
DOCUMENT RESUME

ED 085 254 SE 017 076

AUTHOR Rawson, Freeman L., III
TITLE Set-Theoretical Semantics for Elementary Mathematical

Language.
INSTITUTION Stanford Univ., Calif. Inst. for Mathematical Studies

in Social Science.
REPORT NO TR-220
PUB DATE 7 Nov 73
NOTE 130p.; Psychology and Education Series

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS Computers; *Linguistics; Linguistic Theory;

*Mathematical Linguistics; Mathematical Vocabulary;
*Mathematics Education; *Programing Languages;
Semantics; *Structural Linguistics

ABSTRACT
The development of computer language and analogs

capable of interpreting and processing natural language found in
elementary mathematics is discussed. Working with linguistic theories
in combination with the special characteristics of elementary
mathematics, the author has developed algorithms for the computer to
accomplish the above task. (JP)

/
0

O
w

SET-THEORETICAL SEMANTICS FOR ELEMENTARY MATHEMATICAL LANGUAGE

BY

FREEMAN L. RAWSON,Il

TECHNICAL REPORT NO. 220

NOVEMBER 7, 1973

PSYCHOLOGY AND EDUCATION SERIES

SCOPE OF INTEREST NOTICE

The EH IC. Faciloty has assigned
this docunumt for proeelsing
to.

In our olyernent, this docuroent
is also of interest to the clearing-
houses noted to the right, Index-
ing should reflect their special
points of view,

U S DEPARTMENT OF HEALTH
EDUCATION . WELFARE
NATIONAL INSTITUTE OF

EDUCATION
f: ...1 HF F '. +Fr WC,

r),(FC) F v (I,. ! UCV.
..E i.f u SG% 04 4)%

PO.% V.1 06' OP, %;
A i) ht,, (1 titinu v ui P6'1

(7 `,"

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

FILMED FROM BEST AVAILABLE COPY

A

SET-THEORETICAL SEMANTICS FOR ELEMENTARY MATHEMATICAL LANGUAGE

by

Freeman L. Rawson, III

TECHNICAL REPORT NO. 220

November 7, 1973

PSYCHOLOGY AND EDUCATION SERIES

Reproduction in Whole or in Part Is Permitted for

Any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

Table of Contents

Chapter Page

I. Introduction 1

I.1 Outline of the Thesis 1

1.2 The Fragment of English Handled 2

1.3 A Theory of Language as a Basis for a Question
Answerer 3

1.4 A Note on the History of the Program 5

1.5 Prerequisites 9

Linguistic Aspects 10

11.1 Preliminary Notions About Grammar . . 10

11.2 The Basic Semantic Theory 12

11.3 Constructive Set Theory and Its Role 15

11.4 The Control Structure View Of Natural Language 20

11.5 Semantic Transformations and Surface Structure 23

11.6 The Deep Structure --. 25

11.7 A Detailed Transformational Example 29

11.8 Program Schemata 32

11.9 The Restrictions Upon Schemata 39

II.10 The Relative Power of the Non-Transformational
and Transformational Schemata . . 44

II.11 A Final Example 46

III. Aspects of the Actual Implementation . . . 50

III.1 Concepts From LISP 50

111.2 Types of Functions to be Implemented 54

111.3 Side Effects 55

111.4 The LISP Calling Sequence 58 i

111.5 Backtracking 61

111.6 Interrupts and Demons 63

111.7 The Implementation of Data Typing . . . 64

111.8 Mathematical Types 69

111.9 Arithmetical Relations . . . 70

III,10 The Set Theoretical Functions: The I Function . 72

III.11 The Other Set Theoretical Functions _ _76

111.12 The Verb 'Have' in an Existential Context . . 79

111.13 Two Other Constructions Using 'Have' . . 82

7.14 The importance of the Run-time Creation of
Functions . . . 83

IV. Information Extraction and Heuristics . . 85

IV. 1 Introduction to Information Extraction . 85

IV.2 Revolution Is Not a Suitable Basis For
Information Extraction . 87

1V.3 The Application of Information Extraction To
How Questions . 90

IV.4 Information Extraction As an Aid to Problem
Solving . J 0 . 93

N.

.V.5 Mathematical Infcrmation To Be Used By
Pafr,rmation Extraction 94

IV,6 The Heristics Actually Used in the Semantic
Evaluator. . -. . . - . . 95

.rv:', Heuristi,:s Foy. the .Set Theoretical Functions . 96

).V.8 HeuristicS For.Doing Arithmetic 0 0 0 .97

IV.9 The Justification of the Heuristics . . . 100

Comparisons With Other Work 103

V,1 Machine Translation 103

V.2 The History of Question-Answering Systems. . . 104

V.3 The Work of Winograd on the BLOCKS-Program . . . 105

V.4 The Predicate Calculus,as Deep Structure--The
Work of SandewallTos'

V.5. The Psychological Model Approach of Schank 109

V.6 The Work of Woods on Natural Language
Processing . j, . . 113

Index 115

'Refezanc;es-119

iii

Acknowledgments

This dissertation is largely the result of the patience and

hard work of Robert L. Smith, Jr., who supervised all phascs of this

undertaking, and who provided most of the ideas and much of the

programming upon which it is based. He also read and criticized

preliminary version's of this thesis.

The grammar that is used by system was written by Nancy W:

Smith. She also provided many of the ideas about semantics which were

used,

I am grateful to Professor. Patrick Suppes for his general

supervision of the project, for serving as my thesis advisor, for

suggesting many important improvements to this report, and for

providing the facilities of the institute for Mathematical Studies in

the Social Sciences for carrying on the work described herein,

My general education about the programming language LISP

benefited greatly from conversations with David R. Levine. I am also

indebted to Rainer W. Schulz for modifying and maintaining TENEX, and

for his patience with my endless questions about the system.

I am grateful to Professors J, M. E. Morayscik and Dov Gabbay

for their willingness to serve on my doctoral reading committee and for

their patient reading of my efforts at dissertation writing.

This thesis was written using TEC EDIT, a text editing system

iv

developed by Pentti Kanerva. The processing of this document was done

using the PUB document compiler, which was written at the Stanford

Artificial Intelligence Project by Lawrence Tesler, and which was

modified to run at IMSSS by Robert Smith. The entire document was

reproduced on an IBM MCST using a program written by Robert Smith.

The research reported in this paper was partially supported by

Grant EC-443X4 from the National Science Foundation.

v

Chapter I

Introduction

This thesis reports some work on computational linguistics and

question-answering systems. As is standard in this area only a small

fragment of English is handled, and that only incompletely. The work

centers on que'Stions about elementary mathematical language, and in

particular on elementary number theory. The work is primarily

concerned with the problem of dealing with natural language and only

secondarily with mathematical problem-solving. Moreover, the system

accepts natural language input, but does not produce natural language

output: the problem of output in natural language, which is crucial to

any truly interactive system, is not touched upon in the present w' rk.

I.1 Outline of the Thesis

The outline of the thesis is to present the linguistic theory

first, and then to comment upon the details of the implementation.

Included in that portion of the dissertation will be some ideas about"

the computer science involved in the project--only some of these have

actually been implemented. After this there is a discussion of the

heuristics that are called by the semantic evaluation procedure and the

reasons that such heuristics are necessary. We conclude with a

comparative study of some other recent work in the field.

1

In the remainder of the introduction we shall try to give the

reader a flavor of what the project is about, what its limits are, and

why it works or fails to work) as it does. Hopefully, the basic

motivation for this type of work is fairly clear: the computer would

be a much more useful servant if it could be addressed more easily.

While it is our personal belief that the computer is inherently

,incapable of understanding in any significant way, it is extremely

desirable to test this belief in an actual implementation.

1.2 The Fragment of English Handled

The subject matter that this question-answering system deals

with is elementary mathematical language. Although it is difficult to

define precisely what elementary mathematics is, a perfectly good

informal definition is that it is that part of mathematics that is to

be found in the elementary school mathematics curriculum, Thus it

includes elementary arithmetic; fractions, decimals, percentages,

. simple operations on units, simple geometry, elementary set-theory, and

the solution of simple word problems. The reason that this is a

particularly good subject matter for a question-answering system is

that the information that is needed as a data-base is relatively

compact and is already well-organized, In an area like geography or

medicine one of the great problems is to organize the information that

the system is to have available in a reasonable way. The relatively

elementary nature of the subject matter is important because we are

2

primarily concerned with machine comprehension of natural language

rather than machine problem-solving: the algorithms that are needed to

answer the actual questions once the input has been put into the proper

form for the computer's consumption are all very well-known and quite

trivial. Thus, the subject matter for the questions does not get in

the way of the English. Moreover, the semantics of the English are

fairly clear: most input sentences in this fragment have intuitively

transparent and universally agreed upon meanings.

1.3 A Theory of Language as a Basis for a Question Answerer

The basis for the processing of the natural language input is

provided by a theory of natural language: this point is very

important, for many question-answering systems for elementary

mathematics have been written, and many of these accept natural

language (or something ciosc to natural language) as input, but none of

these systems have, to our knowledge, been based upon a systematic

theory of language. This is a key feature of our system. Although

this theory will be discussed in some detail later, we shall sketch it

now. The basic idea is to parse English much the same way as one would

parse an ALGOL program. Thi means that there must be a context-free

grammar for the syntax .of the language. Such a grammar has been

written by Nancy W. Smith, and 1n fact, deals with rather more of the

English than the system as a whole can handle. Associated with each

terminal symbol of the language is a denotation, which is formally a

3

set of some kind. (Note that we are considering functions and numbers

to be special kinds of sets.) With each production rule of the grammar

there is associated a set-theoretical function that maps the

denotations of the right side of the production rule to the denotation

of the symbol on the left hand side of the rule. The setup is

essentially that used by Irons [11 and Knuth [2] to analyze the

semantics of computer languages. Using the syntax tree, the rules

associated with each production, and the denotations of the terminal

nodes, the denotation of the start symbol can be computed. In the

theory as expounded by Knuth, the evaluation is recursive-inside-out

like thatof the LISP interpreter. The evaluation algorithm that must

be used for natural language is considerably more complex than this and

will be discussed in detail in Chapter III. Suffice it to say that the

system gets most of its linguistic power from this feature.

Me limits of the linguistic theory that we are dealing with

have not been fully explored, and indeed, its mathematical limitations

are not completely known. The present implementation is still in a

very incomplete state, and is essentially limited to questions about

elementary number theory. Note that while the implementation is biased

strongly toward interrogatives, the linguistic theory is a general

theory of language. The present project should be regarded less as a

question answering system for arithmetic and more as a partial

implementation of a natural language system for the computer.

4

1.4 A Note on the History of -che Program

The theory of language that is described above is actually

implemented on the PDP10 ctmputer in the form of a rather large program

called CONSTRUCT (for cm- trucriv2 set theory, which is the basis for

the general view of language that is embodied in the program).

Although some parts of the program were written in 1971-2, most of the

work that is described in this thesis was done in the first six months

of 1973. The syntactic parser and the macro expaner that generates

the semantic parses with whose evaluation we shall be concerned were

written by Robert L. Smith, Jr., and dale from the earlier period. The

syntactic parser that CONSTRUCT uses is written in a modular fashion so

that the grammar upon which its parses are based is read from a disk

fileand can be written independently of the program itself. There is

not only the obvious advantage of modularity to this scheme, but also

the equally important feature of assisting in the :ask of keeping the

theory, as independent of the machine as possible, As will be apparent

throughout this dissertation, we are attempting to develop a theory of

language that is implementable on the machine rather than just an

implementation. As we mentioned above, the grammar that the program

uses was written by Nancy W. Smith: her work was also done during the

first six months of 1973. The semantic functions that are attached to

the production rules of the grammar are also placed in the disk file

with the grammar itself: these functions which are the ones that must

be implemented if questions are to be answered were written (as opposed

5

to being implemented) by Robert Smith and the author although many of

them are based upon sugges s made by Nancy Smith: this was also

done during early 1973. The actual implementation of these semantic

functions was done largely by the author with some help from Robert

Smith. Most of the ideas on the theory of language that are used in

the program are also due to Robert Smith.

The CONSTRUCT program runs on the PDP10 only under a very

special environment--that provided by the TENEX operating system.

TENEX is a special operating system developed by Bolt, Beranek, and

Newman. Its most notable features are a paged memory allocation

scheme, and the ability to run two independent, but intercommunicating

processes in the same job with great ease. In TENEX each process is

called a fork, and one job may have several forks: there are monitor

calls which allow one to map pages from one fork of a job into the

memory map of another. Thus, it is possible for the parsing program to

run as a controlling process, which reads the natural language input,

parses it, forms the semantic parse, and then passes that to the

evaluation program which runs as another process in a separate fork.

The semantic evaluator, after finishing its computations, passes its

output back to the parsing program. At this point in the current

implementation what is passed back is simply printed on the output

device, but in future versions, we hope to have a program that will

produce natural language output to call at this point. The reason that

the parsing program and the semantic evaluator must be in different

6

TENEX forks is that the parsing program is written in SAIL and the

semantic evaluator is written in LISP, but the runtime systems of both

languages must have a virtual PDP10 to themselves. The use of forks

allows us to use together two languages that ordinarily could not be so

used. Needless.to say, there is also a very great gain in modularity

in using two forks, and one of our most important aims has been to make

our programs modular and easily extended,

SAIL is a high level extended ALGOL compiler developed for the

PDP10 at the Stanford Artificial intelligence Project by E. Swinehart

and R. Sproull. The LISP system that is used was also developed there

by John Allen and Lynn Quam. Both of these systems were originally

written for a modified Digital 1050 operating system and run under

TENEX by means of emulation.

The parsing program compiles the grammar that it obtains from

secondary storage, which must be context-free, into a Chomsky normal

form grammar, which is actually used to do the parsing. The parsing

algorithm is a bottom-up parse using total backup: this means that all

possible parses are attempted, and found. There are at least two

advantages to this thoroughness in parsing. The first is that the

CONSTRUCT program has been used as a portion of a larger system

involving .speech recognition. A speech recognizer, wr-itten by D.

Danforth and D..Rogosa, is used to analyze audio input; the results of

this analysis are passed to the linguistics program which -attempts to

parse them and to perform semantic analysis on them. As audio

7

understanding is so difficult the partial parses must be used in the

analysis of the results of the speech recognizer. The other advantage

to having partial parses available is that it provides us with a start

towards a solution to the habitability problem. The habitability

problem is simply the difficulty that arises due to the fact that is

not really possible to consider all the English sentences that may be

typed at the program in advance and that one cannot write a grammar

that handles all grammaticasand also all sensible and quasi-

grammatical, inputs. This problem is of course crucial to a fluent

program; for further discussion of this almost the only reference is a

paper by Coles [3]. During the parse trees are formed representing

the derivation of the input string in the grammar: using these trees

the semantic parse is formed from the associated semantic functions by

means of a macro expansion. This is formatted in such a way as to be

acceptable input for the LISP system. As was explained above, the LISP

system is in another TENEX fork, and the CONSTRUCT program operates in

such a way that LISP reads.the semantic parse in precisely the same way

that it reads input strings from a teletype. The output from the

semantic evaluator is also done by LISP in the usual manner, but is

intercepted by the SAIL program in the upper fork before it actually

gets to the teletype.

The current LISP implementation is likely to be reprogrammed at

some point in the near future in either MLISP2 or L70, which are newer,

more powerful derivatives of LISP. The first of these is currently in

8

use at the Stanford AI Project, and was developed there by Horace Enea

and David Canfield Smith. L70 is still being implemented as of this

writing by Enea, David Smith, and Lawrence Tesler. The notation that

we shall use in the description of the actual implementation in this

paper is that of MLISP2 rather than the actual LISP that we used. The

language of schemata that is used in the theoretical discussions in, the

second and third chapters is taken from the dissertation of C. Hewitt

[4], and is LISP-like in character, but departs somewhat from both the

conventions of LISP and MLISP2.

1.5 Prerequisites

There are a few prerequisites to reading this dissertation.

The first is an acquaintance with very elementary ideas from logic such

as the notion of an evaluation function and the concept of a model.

More significantly, the reader is expected to have a reasonable grasp

of the basic elements of the programming language LISP and to be

familiar with LISP-like notation.

9

Chapter II

Linguistic Aspects

As we stated in Section 1.3 the basic thrust of this

dissertation is to develop and to implement a questionanswerer based

upon a theory of language. In this chapter we shall discuss our ideas

about natural language by introducing the general structure of the

theory in some detail iSection ILI and Section II.2) . During

the course of this the p...-)blem or the nature of the denoted objects

that our system must manipulae arises: this is dealt with in Section

11.3. After that the key idea of structures is introduced

.(Section 11.4), and is related to semantic transformations in

Section 11.5 and Section 11.6, Finally, the ideas of

schematology are presented in Section 11.8, and are put forward as

the prOper mathematical analysis of out linguistic theory.

It should be borne in mind here that much of what is said in

this chapter has been heavily influenced by our actual experience in

the implementation of our system. Moreover, the state of the

mathematical analysis is still rather incomplete, for the idea of using

schemata to analyze linguistic theory. is still quite new.

II,1 Preliminary Notions About Grammar

Let V be a finite set of syMbols. Then Vic is the set of all

10

finite strings of symbols chosen out of V. Also V+ is V* -{e} where e

is the empty string. We shall_now define the notions of generative and

context-free grammar.

Definition: Ler C = <V, T, S, P> be an ordered quadruple. Then

G is a generative grammar if V is a finite set (the vocabulary), T is a

subset of V (the terminal vocabulary), S is a distinguished element of

V that is not in T (the start symbol), and P is a finite subset of V* x

V* (the set of productions of G).

The set V-T is called the set of non-terminal symbols, and is

often denoted by N. L(G) is the set of all members of that can be

obtained from S by a sequence of applications of productions in P : we

say that a production p is applied to a string t just in case the left-

hand side of .p matches some substring of t and that substring is then

replaced by the right-hand side of pi L(G) is called the language

generated by G. A context-free grammar is a particular type of

generative grammar--all of its production rules have a single non-

terminal on the left-hand side of the production, and a member of V* on

the right. For more details about context-free grammars and languages,

see [5].

The notion of a context-free grammar was introduced by Chomsky

in the mid- 1950's to explain some accounts of the syntax of English

that he thought'were deficient in various ways. Although the notion is

used in this thesis to implement a natural language input system for

the computer, most of the ideas that are involved parallel ideas that

have been developed by compiler writers in the last fifteen years.

