can only be called with one or two
arguments, These-éuxiliary functions do the obvious thing that the the
toplevel functién's name - implies. The problem with the LISP APPLY
function is solved by checking to see if the APPLY function is being
called on a FEXPR; if so, then rather “than calling APPLY the name of
the funczction is CONSed onto the argument list and EVAL is called on the
resulting s-expression. As an example of tﬁis type.of function, wé

. shall give our definition of the equality relation (the -function EQL).

THEN LIST(LST, CAR EQL1 X)

EQL <= IF LENGTH X = 1
= 2 THEN LIST (TV, EQL2 {CAR X, CADR X))

ELSE IF LENGTH X
ELSE ERROR.
As.one might expect, EQL1 generates a list of- ohe element--the
element with which one is supposed to determine equality or ineduaiity.
The MAKESET function that is menﬁioned below fimply removes duplicate
elements from a list, i.e., makes the 1list into a sét. Thé.function
EQL2 takes two arguments. If both of the arguments are atoms, then the
LISP EQ function is called while if both are 'lists then a special
function that compares lists for being equalmghen considered as sets is
calied. Note that two sefé a and b are said‘to be equal just in case
that x is member of a if and only if ‘x is a ﬁember of "b: this

definition of equality is different from that = used Ey-the LISP EQUAL

function which checks for equality of list - structure. The other

71

arithmetical relations used in the system are greater than, denoted by
GT, less than, denoted by LT, greater than or equal to, denoted by GE;
and less than or equal to, denoted by LE.

Al&ost the only.thing that will be saidl about the actual
arithmetical functions theﬁselves is that they are in the system, that
" they are standard, that they are not too inpeliigent, and that they are
;limited to some very common arithmetical operations. C(learly, a better
job could be done on_these, but that is not really tne topic of

interest here.

III.10 The Set Theoretical Functions: The I_Function

Next we shall consider the heart of the. sysgemf~the functions
fFat' correspond to the English structure of the sentence. . Many of
these are functions that perform transformations in our system, and
many of them represent tricks played upon the LISP interpretér.

As fairly representative of a top level function of the system,
i.e., oﬁevthaf appears at the level immediately below the level of the
g sentgncé type, is the I function. This function perfofms a t&pe §f
intersection, but its exact action depends on the data typés that it
receives on its arguments., In order to describe this function,‘we
shall first present a; abstracted and somewhat simplified wversion of
itsldefinirion in terms of the-various possible égSes that might occur,
an& then detail what 1s to be done_iﬁ each of the cases. In our usual
MLISP notation ;he definition‘of’I is:

I (X, Y) <= IF CAR X = 'CHL OR CAR Y = 'CHL THEN ICHL (X, Y) .

72

ELSE IF CAR X = 'LST AND CAR Y = 'LST THEN ILST (X, Y)
ELSE IF CAR X = 'STS AND CAR Y = 'STS THEN ISTS (I, Y)
ELSE IF CAR X = 'LST AND CAR Y = 'STS THEN ILSTSTS (X, Y)
ELSE IF CAR X = 'STS AND CAR Y = 'LST THEN ILSTSTS (X, Y)
ELSE IOTHER (X, Y).

[
I

We shall not describe fhe IOTHER.function as.Fbgt case really
does not arise in practice. In order to describe mop; easily_the oéher
functions that‘ are used, we éhall assume . that the type-checking
information is processed by some transparent intermediate functions, so
that the type flags (e.g., CHL) have beén removed by the time that the
arguments are .péssed to the auxiliary functiong mentioned abqve. It
will also be assumed that '‘the functions that we shall discuss below
know what those types are. ‘ bf course this is not very realistic, and
-in the actual impleﬁenta&ion the higher level. functions are orgénized
in such a w;y as to handle thi; matter.

Tha Flrsg aux111ary function that we shall describe is the one
that handles the occurrénce of the CHL flag in either one of the
argumenfs to the I function. The definition of ICHL is as follows:
ICHL (X, Y) <= IF CHOIéELIST X THEN FOR NEW I IN X COLLECT

I (CAR X, Y) ELSE IF CHOICELIST Y THEN FOR NEW I IN Y COLLECT
I (X, CAR Y) ELSE ERROR. :

What this means is that for lists of choices the intersection
is taken for each choice., This implements the transformation that was
discussed earlier. It should also be noted that the definition of the

function is recursive in the sense that the top level I function is

73

called by the function ICHL. This is not really é feature that is
actually -implemented, but it represents something that i§'desirable
from a conceprual point of view. Now we consider the function ILST:
" this takes the intersection of two expliciF lists--each marked with
the LST function. The definition of this function is:

ILST (X, Y) <= IF NﬁLL X THEN NIL ELSE IF MEMBER (CAR X, Y) THEN

CONS (CAR X, ILST (CDR X, Y) ELSE' ILST (CDR X, Y).

This is a very standard function tﬁaé finds the intersection of two
explicitly listed séts- Uniike chis function, the fuﬁction ISTS 1is
somewhat non-standard if very simple to understand oﬁce written. The
idea is that the iﬁput to this function consists of two characteristic -
functions for the membership rglations of the sets of which we wish to
take the interséction, Now 'the characteristic function for the
intgrsedtion of two sets is just the function that is formed by taking
the logical and of the charaéteristic functions of the input.sets.
Given this, all that must be done is to Eonvincé LISP to do that for
us. However, LISP systematically treats functions and data uniformly, .
so that we may define a function.that dperates on previously existing
function definitions tp produce new function definitions: this is just
Qhat the ISTS function does.

D
ISTS (X, Y) <= DEFINEFUNCTION ('AND, X, Y)

where DEFINEFUNCTION is a function of three arguments that takes the
input characteristic functions and stores the definition .0of a new

function on the property 1list of a new atom. The and means that the

“new function has the general form

74

IF X AND Y THEN T ELSE NIL.

The exact details of how this is done in LISP are of some
interest here. As we have mentioned before, the basic idea wused in
handling operations on sets that are represented as char.cteristic
‘functions is that of the. run-time created procedure. Using the
characteristic functions of the input sets, a new characteristic
function is manufaétured at execution time by the semantic evaluator.
The set theoretical operation cauées the system to first generate a néw
LISP atom upoﬁ whose property 1list tu: function . definition is to be
put. In general for ISTS the format of this function definition is:

LAMBDA (!X) IF (X !X) AND (Y !X) THEN T ELSE NIL.

The variable !X 1is a dummy variable used in the function definition.

It is assumed that X and Y are input characteristic :unttigns, which

L4

are to be called by the system during the course of evaluéting this

s

form.

_, This process does have its disadvantages from the aspect of the
implementation, for function ¢~ ‘ions that are created in ﬁhis
manner remain présent within the LT3P . system for the . fe ‘of the’

program. This means that af* r a time'the-LISP system will run 6ut of
available space,'and the no:.gl procedures for collecting space that is
no longer needed will fail. Clearly, this flaw in the system can be
réﬁédied Ey meéns of some systems progfamming to alter the code of the

LISP ihferpreter.

Q " - 75 -~

ERIC \

Aruitoxt provided by Eic:
.

Finally, there is the case in which the I function receives as
its argumenté an explicit list and a characteristic function for a set.
The'idéa here is to apply the function to the elements of the explicit
list one at a time to check to see which of the members of the explicit
list belong to the other set. This is defiped by:

ILSTSTS (X, ¥Y) <= IF NULL Y THEN NIL ﬁLSE IF X (CAR Y) THEN
CONS (CAR Y, ILSTSTS (X, CDR Y)) ELSE ILSTSTS (X, CDR Y).

We have assumed here that the .explicit list is known té be fhe second
.argument and the characterisﬁic function <che first. It should be
pointed out that the act?al system has an opportunity to ﬁall some
heuristics before actuélly going to these procedures.. These heuristics
incoporate some of the very elementary facté.about ihtérsection such as
the fact that ;nything.intefsected with th; empty.set is empty and the
idempotency of inter;ection. A deﬁailed giscussion ¢f the heuriétics

themselves is to be found in Section IV.6 and subsequsitt sections.

TIT. 11 The Other Set Theoretical Functions

There are three other funcztions that appear on our system that
have the Same‘characper as the I function except that they compute
other ser-theoretical funccions. These functions aré€the U, S, and SD
fﬁnctions. The only difference “between these functions and the I
function 1is that these fﬁnctiogs compute different set—theoreciéél
functions. As should be obvious, the U function computes the un}gn of

two sets while the S function determines whether the first set is a a

76

1

subset of the second. The SD funétion determines the set-difference of
its‘first argument and its second, ife., it determines the set whose
members belong to the first argument and.nét to the second. Like phe I
ﬁunctiqn all of these fﬁnctions_ look for‘ tHe CHL flag and perform
multiple operations ifﬂit is seen. They also use the type information
i

to determine the methods of computation that are to be wused. Since
tHere are some special problems associated with each of these -
funcéions, we shall briefl§ discuss of each of them below.

