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ABSTRACT

This thesis is an investigation into the nature of data aralysis
and computer software systems which support this activity.

The first chapter develops the notion of data analysis as an
experimental science which has two major components: data-
gathering and theory-building. The basic role of language in
determining the meaningfulness of theory is stressed, and the
informativeness of a language and data base pair is studied, The
static and dynamic aspects of data analysis are then conside’frﬂe-d
from this conceptual vanitage point. The second chapter surveys the
available 'types of computer systems which may be useful for data
analysis. Particular attention is paid to the questions raised in the
first chapter about the language restrictions imposed by the computer
system and its dynamic properties.

The third chapter discusses the REL data analysis system,
which was designed to satisfy the needs of the data analyzer in an
operational relational data system. The major limitation on the
use of such systems is the amount of access to data stored on a
relatively slow secondary memory. This problem of the paging of
data is investigated and two classes of data structure representations
are found, each of which has desirable paging characteristics for
certain types of queries. One representation is used by most of the
generalized data base management systems in existence today, but
the other is clearly preferred in the data analysis environment,

as conceptualized in Chapter I.
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This data representation has strong implications for a
fundamental process of data analysis -- the Quantification of
variables. Since quantification is one of the few means of sum-
marizing and abstracting, data analysis systems are under strong
pressure to facilitate the process. Two implementations of quanti-
fication are studied: one analagous to the form of the lower predi-
cate calculus and another more closely attuned to the data represen-
tation. A comparison of these indicates that the use of the "label
clasgs'" method results in orders of magnitude improvement over the

lower predicate calculus technique.
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Introduction

The development of data analysis has pafalleie'd the rise of
empirical science itself. Modern science is founded upon the idea

that theory should be verified against the data obtainable from

AN

reality. This inclusive view of the analysis of data has tended to
be submerged by the su;cessful development of the theories of
probability and sta.tisticé, which have turnéd data Analysis into a
relatively confined sub-branch of mathematics. The advent of the
elect.ronic‘ computer, however, with its great flexibility and liber-
ating power has caused the rediscovery of data analysis as a field
in its own right that has much wider goals and. fewer restrictions
than either mathematical statistics or probability theory.

To get a feel for the rapid changes in attitude that have
occurred recently, listen to the pioneer John W. Tukey {1962, p. 1):

~For a long time J have thought I was a statistician,
interested in inferences from the particular to the
general. But as I have watched mathematical statistics
evolve, I-have had cause to wonder and to doubt. And
when I have pondered about why such techniques as the
spectrum analysis of time series have proved so useful,
it has become clear that their '"dealing with fluctuations"
aspects are, in many circumstances, of lessor impor-
tance than the aspects that would already have been
required to deal effectively with the simg’er case of
very extensive data, where fluctuations would no
longer be a problem. All in all, I have come to feel
that my central interest in is data analysis, which I
take to include, among other things, procedures for
analyzing data, techniques for interpreting the
results of such procedures, ways of planning the
gathering of data to make its analysis easier, more
precise or more accurate, and all the machinery and
results of mathematical statistics which apply to
analyzing data.
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This statement, first presented in 1961, is still closely
bound to the traditional notions of statistics, as it is a descripticn
of what statisticians did as opposed to what they said they did. A
short time later Tukey recognized (1966, p. 695) the generality
and independence of data analysis and had progressed far beyond
the narrow confines of conventional statistics:

The basic general intent of data analysis is
simply stated: to seek through a body of data for
interesting relationships and information and to
exhibit the results in such a way as to make them:

recognizable to the data analyzer and recordable
for posterity.
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CHAPTER I

THE ESSENCE OF DATA ANALYSIS
Data analysis islthat coordination of continuing
observation and developing theory which prod-
uces information.

Data analysis is the activity of interrelationship between
ongoing theory and ongoing data: it is neither th=s theory-changing
nor data-gathering process. Modern trends in the philosophy of
science match this view that the existence of reality, and with it
the notion of truth, is irrelevant. Data analysis does not result
in true theories, only informing ones.

This use of "information'" is non-standard. Both theory and
data are required to produce information. Theory without data is
sO unsubstantiated as to be empiy. Data without theory is mean-
ingless. In tying data to theory, data analysis gives the confirmation
of data to theory and the interpretation of theory to data, and
creates information.

Now a theory is linguisiic in nature: a set of statements
in some language. One might preler '"conceptualizatioa' instead,
but this is illdefined and unmanageable. Theory is the tangible,
manipulable form of conceptualization, insight, understanding,
and explanation,

And what is data? Data is not linguistic, not sentences of
a language. Data is a structured bedy of facts, a tabular listing

of terms. Today data is epitomized by the computerized data bank.
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The distinction between extension, the data structure, and
intension, the theory, is the first fundamental duality. Data analysis
¥ is the bridge between them. It resembles the double helix, that
foundation of life as we know it. If one strand is the activity of
observation and the other is the unfolding process of conseptual-
ization, then data analysis bonds the two, holding them together

and conveying their recriprocal influences.

Tne Role cf Lianguage

When one is faced with a body of data, one conceives his
task to be finding relationships which are substantiated by that
da:a. One searches for those models, or sets of structural
relationships, which best reflect the data. Some would like to
think that the data anaiyzer has at his disposal all possible
structures or models - this is not the case.

"All possible models' is fa: too large a class and in fact
-s philosophically treacherous. In any particular case the
analyzer is limited, limits himself, to a much more detailed and
circumscribed set of models. These are the ones compared with
the data. Thus another aspect of the task is to determine the
modelspace, the set of models, to be considered.

Equivalently, since a theory is embedded in a language,
one must determine the language in which to express the theories

to be given attention. The division between language and theory,
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or modelspace and model, is the second fundamental distinction
of data analysis.

illustration can be formed from the;.relationships given
by a family tree. When a researcher knows that his data is about
family relationships he wi}l use such terms as father, mother, and
grandparent, and will state such particular data- as ""John is the
father of Mary,'" fully understanding the meaning of these terms.
These phrases, together with some knowledge of their meanings
and interrelationships, form a langhage which he uses to deséribe
certain worlds.

Tacit Knowledge. Which models are available in this
language? It is clear that using such terms one cannot describe
any mod_el whatsoever. Since the words 'of' the language inclﬁde
tacit knowledge, we find that langgage delimits the set of models
we can consider and this very restriction adds knowledge which
v;oulAd other_wiSe not exist. - Thus if we assume, either épriori or
by explicit statement, thét parent and child are related in the‘ |
normal fashion, tﬁen from the dat; "John is the father of Mary”
we can know_i:hat ""Mary is John's child." This new understanding
is attainable oﬁly because we have eliminated many possibilities
and thus have some restrictions on the models involved. This
technique of géining information by restricting the possibilities

considered is tremendously powerful and ubiquitous.
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The position of tacit l.cnowle:dge is generally misunderstobd.
Consider "John is the father of Sue.' Even if the level of implicit
meaping théf relates father to child is ignored, there remains a
basic understanding of the structure of the sentence itself: it
establishes that a relationship, namelyv father, exists between John
and Sue. It is only in terms of these understandings of language
and language strﬁcture that data is in any sense meaningful. Even
when the data is given in the“form of tabulations, without some
" prior understanding of how the forms of these tabulations are to be
interpreted, of the significance of the symbols used, and so on,
the data would bé complete nonsense,

Let us examine in greater detail the implicit knowledge
tacit in language itself. Oné's ontology - what types of things one
believes can em’st; - determines to a large extenf what'things; one
looks for, pokes and éxa.mines, or considers erfOrs in measurement
ratﬁer than data. To see that these metaphyéical assumptions
- affect our perceived reality reconsider family relatiénships. We
know that a .father is‘male and a mother female, and every person
has one of each. Yet in certain primitive cultures a persan might
‘have two female parents, one the mother and the other the father.
Further, in our own society, artificia.l inovulation makes it

possible for a person to have two ""real" parents and a third woman

for a mother.
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It can be argued that the above is merely a change in the
.meaning of the wox.'ds. This is a change of language (in the broad
sense of language) and as such is a very definite change in the
assumptions and knowledge we bring to a situation. The informa-
tiveness of data is affected rather directly by this kind of change.

The linguist Benjamin Whorf expresses (1956, p. 212) the

‘role of language qQuite forcefully:

When linguists became able to examine critically
and scientifically a large number of languages of
widely different patterns, their base of reference was
expanded; they experienced zn interruption of phenom-
ena hitherto held universal, and a whole neworder
of significances came into their ken. It was found
that the background linguistic system (in other words,
the grammar) of ‘each language is not merely a
reproducing instrument for voicing ideas but rather
.is'itself the shaper of ideas, the program and guide
for the individual's mental stock in trade. Formu-
lation of ideas is not an independent process, strictly
rational in the old sense, but is part of a particular
grammar, and differs, from slightly to greatly,
between different grammars. We dissect nature
along lines laid down by our native languages. The
categories and types that we isolate from the world
of phenomena we do not find there because they
stare every observer in the face; on the contrary,
the world is present:d in a kaleidoscopic flux of
impressions which has to be organized by our minds-
and this means largely by the linguistic systems in
our minds. We cut nature up, organize it into
concepts, and ascribe significances as we do,
largely because we are parties to an agreement to
organize it in this way - an agreement that holds
throughout our speech community and is codified
in the patterns of our language. '

The language as a whole encapsulates tacit knowledge.
Staternents in the language, 'theory, " extend this in an explicit

way. While even the level of meaning assumed in the language
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may go beyond or be inconsistent with the data, presumably we
start with a language which does not do this. But the theories
which extend the tacit meaning may well. |

One can think of the sentences that make up a theory as
specifications of certain aspects of the world. As such, each
statement further restricts the class of possible models.: In
general, one would hope to have a theory which so restricts the
possibilities i:hat there would be one ar;d only one left ~ this, then,
would be the "true'' theory of reality. Unfortunately, no data is ‘
complete enough to confirm such a theory, thus theory must be
weaker.

Data as Theory. There is at core a language in terms of
which the data is stated. But the languages we use to deal with -
data are far richer than that minim.ally necessary for the statement
of the data itself. We can describe further, more complex relation-
ships that may or rx;aay,not exist in the data. We can account for
pro.cesses that reduce the data into other forms. Moreover, the
language could have potentially stated items of data incompatible
with those that may have been given, or which may extend or modify
the original data. -

Any set of statements in a language is a theory. The data
. translated into statements form a theorj, but a terribly weak one. °
Dr. Richard Feynman, Nobel Laureate in physics, puts the matter

(1965, p. 76) this way:
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How is'it possible that we can extend our laws
into regions we are not sure about? Why are we so confident
that, because we have checked the energy conservation
here, when we get a new phenomenon we can say it
has to satisfy the law of conservation of energy? Every
once in a while you read in the paper that physicists
have discovered that one of their favorite laws is wrong.
Is it then a mistake to say that a law is true in a
region where you have not yet looked? If you will
never say that a law is true in a region where you have
not already looked, you do not know anything. If the
only laws that you find are those which you have just
finished observing then you can never make predictions.
Yet the only utility of science is to go on and try to
make guesses. So what we always do is to stick our
-necks out, and in the case of energy the most likely
thing is that it is conserved in other places.’

Itis _evident that data as theory is too weak. However, theory
that goes far beyond data is too unsubstantiated. The ''proper"
theory is in an intermediate position between the two. We se‘-ek a
theory that provides the. greatest insight a_.dequa.tel_y confirmed
by the data.

o Data a.s Submodel. | Ahother view, complementary tb the
above notion, is that we seek that model or set of structural
relationships which best reflects the data and its iqtercohnections.
We begin with some assemblage of models, the modelspace, from
which we can choose a model on fhe basis of our data. The —
modelspace cannot be the set of al-l models: the limitations are
'iden.tical to those imposed by the tacit kﬁowledge underlying a
l-a.nguage. For example, sccial scientists doing regressidn
av.alysis have confined themselves to linear models of their dati.

Thuse the modelspace limits our alternatives in exactly the same

way and for the same purpose as does a language.
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Since the data specifies structural interrelationships one
can view it as a submodel. As we havé seén, the data-submodel
does not form a complete model in itself, but oﬁly a partially
specified configuration of the universe. The modelspace, then,
consists of models which extend that partial specification--models
which contain the data asa submodel. These are the models which
are compatible wit.:h the dafa. .

The relationship between a language and a modelspace is
quite close: one can derive the modelspace from the language, 4
though: not quite the revers.e. Consider the models of set theory as
"all possible modgls", at least from a meta-level vantage point.
We can say that two of these models are- enuivalent, to_us, if no
sentence in a given.language can distinguish between them. Thus,
no sentence of our language is true in oné 1:no_de1 and false on the
other, or vice versa. In this case the language sirﬁiply cannot
expre.ss those features that differentiate the two models. As an
exarxjple, suppose our language talked a./bout flipping coins. We
can express whether a coin lands With either héads or taiils‘
showing. Whati we cannot express or distinguish 1s the difference
between landing‘ heads up on the table or landing heads up on the . -
floor or landing heads up after spinning exactly 101 times. All of
these events are identical to our simple heads/tails language. .

Therefore, a language clusters models together. The

language can be used to distinguish any two models from different
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clusters, and cannot be so used on models within the same cluster.
Formally, the {angﬁage has partitioned the models into a set of
elementary equiw}alence classes. These clusters, or equivalence
classes, form tﬁe modelspace we ;ee when using that language.

This modelspace represents exactly the possible states of
the universe--as seen by a particular language or conceptualization.
It mirrors the implicit understandings, knowledge, and structural
relationships which are tacit in that language.

A language corresp-onds to a modelspac é. A theory, or set
. ;’pf statements, within fhé.t languagg will select one or more of the
equivalence classes as being the set of models compatible with that
theory. We can correspond theories and models in this w:ay, with
a "comp}ete" theory selecting only one equivalence class, or cne
model in the modelspace.

We will label the language/theory approach as intensional
and the modelspace/model #pproach as extensional. While the two
are complementary, their differences are raeaningful and will be
discussed further in the section below on c'ompute;r' system tééhniques.

The fabric of data énaly_s‘is, then, can be torn in two ways

by the fundamental distinctions expressed in the diagram below:

. .1angua ge ¢mewmm————3 theory (intension)
model spacee————» model ' (extension)

(data as submodel)

(struc ture)«——————)(contgnt)

a4

Fig. 1. --The Two Dimensions of Data Analysis
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' Just as the first distinction can be considered intension vs,
extension, /the sécond can be thought of as structure vs. content.
The difficulty is that there is no adequate definition of structure.
As used here it means the commonalities found in a set of models,
or the organization abstracted from some particular set of data. It
is in this sense that we utilize a set of models, for the language/
modelépace gives us a means to manipulate structure. Marshall
McLuhaﬁ pursues a somewhat similé.r idea in distinguishing media
from messager.

The importance of structure is now being realized. If the
milestones of cpmputing'history were to be enumefated, most
c'omputef scienti‘sts would agree on (1) the notion of a stored-
'program machine and (2} the notion of list-processing techniques.
Information scientists, however, would sub.sume list-processing
under the idea of 'struc':tufe processing in general, for we ar;e
becoming/é:war_e tha.t the limitations of our programs are set by
the structures we utjlize much more .than by any other factor.
_Furtherm.t;r_el, b;} designing programs t(.; handle s.ome particular
- {stx_'ucture rather than a very Spécific set of data, we acqﬁire more
widely"a..pplic'_able programs. Oné can in fact go to the extreme
(But logiétél‘ly correct) pbsition that all ou'rﬁ '.computers do is convert
.-frorh one structure to ;nother and therefore should be called

structure-processing machines rather than data processing machines.
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We impose structure on our universe. But the structure of
our observations is too weak to be of any use; enormous structure
far beyond our data has too low a confirmation. We ﬁeed theories
and models which aré in between. |

What we do is ;b_uild theories which are informing: which
are compatible with our data and which go beyond the data in
delimiting alternatives. This notion that our theories are not
totally implied by our data disturbs people, for it insiéfs that
""totally objective science' does not exist. It means that in all
human endeavors we impose our own sﬁbjective views o\n our
p'ercepti_ons and that if we wish to be informed we must b;e artists.
But artists and scientists ‘combin.ed, forbthere are the.two» a.spects
to information: thé side which comp‘ares theory to data in order
to.maintain compatibility, and the_ side which adds subjective
structure in order to delimit the alternatives to be considered.

This imposition of cognitive structure on observation meaﬁs
that one can no longer believe in the primitive scientific ideal: one
merely looks at nature (in this case some d#ta) and all will be
revealed, for all scientific laws are inherent in the data waiting
for us to elic>it t;!;ém. This naive yiew has been s'upplanted by oﬁe
bin which scientific laws are the pfoduct of our'perceptions and of

our own thinking process, and are informing at the moment.




-14-

Information, L.anguage, and Data

The notion of information has been woven throughout the
preceding discussion; with it has been the assumption that informa-
tion is a function of both language énd observation. While the
formalization is beyond the scope of this work, it is péssible t§
outline some characteristics of this function.

