
DOCUMENT RESUME

ED 083 825
)

Ed 011 584

AUTHOR Cowell, Wayne Ed.
TITLE Proceedings of the Software Certification Workshop,

Snow Mountain Ranch, Granby, Colorado, August 27-30,
1972.

INSTITUTION Argonne National Lab., Ill.; Colorado Univ.,
Boulder.

SPONS AGENCY National Science Foundation, Washington, D.C.
PUB DATE Aug 72
NOTE 160p.; See also EM 011 585

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS *Computer PrograMs; *Computer Science Education;

Conference Reports; *Developmental Programs;
Information Dissemination; Material Development;
*Mathematics; *Mathematics Materials; Program
Development

IDENTIFIERS Computer Software; Mathematical Computation;
Mathematical Software

ABSTRACT
The processes by which statistical software is

produced and made available to users were the main concerns of the
conference. Six major topics were considered in relation to these
software programs which perform the basic mathematical computations
required in science and engineering: 1) the quality of mathematical
software; 2) education and internships in software evaluation; 3)
review of research on testing, portability, and library development;
4) user needs and .software program development; 5) publication of
mathematical software; and 6) creation of organization to foster
mathematical software develcpment. (PB)

Proceedings Of the

SOFTWARE CERTIFICATION WORKSHOP

Snow Mountain Ranch
Granby, Colorado

August 27-30, 1972

Wayne Cowell, Editor

1
FILMED FROM BEST AVAILABLE COPY

Proceedings of the

SOFTWARE CERTIFICATION WORKSHOP

Snow Mountain Ranch
Granby, Colorado

August 27-30, 1972

The Workshop was conducted as part of a study entitled

"Planning an Approach to Testing and Dissemination of Computer

Programs for Research and Development," supported by the

National Science Foundation under Grants AG325 and GJ31681

with Wayne Cowell, Argonne National Laboratory and Lloyd Fosdick,

University of Colorado, as principal investigators. These pro-

ceedings were taken from tape recordings of the Workshop as

edited by Wayne Cowell.

U.S. DEPARTMENT OF HEALTH,
EDUCATION& WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

TABLE OF CONTENTS

Page

INTRODUCTORY REMARKS ABOUT THE WORKSHOP - Wayne Cowett 1

PRE-CONFERENCE SESSION--Library and Certification Efforts in
Great Britain - Henry Macke& 4

I. MATHEMATICAL SOFTWARE QUALITY

Comparing Numerical Methods for Ordinary Diffeential
Equations - T. E. Hull 8

Review of NATS Project - Wayne Cowe.0 26

Validation Procedures for the Boeing'Library - A. C. R. Newberry .44

SUBGROUP DISCUSSION OF TOPIC I

Questions 54

Summaries

Ltoyd Fo6dick. 55

Wayne Cowete. 56

Draft Certification Statement 59

II. EDUCATION AND INTERSHIP IN SOFTWARE EVALUATION

Design of a Course on Algorithm Testing.- A. C. R. Newberry 60

Algorithm Editor's Experience with Student Assistants - Ltoyd FosoUck. 63

SUBGROUP DISCUSSION OF TOPIC II

Questions 76

Summary

Henry Thaehelt, David Young 77

TABLE OF CONTENTS (Contd.)

Page

III. RESEARCH ON TESTING, PORTABILITY, AND LIBRARY DEVELOPMENT.

Portability Problems and Solutions in NATS - Jame6 Boy& 80

Unified Standards Approach to Testing - Watten Sadowski 90

SIGNUM 1971 Nonacademic Numerical Mathematics Survey - F. N. Patach . 93

An Interactive System for Studying Semantic Models of Computer
Programs. - Richand Faittey 99

Two Reports on Recent Studies (Abstracts) - Dohothy E. Lang 105

SUBGROUP DISCUSSION OF TOPIC III

Questions 106

Summaries

Leon06tetwat 107

Richard Faiktey 109

IV. USER NEEDS AND MATHEMATICAL SOFTWARE DEVELOPMENT

Technology Transfer Project; Need for Quality Software - Roberta Smith .

Comments on User/Expert Relations - EdvaAd Ng

111

115

SUBGROUP DISCUSSION OF TOPIC IV

Questions 121

Summaries

Sadon Sttwaht 122

Wittiam Hetzet 123

V. PUBLICATION OF MATHEMATICAL SOFTWARE

A Journal of Mathematical Software - John Rice 126

TABLE OF CONTENTS (Contd.)

DEVELOPMENT

Page

VI. ORGANIZATION TO FOSTER MATHEMATICAL SOFTWARE

A Mathematical Software Alliance - Wayne Cmgett .130

Remarks on IMSL Library Activities - Edwatd Bat ate 133

NSF Network, Activities and Plans - &Paton Shenman 141

SUBGROUP DISCUSSION OF TOPIC VI

Questions 144

Summaries

&tiara Lynn 146

ChanZets Lawton 151

LIST OF ATTENDEE 155

1

INTRODUCTORY REMARKS ABOUT THE WORKSHOP

Wayne CoweLe -- The term "mathematical software" has gained accept-

ance in referring to those programs which perform the basic mathematical

computations required in science and engineer'e n g i n e e r . Our concern at this

rbworkshop is with those processes by which suc ftware is produced, per-

fected, and made available to the user community. In addressing this

problem, we will ask and seek answers to two kinds of questions. First

are questions which are characterized as "what" questions. What are the

main issues and problems? What should be done about them? We will make

an attempt to identify and isolate the issues which require our attack.

The second kind of questions are the "hoe questions. How can we orga-

nize ourselves so as to accomplish the Work we.see needs doing?

If you have looked at your agenda, you probably have identified the

first four* topics as "what" type questions. The last topic is the organi-

zational "how" type question. I believe that we could meet here and con-

sider the first four* topics and feel that we have done something worth-

while. But if we started with the organizational topic, we would proba-

bly find ourselves going off on all kinds of side issues while we tried

to understand each other, and worked through some of the ways in which we

were using language together. So, it is very important, I think, that we

have scheduled an attack on the "what" type questions first. After that

we will.be better prepared to wade into the question of organization.

The conclusions .that we reach here will form a basis for action. I

do not mean that we can do detailed planning for a specific organization,

* A discussion of the agenda followed and resulted in the addition of the
topic entitled "Publication of Mathematical Software". Thus the revised
agenda has a total of six topics.

2

but I do mean that the University of Colorado and Aqonne National Labora-

tory are prepared to provide leadership toward the formation of new colla-

borative structures. But this leadership will be meaningful only if it

seeks counsel from the software community as to the direction we should

take. An exchange of ideas which leads to this understanding has already

begun. It will intensify during this workshop, and will continue there-

after.

As far as the workshop procedures are concerned, we wanted to de-

sign a format within which we could proceed la an orderly way. At the

same time, we did not want to inhibit any spontaneity or diversity of

opinion. So we decided to have informal presentations on each of the

topics followed by small group discussion. The presentations will vary

considerably in style and length; some will be up to an hour and will

deal in considerable depth with some area of importance to us. Others

will be brief summaries of recent work.

Although we expect that presenters will wish to answer any immediate

questions we might have, we won't try to engage in extensive discussion

in the whole group. Instead we will break up into two subgroups. You

have received a list of people assigned to groups A and B. In each of

these subgroups there is a spokesman for each of the discussion topics.

The task of the small group will be to attack each discussion topic using

the questions Oh the agenda. These questions won't necessarily cover

everything you want to say but are intended as a guide to your discussion

of the given topic. When there has been adequate discussion (this might

vary anywhere from 15 minutes to an hour, or longer), we will reassemble

as a whole group, and the two spokesmen will give a verbal report of the

3

discussion. They will summarize th' highlights and attem,t to capture

the spirit of the opinion that was expressed. r\t tnat point we can have

general discussion.

Our hope is to cover the first five topics in about 1-1/2 days to

1-3/4 days. That will leave 3/4 day to one day for the organizational

question.

.Presentations to the entire group will be recorded. We will tras-

cribe and edit the tapes and will produce proceedings for distribution

to everyone here and for use in our study report to the National Science

Foundation.

4

PRE-CONFERENCE SESSION --
LIBRARY AND CERTIFICATION EFFORTS IN-GREAT BRITAIN

Henky Thachm -- It is always a temptation to be somewhat parochial

in one's views, and to stress the achievements of one's own friends and

colleagues. The danger is particularly acute in subjects such as certified

software development, since it is not glamorous enough to support as many

trans Atlantic commutation tickets as some other areas of computer science

and mathematics. I hope, therefore, that you may be interested in some

of the information I picked up during a brief visit to Great Britain in

July and August of this year. In view of the fact that I made no particu-

lar effort at an exhaustive search, the amount of activity in the area

which I encountered is quite remarkable.

The first group which I visited was at Chelsea College, University

of London, where R. F. Shepherd has a two-year grant for L 13,400 ($33,000)

from the Science Research Council. I didn't meet Shepherd, who was taking

a long weekend, but had a good chat with John Pemberton, who is the only

numerical analyst on the project. He is a recent Ph.D. from Butcher,

and is primarily concentrating on differential equation routines. They are

strongly committed to Algol 68, and will use it as their primary algorithmic

laKuage. There is an additional slot for a numerical analyst which they

h&ve not been able to fill.

My next contact was with Mike Powell, who is responsible for the

library at Harwell. This is a well-established library for a strong

numerical analysis group. They have the capability to write almost all

5

their own routines, and are willing to make their library available to

other organizations, provided they are not used directly for financial

gain, and are properly acknowledged in publications. Powell gave me a

copy of the catalog (Report AERE-R 6919 and Supplement No. 1). A sig-

nificant feature of this is a tutorial section which, in addition to in-

formation on naming conventions and so on, gives specific advice on the

choice of algorithms for data-fitting, optimization, and linear algebra.

My next visit of interest to certification was to Nottingham, where

I spent most of a day with Brian Ford, and some of his colleagues of

the Nottingham Algorithms Group (NAG). As you probably know, this pro.

ject originated as a collaborative effort among six universitiee all of

whom were to receive ICL 1906! computers. Since then, the project has

expanded to include users of several other machine types. Perhaps the

most significant characteristic of the NAG effort is the careful coordi-

nation, and highly standardized procedures used to ensure uniformity and

high quality. I have a copy of the reference manual and of the overall

library manual, but not yet of the individual subroutine write-ups. Ford

and several of the members of the group are planning to visit North America

in the spring of 1973, and would be very much interested in visiting or-

ganizations with interests in the area of subroutines libraries and certi-

fication particularly if some contribution could be made toward their ex-

penses.

Finally I spent a day at the Edinburgh Regional Computing Centre,

with David Taylor (formerly of Argonne National Laboratory). This centre

serves a variety of customers, inside and outside the university. Again,

the quality of documentation is heavily stressed. An interesting feature

6

of the Edinburgh lihary is the fact that it is treated as a partially

integrated collection of sublibraries -- SSP, BMD, etc. One of these

sublibraries is especially designed for the unsophisticated user with

;nbust routines with minimal flexibility, and minimal demands on the

programming and numerical analysis capabilities of the user.

Ediburgh also sponsors some work on program testing. A recent report

by Rieger on testing of differential equation routines from their program

library includes a battery of about 100 differential equations with known

solutions.

In addition to these installations with primary interest in subrou-

tine libraries, I also visited Oxford (Fox), Bradford (hunter, Dowell),

St.- Andrews (Curie), and Lancaster (Clenshaw, Kershaw).

In the course of this trip I received several rather strong impressions

which may be worth reporting:

1. The state of numerical analysis in Britain appears considerably

healthier than in the United States, particularly at the intermediate

level. In addition to well-established research-level faculty at most

universities, almost all computing centers have several masters level (N.B.

This means all the course work for the doctorate) numerical analysts en-

gaged in consulting with users and with library development. There appear

to be more jobs at this level than there are people to fill them.

2. Many of the major figures in British numerical analysis (e.g.,

Wilkinson, Fox, Joan Walsh, Powell) are actively cooperating in develop-

ment of improved software, although certain others have remained somewhat

aloof.

7

3. The wide variety of installations at which mathematical soft-

ware is being developed indicates a continuing need for some coordination.

The proposal for an IFIP Working Group on Mathematical Software is receiv-

ing support from Powell and Ford. Einarson seems to be the spark plug.

8

DISCUSSION TOPIC I -- MATHEMATICAL SOFTWARE QUALITY

COMPARING NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

T. E. Hutt - Here's a plan of the talk (TH-1)*. I'd like to spend

time on two topics. Most of the time will be spent on the first one, which

is a summary of the results obtained for testing methods for solving non-

stiff systems of differential equations. This work has been completed in

that it has appeared as a technical report, and has been accepted (with

modifications) to appear in the SIAM Journal on Numerical Analysis in

December. What I will do is proceed through the main ideas of that paper.

First, I want to mention the conceptual basis which was important in de-

veloping our results because we felt that careful definitions of what we

were trying to measure were important. Then I will give definitions of

"problems" and examples of them; then "methods," and examples of methods,

followed by the criteria we used, and then a summary of our results.

Finally, I will mention briefly the work we started as a sequel and area

currently working on, viz., testing methods for solving stiff systems of

equations. In concluding, I will discuss a few ideas about testing and

proving programs. Our long-range goal is to develop programs which are

correct (whatever that means) and which are carefully tested so as to sup-

port the idea of correctness, and also to enable comparisons among differ-

ent algorithms.

I will start by showing a slide (TH-2) outlining the beginning of a

conceptual basis. We have to begin with the definitions of three things:

* The notation XY-n will designate the nth transparency of the speaker
whose initials are XY. Copies of the transparancies follow the
narrative.

9

The definition of what we mean by "problem" (and also classeS of problems)

the definition of what we mean by "method" (and classes of methods), and

we must agree on the criteria we will use for the comparison of methods.

The first two are the things we need to define if we arr! going to prove

correctness. We would like to prove that a particular method solves a

particular problem. If we are comparing different methods on the same

problem, we need a comparison criterion as well. We have to say what we

mean. For example, we could speak of the average cost -- the one that

the, person that is paying the money to solve the problem is likely to

think of. His objective is to find the method that minimizes the average

cost. But another person, for example a man interested in control theory,

might be very concerned with maximum cost. His idea of the best methcd

would be the one which minimized the maximum cost of solving problems.

(There are analogous situations in approximation theory.) Having made

these definitions, we can then talk about one method being better than

another, relative to a class of problems, and according to a particular

criterion.

When we get down to practical cases we have to name classes of prob-

lems and make the appropriate definitions so we know what it is we are

talking about. In the case of differential equations, I think this is

the most difficult part of the problem and is the only part which brings

forth any controversy.

Well, here is what we think is involved (TH-3). First of all you

have a system of differential equations. We have a function, f, and we

need initial conditions. Also, we need to know how far we want the inte-

gration to be carried. You could continue until some component exceeds

10

a particular value. We chose the simplest one: Continue until the in-

dependent variable reaches a certain value. That completes the problem

specification. What the user would like to do is to specify a tolerance,

T9 per unit step. But this can be interpreted in a number of ways, and

you have to be specific. Of the two methods on the slide, the most ele-

gant is the second one. This is the one we would use if we were trying

to prove the correctness of the method. We prove that we have solved a

problem that does not differ significantly from the original problem.

That is quite elegant and fits in quite well with the theorems we prove

about correctness.

For testing programs, we want to test to see if the method solves

the problem. So we use 1, which is almost equivalent to 2, but, for

practical purposes, it is much more useful than 2. We will define the

local error to be the difference between the computed result at xi+1

and the value of the true solution through the computed result at xi.

It must be bounded in norm by T times the step size. In our experiment

we require that the method produces a sequence of values with the proper-

ty that at each step the local bounds are satisfied.

The user would like to specify global error requirements. But all

the methods we tested are step-by-step methods which try to keep the local

error down. It may be that the global error is very large, or very small,

but this depends on the differential equation, not on the method. So,

for that reason, we think that, for step-by-step methods, the proper cri-

terion is to insist on their trying to solve the problem as specified

above, and to compare the costs they incur in solving that problem.

11

Finally, we think that in specifying the problem you need something

about the scale of the problem. The user is responsible for saying some-

thing about the scale of the problem, and we felt that the user could

most easily provide a bound, hmax, on the step-size.

At the bottom-of the slide we list these six things, put brackets

around them, and announce that a problem is a sextuple! (This list then

also becomes the calling sequence of the subroutine.)

For testing purposes, we specified five classes of problems. I will

just give a few quick illustrations here. You can see the full list in

the published paper. What I have listed (TH-4) is some of the functions.

The final value is always taken to be 20. We tried three tolerances with

each of the equations. There are five classes. We took five fairly dif-

ferent classes, our idea being that a method might turn out to be good

at one particular class of problems but not as good at another one. (This

turns out to have a happy ending -- we found that methods that were good in

one class tended to be good over all classes. The first class was just a

class of five single equations. (Everyone has to test the first one!)

The next class was a collection of small systems. The system shown is sup-

posed to represent the interplay betveen predator and prey. It is a very

hard system to solve -- many methods cannot go over three or four cycles. /

Then class C conTains moderate systems, including a five-body problem in

the last example. Then we have five very simple elliptical orbit problems.

Finally, we took a collection of well-known, second crder differential

equations (like Bessel's equation). and converted them to systems of first

order equations.

12

Now we come to methods (TH-5). We think of a method as being char-

acterized by four things, illustrated by the famous Runge-Kuta method.

We have: (1) a formula for calculating, (2) a formula for estimation of

error, (3) an acceptance criterion, and (4) a strategy for choosing step

size. The program first of all decides what it is going to do; it decides

on the step size, perhaps the order of the method in some cases and so on,

it takes a step. Then it makes an estimate of the error. Then it decides

what to do with regard to accepting the step, etc. (The programs are well

structured, so you can see what they are doing.)

Now I list the methods we tested (TH-6). We tried some Runge-Kutta

methods. We are convinced that variable order methods are the only multi-

step ones worth testing, since the "best" method will be a higher order

method if you make the tolerance extremely small. The method must bQ able

to adjust its order to suit the tolerance. We have tried other methods

as well. I should point out that we are as interested in setting stand-

ards as we are in finding the best.

Now we come to criteria (TH-7). We felt that in the end it was the

cost of solving the problem that really mattered, and we were thinking of

computer time rather than space. So we used computer time -- mainly we

used seconds on a 7094 because we found that we couldn't measure time as

accurately on the 360. We ran all of these tests a number of times on

different machines and under different circumstances. The thing we soon

learned was that it was important to measure two components of the time:

What we call the overhead time and the time spent evaluating functions.

Although we like the conceptual basis of having collections of methods

solving problems, the fact is that in practice the methods do not actually

13

solve the problems exactly as specified, and we found we had to keep

track of how well methods did in solving. For instance, we counted the

number of times a method deceived itself, that is, the number of times

it actually took a step, and accepted that step, thinking that the error

was less than tolerance, when in fact it wasn't. We also kept track of

the maximum error in all the times it deceived itself. Usually if a

method decieved itself only 2% or 3% of the time, the worst it ever did

was be off by a factor of 3 or 4 in tolerance.

One of the difficulties we ran into, which seems more typical of dif-

ferential equations than, say, with matrix calculations, is that there are

so many different effects. For example, the question of starting was one

that bothered people at the Bell Labs quite a bit. They found that the

starting step size could have quite an effect on the cost of solving the

problem. Their solution was to take four of these and average over them.

Since our runs were not terribly long, the starting difficulty could not

be ignored. We decided to let each method find its natural step size for

starting, then we turned on the clf.ck, set the calcualtion back to X0 and

allowed the method to take step, and go from there. We felt that this

tended to minimize the effects of starting. We do not think starting is

unimportant, but we think we should have another measure of how good the

method is at starting. We minimize effects of round-off by just doing every-

thing in double precision, and making our tolerance no smaller than 10
-9

.

We avoided stiffness by simply not having any problems that were really

stiff. We had some that were slightly stiff. We also avoided discontinu-

ities. We were trying to compare methods according to their ability to

chug along, without saying much about their ability to cope with

14

stiffness, continuity, or starting. Otherwise we would have a result

which was merely an average of a whole lot of effects.

Finally, our results (TH-8). Varying the order seemed to be impor-

tant. Variable order methods seemed to be able to do well over a range

of problems.

Except for that fact, the results were amazingly uniform. They were

not only uniform within each problem class, but seemed to be between dif-

ferent classes. In our paper we summarized the results, and here is a

part of our summary. We felt that an average over the classes was repre-

sentative of what these methods were capable of doing, so long as we cal-

culated averages separately for each tolerance.

Notice the Runge-Kutta overhead time. It is pretty competitive with

the Bulirsch-Stoer in total time also. Although it seemed competitive in

this one example, we did not rate it very highly. It's maximum error is

142 times the tolerance which is not good compared to what other methods

were able to do at a few times the tolerance. Also, this is its best

tolerance.