The trouble with the U function is that it is an expansion of
the set: . there is the simple‘?act that the union ;% two sets is a
superset of both. The problem with'phis is tha£ our general program ofl
reducing the representation of sets'to explicit lists is set back'by
the use of the U fuﬁctioﬁ: when .one takes the unién of a set
represented b& a list with one represented by a characferistic
function, one in general cannot represent the result by a list ;s éne
can when taking the intersection; In general then the output of thS»H
function may.be éescribed as follows: |
U (X, ¥) <= IF LST (Xj AND LST (Y) THEN ULST.(X, Y)
ELSE IF LST (X)-AND STS (Y) THEN ULSTSTS (X, Y)
ELSE IF STS (X) AND LST (Y) THEN ULSTSTS (X, Y)
ELSE IF STS (X) AND STS (Y) THEN USTS (X, Y)
ELSE UOTHER (X, Y) . ’
As ,before_ the case of UOTHER does mnot arise in practice. The

definitions of ULST, ULSTSTS, and USTS =zre given beiow:

ULST (X,’Y) <= IF NULL X THEN Y-ELSE IF CAR X MEM Y
THEN ULST (CDR X, Y) ELSE'CONS (CAR X, ULST (CDR X, Y))

USTS (X, Y) <= DEFINEFUNCTION (W, MEM X OR MEM Y)

O

ERIC

Aruitoxt provided by Eic:

ULSTSTS (X, Y) <= DEFINEFUNCTION (W, MEM X OR MEM Y)

where we have DEFINEFUNCTION as usual defined to be a funcrtion that

" creates function definitidns inside LISP. The function that is defined

by a call to this s—expreésion “imply checks~for membership in X and Y

by scanning the -argument 1f~ it 1is a 1list and by applying the

[RS—

characteristic function otherwise.

The S function is rather different from the other,6 functions in
this group because it does not return a set, but rather a truth value.
Tﬁe only outéut from the S,function has the form (TV T) or (TV NIL).
It should be pointed out that the S function 1is especially hafd to
gompute4for'éets that are not expressed as explicit lists. The reason
is that there 1is no uniform and effective way to determine if one
recursive set is a subset of another: this is a standardj‘fééult of
recursion theory and may be fdund, for example, in:ES]. This means
that unless the system is éble to use the. definitions of the sets,
i.e., knows some mathematical relationship between ﬁhe sets, vit,cannot
compute the S function if both of the: arguments‘ are given as

. o . . :
characteristic functions. If the first argument is an explicit list,
then the.algorithm that is used to compute the S functicn is apply th$

gharacteristic fﬁnctionzfor‘the second argument to each eleméﬁt ~of the
list. Finally, if the second érgument is a list and the fifst is given
és a cnaracteristic function, mofe‘ information is again Gneeded. The
pr;blem this time is thaf. there is no straightfprward way to generaﬁe

all of the members of a set that is given as a characteristic function.

The standard definition of the functions ié.given below.

v I

3 . 7 8

S (X, Y) <= IF LST X AND LST Y THEN S1 (X, Y)
ELSE IF LST X AND STS Y THEN S1 (X, Y)
ELSE SCTHER (X, Y)

S1 (X, Y) <= IF NULL X THEN T
ELSE IF MEM (CAR X, Y) THEN S1 (CDR X, Y)
ELSE NIL

The last member of this class of functions is the SD function.

e

This function is more closely related to the I and U functions than to

the S function. Like the U and the I functions this function xeturns a
e - -) I
. ser whose members are the members of its first argument that do not

I

belong to its second: it takes the set difference function. As usual

the function is quite.straightforward for sets that are represented as
explicit lists. Méreover, it 1s possible to specify the characteristic
function of the answer in all of the\other cases, but not .possible in
géneial to give o re_.resentation as an egplicig lis&, so that the SD

function resembles U in this. regard. Thémfollowing LISP definitions

y

SD (X, Y) <= IF LST X AND LST Y THEN SDLST (X, Y)
ELSE.IF LST X AND STS Y THEN SDSTS (X, Y)
ELSE IF ‘STS X AND LST Y THEN SDSTS (X, Y)
ELSE IF STS X AND STS Y THEN SDSTS (X, Y)

describe the SD functions. *

SDLST (X, Y) <= IF NULL X THEN NIL
ELSE IF CAR X MEM Y THEN SDLST "(CDR X, Y)
| ELSE CONS (CAR X, SDLST (CDR X, Y))

SDSTS (X, Y) <= DEFINEFUNCTION (W, MEM X AND NOT MEM Y)

I11.12 The Verb 'Have' in an Existential Context

O

ERIC

s e

. We now turn to the diécuss%on of the iﬁplementation of the verb
"have" in our.system. As was mentioned in the previous chapter, this
verb is qdite,interesting duz to the transformational character‘ of its
semantics. = Let us briefly recall what we said about: the intuitive.

semantics of "have'. One of the fundamental ideas about this fragment“_

of natural language is that senténces in genéral and questions in
particular can be viewed as structures that relate functions to their
arguments: the so~called linguistic~or English part of thke sentence
serves to bind functions to their arguments'and to ensure that the
funptions are called in the proper sequence. For the case of questions:
using the Qerb "be" this binding is tapher like one based upon
structural proximity; however, in the case of the verb "have" this is
not the case. For example, we have the sentences:

Are the factors of 6 evené (1) \
Does 6 have an even factor? (2)

To caﬁpute the answer to the first question, we simply.apbi;
the factor functionvto 6 and then check to see if all thel members of
the resulting 1list are evén numbers. But to aﬁswef the second
question, we must ignqre the propinquity of even and factor, band again

apply the factor function to 6 and then check to see if any members of

S E _ :
the resulting 1list are even. . This clearly involves a sSemantic

~
'

transformation whicHlpasses 6 as an argument to the factor function and
then applies the characterirvic function of the set of even numbers to
each of the elements of the~ resulting list. This aspect of the

semantics is implemented using special functions that are introduced

into the semantic parse.by the appeaf;;ce of the word "have" in the
surface seﬁtence.

The functién that would be used in the computation of the
answer to question (2) above is called‘EXTHNP; & fhe defiﬁition of
EXTHNP is given below in our standard notation.

. EXTHNP (X, Y) <= IF LST Y THEN DEFINEFUNCTICN (EXP1, X, Y) ELSE

IF STS Y THEN DEFINEFUNQTION (EXP2, X, Y)- ELSE ERROR.

In the above EXP1 and EXP2 are templates used in the deffnigidn‘ of the
temporary functions that EXTHNP generateé. Both carry the furce of a
logical and. Also both of.thé expressions tha: are used in defining
the fungtion that is generated by EXTHNP call the I funéfioﬂ: the
difference in EXP1 and EXP2 is that in EXP1 the I function is called
for two explicit list while'in EXP2 the I functkqn is called for oné
:-explicit list and oﬁ; set. The définitions of EXP1 and EXP2 followe
EXP1(X, Y) <= IF EXIST (I (APPLY X !X)j(’LSI,Y))—THEN T ELSE NIL

EXP2 (X, Y) <= IF EXIST (i (APPLY X !X) ('STS Y)) THEN T ELSE NIL

By EXIST we mean a LISP function that?checks.to see whather its

v

argument is an empty set or not. For explicit lists we have the simple

function that is shown below. .

EXISTLST (X) <= IF NULL X THEN NIL ELSE T . :

For the case of a set which is described by it characteristic function
the EXIST function is more difficult to program. The idea tiat we use

is fairly simple--search for an example of something that belongs to

81

srs this can be done in a fairly

the set, For sets of natural numb
straightforward manner by simple enumeration and the use of a few
heuristic tricks; it is alsoc the case that the i: formation extraction

procedures discussed in the next chapter are applicablé to this

problem.
~
IIL.13 Two QOther Constructions Using 'Have'
We shall consider two other functions that are used to handle
English constructions invblving the verb "have'. The first of these is

called UNVHNP, and handles sentences in which we are asked to detefmine
if all of the members of some set have some property or other, Fof
example, consider the question:

Does 12 have only even factors?
In this question we must first determine the sét of allvfactors of 12

and then check to see if rach member of this set is even.

‘The definition of UNVHNP is roughly as follows:
UNVHNP (X, Y) <= DEFINEFUNCTION (W, IF S (X (!X), Y) THEN T ELSE NIL)

In the formula above S 1is to Bé taken to be the subset f@gction of
Section III.11, and !X is a dummy variable that is used in the

definition of the function that UNVHNP creates. For the example given

above, -we have the following semantic parse:

(Qus (S (LST 12) (UNVHNP (FCN.FACTOR) (STS EVEN)))).

oo’

The function that UNVHNP creates at éxecdtion—time has the form:

IF S‘(FACTOR‘(!X), EVEN) THEN T ELSE NIL

5

82

oy

The other function that we wish to discuss briefly 1is called
FCNMK., This function is wused to» take = pre-defined arithmetical
functions of our’ system into new functions that are somewhat modified.