The word information reminds us immediately of the exis-
tence of information theory, as communication theory has come to
be known. This branch of probability theory, founded in 1948 by
C.E. Shannon, is conc,erned. with the likelihood of the transmi»ssion'
of messages When they are subject to certain probabilities of trans-
mission fai;ltire, distortion, and accidental additions called noise.
The notion of information quickly appeared as workers in the field
tried to express what it is that is communicated, and was just as
qu_ickl&r given a mathe'rr;ati‘cal definition which fits thé coﬁtext of
communication theo'ry;

'The technical definition of informa_tioh in communication
theory is an attempt to measure the wo>rth or value of receiving
any particular message from some fixed set of messageé (Pierce
19‘61, p. 23): '

In communication theory .we consider a message
source, such as a writer or a speaker, which may
produce on a given occasion any one of many possible
messages. The amount of information conveyed by
the message increases as the amount of uncertainty
as to what message actually will be produced becomes
. greater. A message which is one out of ten possible

messages conveys a smallar amount of information
than a message wh1ch is one out of a million possible
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messages. The entropy of communication theory is a
measure of this uncertainty and the uncertainty, or
entropy, is taken as the measure of the amount of
information conveyed by a message from a source.
The more we know about what message the source
will produce, the less uncertainty, the less the
entropy, and the less the information.

This tremendously successful conception of information has-
one importaht point: the amount of information depends heavily
upon the characteristics of the set of alternati.ves from which the
message is drawn. In fact, the amount of information conveyed
by a .me svsage is defined as the difference before aﬁ& after its
receipt of our uncertainty about the message space. Thus the
central concept of information is the space of alternatives and its
probability distribution.

What is the alternative space in a given situation? Commu-
nication.theory was first applied to telegraphy, whose space was
‘obviously the alphabet, numerals, ahd a few punctuation characters.
Theée few characters were encoded into dots andrdashes for
. transmission,_ and one could determine the amount of information
a particular sequence of dots and dashes represented.

One rﬁust be careful however. Morse originally devised a
coding of words from. a dictionary into dots and dashes -.a radically
different space of alterna.,tix-/es. ‘One can receive a sequence of
signals and compute many different amounts of information

represented by that sequence, one for each alternative space or

even one for each probability distribution on the same alternative

ﬁ .
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space. Communication theory limits itself to a known and fixed
alternative space and probability distribution.

What has all this to do with data analysis? First, one can
certainly think of data as a rhessage, perhaps received from Nature
over a ﬁoisy channel. One would obviously like to know how much
infor‘mation that data éontained. If we had an alternative space
the.whole of communication theéry would be applicabie, and
‘pre‘sumably we could compute the inforrnation.

The problem, of course, is the space of alternatives. Here,
as should be gueésed by now, is the function of language. A language
determines a modelspace, as shown previously, which is exactly
the set of alternatives needed.

Therefore, a language and.a set of data toggther determine
the amount of information. Given a body of data, one can search
for that language which maximizes the information associated with
tha’lf data. Gi—vgn a fixed language, one can search for that data
which is most informing withinlthat conceptualization. We maximize
our information by adjusting both languagé and data as necessary.

The case of a single, fixed language is exactly that covered
by communication theory. More interesting is the extension of the

| notion of information into the realm of many languages,‘ conceptual -
izations, alternative spaces. We will refer to a conjecture con-
cerning this area, enunciated by F. B, Thompson, as the

Fundamental Theorem.
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Consider the case of a fixed set of data and a linear chain of
languages. The languages form a "'proper' chain, thatis, any
Ianguage in the chain is a proper ramification of the languages to
its left. More formally, we caifx induée a partial ordering on the set

“of all formal languages by this definition: if L, and L, are formal
languages, then Ll < L2 if the modelspace associa_téd with LZ, is a-
refinement of the modelspac_e assoqiated with Ll' That is, some
model possible in Ll has been ramified into several distinguishable
models in LZ‘

T\TVQ properties of such chains of languages are worth noting:
every propér chain has a right-hand end, and none have a left-hand

end. The ;'ight-han'd end language is one which creates a model-
space with only one model - it cannot di“stinguish between any
states of the universe. Such a language might consist, for example,

of the one word "wow. "' The fact that there i._s:'r.lo most powerful
language is essentially Tarski's theorem on t;uth: fof any formal
language Ll; there is a more po,werful‘ language L, which can express

things not expressible in Ll' .

Thus, if we make our chain of languages the horizontal axis

of a graph, and- a measure of the amount of ir.lfo;mation given by a

fixed set of data the vertical axis, we should at least be able to

see the shapé of the curve even if we cannot give explicit formulae

for its computation. There is one point worth noting on the language

axis. We will assume that there is a least powerful language in.
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which all aspects of the given body of data can be expressed, and
mark that L*. , |

We knbw that the information §rovided by our one-word
language is zero, since no data affects what we can do with it. As
for the rest of the curve, the standard expectation assumed in the
literature is that information increases until L", at which point
everything knowable is known, and is thereafter constant since one
does noi: lose information already gained by being able to express
more. This curve is depicted below.

»

I

¥

L* | L
Fig. 2.--"Objective reality" information curve
This view encourages the use of low-level languages and
conceptualizations - at least as ramified as L*. More importantly,
it says one can go much lower without loés of information; thus
'.biologists and psyéhol'ogists should be thinking in the same terms
.- as atomic physicists, for example. This view of the inform'ation
curve supports a reductionist philosophy.
| The Fundamental Theorem has two parts:
1) if one considers more and mdre.powe‘rful languages,

in the limit the information obtained is zero;
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%*)
2) there are languages to the left of L , i, e. abstractions
*
from L, which maximize the information across the

chain of languages.

—

/

\
2 ]
Fig. 3, --The information curve of the Fundamental Tl eorem

While this theorem has not yet been forraally proved, there
are good reasons for expecting it to be true. For more details,
see Thompsor (1969) and Randall (1970).

The Fundamenfal Theorem implies that we are most informed
when working at a fairly hi~h leve! of conceptualization -~ more
abstract than the level of the raw data, and certainly not at some
extremely ramified common, basic language. At the same time
one cannot get too far above the data,

One must search for an informative conceptual view. But
all languagpges are informative to some degree. The importance
of the Fundamental Theorem is that it tells us to search for the most
informative conceptual view, that in fact one exists. This view,
furthermore, is not at the level of our sensory impressions or some
other '""objective' level. It is a view in which we have gone beyond

the data, made inferences, and imposed our own will.
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Vhat is data analysis? On one side is the activity of finding
an informative language and theory within that language. On the
other is the continuing activity of i)erceiving and data gathering.
Both of these processes affect the other enormously, and data
analysis is the bridge that intervenes. Data analysis should tell
us when to move to a more informing theory, and when to gain
information by changing the data we work with to bring it closer to

current lé.nguage and theory.

Data analysis is that connzction between advancing cognitive
structuring, on the one hand, and continuing perception, on the

other, which produces information,

Statics of Dato Analysis

If information is a function of language, one might well
ponder the use of theory. Theories are necessary for the process
of confirmation: | one can compare data to a theory, not to a
language. Theory is our bridge between data and conceptual view.

Given a lé.hguage and a body of data how does one choose
which theory within the language will be used as representative and
compared to the data? We would like to choose the best one, the
theory whicl: fits the data most closely, out of the possibilities
provided by our language. In mostlanguages, however, there is

hardly a notion of fit, and no apriori meaning for '"best fit. "
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Mathematical Statistics. Fortunately, for a very few simple
languages we can define "fit'" and elicit the best-fitting theory.
Mathematical statistics is that subject which describes these
languages, a notion of fit, and procedures for finding the be's_t
theory in the language. The languages involved are all numeric,
and in general are the ones which are mathematically tractable.

For example, one of the most frequently used languages
talks about lines: linear functions of one real variable. All
sentences in the language are of the form "Y = < number1 > +
< number2> * X'"; any such sentence can be considered a theory.
The associated modelspace is the set of all non-vertical lines
in a coordinate plane--every line corresponds to a sentence and
every sentence specifies a line.

For this language and a set of data (pairs of numbers < Xss yi>)
one can define the best-fitting theory. it is that theory whose
values of <nun- )er1> and <number2> are such as to minimize the
function E(a, b) = 2 (2 + bx, --yi)2

This definition is th:an used to find the best-fitting theory -
the coefficients which minimize the error function. Obviously,
this pro- :dure is curve-fitting with a least-squares criterion,
and in this case finds the regression line.

The point here is that most of descriptive statistics can be

rephrased into the following form: 'if the data is of type such-and-

such, and we consider only a particular language, then (1) a good
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notion of fit is , and (2) using this notion, the best-fitting
theory can be found by .

Thus mathematical statistics is an iz ~~rtant part of data
analysis and is limited only by the languages and modelspaces it
considers.

The Uses of Fitting. Suppose we step back a little and
consider what people think they do. We find two rather distinct
groups. The first, consisting mainly of statisticians, advocates
the use of models to analyze data. The second group, the simulation
users, champion the use of data to analyze models. Are these
opposing philosophies?

The people who use models to analyze data talk in terms of
"fit": how well dées the model fit the data? The viewpoint here
is that it is the data which is important; they desire techniques and
tools that summarize the data and display the interesting relation-
ships in the data. Models, from this point of view, are simply
structures that guide data analysis. They are assisting tools,
and one should never completely believe in them. Tukey (and
Wilk 1966, p. 796) puts the matter this way: Data analysis '"can
only bring to our attention a combination of the content of the data
with the knowledge and insight about its background which we must
supply. Accordingly, validity and objectivity in data analysis

is a dangerous myth, "
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The main tools of this group are fit and exposure. They fit
a model to the data, then consider the residuals - those places
and instances of lack of fit. Again according to Tukey (1966):
The iterative and interactive interplay of summarizing
by fit and exposing by residuals is vital to effective
data analysis. Summarizing and exposing are comple-
mentary and pervasive. . . . The single most important
process of data analysis is fitting. Itis helpful in
summarizing, exposing, and communicating. Each fit
(1) gives a summary description, (2) provides a
basis for exposure based on the residuals, and
(3) may have the parsimony needed for effective
communication.
In this type of data analysis, while the focus is on tHe data,
we use models a:d theories as tools to get at the relationships that
hold between the various elements in the data. Thus our eyes are

on the data and our hands can be manipulating theory.

The other school says that one uses data to analyze models.
In this case, people generally have some theory and wish to verify
the correctness of that theory against some '"real world' data.
This is the problem of verification of theory fo increase the
credibility of theoretical construction.

The view that science proves theories to be true by verifying
them has passed its day. The question has instead become '"how
much should one believe in a given theory?" This is one of the
main concerns of the people who design and experiment with simu-
lations:

A simulation or game is the partial represen-
tation of some independent system. Usually we

are interested in simulation as a means for increasing
our understanding of the system it is intended to copy.
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Therefore, the representativeness of a simulation
or game becomes extremely important in assessing
its value. The process of determining how well
ohe system replicates properties of some other
system is called validation. In experimental
research, validity is the goodness of fit or the
correspondence between phenomena produced by
two sets of properties., (Hermann 1967, p. 216)

To gain confidence in his simulations, the
social scientist may check them against scholarly
work in general. Further, he should compare his
constructions with ''realities' - empirical descriptions
of the world of nation-states and international or-
ganizations . . . . However, a simulated construction
is but theory. It provides no shortcut or magical route
to the '"proof" of the validity of the verbal and
mathematical components it contains. Thus, there
is a need for a systematic examination of the extent
of the congruences between empirical analyses of
world processes and simulations of international
relations. (Guetzkow 1968, p. 202)

While these two viewpoints seem to be in opposition, it
should be clear that both are sub-processes of what we call data
analysis. They are both involved in the relationship of data to
model, data to theory. The difference is that one side
emphasizes data as being more important, the other side emphasizes
the model. This unbalanced attention determines and is determined
by the researcher's relative reluctance to change one or the other.

If one looks closely enough, of course, one can see the two
schools oveﬂ.ap: Tukey, primarily a data man, says, (1966, p. 698):
"Even when used for confirmation alone, data analysis is a process
of first summarizing according to the hypothesized model and then
exposing what remains, in a cogent way, as a basis for judging

the adequacy of this model or the precision of this summary, or

hoth, "
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Clearly data analysis encompasses both viewpoints and
more: it is the dynamic balancing of the activities of perception

- : and cognition.

Dynamics of Data Analysis
One of the criticisms of statistical decision theory is that
the set of alternatives open to a decision maker is assumed to be
fixed. The importance of this static nature is only now being
recognized: |

Much of the impetus for the computerization
of managerial decision making came from operations
researchers who saw the power of certain optimizing
techniques and recognized that most managers could
not hope to find the best answers to their problems
without the assistance of certain sophisticated
mathematics. . ., .

However, an answer can be '"optimal!' only

if the range of choices considered by the manager
is restricted. Let me illustrate: A manager who
is being '"'eaten alive' by carrying costs on his

" inventory might be told by a bright young operations
researcher (or a computer printout) that he should
order items into his inventory in optimal lot sizes.
There is a nice little square root formula that tells
him how to determine the optimum. Suppose a
lot size of 162 is the optimal answer to the math-

. ematicians question, '""What is the optimal lot size?"
This may solve one facet of the problem, but it is not
necessarily the best answer to the manager's question,
"What should I do about my high inventory carrying
costs?"

The best answer for him might be: (a) hold
a fire sale; (b) put a new roof on the warehouse to
- stop parts from rusting; (c) hire new design engineers who
can standardize the parts; (d) fire the accountant
who treats this account as a place to dump other costs;
' (e) change the reorder points; or (f) instruct the
inventory clerk on corporate goals! (Jones 1970,
p. 76)
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Enlarging the space of alternatives is one of the means we

have for changing a situation in order to gain information. The
’ possibilities tor change form the dynamics of data analysis and
have too long been ignored.

There are three types of change which can be considered

~ from our conceptual vantage point: (1) one can change his data;
(2) one can change theories within the basic framevwork of some
fixed language; or (3) one can change languages.

That one might change his data seems improper and is often
referred to as unscientific. Historians of science, especiclly
Kuhn (1970, p. 135), have investigated scientists at wori< and have
actually found enormous amounts of selected purging of old data,
usually in times of revolutionary science. Further, the gathering
of new data is always under the guidance of the current conceptual-
ization, including when and how. In statistical analysis there are
special techniques which justify the elimination of unwanted data
by labeling it error or 'outlier. "

The dynamics of the situation are such that at times the
current conceptualization is more valuable or more believed than
data which raises questions about it, and so that data is ignored
or dropped. This may be used to increase the information associated
with that conceptualization/data pair.

Change of theory is a relatively well-understood phenomena;
statistical decision theory is applicable, for example. We wish to

choose that thecry from among the possibilities created by our
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language which is best confirmed by our data, which fits best, or
which has the best expected payoff. There mav be technical difficul-
ties in finding such theories, but for a wide variety of theories the
techniques of curve fitting, the calculus of variations, or dynamic
programming are effective. The prcoblems intensify, of course, as
the theories involved become more complex.

The conceptual problem, and our lack of understanding, of
language change is greater. We can identify severcl instances of the
general notion of anguage change.

If some part of a theory becomes very highly confirmed, it
is usually more informative to shift the explicit structure of this
subtheory to implicit structure within a language. That way one
assumes something that was once questioned and considered. An
example is the belief that physical laws can be stated mathemati-
cally. This notion was once as controversial in physics as it is
today in the social sciences.

Other types of language change can have even greater
effects. There is change which admits the existence of new
conceptual entities. The existence of forces-which-work-at-a-
distance was a revolution in physics, as was the emergence of
aristocrats in social philosophy.

There is also language change which adds new alternatives,
exactly as in the above example of the manager making decisions.

This kind of language change ramifies structure - creating several
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alternatives where before there was only one. Abstraction has the
opposite effect; it consolidates many alternatives into one by
' ignoring differences. The concept of "people" j.gnores many
individual differences in favor of certain commonalities. The
concept of sex subdivides the class of people by emphasizing certain
differences while excluding others. The dynamics of conceptuali-
' zation is often a pattern of alternation between abstraction and
ramification.

Note that change of language implies theory change as well.
A theory, as a set of sentenlces within some language, is interpreted
only with reference to rules contained within that language. Even
if the explicit statement of a theory does not change, its meaning
can.

Think of the theory of physics, part of which is contained in
. the statement, ''all of the properties of the wo.rld can be accounted
for as interactions between atorns." Whenatoms were defined as
indivisible, basic particles, physicists conducted certain experi-
ments to-detérmiﬁe their characteristics, for example the impli;-
cation that chemical reactions occur with small-integer weight
relations.

'Now, however; when an atom is a collection of further
particles and forces, the operational meaning of the above state-
ment is quii:e different. '"Atomg. smashers' were self-contradictory

in pre-subatomic days.
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Language change is more difficult than theory change since
it entails the latter. It therefore occurs less frequently and with
greater effort and attendant confusion. This more basic kind of
change affects the unspoken assumptions of a field so that commun-
ication may be disrupted. In data analysis this relative difficulty
also holds. A social scientist doing correlations and regressions
is working within the language of linear models. To switch to
general polynomial models requires major adjustments in
technique, interpretation, and theory.

The importance of language change in the dynamic aspects
has already been recognized. Thomas Kuhn, in his work on the
nature of scientific progresvs (1970), distinguishes normal science
from revolutionary science. We can identify normal écience as
theory change and revolutionary science as language change.

Kuhn's thesis is that normal science means working within
a ""paradigm’', while revolutionary science changes paradigms.
Kuhn's paradigm is our notion of language. Paradigms are works
which (p. 10) "served for a time implicitly to define the legitimate
problems and methods of a research field for succeeding generations
of practitioners. They were able to do so because they shared two
essential characteristics. Their achievement was sufficiently
unprecedented to attract an enduring group of adherents away from
competing modes of scientific activity. Simultaneously, it was

sufficiently cpen-ended to leave all sorts of problems for the
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" redefined group of practitioners to resolve." Although Kuhn is
conc:rned with major upheavals, his notion is close to our concep-
tion of language, w'thin which there are many theories.