11

11.2 The Basic Semantic Theory

Next we shall introduce the notion of an evaluation: this is

derived from the classical model zheotetical notion of an assignment to

the non-logical symbols, and indeed, serves the same purpose in our

semantical theory. We shah assme that a domain for the evaluation is

given, and is denoted by D even though the precise nature of this

domain is still an open question- It should also be noted that this

notion of an evaluation is qui:e different from the notion of

evaluation in LISP, and the twc should no be confused, The notion

that we are about to define is an abstract model theoretic idea that is

relevant only to the semantic theory while the LISP EVAL function is

the basic routine that is used by the LISP interpreter to do its

computations. (Most of the definitions of This section are taken from

[71 or [6] .)

Definition: Let D be a non-empty set, let G be a phrase-

structure grammar, and let v be a tctal function from t the terminal

vocabulary of G to E, where E is also a non-empcy set.. Then v is

called a valuation function.

While one can certainly use many arbitrary valuation functions,

throughout the remainder of this thesis we shall be concerned only with

onethe' valuation function which gives rise tr. t:he intended classical

interpretation of elementary mathematics. We shall now introduce some

terminology that will prove to be convenient later.

Definition: Let D be a non-empty set, let G be a phrase-

12

. structure grammar, and let v be an evaluation function. Then the

ordered pair <D, v> is a model structure for G,

Now we shall develop first intuitively and then more formally

the semantical ideas that are involved in our program. With each

terminal Symbol of a context-free grammar we may associate a

denotation: we shall later spell out precisely what kinds of objects

these denotations are, but for the time being we trust that the reader

will treat them as some kind of primitive, Also with each production

of the grammar we shall associate a function from cross-products of

denotations to denotations: this is not a new idea as it first appears

in the work of Irons in the early 1960's. Each of these functions maps

the denotations of the symbols on the right hand side of a production

to the denotation for the single symbol on the left hand side of the

rule. Note that the requirement that the grammar be context-free is

essential to this, for in a context- sensitive grammar there may be

more than one symbol on the left hand side of some production rule. In

this way, the denotations of the nonterminal nodes appearing in a

derivation of a string in the language of the grammar may be computed.

The denotation of the start symbol is taken to be the denotation of the

sentence.

We shall next introduce the notion of a potentially denoting

grammar and indicate how this idea can be used to define the concept of

the denotation of a non-terminal node of a derivation tree.

Definition: Let G = <V, T, S, P> be a context-free grammar.

13

Let SEMFUN be a function that assigns to each p'in P a set-theoretical

function SEMFUN(p): We require that SEMFUN (p) have exactly as many

arguments as there symbols on the right-hand side of p. Then G' = <V,

T, S, P, SEMFUN> is called a pocens:ially denoting context-free grammar.

In Pi this definition is given in a somewhat more general

form, but the above suffices for our purposes. Although we have

introduced the notions of set-theoretical function and denotation we

have really explain what they are: that task is the function of the

next definition.

Definition: Let D be a nonempty set. Then H'(D) is the

smallest family of sets such that

(i) D is in H'(D),
(ii) if A and B are in 141(D) then A union B

is in H'(D),
,(iii) if A is in H' (D) then PA is in H'(D),
(iv) it A is in WO)) and B is a subset of

A, then B is in H'(D).

We define H(D) = H'(D) union IT, F, with T not equal to F, T

and F not in H'(D).

So far we have defined the semantic interpretations of only

terminals, but it is our inten:ion that non-terminals should also have

denotations or semantic values. These values are defined in terms of

the idea of a potentially denoting grammar,, It is intended that the

denotations of the non - terminals should be members of the hierarchy

H(D) defined above.,

Definition: Let M be a model structure for a.potencially

denoting grammar G. The value v of a node N of a derivation tree T in

the'grammar G with model structure <D, vm> is defined to be:

14

(i) vm(N) if N is a terminal node
(ii) if N1,...,Nk are the immediate successors of N and the rule P

used to derive N1,...,Nk from N has associated with it the function F.
then the value of the node N is v(N) = F (V(N1),...,V(Nk)).

11.3 Constructive Set TheorL and Its Role

We have assumed that the terminal symbols of the grammar are

assigned denotations from among the elements of H(D). This means that

everything is to be thought of as a set in some sense. Note that

neither the machine nor the human can represent every set as an

explicit list, for lists such as that of the even numbers are infinite.

Such sets .must be represented as a characteristic function. Although

the representation for a set is completely transparent mathematically,

it is quite important in our semantics system. One of the major tasks

of the semantic evaluator is to convert from one representation of a

set to the other. Usually, our system attempts to convert everything

to lists from the characteristic function representation: this is done

for reasons of mathematical fluency. In general, it seems to be better

to represent a set as an explicit list whenever possible.

Mathematically, one gets answers that are intuitively more appealing

and somehow more informative. For example, it is possible to determine

whether all of the members of the set of even primes are factors of 4

once one has represented this set as the list containing only the

number 2. The puzzling thing about this phenomenon is the lack of any
Q

easily stated reason as to why one should almost always prefer the list

15

representation to the characteristic function form. As it turns out,

one cannot always list even finite sets in practice due to the

constraints of time and memory space; however, similar constraints are

also in force for the human so that in fact, most of the secs that

actually occur are either relatively small finite sets which are easily

listable or are infinite sets that are easily describable.

It is also worth noting that while the conversions between

representations for sets seems to be essential to the question

answering performance of the system, it is also true that these

conversions depend crucially upon the semantics. The reason .for this

is that the conversions can be made only upon a knowledge of the

mathematical properties of the sets being represented: there is no

uniform way to determine if an arbitrary recursive set is finite, and

hence, can be represented as an explicit list, This fact is a

corollary of the unsolvability of the halting problem. If there were a

uniform method of determining if an arbitrary recursive set is finite

or not, then one could determine this for the set of tape states for a

computation of a Turing machine on any input. But then, one could

determine recursively whether the Turing machine halts on that input,

which is impossible. Hence, the semantic evaluator must use its

knowledge of what set is involved and what its mathematical properties

are in order to determine when it can and should convert from one

representation of a set to another.

At this point it should be fairly clear chat we have a very

16

nonstandard set theory in mind as the basis for our semantic theory.

While we do not have as yet a complete understanding of this, there are

some ideas that we shall use in the sequel that must be explained. It

should be noted that our views on set theory are not motivated by

abstract philosophical considerations,-but rather by the practical

necessities of implementing our theory We shall not discuss the

abstract philosophy of mathematics involved in this, but rather some of

the more concrete aspects that are necessary to our implementation.

In the standard classical set-theory that forms the basis of

modern mathematics, sets are very abstract objects: in Godel-Bernays

set-theory any class that belongs to another is a set. In general

there need be no way to determine algorithmically whether an object

belongs to a particular set. In fact it is the case that there are

sets of integers that can be specified quite simply that are not

recursive, i.e., whose membership problem is not algorithmically

decidable. For example, by the unsolvability of the halting problem

for Turing machines the set of indices of recursive functions that halt

when applied to that index is not recursive. But it is fairly clear

that most of elementary mathematics does not involve such esoteric sets

of integers; for most of the sets of integers that are considered in

elementary mathematics there is a well-known and usually very simple

algorithm for deciding the membership problem for that set. For

example, it is easily decidable whether a given integer is even or not

by dividing it by two and testing for a zero remainder. Indeed, most

17

of the sets such as the prime numbers, the even numbers, the odd

numbers, and so on are defined in terms of such an algorithm for

determining if a particular number belongs to the set.

Although our semantl:.s for natural language is based on set-

theory, we demand that only recursive or algorithmically defined or

constructive sets be used. No only must we know that there is an

algorithm for the membership problem, but also we must have that

algorithm in hand: knowledge that such an algorithm exists is not

sufficient. Of course in the domain that ou.c a:tual implementation

deals with this is no p.roblem.

This idea of constructive set theory is not the one that seems

to be envisioned by the constructiv.iscic philosophers ot mathematics,

for their idea is based upon philsophical considerations about what a

set "really" is, and leads them into the development of a very

different mathematics. Our constructivism is much more straightforward

and is based upon the necessity it deaLing with the computer in a

reasonable way: the effects ot this upon the way in which our system

performs mathematically are essentially non - existent. The question

answering system does classical arithmetic, and makes all the standard

assumptions that classical mathematicians make about numbers and sets

It does not, for example, irv.crporate an intuitionistic arithmetic.

Rather the consttuctivist position that we are taking deals not with

the subject matter of the question answerer, but rather with the

semantical machinery. What we are claiming is that the only kinds of

18

sets that may appear in the semantic parses that our system produces

are sets that are algorithmically defined, and for which we have the

algorithms at hand. This is so simply because these are the only sets

that we have any hope of representing in our data structures. It

should be pointed out also that the fact that we _cannot represent non-

recursive sets in our data structures seems to be inherent in the

nature of the problem rattler than any indication of a flaw in the data

structures themselves.

Next we shall show that in a certain sense the set-theoretical

hierarchy --that we have described in the previous section is too strong.

The following completely trivial theorem shows that there is a set that

our system cannot deal with and that indeed the machine cannot

represent in our framework.

Theorem: Let H(D) be as in Section II.2, If D is taken to be

the set of all natural numbers, then there is a non-recursive set in

H(D).

Proof: Simply notice that since the set of all natural numbers

is in H(D), so that all subsets of natural numbers also belong to H(D).

Now simply note that there are only countably many recursive sets, but

there are'uncountably many subsets of the natural numbers.

At this point one might suggest that the definition be modified

in some way to eliminate the non-recursive sets. While this can

probably be done, the obvious modification fails to provide us with the

proper structure. The obvious modification is of course to require

19

that all of the sets in H(D) be recursive. The difficulty is with the

third clause. Clearly, something like power set is needed to handle

the escalation of type that may occur in dealing with elementary

mathematics. However, the following manifestation of the halting

problem prevents us from using the natural analog to clause (iii) of

the previous definition.

Theorem: Let A be a recursive set, and let B be the set of all

recursive subsets of A. In general B is not recursive.

The proof of this result can be tour-1 in Chapter 14 of [5].This

gives a completely deterministic description of the method of computing

the values of the nodes of the parse tree and hence of answering

questions in our system. However, this is really quite misleading, for

the computation process is very much more complex than this description

indicates. We shall use the remainder of this Chapter to show why it

must be so complicated and the next two chapters to indicate how this

can be implemented.

11.4 The Control Structure View Of Natural Language

The above definitions can well lead one to believe that things

that are parsed together by the rules of the grammar are to be

associated as semantic units This is of course not the case and if it

were to be implemented the system would not be able to deal very well

with any reasonable fragment of English. To indicate what must

actually be done it is necessary to discuss our view of the structure

of this fragment of English and to make a number of distinctions,

20

As we have said before, the semantic objecr_s that we are using

are all sets of one kind or another. However, for heuristic purposes

we may also regard this fragment of English as consisting of functions,

their arguments, and construttipns which relate functions to their

arguments. There are a number of ways besides application in which

functions may be related to arguments, and the English surface

construction of a question in this domain can be used in a number of

ways to pass arguments to functions. As we shall see later, the verb

"have" causes a very different sequence of computational results from

the verb "is". There are two things to be emphasized in this analysis:

the first is that this is a method of viewing the surface structure of

the sentence. While theme may be some other reasons for believing that

this analysis is either useful or truthful, all that it will be used

for here is a metaphor to help explain the .way in which our program

analyzes its input. The other point that must be made is that the

Tunctions that we are discussing are of two quite distinct types, and

correspond to two different kinds of functions that we must program in

our semantic evaluator,

Before indicating what these functional types are, let us look

at a sample.

What are the even multiples of 12? (A)

In the above sentence the words "even" and "multiples"

correspond to functions of elementary mathematics which have well-

defined algorithms for computation. The number 2 is used "as an

21

argument to the function "multiples", and the result of that

computation is passed as an argument to the function "even". The rest

of the sentence is used to indicate that some special computation is

required to relate properly the output of the application of multiples

to 2 to the even function. The reason for this special processing

should be obvious--the even function normally tests its argument for

membership in a set of numbers, and hence, expects a number as an

argument. But the result of the application of the multiple function

to 2 is a set of numbers

The two types of functions that appear in the surface structure

of an input sentence are the mathematical functions such as even,

factor and odd, all of which have well defined mathematical properties

associated with them, and all of which represent operations of

elementary mathematics or sets of numbers that are commonly used in

elementary mathematics. The other type of function is the mechanism

that is used to control the way functions are passed their arguments

and the order in which they are called. Since these components of a

sentence are also functions, they may be manipulated in exactly the

same ways as the other functions in the sentence. One may think of the

sentence as having a control structure. This control structure is

expressed in the form of a LISP s-expression that is produced by the

parsing program and which is passed to the semantic evaluator.

The rest of the discussion that we will present on the

linguistic aspects of our system is probably best regarded as a

22

discussion of the types of control structures that are suitable for the

analysis of natural language. Although we have not as yet really

completed the study of the mathematics that is needed to describe these

control structures, we shall present the beginnings of it as well as

some of the important linguistic intuitions behind our work. Despite

the fact that much of our work is to be formulated in terms of examples

rather than in terms of mathematical theory and despite the fact that

the detailed results that we would like to have are not completely

worked out as yet, we feel that it is important to present the basic

ideas used in our semantic evaluator as well as some,analysis of .them.

11.5 Semantic Transformations and Surface Structure

There are a number of issues that we wish to cover in our

survey of linguistic theory in the rather harsh light of a system for

computational linguistics. The first of these is the now,overburdened

problem of deep structure: the avowed purpose of our work in this area

is to make a case for the idea that there is a semantic deep structure.

The basic arrangement of our system is that a context-free grammar

which is designed in such a way as to lay out the computational

structures involved is used to parse the input sentence. By the phrase

laying out the computational structures, we mean simply that the

grammar is rather detailed in its analysis of English, giving detailed

classifications of the syntactic types involved in the sentence. In

general structures which lead to very different computational processes

should not be parsed in the same way.

23

For example, the verb "is" leads to a fairly simple and

straightforward application of funations to arguments. In a sentence'

like

Is 2 a factor of 3?

the factor function is applied to 3 to produoe a list of factors of 3

and then it is determined whether the list consisting of 2 is a sublist

of the list of factors of 3 or not. However, the use of the verb

"have" leads to a very ditierenc computational process For example,

if we take the sentence
Does 2 have a factor of 3?

then we do not apply the raor function to 3, but rather to 2. Then

the semantic evaluator checks co see it 3 is among the factors of 2.

Although in practice the actual performance of the system is somewhat

different from this, the idea skehed above is intuitively correct,

and illustrates our point about the grammar, The grammar must parse

these two questions differently, so that they are seen as having

different semantics by the semantic evaluator: this is what we mean

when we talk about the idea of the syntax laying out the computational

structure. It is clear, for example, that a gz.ammar that used the

blanket category VP would not do, (For a ,further discussion of this

issue, see [81),

Using the productions that were involved in the parse of the

input, a semantic representat.ion of the input is produced. We claim

that this corresponds to the surface structure semantics. The idea is

that the functions associated with the production rules, are closely

associated with the grammar, and that the semantic parses that are

formed by the parser represent the semantic structure of the sentence

prior to the application of semantic transformations.

11.6 The Deep Structure

During the course of the evaluation process certain of the

functions that are called have the effect of causing a transformation

in the semantic structure While our implementation never actually

transforms the semantic parse into a new one to be evaluated in a more

straightforward manner, it could do so, and for the purposes of this

discussion is convenient to assume that it does do so. The major

characteristic of the transformed semantic parse is simply that things

that are parsed together grammatically form semantic units and can be

evaluated together.

To clarify this a little, we present a simple example.

Is 2 or 3 even? (B)

It should be intuitively obvious that this sentence is to mean the

following:

Is 2 even or is 3 even? (C)

Indeed, if one ware to translate (B) into logical symbols as one often

does in elementary logic courses, then one might well write down (C) as

an intermediate step. It should be clear that (B) and (C) are

logically equivalent sentences of English. However, the graMmar is

such that the most natural syntactic parse lumps the entire phrase "2

25

or,3" together as a noun phrase, and indeed, this type of example is

often used to motivate the introdztion of synce:tic transformations.

However, in our system this problem is handled in the semantics by the

use of a special funztion whi:h prcdu:::es a transformation of the

semantic parse of the sentence. For this particular example, the

system in the process of evaluaZ:ing .03. actually evaluates (C). The

details of what these transformaolicas are and how they iealiy work are

in the next chapter.

The question fmmedlate'iy arises as to why the transformations

are placed in the semantl_s rather than in he syntax--whioh is where

the linguists have always pu.o them. The first reason why it is

necessary to put the transformational component into the semantics is

that there is no known way to parse a transformational grammar with any

reasonable speed. Although Petrick in 9i did develop an algorithm

for such parsing as long ago as 1965, Woods points out in 10j chat the

time required for c:omputations using the Petrick algorithm is

prohibitive. Even though Woods' own augmented transition networks give

the power of a transformational grammar and still allow parsing in time

close to that needed by Eariy's algorithm ilIJ for parsing context-free

languages, the Woods methOd is vary different from the methods used by

linguists, and is ra:the.z less p0.spicuous than the standard context-

free language. The other prOblem with the Woods parsing scheme is that

the parser must be written as a set of proedutes in LISP, and

therefore, is rather difficult to modify or extencL Thus on purely

26

practital grounds it was necessary to avoid the use of syntactic

transformations.

Yet there are other more compelling reasons for doing without

syntactic transformations. The most important of these is simply that

it is easier to see what kinds of transformations are needed if one

uses semantic rather than syntactic transformations. In the domain

that our system is written for, almost all educated adults can agree on

the answers to the questions, and indeed, can answer them quite easily.

Given these intuitions about 'how one wants to answer a particular

question, it is far easier to write the transformations on the

semantics that one wants than to write some syntactic transformations

and hope that they do the proper thing semantically. This approach is

also simpler in the sense that it is more direct: one just writes the

-transformational functions that one needs rather than hoping that the

proper transformations will 'be a side-effect of some syntactic

transformations.

Given that we accept the idea of semantic transformations, we

may well ask what their general form is and what the general form of

the semantic deep structure that we imagine to exist is The general

purpose of a semantic transformation is to move functions and their

arguments into structural proximity within the semantic deep structure.