This is typical of the Runge-Kutta methods. They tended to do well

for one tolerance but not others. So, as general purpose methods, we felt

they could be set aside. Now we come to the two interesting ones: Extra-

polation and variable order Adams. Total time for the latter was certainly

longer than total time for Bulirsch-Stoer. The interesting thing is that

Bulirsch-Stoer is quite a bit better in overhead, but on the other hand,

it took many more function calls, more than twice as many. You see clearly

that you have to separate those two costs. Which method is best is going

to depend on how much its going to cost for function calls. You can say

that Adams-Krogh is spending a lot of time caompared to Bulirsch-Stoer in

15

deciding how to avoid making function calls, and it only pays off if the

function calls are costly.

Our conclusions (TH-9) are:. (1) the extrapolation method is best

if the functions are simple, but (2) variable order Adams is best if the

functions are complicated. We went to the trouble to see if we could find

the break-even point between the two. We looked at the right hand sides,

and came to the conclusion that you could count up the number of arithmetic

operations per component (or their equivalent). For example, if there

is a sin x on the right hand side, count it as roughly 5 arithmetic opera-

tions. Then, 25 arithmetic operations per component is about the break-even

point. So, if you have less than that, your best method would be extrapola-

tion, but if more than that, variable-order Adams. This is pretty rough

and it actually ranged between 5 and 45. Finally, the low order Runge-Kutta

methods still seem to be competitive if the functions are simple and the

tolerance is not w.,L.ry small. (In the language of James Lyness, the complexi-

ty of the functions is an important feature in the "performance profile" of

a method; stiffness is another such feature,)

I have two more topics I would like to spend some time on.

We are currently testing methods for stiff systems (TH-10). We decided

that it would be a good idea to get real-life problems. We have a collec-

tion of 30 or so of them, which we sent to some people we knew were inter-

ested in this area. Quite a few people sent back comments. These problems

have all been coded and I think they are now ready. Some of the problems

are quite large, and we had to do some over-laying because a couple of

them were so large that they just occupied too much of the memory of the

370.

16

The program we used in testing is called DETEST. It stands for "Dif-

ferential Equations Tester." (We thought we had found the right name;

it's important to have the right name!) DETEST has been re-written and

it is going to be published- as a Technical Report. It has been extended

so that it collects many different statistics. The criteria are more

complicated for stiff problems. One of the most difficult things of all

is what to do about the transition from the stiff region to the non-stiff

region. A+ the moment, what we have decided to do is to measure all the

statistics over the whole problem and also to measure them separately from

a point, that we can determine, at which the stiff components have all died

out. We selected a point, which we arbitrarily set for each problem, and

we go back and restart the integration there; and see how well it does.'

In the region where the stiffness would slow down more usual methods, these

new "stiff" methods really show their capabilities.

Now I come to the last topic. I will try to be brief. I think we

should consider very seriously the qUestion of correctness. It is a big

topic. All I. can do is suggest a couple of ideas. What do we mean by

saying a program is correct? (TH-11) I like to view it this way: The pro-

gram correctly evaluates the prescribed function. And then the question comes

down to: How is that function prescribed? Here are some examples of the

things we have to keep in mind. Think of the problem of solving a linear

system, Ax = b. Suppose we imagine a program being carried out in exact

arithmetic. Then we can think of the function that is being evaluated as

indicated in 1. In floating point arithmetic, the mapping is defined in a

different way as shown in 2. There are other alternatives for example as

shown in 3 and 4, but in all cases we have some mapping in the back of our

minds and require a proof that the program evaluates that function correctly.

17

We could consider a number of things (TH-12). When we are testing

programs, I think we should think in terms of testing that is associated

with proving correctness of the program, and also testing that is associ-

ated with comparing efficiency. Under correctness I think we can certainly

insist that the program be correctly coded. We should encourage the use

of structured programs, so that the program will not only be correct but

be seen to be correct. Testing lends support to this. (The standards

of rigor are much higher in our profession than in mathematics.) We can

also consider the programs being correct in a different sense, in the sense

of a backward error analysis. You still need the structured program to

organize the proof of correctness. Sometimes it is helpful to use asser-

tions. So we can view correctness indifferent senses. If you have proven

a good theorem in 2, in a way you don't really need 1. For efficiency,0

you can simply take a number of programs that are to solve the same problem,

do a lot of testing, and compare relative efficiency. I think we need-to

clearly define problems, to clearly define methods, and criteria. I think

we have to be clear about whether we are proving correctness in this sense

or that sense, and what it is we are using our testing for. The emphasis

in testing is certainly very dependent on the particular application area.

In the case of ODE's, I have been primarily discussing 3. I do not

think we know much about 4. We know about the relationship between the

order of the methods and the tolerance a little bit, but we do not really

know any theorems. So,, .I have been emphasizing 3 all along. After we had

done all our testing, we decided that 1 was terribly important, and we

started to restructure our programs. So we are now doing 1 and we have

been helped in this way with 2.

18

I want to show you a theorem about the correctness of a program for

differential equations (TH-13). We have a class of problems, as shown.

We assume no round-off; that enables us not to have to put all kinds of

restrictions on. We can prove an effectiveness theorem that guarantees

that the method solves any problem in the class. Thank you for your at-

tention.

19

PLAN

Summary of results obtained with

methods for non-stiff systems:

conceptual basis - p, m,

problems

- examples

methods

- examples emphasis here

criteria is on comparisons

- examples

results

conclusions

(to appear in SIAM J.Num Anal,

Dec., 1972 - Hull, Enright, Fellen, Sed\gwick)

Mention of current work. on methods

for stiff systems

Mention of a couple of ideas on

proving. correctness of programs

Slide TH-1

We need to agree on three

definitions:

(1) Definition of problem, say p,

and on class of problems, P.

(2) Definition of method', say m,.

and on class of.methods, M.

These two definitions are all

we need for "correctness" -

we would try to prove, e.g.,. that

a particular m solves any p

in a particular P.

(3) Comparison criterion c(m,p);

also C(m,P), e.g. average, or max.

Then we can say m is better than

m', relative to P, according to C,

if C(m,P) < C(10,P)...

Also m is best in M, if

Slide TH -2

precUrcation Or a problem

Y1 f(x,Y), .Y(c0) y0
also, e.g.,

x
f
- the final value of x

T - the tolerance per unit step

,1"7Ishit

h

xi -1
x
i

x
i+1

hmax - the max. step-size

So p = <f,
x0, yo, xf, T, hmax>

(2) az(x) a

z(x0) - y0,

and

Oz' - f(x,z4 s T

IProblems f'.s below; x
0
,y

0
not shown

Slide TH-3

yf

x
f

= 20,

Al y' -y

-3 -6 -.9
T = 10 , 10 -, 10 , h

max
= 20

2 y' = -y 3/2

5

El - 2(y1 -yiy2)

single

equations

(Y2-Y1Y2)

5 Five body problem

Cl yl = -yl

Yi Yi_1-yi, 1=2,

51.0 Y9

5 Five body problem

D1 Orbit problem c = .1

.3
Orbits

small

systems

moderate

systems

5 .9

El Eessel, van der Pol, higher order

Duffing, etc. :reduced to

5 first order

Slide TH-4

20

a method

A Runge-Kutta method based on

yi+1

where k0

ki

k2

k
3

=

=

=

=

=

yi + 1(k0+2k1+2k2+k3)

hf(x ,y)

k

hf(x1-1-D

hf(x +h,

k

y
i
+k

2
)

ethod consists of:

Calculation of yi+1 by taking two

steps of size hi/2

Estimate of error EST =
Y 1+1 Y i+1

15h
i

where
i+1

is from one step of h
i

Accept if EST 5 .9T

Choose
min(hmax'

xf-x), on entry

h = T
min(.9(---) h hEST 01P max'

otherwise

Slide TH-5s

Methods tested

Several Runge-Kutta

methods of orders 4, 5, 6, 8

Several variable-order,

variable-step Adams methods

due to Krogh, Gear, Sedgwick

Extrapolation method

due to Bulirsch & Stoer

Others only partially.

Slide TH-6

21

Criterion (from DETEST)

We used computer time (in seconds

on a 7094-11) - but it was

necessary to measure two

components separately, namely

(1) overhead time

(2) time spent evaluating functions

(we actually measured total time,

& also counted the no. of

function calls)

However, the methods didn't quite

solve the problems, so we also

measured

(3) number of deceptions (in percent)

(4) max. error (in units of T)

Note: We suppressed effects of starting

ruundoff, stiffness, discontinuities.

Slide TH-7

Results

Varying order certainly important

for such a wide range of T.

Otherwise, results were very

consistent - not only within

each problem class A, B, E,

but also between different classes.

We can therefOre summarize

over all of A, B, E for each T.

E.g., with T s 10
-6

, we get

TOTAL PERCENT MAX
TIME DECEIVED ERROR

47.7 0:7,

63.1 1.4 7.3

48.8 1.6 142.5

OVHD
FCN
CALLS

'B-S 37.1 26704

Krogh 59.1 11353

RK6 41.1 23540

SECS SIN UNITS
OF T

Slide TH-S

22

...Conclusions

23

(1) Extrapolation is best if

the functions are simple, but

(2) Variable-order Adams is best

if the functions are complicated.

(3) The "break-even" point between

B-S & Krogh is, roughly,

when about 25 arithmetic

operations (or their equivalent)

are required per component.

(4) RK4, RK5 are competitive

when the functions are

simple and T p 10-3 .

/Two parameters for "performance profile9

- function complexity

- stiffness

Slide TH-9

STIFF SYSTEMS

Currently testing methods for

stiff systems

(1) We have a collection of

"real- life" problems.

(2) We are programming 4

methods - Gear's method

- Implicit Runge-Kutta

- Trapezoidal with

extrapolation

- Enright's method.

(3) Criteria more complicated

- must count Jacobian evaluations

L-U decompositions, etc., as well

as function evaluations &

overhead. And what about

transition from stiff to non-stiff?

Slide TH-10

CORRECTNESS

What do we mean by saying

a program is correct?

I like: it is correct if it correctly

evaluates the prescribed function.

For examples, consider prog. for Ax b

and the following alternatives:

(1) Exact arith:- A,b y 3 Ay b,

provided ...

(2) Fl. pt. arith:- A,b y (A +SA)y = b

with ISA! s 1.01(2n2+11)0Agu, provided GOO

(3) Fl. pt. arith:- A,b 4- y

HY A-114 - , provided A ...

(4) Any arith:- a,b y that is

obtained by following LU

decomp., etc.

24

1

A special case of (4) is to show

the program is correctly coded.
....._ ..._

Slide TH-11

We could consider:

Correctness

(1) In sense of being correctly_ coded

- use "structured" programming

(program must be seen to

be correct)

testing lends support

(2) Error analysis theorems.

- sometimes use assertions

. - testing lends support

Efficiency

(3) Testing for comparisons

(4) Theorems

- testing lgnds supporI

Need to be clear about what we

are trying to do - e.g. p, m, c

Emphasis above will depend on

area - lin. alg., functions, o.d.e.'s, etc.

Slide TH-12

25

Effectiveness theorem:

If P.= <Ay HAI' 5 1, x0, y0, xf, T, hmax =

m = <2 Kutta steps, EST, 5,9T,

no roundoff

then m solves any p in P, in

sense that mi produces yf

a 3 z(x) where z(x0) yo

z(xf) = yf

and - f(x,z)1 5 T.

(result is best possible)

1>

Also have results for stiff (Enright)

& for non-linear (Sedgwick)

Also for Adams (Sedgwick)

Slide TH-13

26

REVIEW OF NATS PROJECT

Wayne Cowee.e. -- Because the NATS project has been reported at

several meetings lately, some of you have seen the slides I have and

are aware of what we are doing. I will not go into too much detail

here but will give a little different emphasis in a few places.

There is a term which is gaining some currency at Argonne which I

would like to share with you. For budget purposes and our own under-

standing, we have been carefully documenting our research activities

in computational mathematics and have come up with the idea of a

systemetized package of computer programs which we have defined as shown

here (WC-1). Of course, an example of systemetized collection is

EISPACK (WC-2). As many of you know, Edition 2 is now being distributed

from the Argonne center as a certified package. It's a collection of

34 routines to solve certain cases of the eigenproblem and is available

for IBM 360, CDC 6000-7000, PDP-10, Univac 1108, and Honeywell 635.

Edition 3 is in the hands of the test sites, which we will list in a

moment. Concerning the point (in WC-1) about minimum concern for systems

details, the IBM version also has'a control program called ElSPAC

(without the K), which enables the user to describe his eigenproblem

at a very high level. Jim Boyle is the author of that.

Another collection which we are in the process of systemetizing in

the NATS project is the special function package. It is indicated on the

slide (WC-3) how we stand. Most of this is Jim Cody's work. We will

soon be announcing the availability of the exponential integrals for 3

machines: IBM, CDC, and Univac. Cooperating with us on this part of

27

the work are the University of Wisconsin, and the University of Texas.

I want to list the other field test sites which have been involved

with the NATS project (WC-4). This is a project to test, certify, and

disseminate mathematical software. At this stage, it is not an attempt

to build up a comprehensive library, but rather an attempt to produce

systemetized packages and thus to learn how to produce them, to learn

something about the kinds of people involved,.the time it takes, and

4--
what it costs.

The procedures that we follow are roughly these (WC-5). The

routines are prepared at the principal institutions, in this case,

Argonne, University of Texas, and Stanford. They are then field-tested

at the cooperating sites, certified, distributed, and supported. I

want to say just a bit more about what some of these terms mean. Field

testing involves two parts (WC-6). The first part is checkout at the

computer center. We supply a tape with routines, test cases, and drivers.

We have assembled about 80 test cases for EISPACK and drivers which

print out the norm of the residual. That information comes back to us

for evaluation. When the routine is ready to be made available to

test-site users, there is effort at the test site to offer consulting

services, to make it very easy for people to use these routines, and

to feed back information on users' experience. This is a little harder

to organize than computer center checkout. Scientists have to be

shown that using the new routines is going to be their advantage.

What do we mean by certification? I think this focuses very directly

upon the topic we are considering at this workshop. The meaning of

certification was actually a subject of a great deal of thought and

28

discussion on our part. We can't mean, of course, that a certified

code is guaranteed in the sense that we pay for the computer time if

it doesn't work: The idea which finally emerged is akin to the scientific

tradition of saying that the tests (experiments) we have performed can

be. duplicated. We will furnish you with all the information we have

available and you can run the same tests. Also, we risk our repu-

tation; we stand behind what we have done. To express this idea, we

have included this statement (WC-7) on each of the routines which we

regard as certified. We could say this sort of thing without any

testing at all, but that would be foolhardy!

We have arrived at some guidelines which I have written down here

as principles. These first 3 principles express requirements that a

collection of routines be considered as a candidate for systematization

(WC-8). Without these remaining principles (WC-9) you couldn't really

organize a good testing program. First of all, we would insist that

computable measures of quality exist. In the case of EISPACK we have

used the norm of the residual stemming from Wilkinson's backward error

analysis. In the case of the special function codes, I think most of

you are aware of Jim Cody's methods for statistically comparing the

performance of a routine with the performance of multiple precision

calculations. Finally, the last statement is that the routines have to

satisfy a basic need - there is a demand for them. Because there is a

demand there is also a potential for organizing a collaborative effort,

and we believe that is necessary for this type of work.

This diagram (WC-10) gives an over-view of the project. To

illustrate we might follow EISPACK through the diagram. Assembly into

29

packages, preparation of test cases and preliminary testing took place

during the Spring of 1971. I might say that the use of the Argonne

RESCUE system was extremely valuable. Jim Boyle will have more to say

about that later on. Edition 1 went to the test sites in the summer

of 1971. The test sites responded in various ways, most of which were

very gratifying. Besides computer center checkout, users guides were

prepared in several places. A comprehensive one was prepared by

Yasuhiko Ikebe at the University of Texas. The University of Chicago

published an EISPACK newsletter, and made available a good deal of

consulting. The control program was developed for Control Data computers

at Northwestern University. Interface routines were written at Stanford,

which enabled users to call routines using familiar calling sequences.

So far as we can tell, there were a couple of dozen users (besides the

computer center checkout) in various fields--economics, geo-physics,

chemistry, astronomy, nuclear engineering, mechanical engineering,

statistics. We have case histories on some of these. Also, the routines

were used in an engineering summer conference at the University of

Michigan both in 1971 and 1972.

In December 1971, there was a meeting of test site representatives

at Argonne in which we reviewed the progress that had been made on

the field testing, and obtained feedback from it at that point. We

made one key design decision. The field test representatives felt it

wrong to have machine-dependent parameters in the calling sequences.

These parameters were taken out of the calling sequences and embedded

as lines of code. This resulted in our going from two versions of the

package to four the four differing. very little.

30

Edition 2 went to test sites in March, 1972 and was announced as

a certified package in May, 1972. Here's a word about the availability

of the package (WC-111,, It is available from the Argonne Code Center

for those 5 computers. From May 24 to August 9, some 34 requests for

the IBM and 28 requests for other computers had been received, and

processed. There have been requests since. Each of these actually

constitutes an installation. The Code Center does not send to two

different persons using the same computer at the same location. So I

would say that there are at this time roughly 75 installations across

the country which are (potential) users of EISPACK. I cannot say it

has been installed and is working at all these.

Let me conclude with a word on costs (WC-12). Here I refer to the

cost of creating certified code from published Algol. There are various

ways of looking at costs. We could look at it in terms of the cost per

Fortran statement. I'm sure you recognize this would be a very rough

ball park kind of estimate. We have versions for 5 machines and I

would estimate that the cost is about $20 per statement of certified

code. I don't want to put Ed Battiste on the spot but I have discussed

that informally with him, and he didn't say we had been especially

wasteful. We could also distribute costs over the number of users. I

think it's very conservative to say tnat EISPACK will be used eventually

by 100 installations. You could distribute a half million dollars over

those installations at $5,000 per installation. You would probably

have to pay a graduate student more than that to code up Wilkinson's

Algol, and the results would not likely be comparable.

31

But the way of looking at the costs that I like best (and which

Jim Wilkinson has reflected upon) is that this work is a step that is

necessary in order to take a tremendous intellectual investment over

many years by first class people and make it available as practical

software. It is very difficult to put dollar figures on that kind of

thing. At the Boston meeting where I reported on this, Joe Traub

suggested another view of cost, which I haven't really explored any

further. He asked if we itad any way of measuring the number of

replacements, the number of places in which EISPACK has forced out

another collection of eigenproblem codes.

Well, those were the remarks I wanted to make about the NATS

project. I would like to postpone general questions for later and go

on to some remarks by Chris Newbery about validation of the Boeing

library.

32

Slide WC-1

A collection of computer programs will be said to be a

systematized package if

(a) each program in the collection is accurate, efficient,

fully documented, thoroughly checked, readily available,

and effectively maintained;

(b) the collection contains routines to solve a wide spectrum

of related problems, reflects the latest techniques, and

is organized so as to require a minimum of concern for

those computer system details which lie outside the scope

of the user's primary interest.

33

EISPACK

Edition 2

Slide WC -2

34 routines to solve the standard eigenproblem for real

general, certain real tridiagonal, real symmetric, real,

tridiagonal symmetric, complex general,'and complex

hermitian matrices.

Edition 3

40 routines to solve above problems plus standard eigen-

problem for linearly-packed symmetric matrices, band

symmetric matrices, and the generalized eigenproblem

Ax = ABx where Aand B are symmetric and B is positive

definite.

Slide WC-3

SPECIAL FUNCTION PACKAGE

For IBM 360YVNIVAC 1108, CDC 6000-7000 except as noted

Work almost finished

Exponential integrals

Complete elliptic integrals of the first and second kind

Work well underway

Psi function

Bessel functions KO

Dawson's integral

In progress

Error and complimentary error function

Gamma and log gamma functions

Fresnel integrals

Riemann zeta function'

CoUlomb phase shift

Chi-squared integral

Regular Coulomb wave functions

Bessel functionsJJY Y
J0, J1, 0' Y1

Univac and CDC only

34

35

NATS is a prototype effort to

TEST, CERTIFY and DISSEMINATE

Mathematical Software

Principal Institutions

Argonne National Laboratory

The University of Texas at Austin

Stanford University

Cooperating Test Sites.

Slide. WC-4

IBM 360

CDC 6600

IBM 360

Iowa State University (Ames Laboratory) IBM 360

National Center for Atmospheric Research CDC 7600

Northwestern University CDC 6400

Oak Ridge National Laboratory IBM 360

Purdue University CDC 6500

Lawrence Livermore Laboratory CDC 6600-7600

The University of Chicago IBM 360

The University of Kansas Honeywell 635

University of Michigan IBM 360

The University of Toronto IBM 370

The University of Wisconsin Univac 1108

Yale University PDP-10

36

Slide WC-5

NATS Routines are

1. Prepared at the principal institutions

2. Field tested at cooperating test sites

3. Certified

4. Distributed from the Argonne Code Center

5. Supported by the developers,

37

Slide WC-6

FIELD TESTING

1. Check-out with prescribed data using

testing aids supplied by coordinators.

2. Monitored use by scientists and engineers

on their problems.

38

Slide WC-7

A CERTIFIED routine is a SUPPORTED routine which has

been thoroughly TESTED.

The documentation of each NATS routine includes the

following statement:

This routine has been tested on and is here-

with certified for the following computer

systems and working precisions.

(List of test sites, machines, operat-

ing systems and working precisions.)