On revolutionary science, or important language change,
Kuhn (p. 84) writes:

The transition from a paradigm in crisis to a
new one from which a new tradition of normal science
can emerge is far from a cumulative process, one
achieved by an articulation or extersion of the old
paradigm. Rather it is a reconstruction of the field
from new fundamentals, a reconstruction that
changes some of the field's most elementarv
theoretical generalizations as well as many of its
paradigm methods and applications.

Conceptual Frictions. A discussion of dynamics would not
be complete without some thought given to the frictions which are
inhibiting conceptual change. The following is superficial, yet
does represent a beginning on this complex subject.

We can classify the inertias into three broad categories:
informational, psychological, and technical. Psychological
resistance to change is the best documented and studied. In this
domain, anxiety is a major cause for mental rigidity. An anxious
‘person seems to lose the ability to move in the abstraction/ramifi-
cation dimension, to a degree dependent on the level of anxiety.
Psychologists are investigating this aspect of anxiety now.

Another psychological friction is reluctance to change solely
because of the previous level of investment. The investment could

be in terms of money, time, mental effort, or any such scarce

resource. When one has a lot invested in some conceptual view,
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one tries to retain that view if at all possible. These views are
usually abandoned much later than they should have been, only

when their use is a total catastrophe. This effect is visible today
especially in societies, government structure, and computer systems.

Under technological frictions are classified all inertias
imposed on us by our use of current technology. There will always
be technological friction, since one's technology forms a part of
one's reality. Some forms of technology are less limiting than
others, though. The electronic computer has the potential to
enormously facilitate our conceptual movement. The present usage
of computers, however, does not. Chapter II of this dissertation
provides the details on the current computer practice in .ia
analysis systems.

Informational frictions are those related to the nature of
informa*ion and the conceptualization process. First, suppose that
we attempt to find the most informing conceptual view, That is,
given some starting view, we move in the direction of increasing
information: information hill-climbing. But there is a trap
here: we may find a language which provides a local maximum,
in terms of information. All of its neighboring languages have
less information, even though some other languages provide more.
One would be reluctant to change conceptual views if it meant a
loss of information immediutely and a possible gain later.

The second type of information friction is related to the

need for communication. Communication between two individuals
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can only take place if they share some conceptualization. Remember
that we equate conceptualization to language: the individuals
communicating must be ’talking the same language. What happens
if one person changes his language? Either the amount of commun-
icaticn drops, to that part of the language still held in common, or
the other person must adjust his conceptualization to match. The |
painfulness of this process is evident, and one can cite many
éxa.mples of its effects. A simple .one is the frariic effort to
standardize programming languages such as FORTRAN, COBOL,
or BASIC.

These inertial forces in the dynamics of conceptual change
constitute an interesting and important area of reseé.rch for the |
behavioral sciences. A much deeper understanding of them is

essential to a thorough treatment of data analysis.
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CHAPTER II

THE CURRENT STATE OF DATA ANALYSIS SYSTEMS

A data analysis computer system is certainly a repository
for data, but it is also something more: a medium for the articu-
lation of conceptualizations. Since data analysis is the interaction
between cognition and perception, the primary goal of these compu-
ter systems is to encourage and provide support for this interaction.

Data analysis systems must aid both sides: the ongoing
processes of data collection and theory building. Furthermore,
these fwo processes must be in harmony--neither can be neglected
or overshadowed.

There is an important point to be made about computer aids
for conceptual deve10p\ments. Computer systems are always a
resistance to conceptual movement. They are, after all, only
recursive mechanisms. Beyond this, however, various types of
systems have their own rigidities. These restrictions exist be;
cause of the incorporation of meta-level conceptualizations (the
system designér's) and current technological limitations. Any
particular system represents a balance between the conceptual and
techhological efficiencies obtainable by imposing limitations and
the inhibition of conceptua.i freedonﬁ that such limitatio_ns require.

The l:_)asic questions-to be asked about current systems
include: (1) what range of user conceptualizations does the systerh
allow; (2) how does the system facilitate the user's movement '

through that conceptualization space; (3) in what ways does the
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system aid the process of data adjustment; and (4) does the system
balance data and theory?
Today there are five identifiable system types being used

for data analysis:

1. data management

2. statistical analysis .

3. Question-answering

4. refer'.ence retrieval

5. simulation

Data Management Systems

These are the systems designated by some combination of
the terms data, information, file, retrieval, management, and
generalized. There are currently around 200 distinct systems in
existence; the system type is being studied intensivély by a -
CODASYL committee (1969). |

Data management systems are an evolved form of the 3 x 5
card file. This extremely useful device is typified by the card
catalogue in a library. The catalogue cbnsists basically of a file
of cards, one for each book in the library. Each card contains all
the data pertaining to one book, such as it‘s title, call number, author,
etc. There are also au:dlia;'y files, containing such things as
cross-references which facilitate certain types of searches.

In current data management systems a data base consists of

a set of files, each a sequence of records. All records in a file have
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a similar, fixed format and all contain data about a single type of
entity. Each record contains essentially all of the data about an
entity, and ideally there is only one record per entity. Finally,
some of the newer systems have added auxiliary files of indexes,
using the notion of the "inverted file,'" in order to facilifate certain
kinds of searches.

Using these data management systems, one could, theoreti-
cally, display the r‘ecord of a single, particular entity. Instead,
one usually produces a ''report, ' a display of a specified portion
of the record for all those records satisfying some selection
criteria. An example of such a report, a;xd of these systems, is
shown below in Figure 4. An understanding of the nature of data
management systems requires a look at the restrictions placed
on the selection criterion. The decision of whether to include record
X must be made on the basis of data contained only in record X. .
That is, fhe seiection criterion i.s a recursive function of data in
the given record exclusively.

This limitation enforces a worldview that each entity, i.e.
record, is basically independent of every other entity. What sorts
of user conceptualizations are allowed in this environment? The
only theories permitted are those that state that some entities
really are related and are interesting: all those which pass some
stated selection pfoéess. Thus the space of theories is g.enerated
by the set of allowable selection functions, which are limited as

described above.
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The data management systems facilitate the user's movement
through this conceptual space both by prov-id'mg such a simpiified
space and by making it relatively easy to describe the selection
function desired. The tremendous proliferation of such systems
provides proof of the effectiveness of t};éir conceptualization and
implementation technique.

The limits of their applicability are equally clear. These
- systems assume a basically static language, that is in this case a
basic set of data attributes. Modification of data in existing records
is toleratgd, as is the addition of new records within an existing
file. Barely tolerated, since, as a typical example of the common
ﬁse of such systems, a change-of-address on a magazine subscrip-
tion will take six to ten weeks. |

As for more fundamental changes, the additic;n or deletion
of an attribute across an entire file for instanée, these require
major upheavals in conceptualization as well as considerable time
and effort. Data management systems are counterproductive‘in

a dynamic or highly interrelated world.
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Fig. 4. --An example of data management systems

Suppose that one wanted to create a file with a
record for each member of the computing center staff,
giving his name, date of employment, and principal
programming language. Suppose that one also wanted
.a list of all the PL/I programmers on the staff. The
following ASAP program would accomplish this
(Conway, Maxwell, and Morgan 1971, p. 13):

)) ASAP START RUN: NEW,.DEFINE

)) ASAP '"PASSWORD'

)) DEFINE RECORD: STAFF

)) NAME 30 KEY

)) DATE OF EMPLOYMENT 8

)) PRINCIPAL LANGUAGE 20

)) DEFINE INPUT: STAFF CARD

)) COLUMNS 2-31 = NAME

N COLUMN 1 = NEW RECORD

)) COL 32-39 = DATE OF EMPLOYMENT
)) COLUMNS 40-59 = PRINCIPAL LANGUAGE
)) DEFINE END : : -

)) FOR ALL STAFF SELECTED BY KEY
)) ININITIAL DATA, FORMATTED BY STAFF CARD,

)) UPDATE XECCRD.

)

)) DATA BEGIN INITIAL DATA

#*JONES, WILLIAM 11/23/68FORTRAN
*WILSON, MALCOLM 01/20/69COBOL
*STEWART, PAUL 07/01/65FORTRAN
*HOPKINS, PAULA 10/15/68PL/I
*ABELSON, PETER 02/01/66ASSEMBLER
*CHAMBERLAIN, H.G. 03/01/64PL/1

)) DATA END INITIAL DATA
))

) FOR ALL STAFF WITH

) PRINCIPAL LANGUAGE = 'PL/I',

) PRINT A LIST OF NAME, PRINCIPAL LANGUAGE.
) ASAP END, ASAP END RUN

e et i St
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Statistical Analysis Systems

These systems have been designed to support the mathemati-
cal statistics view of data analysis. These packages usually include
a priﬁitive data management system with a simple, rigid data
structure, and place emphasi:s on the processes available for
analysis and summary. Some of the current systems are OSIRIS
(Inter-university Consortium for Political Research), SPSS
(University of Chicago), PSTAT (Princeton University), and BMD
(UCLA).

The statistical analysis systems make the assumption that
their data is a random sample from some much larger (i. e. infinite)
populafion. In this conceptualization only the broad, statistical
view is relevant and analysis of individuals is meaningless. Thus
these systems have a data structure which can be described as
rectangular: a fixed set of entities, a fixed set of attributes (either
numerical or character;valued), and each entity is characterized
by all attributes. There is no cross-linking of entities.

In fact, in a random sample one does not expect the indivi-
duals to be interconnected, anci most‘s'tatistical processes assume
independence'of individuals. Having related entities implies that
the safnpling technique was faulty.

Thus the world view presented is one of having a small
amount of data taken from a large population. One wishes to

discover broéd, generalized characteristics of the total population.
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In order to do this, the statistical systems provide a set of -
primary tools. Each tool is a process which imposes some
particular coﬁc eptualization on the data and summarizes the data
accordingly. These basic theoretical views are the usual ones
found in mathematical statistics, simple random variables with
known probability distributions, for example.

. In these systems a user can also express his theoretical
view by transformations of the data of by some recursive selection
process. Thus a user's cohceptual space consists of some fixed
set of basic views; applic.able to recursive transformatiohs of the
data. The overriding limitation is that thé data must be considered
a random .sample-collectéd froml a large total population.

Fig. 5.--An example of statistical analysis systems (Nie, et al.

1970, p. 54)

RUN NAME SAMPLE RUN OF THE SPSS SYSTEM

FILE NAME EXAMPLE2, THIS IS THE FILE LABEL

VARIABLE LIST AGE, SEX, RACE, INCOME, EDUCATN

INPUT MEDIUM CARD

# OF CASES 10

INPUT FORMAT FREEFIELD

MISSING VALUES AGE TO RACE (0, 8, 9)/INCOME(7)/
EDUCATN(0)

VAR LABELS AGE, AGE OF THE RESPONDENT/SEX, SEX

OF THE RESPONDENT/INCOME, YEARLY
FAMILY INCOME IN DOLLARS/EDUCATN,

' EDUCATN OF HEAD OF HOUSEHOLD

VALUE LABELS = SEX{1)MALE(2)FEMALE(3)NOT ASCER-
TAINED/RACE(1)WHITE(2)NEGR O(3)
ORIENTAL(4)OTHER(9)NOT ASCERTAINED/
EDUCATN({1)NONE(2)PRIMARY OR LESS(3)
SOME SECONDARY(4)SECONDARY GRADU-
ATE(5)SOME COLLEGE(6)COLLEGE
GRADUATE(7)GRAD SCHOOL(8)OTHER(9)
DON'T KNOW(o)NOT ASCERTAINED
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PRINT FORMATS AGE TO EDUCATN (o)
CROSSTABS RACE BY INCOME BY EDUCATN/INCOME
BY RACE BY SEX

"OPTIONS 1,3

STATISTICS 1,4,6

READ INPUT DATA
74 1 2 8999 7 64 2 1 7463 4 ‘24 3 1 5000 6

41 3 1 4756 2 87 1 2 2746 3 55 2 4 8468 5
57 2 3 9999 7 25 3 4 5472 1 37 2 3 2757 4

28 1 1 7000 1

PEARSON CORR AGE TO EDUCATN WITH SEX TO INCOME
OPTIONS 1,3
FINISH

Question-Answering Systems
W. Cooper (1964) first described wk.at is now the standard
view of question-answering or fact-rétrieval:

There are two propositions which are plausible
in themselves, and which, when viewed in conjunction,
focus attention on what we believe to be the fundamental
problem of Fact Retrieval.

_ Proposition I. A Fact Retrieval system must

' normally accept most of its information to be stored,
and also its queries, in the form of natural
language sentences (e.g. English) rather than in
some artificial language selected for the purpose.

Proposition II.- A Fact Retrieval system must -
possess the capability of performing logical deduc-
tions among the sentences of its input language...

Together these propositions suggest that the
central theoretical problem of Fact Retrieval is to
develop a system of logical inference among natural
language sentences.
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We can categorize question-answering systems into two.
types. Corresponding to an intensional view are the deductive
systems, to an extensional view are the relational systems. A
third type, the semantic net system (Quillian 1969), is an interesting
and novel attempt to combine an intensional view with an extensional

structure,

Deductive Question-Answering Systems

Deductive systems have evolved from artificial intelligence
research on finding deductive proofs of mathematical theorems.
The research has been generalized to deductions in a predicate
calculus environment, usually culy the first-order calculus. The
quesiion-answering systems, then, add to this work a translation of
the English input sentences into the predicate calculus, but other-
wise use the same techniques. |

These deductive systems all assume the intensional view,
that is, they manipulate sentences and theories. The approach to
deduction is essentially syntactic: new theorems are added to a
growing store by grammatical manipulations of the previously
existing set. The most efficient current techniques, the resolution
methods, do work extensionally by trying to construct models.
If an appropriate model cannot be constructed, it proves the falsity
of some sentence: usually the negation of the theorem one is trying

to prove, However, the elements of these models are sentences
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and clauses; one uses the linguistic entities as elements of models
in order to construct manipulable models.

There are several interesting aspects to the intensional
approach. The first deals with thc notion of atomistic completeness.
The concept of completeness, taken from logic, is the property of a
theory or model that all parts of that theory or model can be derived
from some basic set of primitive elements--the atoms of that
theory or model. Applied to a data base, this means that all of
the data can be derived by application of recursive functions to the
atomic elements of the data base.

A good example is the grandparent relation. Suppose that the
parent relation is a primitive in some data base. Then one can
define the grandparent relation as the composition of parent with
itself: 'grandparent'" means ''parent of parent.' 'In this case the
grandparent relation is totally dependent on the parent relation and
derives all of its characteristics from it; for example, the fact
that every person has four grandparents. At this point the grand-
parent relation has added nothing new, and aill instances of the
term could be replaced by its definition.

Suppose, however,‘that one added the daturh ""the grandparent
of Mary is John' and that our data does not include Mary's parenf:s.
Now grandparent is de-coupled from parent; it has more properties
and relationships to the rest of the world than is implied by the
parent relation. This data base no longer has the property of

atomistic completeness,
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A theory or model can be atomistically complete only if all
of its elements are of the primitive, atomic kind, with recursive
definitions added for higher-level structures. In an atomistically
cozﬁplete model, with a primitive parent relation, the grandpaxlent
relation can be either 1) defined solely as ''parent of parent'" and

thus completely coupled, or 2) defined primitively also, thus
completely uncoupled.

All of the current extensional systems are atomistically
complete, and it is only the intensional, deductive systems which
are not so restricted.

The ability to handle meta-level data gives these systems
their great power. The logic of the deductive systems is expiicit,
and therefore can be manipulated instead of implicit in the
processing routines as is the case for other types of svstems. An

- exa.rnpie of this power is the fact that these systems can comprehend
data containing quantifiers as primitive items. 'At least ten
people live in Boston, ' as data, makes certai;x kinds of deductions
and answers. possible, even if we are uncertain exactly who is in
Boston.

The cost of this power is clear; deductive systems use a
recursively-enumerable search procedure, rather thaa the
recursive procedures found in the extensional systems. By this

we mean that the set of theorems in a formal language is recursively

enumerable and not recursive. Thus one cannot determine the
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truth or falsity of any given sentence directly, but instead one

must list all theorems and see if the given sentence is among

them. This enumeration technique, the only effective procedure
fo;' a recursively enumerable non-reéursive set, has been shown
time and again to be much slower than a direct approach where

that is possible. This relative inefficiency limits the complexity

of query and the size of data base allowable. For example, a
recently developed system (Biss, Chien, and Stahl 1971, p. 303)
works with a data base consisting of 2000 English sentences, claimed
to be "larger than any other data base currently being used for
natural language [ deductive ] question-answering systems. "

Thié fundamental limitation on efficiency may be bypassed to some
extent by a judicious combination of both intensional and extensional
approaches, which is the long-range promiée of the semantic net

systems.

Fig. 6.--An example of deductive question answering.

Suppose the system (Biss et al 1971, p. 305) receives the
question: Do cars always have to yield to pedestrians? and it has
at its disposal the facts 1) Pedestrians not in a crosswalk must
vield to cars and 2) If x must yield to y, then y does not have to
vield to x.

The syntactic analysis of the question produces the form:
always(must{yield(car, pedestrian))). The semantics of the word

"always' converts this statement into:
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¥ yly— must(yield(car, pedestrian))), where y is a variable
rauging over situations. This is8 further converted into:

v xlsz(must(yield(xl(car), xz(pedestrian)))), where Xy is a
variable ranging over situations on car and X, is a variable

ranging over situations on pedestrian.