That is, semantic transformations such as those that are associated

with the verb "have" serve to move functions closer to their arguments:

this should be apparent from the earlier discussion of this verb. To

27

put this somewhat differently, a semantic transformation serves to

alter the semantic parse tree in such a way as to make the values of

nodes "depend" only on the values of their immediate descendents. Thus

the general form of a semantic transformation is that of a recursive

function that carries semantic parses ro semantic parses.

From the above it should now be fairly obvious what the

semantic deep structure tree should look like. In an intuitive sense

it should be a tree such that one can evaluate its nodes from bottom to

top in such a way that the value of any one node is completely

determined by the values of its immediate successors in the tree.

While this can always be done by means of coding devices, the semantic

deep structure should not use such; so that the denotations of all of

the nodes of the deep structure tree should have denotations which are

relatively simple computationally.

It should be noted in passing that the format of the deep

structure tree is not to be radicall,. different from that of the

surface .structure tree as some have suggested (e.g., Sandewall in

[12]), (For further discussion of this point, see Section IV.2 and

Section V.4). That is, the deep structure tree is taken to

represent a transformation of the surface structure rather than a

translation into some formal language such as first order kogic. This

is important, for while it is possible to see how to do

transformations, it is difficult to find reasonable methods for

translating sentences of English to, say, first order logic. Although

28

some heuristic methods are usually presented in introductory logic

courses, they do not have sufficient generality or precision to be used

as the basis for a question answering system or as the basis for a

semantics of natural language.- In general, it seems to be the case

that the translation problem is harder than the problem of a proper

semantics of natural language, and indeed, only once the semantics of

natural language are wellunderstood, will the translation problem then

be approachable.

11.7 A Detailed Transformational Example

As much of the preceding has been fairly abstract, we shall now

present a rather detailed example of how all of this is to work. We

shall use sentence (B) above, The idea is not to give an explicit

account of how our current implementation works, as this is discussed

in the next chapter, but rather to indicate the behavior of the

mechanism of semantic transformations in a particular instance. The

parse that is produced by the CONSTRUCT prbgram is :

(S (CHL (LST 2) (LST 3)) (STS EVEN)). (D)

In order to get a good idea of how our transformations do work, we

shall trace through a computation with this parse, indicating the

important transformational aspects involved.

The evaluation process is a recursive procedure, and is best

explained in .terms of a stack ST. We shall not really worry about the

details of the stack, but rather assume that'there are appropriate PUSH

29

and POP operations: the PUSH operation puts an item on the top of the

stack while the POP instruction removes the top item from ST. The

input to the computation process is the entire form (D). On input the

evaluator tests to determine if (D) is an atomic form, i.e., if (D) is

a LISP atom (an identifier). This test fails, so that the first

element of-the list is pushed onto the stack.

ST = [S]. scanning (CHL (LST 2) (LST 3)).

We shall use diagrams of the above type to keep track of the current

state of the, semantic evaluator,

The semantic processor now attempts to evaluate the CHL, but

again the form is not atomic, and so the rest of the list that was

being scanned above must first be evaluated. Since this is the case,

CHL is pushed onto ST, so that we have the following computational

state.

ST = (CHL Si scanning (LST 2)

Once more the expression being scanned is too complex to be

evaluated immediately, so LST is pushed onto ST, and the system is left

scanning 2. However, 2 can be immediately evaluated to 2. At this

point all of the arguments to LST, which is on the stack, have been

evaluated, so that LST may be popped from the stack, and applied to 2.

The result of this is simply the form (LST 2). A similar process

evaluates (LST 3), so that all of the arguments to CHL have been

evaluated, and CHL may be popped from the stack and applied to (LST 2)

and (LST 3). Diagrammatically, we have:

30

ST = IS] scanning (STS EVEN)
applying CHL to argi = (LST 2) arg2 = (LST 3).

At this point the transformational mechanism comes into play:

prior to this the evaluation process has been precisely that used by

the LISP interpreter. The application of CHL to its arguments has the

effect of popping the stack once and writing on the input device the

forms:

(S (LST 2) (STS EVEN)) (Dl)
(S (LST 3) (STS EVEN)) (D2).

Then the CHL itself is pushed onto ST. Now following a process that is

essentially the same as that above, (Dl) and (D2) are evaluated. The

fallowing diagram shows this process in some detail.

ST = [S] scanning (LST 2)
ST = [LST SI scanning 2

evaluate 2 to 2
POP LST and apply to argi = 2
evaluate (LST 2) to (LST 2)
ST = [S] scanning (STS EVEN)
ST = [STS S] scanning EVEN

evaluate EVEN to EVEN
POP STS and appl;. to argi = EVEN
evaluate (STS EVEN) to (STS EVEN)

POP S and apply to argi = (LST 2) arg2 = (STS EVEN)
evaluate (S (LST 2) (STS EVEN)) to (TV T)

ST = Sj scanning (LST 3)
ST = iLST Sj scanning 3

evaluate 3 to 3
POP LST and apply to argl= 3
evaluate (LST 3) to (LST 3)
ST = [S] :,canning (STS EVEN)
ST = [STS S] scanning EVEN

evaluate EVEN to EVEN
POP STS and apply to argi = EVEN
evaluate (STS EVEN) to (STS EVEN)

POP S and apply to argi = (LST 3) arg2 = (STS EVEN)
evaluate (S (LST 3) (STS EVEN)) to (TV NIL)

31

The result of evaluating form (D1) is (TV T) while the outcome

of evaluating form (D2) is (TV NIL). Popping CHL from ST, we have as a

final result (CHL (TV T) (TV NIL)).

11.8 Program Schemata

We shall next make some attempts to deal with the problem of

characterizing the exact mathematical nature of the semantic deep

structure, and the precise way in which the transformational component

that we envision should work, It should be pointed out that this

presentation is only a sketch of the outlines of what we feel can be

developed into a theory of semantics.

The first step that must be taken in the analysis of the

semantic deep structure is one of abstraction. The mathematical

functions are themselves capable of great complexity, but we do not

want to claim that simple compUrations calling relatively complex

functions are transformational: rather the additional complexity comes

from the way in which arguments are passed to functions and the way 1:

which control flows from one function call to the next. One should

note that that this is analogous to the description given earlier of

the structure of English in this fragment being the method of passing

arguments to functions. The basic idea of the abstraction is replace

those functions which are known and which do not have any

transformational import by variables. In what follows we should use

two types of variables--one for the mathematical functions and one for

32

the semantic functions that do not have any transformational import,

but our theory is not as yet so sophisticated that this needs to be

done. This is strictly analogous to the use of program schemata in the

mathematical theory of computation- As is well-known, most programming

languages are universal in the sense that a program for any recursive

function can be written in them. Yet it is clear that some programming

languages have features that make them more powerful than others. For

example, it is intuitively obvious that ALGOL is more powerful than

machine language, but both will allow one to program any recursive

runction, For this Leeson program schemata have been developed. By

replacing the basic functions by variables and studying only the

control structures involved, one can compare the power Of programming

language features: for an example of this see [13i.

It should be pointed out before we actually introduce the

schemata themselves that they are presented as an analysis of the

functions that are actually called by the semantic evaluator: they are

not templates from which these functions were written. Thus, there is

the question as to whether the schemata that we write down actually do

represent the runctions that we claim they represent. This is an

assertion that is not subject to any formal checking at the present

time: we believe that our analysis is fairly self-evident.

We shall introduce two classes of schemata for use in this

endeavor. The first of these is to correspond to the full

transformational structure that is used by our system. It should be .

33

noted that this is probably stronger than our semantic evaluator, i.e.,

there are programs that can be represented in this class of schemata

that are not used in, and indeed, should not be used, in tho programming

of a semantic evaluator such as the one that we are discussing. This

is analogous to the problem that has plagued linguists for some time- -

that of finding natural constraints on their transformations. The

class of transformational schemata is exactly the class of program

schemata that is defined in Hewitt and the following BNF definition

of the class is taken directly from that source.

Definition: The BNF syntax for a transformational schema is:

<program> ::= <term>
<term> ::= <block> 1

<repeat>
<again>
<exit>

(if <term> then <terms> else <terms>)
<assignment>

false
<literal-string>
<identifier>
<function-call>

<block> ::= (block <body >)
<assignment> ::= (<identifier> "<-" <term>)

<repeat> ::= (repeat <body>)
<function-call> ::= (<uninterpreted- function> <arguments>)

(is <term> <term>)
(call (<uninterpreted-function> <arguments>) <function>)

<again> ::= (again) (again <name>)
<exit> ::= (exit <name> <terms>) I (return <terms>)

<body> ::= <name> <declaration> <terms> I

<declaration> <terms>
<terms> ::= <term> I <term> <terms>
<declaration> ::= (<identifiers>)

<arguments> ::= <empty string> > <terms>

<identifiers> ::= <empty string> <identifier> <identifiers>
<identifier> ::= <letter> <letter> <alphanumeric>

<alphanumeric> ::= <letter> I <digit>

34

A number of comments need to be made about this definition--mostly in

the form of giving the semantics of some of the more unusual

constructions, and describing some of the terminology that is common in

the field, but rather non-standard outside of it.

The most striking terminological problem is with what we shall

call variables. The variables of a schema are the identifiers that

appear in it: they serve as memory locations that are used by the

schema in the course of a computation, Usually, the variables that

appear in a schema are divided into two classes- -the input variables

and the working variables. The input variables are those that appear

following the name of the schema on the left hand side of the defining

equality sign: the working variables are all of the rest. Sometimes

the term registers is used instead of the term variables.

The evaluation of these schemata is basically a very

straightforward process. The execution begins with the first

statement, and proceeds sequentially, one statement at a time, with the

usual exception that there are statements that when executed affect the

order of evaluation. It should be noted that for the class of non-

transformational schemata that will be introduced shortly there are no

legal statements that change the flow of control, so that each

Statement in such a schema may be executed precisely once.

. .These schemata are not recursive, so that a function may not

call itself: there are recursive schemata, but they are even more

powerful than transformational schema as there exist recursive schemata

35

which cannot be programmed using only the features of transformational

schemata. (There is a proof of this result in Hewitt [4].) These

recursive schemata will not, therefore, be considered here. The basic

idea is that a transformational schema represents an ordinary iterative

program with conditionals and assignment statements. The looping power

of these schemata is supplied by the repeat feature. First any

statement that is associated with the repeat itself is executed

precisely once: usually this is an assignment statement that

10

initializes some variable. Then the body of the repeat is executed

until a return statement is encountered; when a return is executed the

program returns to the smallest containing block with the indicated

values. Thus, the action of the return statement is strictly analogous

to that of the RETURN function in LISP. The blocks of program schema

may be named and the exit statement allows one to return from the named

block with appropriate values: this generalization of the return is

somewhat like the done construct in SAIL. Also it should. be pointed

out that the predicate "is" is used to test for equality to a finite

number of distinguished constants. Otherwise, the equality relation is

not available as an interpreted feature of transformational schemata.

The uninterpreted functions may be called in the usual fashion: first

their arguments are evaluated left to right and then the function name

is applied to the arguments to produce a value: a function letter

accepts only a fixed number of arguments. This last feature is, of

course, at variance with the practice in LISP, but it makes the

36

mathematics of the situation easier. Finally, it should be noted that

the LISP convention with regard to truth values is used, i.e., there is

some object in the domain of the computation that is to serve as false,

and everything else is considered true. This device allows us to

dispense with the usual distinction between predicates and functions.

All of the other constructs should be self-explanatory.

In order to make this a little more concrete, we shall give a

rather simple example of a program schema.

(g x) = (repeat ((y <- x))
(if (is x "nil") then (return y))

(y <- (f x))
(x <- (h x))).

This schema initializes y to the input value of x, and then enters a

loop. If x is equal to "nil", then the value of y is returned as the

value of the schema. Otherwise, the value of y is set to the value of

(f x), and that of x is set to (h x), and the loop is started again.

Now we are ready to introduce. the notion of a non-

transformational schema. Such schemata are all transformational

schemata of a very restricted type, so that all of the restrictions

that applied to transformational schemata apply to non-transformational

schemata as well. In particular, these schemata are non-recursive and

use only uninterpreted functions of a fixed number of arguments. The

basic idea of a non-transformational schema is that it is a sequence of

assignment statements, followed by a return statement that indicates

the value of the computation as a whole. This class of schemata is too

weak to be of interest to specialists in the mathematical theory of

37

computation, and consequently is not to be found in the standard papers

on the subject. The interest of these schemata is simply that they

seem to be a reasonable formalization of the notion of a non-

transformational semantic evaluation,

Definition: The BNF definition for the syntax of the class of

non-transformational schemata is as follows:

<program> ::= (block <terms> <return>) I <term>
<terms> ::= <term> <terms>

<term> ::= <assignment> 1 <function call>
<assignment> ::= (<identifier> "<-" <term>)

<function call> ::= (<uninterpreted function> <arguments>)
<arguments> ::= <argument> 1 <argument> <arguments> 1

<empty>
<argument> ::=<identifier>

<return> ::= (return <identifier >).

It should be clear from this definition that the non-transformational

schemata form a subclass of the class of transformational schemata.

A simple example should serve to make this much more concrete.

This particular program schema assigns to y the value of f applied to

x, and then assigns that to z, which is returned as the value of the

whole schema.

Example of Non-transformational Schema
(g x) = (block

(37 <- (f x))
(z <- y)

(return z)).

We shall briefly consider how this particular schema is to be evaluated

in order to clarify the evaluation process for such schemata. First

the assignment statement assigning to the variable y the value (f x) is

executed,' and then this value is assigned to 7. The schema then

returns z, and since there are no more statements to execute, halts.

38

11.9 The Restrictions Upon Schemata

Before showing the relationship between the class of

transformational schemata and the sub-class of non-transformational

schema, we shall first consider a bit more fully the reasons for the

restrictions that are placed upon both classes. These restrictions are

quite important both formally and linguistically. Our analysis of the

c3mputational processes involved in the semantics of natural language

is su:h that the forms that are barred by the restrictions on

transformational schemata do not occur. in the actual semantic

computations.

There are two important restrictions that we wish to discuss:

the first of these applies to both transformational and non-

transformational schemata. Both classes are restricted to non-

recursive forms, As was pointed out above;. there is a definite sense

in which recursive schemata are more. powerful than non- recursive

schemata: this is discussed in [4) and will not be dwelled upon here,

for the basic point that we wish to make is that all of the recursion

that is used in the evaluation of a semantic parse is done by the

uninterpreted functions The parse can be analyzed into a non-

recursive program schema. To see this, simply note that each parse

represents a sequence of assignment statements and transformations on

this sequence. The transformations involve looping and conditionals,

but are non-recursive in character, or at least, have been non-

recursive in every semantic computation that we have dealt with in our

39

work. Of course, there is no formal proof as yet that this must be

true of natural language, and indeed, this seems to be an empirical

assumption about natural language that is borne out by our

implementation. Since we want the non-transformational schemata to

form a subclass of the transformational schemata, this restriction is

also applied to them.

The second restriction is the one that is applied to the class

of transformational schemata to obtain the non-transformational

schemata. The essential idea, as we have already mentioned, is that a

non-transformational schema is a transformational schema that consists

only of assignment statements, followed by a single return. We shall

attempt to show that this is an adequate analysis of non-

transformational schemata, by giving an algorithm using such a schema,

that allows one to traverse a tree from leaves to root in end-order.

It should be pointed out that this is not the usual end-order traversal

algorithm of computer science, for we start at the leaves of the tree,

rather than having to find those nodes. It should be intuitively

obvious that such a traversal corresponds to a non-transformational

evaluation of a semantic parse tree, for all this traversal does is to

start at the leaves of the tree and then on the basis of the denotation

of each leaf compute the denotations of the immediate predecessors of

the leaves, and then in turn compute the values of the nodes above

those, and so on, until finally the value of the root has been

computed. But this is just what we mean by a non-transformational

40

computation: the semantic functions are applied to the denotations of

the terminal nodes of the parse tree to compute the denotations of the

nodes immediately above them, and then in turn, the semantic functions

associated with the derivation of these nodes are applied to these new

denotations to obtain the denotations of successively higher nodes in

the tree until finally the denotation of the root node has been

computed. We shall present the traversal algorithm only for binary

trees, but the generalization should be fairly obvious.

Algorithm: Let T be a binary tree with nodes nl, n2, n3,...,nm

where nodes np,...,nm are leaves of the tree, and n1 is the root of T

and where associated with each non-leaf node of the tree there are a

functions fl, f2,...,fp-1 such for 0 < i < p, we have that fi is a

function of precisely as many arguments as ni has successors in T.

Assume that there are'functions left and right which when applied to a

node of T return, respectively, the left successor of the node and the

right successor of that node. If the appropriate successor- is missing

then the value NIL is returned by the function. Then the following

non-transformational schema returns the value of T if the values of

vnp,...,vnm are set at the beginning of the computation to the

denotations of np..,nm, respectively. The value of T is the value of

vn1.

(block

(vp-1 <- (fp-1 (left p-1) (right p-1)))
(v-p-2 <- (fp-2 (left p-2) (right p-2)))

(v1 <- (fl (left 1) (right 1)))
(return v1)).

41

In order to clarify this a bit, we shall give' an example:

Figure 1 shows a simple binary tree, the value of whose top node we

wish to compute. We shall refer to the leaf nodes'as x4, x5, x6, and

x7, and assume that there are functions associated with nodes 1, 2 and

3. Using the algorithm, we get the following schema.

(f x4 x5 x6 x7) = (block
(x3 <- (f3 x6 x7))
(x2 <- (f2 x4 x5))
(xl <- (fl x2 x3))

(return x1)).

It should be fairly clear that this schema represents a straightforward.

bottom to top computation of the value of the root from the values of
the terminals.

42

Figure 1. Simple Binary Tree for Evaluation

43

The Relative Power of the Non-Transformational and

Transformational Schemata

We now wish to show a rather elementa*jfact about the classes

of schemata that we defined in Section 11.8, This fact involves a

notion of equivalence of schemata. The idea is that there is a

transformational schema which cannot be programmed using only the

computational structures available in the class of non-transformational

schemata.

Definition: Let and S2 be two schemata. Then Si is

equivalent to S2 if and only if Si and S2 either both fail to terminate

or return the same value for all interpretations of the primitive

function letters.

This definition is due to Hewitt Lij. We shall denote the

function computed by a schema S under some fixed interpretation by fS.