It éccepts_ two arguments, the first of which is "an arithmetical

- function whose definition is already spécified and the second of which

is a set of numbers. It creates the characteristic function of the set
of all members of tﬂe result of the application ;f its first argument
to »séme number intersected with its second argument. For example,
FCNMK would be called to handle the phrase ”the. odd factors'. It
creates a functién that computes just the odd factors of -its argumeﬁﬁ.
As is standard with this kind of function, FCNMK creates a special
function that is §%ored aﬁg later used by the semantic - system to

actually -compute, say, odd factbrs. The definition of FCNMK is given

below:

/,fFCNMK (X Y) <= DEFfNEFUNCTION (W, I (APPLY (X, iX), Y)).

#

This Vdefinition follows our usual .conventions,_and involves the I
function that ié>diSCUssed above. For the example:of "odd factors" a
function Would be created that would generate the odé factors of a
number wﬂen called: - |

I (APPLY (FACTOR, !X), ODD) S .

1.
kS

is the result of such an application: T

III.74 The Tmportance of the Run-time Creation of Functions

83

With the -description of this function we have completed

detailed descriptions of representatives of each of the major types of

functions to be found in the semantic evaluator. In the next chapter

O

ERIC

Aruitoxt provided by Eic:

we shall talk a bit about why this works as well as it seems to: ‘there
are some tricks invoived. However, oné of the major tricks should be
apparent alreaﬂyf'-many of the functions that afe needed by the system
are not hand-coded = in advanca, but are created by calls to other

functions at run time. Thi:z me.dless to say, greatly increases the

power of our system, for the programmer does not have to pre-code every

function that is needed for the semantic evaluation process.

Chapter v

Information Egtraction and Heuristics

Ip.this chapter we shall attempt to account for the fluency 6f
our semantics system and to indicate how its apparent performance as a
question—angwering system might be improved. We shall present “first a
method of-hsing the definitions of functions.to help answer questions
about those functions: we call "phis,information extraction. After

this we shall give a rather detailed coverage of the heuristics that

are actually used in our present system and some simple extensions of

O

ERIC

them.

Information extraction is introduced in Segtion IV.1, and
the relationship between it and the standard methodology of resolution
theofem—proving is »covered in Section Iv.2. The most important use
of "this technique should. be in >the_ answering of 'how" questions‘
(Section IV.3),' but it 1is envisioned that it will be applicable to
other probiems as well Section iV.h. ?he ﬁeuristicé- that we have
actually impleme K already are the éubject of~the rest.of the chapter

g
(Section IV.6 and onward). e C e

-

IvV.1 Introduction to Informatior. Extraction’

At this point in the discussion of the implementation, we shall

consider what could be a very important application of pattern-matching

X

Aruitoxt provided by Eic:

E

to our system. A: present this has not been put into the program, but
it seems to hold some “promise. T..e idea 1is that the characteristic

functions of the sets as well as the LISP functions that code the

grithmeticél functions contain information about the sets or functions
that is accessible to a clever pro~ram. Such a program could extract
information from these procedures which would be useful both in
answeriﬁg:questions-about why something;is done in a ceftain way or how
-it is to be donef For example, -one might consider the question of

whether one divides to-find the factors of 6. In order to answer this

question, one might, instead of looking in a data base or proving a

.
-

theorem about the answer, extract this iﬁférmdtion from the functiom
that actually computes the faétorsdéf a number. Similarly,- one might
be able to teli from the characteristic functions for two sets if their
intersection is empty or not. How sophisticated this can be made is
dependent primarily'on the amount of effort that one wants to put into
it. It is fairly”ciear tha; for thé.ratﬁer sfylized ‘definitions that

: -~

.are created by the I function it would not be toc difficult td check to
see if, for example, the function that is created is thé charactefistié
function of the numbers greéter than .S.anz less than‘2. This 1is type
of information extraction from procedures is very much like the kind of
theorem ~proving that 1is done wusing patferp—matching in the PLANNER
system of Héﬁitt i4] except that the gunctions that are called by the

procedures are compared with each other on the basis of pre-stored

ihqwledgé about their matﬁématical'relationships:‘ It should be noted

- -

O ‘.) 86

RIC

Aruitoxt provided by Eic:

in this‘regard that we do noc envision the wuse of the methods of
resolution theorem—proviné in doing this. Although resolution has been
suggested by some authorities such as Sandewall as a basis for
question—anéwering in natural language, "there are a number of reasons
to believe that this is not reaily a very desirable approacg to the

problem of natural language question-answering.

Iv.2 »I Resolution Is Not a .Suitable Basis For Information
Extraction

There are several reasons why the resolution method does not
really serve to. provide a good basis for matural l;ng;agé guestion—
answering. The first is a very pragmatic reason, and also, given the
state of the current resolution theorem—provers, a.very compelling one.

At the present time (mid-1973), resolutioﬁ‘ theorem-provers are too

inefficient at finding proofs and require too much central processor

time to be practical. Even the best-written theorem-proving programs

are very large and rather slow. Although this feature is not

particularly bothersome when one is really interested in theorem-

’

-proving for the sake of theorem-proving, it makes it impossible to use

O

ERIC

Aruitoxt provided by Eic:

a theorem-prover as .the basis for question-answering n reasonably

’

close to real time.” The problem is, of--héﬁrseg that the resolution

method is a wuniform proof procedure designed ¢to handle_many kinds of

deductions ' and ‘is not specializeéd enough to meet the” needs of a

question-answering syscem. Although Sandewall. has suggested that this

87 " ! . . - . -v.! . =

E

o) : 88

RIC

objection can be met by writing resqlution theorem-provers that are
more efficiept, this has not gs‘yég—geﬂn done successfullly, and so the
objection'remains. o

There are other reasons for believing that resolution theorem-
proving 1is notA a very viable method for answering natural language
questions; The first of these, which was pointed'out to me by R.
Statman, is that resolution is not a very natural method of reasoning.
In particular for propositional'logic, forming resolvénts is rather
difficult, and produces proofs that. are not as ''matural as ona might
obtain from a natural deduction calculus. Tﬁé structure of a
r*yalution proof is rather more complexithan the strugture of a prbof

in a natural deduction system. In particular, there is no. -very clear

relationship Letween the formulas at the top of the resoliution proof

tree, and the end formulas: one must calculate the resolutions to .

understand the proof.

Aﬁother problem with resolution is its very uniformity. The

fact of the matter is that while res iution will find a proof if one

exists, this is not really a desirable feature. Instead, what is

desired is a proof procedure that proves plausible inferences

relatively quicklyQ Such a procelure need not be complete so long as

IAY

it is implementable and does a reasonably good job in’ proving~fgi1;y

routihe theorems. The issue here 1is not mechanical mathematics, but

3

rather the basis for a practical EnglisH'language.understanding system.

The fact that a proof procedure is not complete does not matter so long

Aruitoxt provided by Eic: -

V-

‘as the procedure produces proofs in a reasonable length of ‘time for

some class Qf\formulas thét includes most_of the formulas that can
reasonably be exéected in practice. Unfortunately, .ery little is
known about the bounds-on the~complexity of -mechanical theorem-proving
procedures: this is a research topic in the study of mechanized 1ogic;

' Yet another objection to resolution as a basis for a natural

language question-answering system is that the resolution procedure is

. : ']
"primarily syntactic in nature. The machine manipulates the symbols in

O

the formulas in order to make the resolutions, but does nut really use

semantic information. Moreover, almost all of the editing strategies

that are used by theorem-provers to make practical the procéss of

finding a proof depend on syntactic properties of the formulas such as

’

their length, the names of the variables that oﬁcur iﬁ them,"'aﬁd their
syntactic form. Extept for tﬁe work of Hayes and his associates there
seems to have been relatively little effort to use semantic informafion
to help reduée.the number of clauses appearing at the nodes of the tree
or to simplify their form. As Nilsson says in [18]:

The reader probably noticed that all of the search
strategies discussed in this chapter involved syntactic
rather semantic rules (that is, search restrictions and
orderings were based on the form of the clauses and
possible deductions rath: than on their meaning).
Semantic guidance could be provided in & number of
ways, but there have not yet been many attempts in this
direction,. .

This is exactly what we wish to avoid in our work. Our approach to
computatiénal linguistics involves crucially the notation of finding

the meaning conditions for sentences, and using those in some. manner to

89

ERIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

determine the answer to input questions. Thus, it is highly desirable
that our computational methods use this semantic information. It also
seems plausible based on human experience that the theorem—prdving
[. .

process 1itself might be improved by the use of such information.
Exactly how such info;mation‘should be used in the theorem-proving
process is difficult to see, but for the present time at least, the
resolution method of theorem-proving does not incorporate the use of
such information, and thus, is not suitable for use as a Sasis for
question-answering in a system that is attempting to understand natural
language input. |

’While we have said a good bit about what information extraction
is not, we have not said much about what it is and how one would
implement it. The basic idea is(that information extraction is to be a

heuristic procedure that operates from a data base of mathematical and

linguistic facts. -~ As we noted above, information extraction has two

-

distinct uses, ana these two different uses to some extent determine
what we actually mean by information extraction and how it is to be
implemented. We shall begin, as is our custom, by considering . the
simpler case first——tﬁat'of the use of information extraction to treat

"how" questions.