The NATS project fully supports this certified

routine in the sense that detailed information

on the testing procedure is available and re-

ports of poor or incorrect performance on at

least the computer systems listed above will

gain immediate attention from the developers.

Questions and comments should be sent to

(Name and address of contact.)

39

Slide WC-8

PRINCIPLE A

The algorithms underlying the routines have a

sound numerical basis.

PRINCIPLE B

The routines are written in a widely-used source

language.. They have undergone testing for effi-

ciency and absence of gross errors. Basic

documentation exists.

PRINCIPLE C

The routines have been organized into a coherent

collection which solves a. class of problems.

40

Slide WC-9

PRINCIPLE D

Computable measures of quality exist.

PRINCIPLE E

The routines satisfy a basic computational need

and are required for use in a number of institu-

tions. They have potential for becoming an

authoritative standard within the computing

community.

S
l
i
d
e

W
C
-
1
0

P
r
e
p
a
r
a
t
i
o
n

o
f

I
n
p
u
t
:

T
e
s
t

C
a
s
e
s

&

T
e
s
t
i
n
g

A
i
d
s

F
i
e
l
d

T
e
s
t
i
n
g

O
u
t
p
u
t
:

P
r
o
g
r
a
m
s

A
s
s
e
m
b
l
y

1
.

T
e
s
t
i
n
g

&

2
.

C
h
e
c
k

o
u
t

3
.

U
s
e

b
y

4
.

G
e
n
e
r
a
l

C
e
r
t
i
f
i
e
d

s
a
t
i
s
f
y
i
n
g

i
n
t
o

A
n
a
l
y
s
i
s
b
y

a
t

t
e
s
t

S
c
i
e
n
t
i
s
t
s

D
i
s
t
r
i
b
u
t
i
o
n

4
,
S
o
f
t
w
a
r
e

P
a
c
k
a
g
e
s

D
e
v
e
l
o
p
e
r
s

P
r
i
n
c
i
p
l
e
s
.

A
,

B
,

a
n
d

C

s
i
t
e
s

&

E
n
g
i
n
e
e
r
s

a
t

t
e
s
t

s
i
t
e
s

o
f

C
e
r
t
i
f
i
e
d

S
o
f
t
w
a
r
e

R
e
f
i
n
e
m
e
n
t

<
-

O
v
e
r
-
a
l
l

V
i
e
w

o
f

C
o
l
l
a
b
o
r
a
t
i
v
e

S
o
f
t
w
a
r
e
T
e
s
t
i
n
g

S
u
p
p
o
r
t

-7

42

Slide WC-11

AVAILABILITY

The second edition of EISPACK for

IBM 360 (including control program EISPAC),

CDC 6000-7000, Univac 1108, PDP-10,

Honeywell 635

is available from the

ARGONNE CODE CENTER.

During period May 24-August 9 there were

34 requests for IBM

28 requests for others

43

Slide WC-12

COST ESTIMATES (As of August, 1972)

(after original research)

EISPACK in 5 Macine Versions

$20 per Statement of Certified Fortran Code

or

EISPACK used by 100 installations

$5000 per installation

OT

EISPACK as the step necessary to make a very lowge

research investment pay off in practical software -

incremental cost: small.

44

VALIDATION PROCEDURES FOR THE BOEING LIBRARY

ChALs Newbety -- The Boeing library went into business in

1969. It was a fairly large-scale project, about 10 man years, 300

programs, about, 24,000 object deck instructions. We were very concerned

with validation, and I want to talk a little about our procedures, how

we achieved what we did achieve. Its been possible since then to

determine how good or bad it was - I'll let you judge that.

In the first six months after we went on the air, they found six

bugs in the whole works, and since then they haven't found any. This

has not been under conditions of testing by hostile people like your-

selves; it's just been ordinary testing on the shop floor in Boeing

and at the University of Washington. I'd say there were two reasons

for the stress on validation. From the point of view of the top

management the reason was simply flow time. It's sometimes thought that

aircraft can crash as a result of computer program errors. I'm not

sure that's true, I'm inclined to doubt it, but certainly lots of other

unpleasant consequences can ensue. If you write the critical path

network for production of an airplane all the way from initial design

through marketing, the computers occur on the critical path at several

places. They occur very markedly in the early design phase, particularly

the stress analysis phase, and they occur later in the automation of

the machine tools, i.e., constructing tapes which will guide a machine

to cut the air foils and cut the various components for the prototype

and for the production models. Finally, they are on the critical path

45

again when it comes to analyzing the flight data after the prototype

has already flown with lots of gadgets on it measuring stresses and

vibration frequencies and temperature changes and so on. Those are the

three parts or stages when the computer is on the critical path, and

any foul-up holds up the whole project. That can cost thousands of

dollars. So that was why the management was kind of up-tight about

validation.

The other reason.for validation stemmed from our own strictly

computerman's point of view. We were concerned with validation mainly

because we knew we could never get our product marketed unless we had

a good record this way. There are lots of inferior programs available

(users groups and so on, to name one of them) and we felt that unless

we developed the reputation for being pretty nearly infallible, nobody

was going to use our work, and it wouldn't de much good if nobody used

it. It's exceedingly difficult to get a man to give up using a program

he is familiar with, and get him to switch to a program which works.

In the course of this, I've written out a little check list of things

which I consider important in the design of validation experiments

(follows narrative).

The first one is concerned with being really clear about what your

objectives are, what you are testing for. The typical programmer,

even-an experienced one, tends to be very vague about this. So I think

one needs to be very clear of one's objectives and the first commandment,

so to speak, says make a list.

46

The second item is concerned with recognizing that there is

inevitably a lot of noise in most of the things one is testing for:

Most of the questions you are asking when you test can not be answered

by a single test. A few of them can, but I've given an example in the

attached sheet where you have to make a large number of tests before you

can be reasonably sure that your program is performing satisfactorily

in that respeCt. I could give a different example of the same general

kind. Let's say you've got a linear equation solver and you're

concerned about whether that equation solver knows when it is beaten.

If you give it a problem, which is numerically singular, does it

recognize this and go into an error return, or does it just plow ahead?

I don't think anybody, however good a programmer or however knowledgeable

a numerical analyist he may be, can write a prograM that is really

perfect in that respect. I think however good you are, you are not going

to be perfect. For example, if you are going to try to persuade a

computer to recognize a numerical singularity, you are going to compare

some vanishingly small quantity with some: kind of standard. You are

going to look at a succession of pivots and compare with some small

number and decide to quit when it is effectively singular. Or if you

are interested in finding a certain degree of slowness in convergence,

you will use that as a measure of whether the thing was effectively

singular. If you are looking at pivot sizes and you did not compute your

pivot size with'perfect accuracy sometimes the criterion which you

prescribed will work the way you intended and sometimes you will be

unlucky. Then you will want to know whether the thing is fail-safe;

i.e., if it had made errors, would they be errors of the sort that said

47

the system was numerically singular, when in fact it wasn't? But you

must not make errors of the opposite kind'where it uses garbage and says

it is O.K.

',The third item is checking to see that the program automatically

avoids any readily avoidable numerically ill-defined situation. Scaling

of matrices is one example. But .1 think a more dramatic one, although it

is less commonly mentioned, is interpolation where you interpolate on

half a dozen points, say in the range from-a thousand to a thousand and

six. You are going to be evaluating your Lagrangians for very large

arguments. You would need to shift the origin to minus 3 to plus 3, do

your interpolation, and re-interpret back again. A good computer program

will do that. One should check to see whether a program is good in

that respect.

The fourth item is concerned with relating the results that you

get to some kind of acceptable standard. Very few of us could say

whether preserving five figures out of eight on inverting a six by six

Hilbert matrix was a good result or a bad result. So i much prefep,the

result that says the errors were never worse than 1% of the error bound

that Wilkinson gives on page such and such. Then you are relating the

errors that you observed to error bounds that are mathematically

established, and that takes into account the condition number of the

problem, and it saves you a lot of mental arithmetic and enables you

to relate what you have observed to what you:think you should have

observed, or relate it to the worst possible case that could have occurred.

48

Item five is a statement really very much like Hamming's "insight-

not-numbers" statement. It says pretty much the same as he says only

he says it better. It's also related to Lyness's performance profile

concept. It seems to me that if you're evaluating the performance of

a matrix inverter or linear" equation solver, one would put out the results

in some kind of a grid form which lends itself to interpolation. It

seems to me that you should vary condition numbers from very easy to

what you call tough in your word length. At the same time, in the

other dimension, you-would want to vary the order of the matrix. See

how it behaves on larger matrices. Then you have got large well-

conditioned, large ill-conditioned, small well-conditioned, small ill-

conditioned. When you have got that, you haven't just got the twenty-

four numbers that are put out, you have really got information about the

whole two-dimensional continuum of numbers. You can interpolate because

those tables should.be fairly smooth. And if they are not smooth, then

you want to know why, because something has gone wrong. Each entry in

your grid will not be,Jhe result of a single experiment because that

single experiment of course could be non-typical and you must average

a large number of experiments to produce each of the twenty -four out-

puts.

Item six is concerned with consistency tests. This is perhaps a

bit more controversial (there are those who dislike consistency tests),

but such-tests do serve the purpose of enlarging the range of tests

that you can give. It is not necessary to know the answer to a problem

in order to use the problem for test purposes. Thus you can check

consistency in differential equation solvers as long as you knoW,something

49

about the property of tne solution, like it is periodic. You do not need

to know the whole solution, you can check on periodicity. It is a

check that can be misleading, but it is about the best you can do.

Likewise there are a lot of consistency tests you can use with polynomials

such as seeing whether it thinks p(2x) is a harder polynomial to solve

than p(x) or seeing whether it thinks reversing the coefficients,

thereby reciprocating the roots, takes more iterations or gives less

accuracy. Any substantial difference in its reaction to p(x) and

reversed p(x) is an indication that it did one of them wrong.

Item number seven is concerned with testing separate parts of, say,

an eigensystem package, in which eigenvalue calculation is followed by

eigenvector finding. I think it is appropriate to test those two things

separately, because otherwise it gets very difficult to locate what

the source of the error was. You can attribute it to one aspect when

in fact it resulted from another. And there are, as I mentioned, some

situations where you should not do that.

And lastly, (item eight) one should try to break the program to

see where its breakpoint is. and to see whether it knows it is beaten

when it is beaten. The last sheet that I have given out is a little

attachment, and I must apologize for the attachment being somewhat

scruffy. In fact, it was not really intended for distribution at this

meeting or any other. It is an exact reproduction of little notes I

gave to my programmer when I was asking him to test things out. It is

an authentic set of tests that I asked him to execute. It does illus-

trate two points that I think I have mentioned. It deliberately

50

creates Jacobians which will have rank difficiencies of one, two,

three and that is a fairly severe test for any non-linear equation

solver which uses Jacobians for solving linear equations. The other

thing it exemplifies is the performance profile. It tells the prO-

grammer to put out a grid, each point on the grid being the result of

20 experiment's, so that when you read it, it can be interpolated. So

those are my 8 commandments. I would be very glad to hear any comments,

criticism, and particularly additions.

51

A Check-List for Validation of Programs

When one is designing a sequence of experiments with a view to deter-
mining the capabilities and limitations of a given computer program, the
following check-list may be found helpful.

(1) Make a list of the questions which the tests are supposed to an-
swer. This list will vary from case to case but it will always include
the elementary things like "Is each separate branch logically correct?"
"Are there proper error returns for inadmissible data?" etc.

(2) Make the tests as noise-free as possible, but recognize -that a
large sampling is often required before a confident judgement can be formed.
For instance, when testing to see whether a quadrature program reacts cor-
rectly to a small jump-discontinuity, it is largely a matter of chance
that determines whether a function-evaluation is called for at a point
which will make the discontinuity detectable.. A program may detect a small
discontihuity in one place and fail to detect a far larger one situated
somewhere else. Give the program a hundred different discontinuity-detection
problems of approximately the same difficulty and determine the percentage
score

(3) See whether the program shows any undue sensitivity to the mode
of problem-formulation. Linear equation solvers are commonly quite sensi-
tive to the scaling, and it is unnecessary to produce grossly mis-scaled
examples to demonstrate this. Some are sensitive to the order in which
the equations are written. A polynomial interpolator may work fine on three
points situated at -1, 0, 1 and break down on the same three ordinates situ-
ated at 99, 100, 101. In summary, check that the program will take the neces=
sary steps (e.g., scaling or origin-shifting) to minimize the numerical
problems. Failing that, check that the documentation carrie9 an appropri-
ate ";..may be hazardous..." warning.

(4) Wherever possible, relate the observed error(s) to some accepted
standard or norm. The statement that "observed errors never exceeded .1%
of the bound given by Wilkinson" is far more informative than "the errors
never exceeded 1 in the fourth decimal figure." -

(5) In presenting test results try to give the reader a maximum of
information' for a minimum of numbers. The performance of a linear equation
solver can be well displayed in the form of a 4 x 6 array, where the row
index defines the order aflcrthe column index defines the condition number.
If each element of the 4 x 6 array is the average of 20 experiments, the
array should have enough smoothness to permit "eyeball" interpolation. Any
lack of smoothness suggests that further probing is called for.

(6) Remember that computer programs will never be used in earnest
... on problems for which the right answers are known analytically. It is un-

necessary, and in some cases unwise, to restrict the tests to problems of
this type. For instance, it is quite common for a quadrature program to
tell us that:

52

b a.

f(x)dx # - 1 f(x)dx # 0.
a

Without knowing the true value of the integral, we can say that one of
the quadratures was wrong by at least half the difference. A minor dis-
crepancy would be considered normal, but a major discrepancy in any re-
spect (e.g., number or distribution of sample points) will indicate non-
optimal programming.

(7) When an algorithm consists of several distinct parts, e.g., simi-
larity transformation of a matrix, followed by eigenvalue determination,
it is generally the best policy to test each part separately; however,
there are exceptions, such as predictor-corrector pairs of formulas for
solving ODE's which should be judged as a tandem.

(8) Remember that validation involves a determination of the limi-
tations as well as the capabilities of a program. Parametric test problems
shou?d be used, and the parameter(s) varied so that the test problems be-
come unsolvable in the given wordlength. Check to see how realiably a
program identifies this situation.

A.C.R. Newberry
University of Kentucky

August 1972

53

ATTACHMENT

Testing Nonlinear Equation Solvers

Define a two-parameter family of polynomials by

P(x,p,k) = (x-p)
k

(x-1)(x-2)(x-3)

and construct its coefficients A which are functions of p,k

p will vary in [0,1] and k will vary over 1,2,3.

The test consists in attempting to find the roots of P simultaneously by
nonlinear equation' solving thus:

(1) Make a (bad) guess 4. at the roots, e.g., for

k=2,p=1/2 4=0,1/4,3/4,4,5

(2) Construct the monic whose roots are the components of 4. Coefficients
of this monic are b Then a-b serves as a residual vector. Adjust g with
a view to making i.-B=0. The residual vector h=i -'6 is a nonlinear mapping
of g.

(3) On concluding, the elements of 4Hmay have to be sorted monotonically
so as to provide a best match with the known roots of P. After sorting
define E as the largest absolute difference between an element of g and
the root it approximates. If k, p are chosen so that P has a repeated
root, the Jacobian will be singular, so this will be a severe test.

(4). Let k vary over 1,2,3 and p range over [0,1] in intervals of .25.

(5) For each k,p 94 an average E (see (3)). The average is taken over 5
starting vectors g for that particular problem. The starting vectors are
uniform floating numbers in (0,5). Set average E.negative if any failure
occurs in-the set of 5 tests.

(6) Output a 3x5 matrix of average-E values as defined above.

A.C.R. Newberry (1968)

54

QUESTIONS FOR SUBGROUP DISCUSSION OF TOPIC I

1. The term "certification" applied to software seems to have various

meanings in different contexts; e.g., "certify" (run) an algorithm

(CACM), certified software as supported software (NATS,IMSL). Is

there an underlying concept which unifies these meanings or are

several concepts being confused?

2. Is the demand for certification actually a demand for highly in-

formative documentation about the performance of a code?

3.- Can standards of computer program performance be determined and

published through some form of structured committee action? What

standardization process would you like to see evolve?

55

SUBGROUP DISCUSSION OF TOPIC I

Leoyd Foulick -- I will try to capture the ideas as they were

expressed. One point was that certification should consist of a precise

istatement of procedures used to test software. The statement should be

sufficiently accurate to permit repetition of the tests and should

include requirements for clarity and intelligibility in program documen-

tation. The documentation for a program should be layered with the

layers involving different levels of detail.

The group felt that evaluation should be distinguished from certi-

fication. The former involves a comparison of relative merit of the

software with respect to other software, real or imagined, for the same

purpose; hence it depends on the problem area and on the system. The

latter, certification, focuses attention on one program, in isolation.

Those statements address our answers in one way or another to

questions 1 and 2. We didn't really complete 3.. The comments relative

to that question are that the alliance should play a formal role in

setting standards of performance. For instance, this would include such

things as what should be in a performance profile. The alliance should

collect standard test cases an&should provide a place where software

could be sent for testing purposes. Anybody else that was in the group

have anything to add, especially regarding question 3?

Ficed-aogh -- I see some problemin getting together and agreeing

on what things are important in evaluating. I think it is a problem but

56

I do not have any suggestions on what to do about it. I think there is

a tendency in evaluating software to evaluate things that are easy to

evaluate and ignore things which are quite important but which are hard

to evaluate.

Wayne Cowett -- Well, it is a little difficult to take a free-

wheeling discussion and summarize it in a very neat fashion, but I was

struck as I heard Lloyd just now that there were several points that were

common to the two groups. It might mean that they are very important

points.

Let me start by stating the conclusion which we finally drew, which

was that "certification" is meaningless unless much more is added to the

term. In particular, you have to say who is going to do what. Although

the term has been used a great deal, we realized very strongly in our

discussion that it had been used very loosely and that there is a semantic

confusion.

We distinguished among three aspects of certification: (1) valida-

tion of documentation and specification, (2) evaluation of quality,

(3) support and maintenance of routines. One part of the meaning of

certification is the question of placing a kind of stamp of approval or

agreement by the certifier that the documentation is correct. We distinguished

between validation in'that sense and evaluation, which deals with quality

and usefulness. It is possible for a subroutine to be correct and yet

be irrelevant to the needs of a given group..

Another aspect of certification which we brought out was the idea of

support, the fact that some group needs to agree to stand behind what

was marked certified.

57

Having made the basic distinction between validation that the

documentation is correct and the evaluation that the program is useful,

we can then say some other things about these aspects of certification.

For example, in terms of validating software, we could define a spectrum,

a lower bound and upper bound. The lower bound on validation would be

the fact that somebody had run it. This is what CACM does. The upper

bound would be a proof of correctness. This would be the ultimate kind

of validation. Now, even if we can prove a program correct and there-

fore have ultimate validation, that does not necessarily mean it is

useful.

It was brought out that certification, no matter what meaning we

associate with it, is a dynamic process. It goes on and has to change

as systems change since it is indeed relative to a given, system.

There was some discussion in our group as to who does validation

or evaluation? I believe that there was a concensus that ultimately

there is a need for an independent certifying agency, that is, independent

of the producers of the software. Both the evaluation of a routine and

the validation of its documentation should be done by this independent

agency. It was admitted that this situation does not exist yet today.

Indeed people like the NATS group are, in a sense, certifying their own

work and are, hopefully, defining building blocks that can be used later

for the construction of these independent certification activities. You

notice we did not follow the questions in the agenda explicitly, but I

am satisfied that we covered their intent. Would anyone like to add any

comments?

58

Jim Boyte -- The support question is an interesting one. In our

group several people expressed opinions that it had nothing to do with

certification. I think the role of the support in the NATS project was

more of a way of lending credibility to the fact that we had done

exhaustive testing. Saying we would support the routines was partly

intended to convince people that we had tested it enough so the user is

not letting himself in for trouble. I wonder if, in fact, we might see

a diminuation in importance of the support as people come to believe

more in the concepts.

59

DRAFT CERTIFICATION STATEMENT

Wayne Cowett Acting on a suggestion from Joe Traub and others this

morning, Lloyd Fosdick and I sat down thi.s, afternoon and prepared a state-

ment about certification. Following is a draft for your examination and

comment:

Recognizing the need to be able to identify those computer

programs which reach some accepted level of quality the term

"certification" is useful. Ultimately a certified program is one

which has been widely accepted within the communities of experts

and users. To assure this credibility the process of certification

must include examination of

1) completeness of program documentation,

2) performance of the program relative to its documentation,

3) comparison of the program with others of the same type

in terms appropriate to the problem,

4) adequacy of continuing maintenance and support.

A formal guarantee that the certification process has been satisfactorily

performed would be expressed by a document issued by an agency or institution

recognized by the communites of users and experts.

60

DISCUSSION TOPIC II -- EDUCATION AND INTERNSHIP IN SOFTWARE EVALUATION

DESIGN OF A COURSE ON ALGORITHM TESTING

A. C. R. Newberry I will tell you first the way the course looks

according to the catalog (CN-1). Something like 60% will be error analysis

and the rest will involve writing programs to implement the error analysis.