The relevant data has been stored as must(yield((not(in
(crosswalk))) (pedestrian), car)) and V xVy(must(yield(x, y))—~ ~must
(yicitd(y, x))). The system tries 10 prove the question true by
showing that its negation contradicts the relevant axions. This it
will not be able to do, and so will eventually try to prove the ques-
tion false. In this case the system can prove that the question state-
ment itself contradicts the axioms, and so can be answered "no. "

To do this the RZ2 system first rewrites the second axiom
as ~must(yield(x, y))V ~must(yield(y, x)) since A—B is equivalent
to ~AVRB, Then, ~must(yield(xz(pedestrian), xl(car))) follows
from this and the question étatement by recursively applying
high-order resolution. This statement resolves with the first
axiom if we let X5 = not{in{crosswalk)) and Xy = @ (the empty
substitution), generating a contradiction.

The system can also output those situations in which a car

does not have to yield to a pedestrian, i. e. the instantiations of

Xy and Xyt when the pedestrian is not in the crosswalk.
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Relational Question-Answering Systems

Relational data systems take the extensional approach in order
to reach a usable level of efficiency‘. All of these systems use a
single type of modelspace, a reiation algebra--a set of entities
and a number of relations among those entities. Such systems
are exemplified by the Relational Data File (Levein and Maron 1967)
and Converse (Kellog et al. 1971).

The notior of a relation algebra is a very general mathemati-
cal concept. It is general enough to be used as the basis for
mathematical model theory, which underlies the use of the term
model in this thesis. One can also consider set theory to be the
theory about a particulai- relation algebra, one with a specified
bir;ar); relation.

Thus a relation algebra has a wide scope. At the rame time
its primitives, bo1;h entities and processes, are surprisingly
simple and few il number. This implies that it should be possible
to implement this type of system relatively easily and with a
great deal of attention to efficiency. Such implementation details
will be considered in a later section of this thesis.

The relational data systems therefore allow rich interconnec-
tion among the entities of the model, in contrast to the data manage-
ment and statisticé.l analysis systems discussed earlier (or. this
point see Codd 1970). This type of modelspace, however, seems
to require atomistically complete models. What, then, are its

capabilities for deduction?
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One can distinguish two types of capability, that for global
deduction and that for local deduction. Global deduction, another
term for the usual type of deduction, is an intrinsically recursively
enumerable nrrocess as discussed above. The set of provable
theorems is in general not recursive, but is recursively enumerable.
Local deductive capability, i.e. the relational data s’ystems, is the
ability to work with recursive subsets of theorems. Local
deduction denotes a recursive set of theorems and obviously is more
restricted than a full deductive capability.

Scme exan;uples are in order. First, suppcse one had the
following two items of data, "Joe arrived in Los Angeles in 1960, "
and "Joe left Los Angeles in 1970." Whbat can one say in regard to
Joe's whereabouts in 1965? On the basis of the data alone, nothing.
One can, however, include in the logic of the language enough
assumptions and rules of inference to be able to answer ""Joe was
in Los Angeles in 1965." These assumptions and rules take the
form of recursive functions of the data, built specifically for
particular cases.

For a second example of local deduction, consider the ances-
tor relation (i.e. ''transitive parent'), With an explicit logic and
relation algebra one could define the properties of transitive
relations with axioms and then deduce Joe's ancestors from the
data contained in the parent relationship. Local deduction here

implies that the meaning of "transitive' is defined by a specific
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recursive function rather than by axiom. One could still find
Joe's ancestors.

As a final example c.;on_sider the most important aspect of
deduction--quantifiers. We will try to answer the question ""Are
all men mortal?" by recursive methods. Obviously, if the
number of men is finite, one can simply generate each man in turn
and ask the a_ppropriate 'question. " But even where we wish to
allow the possibilit.y of an infinite number of men, it is sometimes
a recursive problem. We might have the class of men a subclass
of the class of mortal things, and thus merely re-phrase the
' .ques;tion into a simple one about subclass relationships.

The point to be made here is that the relational data systems,
at least in their present cornpletelf extensional implementations,
are limited to local deduction. While local deduction is restricted,
it may provide enough power and efficiency for some areas of
application.

Thus the rel.ational data systems represent a compromise.
They allow a fairly richly-interconnected universe--much more than
the data manager;ient systems, for example. Yet they are efficiént
enough to handle reasonably large data bases. A description of such

a system constitutes Chapter III of-tiiis thesis.
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Reference Retrieval Systems

These systems are designed to automate the search of a
library's card catalogue, and in general facilitate the search for
books and articles dealing with some particular subject matter.
Reference retrieval systems are specialized versions of question-
answering systems; the restriction of purpose and data is made
for the purpose of more efficient operation. Gerald Salton, a
leading exponent of these systems, identifies (1968, p. 393) the
restrictions this way:

When comparing reference retrieval and data
retrieval systems, the main complications present
in the latter (and absent from the former) are
caused by the more detailed analysis of the stored
data necessary to operate a fact retrieval system.
Whereas, for reference retrieval, it is normally
considered sufficient to isolate the main objects
or entities useful for the specification of the subject
content of each stored item (the keywords, concepts,
descriptors, etc.), in a question answering system it
is necessary also to identify a large variety of
functional relationships between entities. Thus,
the semantic analysis must be much more thorough,
and it must notably include the identification of a
majority of the relations indicated in the language
by verbs and function words, such as conjunctions,
prepositions, and quantifiers.

Furthermore, a reference retrieval system is
expected to cope with only one type of question, expressed
in terms of a docvment set considered closed at any .
‘given instant, namely "Does the stored collection
include items dealing with such and such a subject
matter?' On the other hand, a data retrieval
system must handle a much larger variety of queries,
including also queries for which an explicit answer may
not be stored but may first have to be generated from
the information actually available.
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The goal of reference retrieval is to display all those
dolcuments deemed relevant to the subject matter contained in a
query. Relevance, of course, is scarcely understood, and so
the central notion used in these gystems is that of a '"concept.' If
one has an operational definition of concepts, and some way to
measure distance between concepts, one can define relevance as
a measure inversely proportional to this distance function. The
difficult work on reference retrieval consists of defining ''concept"
and ''distance between concepts. "

The usual operation of such systems is over some identi-
fiable universe of discourse. Firstthe appropriate concepts are
decided upon, and then all documents in the collection are rated
on their distance to each concept, Finally, a query is entered
into the system and also rated on each concept, Then the correlation
coefficient between the query ratings and document ratings are
computed for every document in the collection, and the ones
with the highest correlations output.

This type of operation, ‘typiﬁed by the Smart system of
Salton, assumes a rather fixed set of data and certainly a static
data structure. In fact, the data structure involved is a sequential
file of vectors, one vector per document, IEach vector contains
the rating of each concept for that particular documént and can be
(and is) considered to locate a point in n-dimensional space. The

query also represents such a point, and relevance is defined by
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some n-dimensional dfsta.nce function. A great deal of work is

(
being done on clustering, that is, representing a group of closely-
related documents by one representative description. These
techniques are aimed at improving efficiency and especially search
times, and lead naturally into other file structures, such‘as inverted
or multilist.

The subject of indexing (i. e. what are concepts?) has been
active, breaking into two camps: -clustering, where all documents
ére on the same level, and hierarchical indexing, where abstracted
categories are combined in a tree-like structure. Hierarchical
indexing appears to be winning in both efficiency and acceptability,
especially as the systems become interactive. In fact, the future
points obviously toward more general concept structures as the
index attempts to mirror our own concept}xalization, -and therefore.
toward the convergence of these reference retrieval systems
with the more general question-answering systems.

This projected assimilation of reference retrieval systems
is lcaused by 1) the emergence of efficient question-é.nsv{/‘ering
systems; 2) the evistence of economic interactive computer
. systems; émi most import;ntly 3} the growiﬁg awareness that the
user must have a great deal of freedom and control in his

conceptualization and search processes,
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Fig. 7.--An example of reference retrieval systems

The document collection being searched in
this case consists of the 405 abstracts published
in the IEEE Transactions on Electronic Computers
for March, June, and September, 1959. The
collection covers all fields of the computing literature.
Sixteen abstracts were manually judged to be
relevant to the request. (Salton 1968, p. 467)

The search request:

Give algorithms useful for the numerical
solution of ordinary differential equations and partial
differential equations and partial differential
equations on digital compuiers. KEvaluate the
various integration procedures (try Runge-Kutta,
Milnes method) with respect to accuracy, stability
and speed. '

answer correlation identification

384 stability 0.8567 Stability of numerical solution of
diff. eq.

360 simulate 0.7741 ‘ simulating second order equations

386 eliminati 0.7457 elumination of special functions
from diff. egq.

392 on comput 0.6571 on computing radiation integrals

200 solution 0.6443 solution of algebraic and transcen-
dental eq.

85 note on an 0.6372 note on analogue techniques for

N resolving :

387 boundary 0.6171 boundary contraction solution of
Laplace

103 Runge-~-Kut 0.5874 Runge-Kutta methods for integrating
diff. eq.

102 On the so 0.5648 On the solution of Pcisson's differ-
ence eq.

390 Monte Car 0.5448 Monte Carlo solutions of boundary

value problems
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Simulation

A simulation is a tangible, manipulable model that corre-
sponds to a theory about some relevant aspects of the world.
Simulations are usually dynamic models, that is, explicitly time
dependent, and are therefore represented by processes which
operate on some basic gtructurzl model. The execution of a
simulation calls into play each of these "events, ' which modify
the model in some predetermined way. The main use of such
simulations is to unfold the dynamic aspects of a model, especially
those models too complex to be adequately handled by formal
mathematics.

There are two types of simulations currently receiving
attention. The continuous simulations reflect the view that time
is a continuous real variable and the processes involved operate
continuously and often simultaneously. These models are very
often translated into sets of differentia.l' equations and solved
numerically. Typical application areas might be electronic
circuit design, neural network research (e. g. the Hodgkin and
Huxley nerve membrane equations), and atmospheric pollution
studies.

The second type is called discrete simulation. Here the
individual events are considered more important, and are usually
distinguishable from each other and are quite complex. The
relévant times are only those at which events happen - a discrete

sequence of ascending instants. Examples of such simulations
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abound in the social and behavioral sciences, éuch as the formation
of coalitions in international politics or the flow of traffic through
a city.
The purpose of a simulation is the same as that of any theory.
It is used to gain insight into the phenomena under study. Simulations
also have the same characteristics as theory: they cen be more or
less generalized, their primitive entities may or may not be well-
chosen for the subject area, they may fit the data more or less
closely, etc. The importance of simulation is that they are
tangible theory, and thus can be studied, manip:ﬂated, and changed.
While simulation is an important vehicle for conceptual
development, as a data analysis tool it has one important defect:
it underemphasizes data. Simulation is totally overbalanced on the
side of théory; any data produced by a simulation, and any data
compared to these outputs, are to be utilized by some external
process. Simulations merely produce data - what happens to it
after that is left to the imagination. What this means, of course,
is that a combination of theory-building simulations with a data-
oriented analysis system could be extremely powerful. The
conceptual pressure for such a combination is increasing, so that

it will not be too many yea~s before it exists.



-55-

Fig. 8.--An example of a discrete simulation (Gordon 1969, p. 125)
Consider“the example of a simple telephone system. The

system has a number-of telephones, connected to a switchboard by

lines. The switchboard has a number of links which can be used

to connect any two lines, subject to the conditioﬁ thé,t only one

connection at a time can be made to each line. It will be assumed

that the system is a lost call system, thatis, any call that cannot

be connected at the t/ige it arrives is immediately abandoned.

A call may be lost because the called party is engaged, in which

e 4

case the call is said to be a btl”syr“Eall; or it may be lost because
no link is available,, V‘i;/r.xu‘v;hich case'it is said to be a blocked call.
The object of the simulation will be to process a given number of
calls and determine what proportion are successfully completed,
blocked, or found to be busy calls.

Suppose each line is. treated as an entity, having its availabil-
ity as an‘attribute.. A_teble of numbers is established to show fhe
current‘ status of each line. Itis not necessary that a detailed
history be kept of each individual link, since each is able to
service any line, It.i..e oniy necessar;r to incorporate in the model
the constraint imposed by the fact that there is a fixed number
of links. Under these circumstances, the group of linles is
represented as a single entity, having as attributes the maximum

[N

number of links and the number currently in use.
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Each call is a separate entity having as attributes its
origin, destination, and length. There is a list of calls in progress
showing which lines each call connects and the time the call
finishes. It v&iill be asszi.rned that the call is equally likely to come
from any line that is not busy, and that it can be directed to any
line, other than itself, irrespective of whether that line is busy
or not.

The simulation proceeds by executing a cycle of steps to.
simulate each event. The event of disconnecting a call merely
updates the status information, while the event of an arriving call
must check to see whether the call can be processed, and if so
updates records and schedules the disconnecting event. Arrival
times, source, destination and iength of call are all random
v‘aria.bles. -Statistics are collected througnout the simulation and
after some predetermined elapsed time or number of calls the

simulation is stopped and the results.output.

The Boundaries of the Practicable
What are the real problems that data analysis systems
designers face? It is not in the area of data collection, for our
current ability to collect and communicate data ove.rpowers our
ability to find appronriaee conceptual framewerks for the data
(consider the 96, 000 reels of magnetic .tape holding social
security data). Thus our real need is to improve the aid we give

to the conceptualization and analysis process.
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Static limitations are the size and variety of the models our
systems can handle. There are some extremely largé sets of data
available today, such as the individual-level raw census data, for
which no analysis systems exist. It is only at the large size, say
the census data aggregated to the census tract level, that either
the data management or the statistical analysis systems became
useable. Both of these system types permit only simple models
in their conceptual space, and so large amounts of data can only
be viewed in simpleminded ways.

As the amount of data decreases systems with more complex
conceptualizations become effective. A complicated simulation, for
example, might have from several hundred f:o several thousand
entities or items of data - a fairly small amount. The deductiire
systems usually can handle only a few - up to a thousand - axioms
and theorems. This inverse relationship between data bas; size
and complexity forms-an important boundary on the scope of
present activities. Figure 9 attempts to depict this relationship.

It is a coarse estimate of the size and complexity‘ capability of each
of the contemporary sfstem types. For comparison, the raw
United States census data should contain about 101‘:J items of

data, and at least have kinship-type interrelationships between the‘

entities.
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Fig. 9.--The contemporary relationship betwe=n data base size

|

and complexity

We have stre--~ed throﬁghout this thesis the importance of
the dynamics of conceptual adjustment. The fundamental problem
facing systems designers is how to aid such adjustment, not
hinder it as do most present systems. The goal: computer
systems which help their users find insightful conceptualizations.

Computer systems could help in two ways. Their limitation
.0 some modelspace/language means that we have fewer modsls to
consider as relevant. This pushes the common features of the
models into the background, since they are pre-determined. We

can concentrate on the differences among the set of models or

theories. Ihe system could help us explore these theories, by
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making it easier to express them, by aiding in the process of
matching theory to data, or even by applying some known optimizing
technique. R

Moré difficult and more important are computer systems
‘which facilitate language change. This is what we reaily need in
our very dynamic world. The conceptual rigidity of our computer
systems is the significant boundary. -

Keeping these boundaries in mind, one can ask where the
current thrust of research is heading. The answer, unfortunately,
is simple: computer scientists are busily attempting to find a
universal programming language in which all problems aré to be
solved (the old UNCOL ideal), and a universal data structure or
data structure mechanism.

The analysis of information given previously shows this to
be a misdirected effort, except possibly in one instance. While o
it is not possible to havle a universal language, it is worthwhile to‘.‘
seek a generalized language useful as a system designer's |
language, or meta-language for other users. With this much
narrower goal in'minld, the current reséarch becomes practicable,.
Here, however, the most difficult part becomes finding a
language which is'extremely efficient in implementation, since
we already have many generalized-enough languages (e. g. sef
theory, graph theory, machine language, or PL/I).

In a similar response to the need for a multiplicity of data

PO
S L

structures, some computer scientists have been attempting to .‘\

~




-60-

handle totally unstructur--d data (a contradiction ia terms) or,
failing that, to find a universal data structure (Earley 1971).

This notiox ioses by the same criticism of a universal program-
ming language: evena though a terribly generslized and abstract
structure might be able to handle almost all known applications and
~onceptualizations, it would simply not be very informative in most
contexts. A parallel can be found in mathematics. All theories
and entities in mathematics can be expressed in set theory and

the predicate calculus. Yet au.lysis talks of real and complex
numbers, and algebra of groups, rings, and fields. The level

with which they deal effectively is not the lowest level of
conceptualization possible.

