
DOCUMENT RESUME

ED 083 815 Eft 011 536

AUTHOR
TITLE
INSTITUTION
SPONS AGENCY

REPORT NO
PUB DATE
NOTE

Bigelow, Richard H.
REL English Bulk Data Input.
California Inst. of Tech., Pasadena.
National Science Foundation, Washington, D.C.; Office
of Naval Research, Washington, D.C.; Rome Air
Development Center, Griffiss AFB, N.Y.
CIT-REL-R-9
Jul 73
40p.; See also EM 011 530 through EM 011 535

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS Computers; Computer Science; Computer Storage

Devices; Data; *Data Bases; Data Processing;
*Electronic Data Processing; Information Processing;
Information Storage; *Input Output; *Input Output
Devices; Program Descriptions

IDENTIFIERS Bulk Data Input Processor; Rapidly Extensible
Language; REL; REL English Versions

ABSTRACT
A bulk data input processor which is available for

the Rapidly Extensible Language (REL) English versions is described.
In REL English versions, statements that declare names of data Items
and their interrelationships normally are lines from a terminal or
cards in a batch input stream. These statements provide a convenient
means of declaring some names and stating some facts, and they are
especially useful in the interactive mode. However, these statement
formats are not convenient for inputting large data bases which are
usually available on tapes or cards and which are generally formatted
in terms of fixed fields. The bulk data input processor reads such
formatted files and puts data into the version. Topics discussed in
this report include: the input file format, the logical record, the
physical record, field, class, relation, table, order of cards,
treatment of blanks, error handling and variable record processing.
Two appendixes provide a summary of descriptor cards and a series of
examples illustrating how the system operates. (Author/LB)

aitotect r9ortar
CDILLJ

on

NEL

Co-princpal investigators :
Bozna Henisz Dostert
Frederick B. Thompson

California Institute of Technology
Pasadena, California , 91109

FILMED FROM BEST AVAILABLE COPY .

U.S. DEPARTMENT OF HEALTH,
EDUCATION A WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCEU EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
AT1NC IT POINTS OF VIEW OR OPINIONS

STATF D DO NOT NECESSARILY REPRE

SENT OFFICIAL NATIONAL INSTITUTE OF

EOUCATION POSITION OR POLICY

REL - English

Bulk Data Input

Richard H. Bigelow

REL Report No. 9
July 1973

California Institute of Technology

Pasadena, California

The research reported here was supported in part by

the grants:

National Science Foundation grant #GH-31573
Rome Air Development Center contract #F30602-72-C-0249
Office of Naval Research contract #N00014-67-A-0094-0024

Table of Contents

Input File Format 1

Logical Record 5

Physical Record 7

Field 9

Class 12

Relation 13

Table 15

Order of Cards 16

Treatment of Blanks 16

Error Handling 17

Variable Record Processing 18

Appendix A 20

Summary of Descriptor Cards 20

Appendix B 24

Example 1: 24

Example 2: 28

Example 3: 32

Example 4: 33

Bulk Data Input

In FEEL English version, statements that declare names of

data items and their interrelationships normally are lines from a

terminal or cards in a batch input stream. These statements provide

a convenient means of declaring some names and stating-some facts,

and they are especially useful in the interactive mode. However,

these statement formats are not convenient fc.,- inputting a large data

base. Such data bases usually are available on tapes or cards which

are formatted in terms of fixed fields. A bulk data input processor

is available in English versions that will read such formatted files

and put the data into the version. The user must describe the format

of the data records with descriptor cards, which precede the data.

Input file format

Both the descriptor cards and the data records must be placed

in an alternate input file. In the interactive system this is done

by reading the following cards:

$ALTINPUT altname
descriptor cards
data cards

$ENDALT

altname is a 1-8 ch?.racter name for the file. In the batch system

the same cards may be included in the input stream. The descriptor

and/or data cards may also be in a data set on disk (or tape) which

is concatenated into the input stream. The data set's logical

records must be less than or equal to 255 bytes long (i. e. the.

LRECL of the DCB must be < 255).

In either system the alternate input file must have been defined

before it is used, and it will be deleted at the end of the system's

run. The file is used by the statement:

INPUT BULK DATA FROM altname

where altname is the name of the file.

The descriptor cards will be read. If no errors are detected

on them, the data records will be read and the information will go

into the data base. The descriptor cards will be printed, and all

error messages and data records in error will be printed and

also displayed at the terminal.

The descriptor cards define the format of the data records.

They tell where the data fields are and how they are to be processed.

Defaults can be specified for blank fields, coded values can be

utilized, and numeric values can be scaled by a constant factor.

Error messages can be issued if needed.