As I mentioned this morning, I attach a good deal of importance to relating

observed errors to error bounds and seeing how realistic the bounds are.

Also, this helps you to tell whether an observed error should be judged .as

being a good performance or a poor performance. There are two numerical

analysis pre-requisite courses, one of them at senior level and one at junior

graduate level. The senior level one deals with elementary error analysis,

floating point arithmetic, failure of distributive rules, dangers of sub-

tracting nearly equal large numbers. After that there is a 500-level course

that is more conventional. With that background (and hopefully a good deal

more) they go into this course on algorithm testing.

I think one could consider separately the first order approximation and

the more rigorous norm-based Wilkinson type error bounds for inverses of

matrices. On the eigenproblem, one would consider the very nice theories

that are applicable to symmetric problems, and one would deplore the very

unsatisfactory state of error analysis with respect to nonsymmetric prob-
.

lems. Error propagation in ODE's would be included. I am sure that is very

familiar stuff which you would find in most courses. The PDE's are perhaps

leSs frequently dealt with and you must consider severe constraints on your

mesh size.

We would spend some time just looking at available test matrices- -

there are several books and publications cOntaining useful test matrices,

useful either for inversion or for checking of eigenvalue routines.

61

The last section would be the design and coding of programs to test

for the errors and possible deficiencies in a program. One would try to

implement this in dozens of different areas, but, rather than diversify

too much, I have made a tentative list (not intended to be comprehensive)

of questions which one might wish to ask with respect to polynomials. Given

the routine, what questions do you ask and what questions do you require

an answer to before you sign your name to it as being a good polynomial

root finder? The student would have to figure out a decent way of find-

ing answers to the following questions: Does the routine behave well-with

respect to the kind of polynomials which traditionally cause problems?

Does it spin its wheels when it has found a root? i.e., does it keep iterat-

ing after it has found an acceptable sequence of zeros? Are they found in

increasing order of size? Is the behavior consistent? Is the accuracy as good

as the wordlength permits? The latter is probably the most important ques-

tion and the least easy to answer in general although in the case of poly-

nomials it is fairly easy to answer on the basis of a posteriori error analy-

sis. I would expect students to solve that kind of problem with.respect

to polynomials as well as eigenvalues, ODE's and what not.

That provides an indication of what I want to to in the course.

62

C.S.631 ERROR ANALYSIS AND VALIDATION

Effects of inexact data and/or inexact arithmetic on the

accuracy of the computed solution to a problem.

Design of acceptance tests on the basis of which a com-

puter program may be certified as meeting its specifications.

10% Review floating-point error propagation.

20% Study matrix perturbation theory with reference to

inversion and eigenproblems.

15% Error propagation in recursive computations, especiall:

ODE's, PDE's, Bessel functions.

15% Backward error analysis for matrices, polynomials,

Fourier series.

10% Test matrices, polynomials, etc.

30% Design and implementation of test programs which will

test for any weakness in a program and give it "grades"

over a spectrum ol problems.

63

ALGORITHM EDITOR'S EXPERIENCE WITH STUDENT ASSISTANTS

Loyd D. Fosdick I think that when George Forsythe was editor of the

Algorithms section he used students quite a bit in helping in various phases

of the job, and I think it is also true that Jack Herriot did. I have been

following a similar pattern. I want to say some words about the kinds, of

things that we have been doing in Colorado in this direction (LF-1). I

might mention that the students involved here are present: Jacob Wu, Jeff

Wright, and Dorothj Lang who has just graduated and is going to work for

Texas Instruments right after this meeting.

Let me try, first of all, to identify some of thy kinds of activity

that students have been engaged in. These range from fairly simple and

routine jobs (almost clerical but not quite) to ones that are fairly chal-

lenging. There is checking for violations of syntax standards. There is

the maintenance of the algorithm index, including a cumulative index pub-

lished by CALGO, with listings covering about 11 years. The index now has

about 820 entries, so it is getting fairly long and it is a nontrivial

matter to up date it each year. We have all of that material on punched

cards, and somebody has to go-in and bring it up to date on Certifications,

Remarks, and so on with respect to a particular algorithm. Of course, all

the new algorithms which have been published in all the journals have to

be added.

Recently we have started an activity in which some of the longer

algorithms are recorded on magnetic tape. Somebody has to worry about copy-

ing those tapes and seeing that they are checked and distributed properly.

Students have helped create program aids and have helped develop several pro-

grams to help us in the testing. With one exception we have not really

64

used these programs extensively for algorithms that are being published,

but that is oar intention.

As far as the tape distribution is concerned, I counted them just

before coming to the meeting, and we have distributed E) tapes on algorithms

so far. This has been going on since April, 1971. I am a little bit sus-

picious that in many instances the orders for the tapes have been generated

by some fairly automatic process like a librarian from a laboratory who

orders all such things. The tape may be collecting dust somewhere. So

I do not think that the number 80 is in any way a reflectin of how many

of these have actually been utilized. The number of algorithms on a tape

varies and is associated with a particular issue of the journal; usually

it is one or two.

Let me say a word about whether or not these are good activities or

bad activities as far as an educational process is concerned. I think that

going into the literature and being aware of what is available and what is

going on, is an educational process for a student. I do not think it is

a good idea to have the same person doing the same thing for years and

years on end. It is a good experience for a year to be involved with some-

thing like this. The creation of the tapes is interesting, and is a lot

more than merely copying those tapes. One of the things that is involved

is how much it is costing us to produce those tapes, and what should we

be charging realistically in order to recover those costs. These are very

practical matters of Pricing that are important for the real world, and I

think it is useful for stu/ents to be aware of them. Very often in graduate

education, students go through a program and have very little idea of the

monetary aspects of the things that they are doing. So for these reasons

65

I think there is some educational values in these activities, although

they seem 1-irly routine.

Concerning the check for violation of syntax standards, I think one

could reasonably ask why there is not a program we can use for checking syn-

tax violations. The answer is there is a program and we use it. lut these

programs are not perfect and I will given you an interestint, example of the

sort of thing that is very difficult for them to handle The problem is

that the syntax is not perfectly specified; there are some ambiguities in

it. According tt; ANSI standards a control variable in a DO-loop is unde-

fined after exit from the loop provided you satisfy the DO conditions. So

for instance (LF-2) if you went around this loop from J to K, and then

dropped througi from statement 30 to statement 40 and tried to execute the

DO-loop, you would be violating ANSI Fortran. On the other hand, iF you

exit this top loop by means of the IF statement, it would not be a viola-

tion of ANSI Fortran. Now this is a complicated thing because it may well

be that the person who constructed that particular loop may have decided

that the loop never was satisfied, that you always did, in fact, exit through

the IF statement. In that case one could not say it was a violation. Prob-

lems of this sort which are unclear are difficult to detect even by compilers

which claim to have syntod: checkers in them. There are situations of this

sort, which our programs do not check. A student, usually Jacob Wu, goes

over the programs after they are run through our so-called ANSI syntax

checker. He makes a final check to see whether or not there are things

that have been mis7ed.

We have a program written by Dorothy Lang which takes Fortran programs

and puts them in a stylized format with respect to spacing conventions and

66

things like that. There are other programs around that do this sort of

thing, but I believe this one is more sophisticated than the ones that

are generally available.

I would like to say a couple of words about two other programs which

we have:developed. A. branch analysis program is designed to help in check-

ing programs, and there are some interesting stories connected uith this

which I would like to mention later. The program is supposed to recognize

and isolate in a Fortran program what is called a basic block which is a

sequence of consecutive statements in the source code which must be exe-

cuted consecutively and therefore only the last statement can alter the nor-

mal flow of r^ntrol. There cannot be any branches in a basic block except

for the last statement. You can only get into it at the mop and you can

only leave it at the bottom. So only the first statement'may be the termi-

nal statement of the blanch in the flow of control. We have a branch analy-

sis program that takes as input a standard ANSI Fortran program and isolates

basic blocks in the sense illustrated in this example (LF-3). This is a

portion of a subroutine that was published in the CACM. The branch analy-

sis program reads the original Fortran shown at the top of the slide and pro-

duces as output a new deck of cards shown at the bottom which would have

the modifications indicated by the arrows. One of these calls to a name

of a program, is inserted at the head of each basic block, the idea being

to enable a subroutine call each time a basic block is entered. This per-

mits analysis later when the program is actually undergoing execution. The

first parameter in the call identifies the number of the basic block. The

second parameter (it is 2 in every case here) can take on one of 3 differ-

ent possible valLms, the others referring to whether the block appears to

67

terminate in a stop statement, and therefore is one which exits completely

from the program, or whether the block involves the first executable state-

ment in the entire program.

If, as a result, of executing each one of these calls to XNAMEX, we

set a flag for that particular basic block, then we could see if flags for

all the basic blocks were set in a series of tests. If they were, we could

say that every statement in the program had been executed at least once.

What you make this subroutine (called XNAMEX here) do is of course up to

you. We have a program that merely set flags, and program that count numbers

of executions (i.e., numbers of times we have been in that basic block).

Becaffse of the structure of Fortran, things do not always break up

easily into basic blocks. One awkwardness is in the logical IF. The way

we handle that situation is a trick that was used in a program called FETE

which was written at Stanford. In order to mark the fact that you took

the exit from the block due to a true condition on a logical IF, we just

duplicate the IF statement, and insert the call to the subroutine and,re-

peat the IF statement again. If the test produces side effects, there is

a problem. Normally that does not happen.

Another awkward situation is illustrated in this example (LF-4): The

IF provides a branch outside the block headed by the DO. But one of the

branches goes to the terminating statement in the DO loop. The only simple

way to solve that problem is to first run the code through our STYLE program

which will change this so all DO loops end on a CONTINUE statement and the

situation can. be handled. These little technical details in Fortran cause

certain complications but basically we do have a tool that will allow us to

recognize the control sequence followed during the course of execution of

the program.

68

Now, what we then tried to do this summer was to look carefully at

several algorithms to see how these programs might be useful for purposes

of testing. For this purpose we took four algorithms which had been

published in CACM (LF-5).

Before I get on to the results of that, let me make an interesting

observation. I do not feel that the branch analysis program has been

satisfactorally tested, because we have not completed running it on it-

self. We did all the insertions and verified that all the insertions

had been correctly done, but we have not driven that program down to all

of the basic blocks yet, so in that sense it is not completely tested.

But back to the four algorithms. I think I have observed some funda-

mental constant. These four algorithms involve an eignevalue-engenvector

algorithm, a greatest common divisor algorithm, a quadrature algorithm,

and Gear's algorithm-for solving differential equations. The ratio of

source statements (I am taking out the comments) to the number of basic

blocks in the code is almost always a number that hovers around 1.8. When

I first saw this, my initial reaction.was that it seems to be extremely

small because it says that you can only go about two statements before you

go someplace else. There is that much jumping around. The fact that branch

analysis is a non-numeric program and also is exactly in that pattern gives

me some reason to believe that this probably is true for a large body of

programs. This ratio always stands around 1.8. I don't know if there is

any particular importance to that number, but it does interest me, because

it is so low.

Now,,this approach to looking at the testing situation is perhaps a

little different from the kind of thing that has been discussed here so far,

69

because here we are more interested in the structure of the program and

are just verifying that the various logical paths have or have not been

checked. We are not looking at proofs of convergence. In two of these

algorithms we found errors as a result of going through this process.

In one case we found code that could not possibly be executed. This was

written by a careful person and looked at by two referees before it was

published. The other algorithm that was looked at in which there were

errors uncovered was a different situation. There it was easy to drive

the program down all of the basic blocks. But in the process of doing

that, erroneous answers were created. In trying to find data which forces

execution down these basic blocks, one uncovered by serendipity data that

produced wrong answers. There is an interesting side story. This parti-

cular algorithm was subject to a formal proof procedure and that proof

uncovered exactly the same errors that we uncovered using this branch

analysis program, although I think it 4;ook us a lot less sweat. On the

other hand, we cannot be sure we have uncovered all the errors either.

The real goal of this particular line of work is quite ambitious.

We have written and are testing a program called. PATH which identifies

the linkage between the basic blocks. With that information we can easily

identify the possible paths in ourprogram. Then we would like to make a

distinction between what I call syntactic paths and semantic paths. Syn-

tactic paths are paths which superficially you might be able to execute but

in fact you may never be able to execute. An illustration of that might

be a branching process where at some point you go down a particular path

when a particular variable is negative; but earlier you always computed

the square of that variable so you know it is positive. The extent to

70

which we can identify that sort of thing I do not know. It is easy to

construct situations where it would be almost impossible to unravel the

semantic paths but how often those situations occur in real program is

not clear until we look at them. This is a line of future work.

71

STUDENT ACTIVITIES

Check for violation of syntax standards.

Maintain algorithm index.

Create, test algorithms tapes for distribution..

Monitor costs.

Help create program aids. e.g., STYLE, BRNANL, PATH

Use program aids for formulating and testing.

Slide LF-1

DO 30 I = J,K

IF (.) GO TO 40

30 CONTINUE

40 DO 50 i = J,I.

Slide LF-2

72

SUBROUTINE GCDN (N , A , Z , IGCD)

DIMENSION A(50) , Z (50)

INTEGER -A,Z ,C1 ,C2 , Y1 ,Y2 ,Q

DO 1 M = 1,N

IF (A (M) . NE . 0) GO TO 3

Z (M) = 0

IGCD = 0

RETURN

3 IF (M.NE.N) GO TO 4

IGCD = AN)

-4

1

SUBROUTINE GCDN (N ,A , Z , IGCD)

DIMENSION A(59) ,Z (50)

INTEGER A , Z ,C1 ,C2 ,Y1 ,Y2

CALL XNAMEX (0001,2)

DO 1 .M = 1,N

CALL XNAMEX (0002,2)

IF (A(M) . NE .0) CALL XNAMEX (0003,2)

IF (ACM) ;NE. 0) GO TO 3

CALL XNAMEX (0004,2)

Z (M) = 0

CALL XNAMEX (0005,2)

IGCD = 0

RETURN

3 CALL XNAMEX (0006,2)

Slide LF-3

73

Example of awkward situation

DO 20 J = 1,K

X(J) = X(J) + Y

-IF(X(J)) 10,20;30.

10 L = L+1

20 V(J) = 0

30 A = B+C

Slide LF-4

74

Algorithm 384 (Stewart)

Eigenvalues and eigenvectors of a real symmetric matrix

Algorithm 386 (Bradley)

Greatest common divisor of n integers

Algorithm 400 (Wallick)

Modified Havie integration

Algorithm 407 (Gear)

DIFSUB for solution of ordinary differential equations

#SS
A #SS #BB #BB

384 185 116 1.6

386 58 33 1.8

400 72 35 2.1

407 304 177 1.7

BRNANL 1125 605 1.8

Slide.LF-5

75

76

QUESTIONS FOR SI9GROUP DISCUSSION OF TOPIC II

1. How may a computer science department include software evauation in

the curriculum, either as a distinct .ourse or contained in other

courses?

2. Can student assistants participate in tasting soft,,are so that

a) useful tests are performed leading to acceptability decisions,

and b) the student has an educational experience recognized by the

university?

77

REPORT OF SUBGROUP DISCUSSION OF TOPIC II

Henry Thacker and David Young (reported by HT)

Henry Thachek This is a joint report which has an advantage for a

reporter. When you report on two groups at once, the audience thinks that

any of your personal prejudices which you introduce were suggested by the

other group, and therefore I have a free hand! Furthermore, I have rear-

ranged some of the discussion so as to make it a little more coherent.

In considering the first question we asked what are we educatir1g peo-

ple for? There seemed to be three forms of education which got attention,

--- or at least were mentioned. In the first place there is the man who is

going to be the specialist in certification and mathematical software. We

are not at all sure how maw/ of these are needed or how many people we can

attract into the area. The second level of education is education of the

general user such as the engineer who takes service courses and general com-

puter scientists. We would hope to persuade these people that testing soft-

ware is 'a worthwhile activity and that they should demand that the packages

that they get from somewhere else have some assurance of quality. Finally,

we recognized a need for specific education for the users of systematized

packages. This includes library operation and customer relations for the

computer center but we should remember that many of the commercial people

who market software also market quite extensive seminar training programs

on the use of their software packages.

There seemed to be fairly general agreement from both groups that,

for a variety of reasons, special courses in certification and testing may

not be advisable at the moment. It comes down to questions of how many

78

people you need to train as specialists. Such a course generally turns

out to be rather specialized. It was pointed out that certification and

testing can be a successful basis for seminars and small group plject-

type work. There was also a consensus in our group (I gather there were

some reservations in the otne group) that software evaluation should be

emphasized in all courses, starting with elemeaL.ry programming. In these

courses you would be talking about good programming practice, which is a-

more general topic than certified numerical software. And certainly, when

you get to the introductory numerical methods course, whether it is a

service course or one restricted to computer science and mathematics stu-

dents, the topic of evaluation testing and certification is extremely im-

portant to raise. There are some texts now that in6ude a consideration

of quality.

The question on student assistant participation got transformed

slightly because it was obvious that the question has been answered in the

affirmative by the presentations. But it did open up discussion of a form

of education which may be appropriate for this work; namely, apprenticeship

as a training or educational experience. I think that this was rather

highly favored in both groups. This material does not lend itself to en-

thralling lectures. It is much easier to motivate a student to the care

that is required by actually having him stub his toe over some of these

problems in a real-life situation. There was a caution that such apprentice-

ship programs should not simply be another means of support for students,

but they should be, as much as possible, reserved for students who are fairly

well-motivated in this area and hope to continue in it. It is frustrating

to put the effort into training an apprentice who is not really interested.

79

?

As soon as he gets through, he leaves the area without having contributed

mush for the money and effort spent on him.

You might buila such a program in the computer center. It depends

on whether tha local center has staff to super,ise the students, because

they are oot going to learn much of they do not get good supervision.

Other examples, Argonne has some co-op programs and the Bureau of Stand-

ards also has summer student programs. The president internships at

the Bureau have been very stimulating programs for stude who have been

privileged to participate. The problems in the university are the kind

which can probably be licked. The major problem is how you can give aca-

demic credit for this type of experience.

I guess that covers our summary.

80

DISCUSSION TOPIC III -
RESEARCH ON TESTING, PORTABILITY, AND LIBRARY DEVELOPMENT

PORTABILITY PROBLEMS AND SOLUTIONS IN NATS

Jamey Boy& I think the title of my presentation, "Portability

Problems and Solutions" is perhaps more one of convenience than content.

But I hope what I have to say bears on testing, portability, and library

development.to some ,extent. It also ties in with what Lloyd said this

morning, but in the NATS project we were faced with a somewhat different

set of problems than he has faced in the algorithm section of CACM, and

so we have attacked different facets of the portability problem. This

whole question of calling subroutines portable" always makes me a little

uneasy and my experience in NATS has confirmed that. It reminds me a bit

of the situation around 1960 when several manufacturers were advertising

what they called "portable" high fidelity sereo systems. Actually, they

were -only portable if you were Siamese twins or a member of the Green Bay

Packers. I think they coined the word "portative" for something that was

almost too. heavy to-carry and it seems to me that's the way subroutines

are--at best, they're portative. I don't see this situation changing soon.

What I say is based on my experience in the NATS project and, more

specifically, with the EISPACK eigensystem codes. Wayne reviewed the

project for. you this morning but I want to underscore a few points which

bear on what I have to say. Basically the project consisted of taking

software which was in good shape, making it available to a group of

test sites for testing on specific machines, implementing their sugges-

tions for improvements and correcting their reported bugs, making the

81

package available for re-testing and finally sending out the so-called

"certified" version after it had successfully_completed testing. We

felt early on in the project (partly influenced by Brian Ford of NAG)

that we needed to maintain very good central control over the distribu-

tion of this material. In other words, we wanted to be sure that the

material which was tested was the same as that which was finally dis-

tributed as certified, in so far as this was possible. We did all we

could to discourage the test sites from making any changes to routines

if they found anything wrong. Rather we encouraged them to give the

. .

information back to us (perhaps after they had tested the proposed cor-

rection themselves). We then made changes in our master versions and

sent the routine out again in its corrected form for re-testing.

In regard to the portability question, the special function codes

in the NATS project are specifically nonportable--they are tailored for

each machine. On the other hand, we endeavored to make the.EISPACK

matrix codes as machine-independent as possible. Most of the machine

dependency is contained in a couple of constants which reflect differ-

ences in computer arithmetic. Aside from these we have basically only

two versions one in REAL*8 for double precision arithmetic on IBM 360

and a single precision version which we very optimistically called ANSI

Fortran. But 'yen having minimized the numerical differences between

routines, we discovered (or rather wsi had reaffirmed) that there are

many, many differences between compilers, even between two different

compilers for Fortran on the same machine. In fact, we couldn't get

byiwith just one ANSI version.

We saw one example of such a difference when we decided we wanted

to declare all the identifiers appearing in the routines, including the

_

82

names of Fortran intrinsic functions. According to the ANSI standards

it is perfectly legal to declare those names (and WATFOR required such

declarations for double precision), but a couple of compilers balked at

the declarations, one of them complaining that it was illegal and one

believing that we intended to supply our own square root routine.