Iv.3 The Application of Information Extraction To How

Questions

The treatment of '"how" questions is based on the simple idea

90

O

ERIC

that the mathematical functions that are used by our system to answer
computational questions form a hierarchy. Some of these functions--
such as addition, for example---are t; be considered as mathematically
primitive, and the other func;ions in the system are to be considered
as complex. For instance, the FACTOR functién is a relativély complex
arithmetical function that is built up out of the division funétion.
So to answer a question as to how one computes the factors of, séy, 6,
one would look at the FACTOR function as it is defined in our system,

and notice that the LISP definition calls the DIVISION function. From

.the definition of the ~ FACTOR function one could extract this

information and use it to answer the "how' question. Note that in such
a case the decision to use information extraction is automatic and is
based on the type of duestion that one has to answer: "how"_questions
always call this type of -seman’.ic evaluation, and this fact should be

incorporated into the toplevel linguistic functions that correspond to

‘the English for '"how'.

There are two very important issues that remain regarding
information extraction in this context. The first is the omnipresent
problem of what primitives are to be chosen. Cleari&, given the
‘generality of the LISP interpreter it is possible to choose the same
primitives thar serve as the basic functions in the standard definition
of the set of recursive functions, i.e., the zero function; the
successor function, and the projection functions. However, this leads

to rather messy function definitions. It seems somewhat more reasonable

91

Aruiitex: provided oy enic [

for most appiications to let the usual arithmetical operations be
chosen as primitive and try to buildﬂthe other arithmetical operations
out ofbthem. In fact, this is essentially what we hz2ve done in our
implementation of arithmetic, for the AILISP interpreter is quite poor
in pre-defined arithmetical functions, and most of the functions tﬁat
we used other than the basic four operations we had to define
ourselves. Of course just exactly the primitives that one chooses
depend on the applications of the gystem that one has in mind.

The second prbblem that we must solve, and we have to admit
that we have as yet not been successful in doing this, is the actual
implementation of this idea. The fundamental idea involved in the
implementation is to scan the definition of the function that we wish
to know how to compute and look for the occurrence of one or more of
the chosen primitive functions. If none of the primitives occur, then
‘something is wrong, and aﬁ error roupine is ealled. If only one
primitive is found, then that is returned as the basis (at least) of an
answer; if more than one primitive is found, the problem of how they
are related is encouqtered, so that it is not.so clear how to proceed.
As a first approximation, one can simply return a list of all
primitives found in the order din which they occur in the function
definition. Clearly moré powerful heuristics will be required later to
intergﬁgt the LISP code and to provide better explanations than this.
We shall give in our standard notation an outline of what ‘tour first
proposal would look lika.

EXTRACTPRIM (X) <= RﬁVERSE (IF NULL (X) THEN NIL

ELSE IF MEMBER (CAR X, PRIMITIVES) THEN CONS (CAR X, EXTRACTPRIM CDR X)

92

O

ERSC

Aruitoxt provided by Eic:

ELSE EXTRACTPRIM CDR X)

where REVERSE is a LISP function that accepts a list as its argument

and returns as its result that list with elements listed in reverse

order. . !
Iv.4 Information Extraction A5 an Aid to Problem Solving
. Now we turn to a slightly more speculative venture—--information
extraction to assist din the actual computations themselves. As we

noted.before, the semantic evaluation program creates large numbers of
functions as it executes. Siﬁéé these functions are produced by
functions that are hand coded, the resulting new functions have a
rather ”étandard format which lends itself to pattern-matching. The
basic idea here is to do 2 better job computationally by wusing the
mathematical relationships of the functions that are already defined in
the system.

To make this point a little clearer, we shall give an examplé
in which what we have in mind might make things 2 little easier for the
computational program.‘ Suppose that we are asked if the set of numbers
greater than 5 and less than 3 contains a prime. In our present
implementation about all that the program is able to do is to generate
a characteristic function for the set: it does not know that the set
of all numbers greater than 5 and less than 3 is empty. The semantics

system, if modified to include this type of information extraction,

93

E

O

would scan the definition of the characteristic function for this set

prior to applying it to arguments tc check to see if the function might

be simplified in some way. In this wusing the known mathematical
relationship between greater than and less than, it would look for a
pattern of the form

AND (GT X1) (LT X2).

If this pattern were .found, fhen the values of X1 and X2 are.compgred
and the set of all numbers between x1 and X2 (which may be empty) is
generated. This gives us much more definite information about the set:
in the particular case considered above the information is complete in
the seﬁse that it answers the question by itself. Even if there wetre
some numbers in the generatgd set, we still have the information that
the set is finite, and that the. answer to many questions can be
obtained by'simply scanning the set. As we noted in Section II.3 it is
almost always the case that a complete (or perhaps we should say a
better formatted) answer is most easily obtained from the case in which
we have an explicit list to work with rather than a characteristic

function.

V.5 Mathematical Information To Be Used By Information

Extraction

There is of course the question of what kinds of mathematical

information can and should be incorporated into the semantic evaluator

.

94

RIC

Aruitoxt provided by Eic:

O

ERIC .

Aruitoxt provided by Eic:

at this juncture. It seems likely that this can be answered only after
some experience with the system and only after it has been determined
what the system is to be used for. At the bare minimum it seems likely
that one would want to incorporate information regarding the ordering
relationships on the integers as well as information about the relation
between a prime'humber and its factgrs. It also seems likely that
information about non-explicit negations, e.g., prime and composite
could be used by the information extraction routines.

The actual Implementation of this depends first on the
establishment of standard forms for the definition of functions in the
semantics system; this has already been done. Then a pattern-matching
capablity .must be implemented as well as a method of wusing that
capabiiity in conjunction with a database of mathematical facts. This

has not yet been attempted.

Iv.6 The Heuristics Actually Used in the Semantic Evaluator
®

The next item fhat_ we shail consider is the problem of the
heuristics that we actually used in the program that we have already
written; For the most part, these ire quite simple and rather obvious,
but they greatlybincrease the fluency of the system and improve its
computational ability.v' Mosf-of these heuristics are based on rather
élementary facts about number theory and set theory, and are programmed
into the functions that used in a very direct maﬁner. The usual method

of calling the heuristic functions is to have the LISP function that is

95

going to use the heuristic call a special auxiliary function that
decides if the heuristic is applicable. This function does the actual
computation if the heuristic is applicable and returi.s to the toplevel

function if not.

Iv.7 Heuristics for the Set Thecretical Functions

Having given tﬂis general ocutline of the ménner in. which our
heuristics are appiied, we shall next gc inte rather great detail about
the heuristics that we used and how they might be improved. The
heuristics that a&are currently in the system can be divided into two
groups., In the first group are heuristics that are associated with thé
set—-theoretical functions that correspond to the Enélish, and serve to
simplify ceértain special cases of the set theory involved. To
illustrate this, let us consider once again the I funétion. Heré we
have only two fairly simple heuristics, The»first is that if the two
arguments to the I function are equai according to LISf——which is a
good bit stronger thaﬁ set~theoretical equality--the I function returns
the first argument. For clarity we'sﬁall give the definition of
equality iﬂ LISP. By definition, the EQ functien returns.T if its two
arguments ére the same LISP atom, and NIL otherwise. Then we have: ’
EQUAL (X, Y) <= IF ATOM X OR ATOM Y THEN EQ (X, ¥)

ELSE EQUAL (CAR X, CAR Y) AND EQUAL (CDR X, CDR Y).
We shall show that if two things are LISP equal, then they are set-

theoretically equal.

96

Theorem: Let X and Y be s-expressions. If EQUAL (x, y) then X
and Y are set-theoretically equal. The converse is false.>

Proof: Suppose that EQUAL (X, Y). If X and Y are atoms, then
even if X and Y represent characteristic functions, we have that X and
Y are the same set or are characteristic functions for the same set.
If X and Y are lists, then clearly X and Y have the same members, and
hence are set—-theoretically equal.

This sﬂould be sufficient to justify this heuristic. It is
worth mnoting that wusing this heuristic does mnot require much
computation time for all that is involved is a simple check for
equality. The other heuristié that is wused with the I function is
simply a check for the empty set. This check is not verybgood, for it
checks only for tﬁe empty set representad as an explicitly empty LST.
of course, tzis has the form (LST) rather than being simply NIL.
Again, the «check 1is quite 'inéxpensive icomputationally. Similar
heuristics are us.d with each of the basic set-theoretic functions of

the system--U, S, and SD.