A current approach to the need for idiosyncracy is that of
providing a generalized mechanism which is capable of being
specialized as necessary. An awareness of this situation in the
domain of programming languages has lad to the extensible
languages:

There are two basic premises which underlie
the development of ELF. The first of these is
that there exists a need for a wide variety of programming
languages; indeed, our progress in the understanding
and application of computers will demand an ever widening
variety of langunges. There are, in fact, "scientific"
problems, ''data processing' problems, ''information
retrieval' problems, "<ymbol manipulation'' problems,
""text handling" problems, and so on. From the
point of view of a computer user who is working on one
or more of these areas there are certain units of data
with which he would like to transact and there are
certain unit operations which he would like to perform
on these data. The user will be able to make effective

use of a computer only when the language facilities
provided allow him to work toward a desired result in
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‘terms of data and operations which he chooses as

‘being natural representation of his conception of

the problem solution. That is, it is not enough to have

a language facility which is formally sufficient to allow

the user to solve his problem; indeed, most available
programming languages are, to within certain size limitations,
universal languages. Rather, the facility must be

natural for him to use in the solution of his part1cu1ar
problem :

It is our contention that the most reasonable approach
to providing the desired variety of language facilities
is that of providing an exteinsible language supported
by an appropriate compiling system. We do not,
however, suggest that we can'now devise a single
universal core language which will adequa.tely provide
for the needs of the whole programming community;
the diversity in ''styles' of languages and translation
mechanisms will probably always be sufficient to encourage
several language facilities. ELF, which is the subject
of this paper, provides a facility in the '"style' of such
languages as ALGOL-60, PL/I,” and COBOL.
(Cheatham et al 1968, p. 937)

More generally, there are dévelopments such as the REL
system, described in detail below. This is a generalized 1ahguage
system, designed to handle a large variety of specialized languages,
which neeci not be related to each other and can indeed be extensible
themsel;/es. |

| These advances portendthe proliferation of "natural"
languages and made-to-order conceptualizations. This shift
will force attention away from c.omputer ‘techniques toward
information techniques. We are facing the be~g'inning of a real

information science and with it, an information engineering.
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CHAPTER Il

THE REL DATA ANALYSIS SYSTEM

Chapter I develbpéd the theoretical posifion of data analysis
as an informational 'activity. Chaptier II preéented a descriptive
t2° 1omy ".'f comput.er systems for the support of data analysis -
2 a1 assessment c;f the present boundaries of their application.
In this chapter, we turn to consideration of a particular data
analysis system - the REL (Rapidly Extensible Language) System.
The architecture of REL reflects both our theoretical understanding
of system requirements and our practical understanding of preéent
capabilities. |
Development of the REL system is based upon two goals:
(1) to bring into concrete realization the theoretical view of
Chapter I; and (2) to reach op®rational status with such a system
at the earliest possible time. .
| The _neeci for operational status on real applications derives
from the lack of experience with these advanced systems, and how
they afféct information processing and data analysislin.,.particulalf.
In a -se.nse, the REL Systerh is a vehicle for testi;ig our conceptual-
' izatioﬁ of data analysis. We have little empil-'ical evidence of a
- form that could be called scientific (na..mély frofn controlled
-‘experimént or planned intervention) of the conc eptual broceéses. L

The view presented herein, namely that the task of "knowing' is

finding the ‘most revealing conceptualization, is only one .of several,
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and is by no means the most widely held doctrine of information
processing. A popular, and contrasting position is that the
structure of reality is to be discerned in the data taken from that
realitr, rather than impoused by the researcher as a way of givinlg
meaning to observational evidence.

REL involves mechanisms for accommodating conceptual
change and extension, fcr experimenting with the imposition of
structure on data. The observation of serious appiications of the
system to actual data analysis “asks is expected to reveal much
concerning the dynamics of informu:tion processes, by charting the
use and evaluating the effectiveness of these mechanisms. In this
way we believe it will reflect on the efficacy o? our theoretical
position.

Since our interest in REL is based upon these considerations,
experiencing the actual operation of the system on real data "ecomes
an important goal. How has this constraint influenced the design
specifications of REL? The data bases available today prejudice
the choice of system type. In terms of size, most current data
bases contain about 10,000 to 1 million items. As one example,

98% of the 65 data oases archived by the Inter-University Consortium
for Political Research in 1970 were within that size range (ICPR
1970). Near the end of the last 'chapter, Figure 9 related system
type to the data base size which could reasonably be handle.d. On

this rough graph we find that (1) the data management systems can
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comprehend far larger amounts of data; (2) the relational data
systems fall exaqtly in this range; and (3) both the deductive and
complex modeling systems are unable to cope with this many items.
As we look deepur, we see t@o interacting effects. First,
consider the computing times associated with tasks typical of
each of the data system mazthcds. We can state broadly, though
not precisely, that (1) the data management systems' processing
is simple and thus extremely fast; (2) the relational data systems
are slightly more complicated and slower; and {3) the processing
of the deductive or modeling systems is rather complex and time-
consuming. Although the data management systems alone can
handle the extremely large data bases, these bases have becom=

so huge as to be unuseable in any case. With smaller data bases

~
'

the relational da.ta systems cost very little mo re and are enormously
more pow""ful.‘ For the kinds of applications where data manage-
ment systems are useful, other types of systems can do much
better.

Suppose we ﬁow consider the computing time and cost for
some fixed analysis task, in data bases typical of each method.
Here we find that, on comparative tasks and system specific data
bases, the deductive and complex modeling systems are so
powerful that they can accomplish given tasks easily, and hence
have a small cost, The relational data systems are more restricted

in capability, and thus will cost more to do the same task on daix

bases specific to their application. The data management systems
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are extremely restricted ~ standard analysis tasks on their

typical data bases are prohibitively expensive. One pays a low
price for the restricfion from deductive methods to relational
methods in terms of analysis capability, ard receives a very high
payoff in terms of data bé.se capability, For the areas in which
deductive techniqu=s are applicable, one can still perform a major
portion of the task with somewhat less capability, (namely the local,
rather then global, deductive ability). Thus the relational data
systems are in exactly that compromise position today which

promises a significant advance in operational capability.
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»Tﬁe REL System

The REL System is predicated on the view that: (a) the
central human information process is to seek the appropriate
conceptualization; and‘. (b) one's language is both the articulation
of that conceptualization and the media for molding that conceptual -
ization. Itisa generali;ed computer system that supperte alarge =
;/ax;iety of languages each specialized - by gramme'r, data struc- ST
ture, and processing aléorithms - to some prebiem area. The
system encourages the development of ,tli‘eseh"'vr{a“tural” languages = -
and facilitates their_implementation and extension. The REL e
System, then, is a maximally supporting envj.ronrx;en‘t‘in/‘wh.i?l?w
""natural" cofnputer languagesaz:e‘irri‘;;i-eiﬁented. It put's only
minimal constraints on possible langu_ages, allowing the most/_\_w
general grammars, data structures and processing algorithms.
Minimal system constraints mean that each langﬁgiean seek its
own efficient implementation, tailored and eé&ded_in r/esﬁ)/n_s\e"fe
the conceptualization of the particular user,

The System provides strong supportive.resources. The
.REL_ System is a sentence driven, syntax directed interpreter.
After a sentence he,s been ihput, -it undergoes syntactic anal.y,sis
by a .parser. This produces a .complete deeﬁ-structure phrase
marker,ﬁﬁich in turn is used to direct the semantic proces.s_in-g B

of the sentence. "Conceptually, therefore, the system can be

described by the following diagram:
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Fig. 10.--Syntax-directed interpretive systems
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The interpretation of a sentence depends solely upon the
grammar, the syntactic routines, and the semantic routines of a
particular REL language. Thus an REL language is defined by
exactly these three elements. The REL System consists of the
total framework in the above diagram which integrates these
elements and applies them to the syntactic and semantic analysis
of the input sentences.

This overall REL System framework can be broken down
into four major parts:

a) the language processor, including as major subparts the
parser and :he semantic processor;

b) the programming environment, consisting of two major
componenis-the list processor and the paging mechanism;

c) the language extension component. namely the language
building routines and language extension utilities;

d) the operating systerm components (over and above
OS/360 itself) - the input/output components, job control language

catalogued procedures, master routine, etc.
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(a) The heart of the REL System is the language processor,
consisting mainly of a parser and a semantic proéessor. The
properties of these two programs, their éfficiency, and how they

are integrated determine to a large extent how the system works.

The language precc essor is incomplete until provided with a grammar

and corresponding interpretive routines; with these it becomes a
total language system. The range of languages is determined
mainly by the power and genérality of the parser and semantic
processor. REL uses a bottom-to-top general rewrite rule parser.
(b) Language p‘rocessing and the stack organization of syr.lt'ax‘
directeci interpretive routines, in preéeht state of the art systemg,
make dynamic use of memory through list proce.sai-f;g schemes.
Such a scheme underlies the REL language processor and prow;rides“
the media between the language proéessor and the syntactic and
semantic routines. This general list processing mec:.hanism.i.s also
made available to thé syntactic and semantic routines themselves.
In‘a parallel fashion, the paging m.echanism is a generél
resource used by both the RE'L System and the int‘erpreti‘v'e routines

underlying any given REL langtiage. These interpretive routines

.access pages as tabula-rosas. Thus they can organize and access

data on these pages at the design discretion of the language |
pfogrammer. Therefore REL> accommodates any data structures
(including, of course, programs themselves if so desired). Further,

the interpretive routines have"control of individual pag‘e‘s and the

- paging area, thus are in a position to optimize their own page
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referencing algorithms and data organization. At the same time
1/0, dynamic address relocation, etc., are handled automatically
by the paging mechanism. |

(c) Extensible languages are those whicli can change, by adding
new syntax, during the course of conversation. REL has been
designed particularly to facilita’cé the development and use of this
type of language. There are utility programs that build the

three language ingredients - grammar, syntactic routines and
semantic routines - into an integrated language, producing the
necessary grammar table anud link-editing grammar table and
interpretive routines into internal forms which can be efficiently
applied by the language processing 5ystem‘. There is a second
family of utility routines which manipulate the grammar table and
organize the paging of definitional structures. These utilities
are available to each REL language, providing the mechanisms of
language extension.

(d) Finally, REL is implemented on top of 05/360 through

a series of eight catalogued procedures, and the master routines
that organizre access to the relevant data sets, initialize list
processing and paging, handle query and answer input and otput,

and schedule the successive steps of language processing.
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The REL Data Analysis System

REL consists of (a) the REL operating environment, and
(b) REL languages built within that environment. The last section
discussed the environment; we now turn to the application of that
system. This dissertation is not directly concerned with all of
the various language developments that are presently underway,

e. g. the REL Animated Film Language and fhe REL Applied
Mathematics Language. It is concerned only with the REL Data
Analysis System, based upon ‘he REL English language. Moreover,
our particular concern is even more narrowly defined. The syntax
of REL English, i.e., its capability to be queried in what is |
ostensibly natural English, is not the subject matter of fhi_.s

thesis, both because it has not been a part of this thesis research.
and also because the central remaining operational problems of
building an effective data analysis system do not lie in the areas

of syntax or language processing.

The limitations on current qQuestion-answering systems lie
mainly in the semantics, 'especially the problems of efficiency
which occur for any reas;)nably large sized data base. Such data
bases will not fit into the mair memory of a computer, but instead
must be stored on much bslower, secondary memory devices
(typically magnetic disk). The bottleneck today is the amount of‘
access to this secondary memory, for its relative slowness

dominates all otner processing time. The implications of this
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problem of access to secondary memory and the development of
effective solutions to it constitute the core problems of this thesis
research,

These problems are central to data management and data
analysis systems. They are approached here in a specific context,
namely the REL Data Analysis System, with all that implies for
a rich but restrictive programming and operating environment.
Nevertheless, our discussion of these problems is directed toward
contributing to a general understanding of these problems and the
tactics for their solution, The fact that we work within the REL
environment serves largely to give concrete specificity to our
results.

- Consideration of the problems of secondary memory access
uaturally divides into two specific technical areas:

1) data structures and the algoritums faf processing

them, and

2) the organization across a sentence (or program) of

the quantification of variables.

Each §f theze will be considered in detail.

Data Structures and Processing
We shall attempt to minimize the number of accesses to
secondary memory in 2 paging environment. The environment
will be unusual, howeve:r, in thzt semantic routines will be able

to exercise complete control over the transmission of pages, rather
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than being dependent on some generalized system page replacement

algorithm. ‘This will enable us to attempt to finci true minimums.
In any relational data system, ubiquitous to the semantic

processing of nea_rly every quer‘y and embedded deep within that

A
processing is a central routine, namely: to find the image of a

-

given class under a given relation.

Examples are:

A: parents of people

prices of stocks

: salaries of employses

o O o

: allies of countries

Besides being the basic operation in a relational system, one

can see that the internal processing will be lrather similar to that
for alm-ost all of the other large data operations, such as the
intersection of two classes. Most of what can be said on thé image
fproblefn is directly applicable to the other impé'rtant processes

in the system.

For this single task, then, we will see the effects of dafa
structure and'processing algorithms on the. number of page trans- .
mis'sions, and therefore on overall efficiency. The coordination of
data structure and _algor.ithi'n is important; for there are many
documentations of the catastrophic failufe of c-either_ndt coordinatiné

the two or entirely ignoring the properties of a hierarchical

memory (e. g. Brawn and Gustavson 1968; McKellar and Coffman

1969). - ‘
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We therefofe turn directly to the analysis of obtaining the
ima'ge of a class under a relation. The class can be thought of as
-a set of pages, equivalent to a file, containing some identification
of the members of that class. We defi_ne c to be the number of
pages covered by the class, and c* to be the number of members
irfthe class. Generally, c and c* are ;oughly proportional,
depending on the number of elements which can fit on a page
(usﬁaHy 100 to 1000).

We now consider a number of alternative methods to store
and process data, and the implicaﬁoﬁs of these methods on
finding the image of a relation. As each method is considered, i£
wiil be illustrated in terms of the following four examples:
Example A: ''parents of people"'

In this example we assume a data base which includes °
family relationship informati’on. Such a data base could.be from
; anthropoloéical field data concerning an ethnic group or primitive
- tribe. We shall assume that there are 1000 people and that gach ‘
has two parents.

'Exampl_e B: 'prices of stocks"

e There are 2000 companies listed on the New Yo_i'k Stock
Excﬁange whose prices vary over time._ This data base will cover
50 time periods, containing the price of each stock at each timc_e
period (e. g. weekly pfice data for one yeér).

Example C: ''salaries of employees" _l
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A typical personnel file for a large industrial firm contains
data such as the current saiary level for each employee. This
example assumes 10, 000 employees and that each has a single
salary figure.

Example D: '"allies of countries"

The United Nations has about 150 member nations. Over
the lifetime of that organization, both the membership composition
and the web of alliances has been changing. We will posfulate an

average of 25 zllies for each country.

Methc;d I: Fixed Format. This method embodies a fixed-format
data structure together with a direct accessing scheme. Xach
individual in the data base has associated with it a page or set of
pages. All data related to that individual are kept thevre, and
corresponding to every relation is a fixed iocation in that data file
in which the value of that relation is stored. The identification
associated with an individual is the page address of its data file.

With this data structure the algorithm for firnding the image
of a given class under a specific relation becomes: (1) geta
member identifier from the class; (2) read the data file addressed
by that identifier; (3) go tothe fixed location in that file specifie.d
by the relation and find its value; and (4) save that value in an out-
put class and repeat the algorithm (execute step 1).

The analysis of the paging behavior for all of the methods

discussed in this section will be standardized in two ways. We
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will assume that all data is on secondary memory at the start of

the algorithnj {an assumption we Will reconsider later in the case

of repeated app11cat1ons of relatlons) We wil- also igrtore the

page transmissions required for the image class - the output

of the algorithm. This is done because we do not know the size of
the output elass, and also because the number of page transmissiens
will be the same for all methods. Thus it does not affect their
relative efficienCy. |

The fixed format method requzres that we read at least one
~ page for each member of the class, that is, in step 2 of the

'a.vlgonthm..' We will assume exactly one pa.ge per member, sx.__nce
- the fixed location for our given relation should enable us to directly
address the right page. ‘Ad.d to thts one;page-per‘-merpber the
reading of the class’'itself and we find that the number of page
transmiséions t-equired by method I: | fixed f_ermat is (c_'* + c).

We will now cohsidei‘ the meaning of this figui'e in each of
our exe.mples. A constant factor in these calculations is tﬁe number
of member identifice.tiOns which can be placed on e_ single paée.

This number determines ‘c as a function/of_'c*:. we shall use the

REL Data Analysi.e system figure of 3.531.

The REL Data 'Analyexs system has a page size of 7048 bytes,
a class element size of 8 bytes, and a 24 byte head . at the top
of each page. ,
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Example A: ‘'parents of people'"
For 1000 people c* = 1000, and ¢ = 4. The total number of
. page transmissions will be: : ' - 1004
Example B: ‘'prices of stoﬁks"
There are 2000 companies, and therefore c* = 2000, c = 8,
and the total is: | . 2008
| Example C: "saiaries of employees"
The company - has 10,000 employe_eé: ~c%* = 10,000 and
c =40 - : ' 10,046..
Exampl.e D:- '"allies of countries''
‘“We have 150-countries, thus c* = 159  az;ad c=1, fora
total of o o o 151,
The fixed format_ ;;nefhod does .not distingﬁish among our
- exémples, except on the; basis of tfle size of the class, .Se;onda.ry
random-access storage xﬁg_dia today cénsist of either fixed- or
ihoving-head magnetié diskS. The'fixed-heé,c_l disk can acéess any i
page in about 20 milliseCOpd;,‘ or,50 pages per second. Our

" eéxamples -thus have the following, more éasily intefpreted, elapsed_

tirﬂes_:
A. 20 secdnds
B. 40 se,condé _
- C. 3  minutes

D. 3 seconds

Example C clearly approaches the size limit for interactive response

for the »_fixfed—format, direct-access 'met_hod;

+
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Method II. Ring Structure. In this data structure each individual

and relation consists of a linked list of elements, circularly
closed. An element contains space for the link and an extra space
for a cross-link. A primitive item of data such as '"Robert is

the father of Sue' is maintained by creating a cross-connecting
ring. This ring links an element of the "Sue'' ring to an element
of the "father' ring, and then to an element of the "Robert" ring.