The data records are divided into logical records. Each

logical record has the same structure, which is defined by the

descriptors. The logical records occur sequentially. Each logical

record is a sequence of physical records. A physical record is a

card or record in a data set. The descriptors give the or der and

3

formats of the physical records. The physical records are divided

into fields which are defined by the user as certain columns on the

card. These fields contain the items which go into the data base.

(Note: An OS logical record in a data set on disk is a physical

record as the term is used here.)

A physical record format can be repeated on several cards

or skipped. Thus, not all logical records need have the same

identical structure. But thos:,... physical records which do occur

must be in the order specified by the descriptors.

The descriptor cards can be continued. This is done with a

0-2-8 punch. The 0-2-8 is deleted and the statement continues on

the first column of the next card. The total length of the statement,

including all characters on the last card, can not exceed 400.

The statements have the form:

descriptor code, such as LRD, beginning in column 1.

possibly one or two numbers to identify the physical record, field,

or table defined by this descriptor. These numbers are

separated by blanks.

a list of parameters separated by semi-colons. Each parameter is

a keyword followed by an equals sign followed by a list of

options separated by commas. No blanks can occur within a

parameter list except within a literal. The order of the

parameters is usually immaterial.

4

A literal is any string of characters enclosed in single quotes.

Literals are used to represent names, numbers, and times in the

descriptors. The format of the liteial must conform to that

required by its usage. A name literal must start with a letter or

digit. A number literal must be a numeric constant, and a time

literal must be a constant date or the words NOW or TODAY. A

quote is represented in a literal by two quotes. Literals are also

used to represent logical record separators and logical and physical

record identifiers. No restrictions exist on literals of these types;

indeed, they may be all blank.

Name literals will be defined if they are not already defined.

They will be given the type (e. g. NAME(ANIMATE)) of the field or

table with which they are associated. The type can be specified for

name literals in class and relation descriptors.

The descriptor statements follow. Required parameters are

preceded by a *. Default options are underlined. Text enclosed in

[] is optional and need not be given. Text eaclosed in { }

represents a choice; one of the enclosed forms must be given.

Capital letters must appear as shown; small letter names identify

types of text, such as numbers. Literals have been defined before;

they are represented as 'literal' in this description. An integer

is an integer constant; a number is any numeric constant.

Logical record

This card defines the boundaries of a logical record and the

location of the physical record identifier.

code: LRD

parameters:

ILRID , field
SEP = 'literal' [, field]

NONE

PRIDFLD = tieldNONE

field is <integer, integer>

Field defines a field on a physical record. The first integer is the

number of the first column of the field, and the second integer is the

number of the last.

SEP describes the logical record separator, which defines the

boundaries between logical records. There are three means of doing

this. The first, specified by LRID, field, requires that each data

card contain a field with a logical record id. The logical record

consists of all cards with the same id in this field. These cards

must be consecutive. The second format, 'literal' [, field], means

that a card with the given literal in the field is a separator between

logical records. The field begins in columr, one and is as long as

the literal if no field is specified. If one is given, the literal is

extended with blanks on the right if necessary. A separator card

is otherwise ignored; it can have no data. The form SEP=1%.'NE

is discussed later.

Every data card may have a field with a literal that identifies

the type of physical record that it is. PRIDFLD=field defines a

default field to contain this id. It can be overridden by the physical

record descriptors. If no PRIDFLD is given, then each physical

record descriptor must define this field.

Physical record ids and logical record ids and separators

are not necessary. They are desirable for error checking, and

physical ids are required if a physical record may be omitted or

repeated. If SEP=NONE is given, then there is no logical id or

separator; if PRIDFLD=NONE is given, then there are no physical

ids. If there are no physical ids, each physical record descriptor

applies to exactly one physical record in the logical record. The

logical record boundaries will be checked if SEP is not NONE. If

physical ids are given but there is no logical id or separator, then

each logical record is assumed to start with a physical record whose

id matches that of the first physical record descriptor. Hence,

the first physical record can not be omitted.

Only one LRD can be given, and it must be the first descriptor

card.

Examples:

LRD SEP=LRID, <73, 80>
LRD PRIDFLD=<73, 80>;SEP=", <1, 80>
LRD SEP=NONE;PRIDFLD=NONE

In the first example each data record will have a logical id in

columns 73-80; those with the same id constitute a logical record.

The physical record descriptors must give the locations of the

physical ids. The second example defines an all-blank card as a

logical separator; the physical ids are in columns 73-80 unless a

PRD overrides this. Example three says that there are no logical

or physical ids; each physical record type appears once in a logical

record.

Physical record

This card defines the physical id and tells whether the record

can be omitted or repeated.