IV.8 Heuristics For Doing Arithmetic

There are other heuristics that are used to produce better
answers to questions than éap be obtained from simply manipulating the
.characteristic functions, and lists that are given. Most of these are
based on simple facts of arithmetic. Although atvpresent ‘there are

heuristics only for such things as how the set of odd numbers nd the

97

set of even numbers are related, it is <clearly an important task to

find and to incsiporate other such arithmetiical facrs. From experience

with the program, it is clear that the wusze of even very limited

heuristics greatly increazes the fluency and the apparent performance

of the program. ALl of these heuristics are implemented by

storing the

desired result of scome computation on the property list of one of the

arguments to the computation and then having the function lock up that

result. Again, we shall <comsider the I funcuion. Since these

heuristics aia used only when we have two Sets represented by their

[47)

characteristic funciions, the heuristics aie called valy after it i
determined that the I function has rezeived tWOz characteristié.
functions. as arguments. The sets to which the heuristics are
applicable are marked by having on ché property iist of the atom that
names their characreristic function under the propecty ISSPECSTS the
value T, A simple rtable lookup routine is called tc <check for
applicability of the heuristic. If the applicability funcrion--known
as ISSPUSTS~-returne T, then thé answer 1s found by looking on the

>

property list of the first argument to the I funciion under =z property

named the second argument. We shall give the details of che definition

O

ERIC

Aruitoxt provided by Eic:

in the usual wmanner,. and shall as is our custom omit all of the

irrelevanf parts of.thé definicior;° The functioﬁ that we shall define

is called ISTS, and is called from the I funcrion: this function

computes the intersection of sets when the sets are rapreseﬁted as
o . :

characteristic functions. (This function d1s also defined and is more

completely discussed in Section III.i0.)

98

ISTS (X; Y) <= IF ISPCSTS (X, Y) THEN SPCSTS (I, X, Y) ELSE
DEFINEFUNCTION (W, MAKEINTERSECTION (X, Y))

The function SPCSTS is defined to.be the value of the property named by
the second argument on the property list of th2 first. Note that this
implies that each fact must be stored twice for intersection is
commutative. For example, the fact the intersection of the odd numbe;s
and the even numbers is empty must be stored both under the property of
odd on the properzy list of even and also on the property list of odd
under the property even. Since there are also the U, S, and SD
operations to consider, there_must be some mechanism for sﬁoring the
heuristics that are needed for all ;f these on the same property list
under the same property.' This is done by marking each of the items in
the list wunder a partiéular property by the operation with which it
belongs. Then each operation merely indexes into the 1list by means of
an association funcrion to retrieve the correct answer. Assume that
the GET function is a LISP function of Z arguments. The first of these
is the name of the identifier whose property list we wish to access
while the second of these is the name of the property whose Value we...
wish to retrieve. Then iquSSOC is a LISP function that retrieves from
a list the first element whose CAR.is equal to the given elemegt, we
have the following definition for the function SPCSTS.

SPCSTS (X1, X2, X3) <= ASSOC (Xi, GET (X2, X3))

This particular design of the data structure has the advantage of

2llowing uniformity over all of the operations. Thus, we only need

E

O

this funcrion tc implement all of the heuristics that are involved with
the relationship of sets of numbers to each other. The database upon
which <this funttion draws must of course he set up in advance of
running the program: this is done by the use of a rather simple.SAIL
program that generates the proper s-expressions which are then read

into the LISP core image when the semantics system is created.

IV.9 The Justitication gj_the Heuristics

The most Important issue, however, regarding the heuristics is
the problem of how to justify them. From a mathematical point of view
this is completely trivial, for these facts arong the most elementary
results of number theory. Specifically, we have incorporated the
resuits of the set—theoreticai union, intersection, sec-difference, and
subset operations on the sets EVEN, 0DD, PRIME, and NUMBER. In some
cases this involves the addition of special ' pre-coded characteristic
funcricns such as ODDPRIME to the system. In other cases such as the
intersection of the EVEN numbers and the PRIMEs this means storing the
structure {LST 2). However, the use of <chese heuristics must be
Justified compurationally on the basis of the performance of the
system, and also or the basis of.some kind of machematical naturalness.
This last constraint is necessary if the system is to be aﬁle to answer
"how" questions in a reasonable way.

With regard to the Vperformance of the system these few

heuristi:zs greatly improve its performance. The major problem that the

100

RIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

semantic evaluator has when given a reasonable question to answer is
how to represent the sets in the semanfic parse. The use of these
heuristics enable the system in a number of cases to replaze the use of
characteristic functions by explicit lists. Since as was pointed out
in Section II.3, 1t is almost always desirable to use explicit lists
rather than the chatacteristic functions, and since this tends to make .
the system look more fluent, the apparent performance of the 'systeﬁ is
enhanced by the wuse of thege heuristics. For example, the
representation of the set of even pfimes by the explicic list (LST 2)
is more perspicucus and makes it éa51er to do further manipulations on
the set. It is important to note that while the representation makes
no difference in the mathematics involved, it is very importaht in the
actual computer implementation. The characteristic functions are, in
some sense, less desirable as a representation than the explicit lists
simply tiecause many of the manipulations of the characteristic
functions that we perform are simply the storing of the current
operation until such time as we: héve an explicit list rep;esentation
and are actuarly able to carry out the operation. For example, when we
take the intersection of two sets represénted as characteristic
functions all cthat happens 1s that a. new characteristic function is
created which can be used to check for membership in the newly created
set. When we take the intersection of two sets that are represented as
explicit lists, however, then we actually get a list as the result, and

it is such a list that we are always striving to get if possible in any

101

of our computations. Note that this problem of representation is not
handled by classical mathematical tools thus indicating a need for some

new mathematics to formalizz this problem.

Q 102

ERIC

Aruitoxt provided by Eic:

Chapter V

Ce risons With Other Work

V.1 Machine Translation

There have in the past twenty years been many attempts to
program the computer to understand natural language input. 'Indeed,

this was one of the first problems atracked in the then young field of

artificial intelligence during the 1950’s. At cthat time the emphasis

was on machine translation--attempting to get the machine to translate
documents from another language (ugually Rusfign) into English. After
ten years of work on this subject interest in it died down in the mid-
1960's when .: was concluded that the project of machine translation
seemed to be hopeiess. AlthoPgh a number of programs had been written
that could translate some fixed piece of text (usually a &emonstfation
document wupon which the program had been debugged), when given any
other material as input, these progréms failed to produce any
translation at all. Usually, the theory behind such programs was
syntactic: the syntax was analyzed according to some scheme or other
and then a word for word match was made on the syptactic components,
Towards the end of the machine translation era,
transformational grammar became popular, leading to work like that of

Petrick [9] and Kuno [19]. These workers attempted to write parsers

103

E

O

for naturai language based on the syntactic theories of .Chomsky and
others. Although these programs couid oiren many parses for a given
inpuc sentence, they did not nave'any semantic component, and cheir
only function was to parse ainput. Moreover, most of the parsing
algorithms that had to be wused were quite ineificient (see Woods iTO]'
on this point), and have been-repliaced in more recent systems'by things

like augmented transition netwcrk parsers.

V.2 The History cf Question-Answering Systems

At about the same time as this work on trahsformational synrax
was peing done, mostly at Harvard and Mitre, :smputer scientists became
interested ia gquestion-answering systems, and in particuliar, inm
question-answerers that azcepced natural language questions. The early
work in this field is described by Simmons in {20}, and much of the

original work has been vzilected in 121] by Minsky. Clearly, such

systems n2eded .to be much more concerned about the semantics .of the

"

input question than sbout Ae syntactic analysis - of English, and in
that respeit they resemble our work. However, these programs were for

the most par:t oriented toward problem-solving using the computer rather

than toward the understanding of English. Although programs such as

]

that of Bobrow [21] accepted a modified form of English, they generally
looked for certain words to be matched against patteras of pre-stored

keywords. From these patterms the czomputer could in the case of

Bobrow's program set up simultaneous equations to solve. (learly,

104

RIC

Aruitoxt provided by Eic:

there was nc general theory of language and of meaning that was used to
design these programs.

More recently, there have been a number of attempts to develop
a theory of English and to wuse that as a basis for question answering
systems: a good survey is to be found iﬁwthelmore recent article by

Simmons [22}. Of these attempts we shall consider the work of only

four in any detail.