The representation of this structure o . pages places each
individual or relation ring 5n a page (or list of pages). The
cross-rings are then represented by pointers connecting elements
on each of the rings involved.

With this data structure we have two algorithms for
finding the image - one for the relation and another for the
converse of that relétion. To simplify matters we will assume that
every element contains the identification of the cross-linked ring
along with the pointer into that'ring. This me.ns that we do not
have to load the ring to see which ring it is.

The algorithm for finding the image of a'primitive relation
is: (1) get the identification of a class member; (2) load its
associated ring and search it for an element containing the
identification of the given relation; (3) when such ;an element.is
found, walk to the ring element of the relation by loadiné that
page, and pick up the icientification of the image; (4) place that

identification in the output class and repeat from step 1.
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For the converse of a primitive relation we.use ‘the following
procedure: (1) get the identification of a,c.lass member; (2) search
the relation ring for an element c‘:ontaininé'that identifier; (3) when
such an element is found, walk the cross-rihg to the range element
aand pick up the identifier of the donr:lain; (4) output it and repeat.

An early such use of ring structures can be found in F. B.
Thompson'é 'clas‘sic DEACON work (Craig et al. 1.966). DEACON
used. ."ref'erent rings" and '.‘c.onxiective rings' and contended that B
'*'ring structures are adequate for storing a wide range of richiy
interrelated data thé,t is pertinent to‘such_' fur;ctibns as intelligence
Snalysis, management planning and decision making." (p. 366).
The data structure described above was a,ctua.l‘ly irhplemented in

wggj.i-er version of REL Engli'slh (Thomps;on et al, 1969).
| The analysis of paging Beha,vior fox; riné stru.ctured data
is slightly more difficult. For primitive lrelaﬁtion.s. we; must
load the ring ;;orresponding to each individué;l in the class (étep
- 2 of the algorithm) plus .some‘ number of pages for the re_zla.tiori.‘ '
We now need three more .Iaarametex;s: " r, the number of pég'es
) t_akeii‘ by the relation; r*, the number of eleménts in the rela.tior_l;
' alnd"lKl,-"the number of page fra’me's in main mem,ofy avai!able‘
to our algo?i"thm.
= o The number of 'relatidh" pages which must beflaé'ded can be
‘estimated by consideration of thelfol'lowing' two ca'ses.' ~ First, if -

‘the relation is small enough to fit into main memory (r < <K), one '

= Yo
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need never lozd more than r pages. If the relation is large, how-
éver, b_ne may be in a position where every access to the relation
requirés another page load. This would happen if the particular
page holding the relation element was never in rmain memory when
needed. Thus the number of page transmissions lies betwéen

(c* 4+ c+ r)and (c* + c + c*) - always greatér than the (c* + c) for
the fixed format method. These figures also assume that each
individual ring is only one page long.

The analysis for the converse relation algorithm is similar:
the number of page loads is dominatéd by c*., Here we must load
the page of the range element for each class member identifier
fo':nd in the relation.

Example A: ‘''pareuts of people"

In a data base consisting of 1000 people we will have a
parent relation with 2000 élements. With good packing a ring
element will fit in 12 bytes, or 168 elements per REL page.

Thus, c* = 1000

c=6
r* = 2000
r=12

Since there are only 12 pages containing the relation and we can
expect a'.out 20 page frames, the total number of page loads will
be: - | - 1C18
: Example B: ''prices of stocks" |
Here there are 2000 companies and 50 prices for each, so

that the relation becomes large: 100,000 elements.
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c* = 2000
c=12

r# = 100, 000
r = 600

If we have but 20 page frames available, there is only a small
chance that a relation page needed is already loaded. Thus, we
will need essentially 2 (c*) pages: 4012

Example C: 'salaries of employees"

The sheer size of c* dominates:

c* = 10,000

c=6"

r* = 10,000

r = 60
There is a one-third chance that a relation page will be in memory
when needed, and so the expected nuriber of page loads ic

(cx+ +£7): ' 13, 360

Met. 311III. Relational Data Structure. The preceding two

methods were limited by the need to brin'g in a page for each
member of the class. The relativnal data structure overcomes
this difficulty by rearranging the data to be local, a property that
data which must be accessed ir. a group is physically near also. In
this data structure a relation consists of a list of pages whose
elements are ordered pairs - the i‘‘entifier of an argument and

the identifier of a value. The relations contain all of the data in
the data base; there is:' longer any need for pages a3ssociated

with individuals.
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A simple algorithm for finding the image of a given class
is the following: (1) get the "ientifier of a class member; (2) search
the entire relation for ordered pairs with matching first element;

(3) when one is fbund, output the second element of the pair;
(4) repeat from step 1. The converse of a relation can be found
by matching on the second half of an element,

'"his method is not useable because of.its paging character-
istics. If the rrlation is small enough to fit into main memory,
we can load it and then read the pages of the class oné at a time.

With K available page frames, we must have r < K~-2 so that the
relation will fit alongside one input class page and one output class
page. In this case, we will have read the relation once, and then
the class once, for a totai of (r + c) page transmissions.

Suppose, however, that r >K-2, that is, the relation is too
large to be contained in available memory. Now for every class
member all r pages of the relation must be ioaded. since the
cyclic nature of the accessing of relation pages always finds that
the next pé.ge needed is on secondary memory. Thus in this case —
the algorithm loads (r*c*) pages.

Example A: ''parents of people'

In this data base of 1000 people and 2000 parents we have:

c* = 1000
c=4
r¥* = 2000

r=12
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For K av.ilable page frame , if K 2 14 w2 have: 16
if X is smaller, thea we need: 12,000
Example B: ''prices of stocks"

Here c* = 2000

c =8
r* = 100,000
r = 596

We can assume that the relation does not fit into main

memory. Thus the total number of page loads is: 1, 206,000
Example C: 'salaries of employees"
c* = 10, 000
c = 40
r* = 10, 000
r = 60
For K 2 62 we have: 100

For K <62 we need: - 000, 000

Clearly this algorithm collapses when the relation is large,
though with enough main mei'nory it is more efficient than the
methods depending on cl*. The next method is a modification of

this one, which attempts to overcome this difiiculty.

Method IV  Generated Relational Data. The primary tenet of

good programming practice in a paging environi:ent is that one
should utilize as rr'.’.:h data as possible froma pape once it has
" been loaded. This method attempts to achieve efficiency with

the relational data structure by maxiipulating the sequencing of

page loads and identifier compa.ris'ons.
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Suppose that the algorithm knows the value of K, the number
of available page frames. It can then consider the relation to be
composed of a sequence of sub-relatio;xs, each small enough to be
held in main memory. ‘Now the algovrithm can fofm the iinage of the
give;x class under each subrelation in seQuence, using the simple
Method.III, and concatenate the results, The fact that the sub-
relation can be loaded in its entirety means efficient processing
for each segment.

This algorithm, which we will call GEN-R, is: (1) load
the next K-2 pages of the relation; (2) read throﬁgh th= entire
class, one page at a time, and form the image‘of the class under
that subrelation; {3) repeat the process until the relation 13
exhausted.

There is a dual to this algorithm, called CEN-C,' which
breaks the class linto small sub-classes: (1) load K-2 ages of
the class; (2) read through the relation, one page at a t.me:

(3) for each relation page in memory, form the image of that sub-
relation and subclass; (4) after the entire relation has been read,
get the next subclass and continue.

For these algorithms the analysis of paging is quite simple.
The GEN-R algerithm structures the relation a\'.‘[ié-z.] subrelations,
each, except possibly the last, (K-2) pagesrlor}g. The algorithm
reads through the class once for each. subrelation, for a total of

C. ‘_}_{_1-:2" page loads. The relation itself is read only once. Thus
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the GEN-R algorithzn requires r + ¢ ,.I—{{-] page transrhissions;
and GEN-C, since it is entirely dual, requires c + r . [—K-CTZ—]

The relational data structure, with no further organizaiion,
requires a minimum of (r + c) page loads. This number means
that each clas~ page and each relation page is loaded once and
only. once. Wien r sK-2 the GEN-R algorithm achieves this
minimum; when ¢ SK-2 the GEN-C algorithm does, These
algorithms in general are sensitive to . .e relative sizes of K and
r or c. The examples below are therefore presénted with v .rying
vé.lues of K, representing between 10 and 50 available page frames.

Example A: ‘'parents of peopie'

L.nce there are relatively few people, the number of pages

involved here is small. The algorithms will be at the minimum

values quickly.

o =4

c* « 13090
r=12

r* = 2000

K(nwunber of page frames) GEN-R GEN-C (number of page loads)

10 20 16
20 - 16 16
30 16 16
40 16 16
50 16 16,

Example B: 'prices of stocks"
in this case the relaticn is large, yet the class is small.

Under these circ mistances the GEN-C algorithm minimizes the

~
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number of page loada immediately; the GEN-R algorithm needs

more space but is not too inefficient.

c =28

c* = 2000

r = 596 )

r* = 100, 000

K GEN-R ZEN-C
10 1196 604

20 868 604

30 772 604

40 724 604

50 700 604

Example C: 'salaries of employees"
Neither the relation nor the class will fit in main memcry
until K is fairly large. ' Yet the numbers of page loads are only

a few times the minimum.

c =4)

c* = 10,000

r = 60

r* = 10,000

K GEN-R GEN-C
10 ‘ 380 340

yAN : 220 220

30 180 160

< lav 160

50 140 100

Example D: 'allies of countries:

The class is so small that this has become an extremely

easy case.
c=1
c* = 150
r =23
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K GEN:R GEN-C
10 _ 26 24
20 25 24
30 24 24
40 24 24
50 24 : 24

Method v. Sort/Merge. The technique of sorting data has been

\

used extensively, and sometimes unthinkingly, by the data
processing community, We shall consider the implications of ‘
sorting the relational data structure. The power of the sorti..g
~ technijue stems from the situation in - ‘hich both the class and
the relation are properly ordered. In this case one can read
through both class and relation simultanéously, keebing
synchronized by use ¢ the sort order: a merge process. This
requires that each rage in both .the class and relation be lnhaded
once and only once fcr a total of (r + ¢) page loacds. 2

Thus, on the assumption that the relation and class are
already sorted, the num.ber of pz ge loads is at the minimum for

the relational data structure. However, since we cannot

2'j‘he mathematical purists might argue that not all r pages of the
relation necd be loaded, since once the class is exhausted the
merge process can stop, and vice versa. However, suppose one
assumes that the individuals in the data base are numbered fror
1 {0 N, and the class and relation contain random samples of
individuals. Then the expected value of the maximum individual,
i. e. the last, in the relation and clagss is r* Nand c* N,
r>:<+] C’E+l
respectively (Feller 1950, p. 212).
This means that for sizeable r* and c* we can expect to load
every sirgle page in both relation and class- hence this factor is
igncred in the page transmission calculations.
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guarantee that pre-ordering, this absolute minimum does not
tell the whole sto'ry. A sort, if needed, can easily do more paging
than soxhe more sophisticated algorithm.

Sorting can be necessary under several conditions. First
consider the relatipn. A binary relation cén be ordered on either
its domain or its rangr One order is needed for the relation a.nd
' the other fof its converse. The relation could be duplicated_-and
.ordered.both ways. This has been done, in fact, fof sméll‘ data
base systems (Levien 1§69), but this solﬁtion w‘a..s“tes e#pensive
sgcondary memory. ‘Fu;'i:‘\‘er, the use of ﬁ-ary relations (n > 2)
means that the relation must be replicated n{:any times. One can
instead keep the relation sor_te,d one way and re-sort whene&ei
ﬁecessa;ry. A small, and certaihly insu.fficient! ;tudy of querieé
put to a relational system revgaléd that this means sorting
appfoxim;tely one-half of the time for binary relations.

It m’ai be necessary to sort tﬁé ¢1a.ss also. The classes
created during the i:?oé'ess‘ of sentence analysis~1‘jnayr_ ﬁot be éorted.
even when the cia_sses in the perm,é.nent .d.'atl;a; ba;e .are softéd. Inv
our image taék, _if the input class 'is assumed sorted then the |

output class must be sorted, for it may become the input of another

application of the process. A further complication arises in that.
a class m_é.y have a subclass structure rather than simply members.

. .An example is the class of ''people’ consisting of the two sub-

classes '"'male'" and "female, ' each of which contains i_ndividua.ls.

o
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Some afnpunt of paging must be done to ensure a simple ordering
on the classes involved.

The sort/merge algorithm will assume that in the data
base a.il re1ation|s are ordered on their domain, and that no classes
are sorted. This last assumption will make our estimates of
paging activity overestimates, but not too much on the average.
.Thus, ‘the algorithm is simply stated: (1) sort the class; (2) if
we need the converse relation, sort the relation on its range;

(3) merge the class and relation, producing the imé.ge.

The paéing behavior of tﬁis algorithm can be estimated
analytically for large data bases. Suppose we have a file which
covers n pages and n is la.rgé encugh so that the file cannot bé
contained in main memory. A simple, standard sort/merge
technique to order that file works as follows: (a) subset the file
into fragments of K pages each (except possibly the last), and
sort eaéh fragmént whilé in main memory; (b) perfo-rm the
required number of (K-1) - way merges, until all fragments
have been merged into o.ne, ordered, file. The sort phase will
require 2n page transmissiomns, as each page is read and written
once. A simple merge algorithm will rgquire ]—logK_ln-, -1
merge steps vﬁth 2n page transmissions in each. Thus to sort
an n-page file requires 2n [logK_lxIIpages. Assuming that the

relation requires sorting one-half of the time, the total number of

page transmissions is r(l + [iogK_lr-] ) +c(l +2 rlogK_lc—l)n



-89-

Improvements can be made in this simple sort/metge
which will improve on- this formula slightly and these te‘chniqueé
have been incorporated intolthe REL sortA/mérge algori.thm. In
obtaining the numbers given in the examples below, we have
used a simulatioln of the actual technique erhployed by REL.

Example A: ‘''parents of people"

Both the relation and class are small enough so that
significant savings can be made by working entirely in main

memory. In fact, the absolute mirimum is achieved for 25

available page frameé.

c=4

c* = 1000 -

r=12

r* = 2000

K SORT

10 . 44

20 ' 32

30 ‘ 16

40 .16 )
50 16

;

Example B: 'prices of stocks"
In this example the relation is so large that the paging
required for its sort dominates. This is exactly the kind of situa-

tion in which the sort is relatively inefficient.

K

c* = 2000
r = 596

r* = 100,000
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K SORT
10 ’ o 2674
20 2180
30 1804
, 40 - 1804
} 50 1804

Example C: ''salaries of employees"
Another example of files large enough to force a multiple

pass sort, causing three times the minimum number of page
\

transmissions.
c = 40 )
c* = 10,000 , \
r =60 : '
r* = 10, 000
K ‘ SORT
10 380
20 380
30 ’ 380
40 380
50 380

Example D: "allies of countries"
Even though a rather small amount of data, fhe relation, is

large enough to cause excess paging until K is 50 or larger.

c=1

c* = 150

r=23

r* = 3750

_I_( ) SORT

10 71

20 : 71
30 48

40 48

50 : 24
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Method VI: Others. There have been other suggestiowns for the
implementatibn of relational structures which should be men.ti..oner:l,
and then rejected. One of the favorite techniques for séarching a
table in main memory is the binary search. If our rélational data
structure is ordered, we can use a binary search to find the value
corresponding to any givén argument. For any siﬁgle argument
we would expect to make logzr* comparisons, or at the ve;ry least
one page load. .For a class of arguments we must repeat this |
process, and can save nothing from the ft:.ll paging rg.quirernents.
Thus a binary search will need c* page loads at least - always
worsc than the direct é.ccess method I.‘

Another possibility which has been suggested and imple-
mented (Feldman and Rovaner 1969) is the use of hash coding the
relational cia.ta. This clever implementation places the data for
a given relation on -a singie, variable lgngth ""page' and hash codes _
the argument to find its location on that page. If the relation ''page"
fits in main memory this tgchnique is fast; on the other hand, a-
relation which is larger means essentially c* page accesses
again. (Assuming that the .relation is p times.larger than
available meraory and that the hash function distributes uniformly,
the probabig'lity. that the current néeded '"'page'" is already in main

memory is L . Therefore the expected number of page loads is

(1-1/p)c*.) -
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Summary of paging behavior. The methods considered
above can be segregated into two categories: those which require
a page load for each individual, and those which can group indivi-
duals. Fixed formats, ring structures, and hash coding are all in
the first category. The number of page Joads needed by these
methods is proportional to the number of individuals in the class.
Consequently, if the number of in&ividuals is small these are
extremely efficient; a large size class makes all of them break
down catastrophically.

These methods have other virtues, especially the possibility
of finding the values of several relations for a given individual at
the cost of that same page load. This is the reason why they
are used in the data management systems which produce telephone-
book-like reports. The Fundamental Theorem discussed in
Chapter I implies, however, that we are more informed if we step
back from the absolute lowest level of detail. We need to be able
to produce generalizations of our data.

Abstractions can be generalizations across a set of relations
or across a set of individuals for a given relation. The latter
problem is attacked by the second category of methods. They
structure the data in such a way as to facilitate abstraction over
sets of individuals, in particular collecting all the data concerned
with a relation into physical proximity for efficient access.