PRD

record number: integer (must've less than 256)

parameter::

PRID = 'literal'[, field]

VAR =

MISS=

YES
NO

SKPPR[,ERROR]
SKPLR[, ERROR]

The record number must be unique within the logical record.

It is used to identify this physical record in class or relation

desc riptors.

PRID gives the literal that will identify this type of physical

record in the data. The field can be used to specify the position of

the id; it overrides the position given by PRIDFLD in the LRD.

VAR specifies whether the physical record is variable.

Normally it is not, so it can occur only once in the logical record

in the data. However, if VAR=YES is given, many data cards can

have the format of this physical record. They must all be consecutive.

MISS tell3 what to do if this physical record is missing in the

data. SKPPR means that this physical record is skipped; SKPLR

means that the logical record is skipped. ERROR indicates that the

data card and an error message should be printed; otherwise, no

indication of the action taken is given. These options have the same

meaning in other descriptors.

If PRIDFLD =NONE was given on the LRD then no parameters

can be given on the PRD except the physical record number. Other-

wise, PRID is required.

Examples:

PRD 1 PRID=1At;VAR=YES

PRD 21 MISS=SKPPR;PRID=1R2', <1, 4>

PRD 3

Example 1 defines record number 1 to have id A; the field must be

given in the LRD. These records can be repeated, but if none are

given the logical record is skipped. Example 2 defines record

number 21 with an id of R2 followed by two blanks in columns one

9

through four. If this record is missing no error message is given

and the next record is processed. Example 3 is valid only if

PRIDFLD=NONE was specified; it is then required.

Field

This descriptor defines a field and tells how to obtain its value

under various conditions, such as an all-blank field. Translation of

coded fields and scaling by a numeric constant can be specified.

code: FD

record number: integer

field number: integer (must be less than 256)

parameters:

N
NA

NU

C
CA

*TYPE= R
R
RA
NUM

*FLD=field

BLANK= skip- option
'literal'

TRANS= SELF
TABLE, integer

MULT= 'number'

DEF=defparm[, defparm]

`SELF
lskip- option

'literal'

defparm is I NO t J ADD
YES J ' skip-option

SKPFLD[, ERROR]
skip-option is SKPPR[, ERROR]

SKPLR[, ERROR])

The field descriptors for a physical record follow the PRD.

The physical record number must equal that of the last PRD. The

field number must be unique in this physical record.

Each FD defines a field on the card for this physical record.

FLD tells where the field is, and TYPE tells the kind of item in

the field. The meanings of the codes are:

N name NUR number relation
NA name (animate) R relation
C class RA relation (animate)
CA
T

class (animate)
time

NUM number

The skip-options are for errors. They indicate that this

field, physical record, or logical record should be skipped. All

class and relation descriptors that refer to a skipped field will not

be processed. ERROR requests printing of the data card and a

message.

BLANK tells what to do with a blank field. A skip-option can

be given, or a default literal can be specified. The default for

BLANK is SKPFLD, ERROR.

TRANS allows translation of a field by a table. The default

of SELF means that no such translation is done. TABLE specified

translation; the integer is the table number and must be less than 256.

The optional part of the parameter tells what to do if the field value

is not found in the table. The value may be used as it is, a skip-

option can be exercised, or a default literal value can be given. If

nothing is given, SKPFLD, ERROR is assumed.

MULT is used to specify a scale factor for numeric fields.

The value of the field is multiplied by the given number, which may

be negative. This is done for values obtained from BLANK or

TRANS processing as well.

The DEF parameter specifies what to do if a 'name is or isn't

defined already. NO gives the action if the name is not defined and

YES if it is. The action can be to add (define) the name or a skip-

option. If the name already exists and is added, it will become

ambiguous, and the new definit:an only will be used for the value of

this field. In any other circumstance an ambiguous name is an

error. A name is considered to exist only if it has the same type as

for this field; names with different types are distinct. The default

for DEF is NO, ADD, so undefined names are defined. Even if a

YES defparm is given, NO, ADD remains in effect unless a NO defparm

also appears. The DEF parameter does not apply to names obtained

from translate tables or literals, but only to those on the data records.

TYPE must be given befc re a TRANS, BLANK, or MULT

parameter.

Examples:

FD 1 5 FLD=<2, 6>; TYPE=N;TRANS=TABLE, 4, SELF;
LEF=YES, SKPFLD, ERROR

FD 1 6 FLD=<21, 21>;TYPE=NUM;TRANS=TABLE, 1;
MULT='101;BLANK=101

Example 1 defines field 5 of physical record 1. It is a name in

columns 2 through 6. The field is translated accordiAz to table 4;

if the field value is not in the table it will be used as it is. In that

case, it must not be defined yet. It will be defined. Example 2

defines a single - column numeric field in column 21. Its value is

translated by table 1; the field is skipped if the value is not found.