Theorem: There is a transformational schema that is not

equivalent to any non-transformational schema.

Proof: We must show that there is some transformational schema

S such that for any non-transformational schema N there is some

interpretation I such that fS is not equal to fN on some input in the

domain of the computation. Let S be the following schema.

(g x y) = (repeat (z <- x)
(if (P y) then (return z))

(z <- (R z))

(y <- y)))

Consider the following interpretation. Let the domain of the

44

interpretation be the set of natural numbers, and let P be a test for

equality with 0, let R be the successor function, and let L be the

predecessor function. Interpret all other function letters as

constantly zero functions, Furthermore, assume that initially all

variables except the input variables x and y are set to 0. It should

be evident that under this interpretation fS is the ordinary addition

function for the natural numbers.

We claim that under this interpretation, there is no equivalent

non-transformational schema, Let N be a non-transformational schema,

and assume that N has m statements, where following Hewitt, we define

the number of statements in a schema to be the number of left

parentheses in the schema. By the interpretation of the function

letters, we know that the execution of any one statement can add at

most one to the value of any variable in the schema. (Recall that any

function call in a non-transformational schema has only identifiers as

its arguments, so that nested function calls in one assignment

statement are not allowed). But since in a non-transformational schema

each statement can be executed only once, the value-returned by N can

be at most the maximum of the initial values of x and y plus m. If we

take the input value of x to be 2m and that of y to be 3m, then we have

that at best N can return 4m, which is less than the value 5m returned

by S for these inputs. Hence, N and S are not equivalent. But N was

an arbitrary non-transformational schema, so that the result is.proved.

Clearly, there are many other formal results about schemata

45

that may have application to computational linguistics. One important

class of theorems in this area would be results that would indicate

some natural restrictions upon the computational power of our

transformations. The lack of such constraints has always been the

great difficulty with syntactic transformations, but by using schemata,

we can hope to obtain some reasonable restrictions upon the

computational power of semantic transformations. The discovery of such

results is an important open problem.

II,11 A Fine: Example

Before going on to the discussion of the actual implementation,

we shall give an example of how one would represent an actual semantic

computation in terms of schemata. The semantic parse that we use is

the one that was discussed earlier for the question

Is 2 or 3 even?

As we stated previously, this is parsed into

(S (CHL (LST 2) (LST 3)) (STS EVEN)).

In Figure 2 we have a graphical representation of the surface

structure and deep structure trees for this sentence.

The schematological representation for the computation needed

to evaluate this is as follows. Let x1 Le the list of choices, let x2

be the set of even numbers, and let us have the following

interpretations of the functions:

Si checks for an empty list (NULL)
S2 adds an item to the front of a list (CONS)

S3 is the subset function

46

S4 selects the first element of a list (CAR)

S5 selects the rest of a list (CDR).

The constant NIL is to represent the empty list. The schema that

represents the desired computation is:

(V xl x2) = (repeat (z <- NIL)
(if (S1 xl) then (return z))
(z <- (S2 z (S3 (S4 xl) x2)))

(xl <- (S5 x1)).

47

suRrAcE STRICTURE

nk NP N P

even
AP

NP or

a

DEEP STRtkCSIQE

A I

3

o r

1 N
/ink NP AIP LA k NP

I I

3 ever)
4 even is

Figure 2. Surface and Deep Structure Trees for a Sample
Sentence

4749

Chapter III

Aspects of the Ac,-.ual Implementation

this chapter we. shall discuss the actual computer

implementation of the semantic evaluator: There are several issues to

be discussed in this area, and we have several proposals relating to

future implementations. In particular, we shall discuss the computer

language. features that would be desirable for implementations of this

type of system. However, for the sake of completeness, we shall

present in Section III.1 a brief discussion of the programming

language LISP, and also present the notation that we shall use in the

rest of this chapter. This will be followed by an analysis of the

utility of certain concepts from current computer science: this is the

content of Section 111.3, Section 111.4, Section 111.5, and

Section 111.6. Most of what we have to say here is drawn from the

work of others, but' it represents the area from which_ the most

important impr'ovements to our work will come. The actual programming

that we did is covered in detail beginning in Section 111.7.

Concepts From LISP

The language in which- our actual implementation will be

described is an extension of LISP called MLISP. In point of fact, we

shall need only a small fragment of the language which we present

50

below. For more details, the reader is advised to consult [14], [15],

and [16].

Definition: The BNF definition of MLISP is given below:
<program> ::= <expression>

<expression> ::= <simple expression>. <infix operator>
<simple expression>]*

<infix operator> ::= *I+I@I71 not <identifier>
<prefix>::= <identifier>

<simple expression> ::= <block> I

<if expression>
I

<while expression>. I

<for expression> 1

<until expression> I

<assignment expression> I

<function call> I

<quoted expression> I

<atom>
<prefix operator>. <simple expression>

(<expression>)
<block> ::= BEGIN

[<declaration> ;]*

[<expression> ;]* I

<expression>. END

<declaration> ::= NEW <identifier list>
<identifier list> ::= <identifier> [<identifier>]*

<lambda expression> ::= LAMDA
(<identifier list>); <expression>

<if. expression> : = IF <expression>
THEN <expression> [ELSE <expression>]*

<for expression> ::= <for clause>
(DO I COLLECT) <expression>

<for clause>. ::= FOR fNEWj <identifier> (IN ON)

<expression>
<assignment> ::= <regular assignment>

<regular assignment> ::= <identifier>. <- <expression>
<function call> ::= <identifier> (<argument list>)
<argument list> ::= <expression> [<expression>]* I

<empty>
<quoted expression> ::= '<s expression>

<s expression> ::= <atom>
1

0 1

(<s expression>. <s expression>) 1

(<s expression>. [1.,] <s expression>]*)

<atom> ::= <identifier> 1 <number>
<identifier> ::= <letter> [<letter> 1 <digit>]*

51

We shall now ptesent some of the basic LISP functions that will

be used in the discussions of the actual implementation. First we need

to highlight the definition of an s-expression that was given above.

Definition: An s-expression is a LISP atom or is

(s1 s2)

where's1 and s2 are s-expressions,

The primitive functions of LISP can be explained in terms of this

notion. There are two functions that analyze s-expressions into their

parts--CAR and CDR. We shall assume that both of these are undefined

for atoms, and that

CAR ((s1 . s2))

and

CDR ((sl s2)) = s2.

There is also a LISP primitive, called CONS, used to build more complex

s-expressions from simpler ones.

Definition: If Si and s2 are s-expressions, then
CONS (sl, s2) = (sl s2).

We shall now define the notion of a list: in general, the only

s-expressions.that we shall deal with will be lists. The empty list,

which is called NIL, is distinguished by the LISP system. NIL is both

a list and an atom to LISP, and is also used to represent -the truth

value false: anything that is non-NIL is considered to be true.

Definition:
(I) NIL is a list.

(2) If 11 is a list and sl is any s-expression, then
CONS (sl, .11)' is a list.

Lists are written as sequences of elements surrounded by

52

parentheses. The s-expressions that appear in a list are called the

members of the list. There are some other LISP functions that we shall

use later. Among these are NULL, ATOM, NUMBERP, and LIST. The LIST

function is LISP function of an indefinite number of arguments that

returns as its value a list whose members are the arguments in the call

to LIST. The NUMBERP function tests whether its argument is a number:

it returns T if so and NIL otherwise, The ATOM function tests to

determine whether its argument.is an atom or not. It returns T if so

and NIL if no Finally, NULL is a function that accepts one argument

and tests that for equality to NIL. If it is equal, then the function

returns T, and in all other cases it returns NIL.

There are also some convenient ways in MLISP to express

iterative constructions: as some of these are used in our subsequent

discussions, we shall go over them now The basic iterative

construction that we shall use is the FOR expression. The FOR

. expression is a command to the computer to step through a list and to

perform a certain operation upon each element of the list. If the FOR.

expression uses COLLECT mode, then the results of each of these

.operations are assembled into a list and returned as the value of the

expression while if the DO mode is used, then the value returned is the

value of the operation on the last element of the list. MLISP has many

other iterative constructions which'are described in [14], but which

will not be used here.

Although we shall not deal with the evaluation algorithm that

53

is used by the LISP system in any detail until Section 111.4, we do

need to introduce some terminology that will be used throughout this

chapter. In general LISP functions evaluate their arguments, but there

is a special class of them which do not, A standard LISP function that

evaluates its arguments before using them is called an EXPR while a

function that does not have its arguments evaluated prior to being

called is known as a FEXPR.

111.2 apes of Functions to be Implemented

As we pointed out in the Section 11.4, there are two different

types of functions ,that are to be implemented. One of these is the

type of function that appears in the surface structure of the input

sentence: examples of these are the purely mathematical functions such

as factor and multiple. Another type of function is that which

corresponds to the English input, but that does not appear explicitly

in the surface structure. These are not mathematical fUnctions in the

sense that factor or divisible are. Moreover, many of these functions

have a transformational character in that they control the sequence of

evaluation by the values that they return.

Some simple concepts from computer science are needed to

understand how the implementation works. The semantic evaluator is

written in Stanford AI LISP 1.6 although. it could be modified to run in

any other LISP dialect. Since the evaluation program is in LISP, the

semantic. functions are really functions, for every program in LISP

54

returns a value. This applies to both the mathematical functions and

those functions that serve to implement the control structures that

relate functions to their arguments (Section 11.4).

111.3 Side Effects

There are several other aspects of the programming language

LISP that are important to the understanding of our implementation.

One of these is simply that functions may have side-effects. That is

to say that while the function returns a value, it may also modify the

list structure that the LISP interpreter maintains. Although the

mathematical theory of computation at present lacks the tools to give a

complete analysis of functions that have side-effects, we shall attempt

to give both an intuitive idea of what we use these side-effects for in

our system and also a reasonable mathematical analysis of them. The

mathematical analysis will, of necessity, be somewhat informal and

incomplete due to the difficulty of the problem.

The first thing that ought to be pointed out about the use of

functions with side-effects in our system is that we use them primarily

to define functions which are not part of the actual LISP code, but

which are derived from programmed functions and which represent

intermediate steps in the semantic evaluation procedure. Of course,

this has profound implications (which are discussed in Section 111.14

for the structure of our system, but let us for the present delve into

how all of this actually operates.

55

In LISP there is a systematic attempt to avoid making a

distinction between programs and data. In the implementation that is

actually used in this project, the function definitions are simply

special types of list structures that may be manipulated by the LISP

system in the usual ways. These list structures have the additional

property that they may be applied as functions to other list

structures. Thus, we can in the course of evaluating a semantic parse

produced by the CONSTRUCT program create functions that are not in the

pre-coded semantic evaluation program and use these in the later

evaluation of the semantic parse: the appropriate list structures are

simply created and stored. This is done, for example, in the

manipulation of the charaCteristic functions of sets. To handle the

intersection of the set of odd numbers with the set of prime numbers,

the system produces a new characteristic function for the set of odd

prime numbers by combining the characteristic functions for the set of

primes and for the set of odd numbers. Some of the details of these

created functions will be described in Section III.70. For now it is

sufficient to note that the side-effects that are used by the semantics

system are rather-limited in nature and rather straightforward: there

are no functions which make massive and strange changes to the list

structure. All of the functions that are defined are based on rather

simple combinations of functions that previously existed in the system

and involve only locally available list structure, i.e., things that

appear as arguments to the functions that create new functions from

old.

56

In an attempt to make this a little more precise, we shall go

into some more detail about the structure of functions with side-

effects and their properties. What we shall say in the following is

based on the concepts of Section II8 and is not entirely accurate for

any actual LISP system, but it does convey in some ways an abstract

picture of what is going on. What is important here is not the lists

maintained by the interpreter itself, but rather the functions and

structures that are accessible to the user.

Definition: Let f be a transformational schema described in the

notation of Section 11.8, and let xl, x2, x3,..., xn be the input

variables of f. Assume that f returns its value in a variable z. Then

f is said to have a side-effect if and only if there exists y,

variable distinct from z, such that the value of y is changed by the

application of f to xl, x2,...,xn.

Definition: Let f be as above, and let yl, y2,...,ym be the

only variables in f other than xl, x2,...,xn. Then f is said to have

only local side-effects if and only if the only variables that are

altered by the application bf 2 to xl, x2,.,.,xn other than z are among

yl,..., ym.

Our fundamental claim is that other than for the lists that are

maintained by the LISP system the functions that are used by our

semantic evaluator have only local side-effects. In order to verify

this claim, we shall consider the role of side-effects in the class of

transformational schemata. Any'non-local side-effects that may be

57

produced by the LISP system are the result of the actual application of

a particular instance of this schema to some arguments, and should, if

the LISP interpreter is properly written have no effect on our

functions. Hence, these schemata are a good modei for our semantic

evaluator.

effects.

Theorem: A transformational schema S can have only local side-

Proof: This is actually quite obvious, but we shall explain

what is going on at the risk of belaboring the point. Let S be a

transformational schema. Then we shall show that S has only local

side-effects. The only constructions in a transformational schema that

can affect the value of a variable (whether it appears in the S or not)

are the assignment statement and the return statement. But both of.

these constructions must contain the name of the variable whose value

is to be changed. Hence, the variable appears in S.

A formal proof of this would involve an extremely messy

induction on the structure of transformational schemata or on the

length of S.

111.4 The LISP Calling Sequence

However, the LISP interpreter has some features which are

actually in the way of doing a proper implementation of the semantics

system. The most important of these is the LISP calling sequence or

evaluation algorithm. As is well known, LISP uses a recursive inside-

58

out method to evaluate functions. That is, the LISP interpreter first

checks to see if the function being called is a function that evaluates

its arguments. If.this is the case, then the arguments are evaluated

before any evaluation of the function itself. Note that the evaluation

of the arguments to the function may involve tho evaluation of other

function calls--including perhaps calls to the same function that

appears at the top level. Once the evaluation of the arguments is

complete, the function is then called on those arguments. If the

function does not evaluate its arguments, then it is immediately called

on its apparent arguments. Any function or any instance of functional

application is an s7expression. The LISP function that actually

governs the evaluation of s-expressions is called EVAL. EVAL may be

given the following recursive definition for functions that evaluate

their arguments.

EVAL (X) <- IF ATOM X THEN VALUE X ELSE
CAR X (CDR X)

where VALUE x is a special value that is associated with the atom and

where in the other case, we apply the CAR of the expression to the CDR.

While the recursive inside-out algorithm described above is the

one used by LISP to evaluate our functions, the functions themselves

are coded in various strange ways to prevent the LISP interpreter from

really doing the evaluation in exactly that order. The basic method of

controlling the calling sequence in the semantic evaluation routine

involves the introduction of certain special functions into the

semantic routines that serve as flags to the LISP interpreter that tell

59

it not to evaluate the s-expression in question. These flags are

written as LISP functions and appear as the CAR of an expression. LISP

sees the function and applies it to the CDR of the s-exprossion--

usually doing nothing to that part of the expression. Intuitively the

function often also serves as a data type telling outer functions what

type of arguments that they have received and hence how to behave on

these data.

To clarify this point further, let us give an example of one of

these functions: this example will be given in somewhat general terms

as we shall cover the actual function in Section 111.7. The

function LST is defined in such a way that it passes an explicit list

of elements to higher level (outer) functions. LST evaluates non-

atomic expressions that occur as members of its argument list: it

always takes a single list as its argument. Atomic members of the list

of arguments are not evaluated, but rather are passed up to the next

level of the s-expression. Since EVAL normally would evaluate

everything in the list before calling LST, LST is defined to LISP as a

function that does not want its arguments evaluated. When LST is

called it scans its arguments and decides which ones it wants to

evaluate.

Another type of function that appears in the semantic

evaluation.routines is that which serves to alter the calling sequence

of LISP to produce the effect of a transformation. As was pointed out

in the previous chapter, our linguistic system obtains its power from

60

this feature. There are essentially two different reasons why such a

transformation is necessary. The first is the infinity problem--one

cannot list infinite sets. The other is that the semantics--the

intuitive meaning of the sentence--demands that the order of evaluation

be based on something other than proximity within the surface sentence.

One of the most surprising things about the semantic evaluation

routines is that these two very different problems can be handled in

essentially the same. way. In both cases LISP performs- an evaluation

that has a side-effect, the side-effect braing to define a new LISP

function that is later applied to arguments, For example, if we are

asked to apply a set-theoretical intersection function (the I function)

to two sets that we have no reason to believe to, be finite, then the

characteristic functions of the sets are combined into a new

characteristic function for the set which is the result of the

operation upon the two given sets. Similarly, if we are given

something that we cannot redly evaluate in the current context, then

certain flags may be set and the whole thing passed to the next level.

111.5 Backtracking

The standard computer science method of dealing with this

calling sequence problem is, of course, backtracking--something that is

absent in LISP although present in languages such as PLANNER and

MLISP2 In order to explain clearly how our implementation differs

from this standard we shall present an informal account of backtracking

or nondeterministic algorithms which is drawn from Floyd [17].

61

Nondeterministic algorithms are simply standard algorithms

expressed in some suitable language such as that of Section 11.8 with

the exception of the introduction of a multiple-valued interpreted

function CHOICE whose valwts are less than or equal to the the value of

its argument. The idea behind CHOICE is that one makes an arbitrary

decision at the choicepoint of which branch to take. It is known that

for the class of recursive functions this does not add any power

although it is the case that for pushdown automata one does gain some

power by the use of such a function. Following the treatment of Floyd,

we shall also assume that each of the terminal points of the schema is

labelled by either SUCCESS or FAILURE. Only those computations that

end at nodes labelled SUCCESS are considered to be computations using

the schema. Again this feature does not add any power to programming

language in the sense that no more functions will be computed than

without this than with it.' However, the fact that recursive function

theory does not make any discrimination in this regard is probably more

of a failing on its part as a mathematical theory of computation rather

a lack of any real difference. Moreover, it is shown in [4] that

schemata that allow certain types of backtracking are more powerful

than transformational schemata in the ,-sense that there is a

backtracking schema that is not equivalent to any transformational

schema. While we have not explored the relationship between the kind

of backtracking described- here and that of Hewitt, it seems quite

likely that a similar result can be obtained using our formulation.

62

As we stated above, our system does not use any backtracking

techniques. We regard this as an advantage at its current state of

development for the simple reason that the use of relatively weak

methods at this _point means that with more powerful techniques it

should be possible to extend the system fairly easily.