V.3 The Work of Winograd on the BLOCKS Program

Probably the best known of the natural language processing
programs that is currently under active dévelopment is that of Winograd
[23] and [24]. Since the entire philosophy behind the BLOCKS program
is quite different from that which guided our own work, it is necessary

to explain a little bit of the world view that is prevalent at the MIT

ATl Lab where Winograd wrote his program. The MIT AT researchers

believe that the only adequate theory .of a part of' artificial
iﬁtelligence is a program, and that, furthermore, a progrém that
achieves a certain level of-apf;rent intellectual competence'is to be
regarded as a theory of intelligence in that area. Thus, Winograd's
program is to be régarded as a theory of néturai language brocessing,
and any descfiption éf it other than the actual code is simply a
descriﬁtion of a theory of natural 1language. Thus, the theoéy is
ﬁéavily dependent on the implementation. This is exactly the opposite

of our approach on this matter: we have explicitly attempted to

105

O

ERIC

Aruitoxt provided by Eic:

develop a machine independent theory of natural language proczssing and
understanding. Although the majof topic of the present dissertation
has been the implementation, " the important point abou£ the
implementation is that it is a source of insight about natural language
and 1leads to the devélopment and to the testing of theories of
language. Indeed, the most unsatisfactory part of our work_ from this
point of view 1is not the incomplete state of the implementation, but
the lack of a fully developed theory of what the program‘ does and
shouid do. Despite our attempts to deal with this in previous
chapters, mutch remains to be done with most of the work actually a part
of-the development of the mathematical theory of computation.

The theory of grammar that 1is used by Winograd is s&étemic
grammar which was developed by Halliday and modified by Winograd. We
shall, however, base our discussion solely on the presentation of it
that %S made by Winograd in [24]. Systemic grammar is a rejection of
the basic appreoach of grammarians since Chomsky in favor of a syséem of

nodes representing the basic elements of the sentence and having

" associated with them features of various kinds. Each node has a type

and a list of features rhat are either present or absent 1in this

particular node. This-scheme leads to rather flat parse trees each of

whose nodes have relatively large amounts of informarion associated

with them. The major advantages of this scheme is that it is easy to
write a parsing program using it and the parseés that are produced are

very informative in that there is a great deal of syntactic structure

106

that 1is Aiscovered and stored during the parsing process. Since
Winograd does not give his exact grammar in his published work and
since any details of it are really not to the point here, we shall
simply summarize our understanding of irc. It seems to be a rather
intuitively simple rendering qf most of the basic syntactic features of
that part of English with which he dealt. o !

The-parsing scheme that 1is used in the BLOCKé program is of
some interest to us, for it inreracts witﬁ the semantic portion of phe
program in many ways. The exact nature of this interaction will be
discussed presently, but first we must say something about - PROGRAMMAR,
the parsihg scheme that 1is used by.-Winograd. PROGRAMMAR 1is a
derivative of the programming language LISP, and is used by Winograd to
program his grammar. The elements of ‘the grammar are embodied‘in
procedure definitions. The pérsevis esseﬁtially bottom-up with some
variations 1in the flow of control in the form of interrupts. 1In
particular the semantics routines and special heuristics may be called
by the parser when an abprcpriaté structure is encountered by the
parser. It would seem to be possible to describe Winograd's parsing
scheme by Floyd-Evans producticn language using an additional pushdown
list as a context stack, buif we have not worked out the details of
this.

The semantic compbnent of Winograd's program uses -the
capabilities of the very péwerful prdgramming language ©PLANNER, which

was developed at MIT by Carl Hewitt. PLANNER is a pattern matching and

107

E

backtracking language that is also embedded within LISP. Wingorad has
analyzed the semantic domain that he is dealing with--the world of toy
blocks-~and coded his results as a special type of PLANNER procedure,

called a theorem. [The program performs logical inferences by patrern~—
\

métching using . the pattern-matching language MATCHLESS. Winograd's

O

semantic program maintains & history of the discourse, an internal map
representing the Iloccations of blocks in space and a ser of PLANNER
theorems describing these and relating English language commands to

this database.

V.4 The Predicate (Caiculus as Deep Structure--The Work of

Sandewall

It should be clear that Winograd's program is designed to do
something very different from ours in that it maintains and manipulates
a data base rather than using computation to solve problems that are-

posed 1in natural language. The next piece of work that we shall

consider is that of Sandewall which is quite different from either the

work I;f Winograd or our own. Sandewall is seeking a machine
independeﬁt theory of natural language, but one whose primary concern
islnatural language processing by computer rathér than psyéhological or
philosophical explication of some zbstract process of natural language
under;tanding. Once this 1s understood, 1t is easy to see why
Sandewall's ideas are so attractive. According to gim, there is a deep

structure for English which has a very definite form--first order

108

RIC

Aruitoxt provided by Eic:

E

predicate calculus; Apparently, éan&ewall believes that the syntactic
surface structure of English can be translated inéo a first-order
formalism or sémething siightly more powerful like a mulpi¥sorted
predicate calculus. Once this is done, resolution theorem-proving such
as 1is commén at present can then be applied to énswer any input
questioﬁs and to determine the consistency or inconsistency of input
declaratives. There are, of course, several problems with this line of
attack. The first is the current state of theorem-proving technology:
"at present resolution theorem provers are too slow and toé inefficient
to be used for a practical question-amswering system; for further
comments on this-see Section IV.2. Although Sandewall expresses some
hope that the resolution method ¢an be made more efficient, this
remains to be seen. Another much more severe problem with Sandewall's
approach is that he seems to provide no general method for translating
from the syﬂtactic surface structure of an input to his putative deep
structure, and indeed, it is not very clear what the relationship
should be. It is.clear_ however, as 'wé pointed out before, that the
heuristics that are used in elementary symbolic logic courses are too
simple to do general translatioﬁ irom the surface structure to such a
deep étructure. For one thing it is difficult to spell out precisely

exactly what the heuristics that are actuallyrused are,

v.5 The Psychological Model Approach of Schank

While the * intentions of Sandewall are primarily. motivated by

o » 109

RIC

Aruitoxt provided by Eic:

computer sclence considera;ions, the work of Schank is based primarily
on ideas about psychology and linguis;ics. However, Schank regards a
computer implementation of a theory to be the best available rtest of
it. (Schank's work has been reported and discussed in a number of
places, including a large number of Stanford Artificial Intelligence
Memoé. See, for example, [25] and [26].)

| In many ways the work of Schank is similar to our own. In
particular, he is committed to a machine independent theory of nactural
language processing rather than a program as a theory. Moreover, he
regards semantics as being the key to natural language understanding.
However, Schank's views on semantics are quite different from our own,
and he does not really believé in using syntax altﬁgugh his programs do
use 1t as a matter of convenience. Accofding to Schank, there are
psychological structures that underlie all of human language. These
are not linguistic structures, but serve as a base onto which
linguistic structures can be mapped: these structures Schank calls

conceptual dependency relations. For the exact format of these see

-125] or [26]. The basic idea is that the meaning of natural language

O

sentences can be represented by abstracting their features into a
relatively small number of primitives. Each sentence is assumed to
describe an act, which has an agent performing one of twelve or

fourteen primitive acts: for Schank the only primitives are ‘acts which

are generally verbs in more standard treatments. In addition, a
sentence may indicate causal relations and instrumentalities. What is
110

ERIC

Aruitoxt provided by Eic:

important about this is léss the exact structure than the manner in
which Schank seeks to wuse his representations. The crucial notion is
that of inference.

Logicians have giveﬁ the notion of 1inference a very precise
meaning in the last hundred years, i.e., one sentence can be inferred
from another just 1in case in every model for the second sentence the
first élso comes out to be true. This is ﬁery definitely not what

Schank means by inference. Instead, one sentence can be inferred from

another if whenever a pzrson knows that the second holds, he would

ERIC

Aruitoxt provided by Eic:

generally also believe in the first. Thus, inference is to be based on
the common knowledge of language -and the worid that it describes aé
represented in terms of conceptual dependency. It is very important to
vealize that one major goal here is to have any program that uses
conceptu&l dependency make thé samé. éypes of mistakes that a human
being would make. In contrast to this our notion of inference is at
present at least based upon the classical notions used in logic. It
shohldlbe pointed out the purpose of our system is to answer quéstions
about elementary mathematics while Schank's is designed to be wused to
carry on an ordinary conversétion.

Not only does Schank's system have a notiogQOf inference in-it
but it also involves a model of memory. An attempt is being made to

handle the wunderstanding of language in context rather than on a

antence—by—sentence basis. While it is not yet possible to give a

detailed déscription of this memory model, the basic idea is that the

111

O

ERIC

Aruitoxt provided by Eic:

program is to keep on a short term basis the details of input and is to
encode and to store into a long term memory the important parts of the
conversation. Cleérly this encoding process is going to have to be

N : ' ‘
rather clever in order to retain sufficient information to maintain the
thread of the discourse without taking too much memory space. In our
work we have not yet attempted to provide the system with memory
although we do envision an implementation of declaratives that Qill
involve the maintenance of a data base of facts, Input declaratives
will be compared with the current memory for consistency, and some
method of deciding what to store and what to eliminate will have to be
worked out.