So despite our initial desire to have only two versions, we did,

in fact, wind up with six. It reaffirmed for us this whole lesson that

there is no such thing as one portable subroutine. You've got to have

many versions. So the problem we faced was how to cope with essentially

six versions of about 35 subroutines together with six versions of some

12 test drivers.

We wanted to get the machine to take care of the routine work by

developing special purpose information processing programs. "Special

purpose" means that the programs take advantage of properties of the

package of routines that we are working with. We wanted programs to

assist us in keeping track of the various versions. Our intent was to

produce a condensed or composite storage of the routines enabling us

to maintain one file rather than six. This file would contain the card

images corresponding to the subroutines together with control information

about which machine versions the particular cards belonged to, subject,

of course, to the constraint that a curd which appeared in more than one

version would appear only once in this master file. The obvious advantage

is that if the versions are similar the total amount of composite storage
2_

space-will be less than would be required for the individual versions.

But even more significant, as far as we were concerned, is the fact that

we had only one file to take care of. That meant that, if a bug were un-

covered in testjng or some suggested change were to be made, it needed to

83

be done in only one place. This structure for the file permitted us to

see whether a change affected only one version, or versions for several

machines. It gave considerable assurance that necessary changes were made

in all the relevant versions.

We used a program to derive each specific machine version from the

master file when we wanted to send it out to the test sites and as long as

that program was not changed, we could repeat the derivation when the

routines were certified and ready to be pub lically distributed.

Here (.5B-1) is a segment of one of the routines as it appears in-the

master file version. The control cards are marked with the asterisk in

column 1; they indicate which versions the following cards belong to.

Here (JB-2) is the IBM 360 code derived from this. Note that the constant

MACHU has been set in the derivation process and serialization provided.

For the EISPACK codes we could characterize relatively simply the

differences between the 360 double precision versions and the ANSI version

and so we did a program which produced the master file version from the

360 double precision version. It was very special purpose, but it did

provide us with further flexibility. I think that there is some further

work to be done in this area. For example, one thing we don't hay3 at

present and which would be very useful in the context-of-a software alliance,

is away of combining an adaptation of a particular program for some

machine with a master file version existing for other machines. Clearly

that's a non-simple problem.

Having completed the development of these programs, we began to con-.

front the question of what we were going to do with our documentation.

When the routines were orginally sent to the test sites they contained a

number of. specific references to Argonne, and to IBM 360 long precision

84

arithmetic, etc. We wanted to produce what we call NATS documents

that is, documents that apply to all of the versions of th3 code. We

felt we could make the documentation portable; i.e., maize one set of

documentation that applies to all machines with the appropriate refer-

ences or description of the variations between machines. It was natural

to make these modifications by means of information processing programs

since we had been fairly careful in preparing the documentation that it

all adhere to a uniform format; in fact many of the documents were pre-

pared from one another using our text-editing system.

The changes suggested for the NATS documentation fell into two

classes: format changes (changes to be made uniformly throughout all the

documents) and corrections resulting from revisions or bug-detection. When

making corrections you have to confront the question of line justification

and what happens if you need to insert a word at the beginning of a

paragraph. We wanted our solution to do something about that. We did not

have any text editing facilities available that incorporated even a rough,

or ragged, right margin justification but we had developed a program to

take care of that given certain "tabulation information" in the beginning

of each line. We decided to make the document processing prograts insert

the tablulation information so we could use the line justifier.

I have a slide here (JB -3) showing a little of the history of the

processing of these documents. We began with the AMD subroutine library

document which was in all capital letters, ha:i been prepared in machine

readable form, was specific to the IBM 360' /and to AMD, and we applied

what we call a standardizer program that cleaned up the format and in-

serted some '.,lank lines. Then the tabber program inserted the information

85

that would be Wised for ragged right margin justificatio-, This was cone

quite heuristically; the tabber had to make some guesses :pout what was

intended in the format of the document and so the documents required

some, although not a great deal, of hand adjustment to make sure that the

justification process would work correctly. At this point, then, we had

the documents in a form where corrections could be made readily by hand.

If a word needed to be inserted we could just insert it between lines

and adjust only the adjacent lines. When that was done we then had the

possibility of applying the justifier and the pager program to get a cor-

rect, justified, AMD document for our purposes. In addition we could

apply a converter program that made the format changes and additions for

the NATS document.

After the NATS documents had been completed, we then began to con-

sider the question of publication of a user's guide. We wanted to have

documents for this in upper and lower case, properly capitalized, qnd

also to edit out the sections that had been inserted in the NATS documents

which were essentially common so they could be collected in one place. We

did an.adaptation of the converter to produce this publication form. Then

we did a capitalizing program for the documents. This was written by Bruce

Chapman, a summer student from the University of California; he has just

completed this program under my direction. By taking advantage of the

format of the documentation and of tabbing information that had been in-

seited.he was able to write a program that did the capitalization completely

correctly without any hand intervention. We will print these jstified

pages on a magnetic card selectric typewriter (MCST) functioning as a

computer terminal and ',hen photographically reproduce them for publication.

86

Of course the construction of all these programs raises the question

of whether it was any less work to do the programs than it would have been

to do the 17 tuff by hand. It was certainly more sanity-preserving! And

I think in this case it was actually more efficient because we didn't

anticipate doing the publication version of the documents wiser we began.

Except for the capitalization effort, we got it essentially free. Cer-

tainly producing the information processing programs was more fun than

changing the documents by hand, and it also avoided the question ol= reproof-

ing them.

I just want to add that production of these programs was facilitated

to some extent by the use of the properties of the package and also by

modular design of the programs--that is having sections that were used in

more than one program. I think that we need further study of has one

structures a program to make it easy to produce modifications.

To summarize I've alluded to two main points about any effort like

FIATS for testing programs. The first is in regard to portability and

states that, standards notwithstanding, you will probably have to have a

version for each machine, and you should plan for that from the beginning.

The second is that testing of packages of related codes is probably much

more economical than testing an equivalent number of unrelated codes be-

cause it becomes possible to do programs of this sort to assist iT the

routine aspects-.

C ********** MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
* ALL
C THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.

360D
C MACHEP = 16.0D0**(-13) FOR LONG FORM ARITHMETIC
C ON 5360

DATA MACHEP /Z3410J00000000000/
* ANSI
C
C **********

MACHEP = ?
*

C

C

C
*

*
C

ALL

IERR = 0

IF (N .EQ. 1) GO TO 1001

DC 100 I = 2, N
100 E(I-1) = E(I)

360D
F = 0.01)0
B = 0.0D0
E(N) = 0.0D0

ANSI
F = 0.0
B = 0.0
E(N) = 0.0

ALL

360D

ANSI

ALL

360D

ANSI

DO 290 L = 1, N
J = 0

H = MACHEP * (DABS(D(L)) + DABS(E(L)))

H = MACHEP * (ABS(D(L)) + ABS(E(L)))

IF (B .LT. H) B = H

LOOK FOR SMALL SUB-DIAGONAL ELEMENT

87

88

C

C
C

C

MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.
MACHEP = 16.0D0**(-13) FOR LONG FORM ARITHMETIC
ON S360

DATA MACHEP /Z3410000000000000/

89220047
89220048
89220049
89220050
89220051
89220052

IERR = 0 89220053
IF (N .EQ. 1) GO TO 1001 89220054

C 89220055
DO 100 I = 2, N 89220056

'00 E(I-1) = E(I) 89220057
8922008

F = 0.0D0 89220059
B = J.ODO 89220060
E(N) = 0.0D0 89220061

C 89220062
DO 290 L = 1, m 89220063

J 0 89220064
H = MACHEP * (DABS(D(L)) + DABS(E(L))) 89220065
IF (B .LT. H) B = H 89220066

C LOOK FOR SMALL SUB-DIAGONAL ELEMENT 89220067

STANDARDIZER I

TABBER

(HAND
ADJUSTMENT)

CORRECTIONS
(HAND)

JUSTIFIER

PAGER

, AMD
DOCUMENT

Slide JB-3

COMERTER

89

ANL SUBROUTINE LIBRARY DOCUMENT

JUSTIFIER

PAGER

NATS
DOCUNMNT

-----, PUBLICATION

CONVERTER

CAPITALIZER

JUSTIFIFR

PAGER

PRINT ON
MCST

PUBLICATION
VERSION OF
NATS
DOCUMENT

90

UNIFIED STANDARDS APPROACH TO TESTING

Wattek Sadowzki So far :'ve heard a lot of mention of quality

aild certification and so on but I have not heard anyone talking about

certifying or standardizing on the testing tools. Before one can

measure the length of anything, one has to develop some benchmarks

that are acceptable to everyone else. Essentially this is what I an

going to talk about.

We have been testing a library of Fortran elementary functions

put out by a major manufacturer. What canes out is an interesting

faCt that although the_ li:Jrary is a very high quality library, it

haS-errors in almost all of its routines. The errors are not usually

serious; error traces are not made in certain function values; very

small argument: or overflows occur and are not si9;ialed; errors of

judgement take nlace so that the routine actually .Ives away some

accuracy that it does not need to. I am mentioning these facts to

point up one reason why library testing is not adequate and that is

that testing by a single individual or single group usually would be

inadequate to uncover all the mistakes. What I would like to propose

is a way of bringing all of the testing commanity into the testing

business where each .group or each person can contribute his special

knowhow to expand the test or possibly refine it*in some way. I am

going to be using jargon which is used at the National Bureau of

Standards for calibration.

91

What we do is choose a primary standard consisting of a tape

containing a set of arguments and a set of function values intended

for a particular machine. The reason each machine or each system,

if you wish, has its own standard state is because we would like to

test some specific features of hardware and software, number bases,

and so forth. Moreover the primary standard will be based on con-

siderations of the mathematical behavior of the function. In order

to make the primary standard workable, we have what I call a transfer

standard, which is an algorithm used to generate function values.

The algorithm is usually written in ANSI Fortran and is as portable

as one can make it. It's primary feature is that it is extremely

simple logically. If possible, a power series will be used to grind

out all the function values. Thus if anyone wants to look at this

algorithm, it is easy to see what the algorithm is doing. Presumably

this will give the user more confidence. It is a brute force ap-

proach and you have to pay for it in some way. The use of such an

algorithm is based on the use of an extended precision package which

essentially uses so many figures in the calculation that truncation

errors become unimportant. Such a package written by Maximon exists

at the National Bureau of Standards, and we have extensively used it.

92

The third standard, which is the working standard, is a set of argu-

ments and function values which have been chosen for a specific algorithm.

For example, suppose someone has written a sin outline. It has its cross-

over points and its regions of difficulty. One designs a set of arguments

for this specific algorithm, uses the simple transfer standard to generate

the, function values and then uses a test package, such as the package we
r

deieloped, to do a bit comparison of the function values supplied to the

transfer algorithm and to the algorithm to be e3Led.

Now, how would one use such a procedure? Somebody gets a tape and'an

algorithm and either uses his own extended precision package or a package

sent to him. He puts the tape on his computer, he compiles the transfer

algorithm, and the extended precision package, if it is not his, and he

generates function values fromthe arguments on the tape. Then an automa-

tic package will compare the function values generated with the function

values on the tape, and they had better be identical. This tells you that

you have calibrated your transfer algorithm, that it has compiled correctly,

and that it is working in a healthy environment. This transfer algorithm

can then be used to generate another tape, which will test any other algorithm

that is of interest. We have here a purely non-portable approach because

we Lelieve a specialized tool is the most efficient tool to use for any

particular job. There is, however, a portable link, namely the transfer

algorithm which is not tailored to any particular machine. By providing

such a portable link the matter of portability and transportability may

become less acute and fewer people will be tempted to legislate rules for

other people.

As I said, this testing scheme only concerns the mathematical functions

of one variable so far. When we go to functions with many variables the

93

experience of an applied mathematician becomes extremely important when

arguments are chosen. We are now testing a function of one variable with

6,000 to 10,000 arguments. When you include another variable, the number

of possible arguments becomes astronomical and one must use good judgement

as to which density of arguments to apply where. This is where the test-

ing community, by using the tapes, could be very helpful in setting up a

kind of consensus standard as a tape with arguments and function values.

SIGNUM 1971 NONACADEMIC NUMERICAL MATHEMATICS SURVEY

F. N. Fititzch During July and August, 1971, a questionnaire was

sent by SIGNUM to some 447 nonacademic institutions through North America.

The purpose of this survey was to attempt to determine where numerical'

mathematicians are employed in the nonacademic world, how many there are,

and what they are doing. The results of this survey were, in,a certain

sense, disappointing. I did not obtain as much information as I. had hoped.

Of the 447 institutions to whom the surveys were sent, a total of 86 res-

ponses were obtained, about 20%. Of these, I considered 83 to be usable

responses. Unfortunately, several institutions known to employ numerical

mathematicians did not respond,. One item on the survey which I think is

particularly appropriate to this conference was a list of mathematical

certification projects. The question was, "Is your institution engaged

in a mathematical subroutine certification project? If so, please name

the responsible individual." These were the institutions that reponded

"yes". (FF-1) JPL has one too, but the return was too late to be included

in .he survey.

Let me quickly go through other results of the survey, for what inter

est they may have. Slide FF-2 shows the distribution of responses by zip

94

codearea,wherelOisZanadaand 11 is Mexico. Responses from the west

coast and the Washington, D.C. area predominate, and the distr Jution in

the central part of the country is pretty uniform. Other questions concerned

the source of funding. Some 53% said "Business and Industry," 34% said

"Federal Government.." In regard to principal activity, 49% said "Research

and Development," 22% said "Other", whatever that is. (Apparently, I

made a bad guess at activities.)

More interesting was response to the question, "How many numerical

mathematicians do you have employed at your institution?" I asked for a

breakdown by degree level. It was claimed that 2,096 people were current-

ly employed as mathematicians by these 83 institutions. Of those 1099

were bachelors level, 544 masters level, 361 doctorates, and 92 nondegreed.

We asked where these numerical mathematicians were located in the institu-

tion; i.e., in special project areas, computing center, special numerical

analysis area, etc. Some 60% of these were in special project areas, 10%

were in computing centers, 15% in mathematics divisions, 4% in special

numerical analysis sections, 10% somewhere else. I do not know where some.,
!

where else could be. We found that more than half of the mathematicians

were on the west cost (zip code 9) and that was the only zip code with a

significant number of nondegree numerical mathematicians.

We took a look at the job titles used to classify numerical mathemati-

cians. Nobody included "numerical mathematician" as a job title. There

were such things as analyst, engineers of various types, programmers,

laboratory scientists. In particular, I looked at the responses of one

institution, which 'supported some 50% of the total for the zip code 9 area.

They had titles such as "customer engineer," that sort of thing. Apparently

95

anybody who had some mathematical background was considered to be a numerical

mathematician. When i dropped that particular institution and a couple

of these that had zeros all the way across, from the population, I got

what I thought was a slightly more meaningful breakdown (FF-3).

I think that in order for any survey of this type to really have valid-

ity, we need to do a better job of defining our terms. What do we mean
t

by a "numerical 'mathematician?" I offered several tentative definitions

in the SIGNUM Newsletter [3] but have not had any feedback yet.
(

References:

1. "SIGNUM 1971 Non-academic Numerical Mathematics Survey, A Brief Summary,"

SIGNUM Newsletter (April 1972), pp. 14-18.

2. "SIGNUM 1971 Non-academic Numerical Mathethatics Survey," Lawrence

Livermore Laboratory Rept. MISC-00777 (April 14, 1972).

3. "Toward a Definition of the Term Numerical Mathematician," SIGNUM

Newsletter (April 1972), p. 19.

LIST OF MATHEMATICAL SUBROUTINE CERTIFICATION PROJECTS

Fred Meyer
The Aerospace Corporation

W, J. Cody
Argonne National Laboratory

Denny D. Sutherland
The Babcock and-Wilcox Company

Samuel L. S. Jacoby
Boeing Computer Services, Inc.

Andrew Schoene
Burroughs Corporation

W. C. Ritchie, Jr.

Computer Knowledge Corporation

David Uslan
Computer Sciences Corporation

Mansfield L. Clinnick
Lawrence Berkely Laboratory

Slide FF-1

Frederick N. Fritsch
Lawrence Livermore Laboratory

Hans J. Oser
National Bureau of Standards

M. G. Singleton
North American Rockwell Corporation

Paul Oliver
Sperry Rand - UNIVAC

G. W. Westley
Computing Technology Center

Milton Reese
U. S. Naval Postgraduate School

Elizabeth Cuthill
U. S. Naval Ship Research &

Development Center

Charles Lawson
Jet Propulsion Laboratory

96

97

A. INSTITUTIONAL IDENTIFICATION

Table 1. Number of responding institutions, by U.S. postal zip area.
2IP AREA

NUP8ER
PEACENTAGk

6
7.2

7
8.4

2

16
19.3

3

4
4.8

4

4
4.8

5

5

6.0

6

4
4.8

4
4.8

a

4
4.8

9

24
28.9

CANADA MEXICO

0
:.0 0.

TOTAL

83

16

0 2

4

4

5

3 4 5 6 7 8 9 I0

Fig. 1. Number of responding institutions by U.S. postal zip area.

Table 2. Sources of funding and principal activities of re-
sponding institutions (numbers in parentheses are
percentages).

SOURCE OF FUNDING P R I N C I P A L ACT IV TY

BUSINESS OR INDUSTRY 44 153.0 RESEARCH AND CkVELOPMENT. 41 49.4)
FEDERAL GOVERNMENT 28 0307) PAGINATIDN tl 9.61
STATE/LOCAL GOVERNMENT... U I 0. / SALES NAG MARKETING 5 6.0
NONPROFIT ORGANIZATION... 6 1 7.2) OTHER 18 23.11
OTHER 3 I 3.6) MORE THAN ONk RESPONSE... 3 3.6)
MORE THAN ONE RESPONSE 0 I O. 1 NO RESPONSE 8 9.61
NO RESPONSE 2 I 2.41

Slide FF -2

98

Table 2'. Sources of funding and principal activities of
responding institutions (numbers in parentheses
are percentages).

S O U R C E O F F u N C

AUSIMESS CA INUuSTAV 4

FECEAAL GOVERNMENT
STATE/LOCAL GOVERNMENT
NOAPA0FIT ORGANIZATION
4,1255
POE ThAN ONE AtSPONSE
NO RESPCNSE

I N G

152.6/
135.91
1 O. 1

1 6.4)
1 1.61
1 O. 1

1 1.31

P R I N C 1 P a l 6 4 , 1 4 2 1 1 5

AESEAPICh AND CEVElCAKENI. 41 152.61
PROOLCTICM 6 110.31
SALES ANC PARAETIAG 4 1 s.II
oplex 14 111.91
ACNE THAN CAI PEOCNSE 1 1 3.61
NC AESPOASE II 110.31

419

85

SC

72

295

5

Fig. 2'. Current total number of numerical mathematicians, by U.S.
postal zip area.

Table 3'. Number employeed by responding institutions.

KINIMUM MEDIAN MEAN PARIPUP TCTAL
N12615 OF EMOLOMEES.... 0 6CC.0 2706.2 90000 211240
NUPC*11 PkoFESS1ONAL.... 0 245.0 611.9 _d%10000 52402
PERCENT PROFESSIONAL.... 0 SC.0 44.6 .; 99

I

Slide FF-3

99

AN INTERACTIVE SYSTEM-FOR STUDYING SEMANTIC MODELS OF COMPUTER PROGRAMS

Richaitd Faatey I am interested in the development of software tools

to aid in the testing of computer programs.. My primary motivation in pre-

senting this information to you is to get some feedback as to whether the

tools I am proposing would be useful to people with your interests. The

"summary of discussion" which was in your packet provides some motivation.

Item II.A suggests that there should be a distinction between people de-

veloping and writing programs, and the activities concerned with field

testing and certifications. Moreover, the summary claims that this leads

to.an important distinction between basic research in the area of testing

and evaluation, and actual field testing of programs. I would place myself

in the first category of basic research in testing and evaluation and feel

that what I am doing fits with Item C of the Summary, where support was

expressed fcir developing tools which would aid:in testing and certification

of software.

The system I am proposing is an interactive on-Iine system. It inter-

faces rather nicely with the work Lloyd Fosdick described earlier. I

should also mention that this work is closely related to Bill Hetzel's

work at the University of North Carolina, and to the EXDAMS system developed .

by Bob Balier. at Rand. The user at the computer terminal interacts with

his program and views models of the execution of that program. The models

display various attributes of the program which are of interest to the user.

The design methodology for this system is based on a pre-processor

which processes the user's program to construct a data structure model

of the syntax of the program, and to insert subroutine calls which will

gather the history of execution when the program is run. The user does

100

not interact with his executing program, but rather with the collected

data. I hope to illustrate that there are some advantages to this ap-

proach.

Let me show you a block diagram of the system (RF-1). We see the

source program and the input data. Processing results in producing ab-

stract syntax and the execution history for the program. After the pro-

gram has been executed, the user at the console communicates with model

construction routines which are extracted from the library of models.

The user has the capability of entering new sets of input data to generate

a new execution history, or if corrections are needed in the source program,

to modify the source program. He may then regenerate the abstract syntax

and the execution history of the program.