111.6 Interrupts and Demons

Another feature of computational linguistics systems such as

that of Winograd is the use of asynchronous processing via the use of

interrupts and demons. (For more discussion of the work of Winograd,

see Section V.3.) Indeed, Winograd gets_ the transformational power

in his system from the use of a demon in his parsing routine: this is

how, for example, he checks for agreement, In our relatively simple

semantic evaluation system this feature is absent. All of our

transformational power is gotten from the use of functions that delay

their actual evaluation to the appropriate time. It seems to be rather

clear at this point that much of our system could be coded somewhat

more easily by the use asynchronous processing features, for rather

than having to trick. the LISP interpreter into changing the calling

sequence for various functions, we could simply use the asynchronous

processing feature to generate an interrupt to handle any processing

that is desired but not in the standard recursive inside-out order.

What is lost by doing this is a certain amount of conceptual clarity,

for in event-directed programming it is often difficult to discover in

63,

what order things are actually evaluated when the program is actually

run. Furthermore, the analysis of such programming is quite difficult,

and at least at the present time we are not satisfied that the current

ideas of multi-process schemata (see ,4j) are adequate to deal with

this computational structure, In our system this can be discovered

quite easily by simply looking at the definitions of the functions in

the semantic parse of the input sentence.

111.7 The Implementation of Data Typing

At this point we are in a position to give a detailed

description of our actual implementation. .The first thing that will be

described is our method of data typing--how it works and what it is

good for. Then we shall deal with the functions_thar correspond to the

mathematics of the system all of which appear in the surface structure

of the input sentences, and all of which are quite straightforward in

the mathematical sense as well as in their implementations. Finally,

we shall deal with the functions that correspond to the English' of the

system; these are the functions that perform transformations to the

semantic parse tree,

In order to understand the manner in which the type functions

operate it is necessary to explain something about the way in the

CONSTRUCT program processes its input and the kinds of things that are

passed to the semantic evaluator. Essentially, the CONSTRUCT program

produces a semantic parse which is in the format of an s-expression.

64

This is passed directly to the LISP READ program, which in turn reads

it and calls the toplevel of LISP, EVAL. The CONSTRUCT progravis

written in such a way that each atom in the s-expression that is passed

to LISP is quoted: this can be done in AILISP by placing an atsign in

front of each atom. What LISP sees as atoms are strings to the

CONSTRUCT program, which is written in SAIL. The atoms in the semantic

parse correspond to words of the input sentence and calls to

transformational functions (obligatory semantic transformations if one

likes that terminology). It should be noted that the quotation marks,

which are actually calls to the LISP QUOTE function, are present

primarily for historical reasons: the current type functions serve to

eliminate the need for them. Indeed, the quote functions are a bit of

a, nuisance as the type functions must make special provision to insure

that EVAL is called on those quoted atoms which are used to index into

the data base that the .program uses. The reason is simply that the

atom and the quoted atom are seen as different structures by the

functions that are used to index_the database. By calling EVAL on the

quoted atom, the quotation function is removed from the list structure,

and the atom is seen by LISP as the atom itself. An 'example should

make this .a little less opaqueSuppose that A is a LISP atom. Then A

has a list of elements associated with called. its property data

can be stored on this property list under various property names and

retrieved with a simple LISP function, called GET. However, if GET is

called with (QUOTE A) rather than with A and if GET is told not to.

65

evaluate the expression it receives as the semantic evaluator informs

it that it should do, then the wrong property list is scanned and the

information that is desired is not found.. Thus, it is necessary for

the semantic type functions to eliminate the extraneous quote marks on

the atoms that appear in the lists that they govern.

There are ten of these semantic typing functions, and they

divide semantically and computationally into two major groups. The

first of these is the sentence typing group: these functions appear

only at the beginning.of a semantic parse and serve solely to tell the

semantic evaluator the type of sentence--question, command,

declarative; or formula--the input string was. Not too surprisingly,

the current evaluation'routine has relatively little use` this-

information because.it is not handling declaratives in a realistic way

as yet. These sentence types are also for the benefit of the output

routines for the system, which are also as y t 'non-existent. There is

one sentence typing function for each of the sentence types indicated

above. Each of these sentence typing-functions simply evaluates the

contents of the argument list and then CONSeS on the appropriate

sentence type, The following diagram gives these functions and their

definitions.

DCL DECLARATIVE DCL(X) <- CONS ('DCL, EVAL (X))
QUS QUESTION QUS(X) <- CONS ('QUS, EVAL (X))

FNL FORMULA FML(X) <- CONS
CND COMMAND CMD(X) <- CONS

('FML,

COMD,
EVAL
EVAL

(X))

The other type functions are.more complex and more important to

66

the operation of our program. Essentially all of these except CHL are

quotation functions that turn off the LISP evaluation process at that

point at which they are encountered. All of these functions share the

rather special property that LISP does not evaluate their arguments,

and moreover, they all accept an indefinite number of arguments. This

is done by defining these functions in a special way. Whenever,

evaluation is desired, EVAL is called explicitly. These functions also

are used by other functions that are called later as flags: on this

point see Section III.10. In some cases the function also simplifies

its input: this is crucial for things that are to be seen as explicit

lists, for we want to have all of the members of the list in simplest

form with any function calls occurring within the list evaluated out.

As a result of the quotation marks this 13 also important for functions

which are to be applied, for as was remarked before, these depend upon

a database lookup, which in turn depends on the function name being

passed to the GET. function rather than a quoted version of the function

name.

The LST function is defined as follows:

LST (X) <- CONS (ILST, FOR NEW I ON X COLLECT
'LSTEVAL I)

LSTEVAL (X) <- IF ATOM X THEN X ELSE EVAL X.

As an example, consider the following form:.

(LST A (PLUS 2 3) (LST B C))

First the A is scanned and found to be an atom. Then the form (PLUS 2

67

3) is evaluated to 5. Finally, there is the s-expression (LST B C),

which involves a call to the LST function again. This time both of the

members of the list of arguments are atoms, so that thisevaluates

immediately to (LST B C). Hence, the value of (LST A (PLUS 2 3) (LST B

C)) is (LST A 5 (1st B C)).

There are four other functions whose behavior is quite similar

to LST that serve to flag different datatypes. FCN marks a

mathematical function like factor; it also serves to eliminate unwanted

quotation marks. The function STS flags'a set that is represented as a

characteristic function while TV markS a truth value. Finally, there

is UNT which marks a unit and which is not used in the present

implementation. For the sake of completeness, we shall give the

definitions of these functions.

FCN (X) <- CONS ('FCN, IF CAAR X = 'QUOTE THEN CDAR X ELSE X).
STS (X) <- CONS ('STS, X).
TV (X) <- CONS ('TV, LIST X).
UNT (X) <- CONS ('UNT, X).

The CHL function that was mentioned above has a slightly

different role from the other type-checking functions. Although it

behaves like LST in calling EVAL on the members of the list that follow

it, it also serves as a signal' to higher-level functions that are

applied to it that the list is a special type of list--a list of

choices one or more of which is to chosen. For example, the semantic

if= 1 parser produces this type of a list when it parses the list- of answers

to a multiple choice question. Another example is the sentence

Is 3 greater than less than, or equal to 2+3?.

68

In this sentence, the CHL, acting as a flag to the higher level

functions that serves to change the calling sequence. In this

instance, rather than attempting to evaluate together the elements of

the phrase "greater than, less than, or equal to" and failing due to

the fact that these functions are: arithmetical relations that expect

numerical arguments, the elements of the phrase are made into a list of

choices and the function CHL is applied to this list. At a higher

level after the argument; have been seen by the semantic evaluator, the

functions that check the arithmetical relations are actually called,

which is; of course, the intuitive content of the sentence. This point

is discussed further in Section III.10.

Finally, we shall give the definition of the CHL function. It

should be noted that like the functions above it accepts an indefinite

number of arguments, and does not evaluate these until explicitly told

to do so.

CHL (X) <- CONS ('CHL, FOR NEW I IN X COLLECT
CHLEVAL I).

CHLEVAL (X) <- IF ATOM X THEN X ELSE IF CAR. X = 'CHI: THEN X
ELSE EVAL X.

111.8 Mathematical Types

We shall now briefly discuss-the implementation of appositions

in our system. In elementary mathematical language appositions

generally are used to express mathematical type-checking, which is

69

quite distinct from the internal data typing done by the semantic

evaluator. For example, one might well ask what the sum of the numbers

2 and 3 is: the word "numbers" serves in this context to call a

special function in the semantics fork which checks to make sure that

its argument is a number.. Of course, in this particular case the system

just calls the function NUMBERP. In the more complex case of fractions

it checks for the internal list representation of a fraction, which is

the LISP atom DIV as the CAR of a list, the CDR of which is a list

consisting of the numerator followed by the denominator. In MLISP

notation this function, which is called FRACTION and which is fairly

representative of these kinds of functions is defined as:

FRACTION <= IF CAR X NOT= DIV THEN NIL
ELSE IF LENGTH X NOT= 3 THEN NIL
ELSE IF NOT NUMBERP CADR X THEN NIL
ELSE IF NOT NUMBERP CADDR X THEN NIL
ELSE T.

111.9 Arithmetical Relations

Next we consider the arithmetical relations, which are the only

mathematical functions that are not completely straightforward in their

implementation. The problem that is involved here is fairly simple:

the semantic parses that are produced are such that these arithmetical

relations are not always passed the same number of arguments each time

that they are called, but they must never the less evaluate their

arguments. Moreover, they must be used in conjunction with the APPLY

70

function of LISP which does not work properly with LISP FEXPRs. The

solution is rather simple: the toplevel function is a FEXPR, but it

calls--on the basis of the input that it receives--one of two EY.PRs.

It is assumed that each relation can only be called with one or two

arguments. These auxiliary functions do the obvious thing that the the

toplevel function's name implies. The problem with the LISP APPLY

function is solved by checking to see if the APPLY function is being

called on a FEXPR; if so, then rather than calling APPLY the name of

the function is CONSed onto the argument list and EVAL is called on the

resulting s-expression. As an example of this type.of function, we

. shall give our definition of the equality relation (the-function EQL).

EQL <= IF LENGTH X = 1 THEN LIST(LST, CAR EQL1 X)
ELSE IF LENGTH X = 2 THEN LIST (TV, EQL2 (CAR X, CADR X))
ELSE ERROR.

As one might expect, EQL1 generates a list of one element--the

element with which one is supposed to determine equality or inequality.

The MAKESET function that is mentioned below simply removes duplicate

elements from a list, i.e., makes the list into a set. The function

EQL2 takes two arguments. If both of the arguments are atoms, then the

LISP EQ function is called while if both are lists then a special

function that compares lists for being equal when considered as sets is

called. Note that two sets a and b are said to be equal just in case

that x is member of a if and only if x is a member of b: this

definition of equality is different from that used by the LISP EQUAL

function which checks for equality of list structure. The other

71

arithmetical relations used in the system are greater than, denoted by

GT, less than, denoted by LT, greater than or equal to, denoted by GE,

and less than or equal to, denoted by LE.

Almost the only thing that will be said about the'actual

arithmetical functions themselves is that they are in the system, that

they are standard, that they are not too intelligent, and that they are

limited to some very common arithmetical operations. Clearly, a better

job could be done on these, but that is not really Lne topic of

interest here.

III.10 The Set Theoretical Functions: The I Function

Next we shall consider the heart of the system--the functions

tFat correspond to the English structure of the sentence. Many of

these are functions that perform transformations in our system, and

many of them represent tricks played upon the LISP interpreter.

As fairly representative of a top level function of the system,

i.e., one, that appears at the level immediately below the level of the

sentence type, is the I function. This function performs a type of

intersection, but its exact action depends on the data types that it

receives on its arguments. In order to describe this function, we

shall first present an abstracted and somewhat simplified version of

its definition in terms of the-various possible cases that might occur,

and then detail what is to be done in each of the cases. In our usual

MLISP notation the definition of I is:

I (X, -0 <= IF CAR X = 'CHL OR CAR Y = 'CHL THEN ICHL (X, Y)

72

ELSE IF CAR X = 'LST AND CAR Y = 'LST THEN ILST (X, Y)_,
ELSE IF CAR X = 'STS AND CAR Y = 'STS THEN ISTS (X, Y)
ELSE IF CAR X = 'LST AND CAR Y =' 'STS THEN ILSTSTS (X, Y)
ELSE IF CAR X = 'STS AND CAR Y = 'LST THEN ILSTSTS (X, Y)
ELSE IOTHER (X, Y).

We shall not describe the IOTHER function as that case really

does not arise in practice. In order to describe more easily the other

functions that are used, we shall assume that the type-checking

information is processed by some transparent intermediate functions, so

that the type flags (e.g., CHL) have been removed by the time that the

arguments are passed to the auxiliary functions mentioned above. It

will also be assumed that the functions that we shall discuss below

know what those types are. Of course this is not very realistic, and

in the actual implementation the higher level functions are organized

in such a way as to handle this matter.

The first auxiliary function that we shall describe is the one

that handles the occurrence of the CHL flag in either one of the

arguments to the I function. The definition of ICHL is as follows:

ICHL (X, Y) <= IF CHOICELIST X THEN FOR NEW I IN X COLLECT
I (CAR X, Y) ELSE IF CHOICELIST Y THEN FOR NEW I IN Y COLLECT
I (X, CAR Y) ELSE ERROR.

What this means is that for lists of choices the intersection

is taken for each choice. This implements the transformation that was

discussed earlier. It should also be noted that the definition of the

function is recursive in the sense that the top level I function is

73

called by the function ICHL. This is not really a feature that is

actually implemented, but it represents something that is desirable'

from a conceptual point of view. Now we consider the function ILST:

this takes the intersection of two explicit lists--each marked with

the LST function. The definition of this function is:

ILST (X, Y) <= IF NULL X THEN NIL ELSE IF MEMBER (CAR X, Y) THEN
CONS (CAR X, ILST (CDR X, Y) ELSEILST (CDR X, Y).

This is a very standard function that finds the intersection of two

explicitly listed sets. Unlike this function, the function ISTS is

somewhat non-standard if very simple to understand once written. The

idea is that the input to this function consists of two characteristic

functions for the membership relations of the sets of which we wish to

take the intersection. Now the characteristic function for the

intersection of two sets is just the function that is formed by taking

the logical and of the characteristic functions of the input.sets.

Given this, all that must be done is to convince LISP to do that for

us. However, LISP systematically treats functions and data Uniformly,

so that we may define a function that operates on previously existing

funCtion definitions to produce new function definitions: this is just

what the ISTS function does.

ISTS (X, Y) <= DEFINEFUNCTION ('AND, X, Y)

where DEFINEFUNCTION is a function of three arguments that takes the

input characteristic functions and stores the definition of a new

function on the property list of a new atom. The and means that the

new function has the general form

74

IF X AND Y THEN T ELSE NIL.

The exact details of how this is done in LISP are of some

interest here. As we have mentioned before, the basic idea used in

handling operations on sets that are represented as characteristic

functions is that of the run-time created procedure. Using the

characteristic functions of the input sets, a new characteristic

function is manufactured at execution time by the semantic evaluator.

The set theoretical operation causes the system to first generate a new

LISP atom upon whose property list ti..,.. function definition is to be

put. In general for ISTS the format of this function definition is:

LAMBDA (IX) IF (X !X) AND (Y !X) THEN T ELSE NIL.

The variable !X is a dummy variable used in the function definition.

It is assumed that X and Y are input characteristic :unctions, which

are to be called by the system during the course of evaluating this

form.

This process does have its disadvantages from the aspect of the

implementation, for function ions that are created in this

manner remain present, within the LTSP. system for the . .fe of the

program. This means that of" r a time the LISP system will run out of

available space, and the no: al procedures for collecting space that is

no longer needed will fail. Clearly, this flaw in the system can be

remedied by means of some systems programming to alter the code of the

LISP interpreter.

75

Finally, there is the case in which the I function receives as

its arguments an explicit list and a characteristic function for a set.

The idea here is to apply the function to the elements of the explicit

list one at a time to check to see which of the members of the explicit

list belong to the other set. This is defined by:

ILSTSTS (X, Y) <= IF NULL Y THEN NIL ELSE IF a (CAR Y) THEN
CONS (CAR Y, ILSTSTS (X, CDR Y)) ELSE ILSTSTS (X, CDR Y).

We have assumed here that the explicit list is known to be the second

argument and the characteristic function the first. It should be

pointed out that the actual system has an opportunity to call some

heuristics before actually going to these procedures.. These heuristics

incoporate some of the very elementary facts about intersection such as

the fact that anything intersected with the empty set is empty and the

idempotency of intersection. A detailed discussion. 0E. the heuristics

themselves is to be found in Section IV.6 and subsequeut sections.

III.11 The Other Set Theoretical functions

There are three other functions that appear on our system that

have the same character as the I function except that they compute

other set-theoretical functions. These functions are the U, S, and SD

functions. The only differencebetween these functions and the I

function is that these functions compute different set-theoretical

functions. As should be obvioUs, the U function computes the union of

two sets while the S function determines whether the first set is a a

76

subset of the second. The SD function determines the set-difference of

its first argument and its second, i.e., it determines the set whose

members belong to the first argument and not to the second. Like the I

function all of these functions look for the CHL flag and perform

multiple operations if it is seen. They also use the type information

to deterMine the methods of computation that are to be used. Since

there are some special problems associated with each of these

functions, we shall briefly discuss of each of them below.

The trouble with the U function is that it an expansion of

the Set: there is the simple fact that the union Df two sets is a

superset of both. The problem with this is that our general program of

reducing the representation of sets to explicit lists is set back by

the use of the U function: when one takes the union of a set

represented by a list with one represented by a characteristic

function, one in general cannot represent the result by a list as one

can when taking the intersection. In general then the output of the U

function may be described as follows:

U (X, Y) <= IF LST (X) AND LST (Y) THEN ULST,(X, Y)
ELSE IF LST (X)-AND STS (Y) THEN ULSTSTS (X, Y)
ELSE IF STS (X) AND LST (Y) THEN ULSTSTS (X, Y)
ELSE IF STS (X) AND STS (Y) THEN USTS (X, Y)
ELSE UOTHER (X, Y)

As before the case of UOTHER does not arise in practice. The

definitions of ULST, ULSTSTS, and USTS are given beiow:

ULST (X, Y) <= IF NULL X THEN Y-ELSE IF CAR X MEM Y
THEN ULST (CDR X, Y) ELSE CONS (CAR X, ULST (CDR X, Y))

USTS Y) <= DEFINEFUNCTION (W, MEM X OR MEM Y)

77

ULSTSTS Y) <= DEFINEFUNCTION (W, MEM X OR MEM Y)

Where we have DEFINEFUNCTION as usual defined to be a function that

creates function definiticns inside LISP. The function that is defined

by a call to this s-expression imply checks for membership in X and Y

by scanning the argument if- it is a list and by applying the

characteristic function otherwise.