Of the methods studied, the two generator algorithms and the

sort/merge, each has its own range where it is the most efficient.
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For very large data bases the sort/merge is superior: its paging
is approximately r-log(r) while the generators page about r2 (or cz).
On smaller data bases, or smaller questions on large data bases,
the generator algorithms are more efficient.

A rather nice solution has been implemented in the REL
Data Analysis System., It is a simple matter to keep the values of
r and c in.each relatioﬁ and class respectively. Then every
invocation of the imagz-producing routine can be locally optimized
by computing the number of page loads required for each algorithm
and selecting the best algorithm for the particular input parameters.
This dynamic minimization of paging has dramatic effects on the
overall processing of a query.

Our four examples show why one should not naively use the
sort/merge algorithm everywhere:

Example A: 'parents of people"

c=4
c* = 1000
r=12
r* = 2000
K SORT GENR GENC
10 44 20 16
20 32 16 16
30 16 16 16
40 16 16 16

50 16 16 16

Example B: ‘'prices of stocks"

c=8
c¥ = 2000
r = 596

r* = 100, 000
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K SORT GENR GENC
10 2674 1196 604
20 2180 868 604
30 1804 772 604
40 1804 724 ' 604
50 1804 700 604

Example C: '"salaries of employees'

c = 40

c* = 10,000

r = 60

r¥ = 10, 000
K SORT GENR GENC
10 380 : 330 340
20 380 220 - 220
30 380 180 160
40 300 .. 140 . 160
50 300 . - 140 100

Example D: Mallies of countries'

c=1

c* = 150

r =23

r* = 3750
K SORT GENR " GENC
10 71 - 26 .24
20 71 25 24
30 - 48 24 24
40 - 48 24 24
50 L. 24 24 24

More on paging. A further consideration'is whether one can

- better optimize By taking a wider context. The succeeding section
discusses the jrelationship between quantification and paging. Hexfe
we examine the implications of the common situation & qqmposition

- of relations. Our paradigm example will be the phras'e\"loca.tions

of parents of people. '
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The most straightforward method for hand..ng this phrase
consists of applying some techni jue to ''parents of people" to
obtain the class of parents, then repeat the process independently
for "locations' and that class. Thus the composition of relations
is reflected in the composition of processes for finding the imag=
of a single relation and class. This method has the advantages of
simplicity and the use of an already needed procedure. The
possibility remains, however, that a specialized routine might be
more efficient. Fortunately, no - the straightforward methoa is also
the most efficient in this case.

The simple composition method has the disadvantage that a
temporary class must be created, and paged, which holds the output
of the first application of the image procedure.. In a procedure de-
signed expressly for the composition case one can hope to eliminate
that temporary class and thereby become more efficient. We can
assume the relational data structure in which the relation consists
of pairs < domain element, range element> . If both relations fit
entirely in main memory one can proceed directly from argument
to ""relation of relation of argument' without an intermediate class.
This can be done in éur "locations of parents of people" ex‘ample'
by (a) take a person, say Sue; {b) find her first parent, say
Robert; (c) output all locations of Robert; (d) continue searching
for other parents of Sue and repeat from (c) when one is found;

(e) when there are no more parents of Sue, repeat the process

from (a).



-96-

Complications arise when the relations are “»0 large to
fit into the available main memory. Ti..s could be handled by
viewing the relations as sets of subrelations and the class as a set
>f subclasses, such that two subrelations and one subclass will
all fit into main memory. One would then need to work through all
combinations of the subrelations and subclasses, taking one piece
from each of the three main sets of data, in order to find the
composition image. Thus if "location' were broken iﬁto 2 parts,
""parent' into 3, and ''people" into 4, we could have 2:-3.4 = 24
combinations t;o’consider. This means that the number of page
transmissions becomes multiplicative (in the numBer of relations),
as opRosed to additive for the straightforward composition method.

We thus have reason to stay with the simple techrique.

Quantification

Despite the fact that quantification is basic to our intellectual
endeavors, it has been relatively ignored by the designers of
computer information processing systems. Quantification is one
o‘f our primary tools for abstraction and generalization, and the
Fundamental Theorem implies that we gain information by moving
from the level of detail of our data to the more abstract.

Quantification in English is exemplified by such phrases as:

all boys

at most seven books

which countries
each student
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Note the use of such phrases in abstracting overall characteristics
of classes of objects from details concerning each member of
these classes. Tius, in the sentence "All Harvard étudents have
at least one girlfriend at Radcliife,'""aproperty c{ Harvard students
as a class is derived from data relating individual Harvard students
to individual girls, some of whom attend Radcliff.

The techniques of quantification will be illustrated by a single
example: '"Have the locations of all senators included at xleast
3 nations ?" This in-depth examination provides the concreteness

necessary for an understanding of a complex process. The parse.

of this exzample is below, with uniinportant details omitted:"

g
A
.
R P
S _ R &

Have the locations of all senators included at least 3 nations?

Fig. 11, --Parse of quantification example
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The example will be discussed in terms of its phrase marker,
which is a set of phrases portraying the structure of the sentence
and thus revealing the processing necessary to unravel the meaning
of that sentence. We will use a LISP notation to express these
phrase markers. Each phrase consists of two lists, a phrase list
and a phrase information list. The phrase list - indicated
(POS, F, PI) - contains a part of speech, syntactic features, end
the name of the phrase information list, ' The features will be
omitted when they do not affect the semantic processing. The
indirection to the phrase information is made to facilitate the
execution of the phrase marker, for the result of a semantic
transformation ia a new phrase information list which is then
named by the old phrase element.

Phrase information lists can be ¢f several types, identified
by the fi- st element:

1. (ROU, C, T) postfix routire: C is a list of the consti-
tuent phrases, and T is the name of a semantic
transformation.

2. (GEN, C, T) prefix routine: (used mainly in generating
situations).

3. (DATA, D) data: D is some data such as a number or

a page in the data base, indicated by ¥ ocation
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4. (VAR, R, TY} primitive variable: R is a phrase
which is the range of that variable, TY is the tyi)e
of quantification.

5. (OUT, STR) output string

The '"variable'" technique. The '""variable' technique for
handling Eng‘lish quantifiers turns each quantified noun phrase into
a ''variable, ' in the REL sense. This variable then propagatus
upward through the parse during the syntactic processing of the
sentence, and gets bound at the appropriate level of analysis.

Thé quantified noun phrase qua variable contrasts rather
éha.rply with arithmetic expression or predicate calculus variables.
These latter variables are truly place markers, conveying only
syntactic information. The type of quantification, such as the
arithmetic sum or product, and the range of values for the variable-
are provided when that variable becomes bound. Quantified noun
phrases, on the other hand, .acquire such data at the time they
are created. '"'All senators'' is a variable with an "all' type of
‘quantification and the class of senators for a range.

The arithmet,ié or predicate <r:a1vci11us variable has an

- explicit sfnta.ctic ma'rke~r-‘which indicates the poinf at which it
becomes bound. Phrases such as "sum f(x) for x=1 to 10" cvlearly :
bind variables, besides specifying the quantification. In English,

however, variables are bound at the clause or sentence boundarj, 7

and there is no explicit binding phrase. In our present e xample
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the two quantifiers, 'all senators' and ''at least 3 nations, '’ are

bound at the sentence boundary P The p-marker below shows that

1
two generator phrases have been inserted, corresnonding to the
quantifiers, These phrases are the representation of a bound,

quantified, variable,

Fig. 12, --P-marker for "variable" quantifier technique

P1: (SS, PII) Pl,: (ROU, (Pa)’ Tss)

Pa: (VP, PIa) PIa: (GEN, (Pb), T (P6, ptr), Ra)
Pb: (VP, PIb) PIb: (GEN, (PZ), '1‘at least 3, (P8, ptr), Rb)
PZ: (VP, PIZ) PIZ: (ROU, (P3, P7), Tis)

P.: (IN, PL) PlL,: (ROU, (P,, P.), Timage)

P4.: (NP, PI4) PI4: (DATA, % Jcation

P5: (NP, PIS) PIS: (VAR, (P(,)' all)

P(,: (NP, PIG) PI(): (DATA, asenator)

P7: (OJ, PI7) Pl,* (VAR, (P8), at least 3)

P8: (NP, PIS‘ PIS: (DATA, anation)

R: ( (P, PL), (P, PL), (P,, PL), (P, NP/0))

Rb: ( (PZ’ PIZ)’ (P.,, 0J/0) )

The p-marker 1n figure 12 indicates a kernel in which a
copula has an instrumental and an objective case. The instrumen-
tal case is the location of some particular senator; the objective
is some nation. Built around this kernel is the generation and

resolution of the "all senators' and ''at least 3 nations'' phrases.
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While it is always difficult to describe recursive processes,
the following is a narration of the execution of this phrase marker.

The in .tion follows conventional block structure format,

Process P,:
(1) Process Pa:

(A) generate first (next) senator, say senator i, and -
refresh, thus making PS: (NP, PIS')

I, )
PI5 : (DATA, asenat‘pr i

)
(B) process Pb

(1) generate first (next) nation, say nation j, and
refresh, thus P7: (OJ, PI7')

Pl,": (DATA, a )

nation j
(2) process PZ
(a) ;;roce'ss P3

(i) process P,: recognize it as DATA
4 gn

and return
(ii) process PS: - DATA
(iii) apply Timage’ to V(P4," Ps)
output: -P6: (NP, Plb')

f. .
PI6 : (DATA, p,’location of
senator i)

(b) process Pq: recognize DATA and return.
(c) apply T, to (P;, Pg)
Gt . '
output: PZ' (VP, PI2 )
PL,": {(DATA, yes, if the

2 . . .
location of senator i is
nation j; no, otherwise

)
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(3) apply Tat least 3 to PZ of (1, j)
count éfﬁrmative_s.

if count <3, continue generation on j (i.e. repeat
from step 1) -

if count = 3, output PIb’: (DATA, sres)
if generation complete, output PIb': (DATA,
. no)

for any output set Pb: (VP , PL ")

(C) apply Tall to Pb of (i)

if affirmative, continue generation on i (repeat
from step A)

if no, output PIa': (DATA, no)
if generation compl ete,. output PIa': (DATA, yes)
for any output, éet Pa; (VP , PIa')

(I1I) apply T g to (Pa)

output P: (SS, PI,')
PIl': (OUT, ''yes' or '"no")

The essence of the ;"Vi?rariable” technique is the generation of
ail quantified classes down to individuals, and the application of
the core analysis .process to those individuals in the innermost
loﬁp. The core processes operate on individuals only and are not
aware of the quantification around them. This is conceptually
clean, but operationally disastrous,

One of these core processes in the above example is the
image routine, which produces the "location of senator,. "' Since

the ''variable" technique of quantification invokes the image routine
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for every individual.in the range, and each invocation requires at
least one page load regardless of the data structure, this technique
will page proportionately to the number of elements in the range of
the quantifier. The analysis of the previous section has shown,
howéver, that such paging-is unacceptable, and avoidable.

There is another, deepe.r,j objection to the ''variable"
technique for handling,q'u;antiﬁérs which dooms those systems
using the predicate zalculus as an intermediate language between
English and the data. The 'variable'' technique, and the language
of the predicate calculus, requires that all quantifiers ke properly
nested. ' In our example the computation of the ""location of
senatori" is within the quantification over nations, and normally
would be repeated a‘s-rnany times as there are.nations.

Fortﬁnately the REL refresher mechanism provides a '"do-loop"
optimization which guarantees that no redundant processing will
occur. In this case the refresher stack associated with the

nation-quantification does not contain P3 ('""location of senatori")

——

so that P3 is proceésed t;nly once for each senator.

The multiplicative effect can be seen in another example:
"Which boys are friends of at most 3 girls?" The phrase marker
associatedwith this query is shown in figure 13. Here '"boys'' are
quar’xtified as the outer variable, '.'girls“ are the inner variable,
and tixe central process is the test, ''is boyi equal to a friend of

irl, 2"
ng
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Fig. 13. --P-marker for second ''varizble" quantifier example.

Pl: (SS, PIl) PIl: (ROU, (.Pa), Tss)

Pa: (VP, PIa) PIa: (GEN, (Pb), Twhich' (P4, pt'r-), Ra)
Pb: (VP, Plb), PIb: (GEN, (PZ)' Tat most 3’ (Ps,ptr), Rb)
P,: (VP, PL) PL: (ROU, (P, Py), T, )

P,: (AG, Pl)  PL;: (VAR, (P,), which)

P,: (NP, PI,) PL;: (DATA, aboy)

Pg: (OJ, PIS) PI;: (ROU, (P6, P7), Timage)

Pe: (NP, PI)  PL;: (DATA, o, )

P7: (NP, PI7) (VAR, (PS), at most 3)

P8: (NP, P18) PIS,: (DATA, dgirl)

R: ( (P, PL), (P,, PL), (P, AG/0 )

R.: ( (P, PL), (P, PIL), (P, NP/0) )

The fact fhat the i‘nn_ermost quantified variable, gi.rlj, is
involved in a2 computation which is independent of the outermost
quantifier means that this computation will be repeated many times
unnecessarily. In this case there is no solution: *do-loop"
optimization is irrelevant and does not help, and the quantifiers
cannot be interchanged. The unaware system which uses the
"variable' quahtificaﬁon technique can be devastated Sy this

multiplicatively excessive, useless computation.
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The '"label class" technique. The REL data analysis system
uses a method for handling quantifiers which circumvents the prob-
lems discussed above. This method turns a phrase such as "all
senators'' into a class which is marked with the type of quantification,
and in which each element is associated with the identification of a
quantifier range element. The label, as the identification is called,
represents the instance of the quantified variable which led to the
present element. Thus the phrase "locations of all senators' is
represented by a class consisting of the pairs <New York, Jones >,
< Boston, Smith.>, and so on, rﬁeaning that a location of Senator

Jones was New York, etc. Notationally this class will be written

<90, all >

< location, senator > The subscripts are the class elements;

Xthe superscripts identify the type of quantifier (with 0 indicating
none). The "label class" technique shifts the burden from the
syntactic analysis of variables to the semantic analysis of labels.
Re-considering our example ""Have thé locations of all senators
included at least 3 nations?'", we néw have the simplified phrase

marker below.

Fig. | l14-~-P-marker for "iabel clas_s" quantifier technique

Pt (S5, PI)  PI: (ROU, (B,), T, )

P,: (VP, PL) PL: (ROU, (P, P), T,)

P,: (IN, PL)  PL: (ROU, (P, P), Timage) ‘
P,: (NP,'PI4) PI,: (DATA, alocation)

PS: (NP, PIS) PI'5: (ROU, (Pé), Tall)
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P,: (NP, PL) PIL: (DATA, e . )
;4 (oJ, PI7) PI,: (ROU, (Pg), T_ ;.. . )
Pg: (NP, PI)) Pl (DATA, a .. )

The importance of the ''label class' technique for handling
English quantifiers lies in the properties of its semantic processing.
We first describe the processing bf,this exampleand then discuss

it. Process P.:

1
(I) Process PZ:
(A) Process P3:
(1) Process P4: recognize it as DATA and
return

2

(2) Process PS:

{(a) Process P6: recognize as. DATA,
and return.

(b) apply Tan to (Pé)

output Pyt (NP, PI,")
all ' )

.‘ F TS5
P16 : (DATA, o senator

(3) apply 'Timage to (P4. PS)

output P (NP, PL,')

3:

PI3': (DATA, a

<0, all > )
< location, senator >’

7:

(B) Process P
(1) Process P

8: recognize DATA and return

(2) ‘_apply _Tat least 3 to ‘PS)

output P (NP, PI7')

7:

. at least 3
Pl,': (DATA, a__ . )
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(C) apply T, to (P, P.)

output PZ: (VP, PIZ') PI (DATA, yes/no)

2°

(1) appiy T__ to (P,) .

output Pl: (SS, PII') PII': (DATA, 'yes'/'"no")

The essence of the "label class" technique is that processes
operate on quantified classes as a group, rather than individually.
Thus in step L A.3 we apply the image routine to '""location'' and
"all senators' and can utilize the paging optimization diséus sed
in the previous section. This reduction of paging during quantifica-
tion represents an extremely important breakthrough, for it shifts
the ecbﬂomic balance towa.rd‘ the use of abstraction. Since abstrac-
tionuha.s been so negiected in recent computer systems, any such
shift has a large payoff in informativeness.

The other problem attached to the ''variable' technique, |
that of redundant computation,' is also solved by the 'label class"
method. Every phrase is ;?mputed once only and the quantif{ers
éssentialiy work their way upward through the phrase marker.

Quantifiers interact when two labelled classes are merged, as in

<
0, all > and d’_<at least 3 >

: . . In these
<loc., senator > < nation >

step I.C for a
situations the quantifiers are ordered, consolidated, and sometimes
resolved. To explain this process we will use several new

examples.



Figures V-2a through f: Monthly summary plots used to select quiet
periods in 1969 and 1970. For the indicated month the following
information, starting at the top, is plotted vs. time:

1)

2)

3)

4)

3)

6)

7)

8)

9)

10)

The average polar D1D8 counting rate in cts/sec (labelled D1) is
plotted logarithmically. This rate is nearly insensitive to
electrons but responds to nuclei from ~1.2 to ~20 MeV/nucleon.

The average polar D2D8 counting rate in éts/sec (labelled D2) is
plotted logarithmically. This rate responds to electrons
> 200 keV and to nuclei >3 MeV/nucleon. '

The average polar D1D2D8 counting rate in cts/sec (labelled D1D2)
is plotted logarithmically. This rate responds to nuclei from
~3 to ~20 MeV/nucleon.