I am not going to describe the data structures by.which the syntax

and the execution history are represented, but I will mention the set of

primitive accessing functions. We are making an effort to isolate the

data base from the tools that are constructed using thege accessing func-:

tions, because we do not feel that the typical user of this system should

be concerned with whether the execution history spills, out onto tape or

whether it is on disc, etc.

The main idea of the system is that the execution history is appro-

priately cross referenced to the abstract syntax enabling one to look at

any point in execution. One can look at the values which have been computed

up to that point, to determine how those values depend on other values

that were computed, and to associate values with program text. We be-

lieve the primitive accessing functions will enable one to reconstruct

exactly the execution history of the program.

101

Given the present state in the execution history, one wants to know

what happenee next. One might want to know just the next thing that hap-

pened -- whether it was a transfer of control, the calculation of a value

and assignment, whatever. You might want to know something about the next

variable name that was assigned a value, or the next or the previous

type of transfer of control which occurred. You might want to know the

value assigned to the next variable, or the next executed statement, or

how did the flow of control go? One might qualify the inquiry by asking

for the next relevant piece of data in some sense. It may be important

to be able to set the position pointer in the execution history; c.g.,

at the start of execution, or at some particular statement 3n its first

(or jth) execution.

Some types of program models which might be useful are: Structural

models, flow of control, variable dependency, data sensitivity, and timing.

One might want to see a structural overview of the subroutine relationships;

or perhaps you wish to suppress the code in the source program and see

only the structure of the IF statements. Flow of control models are self-

explanatory. There are some very nice models of block structured processes

which are well-adapted to this system. Some of you may be familiar with the

contour model of block structured programs.

Variable dependency is self-explanatory; how was the value of a vari-

able assigned in the program influenced by the assignments of previous

values to other variables. Another technique which is possible, if you

have the execution history in a data base, is flow-back analysis, in which

you might present to the user a tree structure of the current statement

of interest to show how the value assigned was influenced by previous

102

values that were computed in the program. The ability to associate values

and how they were determined with the program text which produced those

values, is a very valuable tool on which higher level tools can be built.

Data sensitivity is sometimes a controversial subject. What I have

, in mind is to provide an option in the execution of a program to do the

execution in artificial arithmetic and to gather information about round

off error and truncation error, accumulated from statement to statement.

Some of you may be familiar with Herb Bright's work and the package he

has produced. That is the kind of thing I have in mind.

Timing information can be gathered by the system in two respects.

First, a histogram of statement numbers versus percent of total time spent

in that statement (or the number of times the statement was executed).

Secondly, we think we can given some reasonably accurate estimates of

the actual time spent in the execution of the program. We will compile

and record into our data base the number and type of assembly language

statements produced by each source statement. Then by using the standard

reference manual for the machine to determine-the amount of time each

assembly language statement takes for execution, we have the information

necessary to trace through the actual execution history and add up these

numbers to give us an estimate of the total -- the actual execution time

for the program.

A couple of other features should be mentioned. The user can. provide

a Boolean expression (called a "local assertion") describing the relation-
.

ships among the variables. At that point in execution it will be recorded

into the history whether that expression was true or false at the particu-

lar time. This gives the user the capability of checking himself on the

103

program logic. Another type of assertion which '0,nuld seem to be useful

is the global assertion which is checked after the program has run. The

user can specify,for example, that a variable is monotonic, or that a vari-

able should only Ave the integer values one through ten. Those kinds of

assertions can be checked by looking through the execution history after

the program terminates.

SIMULATE and ASSERT are commands devised by Bill Hetzel. SIMULATE

is a command which acknowledges the increasing emphasis on structured

Agramming. Using SIMULATE it is possible to simulate the effect of a

routine you have not written yet, so that you can call the routine and

get back the values that you said that routine would return even though

it has not been written. Thus, you can begin checking out the program

before certain subroutines are actually written.

Those are the kinds of ideas I am developing, and I certainly am in-

terested in hearing reactions; to these ideas. Thank you.

S
O

U
R

C
E

P
R

O
G

R
A

M

IN
P

U
T

D
A

T
A

S
E

M
A

N
T

IC
D

A
T

A
 B

A
S

E
G

E
N

E
R

A
T

O
R

S
E

M
A

N
T

IC
D

A
T

A
 B

A
S

E

A
B

S
T

R
A

C
T

S
Y

N
T

A
X

"- E
X

E
C

U
T

IO
N

H
IS

T
O

R
Y

M
O

D
E

L
C

O
N

S
T

R
U

C
T

IO
N

R
O

U
T

IN
E

S

IN
T

E
R

A
C

T
IV

E
D

IS
P

LA
Y

R
O

U
T

IN
E

S

LI
B

R
A

R
Y

O
F

M
O

D
E

LS

A

IN
T

E
R

A
C

T
IV

E
T

E
R

M
IN

A
L

S
c
h
e
m
a
t
i
c

O
v
e
r
v
i
e
w

o
f

t
h
e

S
e
m
a
n
t
i
c

M
o
d
e
l
l
i
n
g

S
y
s
t
e
m

Sl
id

e
R

F-
1

105

Two reports by Dorothy E. Lang were distributed to the participants.

Titles and abstract follow:

AN EVALUATION OF SUBROUTINE LIBRARIES

Abstract

Some observations are made on the current status of a select few

subroutine libraries and packages. The areas of documentation standards,

coding conventions, and certification procedures are reviewed and the

selected libraries are evaluated with respect to these standards.

DISTRIBUTING SOFTWARE STUDY AND REPORT

Abstract

This paper briefly discusses the pros and cons of distributing soft-

ware via differ,,t media. Included is a preliminary analysis of the costs

involved. An attempt is made to evaluate distribution media and draw some

conclusions that might suggest possible solutions for the dissemination of

mathematical software.

Ms. Lang briefly reviewed the contents of these reports.

106

QUESTIONS FOR SUBGROUP DISCUSSION OF TOPIC III

1. Are the notions "testing," "portability of programs," and "library

development" sufficiently rich conceptually to provide opportunity

for publishable research and professional recognition?

2. Is publishable research the greatest need or should we concentrate

on gathering and publishing data about various machines and systems?

3. How does research in testing, portability, and library development

relate to research in a) programming languages, b) proving correct-
_

ness of programs, c) numerical analysis and algorithm development?

4. In what areas of testing, portability, and. library development do

we particularly need models and systematic methodology that would

be derived from research? .

107

REPORTS OF SUBGROUP DISCUSSION ON TOPIC III

Leon Ntetweit You recall that Topic III dealt mainly with questions

of research in testing and library development. The first question was

whether work in the area of testing and library development was publish-

able work. The first reaction in our group was that the question was

vacuous because nobody has tried to publfh anything, so nothing was proven.

There was an opinion that such work was publishable today but in the fu-

ture it would become more reputable, and therefore more publishable.

There were several people who thought it was questionable today, but likely

to be possible in a few years. One person felt that the reverse was per-

haps true, that it was more reputable today than it would be in ten years.

There was considerable discussion about that because nobody could agree on

what constituted an active area of research. Some people felt that'a re-

search area could not be construed to be active unless there were many papers

being published in that area. Others disagreed completely.

There was a sizable amount of sentiment that research in this area

would not be impressive to the academic establishment. This caused concern.

At least one person claimed that he would not want to stake his career on

it. Maybe I am misquoting to some extent, but his feeling was that he would

be uncomfortable in going into this area of research in a heavy way. Several

people thought we should compare this research with engineering research

rather than mathematical research but this opinion was far from unanimous.

In an effort to get at what publishable research really is, one person as-

serted that publishable work is something that extracts basic principles in

such a way that they are applicable to future work. He felt this should be

a yardstick and most of the group seemed to agree. There was an opinion,

108

however, that what is most publishable is often merely most fashionable

at the time.

We next took up the question of whether publishable research should

be the greatest concern of a software alliance as opposed to a concentra-

tion on gathering and publishing data about various machines and systems.

The opinion was expressed, quite strongly, that the alliance should develop

methods and tools. There did not seem to be any real discussion of this

and I took that as agreement.

The next question we considered, involved a hypothesis with which I

personally disagree but I want to report faithfully the group discussion.

If we hypothesize that research in portability and library development is

not publishable and also that.the alliance should work at the development

of methods and tools, does this, in fact, dim the prospects for the alli-

ance? In other words, would people be unwilling to join in the work of the

alliance if they could not thereby advance their acLiemic careers? Many

in the group felt that people would, in fact, work in these areas because

they are useful, valuable, and also interesting, even despite the fact

that such work might not help them to advance academically.

There was a great deal of enthusiasm for the establishment of a jour-

nal of mathematical software. Out of the discussion of such a journal

there arose a feeling about publishing which was slightly different from

what has been previously expressed. The new sentiment was that work in this

area is perhaps unpublishable only because of the current view toward what

is publishable research and what is not. The creation of a journal dedi-

cated to this area would, in essence, bring this line of investigation

into fashionability, and'essentially make it a part of the research establish-

ment. I must hasten to point out, before anybody attacks, that there was

109

a great deal of interest in this journal not just because it would be a

forum to achieve academic acceptability, but also because dissemination

and awareness were held to be extremely important. The very existence of

such a journal would strongly impress upon the various academic communities

that there were people working on this line of research, that there was a

large community of people who viewed it as viable, and that such work should.

continue to be pursued.

One other point which was made last. night and which seems important

is that such a journal could tend to be very ingrown if outside people

were not brought into it. In other words, if only people such as the ones

in this room were to be interested in the journal and contribute to it,

it would not be nearly as effective as if the user community were also in-

volved in it. There seemed to be good agreement on that point.

In summary, the purposes of this journal would be to provide a forum

for work in this area, to provide dissemination and awareness, and to be

a focal point for work in mathematical software.

Richard Faittey - If there was a consensus in Group B, I will try to

contrast it with Group A and also bring up some points that did not come

up in- Group A.

It was felt that, with notable exceptions, much of the research ef

fort performed in connection with the activities of software testing,

portability, and library development does not result in publishable research

and the accompanying professional recognition under current editorial and

academic policies. It was agreed that creation of a journal devoted to

mathematical software would provide a focal point for efforts in the creation,

testing, and certification of high-quality mathematical software. Such a

journal would facilitate dissemination of information and heighten awareness

110

of work in this area. It might enable important work such as certification

of routines to be adequately recognized and stimulated. Moreover, it was

agreed that the active participation by the user community would be essen-

tial to the continued viability and vitality of the journal.

With respect to the third discussion question, the group felt that

research in testing, portability, and library development interfaces with

several other areas. In particular, this research should result in recom-

mendations for better programming languages, provide impetus for practical

techniques in program correctness proofs and semantic theories of programs,

and stimulate dialogue concerning the relationship between machine design

and mathematical software. In addition, the research will stimulate acti-

vity in numerical analysis and algorithm development.

111

DISCUSSION TOPIC IV -- USER NEEDS AND MATHEMATICAL SOFTWARE DEVELOPMENT

TECHNOLOGY TRANSFER PROJECT; NEED FOR QUALITY SOFTWARE

Robe/act Smith - I am very pleased to be part .of this discussion as a

real live user in your very midst! My talk has three parts. I would like

to define our project, then to explain why I feel this definition is neces-

sary, and finally I would like to relate the project to the need for quality

mathematical software.

The project which I represent is entitled "Collaborative Research,

Computer Based Technology Transfer in Civil Engineering." It is a joint

project between the Department of Civil Engineering of Carnegie Mellon

University with Steven J. Fenves as principal investigator, the University

of Colorado Computer Center with Robert L. Schiffman as principal investi-

gator, and Paul Weidlinger Consulting Engineers with Melvin L. Baron as

principal investigator. The study is supported by the N.S.F. from the

Engineering Division and the Office of Computing Activities. The purpose

of the project is to develop and test general techniques for making appli-

cation programs and program systems portable and adaptable. I am present-

ing some of the work being done at the University of Colorado Computing

Center by Robert Schiffman, Robert Ewald and myself. Professor Schiffman

is also in the Department of Civil Engineering at the. University of Colorado.

I think this definition is important because we feel we have different4wob-

lems from projects concerned mainly with defining, developing, and using

mathematical software. We also have problems similar to these projects.

In particular, we propose that in civil engineering, the major problem with

respect to computers at this. time is not the quality of the software. The

overriding problem is that we cannot use the software which we have. In

112

other words, existing software is not portable. For example, MIT developed

a civil engineering-oriented system called ICES which was originally con-

ceived in 1964. One and a half million dollars were spent developing this

system on the IBM 360. Control Data wanted to make it operational on the

CDC 6000series machines and estimated that the cost to do so would be

$300,000 or 20% of original cost.

Another example, is a large ground shock program called HEMP. It was

.developed on the Stretch computer at Livermore and is "machine independent."

However, ten man-years were required to move the program to the CDC 7600

and it will probably take ten man-years to move it to STAR. This is a sig-

nificant loss in productivity. I grant that these two examples refer to

large systems of programs designed to solve a complicated problem or a set

of interdependent problems. More often than not, such programs are machine

dependent and more difficult to make portable.

Let me characterize computer software in civil engineering by saying

that it may be data based or algorithmically based. If it is data based,

it has the whole set of problems peculiar to data based programs, and that

is not relevant to this workshop. If it is algorithmically based, its em-

phasis is on the control string or the engineering algorithm, rather than

the mathematical algorithm. The mathematical algorithms are more or less

black boxes used by the control string. However, as we see it, these con-

trol strings or engineering algorithms are in themselves complicated enough

to warrant attention. It took me six months to become convinced of this,

but I really am convinced of it now. One example of an engineering algorithm

occurs in the problem of slope stability in landslide analysis. There are

about eight different methods to analyze this problem. Each one is usually

113

named for the person who first introduced the analytical method. However,

the engineer with the given physical situation knows a priori that only 2

or 3 of these methods are applicable to his situation. He would like to use

the computer to run a comparative analysis of his problem using these two or

three methods.

Another case comes from dam construction and the use of finite element

analysis.. Here the variables are the dimensions of the problem, and the

type of element. Again the engineer wants to be selective. Other examples

are soil consolidation programs, where dimensions significantly change the

control string and retaining wall analysis programs where the construction

may be analyzed for sliding, overturning, or settlement, or any combination

of these.

I want to acknowledge that the engineering algorithms in the above

examples are not necessary. We could have a separate program for each

case. However, there is the feeling that as the huge, complicated system

often overpowers the problem to be solved, so also a collection of 10,000

little programs, which cover the basics of civil engineering, is not the

answer either.. Therefore, the type of program to which we are now directing.

our attention is in maximum size about 8,000 to 12,000 FORTRAN statements

and it runs on a 65K machine. We would like to decompose this program ac-

cording to engineering assumptions so as to address two problems. First,

how can-applications programs, which are to be developed, be set up to be

portable and adaptable? We feel we can begin to answer this question. A

part of the answer certainly is the concept of structured, or top-down pro-

gramming, which is a major theme, and what everyone seemed to agree upon at

the Chapel Hill conference in May. Programming standard, good documentation

114

and users education are a part of the answer. A second question is how can

existing programs be made portable and-adaptable without redoing them by

hand. This is by far the more difficult question. Here we have begun to

develop software tools but we are still very much groping in the dark. We

want the tools to be portable also, so as a start we decided to develop the

programs in ANSI FORTRAN, or as close as we can get to ANSI FORTRAN.

The basic structure of our composition-decomposition system is taken

from a generalizer-selector program developed by the NATS project. We

plan to build on this system and include in our system the decomposition

of the FORTRAN program into logical modules and the identification of ma-

chine dependency.

I want to add a word about our view of mathematical software. We want

quality mathematical software and we need it. At least at this point in

time, we think of it as an obtainable black box. We would especially like

these black boxes to be "plugable." By that we mean not only that they

are easy to plug into our control string, but also that they go from one

machine to another with our programs. We would like the black boxes to be

easy to use, well-documented, and return good error messages. It would

be nice if they could even anticipate some of our problems in usage through

good documentation and error messages. I have in mind that documentation

of one subroutine would remind me of the other possibilities within the

package of subroutines; perhaps the NATS project already does this. To

use a simple example; assume that Subroutine 20 solves the matrix equation

AX = B, where A is a banded matrix and a diagonally dominant matrix. I

would like the documentation to be specific, and, furthermore, to suggest

that if I, the user,-know that A is not diagonally dominant (or if I am

115

not sure that it is) then it is better if I use Subroutine 21. Conversely,

I would like Subroutine 21 to say that if the matrix has diagonal dominance

use Subroutine 20, which will cost you 1/3 or 1/2 of the cost to run.

As a closing comment, I would like to propose the theme "different but

not separate", to express our belief that the problems of developing and

using quality software in civil engineering are different but not unrelated

to the problems of developing and using quality mathematical software.

COMMENTS ON USER/EXPERT RELATIONS

Edwatd N9 I was asked to give a few remarks on our experience in

user/expert relations, as a stimulant to discussions. It turns out that

I am an incomplete expert and imperfect user. My first reaction when I

was asked to do this was that there really isn't anything worth saying. So

I went and talked to some real experts, in particular, Jim Cody, Fred Krogh,

and Chuck Lawson, and I still came away with the feeling that there isn't

anything worth saying. So with that in mind, I'll try to keep my presenta-

tion to no more than one hour, I promise you! But, seriously, the contribu-

tion I hope to make is to summarize several ideas in a large enough perspec-

tive so as to provide a systematic beginning to the discussions later.

Those of use who work in mathematical software are trying to automate

or simulate some sort of mathematical process which may be numerical, or

may involve manipulating algebraic expressions or representing geometric

processes. Presumably the experts are the ones who design software for carry-

ing out these processes. Users are the ones who use this software. Most of

us here are primarily concerned with the first kind of processes mentioned

above. We design our software in two stages. First we try to approximate

a continuous problem by a discrete problem, and then we perform the resulting

116

arithmetic on a computer. Naturally an expert may be a user at the same

time. In fact, many experts do use software produced by other experts.

Now what in general do the user want? We find that they want a

whole variety of things. They do not always come to us with a problem

that is very clean cut, like saying they want the number you get by inte-

grating sin x from 0 to 6.4. Quite often they come to us and say "Look at

this type of a problem -- Can you given me an idea of how much this will

cost me, or whether it's even feasible to approach it at all." Or he might

say, "What type of general approach do I need to even start this problem.

Should I look into the literature on finite differences or the literature

on finite elements, or what?" As we talk further and become more specific,

we may finally give some help in the mathematical formulation. Occasional-

ly someone will want an analytic solution "for the sake of publication".

Others may want some help in the numerical formulation or some suggestion of

numerical methods. Finally there are many more who have completely formu-

lated their problems and all they want are some ready-made computer programs

to grind out some numbers. I suppose in this workshop the word "user"

mostly refers to this last type.

I have been able to detect six types of attitudes among users. These

range from apathetic to superstitious. I find some users rather apathetic

to mathematical software for different reasons. First, apathy could come

from a user's belief that the construction of mathematical software is a

rather trivial matter which he can readily take on himself. Second, it

could come from one bad experience that turns a person off. Third, it

could come from the difficulty in finding the right software module for

a particular problem. You may have heard some user say, "It is easier to

write my own than to find the right subroutine for me."

117

A second type (at the other extreme) is the very ambitious type, who

keeps preaching the idea of modifiability. He wants to know exactly what

is in the black box so he can tear it apart, and take the stuff that is use-

ful to him. I heard some of this from users who talked at the Purdue meet-

ing.

There is a third class of users whom I call playboys. These are pro-

grammers who find their jobs rather dull and who jump at the chance to do

something that is halfway mathematical. They prefer to write their own

Runge-Kutta routine just for the fun of it. Needing a challenge, they spend

their time on things already done better elsewhere.

The fourth class of users I call naive, because they come with problems

which are supposedly about mathematical software, but the real problem is

their ignorance of FORTRAN, or the operating system, for example.

Then there is the fifth class whom I call the suspicious type. He will

take your program and he will do all kinds of testing or it before he can

trust anything. Actually, that's fine! In fact, sometimes we encourage it --

at least enough to convince them that our software is good.

The final type, whom I call superstitious, just wants to have a black

box that will dL exactly what the documentation claims it does. I think the

largest class of users that we encounter have this type of attitude.

Of course, these types are not mutually exclusive -- many users have

two or three of these attitudes I have distinguished.

Next we turn to the question of what users want in software. Certainly

everyone wants and expects reliability in the software he uses. Unfortunate-

ly, he does not always get that. Other software characteristics usually

wanted include simple documentation, ease of usage, simple diagnostics and

118

efficiency. Some users may also have what I call fancier demands such as

modifiability, portability, and interactive capability.

Now let us consider the question of advertising software. We can

talk about this on the local (in an organization or a university) or the

national level. On the local level, how do we advertise the software that

is available? Perhaps readily available write-ups constitute the most im-

portant form of advertising. Then we have people -- word of mouth. Tutorial

presentations are also used. At JPL we had a series of presentations a

couple of years ago in which we called to the attention of many the exist-

ence of softwar,... Cody told me that at Argonne they have periodical news-

letters that advertise software. Some organizations have so-called "users

forums", but they tend to worry about so many things that I have not found

them a good medium for advertising software. On the national level the

SIGNUM Newsletter is a very important means of communication. Also, we

can draw on the experience of IMSL and NATS on their form of advertisement.