The S function is rather different from the other, functions in

this group because it does not return a set, but rather a truth value.

The only output from the S, function has the form (TV T) or (TV NIL).

It should be pointed out that the S function is especially hard to

compute. for "sets that are not expressed as explicit lists. The reason

is that there is no uniform and effective way to determine if one

recursive set is a subset of another: this is a standard result of

recursion theory and may be found, for example, in r5]. This means

that unless the system is able to use the definitions of the sets,

i.e., knows some mathematical relationship between the sets, it. cannot

compute the S function if both of the arguments are given as

characteristic functions. If the first argument is an explicit list,

then the algorithm that is used to compute the S function is apply the

characteristic function for the second argument to each elemeht of the

list. Finally, if the second argument is a list and the first is given

as a characteristic function, more information is again needed. The

problem this time is that there is no straightforward way to generate

all of the members of a set that is given as a characteristic function.

The standard definition of the functions is given below.

78

S (X, Y) <= IF LST X AND LST Y THEN S1 (X, Y)

ELSE IF LST X AND STS Y THEN. S1 (X, Y)

ELSE SOTHER (X, Y)

Si (X, Y) <= IF NULL X THEN T
ELSE IF MEM (CAR X, Y) THEN Si (CDR X, Y)
ELSE NIL

The last member of this class of functions is the SD function.

This function is more closely related to the I and U functions than to

the S function. Like the U and the I functions this function rleturns a

.set whose members are the members of its first argument that do not

belong to its second: it takes the set difference function. As usual

the function is quite.straightforward for sets that are represented as

explicit lists. Moreover, it Is possible to specify the characteristic

function of the answer in all of the other cases, but not possible in

general to give n re..resentation as an explicit so that the SD

function resembles U in this. regard. The following LISP definitions

describe the SD function,

SD (X, Y) <= IF LST X AND LST Y THEN SDLST (X, Y).
ELSE-IF LST X AND STS Y THEN SDSTS (X, Y)
ELSE IF STS X AND LST Y THEN SDSTS (X, Y)
ELSE IF STS X AND STS Y THEN SDSTS (x, Y)

SDLST (X, y) <= IF NULL X.THEN NIL
ELSE IF CAR X MEM Y THEN SDLST'(CDR X, Y)
ELSE CONS (CAR X,. SDLST (CDR X, Y))

SDSTS (X, Y) <= DEFINEFUNCTION (W, MEM X AND NOT MEM Y)

111.12 The Verb 'Have' in an Existential Context

79

5,

We now turn to the discussion of the implementation of the verb

"have" in our system. As was mentioned in the previous chapter, this

verb is quite. interesting due to the transformational character of its

semantics. Let us briefly recall what we said about the intuitive

semantics of "have". One of the fundamental ideas about this fragment___.

of natural language is that sentences in general and questions in

particular can be viewed as structures that relate functions to their

arguments: the so-called linguistic or English part of t} sentence

serves to bind functions to their arguments and to ensure that the

functions are called in the proper sequence. For the case of questions

using the verb "be" this binding is rather like one based upon

structural proximity; however, in the case of the verb "have" this is

not the case. For example, we have the sentences:

Are the factors of 6 even? (1)

Does 6 have an even factor? (2)

To compute the answer to the first question, we simply apply

the factor function to 6 and then check to see if all the members of

the resulting list are even numbers. But to answer the second

question, we must ignore the propinquity of even and factor, and again

apply the factor function to 6 and then check to see if any members of

the resulting list are even. . This clearly involves a Semantic

transformation which passes 6 as an argument to the factor function and

then applies the characters; is function of the set of even numbers to

each of the elements of the resulting list. This aspect of the

semantics is implemented using special functions that are introduced

80

into the semantic parse by the appearance of the word "have" in the

surface sentence.

The function that would be used in the computation of the

answer to question (2) above is called EXTHNP. 6 The definition of

EXTHNP is given below in our standard notation.

.EXTHNP (X, Y) <= IF LST Y THEN DEFINEFUNCTION (EXP1, X, Y) ELSE
IF STS Y THEN DEFINEFUNCTION (EXP2, X, Y) ELSE ERROR.

In the above EXP1 and EXP2 are templates used in the definition' of the

temporary functions that EXTHNP generates. Both carry the fuTce of a

logical and. Also both of the expressions that are used in defining

the function that is generated by EXTHNP call the I function: the

difference in EXP1 and EXP2 is that in EXP1 the I function is called

for two explicit list whilein EXP2 the I function is called for one

explicit list and one set. The definitions of EXP1 and EXP2 follow:

. EXP1(X, Y) <= IF EXIST (I (APPLY X 1X)-(1LST Y))THEN T ELSE NIL

EXP2 (X, Y) <= IF EXIST (I (APPLY X !X) ('STS Y)) THEN T ELSE NIL

By EXIST we mean a LISP function that,4checks to see whether its

argument is an empty set or not. For explicit lists we have the simple

function that is shown below.

EXISTLST (X) <= IF NULL X THEN NIL ELSE T

For the case of a--set which is described by it characteristic function

the EXIST function is more difficult to program. The idea C.-..at we use

is fairly simplesearch for an example of something that belongs to

81

/17.1

the set. For sets of natural numbeis this can be done in a fairly

straightforward manner by simple enumeration and the use of afew

heuristic tricks; it is also the case that the i:formation extraction

procedures discussed in the next chapter are applicable to this

problem.

III.13 Two Other Constructions Using 'Have'

We shall consider two other functions that are used to handle

English constructions involving the verb "have". The first of these is

called UNVHNP, and handles, sentences in which we are asked to determine

if all of the members of some set have some property or other. For

example, consider the question:

Does 12 have only even factors?

In this question we must first determine the set of all factors of 12

and then check to see if F.ach member of this set is even.

The definition of UNVHNP is roughly as follows:

UNVHNP <= DEFINEFUNCTION (W, IF S (X (!X), Y) THEN T ELSE NIL)

In the formula above S is to be taken to be the subset function of

Section III.11, and !X is a dummy variable that is used in the

definition of the function that UNVHNP creates. For the example given

above, we have the following semantic parse

NUS (S (LST 12) (UNVHNP (FCN FACTOR) (STS EVEN)))).

The function that UNVHNP creates at execution -time has the form:

IF S (FACTOR (!X), EVEN) THEN T ELSE NIL

82

The other function that we wish to discuss briefly is called

FCNMK. This function is used to take pre-defined arithmetical

functions of our. system into new functions that are somewhat modified.

It accepts two arguments, the firSt of which is an arithmetical

function whose definition is already specified and the second of which

is a set of numbers. It creates the characteristic function of the set

of all members of the result of the application of its first argument

to some number intersected with its second argument. For example,

FCNMK would be called to handle the phrase "the odd factors". It

creates a function that computes just the odd factors of its argument.

As is standard with this kind of function, FCNMK creates a special

function that is stored and later used by the semantic system to

actuaily.compute, say, odd factors. The definition of FCNMK is given

below:

/,--FCNMK (X Y) <= DEFINEFUNCTION (W, I (APPLY (X, :X), Y)).

This definition follows our usual conventions, and involves the I

function that IS disCussed above. For the example of "odd factors" a

finiCtion would be 'created that would generate the odd factors of a

number when called:

I (APPLY (FACTOR, !X), ODD)

is the result of such an application.

111.14 The Importance of the Run-time Creation of Functions .

.

83

With the description of this function we have completed

detailed descriptions of representatives of each of the major types of

functions to be found in the semantic evaluator. In the next chapter

we shall talk a bit about why this works as well as it seems to: there

are some tricks involved. However, one of the major tricks should be

apparent already: many of the functions that are needed by the system

are not handcoded in advanc.-.:, but are created by calls to other

functions at run time. This %e.dless to say, greatly increases the

power of our system, for the programmer does not have to precode every

function that is needed for the semantic evaluation process.

84

Chapter IV

Information Extraction and Heuristics

In this chapter we shall attempt to account for the fluency of

our semantics system and to indicate how its apparent performance as a

-
question-answering system might be improved. We shall present -first a

method of using the definitions of functions to help answer questions

about those functions: we call this information extraction. After

this we shall give a rather detailed coverage of the heuristics that

are actually used in our present system and some simple extensions of

them.

Information extraction is introduced in Section IV.1,..and

the relationship between it and the standard methodology of resolution

theorem-proving is covered in Section IV.2. The most important use

of this technique should be in the answering of "how" questions

(Section IV.3), but it is envisioned that it will be applicable to

other problems as well Section IV.4. The heuristics that we have

actually implemL ' already are the subject of the rest of the chapter

(Section IV.6 and onward).

IV.1 Introduction to Information: Extraction

At this point in the discussion of the implementation, we shall

consider what could be a very important application of pattern-matching

85

to our system. At present this has not been put into the program, but

it seems to hold some --p'romise. T'..e idea is that the characteristic

functions of the sets as well as the LISP functions- that code the

arithmetical functions contain information about the sets or functions

that is accessible to a clever program. Such a program could extract

information from these procedures which would be. useful both in

answering questions about why something is done in a certain way or how

it is to be done, For example, one might consider the question of

whether one divides to-find the factors of 6. In order to answer this

question, one might, instead of looking in a data base or proving a

theorem about the-answer, extract this information from the function

that actually computes the factors of a number. Similarly,- one might

be able to tell from the characteristic functions for two sets if their

intersection is empty or not. How sophisticated this can be made is

dependent primarily on the amount of effort that one wants to put into

it. It is fairly ckear that for the rather stylized definitions that

-are created by the I function it would not be too difficult to check to

see if, for example, the function that is created is the characteristic

function of the numbers greater than 5 and less than 2. This is type

of information extraction from procedures is very much like the kind of

theorem proving that is done using pattern-matching in the PLANNER

system of Hewitt [41 except that the functions that are called by the

procedures are compared with each other on the basis of pre-stored

knowledge about their mathematical relationships. It should be noted

86

in this regard that we do not envision the use of the methods of

resolution theorem-proving in doing this. Although resolution has been

suggested by some authorities such as Sandewall as a basis for

question-answering in natural language, there are a number of reasons

to believe that this is not really a very desirable approach to the

problem of natural language question-answering.

IV.2 Resolution Is Not a Suitable Basis For Information

Extraction

There are several reasons why the resolution method does not

really serve to provide a good basis for natural language question-

answering. The first is a very pragmatic reason, and also, given the

state of the current resolution theorem-provers, a very compelling one.

At the present time (mid-1973), resolution theorem-provers are too

inefficient at finding proofs and require too much central processor

time to-be practical. Even the best-written theorem-proving programs

are very large and rather slow. Although this feature is not

particularly bothersdnie when one is really interested in theorem-

- proving for the sake of theorem-proving, it makes it impossible to use

a theorem-prover as the basis for question-answering reasonably

close to real time The problem is, of 'course, that the resolution

A
method is a uniform proof procedure designed to handle many kinds of

deductions and is not specialized enough to meet the needs of a

question-answering system. Although Sandewall.has suggested that this

"VS

87

objection can be met by writing resolution theorem-provers that are

more efficient, this has not as yet bean done successfullly, and the

_ objection remains.

There are other reasons for believing that resolution theorem-

proving is not a very viable method for answering natural language

questions. The first of these, which was pointed out to me by R.

Statman, is that resolution is not a very natural method of reasoning.

In particular for propositional logic, forming resolvents is rather

difficult, and produCes proofs that are not as "natural as one might

obtain from a natural deduction calculus. The structure of a

r- elution proof is lather more complex than the structure of a proof

in a natural deduction system. In particular, there is no very clear

relationship between the formulas at the top of the resolut on proof

tree, and the end formulas: one must calculate the resolutions to

understand the proof.

Another problem with resolution is its very uniformity. The

fact of the matter is that while res lution will find a proof if one

exists, this is not really a desirable feature. Instead, what is

desired is a proof procedure that proves plausible inference's

relatively quickly. Such a procedure need not be complete so long as

it is implementable and does a reasonably good job in proving-faitLy

routifie theorems. The issue here is not mechanical mathematics, but

rather the basis for a practical English language. understanding system.

The fact that a proof procedure is not complete does not matter so long

88

as the procedure produces proofs in a reasonable length of time for

some class of,formulas that includes most of the formulas that can

reasonably be expected in practice. Unfortunately, .ery little is

known about the bounds on the-complexity of mechanical theorem-proving

procedures: this is a research topic in-the study of mechanized logic.

Yet another objection to resolution as a basis for a natural

language question-answering system is that the resolution procedure is

primarily syntactic in nature. The machine manipulates the symbols in

the formulas in order to make the resolutions, but does nut really use

semantic information. Moreover, almost all of the editing strategies

that are used by theorem-provers to make practical the process of

finding a proof depend on syntactic properties of the formulas such as

their length, the names of the variables that occur in them, and their

syntactic form. Except for the work of Hayes and his associates there

seems to have been relatively little effort to use semantic information

to help reducepthe number of clauses appearing at the nodes of the tree

or to simplify their form. As Nilsson says in [18]:

The reader probably noticed that all of the search
strategies discussed in this chapter involved syntactic
rather semantic rules (that is, search restrictions and
orderings were based on the form of the clauses and
possible deductions rather than on their meaning).
Semantic guidance could be provided in *al' number of

ways, but there have not yet been many attempts in this
direction.

This is exactly what we wish to avoid in our work. Our approach to

computational linguistics involves crucially the notation of finding

the meaning conditions for sentences, and using those in some manner to

89

determine the answer to input questions. Thus, it is highly desirable

that our computational methods use this semantic information. It also

seems plausible based on human experienCe that the theorem-proving

V
process itself might be improved by the use of such information.

Exactly how such information should be used in the theoremproving

process is difficult to see, but for the present time at least, the

resolution method of theorem-proving does not incorporate the use of

such information, and thus, is not suitable for use as a basis for

question-answering in a system that is attempting to understand natural

language input.

While we have said a good bit about what information extraction

is not, we have not said much about what it is and how one would

implement it. The basic idea is that information extraction is to be a

heuristic procedure that operates from a data base of mathematical and

linguistic facts. As we noted above, information extraction has two
41.

distinct uses, and these two different uses to some extent determine

what we actually mean by information extraction and how it is to be

implemented. We shall begin, as is our custom, by considering the

simpler Case first--that of the use of information extraction to treat

"how" questions.

IV.3 The Application of Information Extraction To How

Questions

The treatment of "how" questions is based on the simple idea

90

that the mathematical functions that are used by our system to answer

computational questions form a hierarchy. Some of these functions- -

such as addition, for example -are to be considered as mathematically

primitive, and the other functions in the system are to be considered

as complex. For instance, the FACTOR function is a relatively complex

arithmetical function that is built up out of the division function.

So to answer a question as to how one computes the factors of, say, 6,

one would look at the FACTOR function as it is defined in our system,

and notice that the LISP definition calls the DIVISION function. From

the definition of the FACTOR function one could extract this

information and use it to answer the "how" question, Note that in such

a case the decision to use information extraction is automatic and is

based on the type of question that one has to answer: "how" questions

always call this type of -seman%ic evaluation, and this fact should be

incorporated into the toplevel linguistic functions that correspond to

the English for "how".

There are two very important issues that remain regarding

information extraction in this context. The first is the omnipresent

problem of what primitives are to be chosen. Clearly, given the

generality of the LISP interpreter it is possible to choose the same

primitives that serve as the basic functions in the standard definition

of the set of recursive functions, i.e., the zero function, the

successor function, and the projection functions. However, this leads

to rather messy function definitions. It seems somewhat more reasonable

91

for most applications to let the usual arithmetical operations be

chosen as primitive and try to build the other arithmetical operations

out of them. In fact, this is essentially what we have done in our

implementation of arithmetic, for the AILISP interpreter is quite poor

in pre-defined arithmetical functions, and most of the functions that

we used other than the basic four operations we had to define

ourselves. Of course just exactly the primitives that one chooses

depend on the applications of the system that one has in mind.

The second problem that we must solve, and we have to admit

that we have as yet not been successful in doing this, is the actual

implementation of this idea. The fundamental idea involved in the

implementation is to scan the definition of the function that we wish

to know how to compute and look for the occurrence of one or more of

the chosen primitive functions. If none of the primitives occur, then

something is wrong, and an error routine is called. If only one

primitive is found, then that is. returned as the basis (at least) of an

answer; if more than one primitive is found, the problem of how they

are related is encountered, so that it is not so clear how to proceed.

As a first approximation, one can simply return a list of all

primitives found in the order in which they occur in the function

definition. Clearly more powerful heuristics will be required later to

interpret the LISP code and to provide better explanations than this.

We shall give in our standard notation an outline of what our first

proposal would look like.

EXTRACTPRIM (X) <= REVERSE (IF NULL (X) THEN NIL
ELSE IF MEMBER (CAR X, PRIMITIVES) THEN CONS (CAR X, EXTRACTPRIM CDR X)

92

ELSE EXTRACTPRIN CDR X)

where REVERSE is a LISP function that accepts a list as its argument

and returns as its result that"list with elements listed in reverse

order.

IV.4 Information Extraction A an Aid to Problem Solving

Now we turn to a slightly more speculative venture--information

extraction to assist in the actual computations themselves. As we

noted before, the semantic evaluation program creates large numbers of

functions as it executes. Since these functions are produced by

functions that are hand coded, the resulting new functions have a

rather standard format which lends itself to pattern-matching. The

basic idea here is to do a better job computationally by using the

mathematical relationships of the functions that are already defined in

the system.

To make this point a little clearer, we shall give an example

in which what we have in mind might make things e. little easier for the

computational program. Suppose that we are asked if the set of numbers

greater than 5 and less than 3 contains a prime. In our present

implementation about all that the program is able to do is to generate

a characteristic function for the set: it does not know that the set

of all numbers greater than 5 and less than 3 is empty. The semantics

system, if modified to include this type of information extraction,

93

would scan the definition of the characteristic function for this set

prior to applying it to arguments to check to see if the function might

be simplified in some way. In this using the known mathematical

relationship between greater than and less than, it would loOk for a

pattern of the form

AND (GT X1) (LT X2).