The output of the table is multiplied by 10. A blank field gives a

value of 0.

Class

The next tx o descriptors tell how to process the data, i. e. what

interrelationships exist between data items.

code: CD

parameters:

*MEMBER= N
ITA ' value[

'','CLASS= CA value

TIME=time-option

Relation

code: RD

parameters:

* ARGUMENT =

* VALUE =
r N

NN1

[NA

[
R

* RELATION = la
NUR

TIME=time-option

value

value

value

<integer,value is

time-option
iss

'literal'

,

integer>

ALLTIME

[, } value

FROM
TO
BEFORE
AFTER
STARTING
STOPPING

FROM
TO
BEFORE
AFTER
STARTIN G

LSTOPPING
IN
ON '

S.

A value of the form <integer, integer> refers to a field. The first

integer is the physical record number, and the second is the field

number. A type given before a field reference will be checked

against the field's type; they must be identical.

If a value is a literal, it will have the type specified if one is

given . If not, it will have the default type. Note that for a VALUE

parameter that is a numeric literal, the default type is still N (name)

even though the relation is numeric.

I[, "value -

14

ALLTIME is all of time. If only one of the prepositions

FROM, TO, BEFORE, AFTER, STARTING, and STOPPING is

used the other end of the time interval is all of the past or future;

it is not today.

These descriptors tell what data is actually to be added. The

class descriptor makes the MEMBER a member of the CLASS.

A record descriptor makes VALUE a RELATION of ARGUMENT.

The times may be applied to either.

Examples:

CD MEMBER=<1, 5>;CLASS='SCHOOL'

CD CLASS=CA, 'MALE';MEMBER=<2, 5>;TIME=BEFORE'NOW'

RD ARGUMENT=NA, 'SUE' ;VALUE=NUM, <1, 6>;
RELATION=NUR, 'AGE, ; TIME=IN, <1, 7>

RD ARGUMENT=<1, 5 >; VALUE= 'BILL';
RELATION=<1, 8>;TIME=FROM<1, 9>T0<1, 10>

Example 1 makes the name in field 5 of record 1 a member of

SCHOOL at all times. Example 2 makes field 5 of record 2 a

member of the animate class MALE at all times before the date the

input data is processed. In the third example, the animate name

SUE and the number relation AGE are declared; SUE's AGE is the

number in field 6 of record 1 at the time given in field 7 of record

1. Finally, BILL is the value of the relation in field 8 applied to

the name in field 5 from the time given. infield 9 through that in

field 10.

Table

This descriptor defines a code and its value for a translation

table.

code: TD

table number: integer (must be less than 256)

parameters:

ARGUMENT='literal'

IMAGE= 'literal'

This descriptor defines one entry in a TRANS table. The argument

is any string of characters. The IMAGE literal will be given the

type of the fields that refer to this table.

It will be more efficient if all descriptors for a table are

consecutive, but this is not required.

Examples:

TD 4 ARGUMENT= 'AA';IMAGE= 'JOHN'

TD 6 ARGUMENT='+';IMAGE='1'

TD 6 ARGUMENT='-';IMAGE='-1'

In example 1, the argument AA will be translated to JOHN.

In table 6, the field + will become 1, whereas - will be -1.

End

code: END

This indicates the end of the descriptors and the beginning

of the data.

Order of cards

The LRD must be first. It is followed by the PRDs and FDs.

The FDs for a given physical record must follow the PRD for that

record. The FDs are optional; if omitted, the physical record is

effectively skipped.

The CDs, RDs, and TDs must follow all the PRDs and FDs

They can be in any order and are optional. TDs are needed only

to define the tables referenced in the FDs. TDs for other tables

are ignored. If there are no CDs or RDs the fields will be processed

and names defined as required, but no data is inserted.

END is the last descriptor card. The data cards follow it.

Within a logical record the data cards must be in the same

order as the PRDs.

Treatment of blanks

Within literals and fields on data cards, blanks are treated

as they are in REL English. That is, leading and trailing blanks

are deleted, and internal blank strings are compressed to single

blanks. Thus, placement within a field is immaterial. However,

blanks are not deleted from logical separators or record ids, and

these_must appear in the data exactly as they are in the descriptor.

Error handling

If any error is detected in the descriptor cards, the data cards

are ignored. However, the names in literals in the descriptors

have been defined if they were not already.

An ambiguous name is an error, unless this field makes

the name ambiguous by DEF=YES, ADD. An error in a name, number,

or time field causes the data field to be skipped.

If any field referred to in a CD or RD is skipped, the entire

CD/RD is skipped for this physical record.