On the question of a national users group, I think people can sometimes

gather in small users groups to discuss one area of problems. As long as

it is small, some kind of communication can be established. But when it comes

to a larger users group, I think it is hard to imagine focusing on the prob-

lems.

Now, what about user/expert interaction? Our first lead to this inter-

action was through program documentation. That is very important and is why

I continue to emphasize the clarity of documentation, in language that is

easily understood by engineers. Program diagnostics will cause people to

call you. I am not suggesting that we put a lot of bugs in our programs so

people will call us! But we should, for example, give reasonable diagnostics

119

so the user can come back to us in abnormal situations. I have recently

been a user of a system on the east coast, some 3,000 miles away and we do

worry about user/expert interaction. We find that one means of communica-

tion that has been quite successful was to have two telephones in your

room. One telephone is connected to the terminal and on the other you

get consultation. Needless to say, one might have an enormous phone bill in

such a case! Fortunately, for many of us, all government labs and many uni-

versities have the FTS telephone service, the minimal cost of which makes

this kind of thing possible.

I would like to close with one very big question. How should users

pay for the experts' service? That is very crucial. I find three levels

of support for users. One is the local level, another is the intraorgani-

zation level, and the third is the national level. The experts have to be

paid from somewhere, somehow. At the local level they draw on overhead from

the computing facilities. That puts a lot of pressure on the experts to

satisfy short-term local needs, especially if the management is not very

sympathetic toward this kind of thing. Users have to worry about their re-

search money and are not always realistic about the cost of expert advice.

On the seond level, I am thinking of a situation where a government

agency such as AEC or NASA funds a certain general mathemal.:al software de-

velopment at some particular place with the idea that the result will benefit

other work supported by the same agency.

The third type of support is national in sccpe, for example, work sup-

ported by NSF with the idea that it will eventually be useful in the larger

sense for the nation. Personally, I would consider the most comfortable

situation for an expert to have about one-half local support and one-half

120

either national or intraorganizational support. This would justify more

of your long-term work at a higher level but the local influence would keep

you from retreating into an ivory tower. The last remark would have to be

modified somewhat for a university professor, but I think the same spirit

applies.

121

QUESTIONS FOR SUBGROUP DISCUSSION OF TOPIC IV

1. Through what mechanism(s) are use.. needs for mathematical software

to ,ome to the attention of software developers?

2. Can a computational mathematician concerned with career growth combine

service to the user community with research recognized by his peers?

(Obviously some can but what are the ingredients for success?)

3. Through what mechanisms can users and developers work together to

influence machine design and software systems?

4. What are the reasonable responsibilities of a computer center upon

receiving certified software?

122

REPORT OF SUBGROUP DISCUSSION OF TOPIC IV

Sadon StemaAt - Lec me start with the third discussion question which

was, "Through what mechanism can users and developers work together to in-

fluence machine design and software systems?" Much of the discussion in

our group was about the need for users, developers, and a third category --

usually referred to as "experts" -- working together. We felt a need for

experts to work with both groups. Development includes the entire range

from individual subroutines to large applications packages, and it is impor-

tant that the experts work closely with the developers so that the best

numerical methods can be incorporated into new software. Proper influence

by numerical experts early in the implementation will prevent many problems

for the users later.

I think there was a very definite expression of the need for missionary

work on the part of the experts. They are going to have to go out and tell

users and developers about available numerical methods. There was some dis-

cussion about users who develop software for their own needs, sometimes with-

out really having the necessary numerical background or knowing where to go

for expert help. We discussed briefly the otion of a "hot line," perhaps

in conjunction with the software alliance. This would be a manned telephone

line that one could call for guidance or help on special areas of software.

The response might be to point you to the right kind of specialist to help

you with your problems.

123

We did have a few comments about the choice of languages and their in-

fluence on mathematical software, but there was no consensus. Also, every-

body was whole-heartedly in favor of computational mathematicians combining

service to the user community with their career growth. We discussed several

mechanisms by which they would do this but we reached no definite conclusions

beyond agreement about the need to combine the two.

There was brief discussion as to what the best interface between users

and experts was. The most widely acclaimed interface was through small

specialized group meetings which focused on problem areas rather than around

professional alignments.

On the final question about responsibilities of computer center receiv-

ing certified software, we realized that the computer center does have a

responsibility to supply certain kinds of support. We did not decide how

much, but they do have a certain responsibility for local testing - -not as

extensive as required by the certification process, but more thar, just dump-

ing the package on the system--local maintenance and updating, and their own

user servicing. None of these suggestions is unique to mathematical soft-

ware, except for the kind of testing, which indicates that many conclusions

and recommendations about mathematical software might generalize to other

software development.

WLP.LLam Hetzel I will make a brief summary of the points which I

thought were significant. Our first question asked how user needs can be made

known to software developers. The following points summarize the responses.

1) Feedback from the user/consultant relationship and also through feedback

forms; for example, documentation should have pages that can be ripped out

and sent back indicating additional needs or problems; 2) Specialized con-

ference sessions to allow selected user interest groups to meet and identify

124

user needs perhaps along the lines of some of the ACM 72 sessions. A

particularly important point when a user group got together would be for

them to be explicit enough to formulate their needs into a set of specific

requirements for new software. In my opinion, one of the better examples

of this is the CODASYL experience on data based; 3) Perhi.ps an expression

of user need after the fact would come from usage monitoring of software;

4) One person commented that the mathematical software professional has a

responsibill .y to know the needs of users even if those needs are not expli-

citly expressed; 5) If an alliance were well established and respected, its

reputation would bring out needs; that is, users would feel more confident

that expressing their needs would bring results. As it is now, many users

are reluctant to express needs and instead write their own software; 6) It

was suggested that specific user groups or user representatives might act

as sounding boards with software developers who would be encouraged to have

interim development sessions that users could attend and critique and hear

the impact of their requirements.

I
There were two comments related to the first question which I thought

were important enough to mention. One was that the government is probably

the major consumer and, therefore, the most effective one to push forward

with standards. Secondly, there are enough examples of hardware that has

been tailored to meet express user needs to demonstrate that users can be

effective when they are given the responsibility and put forth the effort.

Next we discussed the responsibilities of computer centers receiving

certified software. It was generally felt that naming a local representa-

tive was the primary responsibility. The degree of his technical competance

need not, necessarily, be large but he should function as a two-way channel.

125

The second responsibility of the receiving site was to publicize the package,

announce it, and make documentation available to users. It was felt that

suppliers should make this process easy, even to the point of providing news-

letter articles. The site has the responsibility of notifying the supplier

of problems and relevant experience. The site also has the responsibility

to train people in the use of the package.

126

DISCUSSION TOPIC V -- PUBLICATION OF MATHEMATICAL SCFTWARE

A JOURNAL OF MATHEMATICAL SOFTWARE

John Rice I am going to be very brief and not try to go into detail.

I want to consider general questions about why we should have a journal

and how we should go about establishing one. (JR-1) So I am going to list

reasons for and against. I am not going to include the standard reasons

for the existence of scientific journals. (I assume you know that archives

are good things -- good communication is a good thing)

One favorable reason that has been put forth, and I think it is an

important one, is the idea of a focal point. You need a place where peo-

ple who are interested in the creation, analysis, and perfection of mathe-

matical software can focus their attention. I think that the journals of

most professional societies do tend to serve as focal points enabling workers

to identify with various disciplines and subdisciplines. Mathematical soft-

ware has the attribute of going in many directions simultaneously without

a clear feeling as to what is really going on.

Another purpose that a journal can serve is to set standards. There

are standards in almost every level of this whole discussion that have yet

to be set, standards in testing, standards in documentation, standards in

performance, etc. But we need some place to set those standards.

A professional status function would be served. Those of you who have

looked a little at sociology in the scientific community know that there

are well-oiled mechanisms for achieving status which vary only slightly

from discipline to discipline. One of the standard mechanisms is the pro-

fessional journal.

127

A relevant point is the lack of outlet for professional work in

mathematical software. You can talk all you want to the deans, to the

National Science Foundation, the National Academy of Sciences, etc.,

about what you do but in the end they want to see standardized stamps

of approval.

Those are the four reasons that I have seen motivating such a journal.

I see three drawbacks to publishing a journal -- nontrivial ones, but

very mundane. It takes work, it takes money, it takes negotiations. The

negotiat!ons come from the fact that we do not have standards in this

area and therefore if everyone here wrote a proposal for what that journal

should do there probably would be no more than 50% intersection between

any two proposals. There is a lot of work involved in finding reviewers

and getting set up.

If, however, one decides to go ahead and try to create a journal,

then I think there are three sorts of "how" questions. The first of these

is about a professional home for a journal. A home is needed for stability.

You must have somebody who knows what is happening on a continuing basis,

somebody who knows how to get galley proofs back and forth, copies sent

out and all that sort of thing. A professional society is one possibility

for the field of mathematical software and there are other possibilities.

National laboratories publish journals. Universities publish journals.

And there is what might be called a professionally independent home, in

which the stable center is a commercial publisher. All the operational

personnel on the professional levels can move at will and the focal point

of the production process is commercial publishing.

128

The second formal question involves coming to grips with the editorial

policy. We must ask about the scope of this journal. We see discussion

at the meeting about the scope of an alliance. I think that the scope of

mathematical software includes lots of things that have not been mentioned

here, and on the other hand, some things that have been discussed here

probably would not fall into the scope of a journal. So it is something

that would have to be worked out.

You have to try to establish standards. Not having many real examples

of the kind of paper that you might want to publish you would have to say

what you expect from papers that are submitted. Finally, you must work

out refereeing procedures and I am sure Lloyd Fosdick will tell you that

is a nontrivial process for mathematical software compared to the stand-

ardized scheme of the typical joi'rnal where the editor sends out papers

and asks for opinion. The third type of question is about actual production

policy and problems: How much is it going to cost? How frequently? How

big? How are you going to publish programs? All of these things have to

be decided.

I think I will ckAclude with my opinion as to what the next step would

be if people decide to go ahead with these ideas. I think that .a relative-

ly small group of people must come up with a concrete proposal for what

this journal is going to be, how it is going to operate and what its pro-

fessional home might be. I think a small group is essential there. We

have already seen the problem of defining "certification" and I suppose we

could be here a month trying to hammer out a consensus on the scope of the

journal, for example. Even three people might take a long time. Some small

group has to attempt if it is going to be done with any efficiency.

129

JOURNAL OF MATHEMATICAL SOFTWARE

'Pm General Questions: Why & How

"Why" Reasons for (besides the standard ones)

A. Focal Point creation, analysis, perfection

B. Standards performance, analysis, programming & documentation

C. Professional Status for contributors

D. Outlet now lacking to a varying extent

Reasons against

A. Work

B. Cost

C. Negotiations on divergent viewpoints

1. Professional Home

Society: ACM, SIGNUM, collection of SIG's

Institution: University, National Laboratory

Independent: Commercial publisher

2. Editorial Policies

Scope

Standards

Refereeing procedures

3. Production Policy & Problems

Cost, Frequency, Size, Program Manipulation

Opinion:

First Step:

"How" list is in order of decreasing difficulty and
of increasing effort requirements.

Group (3-5) must come up with reasonably detailed
proposal and attack the "professional home" problem.

130

DISCUSSION TOPIC VI -- ORGANIZATION TO FOSTER
MATHEMATICAL SOFTWARE DEVELOPMENT

A MATHEMATICAL SOFTWARE ALLIANCE

Wayne Coutett A few weeks ago when we sent out the invitations to

this workshop we distributed a working paper entitled, "A Mathematical

Software Alliance," dated June 5, 1972. I would like to review tais paper

briefly, giving some of the highlights in it so as to establish the con-

siderations which we feel are important.

Let me begin by showing a slide I showed the other day (WC-1). In

order to achieve the goal of producing systemetized packages there are

many steps that one has to take. The basic mathematical analysis serves

as a foundation for the development of numerical methods which in turn

result in algorithms which might be expressed in Algol, for example. From

these algorithms we write computer programs. Much of what we have discussed

at this workshop is the process of making those programs into systemetized

collections. This is a rather long chain of events and some of these steps

are very involved and require a great deal of various kinds of talent.

With extremely rare exceptions, we do not expect to find in any one per-

son or in any one institution the talent to start at the beginning of

this process and carry it all the way through. For that reason, we are

talking in terms of a software alliance whereby a group of institutions and

individuals would form a consortium to carry out the necessary steps.

Another way of expressing this chain of events is to identify three

types of activities: (1) Research and implementation., (2) evaluation and

ref.Aoment, (3) dissemination and support. To make this somewhat more

tangible let me use EISPACK as an example. The research and implementa-

tion for EISPACK was all the work over many years leading to the Algol

131

versions as published in Wilkinson and Reinsch plus the additional step

of translating the Algol into Fortran. Evaluation and refinement was

the field testing on various machines as carried out by the NATS project.

The dissemination and support is the activity of distributing these rou-

tines from the Argonne Code Center and supporting them as specified in

the statement of certification.

For the most part, present day efforts to provide mathematical soft-

ware are not integrated over the chain of events described above. I be-

lieve you would be able to find all of the steps going on and in some

cases there has been an attempt to tie them together. But there has not

really been an organized attempt to focus on the process itself -- the

whole process. We could talk in terms of forming some sort of comprehen-

sive mathematical software institute in which all the types of talent

would be concentrated. I think that is an unrealistic extreme. A viable

middle-ground approach is the concept of an alliance to focus the effort.

In the working paper we give a number of examples of activities appropriate

to the three stages. It is not meant to be an exhaustive list. I am sure

you can add to it. Scme of you might want to modify some of the items

on it.

Now I would like to say some specific things to set the stage for

further discussion. I do not believe that this is a group where we can

actually engage in detailed planning of exactly how we are going to or-

ganize a new structure. I do think, however, that we can attempt to find

a sense of the general direction we want to go. Assuming we are success-

ful in that then I believe that the following specific steps should be

taken. In the first place, there will be a report of this workshop. We

132

have been using the tape recorder and we will transcribe this material,

edit it, and include it in a report to the National Science Foundation.

Following that, Lloyd and I expect to write a joint proposal for the

formation of an advisory panel such as is described on pages 5 and 6 of

the working paper. This would be a group of six to twelve persons who

are recognized and respected authorities in mathematical software. This

group would give expert technical guidance in the choice of particular

mathematical software objectives to pursue as tasks of an alliance. Hope-

fully, this would stimulate proposals to carry out these tasks. The group

of experts would continue to review the objectives and evaluate progress

toward them. The advisory panel may decide to form an executive board

of people who are going to meet rather frequently and do some concentrated

work. To:f. is the approach advocated in the working paper.

The advisory panel could begin by reviewing and assuming policy

guidance for two activities now being proposed which will likely be under-

way by the time the advisory panel is formed. The first of these is

NATS II which is a joint proposal from Argonne, the University of Kentucky,

and JPL. To build on our experience with NATS we propose to carry out a

similar set of activities for various routines. We have added a research

and implementation component and have made an attempt to find a mechanism

for paying the test sites for some of their activities.

The second activity has been proposed by Lloyd Fosdick and is concerned

with the analysis of mathematical software. He discussed his approach

on the first day of the workshop. The rational in asking the advisory

panel to look at these activities is that both of them would appropriately

take place under the auspices of a mathematical software alliance if there

were one.

133

The advisory panel and executive board would also be concerned with

further development of an alliance by seeking to establish centers where

certain types of activity would be focused. As you can see from the

working paper we have tended to associate research and implementation

with the university setting, evaluation and refinement with the national

laboratory setting and dissemination and support with the private sec-

tor. Because of the people who are involved, the University of Colorado

and Argonne National Laboratory are natural candidates for the university

and national laboratory. But, of course, that is open to further dis-

cussion.

REMARKS ON IMSL LIBRARY ACTIVITIES

Eduw.d Battate I want to thank Wayne, Lloyd and Gordon for having

us here. We are one of the few private concerns in attendance, and our

area of interest is exactly the area of interest of this group. I was

asked to talk about IMSL activities. They are all well explained in bro-

chures which are laid out here and you are welcome to copies. (Please

do not take the order blanks. Those Are reserved for those attending or-

ganizations which have not subscribed.) In my discussion, I will make

some points pertinent to the alliance, then tell you where IMSL is today,

and what we intend to do. Also, I will remark on several points made by

previous speakers.

My remarks pertinent to the alliance are stated in the form of

enigmas. The list is not exhaustive; however, I feel that these points

certainly should be considered as we more towards an alliance-type or-

ganization.

134

1. The "Committee" Enigma

At a certain point in software development, committees become a

vehicle for discouraging the application of effort in the timeframe

necessary for completion of the detailed productive task. That point

is reached when software is being developed for dissemination, as opposed _

to development for examination, of algorithms. This problem is especially

critical because everything in computing evolves so rapidly. The committee

that developed NATS (if it was a committee) was well ruled; NATS did dis-

tribute very good work. Generally, committees cannot make decisions in

the detail required for production in a timeframe which considers that soft-

ware is needed by users before its base of usage (languages and computers)

dies.

2. The "Expert" Enigma

One might think that experts were not available in the desired quantity

to an organization that had the intent of producing good software. We

asked only eleven advisors to join us. They were asked because we knew

them and knew of their work. Not all of those needed t,are asked. But,

all eleven joined and took the part that we asked them to take. Monetary

gain was apparently not involved in their decision. Experts are available,

and they will be available to the alliance also. However, people who have

been involved in library development know that people are not available

to apply control to development over a long time period. How do we evolve

a system which allows expert input, continuity, and continuous control,

for software development (not algorithmic development, but software de-

velopment)?

135

3. The "Do-It-Right-Once" Enigma

Many people have started library development. Many people know some-

ting about the subject. Some may still feel that it is possible to do it

right once (at last). Beginnings are easy. Long-range ideas are very

difficult to bring to fruition. Mechanisms for evoluation must be built

into library development processes. These must allow usage during evolve-

ment.

4. The "Software is Inexpensive" Enigma

Software certainly won't be inexpensive for the alliance to produce,

and it is not inexpensive for IMSL to produce. Our costs, for intial de-

velopment, ranged from $600 to $6,000 per code, up to the point at which

maintenance began. These costs were minimal. I do not believe we wasted

money; we do not have an organization that can allow waste. Also, we

really operated more as a benevolent dictatorship than as a committee.

Some aspects of software development require extreme orderliness. Our

advisors aided us by giving us the input asked for and by not really dic-

tating to us. This was correct, because a development group cah only

take input of the type that is available from a talented group o' advisors

in the order in which it can be implemented. However, during marketing,

we were told several times, by very experienced computing specialists,

that a lease price of $720 per year for 250 subroutines (which cost

$375,000 to produce) was much too high.

5. The "Control is no Problem" Enigma

People (those who have not built libraries, for example) seem to

feel that the task of obtaining a correct, running, tested program is

136

the major problem in software development. Control of the development,

testing, testing maintenance, document evoluation, personnel interaction,

and code maintenance of a growing, interleaved set of abilities, is the

whole problem. Obtaining one well programmed code is no problem at all.

Control is no problem if it is not attempted.

6. The "Profit Motive" Enigma

(Someday we hope to have a profit motive!) Maintaining continuity

of effort in a detailed software (not algorithm) development, is difficult.

Several points can be made. First, each person must have knowledge that,

with the resources at his command, he has the ability to do the job well --

each person, not just the designers and the "thinkers." Second, each person

has to have a horizon which allows him to feel that movement of details

to other shoulders, some day in the future, may be feasible. These shoulders

can be "human shoulders" or "automation shoulders". Third, this effort

requires control which is implied by a slightly dictatorial system during

the development phase. The efficiency dictated by an organization which

relates its efforts to providing good results for potential monetary gain

is probably necessary. A profit motive does not mean that research will

not take place. I do not understand that as relating to the profit motive

in any nonpositive manner.

7. The "Giant-Step-Forward" Enigma

The fast evolutionary nature of this industry demands small steps in

order that good work reach its audience at all. The pertinent audience is

not "research" or "academia." Most of the scientific computing in the

world in done in industry. That is the audience that needs our work.

137

8. The "Cerfitication" Enigma (This is not really an enigma)

The process of certification implies an expansion of the required

timeframe that is worrisome. We should not take too long to certify codes;

certainly everything cannot be certified. The selection process for codes

which are to be certified must be a good one.

9. The "Graduate Student" Enigma

IMSL needs good programmer-analysts. These are programmers who have

been put past a variety of scientific computing tasks many times. I

disagree that development can currently take place in universities. By

development, I mean development of codes that are tailored rather precisely

to give good results. This situation may change, but change will take a

long time, and, at the moment, I do1not see the university as being able

to disseminate codes to the proper audience unless the certification process

is quite good. I do not believe that a graduate student can be a good

programmer analyst for this type of development work. They have other

desires, and time requirements, and good programmer analysts need much

well-directed training.

That completes the "enigma" discussion. Those "enigmas" are a part

of the reason for IMSL's entry on the scientific computing scene.