If this pattern were.found, then the values of X1 and X2 are compared

and the set of all numbers between x1 and X2 (which may be empty) is

generated. This gives us much more definite information about the set:

in the particular case considered above the information is complete in

the sense that it answers the question by itself. Even if there were

some numbers in the generated set, we still have the information that

the set is finite, and that the answer to many questions can be

obtained by simply scanning the set- As we noted in Section 11.3 it is

almost always the case that a complete (or perhaps we should say a

better formatted) answer is most easily obtained from the case in which

we have an explicit list to work with rather than a characteristic

function.

IV.5 Mathematical Information To Be Used a Information

Extraction

There is of course the question of what kinds of mathematical

information can'and should be incorporated into the semantic evaluator

94

at this juncture. It seems likely that this can be answered only after

some experience with the system and only after it has been determined

what the system is to be used for. At the bare minimum it seems likely

that one would want to incorporate information regarding the ordering

relationships on the integers as well as information about the relation

between a prime number and its factors. It also seems likely that

information about non-explicit negations, e.g., prime and composite

could be used by the information extraction routines.

The actual implementation of this depends first on the

establishment of standard forms for the definition of functions in the

semantics system; this has already been done. Then a pattern-matching

capablity must be implemented as well as a method of using that

capability in conjunction with a database of mathematical facts. This

has not yet been attempted.

IV.6 The Heuristics Actually Used in the Semantic Evaluator

The next item that we shall consider is the problem of the

heuristics that we actually used in the program that we have already

written. For the most part, these ire quite simple and rather obvious,

but they greatly increase the fluency of the system and improve its

computational ability. Most of these heuristics are based on rather

elementary facts about number theory and set theory, and are programmed

into the functions that used in a very direct manner. The usual method

of calling the heuristic functions is to have the LISP function that is

95

going to use the heuristic call a special auxiliary function that

decides if the heuristic is applicable. This function does the actual

computation if the heuristic is applicable and returLs to the toplevel

function if not.

Heuristics for the Set Theoretical Functions

Having given this general outline of the manner in. which our

heuristics are applied, we shah next go into rather great detail about

the heuristics that we used and how they might be improved. The

heuristics that are currently in the system can be divided into two

groups. In the first group are heuristics that are associated with the

set-theoretical functions that correspond to the English, and serve to

simplify certain special cases of the set theory involved. To

illustrate this, let us consider once again the I function. Here we

have only. two fairly simple heuristics. The first is that if the two

arguments to the, I function are equal according to LISP--which is a

good bit stronger than set-theoretical equality--the I function returns

the first argument. For clarity we shall give the definition of

equality in LISP. By definition, the EQ function returns T if its two

arguments are the same LISP atom, and NIL otherwise. Then we have:.

EQUAL (X, Y) <= IF ATOM X OR ATOM Y THEN EQ (X, Y)
ELSE EQUAL (CAR X, CAR Y) AND EQUAL (CDR X, CDR Y).

We shall show that if two things are LISP equal, then they are set-

theoretically equal.

96

Theorem: Let X and Y be s-expressions. If EQUAL (x, y) then X

and Y are set-theoretically equal. The converse is false.

Proof: Suppose that EQUAL (X, Y). If X and. Y are atoms, then

even if X and Y represent characteristic functions, we have that X and

Y are the same set or are characteristic functions for the same set.

If X and Y are lists, then clearly X and Y have the same members, and

hence are set-theoretically equal.

This should be sufficient to justify this heuristic. It is

worth noting that using this heuristic does not require much

computation time for all that is involved is a simple check for

equality. The other heuristic that is used with the I function is

simply a check for the empty set. This check is not very good, for it

checks only for the empty set represented as an explicitly empty'LST.

Of course, tzis has the form (LST) rather than being simply NIL.

Again, the check is quite inexpensive computationally. Similar

heuristics are us.,dwith each of the basic set - theoretic functions of

the system--U, S, and SD.

IV.8 Heuristics For Doing Arithmetic

There are other heuristics that are used to produce better

answers to questions than Can be obtained from simply manipulating the

characteristic functions, and lists that are given. Most of these are

based on simple facts of arithmetic. Although at present there are

heuristics only for such things as how, the set of odd numbers lnd the

97

set of even numbers are related, it is clearly an important task to

find and to incorporate other such arithmetical facts, From experience

with the program, it is clear that the use of even very limited

heuristics greatly increases the fluency and the apparent performance

of the program. All of these heuristics are implemented by storing the

desired result of some computation on the property list of one of the

arguments to the computation and then having the function look up that

'result. Again, we shall consider the _I function. Since these

heuristics are used only when we have two sets represented by their

characteristic functions, the heuristics are called bily after it is

determined that the I function has reeived two characteristic

functions as arguments. The sets to which the heuristics are

applicable are marked by having on the property list of the atom that

names their characteristic function under the property ISSFECSTS the

value T. A simple table lookup routine is called to check for

applicability of the heuristic. If the applicability function- -known

as ISSPCSTS--returns T, then the answer is found by looking on the

property list of the first argument to the. I function under a property

named the second argument, We shall give the details of the definition

in the usual manner,, and shall as is our custom omit all of the

irrelevant parts of the definition. The function that we shall define

is called ISTS, and is called from the I function: this function

computes the intersection of sets when the sets are represented as

characteristic functions. (This function is also defined and is more

completely discussed in Section III.10.)

98

ISTS (X, Y) <= IF ISPCSTS (X, Y) THEN SPCSTS (I, X, Y) ELSE
DEFINEFUNCTION (W, MAKEINTERSECTION (X, Y))

The function SPCSTS is defined to.be the value of the property named by

the second argument on the property list of t1 first. Note that this

implies that each fact must be stored twice for intersection is

commutative. For example, the fact the intersection of the odd numbers

and the even numbers is empty must be stored both under the property of

odd on the property list of even and also on the property list of odd

under the property even. Since there are also the U, S, and SD

operations to consider, there must be some mechanism for storing the

heuristics that are needed for all of these on the same property list

under the same property. This is done by marking each of the items in

the list under a particular property by the operation with which it

belongs. Then each operation merely indexes into the list by means of

an association function to retrieve the correct answer. Assume that

the GET function is a LISP function of 2 arguments. The first of these

is the name of the identifier whose property list we wish to access

while the second of these is the name of the property whose value we._

wish to retrieve. Then if ASSOC is a LISP function that retrieves from

a list the first element whose CAR is equal to the given element, we

have the following definition for the function SPCSTS.

SPCSTS (XI, X2, X3) <= ASSOC (Xi, GET (X2, X3))

This particular design of the data structure has the advantage of

allowing uniformity over all of the operations. Thus, we only need

99

this function to implement all of the heuristics that are involved with

the relationship of sets of numbers to each other. The database upon

which this function, draws must of course be set up in advance of

running the program: this is done by the use of a rather simple SAIL

program that generates the proper s-expressions which are then read

into the LISP core image when the semantics system is created.

IV.9 The Justification of the Heuristics

The most important issue, however, regarding the heuristics is

the problem of how to justify them . From a mathematical point of view

this is completely trivial, for these facts among the most, lementary

results of number theory. Specifically, we have incorporated the

results of the set-theoretical union, intersection, set-difference, and

subset operations on the sets EVEN, ODD, PRIME, and NUMBER. In some

cases this involves the addition of special -pre-coded characteristic

functions such as ODDPRIME to the system. In other cases such as the

intersection of the EVEN numbers and the PRIMEs this means storing the

structure (LST 2). However, the use of these heuristics must be

justified computationally on the basis of the performance of the

system, and also or, the basis of some kind of mathematical naturalness.

This last constraint is necessary if the system is to be able to answer

"how" questions in a reasonable way.

With regard to the performance of the system these few

heuristics greatly improve its performance. The major problem that the

100

semantic evaluator has when given a reasonable question to answer is

how to represent the secs in the semantic parse. The use of these

heuristics enable the system in a number of cases to replace the use of

characteristic functions by explicit lists. Since as was pointed out

in Section 11.3, it is almost always desirable to use explicit lists

rather than the characteristic functions, and since this tends to make ,

the system look more fluent, the appaLent performance of the system is

enhanced by the use of these heuristics. For example, the

representation of the set of even primes by the explicit list (LST 2)

is more perspicuous and makes it easier to do further manipulations on

the set. It is important to note that while the representation makes

no difference in the mathematics involved, it is very important in the

actual computer implementation. The characteristic functions are, in

some sense, less desirable as a representation than the explicit lists

simply tecause many of the manipulations of the characteristic

functions that we perform are simply the storing of the current

operation until such time as we have an explicit list representation

and are actually able to carry out the operation. For example, when we

take the intersection of two sets represented as characteristic

functions all that happens is that a new characteristic function is

created which can be used to check for membership in the newly created

set. When we take the intersection of two sets that are represented as

explicit lists, however, then we actually get a list as the result, and

it is such a list that We are always striving to get if possible in any

101

of our computations. Note that this problem of representation is not

handled by classical mathematical tools thus indicating a need for some

new mathematics to formalizz this problem.

102

Chapter V

Cc '-isons With Other Work

V.1 Machine Translation

There have in the past twenty years been many attempts to

program the computer to understand natural language input. Indeed,

this was one of the first problems attacked in the then young field of

artificial intelligence during the 1950's. At that time the emphasis

was on machine translationattempting to get the machine to translate

documents from another language (usually Russian) into English. After

ten years of work on this subject interest in it died down in the mid-

1960's when -: was concluded that the project of machine translation

seemed to be hopeless. Although a number of programs had been written

that could translate some fixed piece of text (usually a demonstration

document upon which the program had been debugged), when given any

other material as input, these programs failed to produce any

translation at all. Usually, the theory behind such programs was

syntactic: the syntax was analyzed according to some scheme or other

and then a word for word match was made on the syntactic components.

Towards the end of the machine translation era,

transformational grammar became popular, leading to work like that of

Petrick [9] and Kuno [19]. These workers attempted to write parsers

103

for natural language based on the syntactic theories of Chomsky and

others, Although these programs could often many parses for a given

input sentence, they did not nave any semantic component, and their

only function was to parse input. Moreover, most of the parsing

algorithms that had to be used were quite inefficient (see Woods [10]

on this point), and have been-replaced in more recent systems by things

like augmented transition network parsers,

V.2 The History cf Question-Answering Systems

At about the same time as this work on transformational syntax

was being done,' mostly at Harvard and Mitre, :'rnputer scientists became

interested ia question-answering systems, and in particular, in

question-answerers that accepted natural Language questions. The early

work in this field is described by Simmons in [20), and much of the

original work has been r:.oilected in [21] by Minsky, Cleary, such

systems needed .to be much more concerned about the semantics',of the

input question than about the syntactic analysis of English, and in

that respect they resemble out work. However, these programs were for

the most part oriented toward problem-solving using the computer rather

than toward the understanding of English. Although programs such as

that of Bobrow f21j accepted a modified form of English, they generally

looked for certain words to be matched against patterns of pre-stored

keywords. From these patterns the computer could in the case of

Bobrow's program set up simultaneous equations to solve. Clearly,

104

there was nc general theory of language and of meaning that was used to

design these programs.

More recently, there have been a number of attempts to develop

a theory of English and to use that as a basis for question answering

systems: a good survey is to be found in the more recent article by

Simmons [22]. Of these attempts we shall consider the work of only

four in any detail.

V.3 The Work of Winograd on the BLOCKS Program

Probably the best known of the natural language processing

programs that is currently under active development is that of Winograd

[23] and [24]. Since the entire philosophy behind the BLOCKS program

is quite different from that which guided our own work, it is necessary

to explain a little bit of the world view that is prevalent at the MIT

AI Lab where Winograd wrote his program. The MIT. AI researchers

believe that the only adequate theory of a part of artificial

intelligence is a program, and that, furthermore, a program that

achieves a certain level of-apparent intellectual competence is to be

regarded as a theory of intelligence in that area. Thus, Winograd's

program is to be regarded as a theory of natural language processing,

and any description of it other than the actual code is simply a

description of a theory of natural language. Thus, the theory is

heavily dependent on the implementation. This is exactly the opposite

of our approach on this matter: we have explicitly attempted to

105

develop a machine independent theory of natural language processing and

understanding. Although the major topic of the present dissertation

has been the implementation, the important point about the

implementation is that it is a source of insight about natural language

and leads to the development and to the testing of theories of

language. Indeed, the most unsatisfactory part of our work from this

point of view is not the incomplete state of the implementation, but

the lack of a fully developed theory of what the program does and

should do. Despite our attempts to deal with this in previous

chapters, much remains to be done with most of the work actually a part

of the development of the mathematical theory of computation.

The theory of grammar that is used by Winograd is systemic

grammar which was developed by Halliday and modified by Winograd.,

shall, however, base our discussion solely on the presentation of it

that is made by Winograd in [24j. Systemic grammar is a rejection of

the basic approach of grammarians since Chomsky in favor of a system of

nodes representing the basic elements of the sentence and having

associated with them features of various kinds. Each node has a type

and a list of features that are either present or absent in this

particular node. This-scheme leads to rather flat parse trees each of

whose nodes have relatively large amounts of information associated

with them. The major advantages of this scheme is that it is easy to

write a parsing program using it and the parses that are produced are

very informative in that there is a great deal of syntactic structure

106

that is discovered and stored during the parsing process. Since

Winograd does not give his exact grammar in his published work and

since any details of it are really not to the point here, we shall

simply summarize our understanding of it. It seems to be a rather

intuitively simple rendering of most of the basic syntactic features of

that part of English with which he dealt.

The-parsing scheme that is used in the BLOCKS program is of

some interest to us, for it interacts with the semantic portion of the

program in many ways. The exact nature of this interaction will be

discussed presently, but first we must say something about.PROGRAMMAR,

the parsing scheme that is used by Winograd. PROGRANMAR is a

derivative of the programming language LISP, and is used by Winograd to

program his grammar. The elements of the grammar are embodied in

procedure definitions. The parse is essentially bottom-up with some

variations in the flow of control in the form of interrupts. In

particular the semantics routines and special heuristics may be called

by the parser when an appr,priate structure is encountered by the

parser. It would seem to be possible to describe Winograd's parsing

scheme by Floyd -Evans production language using an additional pushdown

list as a context stack, but we have not worked out the details of

this

The semantic component of Winograd's program uses the

capabilities of the very powerful programming language PLANNER, which

was developed at MIT by Carl Hewitt. PLANNER is a pattern matching and

107

backtracking language that is also embedded within LISP. Wingorad has

analyzed the semantic domain that he is dealing with--the world of toy

blocks--and coded his results as a special type of PLANNER procedure,

called. a theorem. The program performs logical inferences by pattern-

matching using, the pattern-matching language MATCHLESS. Winograd's

semantic program maintains a history of the discourse, an internal map

representing the locations of blocks in space and a set of PLANNER

theorems describing these and relating English language commands to

this database,

V.4 The Predicate Calculus as Deep Structure--The Work of

Sandewall

It should be clear that Winograd's program is designed to do

something very different from ours in that it maintains and manipulates

a data base rather than using computation to solve problems that are

posed in natural language. The next piece of work that we shall

consider is that of Sandewall which is quite different from either the

work of Winograd or our own, Sandewall is seeking a machine

independent theory of natural language; but one whose primary concern

is natural language processing by computer rather than psychological or

philosophical explication of some abstract process of natural language

understanding, Once this is understood, it is easy to see why

Sandewall's ideas are so attractive. According to him, there is a deep

structure for English which has a very definite form--first order

108

predicate calculus. Apparently, Sandewall believes that the syntactic

surface structure of English can be translated into a first-order

formalism or something slightly more powerful like a multi-sorted

predicate calculus. Once this is done, resolution theorem- proving such

as is common at present can then be applied to answer any input

questions and to determine the consistency or inconsistency of input

declaratives. There are, of course, several problems with- this line of

attack. The first is the current state of theorem-proving technology:

at present resolution theorem provers are too slow and too inefficient

to be used for a practical question-answering system; for further

comments on this-see Section IV.2. Although Sandewall expresses some

hope that the resolution method can be made more efficient, this

remains to be seen. Another much more severe problem with Sandewall's

approach is that he seems to provide no general method for translating

from the syntactic surface structure of an input to his putative deep

structure, and indeed, it is not very clear what the relationship

should be. It is clear, however, as we pointed out before, that the

heuristics that are used in elementary symbolic logic courses are too

simple to do general translation from the surface structure to such a

deep structure. For one thing it is difficult to spell out precisely

exactly what the heuristics that are actuallyrused are.

V.5 The Psychological Model Approach of Schank

While the intentions of Sandewall are primarily, motivated by

109

computer science considerations, the work of Schank is based primarily

on ideas about psychology and linguistics. However, Schank regards a

computer implementation of a theory to be the best available test of

it. (Schank's work has been repotted and discussed in a number of

places, including a large number of Stanford Artificial Intelligence

Memos. See, for example, [25] and [261.)

In many ways the work of Schank is similar to our own. In

particular, he is committed to a machine independent theory of natural

language processing rather than a program as a theory. Moreover, he

regards semantics as being the key to natural language understanding.

However, Schenk's views on semantics are quite different from our own,

and he does not really believe in using syntax although his programs do

use it as a matter of convenience. According to Schank, there are

psychological structures that underlie all of human laguage. These

are not linguistic structures, but serve as a base onto which

linguistic structures can be mapped: these structures Schank calls

Conceptual dependency relations. For the exact format of these see

-[251 or [26]. The basic idea is that the meaning of natural language

sentences can be represented by abstracting their features into a

relatively small number of primitives. Each sentence is assumed to

describe an act, which has an agent performing one of twelve or

fourteen primitive acts: for Schank the only primitives are acts which

are generally verbs in more standard treatments. In addition, a

sentence may indicate causal relations and instrumentalities. What is

110

important about this is less the exact structure than the manner in

which Schank seeks to use his representations. The crucial notion is

that of inference.