If a physical or logical record is skipped, names that have

already been processed may be defined, depending on the DEF

parameters. Hence, care should be taken to avoid defining these

names again, and making them ambiguous. Names that occur

later in the skipped record will not be defined. If a logical record

is skipped, no CDs or RDs processed for this logical record.

If a physical record is skipped, all fields in this physical record

will be skipped, and so CDs or RDs that refer to these fields will

not be processed. This applies only to the data that appear on the

card in error if a physical record is variable (VAR=YES). That

is, data in the same fields on other cards of this physical record

type will be processed.

Variable record processing

A physical record type may occur a variable number of times

in a logical record if VAR=YES is given. A CD/RD may refer to

fields of such records, and the action of the CD/RD will be repeated

for each data card of the record. If more than one field is in a

variable record, then the variable fields are processed in parallel.

That is, all of them are stepped for each repetition. These fields

may be in different records. Those which are repeated (i. e. actually

occur more than once) must all be repeated the same number of

times.

Example

LRD PRIDFLD=<1, 1>;SEP=NONE
PRD 2 PRID=1T';VAR=YES
FD 2 1 FLD=<2, 5>;TYPE=T
PRD 1 PRID='M';VAR=YES
FD 1 2 FLD = <2, 10 >;TYPE =NA
PRD 4 PRID='C';VAR=YES
FD 4 1 FLD=<2, 10>;TYPE=CA;TRANS=TABLE, 1, SELF
CD CLASS=<4, 1>;MEMBER=<1, 2>;TIME=IN<2, 1>
TD 1 ARGUMENT='M';IMAGE='MALE'
TD 1 ARGUMENT = 'F';IMAGE= 'FEMALE'
END
T1960
M JOHN
M MARY
C M
C F

Since both the M and C cards are repeated, they must be

repeated the same number of times. The effect is to make JOHN a

MALE in 1960 and MARY a FEMALE in 1960. If

19

T1970

also appeared after the

T1960

then John would be a MALE in 1960 and MARY would be a

FEMALE in 1970.

20

Appendix A

Summary of Descriptor Cards

Parameters preceded by * are required.

Logical Record Descriptor:

code: LRD

parameters:

* SEP =
LRID, field
'literal' [, field]
NONE

PRIDFLD = field
NONE

field: <integer, integer>

Physical Record Descriptor:

code: PRD

record number: integer (<256)

parameters:

PRID = 'literal'[, field]

VAR = YES
NO

MISS = SKPPR [, ERROR]
SKPLR [, ERROR]

Field Descriptor:

code: FD

record number: integer

field number:

parameters:

* TYPE

integer (<256)

= N
NA
C
CA
NUR
R
RA
NUM
T

* FLD = field

BLANK =

TRANS =

MULT =

5 skip-option
I 'literal'

SELF
TABLE, integer

'number'
[

DEF = defparm [, defparm]

defparm:

I ADD
skip-option

skip-option:

SKPFLD [, ERROR]
SKPPR , ERT071-
SKPLR [, ERROR]

Class Descriptor:

c ode: CD

parameters:

* MEMBER = value

SELF
skip-option]
'literal'

21

* CLASS = [C

TIME = time-option

Relation Descriptor:

code: RD

parameters:

value

N* ARGUMENT - ica ,[value

VALUE = N ,1 value
NA

NUM

* RELATION =
RA

NUR

TIME = time-option

value: {<integer, integer>
'literal'

value

time-Option:

ALLTIME

FROM FROM
TO [I] value TO [=]value
BEFORE BEFORE
AFTER AFTER
STARTING STARTING
STOPPING STOPPING

IoNN
[,] value

23

Table Descriptor:

code: TD

table number: integer (<256)

parameters:

* ARGUMENT = 'literal'

IMAGE = 'literal'

End Description

code: END

I

24

Appendix B

EXAMPLE #1

The data consists of a deck of several hundred cards, each

with the following simple format:

Columns 1 through 15: a person's name

Columns 16 through 30: the name of the school they are attending.

Columns 31 and 32: the person's age.

For example:

MARY A. JONES YALE 21

It is desired to enter into the data base the information corres-

ponding to the following three sentences:

<name> is a student.

<name>'s school is <school>.

<name>'s age is <age>.

For the example shown, this would be:

Mary A. Jones is a student.

Mary A. Jones' school is Yale.

Mary A. Jones' age is 21.

If the person named or the school named are not already in the

lexicon, they should now be automatically added as the data goes in.

This deck constitutes a single logical record. Each individual

card is a separate physical record. Since this is the case, we don't

need to worry about an identifying field, a thus we do not have to

specify any physical record id field. However, we must indicate

this fact. We must, however, specify how logical records are to be

distinguished. In this example none is needed, so we specify none.