What is IMSL doing today? We have released three libraries, which

we keep parallel in content and ability. Most of the people who came with

us came from IBM. Thus, we developed our first library on IBM equipment,

using assembly language at times. For our other libraries, we do not have

the resources to continue that (assembly language) attitude. When we map

our libraries we map them in FORTRAN. Quite often we change the algorithm

in mapping, but more often than not the algorithm remains the same.

138

Our advisors: Here's what they do for us now. They direct us to

good algorithms. They answer our questions when we ask them, and they

help us in marketing by mentioning our work. Sometimes they test for us.

We hope that our relationship with-the advisors is in concert with their

interests and time constraints.

Testing: We do all testing "in-house." We have documented standards

which are evolving and which have not yet been published. In our testing,

we consider the various algorithms used, and.test over their ranges,

against references or long precision versions of the codes. We are es-

pecially careful at "cross-over points". We test all basic blocks, and

perturb all the logic (although not in the depth that Lloyd has discussed

at this workshop). We perturb all error indicators. Most of our initial

maintenance letters (noting code changes) were generated by IMSL. We

required that our own people build applications programs using the library;

this generated code changes. We obtain a great deal of good information

from our users -- the University of Colorado pointed out an error recently

referring to a situation that was not discussed in the literature and that

was not detected in testing. By and large, maintenance changes have been

no problem, but many are still generated by us.

Our original intent was to build a set of kernels which span, in some

manner, mathematics and statistics. We included evolution (new editions)

because we knew the set could not be perfect at any given time. We hope

that this basic set of libraries will pay our expenses. On this base, as

we grow, we intend to build application programs. Many industrial organi-

zations do not like the task of picking out the set of kernels that go

together to solve even a simple problem. Application programs will be

139

our second level of endeavor; we are just embarking on these. Our third

level will be to take chapters of codes which we think are adequate and

to put them into an environment for access by workers in a particular field,

perhaps interactively.

We would like to be able to study portability and hope to have that

opportunity. One speaker mentioned that portability was of utmost impor-

tance. From the point of view of a user in an industrial environment,

there is only one thing that is of the utmost importance -- a correct answer.

If one contemplates or philosophizes in an industrial environment and spends

a year on "how a code can be made portable," nothing is accomplished. There

will be no answers (and there will soon be no group). In present company

the topic is a valid topic.

Our problems: One of our problems is the marketplace. Unfortunately,

we have to market this product. There are no salesmen that are trained to

do this, so that we are deeply involved in marketing the product. Fortunately,

"hard sell" is not required.

We have some personnel problems. Some personnel do not like the con-

trol requirement for production of a product which run on computers. Others

do not like chaos. We are handling that problem fairly successfully.

A major problem,in software development is clerical in nature. We

need a giant system. Right now we use 195's. Card handling is a terrible

task. Everyone needs a desk terminal in our environment.

Another minor problem is that in library development statistics is

different from mathematics. Note that our advisors are heavily weighted

in favor of numerical mathematicians. Not many statisticians are really

interested in this topic. Also, statistics does not "kernelize" as well

140

as mathematics (there are some chapter exceptions). This is a problem

because our library is not only a numerical analysis library.

Our three major problems are:

1. The automation of documentation, both for our development, and

for use by our subscribers. We think the Argonne documents are excellent.

2. Portability: We want to produce one library.

3. Testing - both mechanisms and maintenance of test codes. Our

accuracy statements must be upgraded. We maintain, now, 800 programs

and 1200 test codes.

Because of the need to investigate these areas, we do not consider

that a library structure change will be possible before 1976.

Furthcr comments on the alliance: First, I feel that I should alter

some statements which are before you in the second working paper. IMSL

does not maintain that more than one level of qu'ality is acceptable. We

feel that users need good software and that the timeframe required for

bringing a broad range of software to one level of perfection is quite

long. On our approach to certification: Our advisors do not certify our

codes.

Second, and finally: I do not believe that there is any organization

on earth, public or private, that can support a code which it did not de-

velop. The alliance may be able to do so at some future time; maybe some

ideas which were mentioned here will allow such support. Support is a

very "tough topic", as you know, and IMSL feels, today, that it only can

support those codes which it produces.

Thank you again for inviting us and for allowing us to present our

ideas.

141

NSF NETWORK, ACTIVITIES AND PLANS

Gordon Sherman As you all know, the chief interests and purposes of

the National Science Foundation are in supporting basic research and improv-

ing the general health of scientific research in our nation. In particular,

NSF has supported basic research work in modern computing, computer science,

computer usage in education, and also different projects designed to make

computing facilities more available to researchers, particularly those in

large universities. Over the last several years the Foundation has supported

much work in networking. The computerized regional education project is one

of our major efforts but, in addition, the NSF has supported many other pro-

jects which have been aimed at bettering the practical knowhow as well as

the technology of networking. The emphasis has been on sharing scarce

computer resources.

Recently, the Foundation through the Office of Computer Activities, has

brought all these varied programs together under one program. It's an ex-

panded research program that could lead to the development of a national sci-

ence computer network. Such a network would link colleges and universities

and other institutions in national support of computer oriented research and

education. There are many complex problems involved in constructing a net-

work, and in particular, constructing a large national network as we now en-

vision. The tough problems aren't all technical by any means. Many believe

that the most important problems have to do with the management of networks,

financing them, and scheduling the use of hardware and data banks and making

necessary software available. The advantages, I think should be clear to

almost anyone and could have a positive effect on other current research in-

terests. For example, another program we have in the Foundation has to do

142

with improving the quality of software and particularly portability of

software. One of the things we have found out, as exemplified by the NATS

project, is that quality software is very expensive. It is far more ex-

pensive than was formerly believed. If large networks were constructed and

were successful, it would go a long ways toward helping to solve the prob-

lems we now face in the portability of software and the availability of

high quality software.

Computer graphics is another example. Many new and interesting things

are developing in the application of computer graphics. It's a wide open

area, and there are many useful applications that are yet to be uncovered.

But much of computer graphics is expensive and doesn't even exist at many

places. A good working network could be extremely valuable in providing

computer graphics to more researchers.

With respect to the newly announced networking program, I'd say that

right now the main objective, as I see it anyway, is to visualize before-

hand as many of the potential problems of implementing such a network as

we can. That is, before actually constructing this network we want to

identify some of the problems which would crop up, to foresee some important

things, and to do some investigation and experimentation. We want to do all

we can to plan a network and do it well. Another objective, I would say,

would be to help justify the cost. The resources which it would take from

federal funds must be justified if it is decided sometime in the future to

actually implement such a network. We are looking for help from qualified

computer scientists and interested people. If you have any ideas for a

project which you would like to do and which may have a bearing on the sub-

ject, people at the Foundation would be interested in talking to you.

143

The program is a National Science Foundation program, and it involves

several offices at the NSF. The Office of Computer Activities is the

coordinator of the program, but also the Office of Science Information

Services is very much involved and has supplied some of the budget money

to support the program. Dr. D. Don Aufenkamp of the OCA/NSF is the pro-

gram director. There is also interest in computer networks within other

programs in the Foundation, for example, mathematics, chemistry:, biology,

and social science. If, for example, some aspect of a proposal involves

mathematics but also has a bearing on the National Science Network, it

may be that both OCA and the Math Sciences division of NSF could be

involved.

We're just entering the planning stage. I have a limited number of

descriptive brochures here which I'll pass out.

144

QUESTIONS FOR SUBGROUP DISCUSSION OF TOPIC VI

1. A basic assertion in the working paper on a mathematical software

alliance is that "the present situation in mathematical software is

unsatisfactory and new approaches are required." Is this a tenable

position?

2. The working paper takes as a premise that "an alliance of institutions

is needed to provide the necessary range of talent to produce, evaluate,

and disseminate mathematical software." Is this premise justifiable?

(Presumably the alternatives' are "more of what we now have" or a cen-

tralized "institute for mathematical software.')

3. The working paper asserts that mathematical software evolves through

three stages. The software alliance organization is based on this

assertion and associates Stage I with universities, Stage II with

government laboratories and Stage III with the private sector. Are

these stages a valid model of the development process? Is the pairing

with institutions meaningful? Is the pairing oversimplfied?

4. How can a computer network be utilized in testing ri...ithematical software?;

in disseminating mathematical software?

5. Assuming that the answers to the first three questions are basically

affirmative, is the Advisory Panel/Executive Board approach described

in the working paper a viable way to establish and administer the

alliance?

145

6. Assuming basically affirmative answers above, which of the four

plans presented in the working paper appears to offer the best hope

of successfully meeting the objectives? What alternative plans as

a substitut: for or modification of the four do you suggest? Please

document the answer to this question, especially by commenting on

the arguments given in the working paper.

6'. If any of questions 1-3 or 5 above were answered negatively and

alternatives proposed then this constitutes a request for compari-

sons with the approaches in the working paper.

7. On page 11 of the working paper under "comments on the involvement

of the private sector" tentative conclusions are reached concerning

the distribution of costs. Are these conclusions valid, partly valid,

or false?

8. Cowell and Fosdick estimate that the annual operating cost of a mathe-

matical software alliance would begin at about 500K and stabilize at

around 1M. Are these figures high, low, or about right?

146

REPORTS OF SUBGROUP DISCUSSION OF TOPIC VI

Stuant Lynn On question one, the assertion that the present situa-

tion in mathematical software is unsatisfactory, I think there was very

lithe discussion on that. I think we all agreed it was a tenable posi-

tion. That's why were here.

The second question was somewhat more extensively examined. It

inquired as to whether an alliance of institutions is indeed necessary to

start attacking these problems. We did conclude that such an alliance

was necessary, even though we didn't fully understand the details of what

such an alliance would look like. That was dis:ussed later. We lir;cussed

that fact that perhaps NATS and the upcoming NATS II may be somewhat

typical of what might be expected. The principle difference between the

NATS projects and the proposed alliance is that the alliance would probably

have more continuity and permanence and it might be able to subcontract or

at least be able to advise on subcontracting money. There was sane concern

expressed that the alliance might be exclusionary in that it might only

direct funds toward those institutions that are invol'ed with the alliance

and exclude others. Hopefully steps would be taken to assure that that

would not be the case.

There was a strong concern about the fact that the alliance as dis-

cussed and described does not attack the important problem of user recog-

nition of this area that we think is so serious, and establishing that it

is indeed as serious and important to them as it is to us. It was clear

to the group that there would be a need for the alliance to be very

actively engaged in attacking this problem through various techniques of

marketing, through efforts to drive out bad software one way or another.

There was some concern that such software might not be so easily driven out.

147

There was a lot of discussion on precisely what the prime objectives

of an alliance are. Are they principally concerned with methodology of

testing and certicying and producing software, or is the prime concern of

the alliance to be with the actual production and dissemination of soft-

ware. I think it was generally felt that production and dissemination were

objectives that should assume much lower priority in the alliance than the

objective of evaluation of existing software. It wasn't clear to the group

whether it could effectively engage in production and dissemination. This

is not to say that thsc activities should be excluded entirely because the

prime objective of studying methodology must be served by becoming involved

in problems associated with production and dissemination as well as evalua-

tion. One point of view was that we may lose our credibility if we gain

the reputation of trying to push our own products just because we produced

them. This conflicts with objective evaluation of other products. We

reached the consensus that an alliance is needed in some form. Primarily

it should focus on questions relating to evaluation and methodology. Pro-

duction and dissemination are far less certain as objectives requiring far

more careful consideration in the future before embarking too heavily in

those directions.

The next question concerned whether or not the three box model was a

valid model or whether it was an oversimplified model. The model as

described was somewhat oversimplified; basically the labels in the boxes

were indeed correct but the flow between the names might not be correct.

Many alternative flows would have to be considered and many types of feed-

back might occur between these areas. It was also expressed that careful

consideration needs to be given to insuring that there is indeed a flow of

148

people between these various areas of responsibility. There should be

a constant chain of people who become familiar with all the various prob-

lems of all the various areas in order to keep people excited and motivated.

We then started to examine the question of whether the institutional

pairing proposed was indeed a valid pairing. I think we rapidly established

the viewpoint that it was sufficient but not necessary. There are many

other alternative pairings which might be considered. There was also con-

expressed about the role of universities in implementation of software,

whether this is indeed the principle role that universities should be

playing.

We skipped the question on network utilization because we felt that

it wasn't in the mainstream of what we were trying to do in this session.

We had a long discussion on the question of the viability of this

advisory board and executive committee structure for the alliance. We

felt that the responsibilities as outlined in the reports were not suffi-

ciently proscribed to permit definitive statements as to whether it's the

most suitable approach to take. We felt that the advisory board was pre-

sented in a way that confused two roles which tend to be distinct. One is

the technical advisory role and the other is the role concerned with re-

sponsibility for the establishment of policy and planning, general coordina-

tion, and management. These two roles are logically different and perhaps

should be separated in the future. After a wide-ranging discussion of

technical responsibility and responsibility to the funding agency, we

reached a consensus that a proposal to the NSF should be made to establish

that we named an advisory council. We never established how people should

be appointed to this council but we felt it should have wide representation

1 49

to engage in the detailed preliminary planning and establishing of policy

for an alliance of those concerned with mathematical software. Among

other things the council should carefully define the administrative struc-

ture of an alliance, paying attention to the following three components:

(1) the technical advisory component, (2) the policy and planning compo-

nent, and (3) the operational component. The council should carefully

examine how the proposed administrative structure would interact with

other boards and with NSF.

As I indicated before, we never decided precisely how we were going

to establish this council, but we did indicate that it should have repre-

sentatives from users of mathematical software and from the private

sector as well as experts on mathematical software.

We did raise the question as to whether there were any viable alter-

natives to the proposed approach. One alternative that was suggested was

a non-profit foundation instead of the proposed council. There were

certain advantages to that since it was felt that the administrative struc-

ture would be much more clearly defined but there was a question as to

whether anybody would want to pursue this approach.

At this-point we did not attempt to look at various administrative

structures since we thought this was
/""--

something the council could come to

grips with. But we did point out that we thought the correct approach was

for the council to decide what it was going to do, and then how it was go-

ing to do it. In other words, structure should follow much later in the

planning.

A couple of additional comments are worth reporting. It was remarked

that if production was, something that the alliance did engage in there

150

should be a charge for the software for several reasons: one is to be

able to relate more fairly to the private sector. Another reason was to

weed out the guys who want anything for free. You tend to use a product

that you pay for.

We felt that *questions of funding would follow later. We didn't

feel we had enough information to say what level of fuding was appropriate

at this time. Again it's a question of deciding what we're going to do,

then working' backward. It is important that priorities be established and

money be spent wisely. I think that concludes what I have in my notes.

151

Charae4 Lawson - I think Stuart has simplified my job. That was

very well organized. I am happy to say he hit many of the same points

we talked about. I will try to fill in where I think we may have had

something additional or different to say.

On the first question, we did expand a little more on whether or not

we have a problem at the moment. The first thing that cones to mind is

whether one could say that a major project might fail due to bad mathemati-

cal software; but in fact, ho one in our group seemed to be able to come up

with specific examples as extreme as that. The more usual problem is that

unreliable software is costly because valuable resources are wasted. Users

try different subroutines or write their own. The computing facility has

to store and keep track of an excessive number of subroutines because they

do not know which ones they could throw away. Also, there is the feeling

that there's a real need for better program development methods, especially

if future programs are anticipated to be more complex than present ones.

We got into several controversies on question two. One of them looked

like the following. Given that the main problem is the excessive number of

bad subroutines a direct attack on the problem would be to try to identify

these bad subroutines. This would imply that an important mission of an

alliance would be tr.. test all available subroutines of a certain type and

identify the good and bad ones. Computing facilities could then get rid

of the bad ones. This would imply that the alliance should concentrate

on evaluation rather than production. Part of this viewpoint is the ten-

dency to think of evaluation as an elaborate process as witnessed by our

debates over the definition of certification. But it was brought up in our

discussion that the identification of bad software is not necessarily that

152

elaborate a process. The paper by Wampler of NBS was mentioned as an

example of testing that used only two test cases. But it was performed

and reported very carefully and the tests were reproducible. It gave ob-

viously bad'marks to quite a few routines and according to Hans Oser, the

National Bureau of Standards has received many inquiries about this paper.

They feel it has had a big impact. I do not think we were saying that

evaluation is always simple but neither does it always require the full

force of a lot of experts to eliminate inadequate codes.

The other view is that it is cheaper to have an expert produce a good

subroutine than to evaluate all existing subroutines. An example of this

would be the NATS project where there was no effort to conduct a survey.

There was just a feeling among certain experts that the Wilkinson codes

represented the best way to do it and so they went in and did it.

Mother controversy centered on the separation of production and eval-

uation. One view is that such production as is done by the alliance should

be done by different people than are doing the evaluation and preferably

under different roofs. This would follow the practices of some large commer-

cial software companies that have found this is the most effective way to

produce reliable software. Those holding a different view pointed out that

the NATS project has not so far separated production from evaluation, and

that past history does not show enthusiasm or competence to evaluate mathe-:

matical software by persons who are not involved in its production. However,

the EISPACK experience may not be typical in the sense that there was a code

ripe for harvesting, and that exact parallel situation may not come up again.

Question three asked whether the three stages of the working paper'

constitute a reasonable model. It was suggested-that one might identify

153

five stages, namely, algorithmic development, systemized packaging, evalu-

ation, distribution, support. I think the key thing here is separating

distribution and support because there seemed to be a feeling in our group

that support has to be tied closely with either evaluation or development.

The people who give answers of a supporting nature are the ones that have

done either the development or the evaluation. Also the people who do

the evaluation are interested in feedback for their own professional in-

terest or better understanding of the problem. Are the pairings with

institutions meaningful? Well, the pairings were fairly arbitrary and

might be okay as an administrative umbrella. But it was pointed out that

the NATS experience so far depended on results developed by Wilkinson

and by Cody, neither of whom were in a university. So the idea that de-

velopment belongs in a university still is an abstract notion, rather

than reflecting how things have been done. Again, in a separation of

tasks, we felt that distribution by itself is probably not a commercially

attractive enterprise.

We saw question four the same as the other group. No comment.

On question five, the advisory panel-executive board structure was

accepted unanimously by our group. It seemed to be a major point of dis-

cussion in the other group. However, later discussion did bring up the

question whether the advisory panel would include people outside the nu-

merical analysis community, for example, statisticians.

On the budget question, we pretty much accepted what was suggested

although this matter of the importance of production was discussed quite

a bit in terms of budget. Some people felt that not more than 10% of

the budget should go into production because the main unique impact of

this organization would probably be in evaluation.

154

Now that finishes my report on the questions as listed, but we got

into a terminal discussion that took us back to the goals of the organi-

zation. These were broadly seen as research and application in areas of

software development that would have an impact on real problems. It was

felt that the research in the areas of testing methodology and programming

methodology were probably more significant things to shoot for than the

area of algorithmic development. This would also be there, but is not

quite so uniquely associated with this organization. The organization

should stimulate research in other areas than just what it was doing itself.

My own thought is that the link between research and the user is one of

the more unique things about this organization. Research does go on right

now, but it does not get pulled all the way through to the users. Appli-

cations are surely handled, because a person can go out and contract for

somebody to write him a differential equation subroutine and get it writ-

ten. But the unique thing about this alliance is trying to carry a speci-

fic research effort all the way through to the end users.

A couple more miscellaneous remarks. I think our feeling was that

the private sector did not fit into one box the way it was shown in the

diagram. Some studies have shown that private companies can do a more

economical job of software production than a university computing facility

can. So, maybe the production end should be farmed out to the private

sector in some cases. So the involvement of the private sector should

be kept more flexible, and used where it is more appropriate. Also, it

seemed like centering things at two places was probably not terribly ap-

propriate. But this ties in with what Stuart said; after the goals are

better formed, the structure will follow.

LIST OF ATTENDEES

Thomas Aird
Purdue University

Edward Battiste
International Mathematical &
Statistical Libraries, Inc.

James Boyle
Argonne National Laboratory

Wayne Cowell
Argonne National Laboratory

Augustin Dubrulle
International Business
Machines Corp.

Richard rairley
University of Colorado

Lloyd Fosdick
University of Colorado

Fred Fritsch
Lawrence Livermore Laboratory

William Hetzel
University of North Carolina

Thomas Hull
University of Toronto

Yasuhiko Ikebe
University of Texas

Fred Krogh
Jet Propulsion Laboratory

Dorothy Lang
University of Colorado (student)

Charles Lawson
Jet Propulsion Laboratory

M. Stuart Lynn
Rice University

Cleve Moler
University of New Mexico

A. C. R. Newbery
University of Kentucky

Edward Ng
Jet Propulsion Laboratory

Hans Oser
National Bureau of Standards

Leon Osterweil
University of Colorado

John Rice
Purdue University

Walter Sadowski
National Bureau of Standards

Gordon Sherman
National Science Foundation

Lyle Smith
University of Colorado

Roberta Sm4tn
University of Colorado

Seldon Stewart
National Bureau of Standards

Henry Thacher
University of Kentucky

Joseph Traub
Carnegie-Mellon University

Jeffrey Wright
University of Colorado (student)

Jacob Wu
University of Colorado (student)

David Young
University of Texas

155