The major formal difference between our work and that of Schank
should then be clear: .theré is no precise relationship between gyntax
and semantics in his system while 1in 6urs the syntax is used as a
framework for laying out the semantics of the surface structure (as
opposed to the deep structure -which is obtained by transformations).
It is also true that the types of representations that we use for our
semantic structures are very different from Schank's conceptual
dependency dfagrams. In our current development the program itsélf

'

uses LISP s-expressions to represent the semantics, but we hope to

develop a system of function schemata that can be used to represent the

semantic parses, It is also true that conceptual dependency removes
more. of the surface structure than our semantic parses do. For

example, in a sentence such as

John hurt Mary <(a)

112

O

ERIC

Aruitoxt provided by Eic:

the conceptual dependency diagram is roughly "John did something to put

Mary into the hurting state.' ‘The reason for this is that there is no
primitive hurting act. In our system the representation would be
something like (HURT JOHN MARY) where HURT is assumed to be a pre-

defined function.

V.6 The Work of Woods on Natural Language Processing

The work of Woods in natural language processiﬁg is closer to
ours than to Schank's. Woods, whose work has been reported in [10] and
[27], has developed a very successful parsing scheme for sentences of

natural language called the augmented transition network. In addition,

"he has written semantic systems which answer questions about airline

reservations and about lunar geology.

As this rthesis 1is not concerned primarily with parsing
techniques and as it is very difficult to improve upon Woods' own
exposition in [10] we shall not discuss his parsing scheme in very

great detail. The basic idea is to extend transition diagrams from

"finite automata to devices that are able to parse. an arbitrary

recursively enumerable language. | This is done by wusing a pushdown

mechanism that allows a call to be made to other networks to handle the

parsing of certain grammatical categories. . This is enough to handle

cantextffrée languages, but to deal with moré-complex -languages Woods

adds predicates tha* must be satisfied before a transition can be made.
| _ ot

The resulting parsing scheme is shown to be as efficient as a

~y

113

E

O

~ :
parsing scheme for context-free languages. The only advantage that we

can claim over Woods in this area is perspicuity and extendability. In
our system the grammar is written in isolation from the implementation
and is read in when the program is started. Woods must, on the other
hand, write new transition networks whenever he wishes to .change the
grammar.

The work.of Woods on semantics seems to be somewhat similar to
our own, but it has been published only recently, and is not described
in sufficient detail to allow us to analyze it at this time. But it
does seem clear thag the field of computational linguistics is still an
open one and that the definitivebpiece of work that will either make
the computer fluent in natural language or show that such is impossible

remains to be done.

114

RIC

Aruitoxt provided by Eic:

appositions 69
arithmetical relations 70

ASSOC 99

asynchronous processing 63

ATOM 53

augmented transition network 104

backtracking 61, 108
basic functions 91

BLOCKS 105
calling sequence 58, 63

CAR 52
CDR 52

characteristic function 68
characteristic functions 56, 97

CHL 67, 68

CHOICE 62
Chomsky 11

Chomsky normal form 7

computational ability 95

CONS 52
CONSTRUCT 5, 64

Index

constructive sets 18
context—- sensitive 13
context—-free grammar 11
context-free language 26
control structures 23, 33

data type 60
declaratives 66
deep structure 108
demons 63

DIV 70
division 91

elementary mathematical
language 2

EQ 71
EQL 71
EQL1 71
EQL2 71
EQUAL 71

equality 36, 96
equivalence of schemata 44
equivalent 62

escalation of type 20

EVAL 59, 65, 68
evaluation 12, 35

EVEN 100
EXIST 81

115

explicit list 15 interrupts 63, 107
intersection 100

EXPR 54

EXTHNP 81 ISTS 74, 98
FACTOR 91 © keywords 104
FAILURE 62
FCN €8
FCNMK 83 L70 8
FEXPR 54, 71 ~ LE 72
first order logic 28 linguistiés 110
FOR 533 LISP 7, 50, 65
FRACTION 70

list 52
function definitions 56
. : LIST 53
GE 72 LST " 60

LT 72

generative grammar 11
machine independent theory 108
machine translation 103

GET 65, 99

GT 72
MATCHLESS 108

habitability problem 8

heuristic procedure 90 mathematical functions 22, 32, 54
heuristics 76, 85, 95 mathematical information 94

I 61, 72, 81, 96, 98 .MLISP 50

ICHL 73 MLISPZ 8

ILST 74 '

model structure 13
information extraction 85

Q ' 116

natural deduction calculus 88
natural language input 1

natural language output 1, 6

NIL 52

non-explicit negations 95
non~transformational
schemata 35, 40

Nondeterministic algorithms 62
NULL 53

NUMBER 100

NUMBERP 53, 70

oDD 100

ODDPRIME 100

ordering relationships 95
output 66

parsing 26
pattern matching 107
pattern-matching 85, 93

PLANNER 86, 107

potentially denoting grammar 13

predicate calculus 109

PRIME 100
PROGRAMMAR 107

property list 98
propositional logic 88

psychology 110

question~answering system 2

question-answering systems 104

QUOTE 65

registers 35
resolution 87, 109

s 76, 78, 82, 97

s~expression 52

SAIL 7, 65

schemata 33, 44

sb 76, 79, 97

semantic deep

structure 23, 27, 32
semantic transformations 27
sentence typing functions 66
set theory 17
set-difference 100
side-effect 61

. side-effects 55

117

SPCSTS 99

speech recognition 7

STS 68 Winograd 63
subset 100
SUCCESS 62

surface structure 54, 109
syntactic transformations 27
systemic grammar 106

TENEX 6

theory of language 3
transformation 25, 60
transformational grammar 103
transformational schemata 34, 40
transformations 72

translation 29

TV 68

U 76, 77, 97
ULST 77
ULSTSTS 77

union 100

UNT 68
UNVHNP 82
UsTsS 77

valuation function 12
variables 35

118

7

g
References

Irons, E. T., Towards more versatile mechanical translators,
Proceedings of Symposia on Applied Mathematics, vol. 15 ,pp.41-
50, American Mathematical Society, Providence, Rhode Island,
1963. '

Knuth, D. E., Semantics of context-free languages, Mathematical
Systems Theory 2 (1967), pp. 127-145,

Coles, L. S., Techniques for information retrieval using an
inferential question—ansyering with natural language input,
Artificial Intelligence Center Technical Note 74, Stanford
Research Institute, 1972.

Hewitt, Carl, The description and theoretical analysis of PLANNER,
Doctoral dissertation, MIT, 1971, Also AI TR-258, MIT
Artificial Intelligence Laboratory, 1972.

Hopcrofit, John, and Ullman, J. D., Formal Languages Their Relation
to Automata, Addison-Wesley, Reading, Massachusetts, 1969.

Smith, Robert L., The syntax and semantics of Erica, Doctoral
dissertation, Stanford University, 1972. Also Technical Report
185, Institute for Mathematical Studies in the Social Sciences,
Stanford University, 1972.

Suppes, Patrick, Semantics of context-free languages, Technical
Report 171, Institute for Mathematical . Studies in the Social
Sciences, Stanford University, 1971,

Smith, Nancy W., A grammar for a fragment of elementary
mathematical language, Doctoral dissertation, Stanford
University, 1973. : :

Petrick, S., A recognition procedure for transformational
grammars, Doctoral dissertation, MIT, 1965.

-

119

10.

11.

12,

13.

14,

16.

17.

18,

19.

20.

Woods, W. A., Transition network grammars for mnatural language
analysis, Communications of the Association for Computing
Machinery 13 (1970), pp. 591-606.

Early, J. W., An efficient context-free parsing algorithm,
Communications of the Association for Computing Machinery 13
(1970), pp. 94-102.

Sandewall, E. J., Formal methods in the design of question
answering systems, Artificial Intelligence, 2 (1971), pp. 129~
145,

Paterson, M. S., and Hewitt, C., Comparative schematology, Record
of the Projecr MAC Conference on Concurrent Systems and
Parallel Computation, Association for Computing Machinery, New
York, 1970.

Smith, David Canfield, MLISP, Artificial Intelligence Memo 133,
Stanford Artificial Intelligence Laboratory, 1970.

Quam, Lyon H., and Diffie, Whitfield, Stanford LISP 1.6 Manual,
Artificial Intelligence Operating Note 28.7, Stanford
Artificial Intelligence Laboratory, 1971.

Smith, David Canfield, and Enea, Horace J., MLISP2, Artificial
Intelligence Memo 195, Stanford Artificial Intelligence
Laboratory, 1973. :

Floyd, R. W., Nondeterministic algorithms, Journal of the
Association for Computing Machinery 14 (1967), pp.636-644.

‘Nilsson, Nils J., Problem-Solving Methods in Artificial

Intelligence, McGraw-Hill, New York, 1971,

Kuno, S., A system for transformational analysis, Report NSF-15,
Computation Laboratory, Harvard University, Cambridge,
Massachusetts, 1965.

Simmons, Robert, Answering English questions by computer: a

120

21,

22,

"23.

24,

25,

26.

27.

survey, Communications of the Association for Computing

Machinery, 8 (1965), PP. 53-70.