Logicians have given the notion of inference a very precise

meaning in'the last hundred years, i.e., one sentence can be inferred

from another just in case in every model for the second sentence the

first also comes out to be true. This is very definitely not what

Schank means by inference. Instead, one sentence can be inferred from

another if whenever a parson knows that the second holds, he would

generally also believe in the first. Thus, inference is to be based on

the common knowledge of language and the world that it describes as

represented in terms of conceptual dependency. It is very important to

realize that one major goal here is to have any program that uses

conceptual dependency make the same types of mistakes that a human

being would make. In contrast to this our notion of inference is at

present at least based upon the classical notions used in logic. It

should be pointed out the purpose of our system is to answer questions

about elementary mathematics while Schank's is designed to be used to

carry on an ordinary conversation.

Not only does Schank's system have a notion'of inference in it

but it also involves a model of memory. An attempt is being made to

handle the understanding of language in context rather than on a

sentence-by-sentence basis. While it is not yet possible to give a

detailed description of this memory model, the basic idea is that the

111

program is to keep on a short term basis the details of input and is to

encode and to store into a long term memory the important parts of the

conversation. Clearly this encoding process is going to have to be

rather clever in order to retain sufficient information to maintain the

thread of the discourse without taking too much memory space. In our

work we have not yet attempted to provide the system with memory

although we do envision an implementation of declaratives that will

involve the maintenance of a data base of facts. Input declaratives

will be compared with the current memory for consistency, and some

method of deciding what to store and what to eliminate will have to be

worked out.

The major formal difference-between our work and that of Schank

should then be clear: there is no precise relationship between syntax

and semantics in his system while in ours the syntax is used as a

framework for laying out the semantics of the surface structure (as

opposed to the deep structure which is obtained by transformations).

It is also true that the types of representations that we use for our

semantic structures are very_ different from Schank's conceptual

dependency diagrams. In our current development the program itself

uses LISP s-expressions to represent the semantics, but we hope to

develop a system of function schemata that can be used to represent the

semantic parses. It is also true that conceptual dependency removes

more of the surface structure than our semantic parses do. For

example, in a sentence such as

John hurt Mary (a)

112

the conceptual dependency diagram is roughly "John did something to put

Mary into the hurting state." The reason for this is that there is no

primitive hurting act. In our system the representation would be

something like (HURT JOHN MARY) where HURT is assumed to be a pre-

defined function.

V.6 The Work of Woods on Natural Language Processing

The work of Woods in natural language processing is closer to

ours than to Schenk's. Woods, whose work has been reported in [10] and

[27], has developed a very successful parsing scheme for sentences of

natural language called the augmented transition network. In addition,

he has written semantic systems which answer questions about airline

reservations and about lunar geology.

As this thesis is not concerned primarily with parsing

techniques and as it is very difficult to improve upon Woods' own

exposition in [10] we shall not discuss his parsing scheme in very

great detail. The basic idea is to extend transition diagrams from

'finite automata to devices that are able to parse an arbitrary

recursively enumerable language. This is done by using a pushdown

mechanism that allows a call to be made to other networks to handle the

parsing of certain grammatical categories. This is enough to handle

context-free languages, but to deal with more complex languages Woods

adds predicates that must be satisfied before a transition can be made.

The resulting parsing scheme is shown to be as efficient as a

M.

113

parsing scheme for context-free languages. The only advantage that we

can claim over Woods in this area is perspicuity and extendability. In

our system the grammar is written in isolation from the implementation

and is read in when the program is started. Woods must, on the other

hand, write new transition networks whenever he wishes to change the

grammar.

The work of Woods on semantics seems to be somewhat similar to

our own, but it has been published only recently, and is not described

in sufficient detail to allow us to analyze it at this time. But it

does seem clear that the field of computational linguistics is still an

open one and that the definitive piece of work that will either make

the computer fluent in natural language or show that such is impossible

remains to be done.

114

appositions 69

arithmetical relations 70

ASSOC 99

asynchronous processing 63

ATOM 53

Index

constructive sets 18

context- sensitive 13

context-free grammar 11

context -free language 26

control structures 23, 33

data type 60

declaratives 66

deep structure 108

demons 63

augmented transition network 104 DIV 70

backtracking 61, 108 division 91

basic functions 91

elementary mathematical
BLOCKS 105 language 2

calling sequence 58, 63

CAR 52

CDR 52

characteristic function 68

characteristic functions 56, 97

CHL 67, 68
CHOICE 62

Chomsky 11

Chomsky normal form 7

computational ability 95

CONS 52

CONSTRUCT 5, 64

115

EQ 71

EQL 71

EQL1 71

EQL2 71

EQUAL 71

equality 36, 96
equivalence of schemata 44

equivalent 62

escalation of type 20

EVAL 59, 65, 68

evaluation 12, 35

EVEN 100

EXIST 81

explicit list 15 interrupts 63, 107

intersection 100

EXPR 54

EXTHNP 81 ISTS 74, 98

FACTOR 91 keywords 104

FAILURE 62

FCN 68

FCNMK 83 L70 8

FEXPR 54, 71 LE 72

first order logic 28

FOR 53

FRACTION 70

function definitions 56

GE 72

generative grammar 11

GET 65, 99
GT 72

habitability problem 8

heuristic procedure 90

heuristics 76, 85, 95

I 61, 72, 81, 96, 98
ICHL 73

ILST 74

information extraction 85

linguistics 110

LISP 7, 50, 65

list 52

LIST 53

LST -60
LT 72

machine independent theory 108

machine translation 103

MATCHLESS 108

mathematical functions 22, 32, 54

mathematical information 94

,MLISP 50

MLISP2 8

116

model structure 13

natural deduction calculus 88

natural language input 1

natural language output 1, 6

NIL 52

non-explicit negations 95

non-transformational
schemata 35, 40

Nondeterministic algorithms 62

NULL 53

NUMBER 100

NUMBERP 53, 70

ODD 100

ODDPRIME 100

ordering relationships 95

output 66

psychology 110

question-answering system 2

question-answering systems 104

QUOTE 65

registers 35

resolution 87, 109

S 76, 78, 82, 97

s-expression 52

SAIL 7, 65

schemata 33, 44

SD 76, 79, 97
parsing 26

pattern matching 107

pattern-matching 85, 93 semantic deep
structure 23, 27, 32

semantic transformations 27

PLANNER 86, 107 sentence typing functions 66

set theory 17

set-difference 100

potentially denoting grammar 13 side-effect 61

predicate calculus 109 side-effects 55

PRIME 100 SPCSTS 99

PROGRAMMAR 107

property list 98

propositional logic 88

117

speech recognition 7

STS 68

subset 100

SUCCESS 62

surface structure 54, 109

syntactic transformations 27

systemic grammar 106

TENEX 6

theory of language 3

transformation 25, 60
transformational grammar 103

transformational schemata 34, 40

transformations 72

translation 29

TV 68

U 76, 77, 97
ULST 77

ULSTSTS 77

union 100

UNT 68

UNVHNP 82

USTS 77

valuation function 12

variables 35

Winograd 63

118

44'

References

1. Irons, E. T., Towards more versatile mechanical translators,
Proceedings of Symposia on Applied Mathematics, vol. 15 ,pp.41-
50, American Mathematical Society, Providence, Rhode Island,

1963.

2. Knuth, D. E., Semantics of context-free languages, Mathematical
Systems Theory 2 (1967), pp. 127-145,

3. Coles, L.. S., Techniques for information retrieval using an

inferential question-ansWering with natural language input,

Artificial Intelligence Center Technical Note 74, Stanford

Research Institute, 1972.

4. Hewitt, Carl, The description and theoretical analysis of PLANNER,
Doctoral dissertation, MIT, 1971. Also AI TR-258, MIT

Artificial Intelligence Laboratory, 1972.

5. Hoperoft, John, and Ullman, J. D., Formal Languages Their Relation
to Automata, Addison-Wesley, Reading, Massachusetts, 1969.

6. Smith, Robert L., The syntax and semantics of Erica, Doctoral
dissertation, Stanford University, 1972. Also Technical Report
185, Institute for Mathematical Studies in the Social Sciences,
Stanford University, 1972.

7. Suppes, Patrick, Semantics of context-free languages, Technical

Report 171, Institute for Mathematical. Studies in the Social

Sciences, Stanford University, 1971.

8. Smith, Nancy W., A grammar for a fragment of elementary

mathematical language, Doctoral dissertation, Stanford

University, 1973.

9. Petrick, S., A recognition procedure for transformational

grammars, Doctoral dissertation, MIT, 1965.

119

10. Woods, W. A., Transition network grammars for natural language

analysis, Communications of the Association for Computing

Machinery 13 (1970), pp. 591-606.

11. Early, J. W., An efficient context-free parsing algorithm,

Communications of the Association for Computing Machinery 13

(1970), pp. 94-102.

12, Sandewall, E. J.; Formal methods in the design of question
answering systems, Artificial Intelligence, 2 (1971), pp. 129-

145.

13. Paterson, M, S., and Hewitt, C., Comparative schematology, Record
of the Project MAC Conference on Concurrent Systems and

Parallel Computation, Association for Computing Machinery, New

York, 1970.

14. Smith, David Canfield, MLISP, Artificial Intelligence Memo 135,

Stanford Artificial Intelligence Laboratory, 1970.

15. Quam, Lynn H and Diffie, Whitfield, Stanford LISP 1.6 Manual,

Artificial Intelligence Operating Note 28.7, Stanford

Artificial Intelligence Laboratory, 1971.

16. Smith, David Canfield, and Enea, Horace J., MLISP2, Artificial

Intelligence Memo 195, Stanford Artificial Intelligence

Laboratory, 1973.

17. Floyd, R, W,, Nondeterministic algorithms, Journal of the

Association for Computing Machinery 14 (1967), pp.636-644.

18. Nilsson, Nils J., Problem- Solving Methods in Artificial
Intelligence, McGraw-Hill, New York, 1971.

19. Kuno, S., A system for transformational analysis, Report NSF-15,

Computation Laboratory, Harvard University, Cambridge,

Massachusetts, 1965.

20. Simmons, Robert, Answering English questions by computer: a

120

survey, Communications of the Association for Computing
Machinery, 8 (1965), PP. 53-70.

21. Minsky, Marvin, editor, Semantic Information Processing, MIT
Press, Cambridge, Massachusetts, 1968.

22. Simmons, Robert, Natural language question-answering systems:
1969, Communications of the Association for Computing Machinery
13 (1970), pp. 15-30.

23. Winograd, T., Procedures as a representation for data in a

computer program for understanding natural language, Doctoral
dissertation, MIT, 1970.

24. Winograd, T., Understanding Natural Language, AcadeMic Press, New
York, 1972.

25. Schank, Roger, Conceptudl dependency: a theory of natural
language understanding, Cognitive Psychology 3 (1972), pp. 552-
631.

26. Schank, Roger, The Fourteen Primitive Acts and Their Inferences,

Artificial Intelligence Memo 196, Stanford Artificial
Intelligence Laboratory, 1973.

27. Woods, William A., Semantics for a question-answering system,
Doctoral dissertation, Harvard University, 1967.

121

FILMED FROM BEST AVAILABLE COPY

(Contir.ued from inside front cover)

165 L. J. Hubert. A formal model for ti.e perceptual processing of .ienmatric configurations. Feoeery 19, 1971. (A statistical method for
investigating the perceptual confusions among geometric configurations. Journal of Mathematical Psychology, 1972, 9, 389-403.)

166 J. F. Juola, I. S. Fischler, C. T. Wood, and R. C. Atkinson. Recognition time for inlormation stored in long-term memory. (Perception and

Psychophysics, 1971, 10, 8-14.)
167 R. L. Kiatzky and R. C. Atkinson. Suecializatiort of the cerebral hernisphen, in scanning for information in short-term memory, (Perception

and Psychophysics, 1971, 10, 335-338.)
168 J. D. Fletcher and R, C. Atkinson. An evaluation of the Stanford CAI program in initial reading (grades K through 3). March 12, 1971.

(Evaluationof the Stanford CAI program in initial reading. Journal of Educational Psychology, 1972, 63, 597-602.)

169 J. F. Juola and R. C. Atkinson. Memory scanning for words verses categories, Llournal of Verbal Learning and Verbs) Behavior, 1971,

10, 522-527.)
170 I. S. Fischler and J. F. Juola. Effects of repeated tests on recognition into for information in long-term memory. (Journal of Experimental

Psychology, 1971, 91, 54-58.)
171 P. Suppes. Semantics of context-free fragments of natural languages. March 30, 1971. (In K. J. J. Hintikka, J. M. E. Moravcsik, and

P. Suppes (Eds.), Approaches to natural language. Dordrecht: Reidel, 1973. Pp. 221-242.)
172 J. Friend. INSTRUCT coders' manual. May 1, 1971.
173 R. C. Atkinson and R. M. Shiffrin. The control processes of short-term memory. April 19, 19,'l. (The control of short-term memory.

Scientific American, 1971, 224, 82-90.)
174 P. Suppes. Computer-assisted instruction at Stanford. May 19, 1971. (In Man and computer. Proceedings of international conference,

Bordeaux, 1970. Basel: Karger, 1972. Pp. 298-330.)
175 D. Jamison, J. D. Fletcher, P. Suppes, and R. C. Atkinson. Cost and perrormance of computer-assisted instruction for education of disadvantaged

children. July, 1971.
176 J, Offir. Some mathematical models of individual differences in learning and perionnanee. June 28, 1971. (Stochastic learning models with

distribution of parameters. Journal of Mathematical Psychology, 1972, 9(4),)

177 R. C. Atkinson and J. F. Juola. Factors influencing speed and accuracy of word recognition. August 12, 1971. (In S. Kornblum (Ed.),
Attention and performance IV. New York: Academic Press, 1973,)

178 P. Suppes, A. Goldberg,, G. Kane, B. Searle, and C. Stauffer. Teacher's handbook for CA; courses. September 1, 1971.

179 A. Goldberg. A gen'Cralieed instructional system for elementary mathematical logic. October 11, 1971.
180 M. Jerman. Instruction in problem salving and an analysis of structural variables that contribiite to problem-solving difficulty. November 12,

1971. (Individualized instruction in problem solving in elementary mathematics. Jourrit.! for Research in Mathematics Education, 1973,

4, 6-19.)
181 P. Suppes. On the grammar and ruadel-theoeetic semantics of cr.idreir's noun phases. November 29, 1971.

182 G. Kreisel. Five notes on the application of proof theory to computer science. December 10, 1971.

183 J. M. Moloney. An investigation of cnIlege student performance on a logic curriculum 4i a computer- assisted instruction setting. January 28,

1972.
184 J. E. Friend, J. D. Fletcher, and R. C. Atkinson. Student perforionce in computer- assisted instruction in programming. May 10, 1972.

185 R. L. Smith, Jr. The syntax and semantics of ERICA. June 14, 1972.
186 A. Goldberg and P. Suppes. A computer-assisted instruction program for exercises on finding axioms. June 23, 1972. (Educational Studies

in Mathematics , 1972, 4, 429-440.) .

187 R. C. Atkinson. ingredients for a theory of instruction. June 26, 1972. (American Psychologist, 1972, 27, 921-931.)
188 J. D. Bonvillian and V. R. Charrow. Psycholinguistic implications of deafness: A review. July 14, 1972.
189 P. Arabie and S. A. Boorman, ivlultidimensional scaling of measures of distance betwCen partitions. July 26, 1972. (Journal of Mathematical

Psychology, 1973, 10,
190 J. Ball and D. Jamison. Computer-assisted instruction for dispersed populations: System cost models. September 15, 1972. (Instructional

Science, 1973, 1, 469-501.)
191 W. R. Sanders and J. R. Ball. Logic documentation standard for the Instituto for Mathematical Studies in the Social Sciences. October 4, 1972.
192 M. T.. Kane. Variability in the proof behavior of college students in J CAI coarse in logic as a function of problem characteristics. October 6,

1972.
193 P. Suppes, Facts and fantasies of education. October 18, 1972. (In M. C. Wittrock (Ed.), Changing education: Alternatives from educational

research. Englewood Cliffs, N. J.: Prentice-Hall, 1973. Pp. 6-45.)
194 R. C. Atkinson and J. F. Juola. Search and decision processes in recognition memory. October 27, 1972.

195 P. Suppes, R. Smith, and M. Leveille". Tine French syntax and semantics of PHILIPPE, part 1: NOUll phrases. November 3, 1972.

196 D. Jamison, P. Suppes, and S. Wells. The effectiieriess of alternative instructional methods: A survey. November , 1972.
197 P. Suppes. A survey of cognition in handicapped children. December 29, 1972.
198 B. Searle, P. Lorton, Jr., A, Goldberg, P. Suppes, N. Ledet, and C. Jones. Computer-assisted instruction program: Tennessee State

University. February 14, 1973.
199 D. R. Levine. Computer-based analytic grading for German grammar instruction. March 16, 1973.
200 P. Suppes, J. 0. Fletcher, M. Zanotti, P. V. Lorton, Jr., and B. W.. Searle. Evaluation of computer-assisted instruction in elementary

mathematics for hearing-impaired students. March 17, 1973.
201 G. A. Huff. Geometry and formal linguistics. April 27, 1973.
202 C. Jensema. Useful techniques for applying latent trait mental-test theory. May 9, 1973.

203 A. Goldberg. Computer-assisted instruction: The application of theorern-proving to adaptive response analysis. May 25, 1973.
204 R. C. Atkinson, D. J. Herrmann, and K. T. Wescourt. Search processes in recognition memory. June 8, 1973.
205 J. Van Campen. A computer-based introduction to the morphology of Old Church Slavonic. June 18, 1973.

,206 -R: B. Kimball. Self - optimizing computer- assisted tutoring: Theory and practice. June 25, 1973.

207 R. C. Atkinson, J. D. Fletcher, E. J. Lindsay, J. 0. Campbell, and A. Barr. Computer-assisted instruction in initial reading. July 9, 1973.
208 V. R. Charrow and J. D. Fletcher. English as the second language of deaf students. July 20, 1973.

209 J. A. Paulson. An evaluation of instructional strategies in a simple learning situation. July 30, 1973.
210 N. Martin. Convergence properties of a class of probabilistic adaptive scnemes called sequential reproductive plans. July 31, 1973.

FILMED FROM BEST AVAILABLE COPY

(Continued from inside back cover)

211 J. Friend. Computer-assisted instruction in programming: A curriculum description. July 31, 1973.

212 S. A. Weyer. Fingerspelling by computer. August 17, 1973.

213 B. W. Searle, P. Lorton,Jr., and P. Suppe. Structural variables affecting CAI performance on arithmetic word problems of disadvantaged
and deaf students. September 4, 1973.