The average polar D2D3D8 counting rate in cts/sec (labelled D2D3)
is plotted logarithmically. This rate responds to electrons
> 1 MeV and nuclei > 19 MeV/nucleon. o

The > 10 MeV solar proton fluxes measured by the Solar Proton
Monitoring Experiment ahoard Explorer 41. This cosmic ray telescope
which is described briefly in the ESSA descriptive text , also

has some electron sensitivity. The large rate excursions repeated

at ~4.3 day intervals are due to the periodic passage of the ,
satellite through the earth's radiation belts. These excursions have
been largely suppressed by the plotting program.

Normalized hourly average counting rates for 2 neutron monitors:
Alert (upper line) and Deep River.

The standardized K-index of geomagnetic activity from tweive

observations are averaged to obtain . The quasi-logarithmic
scale ranges from 0 (quiet) to 9 (very disturbed). The legend
for the plots is identical to that adopted by ESSA. .

Geomagnetic storm sudden commencements (labelled SC) are indicated
by solid triangles if confirmed and by open triangles if unconfirmed.

Magnetogram suddén impulses (labelled SI) are indicated by solid
diamonds if confirmed and open diamonds if unconfirmed.

Optical solar flaves (labelled SOLAR FLARE) of importance greater than

- 2F observed by the world-wide system of solar observatories are

11)

indicated by a small vertical line plotted at the beginning time of
the flare. The importance (2M, 3B, etc.) is included. Periods of no

flare patrol are .indicated by horizontal lines of appropriate length.

o .
2 - 12A solar x-ray flares (labelled X RAY) with a peak flux at least
4 times the ambient value are indicated by a vertical line. These
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Surface structﬁre ordering of quantifiers. Our first
examples concern qQuantifiers which are similar, possibly identical,
and the determination of their order of nesting. We shall consicier
the followiﬂg two examples: (a) All people play some sport; and
(b) Some sport is played by all people.

Th.e lat‘ter sentence is clearly the passive form of the former,
and yet differs in an important manner from the normal passive
transformation. Consider ""John plays baseball' and '"Baseball
is played by John." These ééntences, while différent in surface
structure, are identical in deep struc‘ture and in meaning.
Linguists ha\;e been careful to note this retention of meaning
through thé éas sive transformation. The meanings of our two
examples differ, though it is the samé passive transformation, in
a way. reflecting a different ordering of the quantifiers. "All
people play some sport'" means that each per;on plays something,
and that sport may be different for different people. ~ For this
sentence to be true it is enough that each individual play any sport.

On the other hand, ''some sport is played by all people'

' 'means that there is a single sport, which everyone plays. This
requirement that éveryone play the same sport is not ‘irnprlicit‘in
the active form of the sentence. The difference in meaning is

exactly in the nestipg of the quantifiers: the active form places
the '"all" quantifier outermost followed by the ''some'' quantifier,

the passive has the '"some" followed by the "all.'" Since the deep
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structures are identical, the difference in meaning must be a
function of the differing surface structures. If we include the
feature marking the surface structure subject, our examples have

- the following phrase markers:

a) Py (VP, - Pl)  Pl,: (ROU, (P, P,), T play)
P,: (AG, sur. subj., PI)) pxlzl (DATA, a;]élople)
P,: (01, - PL)  PL: (DATA, a 307¢) |
B) Py (VP, - ,Pl)  Pl: (ROU, (P,P,), T play)
P;: (AG, -. ,PI))  PL: (DATA, a ;Llople)
P,: (OJ, sur. subj., PL)  PL: (DATA, "_:;?ri)

Using the simple rule that surface object quantifiers should
be nested within surface subject quantifiers, our examples concep-

tually consolidate the quantifiers into these classes:

< some, all >

a) < sport, people >

<all, some >
< people, sport >

b)
Theq_ua.ntifier-s can then be resolved, innermeost first, and
' in both cases prdduce the correct interpreta.tion. Another exa.mpié
of this samé effect of surface structure is in '"when did each |
person live in each city?" Here one wants as output a list of
people and for each, a list of cities and times. Although ignored -
so far, ali data has-'.; tirhé span as:sociated with it in th_e REL data.
analysis system. This adds trémendous complexity to the processing

routines, yet is absolutely essential to a useful system. - In this ex-

ample, we indicate only a simplified version of the processing.
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0, each, each
time, city, person

each, each
city, person

] L
aeach- | - " each
person ci

I _ ] | ‘_tL_‘|
0 0

.ap_erson ra_'_cﬁ?r
When did ea_ch person live in each city?
Fig. 15.--Parse and label class processing for (each, each)
example, ' ' ,

The precedence ordering of quantifiers. The rule that
surface object quantifiers are nested within surface subject
quantifiers works if the quantifiefs are similar. There is a
hierarchicé.l ordering, however, which supersedes this rule. We
can classify as similar all quantifiers such as some, at least n, at
most n, exactly n, all, 211 but n, etc, These quantifiers are fhe
ones which should be nested within any of the other types. The
next group #re the ones v-vhiéh cod_nf';: how many, what proportion of,
and what percentage of. These quantifiers should be kept outside

the first group, and nested within the last group of 'quantifieis.

i
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These produce labels to be output as tabular listings: each, which,
and what', -
g
One can see the effect of thié ordering in the example, "At
most 3 people have lived in which cities? " The ''which' qué.ntifier,

even though it is the surface object, must be treated as the outer-

< at most 3, which >

< people, cities > « The answer to

most to produce the class
this questioﬁ is a iist of cities, since the ''at most 3'' quantifier is
resolved at the clause boundary.

Thus we have a precedence ordering of the quantifiers
which partially determines the order of nesting in a multiply-
. quantified class. The nesting order in turn determines the inter-
pretation of a phrase and finally of the entire sentence. The com-
plete rule for nesting can now be stated: when two quantified
phrases are to be merged, the quantifiers are to be nested first
by the precedence order and within each precedence group by the
.l‘eft-to-ri-ght order of appearance within the sentence, that is,

quantifiers on the right are to be nested within quantifiers on the

left,

ﬁesolutio’r; of quanti:fiers. Mentioned above was the resolu-

‘ ,tion_.of a quantifier, tha.t."i's'," the point at which the quantifier
disappears and is replaced by a siqnple, non-quantified set.
Quantifiers are resolved by processes which depend on the quantifier
type and at points in the phrase marker which depeﬁd on the

precedence order.
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The.all, some, at least n quantifiers resolve in.to- booleans
by processes corresponding to either universal or existential ~
logical quantification. The how many quantifiers resolve into
numbers by a counting operation, and the each or which quantifiers
resolve into character strings placed on the output.

The lowest precedence level quantifiefs% all, some, etc.,
are resolved at the ciause boundary. This occurs when a verb |
i)hrase- gets parsed into a non-verb phrase, such as sentence,
noun, or tifn,e. All other quantifiers are resolved only at the
sentence lew.;el. This difference is important because of the
possibility of subprdinate clauses. The all or some quantifiers
are elimina-ted at the subordina-te clause boundary_: ""people who
li-ve in some city" represents a non-quantified class of people.

The last sentence of this section illustrates many of the
properties of quantifiers and their interaction. :Figure 16 is a
representation of its parse and label. claés processing and hints at
an exciting de vélopmenf f.o__r the future: til%j.abél type ''pn'' used
for a generalized anaphoric expression. ''How many employees
of each company are-children of people who have worked for some

competitor of that company? '
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Use of the REL Data Analysis System

The difficulty of articulating the impact of a responsive,
flexible data analysis system must be apparent, and the non-
computer scientist reading this will probably have found the inside,
technical viewpoint almost incomprehensible, This section will
present the system from the other side oif the language: the
user's view,

As a typical, small-to-medium size data base we will use
the demographic data compiled by Professor Bruce Russett of
Yale University (1969). It consists of 75 political, social, and
economic indicators on each of 133 countries. The total nurmber
of datums i3 therefore zpproximately 10, 000. Some of these
indicators are population, GNP, public expenditures, military
personnel, newspaper circulation, unemployment, life expectancy,
and capital formation. No time series are involved since the
data is assumed to have been zathered at one poi:.i in time,
essentially 1959.

The REL user first declares the lexicon - the names of
items relevant to this particular data:

United States: = name

Canada: = name

U.S.S.R.: = name

population: = number relation

GNP: = number relation

There would be one such declaration for each country and each
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indicator. Using the language extension mechanism, we rmight
also provide synonyms:

def: Russia: U.S.S.R.
Now we can input the basic data, either in the form of English -
declarative sentences or directly from a fixed-format card
image:

The ponrulation of the United States is 183742.

The GNP of the United States is 443270.

The United States' life expectancy is 73,
We will not be concerned with the unita in which each indicator
is expressed; clearly this can be handlzd in a'variety of ways.
At this point it is possible to ask simple, fact-retrieval questions
which involve few details: |

What is the working age population of Mali?

What is the agricultural land area of the United States /

the agricultural land area of Russ:a?

This mode of analysis quickly becomes unsatisfactory, especially
Aif the amount of data is large. One nceds to generalize and
gummarize across wide areas through the data, and yet be able
to check details when desired, in order to cross-cl.;teck or
verify some generalization in the smail. The simple summari-
zations are first, needing only some grouping of the data:

country: = class

def: nation: country

The United States is a2 country,

Canada is a country.

What is the total population of all countries?
How many nations have a negative GNP increment?
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The language extension mechanism proves useful very early, for
it allows concepts to take on a life of their own:

def: per capita '"land area': 'land area'/population
Two clarifications about this definition: (1) "land area' is a
variable for all things with the same part of speech as land area,
i, ¢, number-valued relation, thus the definition is a general one
for per capita anything; and (2) this definition is totaily bound
to the context of our present, particular data base., Clearly
this is not a generalized definition of per capita - it is only
meaningful if w: know that a '"'population'' number relation exists.
We re-emphasize that REL English is a formal language - not
fuil, unrestricted everyday English, Yet it is a formal language
which can be tailored to a subject matter so that the terms used
are méaningful and unambiguous. It is the idiosyncratic nature
of the above definition of per capita which makes it extreémely
useable in our present coﬁtext. and not at all useable in general:

What is the percapita defense expenditure of each nation?

United States . .23
United Kingdom .08
Canada .08
- West Germany . 04

A representative sample of the answer to this question has been
‘included to show that the phrase '"each nation' is a request for a
table of outputs and is a quantifier situation. This is a common
means of summary, but the usual method is by the use of

descriptive statistics:
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What is the average school enrollment? :
What is the median of communist vote / total vote of all
nations ?
What is the correlation between communist vote / total
vote and per capita GNP over nations ?
Which nations' per capita religious vote is greater than
2* the median per capita religious vote? '
.One component which determines whéther such questions as the
last one above will really be asked is the time involved in
producing their answers (and therefore also the cost)s We can
easily estimate tht;, amount of elapsed time it will take the REL
system to answer this query., There will be some overhea.d in ini-
tializing the system, parsing the sentence, and so on, byt this
will be under a second.l In terms of the data, the REL data
axialysis system uses a page size lar_ge enough so that the class
of countries, the population data, and the religioué vote data
will each fit on a single page. Thus to get the '"per capita religious
vote of nations'' data will require only 3 page loads, since the
other manipulations will be done in main memory. If we triple
Ithis for good measure, we still have an elapsed time of 1/2
.second. The entire query, even with finding the country names
to be printed, will tak,e. 1to 2 seconds.
As we have stressed, however,- simple statistics is not
all of data analysis. Another important part of the process of
imposing our conceptual structure on the data consist of 'subsetting

the data into interesting gi'oupings, each of which is to be studied

further.
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The most common type of international grouping is by
geographical region. Geographers find that local proximity has
important influences on the development of a nation:

region: = relation

locate: = verb (region of IN is LO)
Europe: = name

France is located in Europe.

What is the average per capita GNP of European nations?
What is the correlation between communist vote and
religious vote over countries located in each region?

The geographic breakdown of homogeneity is not the only
possible or desirable one.l The compilers of the Yale data base
considered the matter (Russett 1964, p. 322):

When we describe Peru as a Latin American
country, we are simply locating it in a particular
geographic region. If, however, we attempt to explain
certain things about Peru, such as its personalismo
in politics or its low per capita income, by saying that
it is a Latin American country, several interpretations
of this remark are possible. The simplest, which we
shall call the geographic interpretation of regionalism,
is that being a Liatin American nation means having a
lower per capita income than, say, North American
countries, or means having considerable personalismo
in its politics. If [ our preceeding analysis] had been
presented separately for each of the wortBlg.-major regions
this kind of geographic analysis of the broadest
"ecological sort, comparing different regions with
respect to their typically different social and p013t1ca1
characteristics, would have been facilitated.

Another way of interpreting the regional clustering
of national data for cross-national comparisons
would be to make explanations in terms of generalized
cultural, political, or social variables which correlate
with regional groupings. Thus, instead of talking
about East European states, one can refer to communist
countries and mean nearly the same thing, At some
stage Mainland China and Castro's Cuba would also
merit such a labels Even more generally, as this
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Handbook has done, one might describe such states

in terms of a very high percentage of the electorate

voting for communist political parties. Again it is

clea at European nations {and a smaller number

of Alsian states, some of which do not have elections)

are the particularly involved. Although highly concentrated
in Europe and North America, economic development

is another important generalizable regional phenomenon,

Describing nations in terms of such universalistic
variables might be called 'sociological regionalism, '...

As a research focus and a political fact regionalism
may mean more than a clustering of geographically
proximate states on Handbook profiles, and more than
the description or explanation of regional political
and social phenomena in terms of sociological
variables. A good deal of the literature of social science
suggests that relationships between variables will be
different for data from ditferent geographic or cultural
contexts,

What is the average GNP increment of nations whose
executive stability index is greater than 1007
What proportion of European nations whose per capita
land area is less than .5 have an infant mortality
rate greater than 100?
The essence of this rather lengthy passage is not that the
REL Data Analysis System can handle regionalism, either
geographic or sociological, but that it facilitates the imposition
of structure on the data by the researcher. One can express and
analyze that view which is relevant--and if that particular
structure cease¢s to be relevant, one can impose a new one. One

is neither forced to use pre-existing structure nor limited to

one's own obsolete conceptualization,
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developed: = class

All nations whose per capita GNP is greater than 1 are
developed.,

under developed: = class

All nations whose per capita GNP is less than .25 are

‘ underdeveloped.

What is the average per capita public expenditure of
developed nations ?

Is the life expectancy of.at least 3 European nations

" less than the maximum life expectancy of under-

developed nations?

def: "GNP' ratio of '"developed' to '"underdeveloped':
median "GNP'" of ""developed''/median "GNP'" of
"underdeveloped"

What is the foreign trade ratio of developed nations to
all nations?

What is the life expecta.ncy ratio of underdeveloped
European nations to African nations?

The grouping of entities into classes, the use of relations
between entities, and the use of language extensions are all
powerful conceptual tools by which we can impose structure on
our data, The grouping of the United States, France, West
Germany, and so on, into developed nations is a process of
abstraction--the emphasizing of certaifi similarities and-the
‘exclusion of differences, At the same time the ciass of
nations has been broken into three classes--developed and
underdeveloped nations, and neither~--a process of ramification
of the structure of the data base in order to obtain a more finely
detailed picture, The same effects are seen in the use of theA
rela-ﬁon "region' which allows phréses such as ""European

nation'. The relational structure has the added advantage that
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it handles phrases like ''nations located in each region'' thus
allowing us to quantify over the subsets.

‘ The language extension mechanism, though often
underrated, is just as important.: Lianguage extensions give
substance to concepts and push our own notion of relevance into
the language.- The definition of "percapita' above singles out
population as being importaﬁt, and the ratio of .sométhing to
population as meaningful, Definitions are not mere abbreviations
- they introduce new possibilities into our universe of discourse
and thus change the informativeness of our lan‘gﬁage. Since:
the phrases which are defined can be re-defined with a
different meaning, or even a primitive one, they are essentiaily
independent of the original definition, Once defined, we utilize a
concept without going into its definition, as if it were a prim-
itive - entity - which it therefore becomes. —Deﬁr;itiohs are
articulations of theory.

This example, and data base, has thus far barely touched
the potential inherent in a relational data system: the explicit
" use of relations between entities. Even though most of our
conceptuaiizations are conperned with the relationships existing
between one thing and another, our data and current theory |
reflect.the inability of historical data systems to manipulate
interconnected models. The relational data systems are the
beginnings of tools for studying interdependencies of a stronger-

than-statistical nature, Since the Yale data does not contain
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any explicit relations, we shall add one for explanatory purposes:
ally; = relation ' :
West Germany, the United Kingdom, and Japan are allies
of the United States
What is the median GNP of allies of the United States ?
What is the total population of the United States' allics/
the total population of Russia's allies?
The above use of the relation is again to subset the data - to cut
the universe along desired lines. One can also study the relation
itself:
Are all allies of allies of'the U.S. allies of the U.S. ?
How many nations are allies of both the United States

and Russia?
What proportion the U.S.'s allies are developed?

The net of relational structure can become exceedingly complex
and begin to reflect some of the realities of the situation,
Clearly we cannot do justice to the power of the relational
structure - we can only give the briefest glimpse into the
complex process of analysis:

trading partner: = relation

What trading partners of each nation are not allies of

~ that nation? .
Which trading partners of China trade with some nation
that trades with both Russia and the United States ?
What proportion of the underdeveloped trading partners of

European nations trade with at most 2 communist
nations ?
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