The Logical Record Discriptor Card is thus:

LRD PRIDFLD=NONE;SEP=NONE

Now for the Physical Record Descriptor Card. Since there is

only one card per physical record, v.'e will give it the record number 1.

There is no need in this simple case to designate any parameters.

Thus the descriptor card should be

PRD 1

Each card has three fields which we must now describe. The

first Field Descriptor Card will be:

FD 1 1 TYPE=NA;FLD=<1, 15>

This indicates that the field in columns 1 through 15 is to be treated

as a name of an animate individual. Since no other parameters are

included, the following actions will be taken. If this field is blank,

this field and any data using this field will be skipped and an error

message printed. If the name occuring in this field is not already in

the lexicon, it will be added; this action is equivalent to a statement:

<name>: =name animate.

The other two fields are similarly described by Field Description

cards:

FD 1 2 TYPE=N;FLD=<I6, 30>

FD 1 3 TYPE=NUM;FLD=<31, 32>

Now we must describe how to process the data using Class

Descriptor Cards and Relation Descriptor Cards. The first item

of data is that the person named in the first field is to be made a

member of the class of students:

CD MEMBER=<1, 1>;CLASS=CA, 'STUDENT'

The <1, 1> on this card indicates the member name is to be found

on physical record 1, first field. N to that this physical record

number and field number are on the first Field Descriptor Card.

To add the data:

<name>'s school is <school>.

use the Relation Descriptor Card

RD ARGUMENT=<1, 1>;VALUE=<1, 2>;RELATION='SCHOOL'

To add the data:

<name>'s age is <age>.

RD ARGUMENT=<1, 1>;VALUE=<1, 3>;RELATION=NUR, 'age'

On the first of these, we did not show the type of the literal "school,

since the default type is relation. In the second, we needed to

indicate that "age" is a number relation.

To indicate that all descriptor cards have now been included,

an END card is used.

27

To recapitulate, the Descriptor Cards for controlling the

adding of data from the given deck are:

LRD PRIDFLD=NONE;SEP=NONE

PRD 1

FD 1 1 TYPE=NA;FLD=<1,15>

FD 1 2 TYPE=N;FLD=<16,30>

FD 1 3 TYPE = NU;FLD =<31, 32>

CD Ivi EMBER:7<i, 1>;CLASS=CA, 'STUDENT'

RD ARGUMENT = <1, 1 >;VALUE = <1, 2 >;RELATION = 'SCHOOL'

RD AROUMENT=<1,1>;VALUE=<1,3>RELATION=NUR, 'AGE'

END

EXAMPLE #2

The data consists of a deck of cards, each successive three

cards of which refer to a different individual. Such a set of three

cards therefore constitutes a logical record referring to this

individual. Their formats are:

Card A:

Column 1 to 30 the individual's name

Column 31 to 50 date of birth

Column 52 sex, coded M for male, F for female

Column 54 to 72 occupation group, eg. "teacher"

Card B:

Column 1 to 30 the individual's name

Column 31 to 60 the name of the person's spouse

Column 62 to 65 the year of their marriage

Column 67 to 68 the number of their children

Card C:

Column 1 to 30 the individual's name

Column 31 to 50 the date on which the data on this card
was taken

Column 52 attitudes on a five point

Column 54 scale on Viet Nam,

Column 56 Watergate and Dope.

Data corresponding to the information in the following sentences

is to be entered.
male<uame> was a female starting <date>.

The occupation of <name> is <occupation>.

The spouse of <name> is <spouse> since <year>.

The number of children of <name> is <number>.

The Viet Nam attitude of <name>

was <1> strongly opposed
<2> opposed
<3> no concern
<4> favorable
<5> strongly favorable

on <date>.

The Watergate attitude...

The Dope attitude...

For card A:

If date of birth or sex are missing, the entire logical record

is to be skipped and an error message printed.

If the occupation is missing, the default occupation "unknown"

is to be inserted.

For card B:

If the name of the spouse is missing, skip the card, but don't

issue error message.

If the spouse is given, but date of marriage is not, skip card

and issue error message.

If the number of children is missing, use the number 0.

For card C:

If the date is missing, use "July 17, 1972"

If any of the three responses are missing, use "no response. "

Descriptor Cards:

LRD

PRD

SEP=LRID, <1, 30>;PRIDFLD=NONE

1

FD 1 1 TYPE=NA;FLD=<1, 30>

FD 1 2 TYPE=T;FLD=<31, 50>;BLANK=SKPLR, ERROR

FD 1 3 TYPE=C;FLD=<52, 52>;BLANK=SKPLR, ERROR;
TRANS=TABLE, 1, SKPLR, ERROR

FD 1 4 TYPE=N;FLD=<54, 72>;BLANK='UNKNOWN'

PRD 2

FD 2 2 TYPE=NA;FLD=<31, 60>;BLANK=SKPPR

FD 2 3 TYPE=T;FLD=<62, 65>;BLANK=SKPPR, ERROR

FD 2 4 TYPE=NU;FLD=<67, 68>;BLANK='0'

PRD 3

FD 3 2 TYPE=T;FLD=<31, 50 >;BLANK ='JULY 17, 1972'

FD 3 3 TYPE=N;FLD=<52, 52>;BLANK&NO RESPONSE';
TRANS=TABLE, 2

FD 3 4 TYPE=N;FLD=<54, 54 >;BLANK ='NO RESPONSE';
TRANS=TABLE, 2

FD 3 5 TYPE=N;FLD=<56, 56>;BLANK&NO RESPONSE';
TRANS=TABLE, 2

CD MEMBER=<1, 1>;CLASS=<1, 3>;TIME=STARTING<1, 2>

RD ARGUMENT=<1, 1>;VALUE=<1, 4>;RELATION='OCCUPATION'

RD ARGUMENT=<1, 1>;VALUE=<2, 2>;RELATION='SPOUSE';
TIME = STARTING <2, 3>

RD ARGUMENT=<1, 1>;VALUE=<2, 4>;RELATION=NUR,
'NUMBER OF CHILDREN'

RD ARGUMENT=<1, 1>;VALUE=<3, 3>;RELATION='VIET NAM
ATTITUDE';TIME=ON<3, 2>

RD ARGUMENT=<1, 1>;VALUE=<3, 4 >;RELATION= 'WATERGATE
ATTITUDE';TIME=ON<3, 2>

RD ARGUMENT=<1, 1>;VALUE=<3, 5 >;RELATION ='DOPE ATTITUDE';
TIME=ON<3, 2>

TD 1 ARGUMENT&M';IMAGE='MALE'

TD 1 ARGUMENT='F';IMAGE='FEMALE'

TD 2 ARGUMENT =' 1 ' ;IMAGE&STRONGLY OPPOSED'

TD 2 ARGUMENT ='2';IMAGE=' OPPOSED'

TD 2 ARGUMENT= '3';IMAGE ='NO CONCERN'

TD 2 ARGUMENT='4';IMAGE='FAVORABLE'

TD 2 ARGUMENT='5';IMAGE='STRONGLY FAVORABLE'

END

EXAMPLE #3

This example is of a much simplified bibliographic record

file. It consists of a sequence of logical records, each consisting

of 2 or more cards. The first card has the letter A in column 1,

an identifying number in columns 2,3, and 4, and the name of an

author in columns 6 through 35. Subsequent cards have a T in column 1,

the same identifying number in columns 2,3 and 4, a date in columns

6 though 9, and a title in columns 11 through 80. There may be any

number of such title cards so long as there is c't least one. An

example of such a logical record is the three card images:

A025 WALTER SCOTT
TO25 1894 IVENHOE
TO25 1906 WAVERLY

Descriptor cards:

LRD SEP=LRID, <2, 4 >;PRIDFLD = <1, 1>

PRD 1 PRID='A'

FD 1 1 TYPE=NA;FLD=<6,35>;BLANK=SKPLR, ERROR

PRD 2 PRID='T';VAR=YES

FD 2 1 TYPE= T;FLD=<6,9>

FD 2 2 TYPE=N;FLD=<11, 80>

RD ARGUMENT=<2,2>;VALUE=<1,1>;RELATION&AUTHOR';
TIME=IN<2,1>

END

Example 4

The Fortune 500 Data File

The Fortune 500 Data File is a computer-readable version

of the data published by Fortune magazine for the 500 corporations

with the largest sales. The data base tape is copyrighted by

Time-Life, Inc. We rented a copy of this tape and put some of the

data into an REL version.

We were told that the tape contained data for 1954-1971.

It had 151-byte logical records in the following format:

Bytes S Field name

1-2 year
3-5 sales rank
6-40 company name

41-65 address
66-74 sales
75-83 assets
84-86 assets rank
87-95 * income
96-98 income rank
99-107 invested capital

108-110 invested capital rank
111-119 number of employees
120-122 no. of employees rank
123-125 income/sales - % (decimal point

between 124 and 125)
126-128 income/sales rank
129-131 income/capital - % (dec. pt. between

130 and 131)
132-134 income/capital rank
135-139 * earnings/share: current (dec. pt.

between 137 and 138)
140-!44 earnings/share: ten years ago

(dec.. pt. between 142 and 143)

Bytes S Field name

145-148 earnings/share: growth rate -
(dec. pt. between 146 and 147)

149-151 earnings/share: growth rate rank

Fields with a * under S were signed by an 11 punch over the low order

digit if negative.

We discovered that the tape was written at 800 bpi with a block

Size of 3775, giving 25 logical records per block. Partial clumps of

the tape in EBCDIC and hexadecimal for the years 1954 and 1965

showed that the data set was incomplete and not fully described. The

data was preceded by over a hundred blank logical records and then

three records containing a cow right notice. The address fields were

all blank. For 1954 the fields for invested capital, income/sales,

income/capital, and earnings/share were all zeroes. For 1965

these fields were valid (the first year for which this was true) except

thaf some of the growth rates and their ranks were 0. Sales, assets,

and capital were given in thousands. The company names were given

with non-EBCDIC codes for some special characters, including codes

not valid on 026 keypunches. The signed fields contained a 12 punch

over the low order position if positive.

A program was written to select some of the data fields for the

years 1962 - 1971. The fields were translated to chahze the invalid

codes found in the data and to convert the numeric fields to normal

signed numbers with decimal points. This program produced a disk

35

file with 80-byte logical records blocked to 800-byte blocks. Each

original record produced two new records with these formats:

Bytes Field

Record 1
1 literal '1'

2-5 year: 19yy
6-8 sales rank
9 -43 company name

44-52 sales in thousands
53-61 assets in thousands
62-64 assets rank
65-74 income in thousands
75-77 income rank

Record 2
1 literal '2'

2-11 invested capital in thousands
12-14 capital rank
15-23 no. of employees
24-26 no. of employees rank
27-33 earnings/share - current
34-39 earnings/share - growth rate To

40-42 earnings/share - growth rate rank

80-byte records were used since the alternate input reader requires

them, although otherwise bulk data input can process longer records.

We then decided to put only the data for years 1967 - 1971 in

the system, and only in smaller amounts. This was done to break

the input job up into smaller units. A program was written and run

to produce five data sets, each containing the records for only one

-A these years. We then ran several jobs, each of which put in only

one year's data.

36

The first five jobs constructed two classes, COMPANY and

FORTUNE 500 COMPANY. Each company was in the first class

at all times, but in the second only for those years when it was in

the Fortune 500 list. We then ran five jobs to construct the number

relations - SALES, INCOME, and RANK BY SALES. Five more jobs

were run to construct the GROWTH RATE relation. SALES and

INCOME were multiplied by .001 to convert them to units of millions.

The card input for the first GROWTH RATE job was:

ENTER FORTUNE500
GROWTH RATE: =NUMBER RELATION
$ALTINPUT DATA
LRD SEP=NONE;PRIDFLD=<1, 1>
PRD 1 PRID= ' 1'
FD 1 1 TYPE=T;FLD=<4, 5>; TRANS= TABLE, 1
FD 1 3 TYPE=N;FLD=<9, 43>
PRD 2 PRID='2'
FD 2 6 TYPE=NUM;FLD=<34, 39>
RD ARGUMENT=<1, 3>;VALUE=<2, 6>;RELATION=NUR,

'GROWTH RATE'
TD 1 ARGUMENT=167';IMAGE=' 1967'
TD 1 ARGUMENT= '68';IMAGE= ' 1968'
TD 1 ARGUMENT='69';IMAGE=' 1969'
TD 1 ARGUMENT='70 ';IMAGE= ' 1970'
TD 1 ARGUMENT=' 71';IMAGE=' 1971'
END
// DD DSN=FORTUNE. YR1, DISP=SHR
// DD
$ENDALT
INPUT BULK DATA FROM DATA
EXIT

The second card, which declares GROWTH RATE, is not strictly

necessary, but is desirable. Under certain rare circumstances a

class or relation name encountered by the bulk data processor may

not be defined by the current programs. The tin e field need not be

evaluated by a translate table, but this mechanism is faster than

parsing when a field can have only a limited set of values. We

have found that limiting the input to about 2000 cards is necessary

to avoid a bug in the current system.

These jobs required the following elapsed times, measured from

job start to job end by the times printed on the operator's console:

For 3 relations For 1 relation

3: 35 = 215 2: 15 = 135
7: 54 = 474 2: 46 = 166

12: 14 = 734 6: 18 = 378
14: 17 = 857 7: 33 = 5453
16: 50 = 1010 9: 01 = 541

54: 50 = 3290 27: 53 = 1673

The times are in minutes: seconds and seconds for each of the five

jobs and the total. Each job adds 500 items to one or three relations.

The times are not linear with the total number of data items. Times

for cither jobs may be estimated from these. These jobs were run on

an IBM 370/135 with 2314 disks in a 182K partition.