Minsky, Marvin, editor, Semantic Information Processing, MIT
Press, Cambridge, Massachusetts, 1968.

Simmons, Robert, Natural language question-answering systems:
1969, Communications of the Association for Computing Machinery
13 (1970), pp. 15-30.

Winograd, T., Procedures as a representation for data in a
computer program for understanding natural language, Doctoral
dissertation, MIT, 1970. '

Winograd, T., Understanding Natural Language, Academic Press, New
York, 1972.

Schank, Roger,‘ Conceptual dependency: a theory of natural
language understanding, Cognitive Psychology 3 (1972), pp. 552~
631. :

Schank, Roger, The Fourteen Primitive Acts and Their Inferences,
Artificial 1Intelligence Memo 196, Stanford Artificial
Intelligence Laboratory, 1973.

Woods, William A., Semantics for a question-answering system,
Doctoral dissertation, Harvard University, 1967.

121

165

167

172
173

174
175

176

178
179
180

181
182
183

184
185
186

187
188
189

191
192

193

194
195
196
197
198

199
200

201

202

203

204

205

=206

207

208

Qv
ERIC

Aruitoxt provided by Eic:

FILMED FROM BEST AVAILABLE COPY

(Conticed bom inside front cover)

L. J. Hubert. A formal model for the perceptiad processing of geometric configuralicas. Fewruary 19, 1971. A slatistical method for
investigating the perceptual confusions among geowieiric configurations. Journal of Mthematicat Psychology, 1972, 9, 389-403.)

J. F. Juola, |. S. Fischler, C. T.Wood, and R. C. Atkinson. Focogmtion time lor inlarmation stored i tong-ternt memory. (Perceplnonﬂ
Psychophysms 1971. 10, 8-14.)

R. L. Kiatzky and R, C. Atkinson. Sveciaiizati= of the cercbral Imnn(pheru in scanning for information in shurt term memory., (Perception
and Psychophysics, 1971, 10, 335-338.;

J. D. Fletcher and R, C. Atkinsan. Ar cvaluation of the Stanford CAl program in initial reading (grades K through 3), March 12, 1971.
(Evaluation.of the Stanford CAl program in initial reading. Journal 9_{ Educational Psycheloay, 1972, 63, 597-602.)

J. F. duols and R. C. Atkinson. Memory scanning for words versus categaries, Journal of \ie_'lfil Learning and Verbal Behavior, 1971,
10, 522-527.)

1. S. Fischler and J. F. Juola. Effects of repeaed tests on recognition time for infermation in leig-term memory . (M of E xperimental
Psychology, 1971, 91, 54-5%8.))

P. Suppes. Semantics of context-free fragments of natural janguages. March 30, 1971, {ln K. J. J. Hintikka, J. M. E. Moravesik, and
P. Suppes (Eds.), Approaches to natural fanguage. Dordrecht: Reidel, 1973. Pp. 221-242.)

J. Friend. INSTRUCT coders' manual. May 1, 1971.

R. C. Atkinson and R. M. Shiffrin. The control processcs of short-term memory. April 16,1971, {The control of short-term memory.
Scientific American, 1971, 224, 82-90.)

P. Suppes. Corputer-assisted instruction atl Stanford, May 19, 1971, (n Man and comamer. Procecilings of international conference,
Bordeaux, 1970. Basel: Karger, 1972. Pp. 298-330.)

0. Jamison, J. D. Fletcher, . Suppes, and R. C. Atkinson. Cost and puriurmance of computer-assisted instrxcion for education of disadvantaged
children. July, 1971.

J. Offir. Some mathematical models of individuai differences in lcaming and performance. June 28, 1971, (Stochastic learning models with
distribution of parameters. Journal of Mathematical Psychology, 1972, 9{4), .)

R. C. Atkinson and J. F. Juola. Factors influencing speed and accuracy of word recognition. August 12, 1971, {In S. Komblum (Ed.},
Altention and performance IV, Mew Yark: Academic Press, 1973.) ‘

P. Suppes, A. Goldberg, G. Kanz, B. Searle, and C. Staufier. Teacher's handbook for CAl aurses. September 1, 1971.

A. Goldberg. A gengré'lized instructional systeni for elementary mathematical logic. October 14, 1971,

M. Jerman. instruction in problem salving and an analysis of structural variahles Lhat contiibete to problem-solving difficulty. November 12,
1971. (Individualized instruction in problem solving in elementary mathematics. Journe! for Research in Mathematics Education, 1973,
4, 6-19.) ' '

P. Suppes. Onthe gammar and model-theeretic semantics of criidren's noun phiases. Novenber 29, 1671,

G. Kreisel. Five notes on the application of proof theary in computer scivnce. Becember 10, 1971,
J. M. Moloney. An investigation af college student performance on a lvaic curricufum in a cemputer-assisled instruction setting. Janvary 28,
1972,

. J. E. Friend, J. D. Fletehier, and R. C. Atkinson. Student pirformance in romputer-assisted instruction in prowramming. May 10, 1972,

R. L. Smith, Jr. The syntax and semaniics =f ERICA. June 14, 1972.

A. Goldberg and P. Stippes. A computer-assisted instruction program for exercises on finding axionrs. June 23, 1972, (Educational Studies
in Mathematics , 1972, 4, 425-449 ’

R. C, Atkinson. Ingredients for 2 theory of instruction. .June 26, 1972. ‘Amenican Psychologist, 1972, 27, 921-931.)

J. D. Bonvillian and V, R. Charrow. Psycholinguistic implications of deafness: A review. July 14, 1972,

P. Arabie and S. A, Boorman. Muitidimensional scaling of measures of distance between partitions. July 26, 1972, Qounral of Mathematical
Psychology, 1973, 10,) :

~J. Ball and D. Jamison. Computer-assisted instruction for dispersed populations: System cost medels. September 15, 1972, (Instructional

Science, 1973, 1, 469-501.)

W. R. Sanders and J. R. Bail. Logic documentation stantard fur the Instituty far Mathematical Studies in the Social Scivnces. October 4, 1972.

M. T. Kane. Variability in the proof behavior of college students in o TAI course in lugic as a fuaction of problem characteristics. October 6,
1972. ' :

P. Suppes. Facts and fantasies of education. October 18, 1972. In M. C. Wittrock (Ed.), Changing education: Alternalives from educational
research . Englewood Cliffs, N, J.: Prentice-Hatl, 1973. Pp. 6-45.)

R.C. Atkmson and J. F. Juola. Scarch and decision processes in recognition memory. October 27, 1972,

P, Suppes, R. Smlth and M, Levenllc The French syniax and semantics of PHILIPPE, part 1: Noun phrases. November 3, 1972,

D. Jamison, P. Suppes, and 5. Wells. The effectizeness of alternative instructional metheds: A survey. November, 1972,

P. Suppes. A survey of cognition in handicapped children. December 29, 1972.

B. Seare, P. Lorton, Jr., A, Goldberg, P. Suppes, N. Ledet, and C. Jones. Computer-assisied instruction program: Tennessee State
University. February 14, 1973.

D. R. Levine. Computer-based analytic grading for German grammar instruction. March 16, 1973,

P. Suppes, J. 0. Fletcher, M. Zanotti, P. V. Lorton, Jr., and B, W. Searie. Evaluation of computer-assisted instruction in elementary
mathematics for hearing~impaired students. March 17, 1973, :

G. A. Huff, Geometry and formal linguistics. April 27, 1973.

C. Jensema. Useful technigues for applying latent trait mental-test theory. May 9, 1973,

A. Goldberg. Computer-assisted instruction: The application of theorem-proving to adaptive response analysis. May 25, 1973.

R C. Atkinson, D. J. Herrmann, and K. T. Wescourt. Search processes in recognition memory. June §, 1973.

J Van Campen. A compuler ~based introduction to the niorpholoyy of Oid Church Slavonic. June 18, 1973,

-R: B. Kimball. Self -optimizing éomputer-assisted tutoring: Theory and practice. June 25, 1973,

R. C. Atkinson, J. D. Fletcher, E. J. Lindsay, J. 0. Campbell, and A. Barr. Computer-assisted instruction in initial reading. July 9, 1973.
V. R. Charrow and J. D, Fletcher. English as the second language of deaf students. July 20, 1973.

J. A. Paulson. An evaluation of instructional strategies in a simple learning situation. July 30, 1973.

N. Martin. Convergence progerties of a class of probabilistic adaptive scaemes called sequential ceproductive plans. July 31, 1973,

FILMED FROM BEST AVAILABLE COPY

(Continued from inside back cover)

211 J. Friend. Computer-assisted instruction in programming: A curriculum description. July 31, 1973,
212

S. A. Weyer. Fingerspelling by computer. August 17, 1973,
213 B. W. Searle, P. Lorton,Jr., and P. Suppes. Structural variables affecting CAl petrformance on arithmetic word problems of disadvantaged

and deaf students. Septembér 4,1973.

o

ERIC

Aruitoxt provided by Eic:

